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Appendix A: Brief background on DAGs

The structure of each DAG encodes conditional in-
dependence relations [19] among the nodes. For in-
stance, the no-signalling conditions in the Bell network,
P (A|X,Y ) = P (A|X), and P (B|X,Y ) = P (B|Y ), can
be seen to directly follow [1] from the structure of the
DAG depicted in Fig. 1(a). Indeed, the specification
of the DAG subsumes and generalises the standard no-
signalling relations [2–4]. Indeed, in the case of the gen-
eral network from Fig. 2(a), the structure of the DAG
ensures P (Ai|xi, Aj) = P (Ai|xi) for all j /∈ {i−1, i, i+1}
and P (Ai|xi, xj) = P (Ai|xi) for all j 6= i. Addi-
tionally, this structure ensures P (Ai|Aj) = P (Ai), for
j /∈ {i − 1, i, i + 1}. This is due to the fact that
non-neighbouring agents can only be correlated through
knowledge of neighbouring agents outcomes. Moreover,
the assumption that each agent has a secure laboratory
is enforced by the lack of an arrow from an eavesdropper
to each agent’s outcome. In short, every constraint gov-
erning how the inputs and outputs of agents and eaves-
droppers are related is specified by the DAG.

Appendix B: Proof of Result 1

Consider the following conditional distribution
P (A,B,E|X,Y, Z), where A,B are binary random
variables and X,Y are k-valued, satisfying the “no-
signalling” conditions:

P (A,B|X,Y, Z) = P (A,B|X,Y )

P (A,E|X,Y, Z) = P (A,E|X,Z)

P (B,E|X,Y, Z) = P (B,E|Y,Z).

(B1)

It was shown in Ref.’s [5–8] that

D (P (E|A,X,Z), P (E|Z)) ≤ Ik (P (A,B|X,Y )) , (B2)

where Ik is the chained Bell inequality [9] on k measure-
ment settings, defined as:

Ik (P (A,B|X,Y )) := P (A = B|X = 1, B = k)

+
∑
|x−y|=1

P (A 6= B|X = x, Y = y) (B3)
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Consider the left hand side of inequality (4), it will now
be shown to decompose as

D
(
P (E1 · · ·En|A1, An+1x1, xn+1, z1, . . . , zn),

P (E1|z1) · · ·P (En|zn)
)
≤ D (P (E1|A1, x1, z1), P (E1|z1))

+D (P (En|An, xn, zn), P (En|zn)) ,
(B4)

where again, the systems held by the eavesdropper could
be post-quantum (that is, non-signalling). Indeed, the
structure of the DAG from Fig. 2(b) implies the following
conditional independence relations:

P (E1 · · ·En|A1, An+1, x1, xn+1, z1, . . . , zn) =

P (E1|A1, z1)P (En|An+1, zn)

n−1∏
i=2

P (Ei|zi).
(B5)

Combining with the definition of D(·, ·) yields Eq. (B4).
The DAG of Fig. 2(b) ensures the no-signalling rela-

tions of Eq. (B1) hold between Ai, Ei, xi, zi. The con-
junction of this with Eq.’s (B2) and (B4) implies

D
(
P (E1 · · ·En|A1, An+1x1, xn+1, z1, . . . , zn),

P (E1|z1) · · ·P (En|zn)
)
≤ 2I2

(B6)

The chained Bell inequality will now be connected to in-
equality (1). First let us look at the specific case of the
measurements introduced in the repeater network sec-
tion. After considering this example, the general case
will be proved.

To this end, consider the following mapping:

P (a1, a
0
2a

1
2, . . . , an+1|x1, xn+1) −→

P (a1, a2, . . . , an, an+1|x1, x2, . . . , xn, xn+1)

=
∑

δa2,ax2 · · · δan,axnP (a1, a
0
2a

1
2, . . . |x1, xn+1),

(B7)

where the sum ranges over {a0i a1i }i. One can interpret
the above mapping as follows: agents i = 2 to i = n
use their devices to simulate a two choice xi ∈ {0, 1},
binary outcome measurement by outputting the bit axi

i
from the pair output by their device a0i a

1
i . It is clear that

as each agent makes their choice locally, no correlations
have been introduced between agents. Hence, both I, J
from Eq. (2) and N from Eq. (1) are invariant under
mapping (B7). For a more in-depth discussion on this
point, see section III B from [10].
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Applying the above mapping to Eq. (3) from the main
text yields

1 + (−1)
∑n

i=2 ai
(
∏n

i=2 δxi,0
+(−1)x1+xn+1

∏n
i=2 δxi,01)

2

2n+1
(B8)

Any repeater network in which agents 2 to n have binary
inputs and outputs that generates the above correlations
has the same value for N as the one considered in the
main text. Indeed, Eq. (B8) can be generated by agents 2
to n performing the separable measurements Ayi = Ayi,0⊗
Ayi,1 ∈ {σz ⊗ σz, σx ⊗ σx}, for i = 2, . . . , n [10]. Here, an
agent measures both of their received systems in the same
basis and outputs the parity of the individual measure-
ment outcomes. Given these separable measurements
for intermediate nodes, one has 〈Ax1

1 A2 · · ·Axn+1

n+1 〉 =

〈Ax2
1 A

x2
2,0〉〈A

x2
2,1A

x3
3,0〉 · · · 〈A

xn
n,1A

xn+1

n+1 〉. Moreover, it follows

that 〈Axi
i,1A

xi+1

i+1,0〉 = 1. Combining all this, it follows that

I =
1

4

(
〈A0

1A
0
2,0〉+ 〈A1

1A
0
2,0〉
) (
〈A0

n+1A
0
n,1〉+ 〈A1

n+1A
0
n,1〉
)

J =
1

4

(
〈A0

1A
1
2,0〉 − 〈A1

1A
1
2,0〉
) (
〈A0

n+1A
1
n,1〉 − 〈A1

n+1A
1
n,1〉
)
.

(B9)
As agents A1 and An+1 and A2,0 and An,1 respectively
choose from the same set of measurements, one has

R =
1

2
|〈A0B0〉+ 〈A1B0〉|

+
1

2
|〈A0B1〉 − 〈A1B1〉|,

(B10)

where 〈A0B0〉 := 〈A0
1A

0
2,0〉 = 〈A0

n+1A
0
n,1〉 formalises the

statement that A1, An+1 and A2,0, An,1 choose from the
same set of measurements, respectively.

The above is the k = 2 instance of the CHSH inequality

Ck =

k−1∑
i=0

〈AiBi〉+

k−2∑
i=0

〈Ai+1Bi〉 − 〈A0Bk−1〉. (B11)

Using 〈AB〉 = 2P (A = B)− 1, it follows that

Ik = k − 1

2
Ck. (B12)

Combing this with Eq. (B6), Eq. (4) follows.
For the general case, consider the following. As in

the above example, agents i = 2 to i = n use their de-
vices to simulate a two choice xi ∈ {0, 1}, binary out-
come measurement by outputting the bit axi

i from the
pair output by their device a0i a

1
i . This does not change

the value of the polynomial Bell inequality. Moreover, as
this amounts to a classical post-processing of intermedi-
ate agents outcomes, it also does not affect any potential
correlations between an eavesdropper and the first and
last agent in the network.

It was shown in Theorem 1 of Ref. [11] that coarse-
graining a two-qubit measurement with four outcomes in

the manner discussed above results in a separable mea-
surement. This is in fact always true, even for a two-
qudit measurement. Indeed, as the dimension is not given
a priori, without loss of generality one can always take
this measurement to consist of four rank-1 projectors by
appending ancillary systems. Coarse graining these as
above results in operators which satisfy the conditions of
Lemma 1 of [12], which states that these can be reduced
to a direct sum of 2-qubit operators, as is done in Eq. (9)
of [13] for instance. The problem has now been reduced
to the case of 2-qubit measurements which were covered
by [11], as discussed above.

Given intermediate separable measurements,
one again has that 〈Ax1

1 A2 · · ·Axn+1

n+1 〉 =

〈Ax2
1 A

x2
2,0〉〈A

x2
2,1A

x3
3,0〉 · · · 〈A

xn
n,1A

xn+1

n+1 〉. Following the

reasoning of Eq. (B9), one can show the following holds
(see Eq. (13) of Ref. [14] for more details):

R ≤ 1

2

√
CA1A2,0

k CAn,1An+1

k

where CAiAj

k is the CHSH inequality between agents i
and j. Hence, using the fact that the arithmetic mean is
larger than the geometric mean, one has

R ≤
CA1A2,0

k

4
+
CAn,1An+1

k

4
.

Using Eq. (B12), one obtains

2I2 = 4−
CA1A2,0

k

2
−
CAn,1An+1

k

2
≤ 2 (2−R) .

Inputting into Eq. (B6), provides the desired result.

Appendix C: Proof of result 2: classically simulating
the quantum correlations of Eq. (3)

It will now be demonstrated that by correlating the
i = 1 and n sources, an eavesdropper can simulate the
correlations of Eq. (3). Moreover, the sources only need
to emit classical variables. To achieve this, the eavesdrop-
per sends independent and uniformly distributed bits
{α, λi} to agent Ai, for i = 1 and n + 1. Given these
bits and the agents’ input, the agent’s device outputs
ai = λi ⊕ αxi. The conditional probability distribution
characterising the action of the device is P (ai|α, λi, xi) =
1
2

(
1 + (−1)ai+λi+αxi

)
.

Agent Ai, for i = 2 and n, is sent independent, uni-

formly distributed bits {α, νi, λi−1, λi, λ̃i}, on receipt of
which their device outputs

Ai = (a0i , a
1
i ) =

{
(λi−1 ⊕ λi, νi), if α = 0,

(νi, λi−1 ⊕ λ̃i), if α = 1.
(C1)

Note that agents 1, 2, n− 1, and n receive a copy of the
bit α. Hence, source 1 and n are now correlated. Recall-
ing the transmitted bits are uniformly distributed, the
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conditional probability distribution characterising this
device will now be derived:∑

ν

P
(
a0i a

1
i |α, ν, λi−1, λi, λ̃i

)
P (ν)

=
∑
ν

[
P (a0i |λi−1, λi)P (a1i |ν)P (ν)δα,0

+ P (a1i |λi−1, λ̃i)P (a0i |ν)P (ν)δα,1

]
=

1

4

(
1 + (−1)a

0
i+λi−1+λiδα,0 + (−1)a

1
i+λi−1+λ̃iδα,1

)
.

Finally, all remaining agents Ai = a0i a
1
i , i = 3, . . . , n−

1, are sent uniformly distributed bits {λi−1, λ̃i−1, λi, λ̃i}.
On receipt of which their devices output a0i = λi−1 ⊕ λi
and a1i = λ̃i−1 ⊕ λ̃i. The conditional probability distri-

bution is 1
4

(
1 + (−1)a

0
i+λi−1+λi

)(
1 + (−1)a

1
i+λ̃i−1+λ̃i

)
.

Combining all of these conditional probability distribu-
tions yields the following:

P (a1, a
0
2a

1
2, . . . , a

0
na

1
n, an+1|x1, xn+1) =∑

α,ν,λ1,...,λn

P (a1|α, λ1)P (a02a
1
2|α, ν, λ1, λ2, λ̃2)P (a03a

1
3|λi−1, λ̃i−1, λi, λ̃i) · · ·P (a1|α, λ1)P (α)P (ν)P (λ1) · · ·P (λn)

=
1

22n

∑
α,λ1,...,λn

(
1 + (−1)ai+λi+αxi

) (
1 + (−1)a

0
i+λi−1+λiδα,0 + (−1)a

1
i+λi−1+λ̃iδα,1

)
· · ·P (λn)P (α)

=
1

22n

(
1 + (−1)a1+an+1

∑
α

(
(−1)

∑n
i=2 a

0
i δα,0P (α) + (−1)

∑n
i=2 a

1
i+x1+xn+1δα,1P (α)

))
.

Performing the sum over α and recalling that P (α = 0) =
1/2 = P (α = 1), results in the quantum distribution of
Eq. (3). Hence the eavesdropper can perfectly simulate
quantum correlations by correlating sources thought to
be independent. The last line of the above equation fol-
lows by noting that, as one multiplies out each condi-
tional distribution, terms of the form

∑
λ(−1)λ vanish.

Appendix D: Proof of Result 4

The proof will follow the strategy of [15, Proof of The-
orem 1] and [16, Proof of Eq. (20)]. Consider a classical
model for Fig. 3(a), where all the λi are random variables.
Writing

〈Aixi
〉λi

=
∑
ai

(−1)aiP (Ai = ai|xi, λi)

〈By〉λ =
∑
b

(−1)bP (B = b|y, λ),
(D1)

where λ is shorthand for λ1 · · ·λn, one has

Ii =
1

2n

i+1∑
x1,...,xn=i

∫ ( n∏
j=1

qj(λj)〈Ajxj
〉λj

)
〈Bi〉λdλj (D2)

for i = 0, . . . , k − 1, where qj(λj) is the distribution over
the λi’s. Taking the absolute value yields

|Ii| ≤
n∏
j=1

(1

2

∫
qj(λj)

∣∣∣ n∑
xj=1

〈Ajxj
〉λj

∣∣∣dλj), (D3)

as
∣∣∣〈Bi〉λ∣∣∣ ≤ 1.

It was shown in Ref. [15] that, for cki ∈ R+ and m,n ∈
N, the following holds:

m∑
k=1

( n∏
i=1

cki

)1/n
≤
i+1∏
i=1

(
c1i + c2i + · · ·+ xmi

)1/n
. (D4)

Applying this result to S =
∑k−1
i=0 |Ii|

1/n
yields

S ≤
[ n∏
j=1

1

2

∫
qj(λj)

(∣∣∣〈Aj0〉λj
+ 〈Aj1〉λj

∣∣∣+
∣∣∣〈Aj1〉λj

+ 〈Aj2〉λj

∣∣∣+ · · ·+
∣∣∣〈Ajk−1〉λj

− 〈Aj0〉λj

∣∣∣)dλj]1/n.
(D5)

The following upper bound holds:

1

2

(∣∣∣〈Aj0〉λj + 〈Aj1〉λj

∣∣∣+
∣∣∣〈Aj1〉λj + 〈Aj2〉λj

∣∣∣+
· · ·+

∣∣∣〈Ajk−1〉λj − 〈A
j
0〉λj

∣∣∣) ≤ k − 1.
(D6)

Hence, one has

S ≤
( n∏
j=1

∫
qj(λj) (k − 1)

n
dλj

)1/n
= k − 1 (D7)

finishing the derivation of Eq. (5).
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Appendix E: Proof of result 5

The structure of the DAG from Fig. 3(a) yields the
following conditional independence relation:

P (E1 · · ·En|A1, . . . An, x1, . . . xn+1, z1, . . . , zn) =

P (E1|A1, z1)P (E2|A2, z2) · · ·P (En|An, zn).
(E1)

From this it follows that

D
(
P (E1 · · ·En|A1, . . . , An, x1, . . . , xn, z1, . . . , zn),

P (E1|z1) · · ·P (En|zn)
)
≤
∑
i

D (P (Ei|Ai, xi, zi), P (Ei|zi)) .

As stated in the main text, it is assumed that the central
agents device is implementing separable measurements,
hence one has By = B1

y ⊗ · · · ⊗ Bny . Given this separa-
ble measurements, one can show that the following holds
(again, see Eq. (13) of Ref. [14] for more details)

S ≤ 1

2

(∏
i

CA
iBi

k

) 1
n

. (E2)

Following the same analysis as the end of Appendix B,
the conjunction of Eq. (E2) with Eq. (B2) yields Eq. (6).

The upper bound of Eq. (E2) can in fact be reached
using the measurements introduced in the main paper.
As all external agents choose from the same set of mea-

surements, one has CA
iBi

k = CA
jBj

k ,∀i, j. This implies
the maximal quantum value of Inequality (5) is the max-
imal quantum value of CABk , which has been shown by
[17] to be

k cos
( π

2k

)
.

Appendix F: Proof of result 6

Combing Eq. (E1) with the fact that pl from Eq. (7)
satisfies |pl| ≤ 1 ∀i, Eq. (8) follows.
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