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Abstract
Increasing evidence suggests a key role for tissue energy failure in the
pathophysiology of multiple sclerosis (MS). Studies in experimental
autoimmune encephalomyelitis (EAE), a commonly used model of MS, have
been instrumental in illuminating the mechanisms that may be involved in
compromising energy production. In this article, we review recent advances in
EAE research focussing on factors that conspire to impair tissue energy
metabolism, such as tissue hypoxia, mitochondrial dysfunction, production of
reactive oxygen/nitrogen species, and sodium dysregulation, which are directly
affected by energy insufficiency, and promote cellular damage. A greater
understanding of how inflammation affects tissue energy balance may lead to
novel and effective therapeutic strategies that ultimately will benefit not only
people affected by MS but also people affected by the wide range of other
neurological disorders in which neuroinflammation plays an important role.
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Introduction
Multiple sclerosis (MS) is an immune-mediated disease of the  
central nervous system (CNS), characterised by multifocal, 
perivenous inflammation and focal destruction of myelin, typi-
cally resulting in a relapsing-remitting pattern of neurological 
deficit and leading to a progressive, neurodegenerative pathology. 
MS is a heterogeneous disease, with a multifactorial aetiology1–4 
and a highly variable clinical course. It is therefore perhaps not  
surprising that the treatment of MS remains complex. The  
sequence of events in lesion genesis remains uncertain, particu-
larly the genesis of the first lesion, and different patterns of lesion 
formation have been distinguished5, making modelling of the  
disease in animals difficult. Although no single model reflects the 
entire clinical and pathological spectrum of MS6, over the years 
autoimmune7, toxic8,9 and viral10 models have all been employed  
to understand different aspects of the disease. However, experi-
mental autoimmune encephalomyelitis (EAE) has become the  
most widely used laboratory model of MS, and it has various  
factors in common with MS, including genetic susceptibility, age, 
and gender, influence the clinical course, and pathology of EAE,  
together with the type and preparation of antigen employed  
and the dose and route of administration7,11,12. Though criti-
cised as a model of MS13,14, EAE remains a good model of CNS 
inflammation, and several treatments, including glatiramer  
acetate15,16, fingolimod17,18 and natalizumab19, have been success-
fully translated from EAE to MS. Thus, if used wisely, EAE can 
be a valuable tool for better understanding not only the patho-
physiology of acute MS-like lesions but also the mechanisms  
involved in dysfunction, damage and progression in MS in order  
to identify novel therapeutic targets.

In addition to implicating inflammation and demyelination, patho-
logical studies have implicated neuronal and axonal damage and 
loss, which begin early in the course of the disease, as major  
causes of irreversible disability in patients with MS20,21. Although 
the exact mechanisms associated with irreversible neuronal 
and axonal loss in MS and EAE are poorly understood and  
probably multifactorial, mitochondrial dysfunction22–28 and subse-
quent energy insufficiency are increasingly recognised as impor-
tant contributing factors29–31. In this review, we summarise the  
most recent advances in EAE research from an energy viewpoint, 
and focus on tissue hypoxia, mitochondrial dysfunction, reactive 
oxygen/nitrogen species (ROS/RNS) and sodium dysregulation.

Energy production in the central nervous system
The brain is a highly metabolic organ: whilst comprising only 2% 
of the body’s mass, it requires 20% of the body’s resting energy 
consumption32. Neurons have the highest energy demand33, and 
it has been hypothesised that these energetic demands are met in 
part by energy production in neighbouring glia34–36. Glucose has 
often been considered the major metabolite used during oxidative  
phosphorylation for yielding energy in neurons and glia, but in 
fact different cell types can preferentially use different meta-
bolic substrates and pathways to produce ATP under physiologi-
cal conditions and, besides glucose, neurons and glial cells, can 
use lactate, pyruvate, glutamate and glutamine as metabolic  
substrates37. Oxidative phosphorylation yields approximately  
30 molecules of ATP per molecule of glucose, compared with 

a meagre two molecules of ATP per molecule of glucose via  
glycolysis38. Therefore, although ATP production by glycolysis is 
rapid, it is understandable why oxygen is essential to ensure an  
efficient energy metabolism, particularly in metabolically demand-
ing cells such as neurons. Indeed, neurons demand a consider-
able supply of energy, and mitochondria, the key providers of this  
energy, must be distributed in appropriate numbers to meet 
demand.

Theoretical energy budgets have established that the majority  
of the energy consumed by the brain is used for restoration and 
maintenance of the resting membrane potential by the sodium-
potassium (Na-K) ATPase33,39,40, especially following electrical 
activity. However, a significant proportion of the brain’s energy 
expenditure is associated with non-signalling or ‘housekeeping’ 
processes, including lipid turnover, proton leak across the mito-
chondrial membrane, cytoskeletal rearrangements, vesicle recy-
cling, and protein synthesis40,41. Therefore, it is easy to imagine 
how an impairment of energy metabolism can have significant 
consequences on CNS function. A number of factors, including 
nitric oxide (NO), other ROS/RNS and factors from immune cells, 
and tissue hypoxia, have been suggested to conspire to impair 
ATP production by compromising mitochondrial function in  
MS42–45. Deficiencies in mitochondrial transport and the mitochon-
drial respiratory chain enzymes, notably complex IV, will also 
impair ATP production, and the nature and importance of these 
deficiencies may well change during the different phases of the  
disease.

Consequences of energy failure
Energy failure due to mitochondrial dysfunction or damage is 
increasingly recognised to play a pivotal role in MS pathogen-
esis. Mitochondrial defects, which will certainly impair ATP  
production, have been demonstrated within acute43 and  
chronic28,46,47 lesions and also in the normal appearing white  
matter22 of patients with MS. Indeed, metabolites produced as 
a probable consequence of ATP depletion are observed in the  
cerebrospinal fluid of patients with MS48. Impaired ATP produc-
tion can reduce sodium extrusion from the axoplasm into the  
extracellular space following electrical activity, and this deficit 
will be exaggerated in conducting demyelinated axons because 
of their increased expression and redistribution of sodium chan-
nels along the demyelinated axolemma49 associated with the 
restoration of electrophysiological function50–52. The excessive 
accumulation of intracellular sodium ions not only increases the 
energy demand to operate the Na-K ATPase, which is already one 
of the most significant ATP consumers in the CNS53, but it also  
promotes the reverse operation of the sodium-calcium exchanger  
(NCX)54,55, which imports calcium into the axoplasm. The energy-
starved axon is unable to restore calcium homeostasis, resulting 
in calcium cytotoxicity and the initiation of cell death pathways. 
Such energy failure within axons further increases their sus-
ceptibility to excitotoxic injury56. Small-diameter fibres, which  
preferentially degenerate in MS, may be more vulnerable to 
energy failure than their larger neighbours because of their lower  
mitochondrial number in relation to their surface area57, although 
other mitochondrially mediated mechanisms may also play a 
role58.
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Thus, there is good evidence that energy failure may play an  
important role in axonal degeneration in MS, and it follows that 
neuroprotective strategies aimed at protecting energy balance 
may be effective in MS. The animal model of MS, EAE, has been 
employed not only to study the role of energy deficits but also to 
explore strategies to achieve neuroprotection.

Tissue hypoxia in experimental autoimmune 
encephalomyelitis
Increasing evidence from neuropathological and magnetic reso-
nance imaging (MRI) studies shows that MS lesions can expe-
rience low oxygen concentrations59–61. Hypoxia can decrease  
mitochondrial oxygen consumption in cells (the respiratory 
rate)62 by initiating a decrease in ATP-using processes (metabolic 
demand) and also can have significant effects on mitochondrial  
movement, velocity and morphology; however, it is unclear from 
the human data alone whether the tissue hypoxia contributes 
to the pathogenesis of the disease. The presence of severe tissue  
hypoxia sufficient to compromise function was demonstrated by 
Davies et al.63, who showed that the neurological deficits in a rat 
model of EAE quantitatively, spatially and temporally correlated 
with spinal white and grey matter hypoxia. Two independent  
methods were used to demonstrate hypoxia: an intravenous  
immunohistochemical64 probe and a fine, oxygen-sensitive opti-
cal probe physically inserted into the spinal cord. The authors  
demonstrated the importance of hypoxia in the expression and  
progression of neurological deficits by showing that treatment  
with both acute (1 hour) and prolonged (7 continuous days) nor-
mobaric oxygen (~95%) reversed the hypoxia and partially 
restored function and attenuated disease severity, respectively. 
More recently, hypoxia was found to be a key factor in lesion 
formation in an animal model of the pattern III demyelinating 
lesion found in MS65. This experimental lesion is induced by the 
intraspinal injection of the pro-inflammatory agent lipopolysac-
charide into the dorsal white matter of adult rats66, and the authors 
found that the demyelination was reduced, or even prevented, by  
breathing normobaric oxygen during the two-day period when 
the spinal cord otherwise would have been hypoxic65. These find-
ings may recommend the consideration of oxygen therapy for 
acute attacks in MS, but if extrapolation is considered to include  
progressive disease it is important to bear in mind that mitochon-
drial respiratory chain enzymes are deficient within neurons and 
that mitochondrial transport is also likely to be impaired, and 
these considerations may limit the therapeutic potential of oxygen  
therapy. Thus, the cause or causes of damage in progressive  
disease are not necessarily the same (and are not likely to be  
precisely the same) as those in the acute lesion.

A role for hypoxia in MS was further supported by Johnson  
et al.67, who measured oxygenation in the cerebellum and  
cortex of awake, unrestrained mice with EAE and found that the  
grey matter was severely hypoxic. The same group also used  
susceptibility-weighted imaging (SWI) to assess deoxyhaemo-
globin-based hypointensities in EAE mice in vivo68. SWI is a  
protocol with MRI that is particularly sensitive to deoxyhaemo-
globin and can visualise the venous vasculature69,70, but it also 
detects parenchymal iron deposits and demyelination71,72, which 
complicates the interpretation when imaging patients with MS  

and animals with EAE. Given that the visibility of the venous  
vasculature is highly dependent on the partial pressure of oxygen, 
Nathoo et al.68 modulated the inspired oxygen concentration  
during imaging, hypothesising that vascular hypointensities  
visible with normoxic conditions would disappear upon an  
increase in inspired oxygen. The authors concluded the presence 
of venous hypoxia due to the increased oxygen demand, arising  
from inflammation, outstripping supply68.

Esen et al.73 adopted a different approach, namely exposing mice 
to normobaric hypoxia for three weeks from the day of immuni-
sation for EAE, to induce angioplasty and tissue survival. This  
strategy not only significantly delayed the onset of disease but  
also decreased inflammatory activity in the spinal cords of the 
mice. The authors attributed the beneficial effects to the induction  
of an anti-inflammatory milieu, but hypoxic pre-conditioning  
of the tissue to survive the hypoxic insult associated with  
EAE63,67 may also have played a role.

Reactive oxygen/nitrogen species in experimental 
autoimmune encephalomyelitis
ROS/RNS are routinely produced under physiological condi-
tions; however, they normally pose very little threat because  
of a specialised set of endogenous defence and repair mecha-
nisms. The CNS anti-oxidant defence system is composed of  
non-enzymatic (for example, glutathione [GSH] and uric acid) and  
enzymatic (for example, superoxide dismutases, GSH peroxidase, 
catalase, haeme-oxygenases, quinone oxidoreductases and perox-
iredoxins) anti-oxidants74,75. During pathological conditions, such 
as inflammation, the overproduction of ROS/RNS overwhelms 
this anti-oxidant system, resulting in oxidative/nitrative stress. 
ROS/RNS and the ensuing oxidative/nitrative stress have fre-
quently been suggested to play an important early role in MS44,45 
and EAE76, mainly through their toxic actions on mitochondria76,77, 
and therefore can indirectly contribute to a tissue energy deficit. 
ROS/RNS include superoxide, peroxynitrite and the hydroxyl 
radical. Superoxide, produced by a one-electron reduction of  
oxygen, is the precursor of most other forms of ROS. Dismutation 
of superoxide produces hydrogen peroxide, which in turn either can 
be fully reduced to water or, in the presence of ions of a suitable 
transition metal (for example, iron), can lead to the formation of 
the extremely toxic hydroxyl radical78. Superoxide can also react 
with NO, in a reaction that is limited by the rate of diffusion of 
both radicals, to produce peroxynitrite. Mitochondria themselves 
produce low levels of superoxide under normal conditions; how-
ever, superoxide production can increase significantly under patho-
logical conditions, particularly when mitochondria are damaged, 
or if the cytoplasmic oxygen concentration is abnormally high or  
low79. Nevertheless, the most abundant source of superoxide 
is the respiratory burst, which is mediated by the nicotinamide  
adenine dinucleotide phosphate (NADPH) oxidases80. Mossa-
kowski et al.81, using intravitral NADPH fluorescence lifetime 
imaging to detect functional NADPH oxidase (NOX) enzymes  
in vivo, recently reported a spatio-temporal correlation between 
the activated NOX enzymes and neuronal damage in mice with 
EAE. The authors identified activated macrophages/microglia 
as major cellular sources of activated NOX enzymes but showed 
for the first time that astrocytes are also major contributors of  
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oxidative stress in the CNS during chronic EAE. As NOX activa-
tion was not restricted to a specific cell type, Mossakowski et al. 
suggested that a locally acting soluble mediator, such as gluta-
mate, may contribute to the activation seen, and they supported 
this by applying glutamate locally and measuring the increase 
in NOX enzyme activation in the brain stem of healthy mice. 
The authors observed excessive ROS production and a concomi-
tant increase in neuronal calcium. Besides CNS NOX activity, 
NOX enzyme was overactivated in peripheral CD11b+ monocytes 
from mice with EAE and patients with relapsing-remitting MS, 
an effect that can be antagonized by systemic administration of  
epigallocatechin-3-gallate, the major polyphenolic compound 
of the green tea plant81. Recently, Radbruch et al.82 used the 
same technique to investigate whether NOX activity was evident  
during the remission phase of EAE. They found that during this 
phase of the disease, when neurological function in the mice 
is restored, astrocytes and microglia shift towards an activated  
phenotype, showing morphological changes and elevated lev-
els of activated NOX enzymes, which correlated with subclinical  
neuronal dysfunction, characterised by elevated neuronal calcium.

Besides changes in NOX activity, alterations in other mediators 
of oxidative stress have been revealed in EAE. Two independ-
ent groups have reported reduced GSH levels in rodents with 
clinical EAE75,83. Morales Pantoja et al.83 found that this reduced  
GSH is a consequence of decreased levels of the enzymes and 
transporters that are required for de novo GSH synthesis because 
of diminished levels of nuclear factor (erythroid-derived 2)-
like 2 (Nrf2) in EAE. Nrf2 is a transcription factor that regulates  
endogenous anti-oxidant systems. Under conditions of oxidative 
stress, Nrf2 translocates to the nucleus to promote the expres-
sion of Nrf2-regulated genes, including those that are involved in  
GSH synthesis. Nrf2 was low in both the cytoplasmic and  
nuclear fractions; however, the decrease in the latter was more 
severe, suggesting that the nuclear transport of Nrf2 is also affected 
in EAE83. Interestingly, dimethyl fumarate, a current therapy for 
patients with MS, increases Nrf284, thus increasing GSH levels.

Mitochondrial dysfunction in experimental autoimmune 
encephalomyelitis
Several studies have reported significant mitochondrial abnor-
malities in both MS22,43,46,47 and EAE76,77,85. Indeed, mitochon-
drial alterations such as mitochondrial vacuolisation, swelling 
and dissolution of cristae have been described to occur as early 
as three days post-immunisation of EAE76. Early morphological  
alterations in mitochondria are associated with focal axonal  
damage in axons with intact myelin77. Furthermore, whereas large-
calibre axons recovered from such damage, thin-calibre axons had 
higher rates of progression77.

Sadeghian et al.85 recently showed that mitochondria in spinal 
cord axons of EAE mice are depolarised, often totally so, and  
fragmented, and have impaired trafficking. The mitochondrial 
deficits correlated with the neurological deficit, reversing during  
remission and re-occurring at relapse. The authors showed that this 
mitochondrial dysfunction was most severe within inflammatory 
foci but independent of demyelination or degeneration85. The data 
implicate mitochondrial dysfunction and energy failure as major 

causes of neurological deficits in the absence of overt structural 
damage.

Dysfunctional mitochondria usually generate more ROS, pro-
moting increased oxidative stress. Accordingly, subtle decreases 
in mitochondrial membrane potential, coupled with increased  
oxidative stress, have been described prior to the onset of neu-
rological deficit and immune cell infiltration in EAE86. In addi-
tion to decreases in mitochondrial membrane potential, certain  
conditions such as oxidative stress, low adenine nucleotide con-
centrations, or increased calcium induce the formation of the 
mitochondrial permeability transition pore (mPTP)87,88. Opening 
of this pore, as suggested by its name, increases the permeability 
of the mitochondrial membranes to low-molecular-weight solutes 
and some proteins, and it is one of the main causes of cell death. 
The peptidylprolyl cis-trans-isomerase cyclophilin D (CypD) is 
considered critical for opening the mPTP89,90, and it was recently 
shown that a mitochondrially targeted CypD inhibitor significantly 
improved neurological deficit and protected axons, with minimal 
immunosuppression, in murine EAE91.

Sodium dysregulation in experimental autoimmune 
encephalomyelitis
One of the main consequences of energy failure is sodium  
dysregulation (that is, an excessive accumulation of sodium in  
axons) due to an inadequacy of sodium extrusion. A number of 
studies have implicated a role for voltage-gated sodium channels 
(VGSCs), and a rise in intra-axonal sodium ions, in promoting 
the degeneration of myelinated axons. A rise in internal sodium 
is not usually problematic if there is adequate ATP to restore  
sodium homeostasis via the Na-K ATPase (sodium pump), but 
energy insufficiency can allow sodium to rise sufficiently to  
cause reverse operation of the NCX and the importation of 
lethal quantities of calcium ions. This is particularly the case in  
demyelinated axons, which are more vulnerable to sodium  
dysregulation because of their adaptive re-expression of sodium 
channels along the denuded axolemma. Important early stud-
ies were performed in optic nerve axons with energy failure due 
to imposed anoxia (for example, 92), but the recognition that NO 
both was a potent inhibitor of mitochondrial function84,85 and was 
produced in abundance at sites of inflammation93 suggested that 
sodium channels and raised internal sodium may also be respon-
sible for degeneration of axons in inflammatory lesions55,94.  
This reasoning suggested that axons may be rendered vulnerable 
to degeneration by impulse conduction because this would pro-
mote sodium influx, and the combination of electrical activity and 
NO exposure was found to be a potent cause of degeneration95. It 
followed that axons may be protected from degeneration by par-
tial blockade of their sodium channels using pharmacological  
agents96,97, and the potency of this therapeutic approach was  
demonstrated in a number of investigations in EAE by using  
phenytoin98, flecainide99, lamotrigine100, carbamazepine101, and 
safinamide102 and blockers of the NCX97. Confidence that sodium 
channel blockade might provide an effective neuroprotective  
strategy in MS was enhanced by the discovery that the agents 
could also reduce the severity of inflammation and dampen  
microglial activation102–106, and two clinical trials have been  
performed. The first explored the value of lamotrigine in reducing 
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the rate of brain atrophy in secondary progressive MS107. The trial 
failed its primary outcome measure, probably because the trial 
design did not allow for pseudoatrophy resulting from a reduc-
tion in inflammatory swelling (which was unexpected at the time), 
but there was a significant reduction in the deterioration of the  
secondary outcome measure of the 25-foot timed walk107.  
Importantly, in the treated group, there was a significant reduc-
tion in circulating neurofilament, a marker of neuronal/axonal  
degeneration108. The second trial examined whether phenytoin 
was effective in neuroprotection in acute optic neuritis109, and the  
treated group showed a significant (30%) reduction in the loss of 
the retinal nerve fibre layer compared with placebo (the trial won 
the MS Research Prize for 2016).

Of the nine VGSC isoforms identified in mammals, Na
v
1.2 and 

Na
v
1.6 are predominantly expressed in the axolemma. In myeli-

nated axons, the Na
v
1.6 subtype of VGSCs, which produces both 

transient and persistent currents110–112, is strategically located in 
high density at the nodes of Ranvier113 to allow fast propagation 
of action potentials. In contrast, Na

v
1.2 VGSCs are preferentially 

located along the axolemma of unmyelinated axons114. During 
MS and EAE, the expression of these and other VGSC isoforms 
is dysregulated49,115–117, contributing to ongoing damage and the 
expression of symptoms118,119. Thus, it seems reasonable that  
further understanding the contribution of various VGSC isoforms 
to pathogenesis and progression in MS could facilitate more  
targeted therapy, thereby increasing efficacy while reducing any 
potential side effects. Recently, a non-CNS penetrant sodium  
channel blocking agent was successful in limiting damage in  
progressive EAE and a model of optic neuritis120, and the drug 
gained selective access to inflamed regions of the CNS because 
of the associated breakdown of the blood-brain barrier. This  
therapeutic strategy could offer an opportunity to reduce side  
effects while retaining the beneficial effects of VGSC therapy.

An important adaptation of axons to demyelination in MS and 
EAE is the expression of both Na

v
1.2 and Na

v
1.6 isoforms  

along the denuded axolemma49,115. Whilst these changes allow 
the restoration of conduction through the lesion50–52,121, they may 
also add a vulnerability to degeneration through the mechanisms 
described above. The Na

v
1.6 isoform, which is abundantly expressed, 

has been advanced as being the main mediator of axonal injury  
because it not only induces a larger persistent sodium current 
than Na

v
1.2122 but also frequently co-localises with markers of  

axonal damage49. More recently, Schattling et al.123 showed that 
a mutation of Na

v
1.2 that results in increased persistent sodium 

current can also increase degeneration in EAE. Furthermore, the 
authors showed that genetic manipulation of this isoform had 
no effect on the immune response in this model, implying that  
blocking Na

v
1.2 activity may allow neuroprotection without 

the added immunomodulatory response seen with conventional  
pan-sodium channel blockers.

Na
v
1.5 was recently reported to be upregulated in astrocytes in  

both monophasic and chronic-relapsing EAE, significantly  

correlating with disease severity116. As with microglia, reactive  
astrocytes can be protective or detrimental; however, their  
pro-inflammatory effects have been suggested to contribute sig-
nificantly to the inflammatory response in EAE124, presumably  
through reactive astrogliosis and glial scar formation. It is note-
worthy that Na

v
1.5 has been shown to play an important role in  

astrogliosis via reverse operation of the NCX and a subsequent 
robust calcium response in vitro125; thus, targeting Na

v
1.5 may  

represent a therapeutic target for modulating reactive astrogliosis 
in MS and EAE.

Conclusions
In recent years, there has been a burgeoning of therapies for MS, 
most of which interfere with aspects of the acquired immune 
system. In this review, we have focussed rather on energy  
balance within the inflamed CNS, taking EAE as an animal  
model. We have identified tissue hypoxia and free radicals as 
important factors in the observed mitochondrial dysfunction, 
and discussed how this can result in neurological dysfunction,  
sodium dysregulation, calcium entry, and degeneration. Sodium 
channel inhibitors have unexpectedly emerged as neuroprotec-
tive agents, and these deserve more attention as they provide a 
safe, new therapeutic strategy that may help to redress an energy  
insufficiency by reducing neuronal energy demand. The other 
side of the ‘energy coin’, namely increasing energy supply, 
may be provided by increasing tissue oxygenation, and the first  
promising observations that this will provide an effective therapy 
are now emerging.
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