
SUPPLEMENTARY NOTE 1: PHYSICAL ORIGIN OF THE NUCLEATION EN-

HANCEMENT
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Supplementary Figure 1: Structural properties of water on the two substrates: a) Num-

ber density of supercooled water in contact with the substrate (at z = 0 Å) obtained from

trajectories at 218K, sampling only the pre-nucleation part. b) Snapshot of the layers (top-

down view of a portion of the simulation cell) corresponding to the peaks with the same

color in the density plots.

A look at the density of liquid water on top of the substrates (see Supplementary Figure

1a) reveals distinct peaks. The corresponding layers show how for s1 there is an in-plane

templating effect as (stretched) hexagons in the first and to a lesser extent in the second

layer are present even before nucleation. As a result in all simulations of s1 the basal face

of ice has nucleated in contact with the surface.

The situation in s2 however is different since the first two layers exhibit a static non

ice-like structure that does not change upon nucleation while the third layer is disordered

before freezing. It can be assumed that this is due to the corrugation of the substrate s2.

The first overlayer there is effectively comprised of chains of molecules within the trenches

and has little to no space to rearrange. Such an example of a non-ice like first overlayer

1



facilitating ice-like higher layers has e.g. also been found from density functional calculations

of feldspar [1] and in our previous work [2]. The ice crystal face in contact with the substrate

s2 is always the prism face of hexagonal ice Ih. We suspect that the structure of the second

layer (blue) is key, because albeit being non ice-like the formation of stripes (see blue layer

for s2 in Supplementary Figure 1) resembles a sub-structure in the prism face of hexagonal

ice Ih.
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SUPPLEMENTARY NOTE 2: CLUSTER ASPHERICITY

We examined the morphology of clusters depending on their proximity to the surface. In

Supplementary Figure 2 we plot of the asphericity parameter

κ =

√
3Tr[(S−1·TrS/3)2]

2(TrS)2
(1)

versus the z component of the center of mass (COMz) of 50000 pre-critical clusters (blue

dots). S is the gyration tensor of all molecules belonging to the respective cluster. Special

values of κ are 0 (perfect sphere), 0.5 (rod or pancake shaped) and 1 (chain). While s2

clearly does not exhibit any density or asphericity increase the latter increases in s1 when

closer to the substrate, indicating pancake and chain morphologies. This further highlights

that both systems, despite having the same nucleation rate, take two very distinct paths.
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Supplementary Figure 2: Difference in cluster asphericity between the two substrates:

Scatter plot of the asphericity parameter κ versus COMz of 50000 pre-critical clusters (blue

dots). Red circles indicate the points for nearly-critical clusters.
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SUPPLEMENTARY NOTE 3: DIFFERENT ORDER PARAMETERS

We consider the influence of a different order parameter on the detection of clusters.

For this purpose we calculated the cluster size distributions (see Supplementary Figure 3)

based on a Steinhardt parameter [3] with spherical harmonics of order 6 and spatial coarse-

graining as defined by Lechner and Dellago [4]. The order parameter used in the main text

used spherical harmonics of order 3 and phase averaging between neighbors [5]. The results

qualitatively agree with the ones reported in the main text. The tails for s2 seem so be more

pronounced, which indicates that the order parameter is more generous in detecting clusters

that are directly at the surface.
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Supplementary Figure 3: Validation of findings with other order parameters 1: a) Dis-

tribution for the alternate order parameter q̄6. The dashed line indicates the cutoff used to

distinguish liquid water from ice. b) Probability distribution for the size of the largest ice-like

cluster Ncls obtained from all trajectories at 218 K before the nucleation event happened.

The issue of the detection of solid-like molecules at the interface is important and debated.

Despite being crystal-like an order parameter might not detect these molecules because of

their interfacial environment. A straightforward way to consider them is to include all the

neighbors of the detected cluster, i.e. the first hydration shell (molecules within 3.2 Å) in

our case. While this adds a degree of arbitrariness the main conclusions should be robust

to that. We show the results for the free energy profile and the cluster size distribution
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in Supplementary Figure 4, where we denote the order parameter from the main text as

Ncls and the one including the surrounding shell as Ncls+surf . Additionally we considered a

reconstruction as a function of the CNT coordinate ncls since strictly speaking CNT deals

with the free energy of an isolated cluster ncls. However, in a real system there will be many

clusters of different sizes and the distribution of the biggest cluster P (Ncls) will only be equal

to the distribution of clusters P (ncls) for very large values of ncls. In our systems the amount

of molecules that are ice-like before nucleation is still much smaller than their total number

and cluster appearances can be seen as independent. Therefore we approximate P (ncls) from

the histogram of all clusters in all frames in all trajectories. We see that the enhancement

of fluctuations is completely overshadowed by the weight of the many more smaller clusters

(see P (ncls) in Supplementary Figure 4) and therefore Ncls is a better coordinate to examine

fluctuations. However the same trend found in the free energy profiles is also found for F as

a function of ncls. The profile for system s2 which nucleates a different-than-homogeneous

polymorph is steeper and closer to the homogeneous line. Overall, we conclude that our

results and conclusions are robust against different choices of order parameters.
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Supplementary Figure 4: Validation of findings with other order parameters 2: The left

column shows the free energy as a function of the number of molecules in the biggest ice-like

cluster F (Ncls), same but additionally including the first water hydration shell F (Ncls+surf)

and as a function of the CNT coordinate (isolated cluster) F (ncls). The right column shows

the corresponding cluster size distributions.
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SUPPLEMENTARY NOTE 4: HIGHER TEMPERATURE WITH BRUTE-FORCE

SIMULATIONS

We consider a range of different parameters and settings that could potentially change

our main results. First of all, we examine the effect of temperature. In Supplementary

Figure 5 we plot the resulting free energy profiles for both temperatures considered in this

study. While the difference in temperature is only 3 K (the brute-force approach becomes

exceedingly costly) the rate changes already by an order of magnitude (see main text). It

is apparent that both systems do not change the trend we see for the lower temperatures.

In particular the barrier height for s2 is larger than for s1, while the transition state is

located at a smaller value of Ncls for s2 than for s1. We conclude that indeed the curves

for each substrate belong to different families of curves, representing the homogeneous path

way they are based on (s1 is based on the dominant homogeneous path way, while s2 follows

the virtual path of exclusively hexagonal clusters). We note that the differences in the free

energy profiles, albeit being small, are significant and the relevant trends did not depend

on the details of the method (such as boundary conditions, integration method, etc.) used

to generate them. For other results at higher temperature see also the section on the

metadynamics simulations.
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Supplementary Figure 5: Results for higher temperatures: Free energy profiles obtained

by kinetic reconstruction for the two systems in this study at 218 and 221 K.
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SUPPLEMENTARY METHODS 1: METADYNAMICS SIMULATIONS

The brute-force simulations have the disadvantage that pre-critical and critical clusters

are similar in size. To see if our findings also hold for conditions where these are very different

in size we perform simulations at a higher temperature of 235 K. At this undercooling we

expect the hom. critical cluster size to be ≈ 600 [6] and therefore this temperature is close to

the upper limit of temperatures that can be investigated with a system of our size (∼10,000

molecules).

To facilitate the nucleation we start by constructing the permutation invariant vector

(PIV [7, 8]) V for the system. This entails computing the adjacency matrix of oxygens and

reducing it to the irreducible part (then taken as a vector). The distance (r) dependent

criteria for adjacency was softened with a switching function fswitch(r) = 1−(r/r0)n

1−(r/r0)m
with

n = 4, m = 12 and r0 = 3.4 Å, i.e. considering only nearest neighbors. The final PIV vector

is then sorted, rendering it invariant under permutation of identical atoms. The PIV is also

constructed for two reference snapshots (VA for a liquid and VB for a fully frozen simulation

cell generated at 205 K). From these vectors we compute generalized distances (as squared

Euclidean distances) DA = ‖V −VA‖2 and DB = ‖V −VB‖2. We use these distances to

create a path [9] from basin A to basin B, defining the variables

s =
1 · e−λDA + 2 · e−λDB

e−λDA + e−λDB

z = −λ−1 log
(
e−λDA + e−λDB

)
(2)

where s measures the direct progression from A to B, while z is a measure for the movement

perpendicular to this path. For the parameter λ we chose λ = 2.3
DAB

where DAB is the

generalized distance between the two references states. This choice leads to the free energy

basins for A / B being around s ≈ 1.1 / 1.9. In addition we add a biasing potential

Vwall(s) = k (s− 1.5)2 · θ(s− 1.5) (3)

with k = 10, 000 kcal/mol and the Heaviside step function θ. This represents a soft-wall to

avoid the system getting trapped for too long in the crystalline basin corresponding to the

fully frozen cell. The system for cluster sizes relevant to nucleation (s < 1.5) is unaffected

by the wall.

We emphasize that this order parameter approach does not enforce or facilitate any

specific ice polymorph as path variables do not make any assumption about the transition
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and the PIV we employ describes only the nearest neighbor environment which is identical

for Ih and Ic.

Finally, we perform well-tempered metadynamics [10, 11] with 20 walkers [12] on the vari-

ables s and z with parameters gaussian height δ = 0.2 kcal/mol, gaussian width (σs, σz) =

(0.022, 0.38), deposition stride 2 ps and a biasfactor of 50. Simulations were done with a

PLUMED [13] patched version of LAMMPS [14].

s2

s

F 
[k

B
T
]

s1

F 
[k

B
T
]

metaD
reweight

Supplementary Figure 6: One-dimensional free energy profiles as a function of the vari-

able s which describes the direct path from the liquid (s ≈ 1.1) to the fully frozen simulation

box (s ≈ 1.9). The position of the repulsive soft-wall is indicated by the dashed grey line

at s = 1.5. The results obtained via the standard use of the bias-potential (solid blue line)

agree well with the estimates obtained by reweighting (dashed red line).

To check if our simulations are reasonably converged we compare the one-dimensional

free energy profiles obtained from integrating out the z-degree of freedom, i.e.

F (s) = −β−1 · ln
[∫

exp (−βF (s, z)) dz

]
(4)

with the one obtained via the reweighting algorithm from Tiwary and Parrinello [15]:

F (s) = −β−1 · ln
〈

exp [βV (s̃(t), z̃(t), t)− c(t)] · δ(s̃(t)− s)
〉
t

(5)
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where the weight (exponential factor depending on the metadynamics bias V and a time-

dependent constant c(t), β = 1
kBT

) is calculated on the fly and the average 〈...〉t goes over all

snapshots generated during the MD simulation. The cubicity reported in the main text figure

3 was also obtained from these trajectories with the corresponding weights applied to obtain

the unbiased distribution. The fact that we get very similar profiles (see Supplementary

Figure 6) indicates that our simulations are reasonably converged and by all means suitable

for the qualitative discussion in the main text.

Since the metadynamics simulation in the variables s and z does not directly yield the

critical cluster size we performed a committor analysis [16] seeded from these metadynamics

trajectories (we have restricted our selection to one starting point for each n since the size

of the biggest cluster is known to be a good reaction coordinate [6]). For each point we

performed 200 simulations that were 2 ns long. As target values for the basins A and B we

chose nA = 30 and nB = 1000. The committor probability pB(n) is then fitted according to:

pB(n) =
1

2

[
1 + tanh

(
n− nc

a

)]
(6)

where a and nc are fitting parameters. From the plot in Supplementary Figure 7 we obtain

nc,s1 = 211± 11, nc,s2 = 104± 3 and as1 = 121± 20, as2 = 22± 3. The errors are estimated

95% confidence intervals. Since the width of the committor curve around nc is related to the

curvature of the free energy F (n) around nc the values of a confirm again our results for lower

temperatures, where s1 has a broader profile around the transition state (larger a) than s2.

The differences here are more pronounced than for the lower temperature, suggesting that

the influence of the different polymorphs is even more significant for higher temperatures.
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Supplementary Figure 7: The committor probability pB(n) as a function of the ice-

cluster size n for the systems s1 and s2 at 235 K. Error bars were obtained as 95% confidence

intervals of bootstrapping on 10,000 samples [17].
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SUPPLEMENTARY NOTE 5: EXTENSION TO HETCNT

Having shown that the heterogeneous classical nucleation theory (hetCNT), as tradition-

ally applied, cannot describe the phenomena observed in our simulations, we now lay out an

extension of hetCNT which helps to make it more general by accounting for different bulk

references. We note that it is not our aim to include corrections for several of the already

known possible shortcomings of CNT and hetCNT (e.g. neglect of the line tension [18, 19])

but we rather focus solely on how to account for a change in polymorph induced by the

substrate. CNT yields the following expressions for the free energy barrier ∆F and the

number of atoms/molecules in the critical nucleus nc:

∆F hom =
16π

3

σ3

(∆µ)2

nhom
c =

32π

3

σ3

(∆µ)3
· ρcry (7)

where σ is the interfacial free energy between solid and liquid, ∆µ = µliq−µcry is the chemical

potential difference to the liquid and ρcry is the number density for the crystalline phase.

The assumptions implied in this are: i) the nucleus has spherical shape, ii) thermodynamic

properties of small clusters are assumed to be the values of the bulk and iii) a well-defined

surface that separates cluster from liquid. For the step towards heterogeneous CNT wee

denote with the subscript 1 and 2 the two different polymorphs (in our case 1 = stacking-

disordered and 2 = hexagonal) occurring in the systems s1 and s2 respectively. From hetCNT

we obtain the resulting barrier and critical nucleus size for system 1 where polymorph 1 has

formed:

∆F1 = fV,1(θ1) ·∆F hom,1

nc,1 = fV,1(θ1) · nhom,1
c (8)

where fV,1 is the volumetric factor of polymorph 1. In the case of system 2 the comparison

to the hom. formation of polymorph 2 would be straightforward. This however is unlikely

to be relevant since kinetics for the hom. pathway of polymorph 2 are unknown and much

harder (if not impossible) to measure than those for the dominant polymorph 1. Therefore
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we introduce correction factors to equations 7 to compare to polymorph 1:

∆F2 = fV,2(θ2) ·∆F hom,1 ·
(

∆µ1

∆µ2

)2(
σ2

σ1

)3

nc,2 = fV,2(θ2) · nhom,1
c ·

(
∆µ1

∆µ2

)3(
σ2

σ1

)3(
ρ2

ρ1

)
(9)

Note that the scaling with ∆µ is different for the barrier height and the critical nucleus

size, which results in a different ratio χ = ∆F
nc

. hetCNT predicts that χ is independent

and the same for all supercoolings since the enhancement factors cancel out. However our

comparison of systems s1 and s2 clearly indicates that this ratio is not the same in the

two systems. Therefore, this extension may account for why heterogeneous free energy

profiles such as our results in the main text figure 2c can have different functional shapes

as opposed to the prediction of hetCNT. Note that our extension has not introduced any

further assumptions, but we have solely used the tools supplied by CNT to illustrate how

a change in polymorph needs to be included in the theory. Since ∆F1·nc,2

∆F2·nc,1
=
(

∆µ1
∆µ2

)(
ρ2
ρ1

)
,

equations 9 also have the potential to estimate the chemical potential difference of different

polymorphs from nucleation data, provided the approximations of CNT are reasonable.
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SUPPLEMENTARY METHODS 2: COMPUTATIONAL DETAILS

Brute-force simulations of heterogeneous ice nucleation were performed with 18000 water

molecules, represented by the coarse-grained mW model [20], placed in a film geometry on

top of two pristine, rigid fcc surfaces (termed s1 and s2). The substrate-water interaction

is given by a Lennard-Jones interaction (cut-off at 3σ), tuned to achieve the same absolute

nucleation rate. We established that the pitfall of finite-size effects is already avoided for

smaller systems containing only 4000 water molecules [2]. Generally, finding two impurities

that nucleate different polymorphs at the same rate at the same temperature and study

the nucleation event itself on them can be considered a very costly endeavor. Following

established protocols [2, 21, 22] we first equilibrate each structure for 10 ns at 300 K. Then

production runs are quenched to the target temperature and coupled to a 10-fold Nosé-

Hoover chain [23, 24] to sample the NVT ensemble, integrating the equations of motion with

a timestep of 10 fs. The relaxation time after the quench is on the order of 10 ps and can

thus be considered non-disturbing to the nucleation. The nucleation events themselves are

detected by a sudden drop in the potential energy, upon which we terminate the computation

and collect the current time as induction time. 100 simulations for each of the two substrates

at 218 K and 50 simulations at 221 K have been performed with LAMMPS [14]. From the

collection of induction times we fit the survival probability

Psur = exp [−(J · t)γ] (10)

of the supercooled liquid to obtain the nucleation rate J , where γ is a correction factor

that accounts for possible non-exponential kinetics. Indeed, all four fits yield values of

gamma so that 1 < γ < 1.1, which means that even at this strong supercooling we are

looking at activated processes rather than relaxation. Supplementary Figure 8 shows the

substrate morphology and the resulting survival probabilities which are almost identical for

both scenarios and temperatures. Considering the fact that nucleation rates usually differ by

many orders of magnitude we can label the resulting rates from our two systems as identical.
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Supplementary Figure 8: Overview of Simulation Systems and Nucleation Behavior: a)

Perspective view of a representative simulation box with approximate dimensions 12× 12×

7 nm. Water is blue and surface atoms are gray. b) Top and side views of the two model

substrates s1 and s2. The highest, second highest and the lower layers are colored in different

shades of gray. c) Survival probability of the liquid, used to determine the nucleation rate.
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