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Abstract—The emergence of distributed clouds opens up new
research challenges for service deployment. Composite services
consist of multiple components, potentially located in different
geographical locations, which need to be interconnected and
invoked in the correct order according to the overall service
work-flow. The placement of composite services over distributed
cloud node locations raises new challenges for efficient deploy-
ment and management. In this paper, we design exact models of
the composite service placement problems using Mixed Integer
Linear Program (MILP), and compare these to solutions based
on genetic algorithms. We use a utility function, based initially
on latency metrics, to evaluate the quality of service (QoS) of
the deployed composite service. By maximizing the utility with
respect to deployment cost, our approach can provide good QoS
for users while satisfying budget constraints for service providers.
Based on simulations using real data-center locations and traffic
demand patterns, we show that our algorithms are scalable under
a range of scenarios.

Index Terms—Ultility function, network function virtualization,
composite service, service placement, optimization.

I. INTRODUCTION

wide variety of emerging Internet services such as virtual

& augmented reality, network gaming and instrumenta-
tion for the Internet of Things require tight constraints on
quality of service (QoS) that can only be achieved by moving
computation closer to the users. In this context, application
providers will make use of any of the thousands of third-party,
publicly available, cloud data centers to instantiate parts of
their services. Therefore, placement policies will play a key
role in delivering good QoS for users. There are many drivers
for service placement, including server resilience, network
diversity, and proximity of servers to users. In this paper, we
focus on deploying services close to users to improve QoS
metrics, such as latency and/or throughput. We thus arrive in
a situation where replicas of the same service are deployed in
many data-centers, spread over the Internet. Service quality has
two major sets of component metrics, relating to processing at
servers and networking latency. The service placement system
needs to take into account both computation and networking
factors to optimize its performance.

Choosing a concrete service placement solution that is
optimal with regard to QoS and cost constraints is an NP-
hard problem [19]. In this work, we focus on the composite
service deployment problem, which is even more complex. A
composite service is formed from several components, poten-
tially located in different data-centers. When in use, we must
determine an efficient way to connect those components as an
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adequate work-flow. QoS of a composition is the aggregated
QoS of the individual services according to the work-flow
patterns. With the emergence of distributed cloud paradigms
and virtualization technologies, the decomposition of complex
services into components provides options for increasing flex-
ibility and reducing costs compared to single atomic service
deployment models. For instance, some components can be
deployed once and used to serve multiple service sessions in
order to reduce overall deployment costs.

One way to achieve good QoS is to reduce network latency
by deploying services close to users [7], [19], [20], [26], [27].
In this paper, based on our previous work [23], [26], [27],
we translate latency (both network latency and processing
time at servers) to a utility score, which has been proven to
be a better way to evaluate QoS [26], [27]. For composite
services, the end-to-end latency is the aggregated latency of the
path connecting each component together. In addition, we also
consider one-hop utility constraints, as some services require
a short delay for a special hop (e.g. from the users to the
rendering component). Those latencies are then converted into
a utility score. Our algorithms try to maximize the utility, given
the deployment cost constraints.

In brief, the contributions of our work are as follows:

« We consider both network latency and processing time at
data-centers in evaluating QoS. We then convert those
latencies into utility scores and propose algorithms to
maximize the utility.

« We consider three basic composite service structures and
propose Mixed Integer Linear Program (MILP) formu-
lations to find the exact solutions for each structure.
In addition, we propose genetic algorithms as meta-
heuristics to address these optimization problems.

o We evaluate our algorithms on a real dataset of data-
centers and users distributed around the globe. Simulation
results show that our approaches are scalable and can
provide close-to-optimal solutions.

The rest of this paper is structured as follows. In section II,
we introduce the three main composite service structures with
example use cases. To evaluate QoS, we review the idea of
the utility function in Section III. We then propose MILP
models in section IV to find the exact optimal solution for each
composite service structure. In sections V and VI, we design
genetic algorithms to quickly find close-to-optimal solutions.
We show evaluation results of those algorithms in section VII.
We present a literature review of related work in section VIII
and conclude the work in section IX.

II. COMPOSITE SERVICE STRUCTURES

The emergence of new networking technologies like Net-
work Function Virtualization (NFV) and Software Defined



Networking (SDN), opens up a new venue for flexibly de-
ploying new network services. This approach consists in
delivering network functions as software that can be deployed
at required locations in the network, without the need to
install specific equipments for new services. However, we
do not limit ourselves to network functions. Applications,
such as video processing and gaming, can also be deployed
as a set of interconnected service components. Application
providers will buy computation resources in a open market
from a myriad of cloud providers allowing for thousands
(even millions in the future) of potential placement servers,
without any fixed infrastructure cost. A composite service
requires connecting several components running in different
locations (data-centers). We present in this section the three
basic structures of a composite service.

A. Chain structure
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Fig. 1: Network service chaining in NFV.

One of the most common structures of NFV composite
services is the chain structure. In Figure 1, an intrusion
detection system is used to monitor network for malicious
activities or policy violations and a WAN optimizer is used
to maximize the efficiency of data flow across a wide area
network. The two components can be deployed in different
data-centers and are connected together as a chain to provide
the necessary functionalities for the network. For this structure,
the end-to-end latency will be accumulated from each hop in
the chain (including network latency and processing delay at
data-centers).

B. Parallel structure
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Fig. 2: Video streaming with translator and decoder.

In Figure 2, we present an example of a parallel composite
service structure. An example use case could be a user
watching a video stream, with automatic subtitling or language
translation with re-encoding of a specific video codec suitable
for rendering on the user’s end device. The streaming service,

therefore, needs to send: (1) the audio to a real time translator,
and, (2) the video to a encoder, which can be deployed in
different locations. The translated audio and encoded video
are then forwarded to a rendering box that will stream the
merged audio and video channels to the user. The steps of
translating and encoding can be achieved in parallel and the
end-to-end latency will be the longest of the two branches.

C. Cycle structure
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Fig. 3: Closed loop system.

The third structure we are presenting is a cycle. An example
could be the closed loop system shown in Figure 3. It is
similar to the chain structure except there is a loop to provide
feedback to make decisions in subsequent rounds. The end-
to-end latency is accumulated for each hop. Examples of
this include services where components send any sort of
application feedback to the source. For example a camera that
needs to be steered remotely based on the image it sends,
or a drone that needs to be tele-guided based on sensory
information it is reporting to the source.

These three basic structures can be combined to form
any complex composite service. In this paper, we present
algorithms to maximize the utility for each of the basic
composite structures. The algorithms can be combined to
find solutions for more complex structures. By maximizing
the utility, we consider several constraints for the composite
service deployment problem:

« Fixed cost: the cost of deploying the service for the first
time at a data-center. This can be thought as the cost to
transfer, install and store the software in that location and
could include one-off software license costs. The fixed
cost is incurred only once and does not vary with the
number of service instances at a certain location.

o Linear cost: this cost is proportional to the resources used
by the service. The more service instances are required
the more resources are consumed and hence the cost
incurred.

o Latency: this includes both the network latency and pro-
cessing time at data-centers. There is a trade-off, for ex-
ample, between deploying services in a distant data center
with a higher network latency but faster processing time,
or choosing a closer low-latency location with slower
processing time. Our algorithms consider this trade-off in
the optimization model. In addition, some services require
a higher performance connection between users and the
first hop component. For example, users should connect
to a low-latency rendering component in an on-line game
service to reduce lag as the player moves viewpoint, while
the game simulation engine itself could be located more
remotely if the position of other players does not change



rapidly and so a longer latency would not impact game
play. Therefore, along with the end-to-end latency, we
also consider the first hop latency as a constraint when
deploying a composite service.

In this paper, we convert latency (both network latency and
processing time at a data-center) into a utility score as a metric
to evaluate QoS. We first summarize the idea of the utility
function presented in our previous work [26].

III. UTILITY FUNCTION
A. Illustrative Example

For simplicity, we show the idea of the utility function based
on network latency of an atomic service. As an example,
Figure 4 shows two groups of users who wish to access a
service, e.g. a real-time audio translation service for two users
located in either group 1 or 2 whose conversation is translated
in real time by a cloud-based service deployed in one of the
shown DCs. Due to deployment cost constraints, we assume
that the service instance can only be deployed in a single DC
(DC1 or DC5). Latencies between users and DCs are shown in
Figure 4. Users do not perceive a degradation in the quality of
voice services, when the latency is equal to or less than 20 ms
[30]. Therefore, 5 ms or 20 ms latency gives equivalent (and
the best) QoS for interactive voice services.

Fig. 4: Utility based vs. closest based placement.

As shown in Figure 4, the classical closest based algorithm
would minimize average latency and result in deploying the
service at DC5 (dashed lines) with an average latency from
DC to the users is (5 + 30)/2 = 17.5 ms. However, using
this deployment solution, user 1 will experience excellent
QoS while user 2 experiences degradation (compared to the
threshold of 20 ms for voice services). For that reason, a better
solution would be to deploy the service at DC; where both
users receive the highest QoS, with a latency of 20 ms. This
shows that we can design a utility function which can be
adapted for specific services and provides a better approach
in evaluating QoS than a classical one that simply minimizes
latency.

B. Utility Function

Our general utility function is grounded on practical re-
search on quality of service utility [14], [12] and years of
investigation on Mean Opinion Scores [3]. Our interval data
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Fig. 5: Utility function (U) vs. latency (t).

points map to user ratings of excellent, good, fair, poor and
no service or blocked (Figure 5).

In the utility framework, application providers determine
the utility function by setting two latency thresholds: T,
and T},,, (the utility is not restricted to only latency, it can
be extended to other QoS metrics such as bandwidth, jitter,
etc.). As shown in Figure 5, we use a non-increasing piece-
wise linear utility function that is characterized by:

o If t < T,;n: depending on the service type, an ap-
propriate value of T,,;, is selected; even if the latency
is reduced below this value, the improvement is not
perceived by the users of that service, thus the utility
is unchanged (U,,q, = 1). For instance, voice over IP
requires T),;, = 20 ms [30]; for simple web services,
Tmin = 100 ms gives users the feeling of instantaneous
response [24].

o If Thyin <t < Tinar: QoS is within an acceptable range
(0 < U < 1). User satisfaction reduces as the latency
increases. We also define Tfqir € [Tmin, Tmaz] as the
point from which users start to feel disappointed about
the services as QoS is getting poorer. Note that the value
of T'yqir is set depending on services and does not change
the slope of the utility graph.

o If T4, < t: the request is blocked (no service) because
the latency is beyond the acceptable range.

Given these definitions, the utility function can be computed
as follows (see [26] for more details):

1 if t <Thin
U=1q 0< gtmarl <1 if Tin <t < Thae
Uy, <0 otherwise

Based on this utility function, the utility-maximizing solu-
tion for the problem in Figure 4 should be to deploy the service
at DC1, as both users will get the maximum utility with
t = Trnin = 20 ms. Given the idea of the utility function, we
design optimization formulations for each composite service
structure, where the objective is to maximize the total utility
over all users.



TABLE I: Summary of key notations (alphabetical order)

Cy unit cost to deploy the service at DC v
D set of user requests D = {D;, Vi € T}
D, required resource from user ¢
E set of links in auxiliary graph
F, fixed cost to deploy the service at DC v
i user ¢ € Z where 7 is a set of users
Loy network latency for link (u, v)
N (v) | set of neighbors of v in the auxiliary graph

Py if DC v is selected by user ¢ or not

P, processing time at DC v € V
s virtual source
ti end-to-end latency perceived by user %
U; end-to-end utility for user ¢
1% set of nodes in the auxiliary graph
Zyp, | link (u,v) is chosen by user 4 or not
Yo DC v is selected or not (for fixed cost)
Zi a variable used for utility calculation of user ¢
Intrusion Detection
WAN optimizers Systems
User, LT T
B_—

'.a% Virtual source
User, N o

Fig. 6: Auxiliary graph for the chain structure.

IV. COMPOSITE SERVICE FORMULATION

A. Chain structure

To formulate the optimization problem, we first create an
auxiliary service graph as in Figure 6 for the given chain
structure in Figure 1. Each instance in a dashed circle repre-
sents a data-center location, where we can deploy that type of
component of the composite service. If a DC is able to deploy
multiple types of components, this DC appears in several
circles. For example, as shown in Figure 6, DC is able to
deploy both WAN optimizer and intrusion detection system
components, therefore it appears in both the circles. When
in use, we need to create a chain work-flow connecting each
instance toward the user as shown in Figure 1. The auxiliary
graph is created as follows:

e« We create a virtual source connecting to all instances
in the last group (e.g. intrusion detection system in
Figure 6). The links between the virtual source and those
instances have zero latency.

o A full mesh connection is defined between each compo-
nent as in Figure 6. Each link has an associated network
latency and we can remove those which have latencies
exceeding the maximum end-to-end or one-hop latency
constraints.

Based on this auxiliary graph, we develop a mixed integer
linear program formulation (see the notations in Table I) to find
optimal service placement solutions for the chain structure:

max Z U; (D
i1€L
S.t.
A 1 ifu=s
Y (@, —ah,) =3 —1 ifu=i 2)
vEN (u) 0 otherwise
Pl > al, V(u,v) EE, i €T 3)
P>l Y(u,v)€E, i€l “4)
ti= > Ly, + Y Pp, VieI 5)
(u,v)EE veEV
Yo >pl YoeVieT (6)
Y. Y. DiCuryy+ ) Foyy < COST @)
€L (u,w)EE veV
z; >0 ®)
2 >t — T, 9)
Thw — T8 — 2
Ui — ma? mz@ 2 10
Tﬁnax - T;;wn ( )
2y, pt, €{0,1} Vi€, (u,v) e BiveV (11)

where:

Objective function (1) is to maximize total utility over all
users.

(2) represents flow conservation constraints, making sure
that a flow from the virtual source to each of the users
can be found. There will be no flow outgoing from the
user ¢ and no flow incoming to the virtual source s.
For intermediate nodes, the outgoing and incoming flows
should be equal.

We use binary variable p!, and p in constraints (3)-
(4) to determine if user ¢ uses node u or node v, then
equation (5) is used to compute the end-to-end latency
which includes network latepcy (Z(uﬂ)) cE Luvl’iv) and
processing time (3, .y Pup;,).

Constraints in (6) are used to determine if a DC is
selected (by any users) or not. These will be used to
compute the fixed cost.

Constraint (7) limits the deployment cost which includes
both the fixed cost (ZpEV F,y,) and the linear cost
(ier 2 (uvyer DiCuyy)- The cost of establishing a
relationship with a DC and other one-off costs such
as installing the application software is represented by
the fixed cost. The cost of the computational resources
consumed by the running instances of an application
component is represented by the linear cost.

Constraints (8), (9) and (10) are used to compute the
utility function mentioned in section III-B.

-Ift < Tgu.n, based on constraints (8) - (9), z; can
take any value that is greater or equal to 0; however, due
to the objective function maximizing the utility (1), the
minimum value of z; is chosen, or in other words, z; is
set to 0 and thus, U; = 1 (the maximum utility, when
t; < T}



the formulation will choose
—titThgp

(T —Ti

maz ™ Tmin)

- Similarly, if t; > T

min’
z; =t; — 17, and thus U; =

B. Parallel structure

For a composite service with three components such as in
Figure 2, we create an auxiliary service graph as in Figure 7.
The technique used here is similar to the one applied for the
chain structure. We then introduce an integer linear program
formulation based on the auxiliary graph.

Real time
translator (B)
T Video streaming
s N service (C)
User, P

Virtual source

Encoder (A)

Fig. 7: Auxiliary graph for the parallel structure.

Let A, B and C be the groups of DCs that are capable to
deploy “encoder”, “real time translator” and “video streaming”
services, respectively and assume that each user connects to

its local rendering box.

objective (1)

S.t.
4 4 1 ifu=soruedC
> (@l —ah,) =4 -2 ifu=i (12)
veN (u) 0 otherwise
> oal,=1Viel (13)
veB,ueC
> al,=1Vierz (14)
veEAueC
Y oal,=1Viel (15)
ueB
d al,=1Vier (16)
u€eA
ti>La( Y @b, + Y al)+ Y Ppl, Viel
ueC,weB u€B veV
(17)
t; > Luv( Z l'fu) + Z 172“) + Z H,pi Viel
ueC,veA u€A veV
(18)
Constraints (3,4,6 —11)

where:

o Constraints (12) - (16) are used to make sure that we will
find a parallel structure from s to each of the users.

e Constraints (17) - (18) are used to find the maximum
latency between the two branches. This maximum value
will be the end-to-end latency for the composite services.

C. Cycle structure

For a composite service with three components such as
shown in Figure 3, we create an auxiliary service graph as
in Figure 8. The technique used here is similar to the one
applied for the chain or the parallel structures.

Process (B)

Compare
& adjust (A

Monitor (C)

Fig. 8: Auxiliary graph for the cycle structure.

Let A, B and C be the groups of DCs that are capable
to deploy “compare and adjust”, “process” and ‘“monitor”
services, respectively.

objective (1)
S.t.

4 4 1 ifu=i

> (@l —ah,)=¢ -1 ifucd (19)
vEN (u) 0 otherwise

Z o, =1Viel (20)
uEAVEB

Y oal,=1Viel QD
ueB,veC

> oal,=1Viel (22)
ueCweA
d al,=1Vier (23)
u€EA
ti= > Lual,+ Y PpiViel (24)

vEN (u) veV

Constraints (3,4,6 — 11)
where:

o Constraints (19) - (23) are used to make sure that we will
find a cycle flow for each user as in Figure 3.

o Constraints (24) are used to compute the end-to-end
latency of the cycle structure.



D. Single hop and end-to-end utility

There could be different utility requirements for each hop
in a composite service graph. For instance, some composite
services require the first hop to have much lower latency (e.g.
between the user and the rendering component of an on-line
game). Therefore, in addition to end-to-end utility, we should
also consider the first hop utility (Uif ). To achieve this, we
replace the objective function (1) by:

max 7y Z Uif—|— Z U,

(s,4)€D (s,4)€D

(25)

where U zf is calculated in the same way as U; but only for the
first hop. Depending on how important the first hop utility is,
we set an appropriate value for v > 0. To extend this concept
further we could define a general utility function which is a
combination of the utility of any single hop (not just the first
hop) and the end-to-end utility.

We have introduced MILP models for the three basic
structures of composite services. Service providers can create
a MILP model for their specific composite service by com-
bining the appropriate structures. However, as the composite
placement is in the family of facility location problems and
these are known to be NP-hard, we can only find the optimal
solution for small input datasets (number of users, number of
data centers). In the next subsections, we introduce genetic
algorithms which can scale better with the size of input data.

V. GENETIC ALGORITHM (GA)

To illustrate the optimization of composite services, we
present a genetic algorithm for the chain structure with three
components, shown in Figure 9. We can apply this strategy to
solve for other composite structures. Each group in Figure 9
represents a set of DCs capable of deploying one kind of
component (e.g. some components can only be deployed in
DCs equipped with special hardware like GPU, etc.). If a DC
can deploy all three components, it will appear in all groups.
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Fig. 9: Example of chain structure.

The genetic algorithm is based on the flow chart depicted in
Figure 10. We define a fitness function f(z) to evaluate each
chromosome z in the population. Based on the fitness score,
good chromosomes are selected for the next generations.

In this genetic algorithm, we use the utility function in (25).
Then the algorithm tries to maximize the following fitness

function:
max f(x) = (utility — a X cost) (26)

where cost is the sum of the linear and the fixed costs at DCs.
We use « as a parameter to give a trade-off between the utility

Ordered based genetic/
random solutions

Initial population

Current population
Select parents

Crossover & mutation
to produce offsprings

New population

Determine the fitness H Fitness f(x) = Utility — alpha*Cost l

Final solution

Fig. 10: Genetic algorithm flow chart.

NO

Stop
evolution

[ Utility = gamma*Ups; pop * Ueze |

and the cost. Good chromosomes are the ones that have higher
values of f(z). We explain in detail the steps of the GA:

1) Start: The initial population is a set of potential solu-
tions to the problem. Each solution contains a list of
vectors. Each vector is a list of integers representing a
chain structure connecting a user to each of the three
components. As an example, [(1,1,2,1),(2,2, 1,1),
(3,1,2,3)] represents a possible solution for the three
users: (ul, Al, Bg, Cl), (UQ, AQ, Bl, Cl), and (U3, Al,
Bs, C3). We randomly choose some solutions to be in
the initial population. Some of them may not be feasible,
but they will be eliminated in next generations of the
genetic algorithm. Moreover, we can use output of an
order-based genetic algorithm (section VI) to be the
initial population.

2) New population: after each round, a new population is
created by the following steps until reaching the stopping
criterion (maximum number of generations):

o Selection: select parents’ chromosomes from a pop-
ulation according to their fitness (the higher the
fitness, the higher chance to be selected).

o Crossover: with a crossover probability, swap part
of the information between pairs of parents to form
new children.

o Mutation: with a mutation probability, randomly
alter some genes inside a chromosome to get a new
chromosome.

3) Stop: if the end condition is reached (e.g. maximum
number of generations), the algorithm stops, and returns
the best solution in the current population.

VI. ORDER-BASED GENETIC ALGORITHM

By introducing the fixed cost, we try to minimize the
number of DCs in use. We observe that if we pick up users
one by one, and try to maximize the fitness of those users, then
the order of users to be picked up is important and affects the
final solution. This occurs since the flows of later users that
reuse components deployed in DCs used by earlier user flows
do not incur the fixed cost. In this section, we introduce an
order-based algorithm, which is actually a genetic algorithm



with a different representation (based on permutations) aiming
to find the best sequence of user flows to consider.

1) Initial population: random orders of users, e.g.
(ug,us,u1), (u1,us,us) are used to create the initial
population.

2) To decode a solution, for each user in the sequence,
greedily select an assignment that minimizes [ =
(latency+axcost). The cost here includes the fixed and
linear cost. For more detail on the greedy approach, for
instance, we choose the order (us, us,u7). Then starting
from w9, we need to select A;, A, or Az so that the value
of f is minimal. Let’s say we choose Aj, then from A;
we need to decide to go to By, By or Bs such that the
value of f is minimal and so on. After finishing for wus,
we continue with w3 in a similar way. Because of the
fixed cost, the order of users is important.

3) Stop: when reaching a maximum number of genera-
tions, the algorithm returns the best order of users that
maximizes fitness = (utility — « X cost), where
ulety =7 X Ufirst_hop + Ue2e-

We implemented the genetic algorithms using “inspyred” -
the open source framework for creating biologically-inspired
computational intelligence algorithms in Python'. The in-
spyred library provides basic components such as a generator
to define how solutions are created and an evaluator that
defines how fitness values are calculated for solutions. In
addition, several evolutionary operators are also available to
use such as “selector”, “variator”, “replacer” (to determine
parents and new population) and “terminator” (to say whether
the evolution should end).

VII. SIMULATION RESULTS

First, we solve the mixed integer linear program model
using IBM’s CPLEX solver [2]. All computations were carried
out on a computer equipped with a 3 GHz CPU and 8 GB
RAM. We use a dataset with 2508 data centers distributed in
656 cities all over the world (the dataset is described in more
detail in [1]). The fixed deployment cost is based on the Ama-
zon EC2 charging model. The user demand is proportional to
the population of each city [4]. Latency between users and
execution zones are computed based on Haversine distance
between two points around the planet’s surface [11].

In the following, we use an example chain of three compo-
nents, where the first component has much tighter constraints
on network latency to the users than the others. For example,
this could be a cloud-based rendering service for a 3D virtual
reality environment or online game, where the scene, from
the point-of-view of the user needs to track the user’s head
movement in real time and, hence, the latency between the user
and this component should be very low to avoid noticeable lag.
The other components may be managing the environment state
and providing background objects and textures, and although
end-to-end latency to the distant component needs to be within
the overall utility bounds, the constraints are not as tight
as to the renderer. This pattern of component chains, with

Uhttps://pypi.python.org/pypi/inspyred

extra constraints on the positioning of the nearest component,
could be applicable to many services, including virtual and
augmented reality, games and video conferencing.

For the purpose of simulation, based on measurements of
QoS of on-line games [13], we configure the utility function
and other related parameters as follows:

o The first hop represents the graphic rendering component.
As shown in [13], users in a first-person shooter game
are aware of latencies above 20 ms, while in car racing
simulations, only latencies above 50 ms affect game
results [25]. Thus, we set 1},,;,, = 20 ms and T},,,, = 50
ms for first hop utility.

o Most players in impaired games can tolerate latencies of
up to 150 ms [13], and so we set T},;, = 50 ms and
Tinaz = 150 ms for the end-to-end (E2E) utility, which
covers the full chain of components.

o We consider latency to be the sum of network latency
and processing time at DCs. This processing time is
considered inversely proportional to DC’s fixed cost (the
intuition is the more expensive a DC is, the faster
processing time it has).

We summarize the notations used in the simulations as

follows:

o Improvement score of algorithm (A) vs. algorithm (B) =
100(f(A)—£(B))
L @
o Fitness f = Utility - ax Cost
o Utility = v x Ufirst_hop + Ueae
e GA (order): we first run the order-based genetic algorithm
to find a solution, then put this solution along with
random ones into the initial population.
e GA (rand.): we run the genetic algorithm in which the
initial population is totally random.
e Order-based: we run the order-based generic algorithm
as described in Section VI
e Best random: we randomly select 2 x 10° solutions for
both the small and the large dataset, then get the one with
the best fitness value.
First, we show the comparison of the random, the order-
based genetic, the genetic and the optimal solution for a
small dataset. Next, we present evaluation results of genetic
algorithms for a larger dataset. Both datasets are subsets of
our full dataset (detail is presented in the next subsections).
Since GAs are stochastic, we run each simulation ten times
and take the mean result. Figure 11 shows the relative standard
deviation (RSD) of the fitness function of the scenario where
~ = 2, over ten simulation runs; a low RSD indicates that the
data points are close to the mean. We omit scenarios for other
values of v, as the results are similar. As shown in Figure 11,
in both the small and the large data sets, variation over the ten
runs is small, less than 4%.

A. Small dataset

We focus on the simulation results for the chain structure as
the observations we found are also similar for the parallel and
the cycle structures. The dataset includes 25 users, 3 groups of
DCs (group A, B and C as in Figure 9), each respectively has
58, 78 and 85 DCs in which we randomly select from the full
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Fig. 11: Relative standard deviation (RSD) of fitness value.

dataset (around 10% of the total 656 DCs). We set a stopping
criterion for the genetic algorithm (GA) so that it will explore
around 2% of the searching space (2 x 10° solutions).

1) Pareto graph cost vs. utility: Given a placement solution,
we can plot its cost and utility on a 2-D plane as in Figure 12.
Note that Figure 12 is for v = 2 (first hop utility is twice as
important as end-to-end utility; we omit other « cases as the
results are similar). For the MILP, given cost as a constraint,
we try to maximize the utility for that cost and find each point
in the Pareto curve (in red). We identify 10 points in which the
cost is varied from 0 to a maximum value (COST,,,.) that
allows to find the best utility (note that this utility cannot be
improved, even when the cost is larger than COST,,,,.). Then,
we set each value of cost in the constraint (e.g. inequality
(7) in Section IV-A) and find the optimal solution which
maximizes the utility. Effectively, the curve connecting these
optimal points forms a Pareto front on the plane. Using more
than 10 intervals can help to create a smoother graph, but
requires a longer computation time.

For the order based and GA algorithms, as we do not
explicitly have a cost constraint, we adjust the value of «
in the fitness function to see different solutions, i.e. different
trade-offs of the two components of the objective function.
Each solution provides a pair of (utility, cost) values. Then,
we pick up 10 pairs which have the best utility for a given
cost and draw the Pareto front as in Figure 12.

In Figure 12, we also show the computation time of the
algorithms. It took the MILP 16 hours to find the optimal curve
(1.6 hours in average to find one point in the curve), while
only 150 seconds and 10 seconds for the GA and order-based
algorithms, respectively, to find their Pareto curves. While
reducing execution time significantly, the solutions of the order
based and the GA algorithms are close to optimal.

2) GA vs. order based vs. random algorithms: In fig-
ure 13, we show a comparison between several algorithms:
GA (order), GA (rand.), order-based and the best random
algorithms. By showing the improvement score of algorithm
A vs. algorithm B, we can see which one is better for different
values of the  parameter. Positive values of the improvement
score means that the algorithm A is better than algorithm B.

We can make the following observations based on Fig-
ure 13:

o The order-based, GA (order) and GA (rand.) algorithms
are much better than the random solutions.

e In general, GA (order) and GA (rand.) are the best
algorithms. They show a significant improvement over
the order-based and random ones.

o In some cases, GA (rand.) is better than GA (order) and
vice versa. For the GA (order) algorithm, as we start
with a reasonably good solution this could be a locally
optimal point and the algorithm can be trapped there. On
the other hand, the GA (rand.) algorithm starts with a
totally random solution, reducing the chance of starting
in a local optimum, and because the search space for this
small dataset is not huge (~ 96 x 10°) it can find a good
solution despite starting from a random position. This
explains why the GA (rand.) algorithm can end up with
better solutions than the GA (order) algorithm (negative
improvement score in Figure 13).

It is worth noting that the difficulty level of the problem we
solve depends on the parameters we set:

e The overall objective is to maximize the fitness func-
tion (Fitness = Utility - awxCost where Utility = v x
Utirst_hop + Ue2e). When o« is small (i.e. positive and
close to zero), utility is dominant over cost in the
fitness function. Also, when ~ is large, the first hop
utility (Ufrst_hop) is dominant over the end-to-end utility
(Ue2e). In this case, maximizing the fitness function is
equivalent to maximizing the first hop utility. Optimizing
the first hop utility is relatively easy as it simply chooses
the best next hop in terms of latency. Therefore, when first
hop utility is dominant (small « and large ), a simple
heuristic algorithm can also find a good solution.

e On the other hand, when « is large enough, maximizing
the fitness function is equivalent to minimizing the cost.
The cost we are using here includes fixed (deployment)
and linear cost. However, the fixed and linear costs are
proportional (high fixed cost will lead to high linear
cost). Therefore, minimizing the total cost is equivalent
to avoid using high cost DCs. This is a simple task as
the algorithm tries to use the low cost DCs first.

o The more general case is when both utility and cost are
important (« is not too small and + is not too large). This
makes the task more difficult as it is a multi-objective
optimization problem: trying to maximize utility and
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minimize cost at the same time. In this case, a much more
intelligent algorithm is needed to find a good solution.

The results shown in Figure 13 can be explained as follows.

Figure 13a: because v = 0, the first hop utility is not
considered in the optimization. This is the case when both
utility and cost are important and it is difficult to find
a good solution. When increasing «, the cost becomes
more dominant and it is easier to find a good solution (a
simple heuristic algorithm is enough). This explains why
the gaps between GA (order) and order based algorithms
reduce when « increases. Simple order based algorithm
can find as good solution as the intelligent GA (order).

 Figure 13b and Figure 13c: when « is small (i.e. a < 1),

this is the case where the first hop utility is dominant.
On the other hand, when a > 1 the cost is dominant.
That is why the gaps between GA (order) and order
based algorithms increase and then reduce as « increases.
The more difficult the task is, the better the GA (meta-
heuristic) performs compared to the simple heuristic
(order based) case. Note that we can see this behavior
clearer in Figure 13c than in Figure 13b, since in the latter
case, when v = 2, it is not large enough for the first hop
utility to be fully dominant over the end-to-end utility.
Therefore, the optimization task is still hard even when



« is small. That is why we see a similar gap between
GA (order) and order based algorithms when o = 0.1
and a = 1.

B. Large dataset

The larger dataset consists of 1834 users, 3 groups of DCs
(groups A, B and C as in Figure 6), each has 656, 328 and 656
DCs, respectively. We use only 328 DCs in group B to avoid
trivial solutions where all three components of one chain are
in the same DC (to minimize latency). By eliminating those
trivial cases, we are able to highlight the benefits of intelligent
algorithms over the greedy ones. In trivial cases, there is not
a major difference between the results of the algorithms as all
of them are able to find the optimal solutions.

We set the stopping criterion for the GA so that it will
explore approximately 0.00008% of the searching space (2 X
10° solutions - taking around 30 minutes to execute).

1) GA vs. order based vs. random algorithms: We observe
the following in Figures 14a to 14c:

e GA (order) is always the best algorithm. Even when
exploring just 0.00008% of the search space, GA (or-
der) can show 25% improvement over the order based
algorithm (Figure 14a).

« In many cases, the gaps between GA and other algorithms
reduce as « increases (as optimizing for cost is more
straightforward than for utility).

o In many cases, the gaps between GA and order-based al-
gorithm reduce when increasing v (as optimizing first hop
utility is more straightforward than end-to-end utility).

40000 —
Max utility =

& Min cost %

GA (order)
35000

I

//

30000

25000

20000

Cost

15000

10000

5000

Fig. 15: Cost of min cost vs. max utility vs. GA algorithm.

25000

GA (order)

N Min cost 7 Max utility

20000 P
7

15000

Utility

10000

5000

& 7====

V2% ]
Gamma = 1

Fig. 16: Utility of min cost vs. max utility vs. GA algorithm.

2) Comparison: minimum cost vs. maximum utility vs. GA
algorithms: Elsewhere in the literature, for example [8], [9],
[10], [28], minimizing cost is the main objective. As in our
work they also consider both fixed and linear costs, but include
a wider variety of costs such as energy and traffic, which could
also be included in our future work. In this section, we made
a comparison between our utility-based optimization versus
the cost-minimization approach widely adopted in other work
in the literature, as indicated by our results on minimum cost
GA. In the minimum cost GA, we set « to be large enough in
the fitness function (fitness = utility — « X cost) to force
the algorithm to minimize the cost. On the other hand, in the
maximum utility GA we set & = 0, meaning that the algorithm
tries to maximize the utility. The GA (order) used in Figures
15 and 16 is the GA in which we test with different values of
« and choose the one that has a good trade-off between utility
and cost. As shown in Figures 15 and 16, the GA results
in marginally higher costs than the minimum cost algorithm
(Figure 15), while its utility is close to the maximum utility
one (Figure 16). It is noteworthy to mention that the maximum
utility and the GA are also close to the optimal maximum
utility solution. For example, when v = 10 (Figure 16), the
maximum total utility is 1834 x 11 = 20174 (1834 users, each
has a maximum utility score = 10 X Upirst_hop + Ue2e = 11).
This confirms that the GA can find good solutions even for a
larger dataset.

VIII. RELATED WORK

In this section, we survey related work in the following three
areas.

A. Composite services

There are several studies in literature on web service
compositions [33], [16], [32], [6], [15]. One example of a
composite web service would be a “Travel Planner” which
requires multiple components (e.g. flight booking, travel in-
surance, hotel booking, car renting, etc.) executed sequentially
or concurrently. The paper [33] proposed linear programming
methods to optimally select components during the execution
of a composite service. As this problem is NP-hard, many
studies propose the use of genetic and heuristic approaches
to solve the QoS-aware composition problem [16], [32], [6],
[15]. In general, these studies focus on web services with
specific requirements and constraints on execution duration,
reliability, and availability. In addition to execution time at
server, the papers [15], [16] also take into account network
latency in the selection solutions. Similar to [15], [16], in this
paper we focus on general services which have constraints on
network latency, processing time and service deployment cost
at data-centers. In addition, we use a utility function instead of
latency to evaluate QoS. Recently, there are some studies close
to ours focusing on NFV deployment [9], [10]. However, they
only work for the chain structure. In this paper, we propose
algorithms for three general structures of composite services.
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B. Atomic service placement and selection

Our work is closely related to recent work on optimizing
performance-cost for server selection [31], [34], [7]. For ex-
ample, Wendell et al. [31] introduce DONAR - a decentralized
replica-selection system that pushes clients to servers close-by.
Zhang et al. [34] focus on optimizing cost and performance
in online service provider networks. Auspice [29] uses a
heuristic placement algorithm to determine the locations of
active replicas to minimize client-perceived latency. In general,
these works use network latency as a main metric to validate
QoS and they only consider atomic services. In this work,
we move a further step by consider to maximize the utility
function for composite services.

C. Network latency and traffic demand estimation

Our work uses network latency and translates it into a utility
value for evaluating QoS. Therefore, techniques to estimate
network latency are important as this gives inputs for our
algorithms. Recent works have shown that the IP geolocation
of the user provides accurate and predictable network latency
[5]. This has been confirmed by third-party datasets such as
Peerwise [21] and iPlane [22]. In addition, those observations
have been proved by our own extensive active measurements
[18], [17]. On the other hand, how to predict traffic demand is
also important for our optimization algorithms. Wendell et al.
has shown in [31] that client request rate can be sufficiently
predictable under short interval (e.g. 10 minutes). This work

confirms that it is possible to provide an accurate predicted
traffic demand for our optimization model.

IX. CONCLUSION

In this paper, we propose a utility framework used to
optimize QoS for composite service placement. Since this is
a NP-hard problem, we introduce a MILP formulation to find
the optimal solutions for small datasets, while also designing
genetic algorithms for larger inputs. Based on simulation
results, we show that our approaches work well and close to
the optimal solutions. Although our work has concentrated
on optimizing network and processing latency within the
constraints of deployment costs, the optimization formulation
is easily extendable to include other network parameters such
as bandwidth and the associated network transit costs. In future
work we will further develop on-line algorithms to propose on-
demand dynamic service placement algorithms. In addition,
we will extend the genetic algorithms with multi-objective
functions.
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