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Abstract: 

The initial report that cellular prion protein (PrPC) mediates toxicity of Amyloid-β (Aβ) species linked 

to Alzheimer’s disease was initially treated with scepticism, but growing evidence supports this 

claim. That there is a high-affinity interaction is now clear and its molecular basis is being unravelled 

whilst recent studies have identified possible down-stream toxic mechanisms. Determination of the 

clinical significance of such interactions between PrPC and disease-associated Aβ species will require 

experimental medicine studies in humans. Compounds that inhibit PrP-dependent Aβ toxicity are 

starting to be trialled in humans and, although it is clear that only a fraction of Alzheimer’s disease 

toxicity could be governed by PrPC, a partial but still therapeutically useful role in human disease 

may soon be testable. 
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Introduction 

The pathological hallmarks of Alzheimer’s disease (AD) are extracellular deposition of cerebral 

amyloid predominantly composed of amyloid-β protein (Aβ) forming plaques and vascular deposits, 

and intracellular neurofibrillary tangles mainly composed of hyperphosphorylated Tau protein. Aβ 

plaques were initially suspected to be directly toxic to neurones, although closer inspection revealed 

that levels of plaque deposits did not necessarily correlate with the severity of disease (1). For this 

reason, attention has turned to soluble oligomeric forms of Aβ that appear to be more neurotoxic 

(2) and correlate better with disease in AD patients (3). The soluble Aβ forms range from monomers 

to high molecular weight aggregates with different properties and toxic effects (Figure 1). It is 

possible that distinct conformations or classes of assemblies may also possess different seeding 

activity (4;5). Similarities between Alzheimer’s and prion disease have been noted for decades and 

the recent major growth of interest in the role of so-called “prion-like” mechanisms in other 

neurodegenerative diseases has led to an explosion in publications linking these diseases (6), that 

are beyond the scope of this review. It remains to be seen if knowledge of the misfolding and seeded 

aggregation processes will result in new therapeutics for sporadic forms of these diseases. However, 

a wider understanding of prion pathogenesis and the decades of experience built up in the prion 

field could facilitate AD research and the development of novel therapies (7). 

AD itself incorporates a mêlée of genetic and apparently sporadic conditions that can co-exist with 

an ever greater number of co-pathologies as age-at-onset increases (8). The complexities of Aβ 

oligomer research have been discussed in detail elsewhere (9). Some arguments will be emphasised 

here, but all are relevant to this area of AD research. Poor reproducibility between labs is often 

blamed on poorly-defined synthetic preparations loosely based on standard “recipes” rather than 

fully characterising the content of each batch produced. This common assumption can only be 

tested if all preparations are fully characterised when published (9;10). A recent trend towards 

defining toxic Aβ assemblies by structural fingerprints, rather than the conditions in which they were 

produced, may help address this problem (11;12). As AD patient samples are both precious, and 
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inherently complex and heterogeneous, it seems pragmatic to continue to test a hypothesis with 

synthetic or recombinant Aβ that does not contain alternative APP metabolites before confirming 

the relevance with human samples (13). Indeed, Aβ samples from AD brain will always vary in 

composition, concentration and purity. Native isolation of different Aβ assemblies present in AD 

brain samples is complex, as purification methods can disrupt and change the conformation of 

aggregates (14). Identification of toxic receptors for such a heterologous disease will, of course, be 

challenging. 

In receptor binding terminology, both receptor and acceptor contain a receptive site for the ligand, 

although only the receptor induces a biological function. Moreover, the acceptor lacks an 

endogenous ligand. Many proteins have been described as “receptors” for toxic Aβ assemblies, 

implying a designed physiological function. It is possible that toxicity is linked to hijacking of a 

functional interaction with other Aβ assemblies, but until this is demonstrated the candidates are 

best described as “acceptors” for toxic Aβ assemblies. To date, the majority of research on the 

PrP:Aβ interaction has focused on the toxic signalling cascades rather than physiological or beneficial 

roles. Two possible functions of PrP as an Aβ receptor have been suggested: Firstly, as a facilitator of 

the low-density lipoprotein (LDL) - receptor-related protein-1 (LRP1) mediated Aβ monomer 

transcytosis out of the brain through the blood-brain barrier (BBB). Secondly, as a protector against 

Aβ-induced cell death by neutralising oligomeric Aβ (15-19). If the Aβ:PrP interaction has a function, 

it will no doubt unravel as we better understand the true physiological role of PrP (20). More 

research is needed to confirm the consequences of Aβ assemblies binding to PrP, as this will be 

crucial to develop new therapies targeting the interaction or its downstream effectors. 

Prion protein-mediated Aβ toxicity 

The Aβ oligomer as a ligand for prion protein  

Numerous macromolecules have been identified to bind to different forms of Aβ (9;21;22) – not 

surprising given the inherently sticky nature of this peptide in all forms from monomer through to 

amyloid plaques. A study by Lauren et al. (23) stood out because it used an unbiased cell-based 
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screen of all murine neuronal proteins to identify those that bound to a relatively well-defined 

preparation of Aβ, based on the “Amyloid-β-derived diffusible ligand” (ADDL) protocol (2). The only 

“hit” was prion protein (PrP). Not only was the interaction confirmed to occur at low nanomolar 

concentrations, PrP-knockout was also shown to prevent the toxic effect of Aβ in a measure of 

synaptic plasticity, long term potentiation (LTP). Incubation of nanomolar concentrations of Aβ with 

wild-type murine brain slices inhibited LTP, whereas in PrP-null mice LTP remained intact. Ironically, 

after years of effort to find specific, high affinity ligands for PrP, the interaction of PrP with Aβ was 

discovered from the opposite vantage point. Indeed, Aβ is perhaps the most widely-accepted high-

affinity binding partner for PrP. 

Confirming PrP-dependent toxicity in vivo 

A further study by the same group showed crossing a transgenic mouse model of AD that combines 

expression of mutant APPswe and presenilin-1 deltaE9 (PS1 ΔE9) (both from PrP promoters on a PrP-

null background) prevented pathological phenotypes such as neuronal loss and premature death 

whilst maintaining spatial learning and memory (24). Furthermore, a two-week peripheral treatment 

of another APP/PS1 mouse model (APPswePS1M146L both with Thy1 promoters) with the 6D11 

antibody increased the synaptic density in the hippocampus and improved spatial memory in a radial 

arm maze (25). 

Controversy and confirmation 

PrP-independent Aβ toxicity 

Following the initial report (23), a number of groups published seemingly contradictory reports. The 

first paper to cast doubt on the role of PrP in Aβ toxicity nevertheless confirmed a PrP:Aβ binding 

interaction (26). According to this study, PrPc is not required for Aβ-induced memory impairment in a 

novel object recognition test when synthetic Aβ oligomers are injected into the brains of mice. That 

PrP is not critical to all Aβ toxic readouts is not surprising and does not discount a role for this 
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protein in AD. However, this paper highlights an important point that not all Aβ toxicity is governed 

by PrP, even when the preparations are known to contain assemblies capable of interacting with 

PrP. Since the report of PrP as an Aβ oligomer acceptor, numerous other Aβ-interacting candidates 

have been suggested (see below). These have mainly been identified using a targeted approach 

rather than the unbiased binding screen used for PrP (23;27-34). Only by comparing the candidates 

side-by-side in the same assays can they be compared for their Aβ oligomer affinity and selectivity. 

Given that the PrP:Aβ interaction was reported first and the tools to study it are widely available 

within the molecular neuroscience community, it is not surprising that this interaction was quickly 

validated. Still, to date, PrP remains by far the most validated Aβ acceptor. 

Two studies described PrP-independent pathological, behavioural and electrophysiological changes 

in the APPPS1+ (APPswePS1L166P both with Thy1 promoters) (35) or J20 (APPswe/ind with PDGF-β 

promoter) (36) transgenic models. Potential PrP-specific reasons for these differences include the 

fact that some, but not all, models express APP using the PrP promoter and that PrP and APP 

processing may be interrelated (37). The contrasting findings might also be the result of differences 

in the soluble Aβ assemblies present at the ages tested compared to the APP/PS1 lines (APPPS1+ 

mice were used at 2-4 months of age and J20 mice were 6-8 months old). In support of this 

hypothesis, a later study in the APPPS1+ mice showed some PrP-dependent effects at 14 months 

when soluble Aβ assemblies, including SDS-stable dimers, become abundant (38). Another well-

studied model, the Tg2576 (APPswe with PrP promoter) mouse (39), was recently shown to contain a 

sub-population of PrP binding Aβ assemblies and displayed a partial recovery of Morris Water Maze 

deficits when PrP was not expressed (40). It is known that J20 mice do not develop large pools of 

soluble Aβ oligomers until 16 months of age (41) and it may be that PrP-dependent effects are 

observed at this age if they are not overwhelmed by pre-existing PrP-independent effects. In 

addition, J20-derived Aβ oligomers are mainly recognised by the conformation-specific antibody A11 

(42) while Aβ oligomers shown to bind PrP (43) contain in-register parallel β sheets, recognised by 

the OC antibody (44). It is not known which, if any, of these models better mimic Aβ pathology in AD. 
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However, confirmation of the involvement of specific proteins in human AD should help select more 

disease-relevant animal models that may in turn benefit AD research and drug discovery. The 

corresponding authors of the first two papers reporting PrP-independent Aβ toxicity (26;35) have 

since reported PrP-dependent effects in these models (38;45), suggesting that a consensus may be 

forming (Table 1). 

One study directly contradicted the key finding of the original study (23) – that the inhibition of LTP 

by Aβ oligomers was PrP-dependent. Kessels et al. produced Aβ following the same protocol, but the 

inhibition of LTP appeared to be PrP-independent (46). In response Lauren et al. questioned the 

similarity of the Aβ preparations that were only characterised by SDS-PAGE (47). Although SDS-PAGE 

has been shown to not reliably represent Aβ assemblies present in solution (10), the contradictory 

studies highlight one problem with studies using synthetic preparations: how do we determine 

which assemblies are most relevant to the human condition? 

Independent confirmation of PrP-dependent toxicity 

It was crucial to discover whether synthetic Aβ oligomers could be produced that mimicked the most 

disease relevant forms of Aβ – those found in the brains of human AD patients that are known to 

inhibit LTP (48). Like some synthetic Aβ oligomers, those purified from AD brain inhibited LTP in wild-

type and not PrP-null mice, confirming some relevance to human AD (49). Surprisingly, a range of 

antibodies that bind close to helix-1 of PrP also effectively blocked the interaction, even though it is 

located on the opposite side of the structured domain of PrPC from residue 95-105 (Figure 2). 

Antibodies that bind to 95-105 and helix-1 of PrP, and which are known to be therapeutically active 

in prion infection (50), were found to block Aβ-induced inhibition of LTP in both murine brain slices 

and live rats (49;51). The ability of helix-1 antibodies to block Aβ-induced electrophysiological 

deficits has now been replicated in a cell-based system (52). Previously discovered PrP ligands should 

now be retested for their ability to disrupt the PrP:Aβ interaction and their potential as AD 

therapeutics assessed. Indeed, it may be that the identification of the PrP:Aβ interaction may 
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reinvigorate studies to identify small molecules that bind to PrPC and arrest prion propagation (53). 

This is firstly because of the increased interest in PrP-binding molecules as possible inhibitors of Aβ 

and, secondly, from a practical point-of-view, because it is challenging to identify PrP-binding 

molecules in high-throughput assays. Showing that a compound can block the PrP:Aβ interaction 

appears to be an acceptable surrogate for identifying molecules that bind to certain sites on PrP 

(54). 

The Aβ:PrP interaction 

Characterising the PrP binding mode 

The fact that there now appears to be a consensus on Aβ:PrP binding does not mean it is a simple 

interaction; it should not be considered a canonical binary interaction between a PrP monomer and 

a discreet Aβ oligomer. A single oligomer has the potential to interact with multiple PrP molecules 

and this could result in further conformational changes to either PrP or Aβ. Kinetic analysis 

confirmed that the interaction is effectively irreversible on a surface meaning dissociation constants 

cannot be calculated (55), whilst the slow rate of binding observed may be indicative of a 

conformational change or further Aβ aggregation in situ (55). The mechanism for helix-1 antibody-

mediated inhibition of synaptotoxicity remains obscure (49), but hints towards the involvement of 

multiple PrP molecules (49) or a rearrangement of this helix during binding (53). A number of groups 

have suggested a second positively-charged site at the extreme N-terminus of PrP (45;55), but it is 

unclear if this is truly independent or what its relevance is at pathophysiologically pertinent 

concentration. The basis of the interaction has so far not been resolved at a single amino acid level 

(45). That PrP can disassemble Aβ amyloid fibrils (56) and inhibit the assembly of Aβ into toxic 

oligomeric forms (57) at micromolar concentrations confirms the interaction, whilst selective, is not 

specific at higher concentrations. 

Identifying PrP-binding Aβ assemblies 
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It is known that PrP does not bind as strongly to Aβ monomer or mature fibrils (26;55), but 

numerous synthetic Aβ assemblies have been reported (Figure 1) (9), some of which may only vary 

in their means of preparation rather than their actual composition. Aggregation of ADDL-like 

preparations for different time periods and then characterising the Aβ assemblies present at 

different time points allowed the identification of forms that most avidly bind to PrP, as well as 

those that cause PrP-dependent or PrP-independent synaptotoxicity (43). The presence of Aβ 

protofibrils correlated better with PrP binding than either globular oligomers or amyloid fibrils. 

Crucially, globular oligomers present at initial time points failed to inhibit LTP, whereas LTP was 

significantly reduced throughout a time window where protofibrils were present. The protofibrils are 

not simply chains of globular oligomers, but contain a defined triple helical nanotube structure that 

could relate to their specific PrP-dependent toxicity (Figure 3). Could the Aβ species in AD brain that 

cause PrP-dependent toxicity be structurally related to Aβ nanotubes? The presence of SDS-stable 

dimers in post-mortem brain is strongly associated with AD (3) and PrP-dependent toxicity in mice 

(38), whilst synthetic Aβ dimers are known to favour synaptotoxic protofibril formation (58). 

Therefore, it seems plausible that structures similar to Aβ nanotubes can cause PrP-dependent 

synaptotoxicity in AD brain; although this hypothesis is yet to be tested experimentally. Several 

studies have, however, compared the PrP binding of different AD brain-derived Aβ species, 

separated by the hydrodynamic radii using size-exclusion chromatography, but none have confirmed 

if these species are toxic. Two independent studies have suggested large soluble assemblies with 

apparent molecular weights greater than 600,000 are the major PrP binding species (40;59;60), with 

a third suggesting SDS-stable dimers are the major PrP binding species (38). All this is consistent with 

a protofibrillar assembly, although this will remain speculation until such species are isolated from 

AD brain, structurally characterised and shown to cause PrP-dependent toxicity. 

PrP-dependent toxic mechanisms 
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Clearly not all Aβ toxicity is governed by PrP (Table 1) and assemblies can display distinct toxicities in 

different systems; for example, inhibition of LTP compared with cell membrane disruption (43). 

Furthermore, a variety of non-mammalian protein aggregates induce PrP-dependent cytotoxicity in 

cellular systems (61). Toxicity is mediated through the unstructured N-terminal portion of PrP 

suggesting some mechanistic overlap with toxic PrP and Aβ species. Such toxicity, caused by 

interactions with the N-terminus of PrP, yet blocked by ligands binding to the 95-105 or helix-1 

regions of PrP, is in contrast to reports of anti-PrP antibody-related toxicity caused by interaction 

with C-terminal regions of PrP and prevented by ligands binding the N-terminus (62). The apparent 

mechanistic differences between Aβ-induced and anti-PrP antibody-induced toxicity could be 

explained by the method of incubation. Anti-PrP antibody toxicity was reported after their 

incubation with brain slices prepared from transgenic mice with a high level of PrP expression for 

several weeks at high, micromolar concentrations – ~10,000 times those required to engage PrP – 

suggesting there may be non-specific toxic effects. This effect also appears inconsistent with absence 

of toxicity seen in vivo when up to two micrograms of multiple anti-PrP antibodies are directly 

injected into the hippocampi of live mice (63). Subsequent titration to 6 micrograms of PrP mAbs 

(64), injected directly into brain tissue (estimated volume of distribution 5 mm3), did however result 

in apoptosis at the cannula site. As for the brain slice experiments, dose and concentrations in these 

mouse experiments are high relative to those which might reasonably be expected to be 

therapeutically relevant. For example, Song et al. infused a PrP mAb at 1 microgram/hr into mouse 

lateral ventricle (estimated volume of distribution 500 mm3) with clinical benefits against prion 

disease and no adverse clinical or pathological events (65), implying an approximately two-log dose 

therapeutic window by comparison with Reimann et al.’s toxicity. Ohsawa et al. demonstrated some 

evidence of therapeutic potential for established mouse prion disease by peripheral injections of PrP 

mAb, with no adverse events (66). Klyubin et al. showed that intravascular injections of PrP mAb 

were able to block the effects of Aβ on LTP without adverse events (67). This paper also reported the 

single ascending dose study of PrP mAb PRN100 in cynomolgus monkey at intravenous doses up to 
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200 mg/kg, achieving serum concentrations of 5 mg/ml without significant adverse events (67). 

Overall, these studies suggest that anti-PrP antibodies have a relatively low acute neurotoxicity at 

likely therapeutic concentrations for prion infection (65-67). 

Whilst blocking the PrP:Aβ interaction, or the formation of toxic assemblies, appear to be valid 

approaches to combatting Aβ toxicity, it is also important to understand the cellular mechanisms 

and how they might be targeted pharmacologically. Identifying whether the binding of a specific Aβ 

isoform to PrP inhibits a physiological function or triggers a dysfunctional pathway is crucial to drug 

discovery strategies.  

PrP-dependent downstream mediators of toxicity 

Phosphorylation of NMDA receptors and their subsequent relocalisation is induced by Fyn activation 

(30). Of all post-synaptic density membrane proteins tested, only mGluR5-dependent Fyn activation 

was increased by Aβ oligomers (68). Formation of this complex may explain the observed clustering 

of mGluR5 at synapses in the presence of Aβ oligomers (68;69). The role of mGluR5 in PrP-

dependent Aβ toxicity has now been confirmed in the classic synaptic plasticity paradigm, inhibition 

of LTP, as well as in the associated facilitation of long-term depression (LTD) (70). It is possible that 

the PrP:mGluR5R interaction includes helix-1 of PrP (60) meaning that antibodies that bind helix-1 of 

PrP could disrupt this complex and have a secondary protective mechanism beyond directly 

inhibiting the PrP:Aβ interaction. Such serendipity should perhaps be expected in the crowded 

environment of the synapse. The Aβ:PrP:mGluR5 complex is probably the most studied and 

independently validated Aβ:PrP pathway and, importantly, its toxicity has been shown to be driven 

by AD brain extracts (30;38;68;70). PrP is linked to Homer1b/c, protein-tyrosine kinase 2β (PTK2B, 

Pyk2) and calcium/calmodulin-dependent protein Kinase II (CamKII) through mGluR5 in a Aβ-

regulated manner (13) (71). In light of these results, it will be important to examine in more detail 

the physiological function of PrP:mGluR5 in order to assess the full toxic effect of Aβ oligomers on 
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synaptic plasticity. It is possible that as well as activating toxic cascades through PrP, Aβ oligomers 

also alter PrP:mGluR5 interactions crucial for a correct functioning of the synapse. 

One effect of PrP may be to increase the local concentration of Aβ or other protein aggregates (61) 

and initiate toxic pathways that it does not directly participate in. PrP could conceivably facilitate the 

conversion of other Aβ assemblies into those that cause PrP-dependent toxicity (56). Likewise anti-

PrP antibodies could sterically block interactions with other Aβ-binding proteins closely packed 

within the synaptic membrane or block access of fibrillar Aβ assemblies that do not exert toxicity 

through PrP. More targeted site-directed mutagenesis studies where the PrP:ligand interaction is 

retained yet toxicities are specifically blocked will be required to distinguish between these 

possibilities. 

Other Aβ acceptors 

Aβ toxicity through other interacting proteins 

Numerous Aβ oligomer binding proteins have since been identified (72;73) and most of them localise 

at the synapse, suggesting that binding of Aβ assemblies may cause synaptic dysfunction at least in 

part by blocking their function. Of course many macromolecules have been shown to bind to some 

form of Aβ including: GluN1 (69;74), GluR2 (75), α7nAchR (76), RAGE (77), insulin receptor (78), 

p75NTR (79;80), β2ARs (81), Fz Wnt receptor (82), NL1 (83), reelin (84), GM1 ganglioside (85) and LRP1 

(86). 

Although only PrP was identified by an unbiased direct binding assay, two other Aβ oligomer 

acceptors were recently identified using unbiased functional screening or expression approaches: 

FcγRIIb (31)(87) and PGRMC1 (32;33) (88). Aβ oligomers also bind EphB2 (27;29)(89). As Eph 

receptors regulate plasticity and synaptic function, it would not be surprising if more members of 

the family are involved in AD (90). PirB and its human orthologue were also reported as possible Aβ 

oligomer acceptors (28). Finally, NAKα3 binds to patient-derived amylospheroids (34). Detailed 
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discussion of these receptors falls outside the bounds of this review. The heterogeneity in the 

properties of this small group of recently identified candidates highlights the difficulty in reproducing 

experiments between labs. Simply acquiring the expertise and reagents required to study one of 

these proteins and reproducing published experiments could take as long as a standard PhD project. 

Prioritising which of these acceptors is most relevant for slowing the progress of heterogeneous 

diseases such as Alzheimer's will be an enormous challenge. 

 

Why might so many receptors be involved in a single disease? Of course there will no doubt be “false 

positives”, but it is also likely that certain acceptors cause toxicity at different stages – 

presymptomatic, mild cognitive impairment, early and more advanced AD – as the different 

aggregates of Aβ accumulate and form in the brain. It is crucial to characterise the Aβ assemblies 

that bind each protein and their apparent affinity, together with any overlap in the downstream 

cascade they activate.  

Synaptic loss occurs at early stages in AD, therefore protecting, maintaining and restoring the 

structure of the synapse  could be central to AD therapy (90;91). Several neurotoxic cascades that 

are triggered by Aβ:PrP in complex with other proteins, including LRP1, cytoplasmic phospholipase 

A2 (cPLA2) and mGluR5, have been described to require lipid rafts organisation (5;30;92;93). 

Interestingly, these results agree with a suggested function for PrP as a scaffold protein on lipid rafts: 

organising proteins in a complex (94). Therefore, finding the scaffold proteins and necessary 

partners for the different receptors could identify relevant targets to develop therapies. A real 

challenge of targeting the above receptors is that complete inhibition of a receptor could be 

detrimental; therefore modulating their function back to physiological levels may be essential. 

Future Focus 

After initial scepticism and controversy the PrP:Aβ interaction is now becoming accepted as a 

significant player in Aβ-mediated toxicity in vitro and in vivo. Its high affinity has not been disputed 

and the molecular basis of this complex interaction is now being unravelled. Care needs to be taken 
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to ensure experiments are carried out under the most physiological conditions possible and are 

described in such a way that they can be faithfully reproduced. More details of the structural basis of 

the interaction and mechanisms of neurotoxicity, and concrete explanations for reported 

discrepancies between publications, are required to truly understand the phenomenon. It would aid 

the field if researchers reported both positive and negative results together to help establish the 

reasons for PrP-dependent and PrP-independent toxicity. If the hypothesis that PrP is involved in AD 

cannot be falsified then experimental medicine studies could be considered. The relevance of this 

interaction to the clinical features and progression of human AD can only be firmly established 

through clinical trials of drug candidates that block the interaction or down-stream toxicity. This in 

turn could determine the suitability of individual animal models to AD drug discovery. A humanised 

anti-PrP monoclonal antibody has now been developed for treatment of prion disease and a 

preclinical study in live rats demonstrated that intravascular administration of this antibody can 

block Aβ-induced inhibition of synaptic plasticity without causing acute toxicity (67), suggesting it 

might be suitable for clinical trials in AD should it have a satisfactory safety profile. Likewise, a phase 

1b study for a potent inhibitor of src family of kinases, including Fyn, has recently been completed 

(95;96) with a phase IIa trial currently underway. Confirmation of efficacy in human trials would 

firmly establish a role for PrPC in AD. It is unlikely that any therapeutic would reverse all symptoms in 

AD patients, but blocking acute synaptotoxic effects may have an immediate measurable effect in 

memory and cognitive function. The second question of whether this then slowed rates of 

neurodegeneration would require major clinical trials. A confirmed disease-modifying therapeutic in 

the AD field would be a huge step forward after so many disappointments. While the PrP:Aβ 

interaction was only identified a few years ago, direct examination of its true relevance to AD via 

experimental medicine may hopefully not be too far away. 
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Figure legends: 
 
Figure 1: Diagram depicting the variety of aggregation states of Aβ and sizes. Green lines represent 
bands in gels, orange structures represent those captured by Atomic Force Microscopy (AFM) and 
black structures represent those captured by Electron Microscopy (EM). The y-axis identifies the 
name of the preparation and, where relevant identifies the source. ADDLs are “amyloid-β-derived 
diffusible ligand”, TABFOs are “amyloid-β1–42 fibrillar oligomers”. 
 

Figure 2: Modelled structure of PrPC highlighting the Aβ binding site (red) and Helix-1 (yellow). 

Amino acids in the region 95-105 are required for the interaction and antibodies raised against these 

epitopes (red and yellow) block the toxic effect of Aβ oligomers on LTP. 

 

Figure 3: Possible PrPC-dependent (left) and PrPC-independent pathways (right) for Aβ toxicity as 

well as possible functional roles for PrPC in Aβ processing, signalling and transport (centre). Aβ 

species, such as Aβ nanotubes, are known to bind directly to PrPC and induce toxicity and several, 

possibly interconnected, pathways have been identified. The PrPC:Aβ complex may directly interact 

with downstream acceptors or PrPC may raise the local concentrations of certain forms of Aβ 

thereby sensitising acceptors to Aβ toxicity. 
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Reference 
Direct Aβ:PrPC interaction Aβ:PrPC toxicity 

Comment 
Aβ source Quantitative Aβ source 

System 
assayed 

Lauren et al. 
(23) 

Synth Y Synth Cell 
Aβ:PrPC binding in cells and effect on 
LTP is PrPC-dependent 

Balducci et 
al. (26) 

Synth N Synth 
Cell, Mouse 

in vivo 
Direct Aβ:PrPC binding, but no toxicity 

Gimbel et al. 
(24)  

 Mouse 
Mouse in 

vivo 

Ablation of PrPC reverses cognitive 
deficits, lifetime and cell death in 
APPswe/PS1ΔE9 mouse 

Chen et al. 
(55) 

Synth N  - 
Confirmation of direct binding of Aβ 
oligomers to huPrPC 

Calella et al. 
(35) 

Synth N Mouse 
Mouse in 

vivo 

Confirmation of Aβ:PrPC interaction, but 
disputes PrPC-dependent behavioural 
effects in APPswe/PS1L166P mouse 

Kessels et al. 
(46) 

-  Cell 
Mouse ex 

vivo 

Disputes PrPC-dependent Aβ-induced 
LTP inhibition, however, uses ill-defined 
Aβ oligomers 

Lauren et al. 
(47)  

  - Reply to Kessels et al. 

Chung et al. 
(25)  

 Mouse 
Mouse in 

vivo 
Anti-PrP mAb reverses behavioural 
effects in APPswe/PS1ΔE9 mouse 

Resenberger 
et al. (61) 

Cell N  Cell 
PrPC-dependent toxicity of Aβ and 
amyloid peptides in cells 

Zou et al. 
(100) 

Mouse, 
Human 

N  - 
Aβ mainly interacts with insoluble PrPC 
in APPswe/ind mice 

Barry et al. 
(51)  

 Human Rat in vivo 
Anti-PrPC mAb reverses effect on AD 
brain extract-induced LTP inhibition 

Freir et al. 
(101) 

Synth Y 
Synth, 
Human 

Mouse ex 
vivo, rat in 

vivo 

Two anti-PrPC mAbs reverse Aβ-induced 
LTP defects in rats and mice 

Cisse et al. 
(36)  

 Mouse 
Mouse in 

vivo 

Disputes PrPC-dependent 
electrophysiological and lifetime effects 
in APPswe/ind mice 

Bate et al. 
(93) 

Cell N Cell Cell 
Initial report of PrPC-dependence of 
synapse damage via cPLA2 

Alier et al. 
(52)  

 Synth Cell 
PrPC-dependent electrophysiological 
effects of Aβ in cells 

Caetano et 
al. (102) 

Synth N Synth Cell Aβ increases PrPC at the cell surface 

Kudo et al. 
(103)  

 Synth 
Mouse in 

vivo 
PrPC-dependent neuronal death in vivo 

You et al. 
(104)  

 Synth  Cell 
Interaction between copper, PrPC, Aβ 
oligomers and NMDAr 

Pflanzner et 
al. (15) 

Synth Y Synth Cell 
PrPC-dependent Aβ1-40 transcytosis 
across the BBB 

Guillot-
Sestier et al. 

(17) 
 

 
Cell, 

Human 
Cell 

N1 fragment protects against Aβ-
associated cell death 

Hyeon et al. 
(105) 

Synth N Synth Cell PrPC-dependent apoptotic cell death 
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Um et al. 
(30) 

Human N 
Synth, 
Human 

Cell Fyn dependent toxicity via NMDAR 

Rial et al. 
(106)  

 Synth 
Mouse in 

vivo 
Overexpression of PrPC protects against 
Aβ1-40 apoptosis 

Nieznanski 
et al. (57) 

Synth N  
 

PrPC N1 fragment inhibits Aβ oligomer 
formation 

Larson et al. 
(38) 

Human N 
Synth, 
Human 

Cell, Mouse 
in vivo 

Fyn dependent toxicity linked to Tau 
phosphorylation 

Younan et 
al. (56) 

Synth Y Synth 
Cell, Mouse 

in vivo 
PrPC prevents aggregation and 
disaggregates Aβ fibrils 

Fluharty et 
al. (45) 

Synth N  
 

PrPC-based peptides deactivate Aβ 
oligomers 

Rushworth 
et al. (92) 

Synth N Synth Cell 
Role of lipid rafts and LRP-1 in PrPC-
dependent Aβ toxicity 

Ordonez-
Gutierrez et 

al. (107) 
  Mouse 

Mouse in 
vivo 

Confirmation of PrPC-dependent Aβ 
toxicity in APPswe/PS1ΔE9 mouse 

Chen et al. 
(108) 

Synth N Synth Cell Confirmation of Fyn activation 

Um et al. 
(68) 

Synth, 
Human 

N 
Synth, 
Human 

Cell, Mouse 
in vivo 

mGluR5 as coupling receptor between 
PrPC and Fyn 

Nicoll et al. 
(43) 

Synth N Synth 
Mouse ex 

vivo 
Aβ nanotubes correlate with PrPC-
dependent inhibition of LTP 

Ostapchenk
o et al. (109) 

Synth N Synth Cell STI1 blocks Aβ binding to PrPC 

Rubel et al. 
(110) 

Synth N   
Confirmation of main binding site for 
the interaction Aβ:PrPC 

An et al. 
(111) 

Synth N 
Synth, 
Human 

Rat in vivo Role of exosomes 

Nah et al. 
(112) 

  Synth Cell 
Aβ-induced autophagy mediated by 
presence of PrPC 

Rushworth 
et al. (113) 

Synth, 
Cell 

Y  
 

Fragment of PrPC used as biosensor 

Dohler et al. 
(59) 

Synth, 
Human 

N  
 

PrPC binds to large Aβ species in AD 
brain 

Hu et al. (70) 
 

 
Synth, 
Human 

Rat in vivo 
PrPC:mGluR5 in Aβ-induced LTD 
facilitation and LTP inhibition 

Beland et al. 
(16) 

Human N Cell Cell 
Secreted PrPC trap Aβ in amorphous 
aggregates 

Klyubin et al. 
(67) 

Synth Y Human Rat in vivo 
Intravascular administration of anti-PrPC 
antibody 

Haas et al. 
(60) 

Synth, 
Mouse 

N   
Confirmation of interaction between 
PrPC and mGluR5 

Ganzinger et 
al. (114) 

Synth Y Synth Cell 
Confirmation of Aβ:PrPC interaction by 
single molecule imaging 

Peters et al. 
(115) 

Synth N Synth Cell 
PrPC-dependent membrane damage and 
synaptotoxicity 

West et al. 
(116) 

Cell N Cell Cell 
Monoacylated PrPC binds synaptotoxic 
Aβ oligomers 

Risse et al. 
(54) 

Synth Y   
Disruption of Aβ:PrPC interaction by 
small molecule. 
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Table 1: Summary of publications demonstrating a direct interaction between PrPc and Aβ 

(quantitative or not) specifying the source of Aβ oligomers used and also those that reported PrPc-

dependent toxicity (green) and PrPc-independent toxicity (red), stating source of Aβ oligomers and 

systems employed. Synth, synthetic. 

  

Haas et al. 
(13) 

  
Synth, 
Human 

Mouse ex 
vivo 

Downstream signalling cascade for 
Aβ:PrPC:mGluR5 

Falker et al. 
(19) 

Synth N Synth Cell Protective role of exosomes 

Williams et 
al. (117) 

Synth N   
PrPC inhibits low molecular weight Aβ 
oligomers-induced toxicity 

Kostylev et 
al. (40) 

Mouse, 
Human 

Y 
Mouse, 
Human 

Mouse in 
vivo 

PrPC interacts with a pool of soluble 
high molecular weight Aβ to induce 
PrPC-dependent cognitive defects 

De Mario et 
al. (118) 

  Synth Cell 
Effect of Aβ:PrPC complex on store-
operated Ca+2 entry via Fyn 

Heiss et al. 
(119) 

Mouse Y Mouse Mouse 
Reverses dendritic spine loss in 
APPswe/PS1ΔE9 mouse 

Beraldo et 
al. (120) 

Synth N Synth 
Cell, Mouse 

in vivo 
Possible role of Aβ:PrPC:mGluR5 
complex 

Pinnock et 
al. (121) 

Synth N Synth Cell 
Reverses Aβ:PrPC cytotoxicity by LRP/LR 
antibody 

Haas et al. 
(71) 

  Synth 
Mouse ex 

vivo 
Effect of Aβ:PrPC:mGluR5 complex on 
glutamate signalling 

Sempou et 
al. (122) 

  Synth Zebrafish 
Src family kinases activation in a 
Aβ:PrPC-dependent manner 

Scott-
McKean et 

al. (18) 
  Synth 

Cell, Mouse 
ex vivo 

Reverses Aβ-induced  synaptic plasticity 
impairment by PrPC fragments 

Haas et al. 
(123) 

  Synth Cell, Mouse 
Reverses AD mouse phenotypes by 
mGluR5 selective blocker 

Nolan et al. 
(124) 

  Cell Cell 
Role of the glycosylphosphatidylinositol 
(GPI) anchor attached to PrPC 

West et al. 
(125) 

  Human Cell 
Cholesterol ester cycle regulates 
Aβ:PrPC complex 

Zhang et al. 
(126) 

  Synth, Rat Rat in vivo 

Repetitive anti-PrPC antibody 
administration reverses Aβ-induced 
synaptic plasticity defects on 
longitudinal studies 
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