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Abstract 

The purpose of this thesis was to examine longitudinal predictors of 

children’s early arithmetic abilities with a particular focus on the relation to the 

approximate number system (ANS), language and numeracy skills as well as 

background measures of cognitive abilities. This longitudinal study assessed children 

five times over a 25-month period beginning in nursery classes and continuing to the 

end of Year One (the first complete year of formal schooling). The thesis 

investigated the concurrent and longitudinal predictive importance of ANS, 

numeracy, language and cognitive abilities in children’s arithmetic development 

using structural equation modelling. Path models found different concurrent 

predictors of arithmetic at each time point and only transcoding, the ability to 

translate between the verbal number code and the Arabic numeral, was a consistently 

recurring predictor. Furthermore, children’s nonverbal intelligence and their 

understanding of language specific to mathematics related significantly to early 

arithmetic (pre-school) whereas children’s magnitude comparison skills were 

significantly associated with arithmetic scores in Year One. The longitudinal analysis 

showed that transcoding was the only unique predictor of arithmetic and neither ANS 

nor language and cognitive skills were significant independent contributors to the 

prediction of children’s arithmetic abilities 25 months later.  
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Chapter 1. Background 

Competence in numeracy is of great and increasing importance for success in 

modern society. The development and understanding of mathematics is a complex 

combination of factual knowledge (memorised number facts), procedural knowledge 

(understanding of how to proceed in order to get an answer) and conceptual 

knowledge (understanding why a strategy works and is more effective than another) 

(Dowker, 2005). Proficiency in arithmetic is one of the most crucial achievements in 

primary education. Thereby children have to master the basic principles of counting 

and arithmetic concepts (Desoete and Grégoire, 2006; Nunes and Bryant, 1996; 

Gelman and Gallistel, 1978).  

Despite a growing literature mapping the development of mathematical skills, 

little is known about longitudinal predictors of early, arithmetic skills. The search for 

cognitive-developmental precursors of basic arithmetic has focussed on working 

memory (e.g. Bull, Epsy, and Wiebe, 2008), counting (e.g. Donlan, Cowan, Newton, 

and Lloyd, 2007), language (Kleemans, Segers, and Verhoeven, 2011; 2012), 

number knowledge (Jordan, Kaplan, Ramineni and Locuniak, 2009) and magnitude 

processing (Mazzocco, Feigenson and Halberda, 2011; Durand, Hulme, Larking, and 

Snowling, 2005). The interaction of these predictors has received little attention. 

Language is the core medium of instruction in school and therefore crucial for the 

acquisition of knowledge and skills across the curriculum. On the other hand, there is 

strong intuitive appeal in a modular developmental model in which infants’ ability to 

identify numerical differences between nonsymbolic stimulus sets (e.g. arrays of 

dots) provides the basis on which symbolic number processing is constructed, in turn 

providing the semantic framework needed for the development of arithmetic skills. A 

central aim of this thesis is to establish whether magnitude comparison tasks are 

reliable longitudinal predictors of early arithmetic performance, once number 

knowledge, language and cognitive skills are taken into account. 

 1.1 Models of numerical processing. 

 1.1.1 General models of numerical processing. 

 Several models have been proposed to explain adults’ ability to solve 

arithmetic problems. The most notable models are the Triple Code Model (Dehaene, 
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1992), McCloskey’s Modular Model (McCloskey, Sokol and Goodman, 1986), 

MATHNET (McCloskey and Lindemann, 1992) and the Network Interference 

Model (Campbell, 1995). 

1.1.1.1 McCloskey’s Modular Model and MATHNET.  

McCloskey and colleagues proposed the modular model (Figure 1.1) after 

studying adults with acquired dyscalculia (McCloskey and Lindemann, 1992; 

McCloskey et al., 1985; 1986). The model incorporates distinct subsystems for 

particular arithmetic abilities. In particular, the model distinguishes between 

calculation and number processing which in itself is divided into number 

comprehension and production. Verbal and Arabic numerals are dealt with 

separately. The calculation system involves three mechanisms: one for operation 

processing, one for procedures and one for fact storage and access. The first is used 

when processing symbols and words related to symbols (e.g. plus) whereas the 

second mechanism involves rules for the processing of operations such as addition, 

subtraction, multiplication and division. Storage and retrieval of facts rely on the 

facts mechanism. The semantic processing of numbers is a key component of the 

Modular Model. It converts input into abstract semantic representations, similar to 

the magnitude representations posited by Dehaene (1992), which then are processed 

in the calculation system and/or output through the numeral production system. For 

example, the semantic form of the number ‘123’ is {1} 102, {2} 101 and {3} 100 

whereas {1}, {2} and {3} represent quantities and 10n is the power of ten.  

According to the model, a problem needs to be converted into a semantic 

representation before it can activate stored facts in memory. The semantic 

representation of the answer can then be accessed and converted into the appropriate 

format for the response. Therefore, an impairment in the semantic representation 

system impedes the performance on all arithmetic problems.  
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Figure 1.1. Modular Model proposed by McCloskey, Caramazza, and Basili (1985). From 

Edelman, Abdi, and Valentin (1996, p.48). 

McCloskey and Lindemann, (1992) proposed the MATHNET model (Figure 

1.2) with three layers. The first layer consists of 26 input units which are connected 

to the 40 hidden units, layer two, which are connected to the 24 answer units. A 

particular feature of this model is that the answer units are also interconnected. All 

connections are symmetric and bidirectional and the hidden and answer units tend 

towards either a positive or negative activation. However, the problem arises that the 

only solution method for an arithmetic problem is retrieval from memory neglecting 

to explain non-retrieval solutions such as transformation or counting-based strategies 

(Geary and Wiley, 1991; LeFevre, Sadesky and Bisanz, 1996).  

1.1.1.2 Dehaene’s Triple Code Model. 

The most influential model of adult numerical processing is Dehaene’s Triple 

Code Model (Dehaene, 1992, Figure 1.3). The model proposes that numbers are 

represented mentally in three different codes: the auditory verbal code or auditory 
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Figure 1.2. MATHNET model proposed by McCloskey, and Lindemann (1992).  

verbal word frame, the visual Arabic number form, and the analogue 

magnitude code. The codes are interlinked via pathways that translate from one code 

to another and the task being performed determines which form of mental number 

representation is used. The auditory verbal code draws on general language 

processing systems and deals with tasks such as verbal counting and multiplication 

tables. The visual Arabic number code is created and manipulated using Arabic 

numerals and is used in multi-digit calculations. These two codes are considered to 

be unique to humans.  

The analogue magnitude code in which quantity or magnitude is represented 

in an approximate way is believed to be shared by animals and humans, even 

preverbal infants alike (Dehaene, 1992; Whalen, Gallistel and Gelman, 1999; Wynn, 

1998; Rugani, Vallortigara, Priftis and Regolin, 2015) and often referred to as the 

number sense (Dehaene, 1997). The analogue magnitude code is hypothesised to take 
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the form of a compressed number line following Weber’s Law. Magnitude 

representations are supposed to be compressively spaced with larger numbers being 

less discriminable than smaller numbers. 

Figure 1.3. Dehaene’s Triple Code Model (Dehaene, 1992, p. 31). Three representations are 

depicted as octagons. Large arrows indicate input-output processes, whereas thin arrows 

depict internal translation processes. 

Dehaene also proposed two separate pathways for solving arithmetic 

problems, the direct asemantic route for over learned calculations and the indirect 

semantic route for exact arithmetic. The former relies on activation of the auditory 

verbal code because facts are stored as a “learned lexicon of verbal associations” 

(Dehaene, 1992, p.34) in memory. The latter involves the analogue magnitude code 

and is proposed to be used in subtractions and more complex addition problems.  

1.1.1.3 Network interference model.  

The Network interference model (Campbell, 1995, Figure 1.4) proposes 

multiple internal codes. Similar to Dehaene (1992), codes include the magnitude, 

verbal and visual code for numbers. Encoding and calculation processes are assumed 
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to be interactive which explains why large mathematical problems in word format 

take longer to solve. It further hypothesises that larger magnitudes are less 

discriminable than smaller quantities as proposed in the Triple Code model 

(Dehaene, 1992). This encoding complex model posits that numbers evoke “an 

integrated network of format-specific number codes and processes that collectively 

mediate number comprehension, calculation, and production, without the assumption 

of central representation” (Campbell and Clark, 1988, p. 204). According to the 

model, additions and comparisons depend on qualitatively different processes 

(Takahashi and Green, 1983). The model, however, does not account for non-

retrieval solution methods. 

Figure 1.4. Schematic shows some of the nodes and connections described in the Network 

Interference Model (Campbell, 1995).  
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 1.1.2 Developmental models of arithmetic. 

 Most developmental models of arithmetic are models of children’s problem 

solution and were inspired by the adult models. Models discussed in this thesis are 

the Adaptive Strategy Choice Model (ASCM, Siegler and Shipley, 1995), the Four-

Step Developmental Model of Numerical Cognition (von Aster and Shaley, 2007), 

the Pathways to Mathematics Model (LeFevre, Fast, Skwarchuk, Smith-Chant, 

Bisanz, Kamawar and Penner-Wilger, 2010) and the The Integrated Theory of 

Numerical Development (Siegler and Braithwaite, 2017). 

1.1.2.1 Adaptive Strategy Choice Model.  

Siegler and Shipley’s (1995) Adaptive Strategy Choice model (ASCM, 

Figure 1.5) is a “computer simulation of how strategy choices are made and how they 

change with age and experience” (p.72). It aims to explain how and why people 

choose a specific strategy among alternative strategies to perform fast and accurately. 

ASCM’s three assumptions are: First, a database maintains information on 

performance and outcome of a particular strategy which plays an important role in 

choosing strategies in the future. This database is dynamic and updates the 

information after the strategy was used and it also stores information on global data 

(average speed and accuracy for a particular strategy), feature data (speed and 

accuracy for each strategy on problems with a particular structural feature) and local 

data (speed and accuracy of the strategy on particular problems). Second, choosing a 

strategy is determined by past performance of the strategy and the predicted 

performance of the strategy if that strategy would be used. Third, strategy choice 

depends on the each strategy’s strength (speed and accuracy) in comparison with 

alternative strategies. New strategies are developed by boosting the speed and 

accuracy information of novel strategies. 

The model posits two distinct strategy-choice pathways for procedures and 

retrieval. If the former is activated, the procedure will be performed and the answer 

is produced. Contrarily, a successful retrieval depends on the strength of each 

strategy. Procedure is often chosen for problems were the association between a 

problem and an answer is weak, whereas the retrieval pathway is more likely to be 

chosen for problems with strong answer associations. A retrieval answer will only 

produce an answer if the confidence in the correctness of the answer exceeds a set 
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criterion otherwise the models attempts another retrieval. The procedure pathway 

will then only be chosen after numerous failed retrieval attempts. 

Figure 1.5. Overview of Adaptive Strategy Choice Model proposed by Siegler and Shipley 

(1995). From Siegler and Lemaire (1997), p. 73. 

1.1.2.2 Four-Step Developmental Model of Numerical Cognition  

The Four-Step Developmental Model of Numerical Cognition (von Aster and 

Shalev, 2007) describes four stages of numerical cognition in which children move 

through the stages as they progress in arithmetic competency through exposure and 

formal schooling and an increase in working memory capacity (Figure 1.6). The first 

stage consists of an inherited core-system of magnitude representation, similar to 

Dehaene’s number sense, which entails subitizing and approximation abilities. This 

basic meaning of number is a prerequisite for the acquisition of more complex 

mathematical skills. Pre-school children move on to the linguistic stage of numeracy 

(step 2) where children acquire the verbal number codes. In step 3, children learn the 

Arabic number system and the symbolic representations of magnitudes in school. 

Typical mathematical skills developing at this stage are written calculations and odd-

even decisions. The final stage, the mental number line, develops during school years 

as children acquire the concept of ordinality, a second core principal of number. 

Von Aster and Shalev (2007) further propose that failure to establish a stage 

appropriately may lead to developmental delays in acquiring the follow-on stages or 

dyscalculia. For example, a child that has an inappropriate concept of magnitude 
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(step 1) because of genetic vulnerability may still learn the verbal codes (stage 2) by 

rote memory, but the codes are void of the meaning putting the child at risk of pure 

developmental dyscalculia. 

Figure 1.6. Four-step-developmental model of numerical cognition. From Von Aster and 

Shalev (2007), p. 870. Shaded area below line represents increasing working memory. 

1.1.2.3 Pathways to Mathematics   

LeFevre and colleagues postulate the Pathways to Mathematics model 

(Figure 1.7) focusing on the relationships between children's mathematical skills and 

cognitive precursors, early numeracy skills and mathematical outcomes. (LeFevre et 

al., 2010). This model posits three separate pathways: quantitative, linguistic and 

spatial attentional. Each of these pathways contributes individually to the acquisition 

of early numeracy abilities. Furthermore, the models proposes that the linguistic, 

quantitative and spatial attention pathways vary in their contribution to mathematical 

performance depending on the demands of the arithmetic problem. According to the 

model, linguistic skills are linked to children’s symbolic number system knowledge. 

The second skill pathway comprises quantitative abilities and processing numerical 

magnitudes. Spatial attention forms a third pathway with connections across a variety 

of numerical and mathematical skills. 
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Figure 1.7. The Pathways to Mathematics model proposed by LeFevre et al. (2010), p. 1755. 

Sowinski, LeFevre, Skwarchuk, Kamawar, Bisanz and Smith-Chant (2014) 

further expanded the quantitative pathway to include not only magnitude comparison 

but also counting and subitizing (ability to quickly and exactly enumerate small 

quantities; Clements, 1999). They also introduced a working memory pathway (the 

original model only focused on visuo-spatial attention). These new pathways were 

examined in relation to backward counting, arithmetic fluency, calculation, number 

system knowledge and reading. As expected, all three pathways contributed to 

backward counting and arithmetic fluency, but only the linguistic and quantitative 

pathway were uniquely predicting calculation and number system knowledge. Word 

reading was solely predicted by the linguistic pathway. 

1.1.3 The Integrated Theory of Numerical Development 

Siegler and Braithwaite (2017) proposed the integrated theory of numerical 

development assuming that the core of numerical development is an increase in 

understanding of numerical magnitudes. The theory posits five assumptions: 

1. Magnitudes of numbers are represented on a mental number line in 

humans and animals. This number line is a dynamic structure that 

represents small numbers first and “then is progressively extended 
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rightward to include larger whole numbers, leftward to include negative 

numbers, and interstitially to include fractions and decimals” (Siegler and 

Braithwaite, 2017, p. 3). Figure 1.8 shows the approximate age range of 

the changes in the mental number line. 

2. The representation of whole numbers shifts from a compressive, 

approximately logarithmic distribution towards a linear distribution. This 

shift occurs first for small whole numbers than larger whole numbers 

based on children’s experience with the number range. 

3. All real numbers can be presented as magnitudes on a mental number line 

and are thus ordered on the number line. 

4. Whole and rational number knowledge is related and predictive of 

arithmetic attainment and more advanced aspects of mathematics. 

5. Interventions to enhance numerical magnitudes knowledge positively 

affect arithmetic attainment. 

The integrated theory presumes that numerical magnitudes are represented on 

a horizontally oriented mental number line, at least for many Western and Eastern 

cultures. Smaller numbers are presented on the left and larger number on the right of 

the number line. Rugani et al. (2015) found that newborn chicks spontaneously 

associate small numbers (e.g. “2”) with the left and larger numbers (e.g. “8”) with 

the right side when trained on the number “4”. There is evidence for the mental 

number line representation of numbers provided by distance effects and the SNARC 

effect (spatial-numerical association of response codes). The former comes from the 

finding that the identification of the larger of two numbers is faster for numerically 

farther apart pairs of numbers (Moyer and Landauer, 1967). The SNARC effect 

explains the finding that responses for smaller numbers are faster when pressing a 

button on the left hand side and responses for larger numbers are faster when 

pressing a button on the right hand side (Dehaene, Dupoux and Mehler 1990). 

Siegler and Braithwaite (2017) posit that numerical magnitude knowledge is 

related to and predictive of arithmetic development. Numerical magnitude 

knowledge is conventionally measured using the number-to-position task. Children 

are asked to indicate the position of a target number on a blank number line. 

Research has shown that older children perform better on number lines (as indicated 

by the difference between actual position and children’s estimated position) than 
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younger children, that performance on the number line is significantly associated 

with arithmetic skills (Siegler and Booth, 2004; Booth and Siegler, 2006, 2008) and 

that there is a shift from a logarithmic to a linear distribution of numerical 

magnitudes between five and eight years (Booth and Siegler, 2008; Siegler, 

Thompson and Opfer, 2009). However, these findings come mostly from cross-

sectional studies.  

 

Figure 1.8. Mental number line model proposed by Siegler and Braithwaite 

(2017), p. 190, shows the approximate age ranges of major changes to the size and 

types of symbolic numbers whose magnitudes individuals can represent. 

Some studies identify the involvement of language and counting alongside 

magnitude estimation as developmental associates of early arithmetic (Praet, Titeca, 

Ceulemans and Desoete, 2013). Indeed, Praet and colleagues (2013) explored the 

relationship between arithmetic and children’s estimation using number words, dots 

and Arabic numerals, adding language as a covariate (from kindergarten through to 

grade two). The results revealed that Arabic numerals were more linearly distributed 

than number words and that language explained kindergartener’s arithmetic 
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performance, but not the growth of arithmetic. Children’s untimed math performance 

was predicted by number line estimation.  

Muldoon, Towse, Simms, Perra and Menzies (2013) assessed 5-year-olds 

over a 12 month period, with repeated measurement of number line estimation skills, 

counting ability and math achievement. They showed that counting was the largest 

contributor to children’s math performance and only linear fit of number estimation 

on the 0-20 scale at 5 years and linear fit of number estimation on the 0-100 scale at 

six years made a significant contribution. Some studies propose that, rather than 

being a precursor of mathematical achievement, number line acuity and math 

performance both influence each other during development from pre-school through 

early school years (Friso-van den Bos, Kroesbergen, Van Luit, Xenidou-Dervou, 

Jonkman, Van der Schoot and Van Lieshout, 2014; LeFevre, Lira, Sowinski, 

Cankaya, Kamawar and Skwarchuk, 2013). 

Evidence form cross-cultural research by the same team revealed that 

children’s number estimations were related to some but not all mathematical skills in 

English and Chinese children. Although Chinese children are typically precocious 

when it comes to mathematical development, their estimations on the mental number 

line were not more linearly distributed or accurate than an older Western sample with 

equivalent math scores suggesting that linearity may not be a driver for math 

attainment. It also emerged that young children display numbers as accurately in the 

vertical as the horizontal orientation (Simms, Muldoon and Towse, 2013).  

Ramini, Siegler and Hitti (2012) found that playing a linear number board 

game improved low-SES children’s number line estimation, magnitude comparison, 

numeral identification and counting skills. Further evidence comes from an 

intervention study examining extremely preterm-born (EP) children (Simms, 

Gilmore, Cragg, Marlow, Wolke and Johnson, 2012). The authors compared EP 

children’s performance on cognitive tests and number line estimation tasks to term-

born control children. They reported that EP children performed worse than the 

controls in all tests, but different relationships between mathematical attainment and 

number estimation were found in the two groups. The relationship between number 

estimation and mathematical achievement was stronger in EP children and remained 

significant after controlling for cognitive abilities only in the EP children. The 
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authors conclude that math attainment in EP children was associated with accuracy 

of numerical representations and not their general cognitive abilities. 

1.2. Mathematics and Language. 

Despite a growing literature mapping the development of mathematical skills, 

the interaction of language and arithmetic concept formation has received little 

attention. However, language is the core medium of instruction in school and 

therefore crucial for the acquisition of knowledge and skills across the curriculum. 

For this reason alone, it is essential to look at the role of language in children’s early 

arithmetic skills.  

Motivation for exploring the relationship between language and numeracy 

derives from findings suggesting that the development of numeracy is critically 

dependent on linguistic representations. Early support for this view came from 

scholarly examination of the cross-linguistic underpinnings of number systems 

(Hurford, 1987). More recently, an important perspective has been offered by studies 

assessing the mathematical skills of children with specific language impairment 

(SLI) in order to determine the impact of an impaired linguistic system on numeracy 

development. Children with SLI have impaired linguistic abilities which are not 

caused by hearing loss, physical disabilities or environmental influences. However, 

their nonverbal intelligence seems to be within normal range (APA, 1994).  

Studies indicate that SLI may affect a wide range of numeracy skills 

differently (Donlan, Bishop and Hitch, 1998; Donlan, and Gourlay, 1999; Fazio, 

1994, 1996). Children with SLI performed lower in rote counting than typically 

developing children of the same age (Donlan et al., 2007). Furthermore, Cowan, 

Donlan, Newton and Lloyd (2005) and Donlan et al. (2007) found that difficulties in 

producing the spoken number sequence, as well as poor comprehension of language, 

are significantly associated with calculation. Kleemans et al. (2011, 2012) found a 

relationship between grammatical ability and early numeracy skills. Similarly, 

neurocognitive studies of adults suggest that linguistic processes such as 

phonological awareness and grammatical ability are related to both, addition and 

subtraction (Baldo and Dronkers, 2007; Dehaene et al., 2003). However, the 

relationship between these skills is complex, and runs counter to other findings 
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which indicate independence between verbal and nonverbal calculation skills (Nunes 

and Bryant, 1996; Jordan, Huttenlocher and Levine, 1994). 

A few recent studies have started to address issues around the association 

between mathematical language use and the development of mathematical concepts. 

Saxe, Guberman, Gearhart, Gelman, Massey and Rogoff (1987) reported that 

mothers from middle socio-economic background engaged their children in more 

complex math activities and language than low-SES mothers. Therefore, the four 

year old children from middle-SES outperformed their low-SES peers on complex 

mathematical tasks. Klibanoff, Levine, Huttenlocher, Hedges, and Vasilyeva (2006) 

explored the relation between pre-school teachers’ amount of math talk and 

children’s growth of mathematical knowledge. They found that the amount of math 

talk had an effect on the growth of conventional mathematical knowledge. However, 

Boonen, Kolkman and Kroesbergen (2011) reported not only positive associations 

with children’s number concepts, but also negative associations, possibly indicating 

confusion where the level of teachers’ talk exceeded children’s understanding. There 

is a need for further research concerning the effects of both quantity and quality of 

math talk on mathematical learning in the early years.  

Some studies indicate that the same underlying mechanisms that are crucial 

for reading attainment may also play an important role in mathematics, particularly 

phonological awareness (Jordan, Kaplan and Hanich, 2002; Simmons and Singleton, 

2008). A recent study by Vukovic and Lesaux (2013) explored the difference 

between the relationship of children’s general verbal abilities and arithmetic 

compared to phonological skills. The results suggest that eight-year-olds 

performance on verbal analogies was indirectly related to arithmetic skills through 

symbolic number skills whereas phonological skills such as phonological decoding 

were directly related to arithmetic knowledge. The authors concluded that children’s 

general verbal activities may affect children’s understanding and reasoning with 

numbers and children’s phonological skills may play a part in executing conventional 

arithmetic. 

In particular, relational terms (e.g. more, less) play a crucial role in mature 

mathematical communication. Although little is known about their acquisition and 

development, previous studies have shown that young children do not perfectly 
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comprehend relational concepts (Donaldson and Balfour, 1968). Younger children 

tend to treat less as if it is a synonym of more conceivably due to the children’s bias 

to choose the greater of two arrays in comparison judgement tasks (Clark, 1973). The 

implications of these findings for mathematical development have yet to be fully 

explored. LeFevre and colleagues (2010) assessed four- to seven-year olds 

vocabulary, phonological awareness, subitizing skills and a spatial span task. They 

showed that the linguistic, spatial and quantitative pathways contribute 

independently to the development of early numeracy as well as children's formal 

mathematical knowledge.  However, only vocabulary and phonological awareness 

were tested to assess linguistic skills, leaving open the possibility that more complex 

language skills may make further contributions.  

 1.3 Mathematics and the Approximate Number System. 

 Numerous studies propose that an innate approximate number sense (ANS; 

Dehaene, 1992) is fundamental for children’s understanding of abstract, symbolic 

number concepts thus contributing to the development of arithmetic. The ANS is 

typically assessed using magnitude comparison tasks (comparing numerosities of 

groups of objects (Barth, Kanwisher, and Spelke, 2003; Piazza, Facetti, Trussardi, 

Berteletti, Conte, Lucangeli, Dehaene, and Zorzi, 2010)). Performance on these 

discrimination tasks varies according to the difference between the numerosities, and 

response time is shorter than is possible by counting. Support for the innate ANS 

comes from studying infants’ discrimination abilities. Xu and Spelke (2000) reported 

that six-month old infants can successfully discriminate arrays of 8 vs. 16 dots, a 

ratio of 1:2; by adulthood the discriminability ratio has reduced to 9:10 (Halberda, 

Mazzocco, Feigenson, 2008).  

 Evidence in support of the importance of the ANS comes from correlational 

studies showing that individual differences in ANS and general mathematical 

achievement were strongly correlated (Halberda et al., 2008; Gilmore, McCarthy, 

and Spelke, 2010; Libertus, Feigenson and Halberda, 2013), most notably by 

Mazzocco et al. (2011), who found a significant correlation between ANS precision 

at pre-school and mathematical skill measured 30 months later. Halberda et al. 

(2008) found that individual differences in nonsymbolic dot comparison scores in 14-

year-old children were correlated with children’s past performance on standardised 
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math achievement tasks. Although this study included numerous covariates, the 

study had an unusual retrospective design. Given that ANS and other cognitive 

processes develop throughout childhood, the retrospective design makes it 

problematic to draw a conclusion. Gilmore, McCarthy and Spelke (2007) proposed 

an alternative approach to the ANS as the developmental precursor of arithmetic. 

They examined six-year-olds’ symbolic approximate arithmetic skills showing that 

children with no formal instruction on arithmetic can accurately solve approximate 

arithmetic problems. The authors claim that children’s performance on symbolic 

approximate arithmetic tasks depends on nonsymbolic representations, and provides 

the basis for exact arithmetic. 

 In contrast, some studies have failed to report a significant relation between 

nonsymbolic ANS measures and arithmetic (Holloway and Ansari, 2009; Iuculano, 

Tang, Hall and Butterworth, 2008; Sasanguie, Göbel, Moll, Smets and Reynvoet, 

2012; Kolkman, Kroesberger and Leseman, 2012; Vanbinst, Ghesquière and De 

Smedt, 2012). Fuhs and McNeil (2013) posited the hypothesis that the link between 

arithmetic and ANS measures was mediated by children’s inhibition skills because 

performance on nonsymbolic magnitude comparison may rely on children’s ability to 

supress other salient features of the dot arrays such as density or dot size. They 

assessed pre-school dot comparison skills, mathematics achievement and inhibition 

abilities in children from low-income background and found that nonsymbolic ANS 

was a borderline predictor of math achievement. This link was no longer significant 

once children’s inhibition scores were accounted for. The same evidence was found 

in school children, where children’s dot comparison performance did not explain 

mathematical achievement after performance on inhibition task had been taken into 

account. However, inhibition was significantly contributing to variance in math 

scores over and above children’s performance on dot comparison (Gilmore, Attridge, 

Clayton, Cragg, Johnson, Marlow, Simms and Inglis, 2013). 

 Further evidence from a study by Holloway and Ansari (2009) called the 

specificity of the correlation between ANS and arithmetic into question. In their 

study they assessed six- to eight-year-olds performance on a symbolic number 

comparison task (identifying the greater of two single digit numbers) as well as a 

nonsymbolic number discrimination task and examined the specific correlations with 
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mathematical achievement. While symbolic and nonsymbolic comparison were 

highly related, only the symbolic task proved to be predictive of mathematical skills. 

Subsequent extensive reviews (de Smedt, Noël, Gilmore, and Ansari, 2013; Siegler 

2016) have shown that the relationship between the nonsymbolic ANS and children’s 

arithmetic skills is not consistent, while the association between symbolic 

comparison and mathematic skills is relatively strong. Studies investigating the 

concurrent correlations between ANS and arithmetic neglect crucial longitudinal 

aspects of this relationship.  

 However, recent longitudinal studies produced mixed results (Desoete, 

Ceulemans, De Weerdt, and Pieters, 2012; Lyons, Price, Vaessen, Blomert, and 

Ansari, 2014; Kolkman et al., 2012). A longitudinal study by Lyons and colleagues 

(2014) explored the prediction of arithmetic across grades 1-6 and found no evidence 

that children’s performance on nonsymbolic comparison was a unique predictor of 

arithmetic scores at any grade. Kolkman et al. (2012) examined the relationship 

between arithmetic and nonsymbolic, symbolic and mapping skills at age four, five 

and six. The findings suggest that nonsymbolic, symbolic and mapping skills were 

separate skills at a younger age integrating over time to form one general numeracy 

skills concept. Only children’s mapping skills were uniquely predictive of math 

performance at six years.  

 A recent study by Göbel, Watson, Lervåg and Hulme (2014) addressed the 

relation between nonsymbolic and symbolic judgement tasks and their role as 

longitudinal predictors of arithmetic development in six-year-olds. The authors 

reported that symbolic and nonsymbolic magnitude comparisons define a unitary 

factor, which was a strong longitudinal correlate of arithmetic skills. The study also 

included a number identification task in which spoken numerals were presented to be 

matched to the corresponding Arabic numeral, with a range of targets including 

single, double and three digit numbers. This measure was not associated with the 

magnitude comparison factor, and was entered in a longitudinal path model as a 

separate latent variable, alongside magnitude comparison and other potential 

predictors of later arithmetic skills, including vocabulary size and nonverbal ability. 

The path model revealed that number identification was the only significant 

longitudinal predictor of arithmetic skills a year later, apart from the auto-correlate. 
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The authors interpret their number identification task as tapping individual 

differences in both Arabic digit knowledge and place value understanding, 

suggesting that the former may represent a critical foundational skill underlying early 

arithmetic, analogous to the role of letter knowledge in reading, and the latter may be 

crucial for further arithmetic development.  

 By focussing precisely on properties of the symbol system, these findings 

offer clarification of previous literature as follows: On the one hand, consistent 

findings of high correlation between single digit comparison and nonsymbolic 

comparison (Holloway and Ansari 2009; Göbel et al., 2014; Matejko, and Ansari 

2016) reflect general properties of magnitude comparison (as reported by Moyer, and 

Landauer 1967), relevant but not central to arithmetic development. On the other 

hand, the specific relation between symbolic comparison and early arithmetic skills 

(Holloway, and Ansari 2009; Lyons et al. 2014) reflects the contribution of symbolic 

item identification as a foundational arithmetic skill, but is limited by the nature of 

the task and the range of single digits. Therefore, when a comprehensive number 

identification task is included in a longitudinal model of early arithmetic 

development, simple magnitude comparison fails to predict outcome.  

 1.4 Mathematics and Cognitive Factors. 

 Working memory is suggested to play an important role in the development 

of numeracy skills (Berg, 2008; Geary, Hoard, Byrd-Craven, Nugent, and Numtee, 

2007; Jarvis and Gathercole, 2003). Working memory is described as the ability to 

mentally maintain and manipulate information for a short period of time, storing and 

accessing information in long-term memory. The dominant model of working 

memory comprises a phonological loop, visuo-spatial sketchpad, episodic buffer and 

central executive (Baddeley, 2000). 

 The majority of research exploring working memory and mathematics 

achievement has studied primary school children and focused on formal aspects of 

mathematics. Children with mathematics difficulties tend to perform lower on 

working memory tasks than their peers (Geary, Hoard, Nugent, and Bailey, 2012; 

Passolunghi and Siegel, 2004), and there is evidence that working memory is a 

significant predictor of later mathematics success through middle school (Nunes, 

Bryant, Barros, and Sylva, 2012).  
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 There is also some evidence that working memory and informal mathematics 

skills are related in pre-school and kindergarten (Bull et al., 2008; Chiappe, Hasher, 

and Siegel, 2000). Östergren and Träff (2013) assessed the relation of working 

memory to informal and formal mathematics skills. Their latent variable model 

found that verbal working memory was a predictor of both informal and formal 

skills, and more advanced mathematical concepts. Purpura and Ganley (2014) found 

that pre-school children’s (four- to six-year olds) performance on language tasks was 

a strong predictor of a range of different mathematical and numeracy competencies, 

but verbal working memory was only related to cardinality (counting a subset), set 

comparison and number order.  

 Some studies reported that the three components of working memory are 

differentially related to mathematics (Simmons, Willis, and Adams, 2012; Wilson 

and Swanson, 2001). According to Berg (2008), both phonological loop and visuo-

spatial sketchpad function related to arithmetic in children at eight years of age. 

Third to sixth graders’ processing speed, short-term memory, verbal working 

memory and visual–spatial working memory abilities were assessed. Furthermore, 

various studies document important relationships between working memory and 

language and mathematical attainment in school children (Gathercole, Pickering, 

Knight and Stegmann, 2004; Jarvis and Gathercole, 2003). Gathercole et al. (2004) 

investigated the relationship between working memory skills including executive 

functioning (measured by backwards digit span and listening recall) and 

phonological loop (measured by digit recall and word list matching) and outcome on 

national curriculum assessments in English, mathematics and science in 7 and 14 

year old children. The results noted were that children’s performance in English and 

mathematics was significantly related to working memory skills, and complex span 

tasks in particular, at 7 years of age. The strong associations between children’s 

performance on complex span tasks and mathematics and science persisted at 14 

years, but the link between working memory and English was not significant 

suggesting that cognitive processes required in the curriculum areas of mathematics 

and science may be influenced by general capacities of working memory. 

 Additionally, central executive functioning may relate to children's emergent 

mathematical achievement (Bull, Espy, Wiebe, Sheffield and Nelson, 2011). Bull et 
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al. (2011) assessed pre-school children’s (four years) performance on a 

comprehensive battery of executive functioning tasks, as well as age and vocabulary 

skills. Using SEM models, the authors report that age, sex and social factors affect 

mathematical achievement. Age differences contribute indirectly to emergent 

mathematical skills via central executive functioning. The pattern that emerged was 

that older children show a better developed central executive functioning than their 

younger peers and this age-central executive relation is significantly higher in girls 

than boys, which may point to sex differences in the development of the frontal lobe. 

However, the study did not assess other possible precursors of arithmetic. 

 Executive functioning can be divided into three types: monitoring and 

manipulating information (working memory), supressing unwanted and distracting 

information (inhibition) and flexible thinking (shifting) (Gilmore, Keeble, 

Richardson and Clagg, 2014). A growing body of research has turned its focus on the 

link between inhibition and mathematical attainment. Most studies examined school 

aged children (Gilmore et al., 2014; Visu-Petra, Cheie, Benga and Miclea, 2011; St 

Clair-Thompson and Gathercole, 2006). It has been reported that children’s 

performance on inhibition tasks is related to their school outcome in mathematics 

(Brock, Rimm-Kaufman, Nathanson and Grimm, 2009; Visu-Petra et al., 2011) and 

children’s performance on standardised mathematical tests (St Clair-Thompson and 

Gathercole, 2006). Wang, Tasi and Yang (2012) reported that children’s performance 

on inhibition tasks was poorer for children with mathematical learning difficulties 

compared to their normally developing peers. Gilmore et al. (2014) were exploring 

performance on inhibition tasks and mathematical achievement, and factual, 

procedural and conceptual arithmetic knowledge in particular, in older children. 

They found that inhibition scores were strongly associated with arithmetic and that 

inhibition influenced conceptual knowledge in older children and procedural skills in 

younger children. 

 In contrast, many studies have failed to find a link between children’s 

inhibition performance and arithmetic skills. Waber, Gerber, Turcios, Wagner and 

Forbes (2006) showed a weak link between inhibition skills and mathematical 

performance. A few studies reported that inhibition skills were not a unique predictor 

of mathematical performance (Miller, Müller, Giesbrecht, Carpendale and Kerns, 
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2013; Monette, Bigras and Guay, 2011). Similar, there is evidence that the link 

between inhibition skills and mathematical performance may no longer be significant 

once children’s shifting abilities are accounted for (Bull and Scerif, 2001; Van der 

Ven, Kroesbergen, Boom and Leseman, 2012). 

 There is mixed evidence concerning the link between inhibition and 

arithmetic. Interestingly, Bull et al. (2011) analysed pre-school children’s arithmetic 

skills using SEM models and found a significant prediction of arithmetic by 

executive functioning. However, the study did not control for other covariates of 

arithmetic. Little is known of the importance of cognitive components in very early 

numeracy skills. Further research is therefore needed to expand the existing evidence 

and add to the knowledge of the fundamental underlying skills that contribute to 

early arithmetic and how the contribution of precursors change over time. 

 1.5 Early arithmetic and number knowledge.  

 While there is evidence of the developmental importance of ANS for 

arithmetic (and the possibility that ANS drives exact arithmetic via approximate 

arithmetic skills), and also for the role of general cognitive abilities (executive 

functioning in particular) as drivers of emergent arithmetic skills, the possibility 

remains that number knowledge itself is the major precursor. Jordan et al. (2009) 

investigated the relation between early number competence and mathematics 

achievement from beginning of kindergarten to the middle of grade 1. They showed 

that kindergarten number competence predicted rate of growth in mathematics 

achievement. However, their number competency factor comprised of a wide range 

of numerical skills including counting and number recognition, number comparisons, 

nonverbal calculation, story problems, and number combinations. 

 Göbel et al. (2014) noted that number identification, in which spoken 

numerals were presented to be matched to the corresponding Arabic numeral (targets 

included single, double and three digit numbers), was the most powerful longitudinal 

predictor of arithmetic skills a year later, apart from the auto-correlate. Magnitude 

comparison, though highly correlated with later arithmetic, was not a significant 

predictor once number identification was taken into account. These results are more 

suggestive of the particular importance of children’s associations between spoken 
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and written symbols. The findings show the importance of early number knowledge 

for driving children’s mathematical learning in school. 

 1.6 Purpose of this Thesis. 

 Recent research (Lyons et al. 2014) highlights the time-sensitive nature of 

influences on mathematical development. Might it be the case, then, that the findings 

of Göbel at al. (2014) represent a transient state in which symbolic knowledge has 

particular importance? Most importantly, if similar measurements were taken during 

preschool would they support the proposal that knowledge of the symbol system 

drives later arithmetic development, or would they support the findings of Mazzocco 

et al. (2011) indicating that early precision in nonsymbolic magnitude comparison, 

measured before the onset of formal schooling, provides the basis for later arithmetic 

skills, or would they attribute greater importance to language or general cognitive 

abilities?  

 The purpose of this thesis was to examine a broad range of possible 

longitudinal precursors of early arithmetic skills over a 25-month period using 

structural equation modelling. The comprehensive test battery explored children’s 

early arithmetic performance and included assessment of numeracy, language and 

cognitive abilities. Based on the premise that mathematical concepts are 

fundamentally underpinned by linguistic representations, the thesis aims to clarify 

the association between arithmetic skills and language comprehension, and to 

explore the possible importance of specific mathematical language. Furthermore, the 

study investigated to what extent ANS on the one hand and specific number 

knowledge place critical constraints on the development on early arithmetic.  

 Children at age four attending preschool (morning or afternoon sessions only) 

were assessed on their general and specifically mathematical language skills, and on 

a range of symbolic and nonsymbolic magnitude comparison tasks, adjusted to 

capture earlier developmental levels. An expanded set of tasks to capture number 

knowledge, including reading and writing numbers as well as number identification, 

were administered: following Mix, Prather, Smith and Stockton (2014) a wide range 

of multi-digit numbers were included. Rote counting ability, vocabulary and 

grammatical comprehension and general cognitive ability (nonverbal intelligence) 

were controlled for.  
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 The thesis asks the following questions. What is the extent of preschool 

children’s knowledge of the Arabic number system? Is Arabic number knowledge 

closely associated with counting ability? Do symbolic and nonsymbolic magnitude 

comparison tasks form a unitary factor (as in Göbel at al., 2014)? What is the 

importance of specific mathematically related language? Which of the latent 

variables formed by our predictor variables account for arithmetic skills at age six 

(after a year of formal schooling)?  

 Furthermore, the study aimed to establish a detailed model of the typical 

development of numeracy, thereby facilitating subsequent research into the 

development of a screening tool to identify children at risk of numeracy difficulties.  

 The main goals of this thesis are therefore: 

 To explore the relationship between symbolic and nonsymbolic magnitude 

comparison tasks and whether they are distinct or rely on the same underlying 

construct. 

 To assess the performance and structure of the magnitude comparison tasks 

over a 25-months period, within the same sample of children, in order to 

capture developmental change. 

 To assess the importance of specific mathematical language. 

 To assess the importance of number knowledge. 

 To investigate the concurrent predictors of early arithmetic in a large 

represeentative sample. 

 To assess longitudinal relations between ANS, numerical knowledge, 

language and general cognitive abilities and arithmetic in a large 

representative sample at a critical period of math development (transition 

from pre-school to formal schooling) over a 25-months time period. 

 To assess whether the link between ANS and math achievement was 

mediated by children’s inhibition skill. 

 To explore the nature and development and relationship of symbolic and 

nonsymbolic approximate arithmetic. 

 To investigate pre-schoolers‘ performance on number line estimation tasks 

and its contribution towards early arithmetic.  
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Chapter 2. Methods 

A longitudinal, multifactorial study was carried out looking at predictors of 

children’s early arithmetic skills. Structural equation modelling was used to examine 

the relationship between language, ANS and early arithmetic in typically developing 

children. Background variables also included intelligence, memory components and 

various language as well as number knowledge tasks examining different aspects of 

numerical understanding and processing. The analyses took account of any statistical 

constraints occurring in the data. Data were collected through a comprehensive test 

battery on cognition, language and numeracy skills.  

 2.1 Participants. 

Typically developing children in one UK public primary school (Chafford 

Hundred, Essex) were assessed five times over a 25-month period from summer term 

of nursery (age four) to the summer term of Year One of formal schooling (age six). 

To establish socioeconomic status, participants were assigned to the Office for 

National Statistics’ lower super output areas (LSOAs) based on the school’s 

postcode. LSOAs are new geographical areas for reporting small‐area statistics in 

England (Neighbourhood Statistics, 2016, Look ups, 2016). It can be assumed that 

most children live either in the same or adjacent areas. The Index of Multiple 

Deprivation (IMD) 2015 was computed based on the LSOA using Neighbourhood 

Statistics (2016). The 2015 indices of deprivation consisted of seven dimensions 

(income, employment, health, education, barriers to housing and services, crime and 

living environment) which were combined to the overall IMD. The most deprived 

neighbourhood in England has the rank one and the least deprived has the rank 

32,844.The overall IMD of the LSOA Thurrock 020D indicates that this area shows 

lesser than average deprivation: 8th percentile (where 1 is most deprived 10%), rank 

25,631 out of 32,844. This is comparable to a middle socio-economic background. 

The specific means and standard deviations of the children’s age at each time 

of testing are displayed in Table 2.1. Participation was voluntary and children were 

informed prior to testing that they could withdraw at any time.  

 

 

 

 



Chapter 2 

43 

 

Table 2.1 

Mean age and standard deviations of children  

 Time 1 Time 2 Time 3 Time 4 Time 5 

 
Summer term 

of nursery 

Spring term 

of reception 

Autumn 

term of 

Year One 

Spring term 

of Year One 

Summer 

term of 

Year One 

Gender M (SD) n M (SD) n M (SD) n M (SD) n M (SD) n 

Boys 
50.87 

(3.51) 
48 

59.21 

(3.38) 
62 

66.36 

(3.27) 
62 

70.28 

(3.29) 
61 

75.83 

(3.34) 
66 

Girls 
4.50.34 

(3.56) 
52 

58.83 

(3.60) 
55 

66.10 

(3.63) 
54 

70.04 

(3.63) 
54 

75.69 

(3.65) 
53 

Total 
50.60 

(3.53) 
100 

59.03 

(3.47) 
117 

66.24 

(3.43) 
116 

70.17 

(3.44) 
115 

75.76 

(3.46) 
119 

Notes.  M = mean age in months. SD = standard deviation in months. Time 1 was assessed in May-June 2014, 

Time 2 in February-March 2015, Time 3 in September 2015, Time 4 in January 2016 and Time 5 in June 2016. 

 2.2 Materials. 

At Time 1, most background measures as well as language and numeracy 

measures were administered whereas only language and numeracy measures were 

reassessed at Time 2 to Time. Each task will be explained in full detail in the relevant 

results chapters. 

2.2.1 Measures taken at Time 1.  

All tasks were administered individually to the four nursery classes in the 

summer term of the nursery age (4 years). The following measures were taken at 

Time 1: Nonverbal intelligence (Raven’s Coloured Progressive Matrices (Raven’s 

CPM Raven, Court, and Raven, (1993)), central executive functioning, phonological 

loop, grammatical ability (Test for Reception of Grammar II (TROG-2 Bishop, 

2003)), vocabulary (British Picture Vocabulary Scale 3rd Edition (BPVS - III Dunn, 

Dunn and Styles, 2010)), reading skills and letter writing skills, specific math-related 

language ability, number knowledge (including number identification, number 

reading, number writing, rote counting as well as numerical estimation (number line 
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task)), measures of approximate number system (magnitude comparison) and 

arithmetic skills (simple addition). 

2.2.2 Measures taken at Time 2. 

All tasks were administered individually. Due to the fact that many tasks 

showed ceiling effects at Time 1, difficulty levels were adjusted accordingly, taking 

children’s age and experience with the task into account. Only literacy (reading and 

letter writing skills), math-related language, magnitude comparison, number 

knowledge and arithmetic were re-assessed at Time 2 in the spring term of the 

reception year (9 months later). 

2.2.3 Measures taken at Time 3. 

Most Time 2 tasks, as well as number line estimation were re-assessed at 

Time 3 in the autumn term of Year One (16 months after Time 1). Two new 

arithmetic tasks and one behavioural regulation task were introduced to the test 

battery, now that the children entered formal schooling. Similar to Time 2, difficulty 

levels were adjusted where necessary.  

Tasks were re-designed as group tasks, where possible, to shorten testing time 

and hence reducing the cognitive load on children. The rationale behind it was that 

children in Year One are able to handle the group setting based on the structure of 

their regular school day and groups were kept small with no more than five children 

being tested at a time by at least two experimenters. Moreover, only already familiar 

tasks were introduced as group tasks. However, not all tasks could be re-designed as 

group tasks. The test battery comprised measures of central executive functioning, 

behavioural regulation (Head-to-Toes task), math-related language ability, number 

knowledge (including number line task), magnitude comparison and arithmetic (Test 

of Basic Arithmetic and Numeracy Skills (TOBANS Brigstocke, Moll and Hulme, 

2016)) and approximate arithmetic (Gilmore et al., 2007)).  

2.2.4 Measures taken at Time 4. 

Most Time 3 tasks were re-assessed at Time 4 in the spring term of Year One 

(20 months after Time 1). Difficulty levels were adjusted where necessary. Tasks 

included: central executive functioning, behavioural regulation, number knowledge 

(except for counting and number line task), magnitude comparison and both 

measures of arithmetic (TOBANS and approximate arithmetic).  
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2.2.5 Measures taken at Time 5.  

Most Time 3 and Time 4 tasks were re-assessed in the summer term of Year 

One (25 months after Time 1), except for counting and the inhibition task Head-

Toes-Shoulders-Knees-task. Two new literacy tasks and one arithmetic task were 

introduced to complete the test battery. Difficulty levels were adjusted where 

necessary. The test battery included measures of central executive functioning, 

reading (PWM task used in Time 1 and Time 2 as well as the new measure Test of 

Word Reading Efficiency–Second Edition (TOWRE–2; Wagner, Torgesen and 

Rashotte, 2011)) and spelling skills (Single Word Spelling Test (SWST; Sacre and 

Masterson, 2000)),  number knowledge tasks (including number line task), 

magnitude comparison as well as arithmetic (TOBANS, approximate arithmetic and 

Numerical Operations subtest of the second edition of the Wechsler Individual 

Achievement Test (WIAT-II; Wechsler, 2005)). 

 2.3 Procedure. 

All tests were administered in a separate room or another quiet place in the 

school. Group testing (employed at later ages) was used in a small group setting with 

not more than five children at Time 4 and not more than eight at Time 5. Tests were 

divided into counterbalanced sessions of 20 to 40 minutes (4 sessions at Time 1, 3 

sessions at Time 2, 2 sessions at Times 3, 4 and 5). Testing was carried out five times 

over a 25-month period from the summer term of nursery (May-June 2014) through 

to the summer term of Year One (further testing sessions took place in February-

March 2015, September 2015, January 2016 and June 2016). Not all tests were re-

administered at all the time points.  

Wherever possible, each child was seen by the same experimenter. The 

author was assisted by several research assistants from undergraduate psychology 

classes. They were trained on how to administer the test battery; all were experienced 

in working with young children. Children were tested individually at Times 1 and 2, 

and at Times 3, 4 and 5 individually or in small groups in a separate room or another 

quiet place in the school. Each child met with the experimenter ideally two to four 

days in a row, depending on the number of blocks, to enhance motivation or 

concentration. If testing in groups, the ratio of experimenters to children was 1:3.  
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Preliminary to the testing, the experimenters attended at least one day in each 

class so that the children got to know them and felt more comfortable around them. 

Moreover, the experimenters told each child that they would play games and asked 

questions such as “How are you?” or “How old are you?” prior to each testing 

session.  

All unstandardized tests included practice items. Concerning feedback, 

children received only concrete feedback on their performance for practice items and 

general praise and encouragement throughout the tests. 

 2.4 Data Analysis. 

Descriptive statistics as well as simple analyses of variance (ANOVA), t-tests and 

simple regressions were conducted using IBM SPSS Statistics 22. Significance alpha 

level was chosen prior to be .05. 

 2.4.1 Structural Equation Modelling (SEM). 

 The purpose of this study was to examine precursors of early numeracy skills 

and their relation to language and magnitude comparison in particular. The 

association between basic arithmetic skills and early cognitive skills, language 

comprehension and numeracy skills was assessed, thus determining the extent to 

which these precursors and arithmetic are related. The study therefore addressed to 

what extent early arithmetic skills can be predicted from cognitive and linguistic 

measures.  

 Structural Equation Modelling (SEM) is a powerful statistical analysis tool 

for comprehensive models. Its origins are in ‘regression analyses of observed 

variables and in factor analyses of latent variables’ (Kline, 2016, p.24). In SEM, 

observed (manifest or measured data) variables are distinguished from latent 

variables. Those latent variables correspond to hypothetical constructs which are not 

directly observable. SEM first tests whether a prior hypothesised model fits the 

measured data and then whether the relationships between these latent variables are 

significant. This unique blend of regression and factor analysis is the reason why it is 

the chosen statistical tool for the main data analysis of this thesis. 

  As regression analyses are part of SEM, the common assumptions for 

regression are also true for SEM. 
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1. Linear relationship between regression coefficients (including manifest and 

latnet variables aas well as among latent variables). 

2. Normality and homoscedasticity of residuals. 

3. No or little multicollinearity. 

4. No outliers or missing data (however, Mplus Version 7 (Muthén and Muthén, 

2013) deals with missing data using the maximum likelihood method). 

5. Large enough sample size. 

 The commonly used rule of thumb for SEM is the ratio 10:1 (observation 

data/latent variable), for example you need to test 10 children per each latent 

variable. The most complex model in this thesis comprises of 9 latent variables and 

hence a sample size of 90 children should be adequate. However, few simulations 

studies showed that there is no one-fits-all solution to sample size recommending 

rather small sample sizes as enough. Wolf, Harrington, Clark and Miller (2013 found 

that sample size requirements ranged from 30 subjects for simple confirmatory factor 

analysis with four indicators and loadings around .80 and up to 450 subjects for 

mediation models. Similarly, Sideridis, Simos, Papanicolaou and Fletcher (2014) 

noted that a sample size of 50-70 subjects would be enough for a model of functional 

brain connectivity involving four latent variables. 

With a large enough sample size SEM techniques such as confirmatory factor 

analysis (CFA) or path analysis can be employed. CFA is commonly used to test 

whether, and to what extent, measured data (manifest variables) are underpinned by 

the same constructs and processes by forming latent variables (factors) of the 

underlying construct. Therefore, CFA tests whether the data fit a hypothesized factor 

structure which eventually can be applied to run path models. Moreover, SEM also 

gauge the fit of these proposed models to the observed data. CFAs can form the basis 

of path models that estimate the prediction of children’s early arithmetic skills. 

Variables presented in rectangles reflect manifest variables (observed data), 

while ellipses represent latent variables (hypothesised factors) that form an 

underlying construct. One-headed arrows from the latent factor to the manifest 

variables depict causal paths and residuals of each construct (unexplained variance of 

the measure) are reflected by one-headed arrows pointing towards the latent variable. 

Values ascribed to these connections are standardised regression coefficients (factor 

loadings) thus it is possible to compare the values. Two-headed arrows reflect true-
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score correlations between constructs. Solid lines illustrate statistically significant 

relationships, and dashed lines illustrate statistically nonsignificant relationships. 

Missing data were estimated using MPlus’ default mode of maximum likelihood 

(ML). 

To assess the goodness of fit between sample data and proposed model, four 

statistics will be reported:  

1. Chi-square. The chi-square difference test assesses how the 

covariance matrix of the proposed model deviates from the covariance 

matrix of the sample (Byrne, 2012). Non-significant chi-square 

indicates that two models do not differ. However, chi-square 

difference test is highly sensitive to sample size and a large sample 

size may cause a significant result.  

2. Root Mean Square Error of Approximation (RMSEA). This index of 

goodness of fit estimates the fit of the hypothesized model. It has been 

recommended that a value of a well-fitting model is less than .06 (Hu 

and Bentler, 1999) or less than .05 (Browne and Cudeck, 1992).  

3. Comparative Fit Index (CFI).  Ranging from 0 to 1, an ideal value is 

close to one. Hu and Bentler (1999) suggest a value of greater than .95 

for a good fit.  

4. Standardized Root Mean Residuals (SRMR). This is the final reported 

index of model fitness. Byrne (2012) recommends a value less than 

.05 for a well-fitting model. 
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 Chapter 3. Development of Magnitude Comparison: Moving from a two-

factorial model towards a unitary model 

 A primary aim of the study was to assess the underlying factor structure of 

multiple measures of the ANS and to maximize the reliability of the measurements. 

This was addressed by investigating whether different measures of magnitude 

comparison cohere to define multiple or a single construct and whether this structure 

changes over time.  

 Numerous studies propose that ANS is fundamental for children’s 

understanding of abstract, symbolic number concepts thus contributing to the 

development of arithmetic. Evidence in support of the importance of the ANS comes 

from correlational studies showing that individual differences in nonsymbolic ANS 

and general mathematical achievement were strongly correlated (Halberda et al., 

2008; Gilmore et al. 2010; Libertus et al., 2011; Mazzocco et al., 2011). 

 In contrast, some studies have failed to report a significant relation between 

nonsymbolic ANS measures and arithmetic (Holloway and Ansari, 2009; Iuculano et 

al., 2008; Sasanguie et al., 2012, Kolkman et al., 2013; Vanbinst et al., 2012). 

Holloway and Ansari (2009) assessed six- to eight-year-olds performance on a 

symbolic number comparison task as well as a nonsymbolic number discrimination 

task and examined the specific correlations with mathematical achievement and 

found that only the symbolic task proved to be predictive of mathematical skills. 

Subsequent extensive reviews (de Smedt et al., 2013; Siegler 2016) have shown that 

the relationship between the nonsymbolic ANS and children’s arithmetic skills was 

not coherently evident, while the association between symbolic comparison and 

mathematic skills is relatively strong.  

 Recent longitudinal studies produced mixed results (Desoete et al., 2012; 

Lyons et al., 2014; Kolkman et al., 2012). A longitudinal study by Lyons and 

colleagues (2014) explored the prediction of arithmetic across grades 1-6 and found 

no evidence that children’s individual differences on nonsymbolic comparison was a 

unique predictor of arithmetic scores at any grade.  

 Few studies explored the internal factorial structure between the various 

symbolic and nonsymbolic magnitude comparison tasks. Kolkman et al. (2012) 

examined the relationship between arithmetic and nonsymbolic, symbolic and 
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number line skills at age four, five and six. The findings suggest that nonsymbolic, 

symbolic and number line skills were separate skills at a younger age integrating 

over time to form one general numeracy skills concept. Only children’s number 

estimation skills were uniquely predictive of math performance at six years. 

Similarly, a recent study by Göbel et al. (2014) addressed the relation between 

nonsymbolic and symbolic judgement tasks and their role as longitudinal predictors 

of arithmetic development in six-year-olds. The authors reported that symbolic and 

nonsymbolic magnitude comparison tasks were best described as one general 

magnitude comparison factor. The path model revealed that number identification 

was the most powerful longitudinal predictor of arithmetic skills at age seven, apart 

from the auto-correlate.  

 To my knowledge no study has fully investigated commonalities and 

differences between symbolic and nonsymbolic tasks and whether their relationship 

changes over the time period of pre-school to early formal schooling. To address this 

research question, various symbolic and nonsymbolic magnitude comparison tasks 

were created as widely used in the literature (e.g. Göbel et al., 2014; Holloway, and 

Ansari, 2009; Kolkmann et al., 2013). Symbolic and nonsymbolic distance effects 

were assessed using the same number pairs as either Arabic numerals or arrays of 

squares. Ratios for nonsymbolic comparison were chosen based on Halberda and 

Feigenson’s (2008) finding that four and five year olds can correctly solve more 

difficult ratios such as 2:3, 3:4 or 5:6. 

 The aim of this chapter was to assess the underlying latent factors of 

symbolic and nonsymbolic magnitude comparison tasks. Do the two represent one 

general magnitude comparison latent factor or two distinct latent factors? And does 

this underlying structure change over time? 

 3. 1 Methods. 

 3.1.1 Participants. 

The same participants were used as described in Chapter 2 (p. 42) 

 3.1.2 Materials. 

 3.1.2.1 Times 1 and 2. Various comparison tasks were created for the study. 

Each comparison pair was presented on a single page (Appendices 1). Children were 



Chapter 3 

51 

 

given one point for every correct comparison with a maximum score of 16 for each 

comparison subtask and 160 overall. 

Symbolic Digit Comparison Task. Pairs of Arabic numerals were displayed 

within two adjacent boxes (12cm x 12cm) with digits in Calibri font size 350. Digits 

ranged from one to nine and both orders of the pairs were presented (e.g. 3 and 4 

versus 4 and 3). To investigate the numerical distance effect (Moyer and Landauer, 

1967), two versions were administered. In the close version, the difference between 

the two digits was one or two and in the far version, the difference was five, six or 

seven.  

Nonsymbolic Magnitude Comparison Tasks. Nonsymbolic comparison tasks 

consisted of arrays of black squares within 12cm x 12cm boxes similar to the 

symbolic task. In the fixed size condition, numerosities presented were ranging 

between 5 and 13. In the close version of the fixed size condition the difference 

between arrays was one or two squares and in the far version of the fixed size 

condition the difference between arrays was five, six or seven.  

The size of the squares included in the arrays was manipulated as follows: In 

the fixed size condition, all squares were of the same size. In the surface area 

matched condition, the size of the squares was controlled so that total surface area 

was matched across arrays within stimulus pair, so that smaller numerosities had 

larger squares and larger numerosities had smaller squares. 

In the surface-area matched condition, larger numerosities ranging from 20 to 

40 were examined. Similar to Göbel et al. (2014), baseline numbers 20 through to 30 

were compared to their nearest whole number in the ratios 2:3 and 3:4, thus  23 was 

compared to 35 (2:3) or 31 (3:4).   

3.1.2.2 Times 3, 4 and 5. A recent study (Göbel et al., 2014) showed that 

children in Year One can successfully perform magnitude comparison tasks in a 

group setting. Thus the magnitude comparison task used in this study was redesigned 

as a group test using the same stimuli pairs created at Times 1 and 2. Symbolic and 

nonsymbolic comparisons were presented in pairs of two adjacent 2.1 cm x 2.1 cm 

boxes. The same 12 variations of size, ratio and distance effect as in Times 1 and 2 

were presented in two booklets matched for difficulty level. The order of target 

locations (left array vs. right array) was controlled in order to avoid repeated 
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response patterns. Each variation comprised of 36 item pairs. Six of the pairs were 

displayed on each page and there were six pages per subtask (Appendix 19 for order 

of subtasks). 

Children were asked to tick the bigger number or box with more dots. Two 

practice trials were displayed on the first page of each subtask. The first trial was 

demonstrated by the experimenter who then asked children to tick the next box. 

Another six practice items were then given to the children, but only for the first three 

subtasks of the first booklet. Feedback was given on practice items but not on test 

trials. Children had 30 seconds per subtask to solve as many comparisons as possible. 

The order of the two booklets was counterbalanced, with half of the children starting 

with booklet A and the other half with booklet B.  

3.1.3 Procedure. 

The magnitude comparison tasks were assessed as part of a larger test battery. 

Children were told not to count the dots, but choose the bigger array as quickly as 

possible. If a child attempted to count the dots, the experimenter reminded the child 

not to count the dots. At Times 1 and 2, magnitude comparison tasks were 

individually administered, split up into three (Time 1) or two (Time 2) parts, in a 

separate room or quiet place in the school. To discourage counting, the experimenter 

displayed the pairs of stimuli for a short time and encouraged the child to choose the 

right stimulus as quickly as possible. 

At Times 3, 4 and 5, the magnitude comparison task was administered as a 

group task to shorten testing time. The rationale behind this was that children in Year 

One are able to handle the group setting based on the structure of their regular school 

day. Groups were kept small with no more than five to eight children being tested at 

a time (the ratio of experimenters to children was 1:3).   

Concerning feedback, children received only concrete feedback on their 

performance for practice items and general praise and encouragement throughout the 

tests. 

 3.2 Results. 

 The main goal was to identify the factorial structure and reliability of 

measures of the ANS system by investigating whether different measures of the 

magnitude comparison cohere to define multiple or a single construct. First, a 
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descriptive analysis of the magnitude comparison tasks was conducted followed by 

the analysis of distance and ratio effects. Descriptive statistics and simple analyses of 

variance (ANOVA) were conducted using IBM SPSS Statistics 22. To answer the 

research question concerning the development of the ANS at pre-school age, a series 

of confirmatory factor analyses were conducted to investigate the relation between 

the various magnitude comparison tasks using Mplus Version 7 (Muthén and 

Muthén, 2013). First, the single factor model (all subtasks comprise one factor) was 

compared to the two factor model (symbolic versus nonsymbolic comparison tasks). 

Lastly, the CFAs were re-run using a specific subgroup of the sample (45 children). 

The subgroup (number wizards; high achievers in number reading) comprised of all 

children that scored the maximum in the number reading task at Time 1. 

 3.2.1 Descriptive Statistics. 

 Descriptive statistics for the different magnitude comparison tasks can be 

seen in Table 3.1. Children’s performance consistently improved over time across all 

subtasks. Few children scored at ceiling level at Time 1, but clear ceiling effects can 

be found at most subtasks at Time 2. After introducing the time-constrained version 

of the tasks at Time 3, no child scored the maximum, and only very few reached the 

maximum score at Time 5.  

 Comparing the individual subtasks, children performed less accurate on both 

symbolic and nonsymbolic close (digit close, fixed size close and surface-area 

matched close) trials compared to the far trials, supporting the classic distance effect. 

Similarly, children scored better at the 2:3 ratio (fixed size as well as surface-area 

matched) and the ratio 5:6 was the most difficult ratio. 

 3.2.2 Distance Effects. 

 The distance or ratio effects in comparison tasks are characterised by the 

finding that it is harder to discriminate between two arrays of items or Arabic 

numerals that are numerically close than it is to compare stimuli that are numerically 

distant. According to Weber’s Law, accuracy on magnitude comparison tasks 

increases (and response time decreases) as the numerical ratio increases (results are 

shown in Table 3.2).  
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 3.2.2.1 Symbolic Distance Effect.  

 Analyses of variance assessed distance effects across all time points. Two 

ANOVAs were conducted. The first 2 (distance) x 2 (time) ANOVA examined 

distance effects between symbolic close and far trials at Times 1 and 2 which were 

administered individually whereas the second 2 (distance) x 3 (time) ANOVA 

compared symbolic close and far trials at Times 3, 4 and 5 which were time-

constrained group tests. The first ANOVA found significant main effects for distance 

(F(1,74) = 100.920, p < .001, ŋp
2 = .187) and time (F(1,74) = 29.104, p < .001, ŋp

2 = 

.282). Children performed better on digits far trials (M = 12.09, SD = .31) compared 

to digits close (M = 10.93, SD = .31).
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Table 3.1 

Mean and standard deviations of predictor and criterion measures from all testing sessions 

  Time 1 Time 2 Time 3 Time 4 Time 5 

  M (SD) M (SD) M (SD) M (SD) M (SD) 

Magnitude 

Comparison 

Digit Close 

Digit Far 

NS FS Close 

NS FS Far 

NS FS 2:3 

NS FS 3:4 

NS FS 5:6 

NS SA Close 

NS SA Far 

NS SA 2:3 

NS SA 3:4 

NS SA 5:6 

10.11 (3.21) [7] 

10.73 (3.59) [7] 

10.26 (2.16) [1] 

12.87 (2.57) [17] 

 

10.76 (2.72) [4] 

10.58 (2.29) [3] 

10.29 (2.28) [1] 

13.24 (2.43) [23] 

11.42 (2.42) [5] 

10.81 (2.03) [2]* 

11.97 (3.07) [20] 

13.64 (3.33) [60] 

10.64 (2.20) [1] 

14.13 (2.04) [34] 

13.18 (2.35) [24] 

11.97 (2.44) [16] 

11.23 (2.28) [3] 

10.67 (2.00)  

13.49 (2.09) [19] 

12.37 (2.28) [8] 

11.56 (2.23) [3] 

10.45 (2.11) [1]* 

10.90 (4.92) 

14.32 (4.85) 

9.99 (4.14) 

15.49 (6.11) 

13.90 (5.12) 

12.82 (5.38) 

9.86 (4.95) 

8.99 (3.64) 

14.48 (5.93) 

12.68 (5.51) 

10.92 (5.14) 

9.60 (4.13) 

13.04 (4.46) 

17.20 (5.33) 

12.12 (4.07) 

17.99 (5.31) 

17.63 (5.98) 

15.56 (5.23) 

12.40 (3.94) 

10.57 (3.77) 

17.78 (5.45) 

16.14 (5.42) 

13.40 (4.90) 

11.34 (3.73) 

16.89 (4.57) 

22.32 (5.82) [2] 

15.14 (4.33) 

21.68 (6.32) [3] 

21.98 (6.41) [4] 

19.68 (5.86) [2] 

14.81 (4.95) 

12.47 (3.93) 

21.96 (6.30) [2] 

19.12 (6.45) 

17.35 (5.45) 

13.23 (4.60) 

Notes.  M = mean age. SD = standard deviation 
* 

individually administered tasks. The number of children scoring the maximum score are shown in square brackets. All scores are 

presented as raw scores. For the Magnitude Comparison Tasks: NS = nonsymbolic. FS = fixed size trials. SA = surface-area matched trials
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Table 3.2 

Numerical Distance Effects across Time 

   
 Digits 

Close 
Digits Far 

 t value 
Degrees of 

Freedom 
p value M (SD) M (SD) 

Time 1 -1.735 1, 99 .086 10.11 (.321) 10.73 (.36) 

Time 2 -6.401 1, 116 ˂.001 11.97 (.28) 13.64 (.31) 

Time 3 -9.454 1, 115 ˂.001 9.83 (.44) 13.25 (.51) 

Time 4 -9818 1, 110 ˂.001 12.98 (.43) 17.03 (.51) 

Time 5 -9.897 1, 116 ˂.001 15.70 (.46) 20.02 (.59) 

Notes.  M = mean. SD = standard deviation. Paired samples t-Tests. Times 1 and 2 were individually 

administered compared to the time-limited Times 3, 4 and 5 group test. 

Also, performance improved over time with children scoring higher at Time 2 

(M = 12.55, SD = .34) than Time 1 (M = 10.47, SD = .34). Furthermore, there was a 

significant interaction (F(1,74) = 4.504, p = .037, ŋp
2 = .057) between distance and 

time. Post-hoc t-tests revealed that children performed significantly better on far 

trials than close trials at Time 2, t(1,116) = 6.401, p < .001 but the distance effect for 

the symbolic task at Time 1 (numeric distance effect) was not significant, t(1,99) = 

1.735, p = .086. This may be due to the fact that some children had difficulties 

reading the Arabic numerals. It was noted that a third of the children made at least 

two mistakes in reading single digit Arabic numerals (assessed as part of the number 

knowledge battery). Taking this into account, an ANOVA testing the numeric 

distance effect in children with a complete understanding of Arabic numerals 

(defined as all children scoring the maximum score on the number reading task), a 

marginally significant numerical distance effect was found (F(1,44) = 3.914, p = .05, 

ŋp
2 = .08) with children performing better at digits far trials (M = 12.24, SD = .51) 

than digits close (M = 11.20, SD = .50).  

The second ANOVA concerning Times 3, 4 and 5 revealed a significant main 

effect for distance (F(1,105) = 212.858, p < .001, ŋp
2 = .670), with children 
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performing more accurately on digits far trials (M = 16.97, SD = .46) than digits 

close (M = 13.00, SD = .39). The main effect for time was also significant (F(2,210) 

= 134.279, p < .001, ŋp
2 = .561). Accuracy increased over time. Children performed 

significantly better at Time 5 (M = 18.16, SD = .49) compared to Time 4 (M = 15.07, 

SD = .43) and Time 3 (M = 11.73, SD = .46). The interaction was not significant 

(F(2,210) = 1.228, p = .295, ŋp
2 = .012). 

3.2.2.2 Nonsymbolic Distance Effect. Investigating distance effects for 

nonsymbolic close and far trials for fixed size and surface-area matched size 

comparison tasks, a 2 (distance; close versus far) x 2 (size; fixed size versus surface-

area matched) repeated measures ANOVAs were run at each time point. The 

analyses showed clear distance effects across all time points with better performance 

on trials where the difference between the two arrays of squares was greater. 

At Time 1, we found main effects for distance (F(1,99) = 207.54, p ˂.001, ŋp
2 

= .677), with children performing better on trials where the difference between the 

squares was large (M = 13.06, SD = .22) than trials with a smaller difference (M = 

10.28, SD = .17). However, the main effect for size and the interaction were not 

significant (F(1,99) = .893, p = .35 and F(1,99) = 1.031, p = .31 respectively). 

At Time 2, the results showed main effects for distance (F(1,116) = 345.499, 

p ˂ .001, ŋp
2 = .749), with children performing better on nonsymbolic far trials (M = 

13.81, SD = .17) than nonsymbolic close trials (M = 10.65, SD = .17), and for size 

(F(1,116) = 4.306, p = .04, ŋp
2 = .036), with children performing better on fixed size 

trials (M = 12.39, SD = .16) than surface-area matched trials (M = 12.08, SD = .15). 

Furthermore, the interaction was also significant (F(1,116) = 4.872, p = .029, ŋp
2 = 

.04). Post-hoc t-tests confirmed that the size affects far and close trials differently, 

with far trials being more affected by size (t(1,116) = 3.486, p = .001) than close 

trials (t(1,116) = -.109, p = .91). Nonetheless, the effect size for both - main effect 

and the interaction - were small suggesting that these differences may be relatively 

unimportant. 

Comparable to Time 2, the main effect for distance at Time 3 was significant 

(F(1,115) = 165.504, p ˂.001, ŋp
2 = .59). Children performed better on nonsymbolic 

far trials (M = 13.72, SD = .52) than nonsymbolic close trials (M = 9.06, SD = .34). 

Moreover, the main effect for size was also significant (F(1,115) = 16.42, p ˂.001, 

ŋp
2 = .125). Fixed size trials were easier (M = 11.87, SD = .42) than surface-area 
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matched trials (M = 10.91, SD = .42). However, the interaction was not significant 

(F(1,115) = .487, p = .49).  

Similar to Time 3, both main effects at Time 4 were significant (distance: 

F(1,110) = 497.727, p ˂.001, ŋp
2 = .819 and size: F(1,110) = 14.058, p ˂.001, ŋp

2 = 

.113) but the interaction was not significant (F(1,110) = 2.598, p = .110). These 

results show that children performed better on far trials (M = 17.77, SD = .45) than 

close trials (M = 11.31, SD = .32) and better on fixed size trials (M = 14.99, SD = 

.38) than surface-area matched (M = 14.08, SD = .39). 

Analysis of Time 5 showed main effects for distance (F(1,116) = 462.274, p 

˂.001, ŋp
2 = .799) and size (F(1,116) = 14.562, p ˂.001, ŋp

2 = .112), and a significant 

interaction (F(1,116) = 5.193, p = .025, ŋp
2 = .043). Children showed greater 

performance on far trials (M = 20.14, SD = .56) than close (M = 12.48, SD = .36), 

and fixed size trials (M = 16.82, SD = .47) than surface-area matched (M = 15.80, SD 

= .44). Post-hoc t-tests suggest that size affects far and close trials differently, with 

close trials being more affected by size (t(1,116) = 4.870, p ˂.001) than far trials 

(t(1,116) = .762, p = .45). 

3.2.3 Ratio effects. 

Prior to the main testing, a pilot test of ratio effects was carried out on 

reception class children (one year older than the study sample) which revealed that 

reception class children struggled with the ratios fixed size 2:3 and surface-area 

matched 5:6. Hence the targeted nursery cohort was not assessed on those trials but 

only fixed size 3:4 and 5:3 and surface-area matched 2:3 and 3:4.  

Due to the nature of the stimuli, ratio effects could only be analysed for fixed 

size and surface-area matched separately at Time 1 because different ratios were 

administered. Repeated-measures ANOVAs revealed a moderate effect in the 

surface-area matched condition, F(1,99) = 5.500, p = .021, ŋp
2 = .05, and no effect in 

the fixed size condition, F(1,99) = .374, p = .54, suggesting that the performance on 

the fixed size ratios 3:4 (M = 10.76, SD = 2.72) and 5:6 (M = 10.58, SD = 2.29) was 

equal whereas children performed better on surface-area matched 2:3 (M = 11.42, SD 

= 2.42) ratio compared to 3:4 (M = 10.81, SD = 2.03). Only the ratio 3:4 was 

assessed in fixed size and surface-area matched, thus comparison between fixed size 

and surface-area matched could only be conducted for 3:4 ratio showing no 



Chapter 3 

59 

 

significant difference in children’s performance on ratio 3:4 depending on the size of 

squares (t(1,99) = .176, p = .86). 

After Time 1, the ratios chosen to be investigated were 2:3, 3:4 and 5:6, and 

all three ratios were administered as surface-area matched and fixed size conditions. 

This permits an analysis of a 3 (ratio) x 2 (size) repeated-measures ANOVAs for 

each subsequent time point. 

Analysis of the ratios of Time 2 showed main effects for ratio (F(2,232) = 

63.46, p ˂ .001, ŋp
2 = .354) and size (F(1,116) = 25.401, p ˂ .001, ŋp

2 = .108), but no 

significant interaction. Children showed greater performance on fixed size trials (M = 

12.13, SD = .16) than surface-area matched (M = 11.46, SD = .15), and significantly 

performing better on 2:3 ratio (M = 12.77, SD = .18), followed by 3:4 ratio (M = 

11.77, SD = .18) and 5:6 ratio (M = 10.84, SD = .18).  

Similar to Time 2, only main effects for ratio and size were significant at 

Time 3 (F(2,230) = 61.31, p ˂ .001, ŋp
2 = .348 and F(1,115) = 15.93, p ˂ .001, ŋp

2 = 

.122 respectively). Inspection of means suggests that fixed size stimuli (M = 11.33, 

SD = .42) were easier to solve than surface-area matched stimuli (M = 10.47, SD = 

.37). The results for ratio showed a pattern similar to Time 2, with significant 

differences between 2:3 (M = 12.44, SD = .45), 3:4 (M = 11.01, SD = .43) and 5:6 (M 

= 9.19, SD = .37). 

Likewise, analysis of Time 4 showed main effects for ratio (F(2,218) = 

126.605, p ˂ .001, ŋp
2 = .537) and size (F(1,109) = 41.077, p ˂ .001, ŋp

2 = .274). 

Children showed greater performance on fixed size trials (M = 13.56, SD = .38) than 

surface-area matched (M = 15.14, SD = .43), and the ratio 2:3 being the easiest (M = 

16.79, SD = .49) compared to 3:4 (M = 14.46, SD = .44) and 5: 6 (M = 11.79, SD = 

.32; all ratio comparisons were significant). 

 Analysis of Time 5 data revealed the same findings as in previous time 

points, with significant main effects for ratio (F(2,232) = 112.424, p ˂ .001, ŋp
2 = 

.492) and size (F(1,116) = 62.538, p ˂ .001, ŋp
2 = .35), but no significant interaction. 

Performance on fixed size (M = 17.09, SD = .49) stimuli was greater than surface-

area matched (M = 15.29, SD = .45). Inspection of children’s performance on ratio 

trials showed greater performance on 2:3 (M = 18.65, SD = .58) ratios compared to 

3:4 (M = 16.63, SD = .51) and compared to 5:6 (M = 13.30, SD = .40). 
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 3.2.4 Confirmatory factor analyses (CFAs) on comparison measures.   

 A series of confirmatory factor analyses were conducted to investigate the 

relation between the various magnitude comparison tasks. The CFAs examined 

whether magnitude comparison tasks are related by comparing a one-factor (general 

comparison ability) and a two-factor model (symbolic and nonsymbolic comparison).  

Furthermore, it was investigated whether this relationship changes over time and if 

the structure switches from a two-factor towards a unitary factor model or vice versa. 

 Based on the finding that the performance on Time 1 ratios fixed size 3:4 and 

5:6 was equal whereas children performed better on surface-area matched 2:3 ratio 

compared to 3:4, the ratios for the fixed size manipulation were removed from 

subsequent analyses. To further simplify the model, the distance effect (close versus 

far) trials of the surface area matched manipulation were excluded. The chosen 

magnitude comparison tasks for analyses are: digit close, digit far, fixed size close, 

fixed size far and surface area matched ratio tasks. 

 3.2.4.1 Time 1. The first set of CFAs examined the nature of magnitude 

comparison tasks at Time 1, allowing the correlated error between surface-area 

matched ratios 2:3 and 3:4 because both tap into the ‘factor’ surface-area matched. 

Although all tasks loaded significantly on the single factor magnitude comparison in 

the one-factor CFA (Figure 3.2), the model did not provide an acceptable fit to the 

data, χ2 (8) = 22.836, p =.004, RMSEA = .136 (90% CI = .072 - .203), CFI = .827, 

SRMR = .071, suggesting that a single factor is not sufficient and a better model 

would involve at least two factors (symbolic and nonsymbolic). 
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3.2. One factor (left side) and two factor (right side) CFA of magnitude comparison tasks (Time 1). 
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  Figure 3.2 shows that the two-factor model provided an acceptable fit to the 

data, χ2 (7) = 9.325, p = .23, RMSEA = .058 (90% CI = .000 - .144), CFI = .973, 

SRMR = .047.  A chi-squared difference test confirmed that this model fited the data 

significantly better than the unitary model (χ2
diff (1) = 13.511, p < .001). Inspection of 

the individual loadings revealed poor loadings for the difficult surface-area matched 

close and surface-area matched ratio 5:6 conditions, suggesting that these tasks are 

not sensitive enough and may be too difficult. 

 3.2.4.2 Time 2. A set of CFAs was conducted to assess the relationship 

between the magnitude comparison tasks at Time 2. A set of CFAs (Figure 3.3) was 

conducted using only the corresponding magnitude comparison subtasks from Time 

1 (digit close, digit far, fixed size close, fixed size far and surface area matched ratios 

2:3 and 3:4). The CFA included the correlated error between surface-area matched 

ratios 2:3 and 3:4 because both tap into the ‘factor’ surface-area matched. 

 The first model presenting a single factor did not provide an adequate fit to 

the data, χ2 (8) = 25.295, p = .001, RMSEA = .136 (90% CI = .078 - .197), CFI = 

.881, SRMR = .067. However, the two-factor model provided a good fit to the data χ2 

(7) = 4.713, p = .695, RMSEA = .000 (90% CI = .000 - .087), CFI = 1.00, SRMR = 

.024 which was significantly better than the single-factor model (χ2
diff (1) = 20.582, p 

< .001).  
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Figure 3.3. One factor (left side) and two factor (right side) CFA of magnitude comparison tasks (Time 2). 
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 3.2.4.3 Time 3. The same set of CFAs as used in Time 2 were conducted to 

examine the relationship between the magnitude comparison tasks at Time.  The 

models included the correlated error between surface-area matched ratio 3:4 and 

fixed size close because both tap into the ‘factor’ difficult-comparisons. 

 The first path model (Figure 3.4) investigates the construct of a single factor. 

This model provided an acceptable fit to the data (χ2 (8) = 14.859, p = .062, RMSEA 

= .086 (90% CI = .000 - .153), CFI = .982, SRMR = .035). The two-factor model 

provided an even better fit to the data (χ2 (7) = 6.705, p = .460, RMSEA = .000 (90% 

CI = .000 - .111), CFI = 1.00, SRMR = .022) compared to the single-factor model 

(χ2
diff (1) = 8.154, p = .004).  

 At Time 3, the magnitude comparison tasks were administered as a time-

constrained group test. Surface-area matched and fixed size conditions used the same 

subtasks, close versus far and ratios 2:3, 3:4 and 5:6. It was decided to investigate to 

what extent including all tasks may change the structure of the CFA. The first path 

model (Figure 3.5) investigates the construct of a single factor. This model provided 

an inadequate fit to the data, χ2 (51) = 119.707, p < .001, RMSEA = .108 (90% CI = 

.083 - .133), CFI = .940, SRMR = .043. Not surprisingly, the two-factor model 

provided a better fit to the data, χ2 (55) = 101.851, p = .197, RMSEA = .095 (90% CI 

= .068 - .121), CFI = .954, SRMR = .040; χ2
diff (1) = 17.856, p < .001. Neither model 

using all magnitude comparison subtasks provided an optimal fit to the data despite 

the fact that multiple correlated errors were allowed to improve model fitness. Thus, 

further CFAs were run using only a chosen subset of the magnitude comparison tasks 

(based on Time 1; digit close, digit far, fixed size close, fixed size far and surface 

area matched ratios 2:3 and 3:4).  

 At this point, including all magnitude comparison subtasks worsened the 

model fit. Because of the small sample size, running complex CFAs with many 

manifest variables may reduce power of the analysis producing misleading results. In 

order to obtain acceptable model fitness, various correlated errors need to be 

included in the model (Figure 3.5). To prove this, a set of CFAs was run including all 

subtasks.  
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Figure 3.4. One factor (left side) and two factor (right side) CFA of magnitude comparison tasks (Time 3). 
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Figure 3.54. One factor (left side) and two factor (right side) CFA of magnitude comparison tasks using all subtasks (Time 3). 
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 3.2.4.4 Time 4. Further sets of CFAs were run using tasks from Time 4 to 

assess the relationship of magnitude comparisons in the spring term of Year One. 

The models included the correlated error between surface-area matched ratios 2:3 

and 3:4 because both tap into the surface-area-matched ‘factor’. 

 A set of CFAs was conducted (Figure 3.6) using only the corresponding 

magnitude comparison subtasks from Time 1 (digit close, digit far, fixed size close, 

fixed size far and surface area a matched ratios 2:3 and 3:4). Both models provided a 

good fit to the data (single-factor: χ2 (8) = 12.170, p = .144, RMSEA = .069 (90% CI 

= .000 - .141), CFI = .987, SRMR = .028 compared to two-factor model: χ2 (7) = 

11.639, p = .113, RMSEA = .077 (90% CI = .000 - .153), CFI = 986, SRMR = .028), 

but the difference between the two models was not significant (χ2
diff (1) = .531, p = 

.466), thus the addition of a second factor did not improve the fit and the single-

factor model is to be favoured.   

 3.2.4.5 Time 5. The last analyses on the development of magnitude 

comparison tasks comprises of a sets of CFAs (subtasks based on Time 1 model; 

Figures 3.7). The one-factor model provided an excellent fit to the data, χ2 (9) = 

13.320, p = .149, RMSEA = .064 (90% CI = .000 - .132), CFI = .991, SRMR = .023) 

and so did the two-factor model, χ2 (8) = 10.916, p = .207, RMSEA = .056 (90% CI = 

.000 - .130), CFI = .994, SRMR = .021. This difference is not significant (χ2
diff (1) = 

2.404, p = .121) suggesting that adding a second factor did not increase the fit.
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Figure 3.6. One factor (left side) and two factor (right side) CFA of magnitude comparison tasks (Time 4).  
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Figure 3.7. One factor (left side) and two factor (right side) CFA of magnitude comparison tasks (Time 5). 



Chapter 3 

70 

 

 3.2.5.4 CFAs on comparison measures: investigating high achievers in 

number recognition.   

 As discussed earlier, while almost half of sample (45%; 45 children) scored 

the maximum on a single digit Arabic number reading task, the greater proportion of 

the sample made one or more errors. This may explain the Times 1 to 2 findings that 

symbolic and nonsymbolic comparison tasks are better explained by a two-factor 

than a one-factor model. Variability in symbolic comparison may register symbol 

knowledge rather than magnitude comparison, therefore the single magnitude 

comparison model fails to represent the data.  Thus re-examining the data only using 

the scores of the high achievers on the number reading task (number wizards; 

children that scored the maximum possible score) could provide useful insight in the 

development and structure of magnitude comparison.  

 First, the CFAs for Time 1 were re-run using the same variables. The chosen 

magnitude comparison tasks for analyses are: digit close, digit far, fixed size close, 

fixed size far and surface area matched ratio tasks. Because neither of the surface 

area matched ratio tasks loaded significantly onto the single factor or the two-factor 

model, they were excluded from the analyses. The one-factor CFA model provided a 

moderate fit to the data, χ2 (3) = 3.167, p = .367, RMSEA = .035 (90% CI = .000 - 

.256), CFI = .991, SRMR = .087. The two-factor model also provided an acceptable 

fit to the data, χ2 (2) = 0.261, p = .878, RMSEA = .000 (90% CI = .000 - .146), CFI = 

1.00, SRMR = .059.  A chi-squared difference test confirmed that the two-factor 

model did not fit the data significantly better than the unitary model (χ2
diff (1) = 

2.906, p = .088).  

 Next, the CFAs for Time 2 were re-run. The variable fixed size close was 

removed because it did not load significantly onto the factors. The one-factor model 

fit was weak, χ2 (5) = 13.713, p = .018, RMSEA = .230 (90% CI = .088 - .379), CFI = 

.838, SRMR = .085, however, the two-factor model fit was moderate, χ2 (4) = 9.017, 

p = .061, RMSEA = .195 (90% CI = .000 - .367), CFI = .906, SRMR = .069. The 

difference between the two models was significant, diff: χ2
diff (1) = 4.696, p = .030. 

 Likewise, the Time 3 results revealed that the single-factor model, χ2 (9) = 

20.345, p = .016, RMSEA = .193 (90% CI = .079 - .305), CFI = .924, SRMR = .048, 

as well as the two-factor model, χ2 (8) = 15.350, p = .053, RMSEA = .164 (90% CI = 

.000 - .288), CFI = .950, SRMR = .062, provided an adequate fit to the data. Again, 
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the two-factor model fit was significantly different from the one-factor model, χ2
diff 

(1) = 4.995, p = .025. 

 Re-running the CFAs for Times 4 and Time 5 confirmed the previous 

findings using the whole sample. At Time 4, the two-factor model providing an 

excellent fit to the data, χ2 (8) = 5.667, p = .6.85, RMSEA = .000 (90% CI = .000 - 

.162), CFI = 1.00, SRMR = .024, was not significantly different from the single-

factor model, χ2 (9) = 5.667, p = .773, RMSEA = .000 (90% CI = .000 - .136), CFI = 

1.00, SRMR = .024, χ2
diff (1) = 0, p = 1.00. At Time 5, the unitary model provided an 

excellent fit to the data, χ2 (9) = 12.639, p = .180, RMSEA = .111 (90% CI = .000 - 

.241), CFI = .979, SRMR = .030, as did the two-factor model, χ2 (8) = 11.610, p = 

.170, RMSEA = .117 (90% CI = .000 - .253), CFI = .979, SRMR = .029. The 

difference was not significant, χ2
diff (1) = 1.029, p = .310. 

 3.3 Conclusion. 

This chapter focused primarily on the nature and development of the ANS 

measured using magnitude comparison tasks. For this purpose, distance and ratio 

effects were first investigated followed by a detailed analysis of the structure of 

magnitude comparison tasks and its change over time using confirmatory factor 

analyses.  

 Overall, the comprehensive analyses of children’s performance on symbolic 

and nonsymbolic magnitude comparison tasks revealed three findings: First, 

children’s performance on magnitude comparison tasks generally showed significant 

distance and ratio effects for both symbolic and nonsymbolic comparisons with 

better performance on the far trials than close confirming previous findings (Barth et 

al., 2003; Piazza et al., 2010; Xu and Spelke, 2000; Halberda et al., 2008; Gilmore et 

al. 2010; Libertus et al., 2011; Mazzocco et al., 2011; Halberda and Feigenson, 

2008). There was a significant interaction for the symbolic distance effect across 

Times 1 and 2. Children performed significantly better on far trials than close trials at 

Time 2, but the distance effect for the symbolic task at Time 1 (numeric distance 

effect) was not significant. This may be due to the fact that some children had 

difficulties reading the Arabic numerals. It was noted that a third of the children 

made at least two mistakes in reading single digit Arabic numerals. If mastery of the 

single digit Arabic numerals is taken into account, a marginal distance effect can be 
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found even in young children. As expected, no such limitation applied to 

performance on nonsymbolic comparison.  

However, the findings for nonsymbolic comparison included two 

interactions: at Time 1 where the manipulation of square size affected far trials 

(easier items in general) and at Time 5 when square size influenced the performance 

of items in the close condition (harder condition). The findings suggest that 

manipulating square size affects very young children differently than older children 

suggesting that exposure to the task as well as a developmental improvement in 

magnitude comparison skills boost children’s performance. These interactions may 

support the findings from Sekuler and Mierkiewicz (1977) that fourth and seventh 

graders slope of the function relating to judgement time to distance was comparable 

to adult performance, whereas the function of kindergarten and first grade children 

was much steeper. The authors concluded that there are no qualitative differences 

supported by the fact that the shape of the numerical difference effect was the same 

for the groups, but rather quantitative differences. According to the authors, a steeper 

slope may imply either that the representation of numerical magnitudes is 

compressed in younger children, or that discriminal dispersion around the means are 

larger in young children, or a combination of the two.  

However, Sekuler and Mierkiewicz (1977) used only symbolic comparison 

tasks. The nonsymbolic interaction may be more complicated. These interaction may 

be due to the perceptual advantage of fixed size stimuli over surface-area matched 

stimuli, or the requirement to supress incongruent stimuli in fixed size condition may 

affect children differently at different ages according to the difficulty of the 

comparison (far versus close).   

Second, the results revealed nonsymbolic ratio effects (2:3 > 3:4 > 5:6) across 

all time points. Children performed more accurately on ratios with a large difference 

(i.e. 2:3) than ratios with a small difference (5:6). Furthermore, manipulating the 

feature size impacts children’s performance on comparison tasks. Fixed size arrays 

were generally easier to discriminate for both, distance and ratio trials, than surface-

area matched arrays suggesting that it is more difficult for children to ignore the 

prominent feature size in the surface-area matched condition where the array with 

fewer stimuli has bigger squares compared to many tiny squares. Previous studies 

have shown that performance on ANS measures increases with age, with adults 
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discriminating numerosities outside of the ability of infants. Halberda and Feigenson 

(2008) identified the Weber fraction of ANS in three-, four-, five- and six-year-old 

children and adults using dot arrays ranging from 1 to 14 dots spanning the ratios 

from 1:2 through 9:10. They further controlled for object area similar to the current 

fixed size versus surface-area matched manipulation. The results showed an increase 

in performance over time with six year-olds performing like adults. The current study 

found a comparable increase in performance over time. 

 Third, the dynamic relation between symbolic and nonsymbolic magnitude 

comparison tasks changes over time. This change coincides with children’s entry to 

the formal school system. Symbolic and nonsymbolic comparison tasks loaded on 

separate factors at four to five years of age. Interestingly, the same pattern emerged 

at Time 3, with magnitude comparison tasks being represented by two separate 

underlying factors (symbolic and nonsymbolic) rather than one general comparison 

factor. However, the distinction between the factors is declining and it seems that 

children’s representation and processing of magnitude comparison tasks at the age of 

5 years and 6 months (autumn term of Year One) is changing towards the general 

comparison ability construct. To further investigate this hypothesis, analyses of the 

subsequent two time points are crucial. If this hypothesis is true, a shift towards the 

single-factor model should occur. At Times 4 and 5, the single-factor model should 

be preferred meaning that magnitude comparison tasks load on one general 

comparison factor and not two distinct factors (symbolic and nonsymbolic) 

confirming the developmental trend towards a general magnitude comparison 

factors. 

 Children’s pre-school representation of magnitude comparison tasks may best 

be described by two distinct underlying factors: symbolic and nonsymbolic 

magnitude comparison (Libertus et al., 2011, Piazza, 2010; Piazza and Dehaene, 

2004). 

  This distinction is vanishing slowly around Year One moving from two 

constructs towards one general comparison ability construct (see also Kolkman et al., 

2012). It seems that the shift in the processing of magnitude comparison tasks may 

be complete by the end of Year One (6 years and 4 months of age). Questions remain 

on why this change in the representation and processing of the magnitude 

comparison occurs.   
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 One possibility would be that children’s mastery of the Arabic numeral 

system and their understanding of magnitude in general may play a crucial role in the 

development of comparison tasks. Interestingly, the change appears around the time 

after children entered school and are formally trained in numeracy. Also, after five 

testing sessions, children were very familiar with the task and stimuli and this 

exposure may further foster the change in processing. The findings suggest that at an 

early, pre-school age, processing of magnitude comparisons may load heavily on 

cognitive resources, and that children devise different strategies to solve symbolic 

and nonsymbolic magnitude tasks. Through exposure and formal training on 

numeracy the processes become more automatized and rely on broader general 

comparison abilities. 

 This hypothesis is supported by findings on high achievers on number 

reading task. These number wizards achieved the maximum score on the number 

reading task at Time 1 (four years of age). If using only data from the number 

wizards, then the two-factor and single-factor models do not significantly differ, 

suggesting, according to the principle of parsimony, that the latter is the better model 

and that the performance of number wizards can best be explained by one general 

magnitude comparison construct at Time 1. At Times 2 and 3 however, the two 

models do slightly differ favouring the two-factor model, though the significance 

alpha level was only .05. Nevertheless, these findings point to the fact that children’s 

understanding of numerals may be mediating the divide between symbolic and 

nonsymbolic magnitude comparison. The Times 3, 4 and 5 results are similar to the 

findings from the whole sample that symbolic and nonsymbolic magnitude 

comparison form one general magnitude comparison construct. All in all, the 

findings indicate that children’s mastery of Arabic numerals plays a crucial part in 

the structure of the ANS. Once children have a complete understanding of the single 

digit numerals, then the symbolic and nonsymbolic comparison task are best 

described by a one-factor model. These findings will inform future studies which 

should also account for children’s number recognition skills when examining the 

relationship between ANS and arithmetic. 

 In summary, the results clarify the little investigated structure of symbolic 

and nonsymbolic magnitude comparison. At pre-school age, ANS tasks show two 

distinguishable skills compared to the integration of the ANS skills into one general 

magnitude comparison structure. In view of these recent results, previous findings on 
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the relationship between symbolic and nonsymbolic comparisons and their impact on 

arithmetic skills at school age should carefully be re-examined. The following 

chapters will investigate the concurrent as well as longitudinal prediction of 

arithmetic focusing on the role of magnitude comparison. 
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Chapter 4. Concurrent Prediction of Early Arithmetic across Time. 

Studies indicate that language deficits (SLI) may affect a wide range of 

numeracy skills differently (Donlan et al., 1998; Donlan, and Gourlay, 1999; Fazio, 

1994; 1996). Children with SLI performed lower in rote counting than typically 

developing children of the same age (Donlan et al., 2007). Furthermore, Cowan et al. 

(2005) and Donlan et al. (2007) found that difficulties in producing the spoken 

number sequence, as well as poor comprehension of language, are significantly 

associated with calculation. Kleemans et al. (2011, 2012) found a relationship 

between grammatical ability and early numeracy skills. However, the relationship 

between these skills is complex, and runs counter to other findings which indicate 

independence between verbal and nonverbal calculation skills (Nunes and Bryant, 

1996; Jordan et al., 1994). 

The role of ANS is still debated. Evidence in support of the importance of the 

ANS comes from correlational studies showing that individual differences in ANS 

and general mathematical achievement are strongly correlated (Halberda et al., 2008; 

Gilmore et al. 2010; Libertus et al., 2011; Mazzocco et al., 2011; Halberda et al., 

2008. In contrast, some studies have failed to report a significant relation between 

nonsymbolic ANS measures and arithmetic (Holloway and Ansari, 2009; Iuculano et 

al., 2008; Sasanguie et al., 2012; Kolkman et al., 2012; Vanbinst et al., 2012).  

 Recent longitudinal studies produced mixed results (Desoete et al., 2012; 

Lyons et al., 2014). A recent study by Göbel et al. (2014) addressed the relation 

between nonsymbolic and symbolic judgement tasks and their role as longitudinal 

predictors of arithmetic development in six-year-olds. The authors reported that 

symbolic and nonsymbolic magnitude comparisons define a unitary factor, which 

was a strong longitudinal correlate of arithmetic skills. The path model revealed that 

number identification task, in which spoken numerals were presented to be matched 

to the corresponding Arabic numeral, was the most powerful longitudinal predictor 

of arithmetic skills at age seven, apart from the auto-correlate.  

This chapter aims to identify the concurrent predictors of perfromance in 

arithmetic during a two year period at the sensitive transition from pre-school to 

formal school, when there is a rapid change in the development in basic arithmetic 

skills.  
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 4.1 Methods. 

 4.1.1 Participants. 

The same participants were used as described in Chapter 2 (p. 42) 

 4.1.2 Materials. 

 Children were assessed on the following measures. 

 4.1.2.1 Measures taken at Time 1. 

Nonverbal intelligence. Nonverbal intelligence was assessed using a 

traditional matrix reasoning task. Set A of the Raven’s Coloured Progressive 

Matrices (Raven’s CPM; Raven et al., (1993)) was chosen. Items were administered 

according to the manual. Children were given an incomplete matrix puzzle and asked 

to choose from six missing pieces to mark the piece that completes the matrix. Three 

novel practice items were administered before the test trials. These were created 

based on the features of the original matrices. One point was given for each correct 

response with a maximum possible score of 12.  

General Language Knowledge. 

Grammatical ability. The children’s grammatical ability was assessed using 

the Test for Reception of Grammar II (TROG-2; Bishop, 2003). The TROG-2 was in 

booklet form and consisted of twenty blocks with four different items. Most TROG-2 

items had one target picture, one syntactic distractor and two lexical distractors. 

Complete sentences were read aloud, using the correct stress pattern for each 

experimenter, for each item, for each child. The children had to point to one of four 

pictures. A child failed the block if one item was incorrect. Testing was terminated 

when the child failed five consecutive blocks. The raw scores (number of blocks 

passed) were reported.  

Vocabulary. Children’s vocabulary skills were examined using the British 

Picture Vocabulary Scale 3rd Edition (BPVS - III; Dunn et al., 2010) consisting of 

thirteen sets each with twelve items. The BPVS – III was executed according to the 

manual. Starting and termination points were identified following the manual. 

Children identified which of four pictures best matched the spoken target word. The 



Chapter 4 

78 

 

BPVS – III is highly reliable (reported Cronbach’s α = .91). The raw scores (number 

of correct responses) were reported. 

Specific math-related language ability. Furthermore, testing involved a new 

task assessing children’s understanding of quantitative relations. The Test of 

Relational Comprehension (TRC; Figure 4.1; see Appendix 2 for list of items), 

designed by Chris Donlan, addressed the issue of mathematical language, testing 

understanding of relational terms such as more or less.  

The test was originally designed for older children and included the more 

complex concept of less. Investigating nursery children, the test was re-designed for 

younger participants, assessing only the relational concept of more. Specific testing 

addressed children’s comprehension of quantitative statements over mass nouns, X 

has more (noun) than Y, and comparative adjectives with more (X is more beautiful, 

more handsome, more colourful or more comfortable than Y). The TRC uses a four-

picture selection format (similar to TROG above) with three distractors. 

The test was divided into two parts; an easy and a hard part. Both parts had 

each three items for countable nouns, mass nouns and comparative adjectives. The 

difference was that the former consisted of the target and three identical distractors 

whereas the latter consisted of the target and three variations of distractors (reverse 

pattern, both objects having the same amount – same amount of the lower and upper 

end of the targeted quantity; see Figure 2). Complete sentences were read aloud and 

the children had to point to one of four pictures. A maximum of 24 points could be 

achieved, 12 for each part. The number of correct items was counted. The child’s 

response was noted. 

a) b)  

Figure 4.1. Example TRC item “The boy has more carrots than the girl” in the a) easy condition and 

b) the hard condition. 

1 2 

3 4 
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Transcoding. To estimate children’s number knowledge, a variety of tests, 

based on understanding of the Arabic numeral system, was conducted. 

Number Identification. Children were presented with four Arabic numerals 

and were asked to point to the numeral that matched the spoken number among three 

distractors which were chosen to reflect common errors that young children make 

(Figure 4.3; Appendix 4 for list of items). Based on Mix et al. (2014), targets not 

only included units but also tens and hundreds (target numbers were 6, 28, 206, 7, 

91, 2, 41, 52, 11, 69, 37, 43, 74, 168, 13 and 85).  

206 260 26 2060 

 Figure 4.2. Example Number Identification task “Can you point to number 206.” 

Number Writing. Similar to the letter writing task, we asked the children to 

transcribe twelve Arabic numerals (2, 9, 7, 4, 8, 10, 6, 1, 20, 3, 100 and 5) which 

were presented verbally. Two points were awarded for each numeral (accuracy and 

orientation; based on the Letter Writing  task of Caravolas, Lervåg, Mousikou, Efrim, 

Litavský, Onochie-Quintanilla, Salas, Schöffelová, Defior, Mikulajová, Seidlová-

Málková and Hulme, 2012), thus resulting in a maximum score of 24.  

Reading Arabic numerals. Knowledge of Arabic numerals was assessed using 

a Numeral Reading task in which children had to read out loud the Arabic numerals 

(MS Office 2013, Comic Sans MS, size 350) one to ten. The numbers were presented 

in random order to avoid any effects of number sequence knowledge.   

Rote Counting.  Children were asked to count from one forward. Testing 

stopped after the child reached the number 111, did not know how to count farther, 

or if they showed signs of distress. The highest number counted without making 

mistakes was reported. 

Magnitude Comparison. Various symbolic and nonsymbolic comparison 

tasks were created for the study, based on those by Göbel et al. (2014). Each 

comparison pair was presented on a single page. Children were given one point for 

every correct comparison with a maximum score of 16 for each version and 160 

overall (Figure 4.2; for more details see Chapter 3, p. 50).  

Arithmetic Skills. The children’s basic arithmetic skills were assessed using 

simple addition problems (Appendix 9). The test comprised ten simple additions with 
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sums less than ten (1 + 3; 2 + 1; 2 + 2; 1 + 4; 3 + 1; 1 + 5; 2 + 3; 1 + 6; 3 + 3; 4 + 4). 

All arithmetic problems were presented in Arabic notation (MS Office 2013, Comic 

Sans MS, size 260) and, simultaneously, in spoken form most familiar to the child. 

Problems were arranged so that additions with same sums or similar summands were 

never adjacent. Children were encouraged to use wooden sticks provided or their 

fingers if needed. The preferred method of referring to additions (“add” or “plus”) 

was determined by asking the teachers. Before the main testing, two practice 

problems (1 + 1, 1 + 2) were administered. Testing was terminated early if a child 

showed signs of confusion or lack of concentration. The maximum score was ten.  

 4.1.2.2 Measures taken at Time 2. 

Specific math-related language ability. There was a ceiling effect with the 

easy part of TRC at Time 1, with 73% of the sample scoring nine out of ten or 

higher. Hence, the hard part of the TRC seemed to be the more sensitive measure of 

understanding of more at that age and therefore the easy part was dropped. To 

enhance the sensitivity of the hard part, items of the easy part were re-designed to 

match the hard part and half of the items were randomly chosen and re-configured as 

less trials. In the less trials children were asked to point to the picture that goes with 

e.g. ‘the boy has less pasta than the girl’. Testing procedure was the same as Time 1 

(see above for more details and Appendix 3). There were 12 more sentences and 12 

less sentences, giving a maximum score of 24.  

Transcoding. Although the difficulty level had to be adjusted for most 

number-knowledge tasks due to ceiling or close-to-ceiling effects, testing procedures 

did not change (see Time 1 for more details).  

Number Identification. The following numbers were target numbers at Time 

2: 6, 28, 206, 7, 91, 356, 2, 41, 52, 11, 69, 37, 807, 43, 74, 168, 13, 670, 614 and 85 

(Appendix 5). 

Number Writing. Children were asked to write down Arabic numerals (same 

targets as Time 1: 2, 9, 7, 4, 8, 10, 6, 1, 20, 3, 100 and 5) which were presented 

verbally. Contrary to Time 1, only one point was awarded for each numeral, thus 

resulting in a maximum score of 12.  

Reading Arabic numerals. Based on children’s performance at Time 1, ten 

more numbers were included in the number reading task. The following twenty 
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numbers were administered in random order: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 

15, 19, 20, 100, 150, 210 and 437.   

Rote Counting.  The same task was used as in Time 1 (see above for more 

details). 

Magnitude Comparison. The same symbolic digit and nonsymbolic 

magnitude comparison tasks were used and administered as in Time 1 (see above for 

details). 

Arithmetic Skills. Due to the ceiling level performance at Time 1, the 

following adjustments were made to the basic calculation task (Appendix 10): 

 Two parallel forms of the task were created which comprised of ten simple 

additions with sums less than ten (both forms were equal in difficulty level; Form A: 

1 + 3; 2 + 1; 1 + 5; 2 + 3; 4 + 5; 7 + 2; 3 + 5; 4 + 2; 5 + 2 and 2 + 6; Form B: 1 + 4; 3 

+ 1; 2 + 5; 4 + 2; 1 + 6; 3 + 6; 2 + 7; 6 + 2; 4 + 3 and 3 + 5). To raise the sensitivity 

of the task further, children were given only three minutes to solve as many problems 

as possible. The two forms were given in two separate testing sessions. The order of 

presentation of the forms was counterbalanced. The total number of correctly solved 

problems was recorded. 

 4.1.2.3 Measures taken at Time 3 

Transcoding. All number knowledge tasks, except for number writing, were 

individually administered. 

Number Identification. Children were asked to identify the following 

numbers among distractors: 6, 28, 206, 70, 91, 356, 50, 41, 52, 11, 69, 37, 807, 43, 

74, 168, 13, 670, 614 and 85 (Appendix 6). 

Number Writing Children were asked to write down the following Arabic 

numerals (12, 9, 73, 4, 18, 10, 16, 146, 21, 30, 100, 5, 500, 308 and 754). Testing and 

scoring procedure was the same as Time 2.  

Reading Arabic numerals. Children were asked to read out loud the following 

twenty numbers: 8, 16, 201, 12, 20, 55, 9, 13, 100, 150, 14, 15, 11, 31, 210, 60, 437, 

19, 10 and 142.   

Rote Counting. It was assumed that most children have mastered the 

traditional rote counting procedure (as used at Time 1). Thus three new counting 
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tasks were used were the children had to count from a given number until the 

experimenter asked them to stop. The three tasks were counting from one to 40, from 

94 to 110 and counting backwards from 25. Similar to the Times 1 and 2 task, testing 

stopped after the child reached the target number, did not know how to count farther, 

or if they showed signs of distress. The furthest number counted in each sequence 

without making mistakes was reported for all three tasks. 

Magnitude Comparison. A recent study by (Göbel et al., 2014) showed that 

children in Year One can successfully perform magnitude comparison tasks in a 

group setting. Thus the magnitude comparison task used in this study was redesigned 

as a group test using the same stimuli pairs created at Times 1 and 2. Symbolic and 

nonsymbolic comparisons were presented in pairs of two adjacent 2.1 cm x 2.1 cm 

boxes. Children were asked to tick the bigger number or box with more dots (for 

more details see Chapter 3, pp. 50).  

Arithmetic Skills. Fluency. Children’s speeded arithmetic skills (fluency) was 

assessed using the ‘addition’ and ’addition with carry’ subtests of the Test of Basic 

Arithmetic and Numeracy Skills (TOBANS; Brigstocke et al., 2016). Children were 

asked to complete as many arithmetic problems as possible in one minute. In the 

‘addition’ subtask, children were presented with simple addition problems with sums 

less than ten and in the ‘addition with carry’ subtask the sums were bigger than ten 

but smaller than twenty. One point was awarded even if the numeral was written 

backwards (maximum score addition = 90; maximum score addition with carry = 30). This 

task was administered as a group task (Appendices 11 and 12). 

 4.1.2.4 Measures taken at Time 4. 

Working memory.  

Central Executive Functioning. To assess children’s selective attention, each 

child completed a Visual Search task (Appendices 17 and 18). Children were asked 

to cross out as many red apples possible in one minute and ignore the distractors - 

red strawberries and white apples. To familiarise the children with the task, they 

were presented with pictures of all stimuli and were then asked to point to a 

particular one. Practice trials were administered beforehand. First, children were 

asked to complete the easy version A with relatively big, easy to distinguish stimuli. 

The number of correctly identified targets (17 red apples) and correctly rejected 
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distractors (36 white apples and 37 red strawberries) were reported as well as the 

number of missed targets and wrongly marked distractors in order to calculate each 

child’s d’ (d prime; for exact calculation of d’ see Appendix B). In addition, we 

further assessed a harder version because of the easy discrimination of items of form 

A which may be insensitive at the older age range. The target and distractor items of 

the harder version B were smaller and more difficult to discriminate (30 target red 

apples, 135 white apples and 135 red strawberries). Similar to the easy version, the 

children had one minute to find as many red apples as possible. Both versions were 

administered in the group session. 

Transcoding. All number knowledge tasks, except for number writing, were 

individually administered. 

Number Identification. Target numbers were: 6, 28, 206, 70, 91, 356, 50, 41, 

52, 11, 69, 37, 3013, 807, 43, 74, 168, 13, 670, 614, 85, 819, 1109, 617 and 1220 

(Appendix 7). 

Number Writing. Children were asked to write down the following Arabic 

numerals: 12, 19, 73, 14, 18, 10, 16, 146, 21, 30, 100, 15 and 207. Testing and 

scoring procedure was the same as Time 2.  

Reading Arabic numerals. Children were asked to read out loud the following 

numbers: 8, 16, 201, 12, 20, 55, 9, 13, 100, 150, 14, 15, 11, 31, 210, 60, 437, 19, 10, 

142, 1109, 617, 1220, 819 and 2212.  

Magnitude Comparison. The same tasks as at Time 3 were used (see above 

for details). 

Arithmetic Skills. Fluency. In addition to the tasks at Time 3 (addition and 

addition with carry), children were also presented with the ‘subtraction’ subtask 

(Brigstocke et al., 2016). Similar to addition, children were asked to solve as many of 

the 90 subtraction problems as possible in one minute (Appendices 11-13).  

 4.1.2.5 Measures taken at Time 5. 

Working memory.  

Executive Functioning. Similar to previous testing points, the visual search 

task was executed to assess children’s selective attention. However, only the hard 

version with small stimuli from Time 4 was used. Additionally, a second version of 
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this task was created with the same number of targets and distractor, just in a 

different, random order. 

Literacy. 

Reading Skills. Children’s reading skills were assessed using the Test of 

Word Reading Efficiency–Second Edition (TOWRE–2). The TOWRE-2 assesses 

children’s ability to pronounce printed words (Sight Word Efficiency) and decode 

phonemically regular nonwords (Phonemic Decoding Efficiency) accurately and 

fluently, but only the nonwords subtask was used in the analysis. Children were 

asked to read as many nonwords as possible within 45 seconds. Eight test items were 

presented in vertical lists prior to the test list of 66 nonwords. The TOWRE-2 has 

four alternative forms (A through B). Only form A was administered individually. 

One point was awarded for each correctly decoded nonword.  

Spelling Skills. Children’s spelling skills were assessed using the Single Word 

Spelling Test (SWST). In this group test, children were asked to write down 30 high 

frequency words increasing in difficulty. First, the experimenter read out the whole 

sentence before repeating the target word only. All 30 items were administered 

making sure that all children were on the same item. One point was awarded for each 

correctly written word. 

Transcoding. All Number knowledge tasks, except for number writing, were 

individually administered. 

Number Identification. The following numbers were the difficulty-adjusted 

target numbers: 6, 28, 206, 70, 414, 91, 356, 50, 41, 7014, 52, 11, 69, 37, 528, 3013, 

807, 4807, 43, 74, 168, 713, 13, 670, 614, 952, 85, 819, 1109, 617, 1220 and 493 

(Appendix 8). 

Number Writing Children were asked to write down the following Arabic 

numerals (12, 19, 73, 97, 14, 18, 113, 10, 16, 146, 4107, 21, 30, 100, 366, 15, 207, 

1023 and 291). Testing and scoring procedure was the same as Time 2.  

Reading Arabic numerals. Children were asked to read out loud the following 

numbers: 8, 16, 201, 12, 20, 309, 55, 9, 13, 100, 544, 150, 14, 15, 956, 11, 31, 210, 

3614, 60, 437, 19, 10, 142, 387, 1109, 617, 1220, 819, 2212, 4097 and 438. 

Magnitude Comparison. The same tasks as at Time 3 were used (see above 

for details). 
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Arithmetic Skills. Fluency. The same tasks as at Time 4 were used (see above 

for details). 

4.1.3 Procedure. 

The comprehensive test battery was divided into 20 to 40-minute-blocks at 

each time point to counterbalance effects or order such as learning and motivational 

effects. The testing order within each block was counterbalanced. Testing was 

carried out five times over a 25-month period from the summer term of nursery 

(May-June 2014) through to the summer term of Year One (June 2016). Wherever 

possible, each child was seen by the same experimenter. The main researcher was 

assisted by several research assistants from undergraduate psychology classes. They 

were trained on how to administer the test battery and were given instructions on 

how to work with young children. Children were tested individually at Times 1 and 

2, and at Times 3, 4 and 5 individually or in small groups in a separate room or 

another quiet place in the school. The tasks that were tested individually after Time 3 

included math-related language comprehension, number reading, number 

identification and counting. Each child met with the experimenter ideally two to four 

days in a row, depending on the number of blocks, to avoid lack of motivation or 

concentration. If testing in groups, the ratio of experimenters to children was 1:3.  

Preliminary to the testing, the experimenters attended at least one day in each 

class so that the children got to know them and felt more comfortable around them. 

The experimenters told each child that they would play games and asked questions 

such as “How are you?” or “How old are you?”.  

All unstandardized tests included practice items. Concerning feedback, 

children received only concrete feedback on their performance for practice items and 

general praise and encouragement throughout the tests. 

 4.2 Results. 

The focus of the analysis was to identify concurrent predictors of early 

arithmetic and examine how the prediction from language, ANS and children’s 

understanding of the Arabic numeral system changes across time from pre-school to 

the conclusion of the first year of formal schooling. To answer this research question 

concerning the concurrent predictors of early arithmetic, descriptive statistics are 

presented first followed by a set of SEM path models estimated with Mplus Version 
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7 (Muthén and Muthén, 2013). The dependent variable was the latent arithmetic 

factor at each testing point and independent variables consisted of the latent factors 

measured at each testing point. Correlated residual errors of the manifest variables 

were included if this residual covariance improved the goodness of fit of the model 

significantly. Only theoretically justifiable residual covariances were coded such as 

correlated errors of manifest variables within the hypothesised factor. To visually 

simplify the path models, the coefficients of the relations between the factors are not 

presented but can be found in Appendix 20 (and Appendix 22 for number wizards). 

 4.2.1 Descriptive Statistics. 

 The descriptive analysis of all measures taken at all testing points can be seen 

in Table 4.1. Descriptive statistics were conducted using IBM SPSS Statistics 22. 

The standardized tests TROG-2 and BPVS-III were reported as raw scores, but 

standard scores of the sample were calculated and are given here. The sample was 

surprisingly lower than the population concerning grammatical ability (TROG-2, M 

= 91.54, SD = 1.57) but still within normal ranges. This is most likely due to the fact 

that 29 children were younger than four while standardization for TROG-2 starts at 

four. Vocabulary skills were representative of the population (BPVS-III, M = 101.58, 

SD = 1.57). Children’s math-related language comprehension improved over time 

and ceiling effects were present at Time 5. It is worth mentioning that only their 

understanding of more was assessed at Time 1.  

 Children’s performance on all measures of transcoding (number writing, 

number reading and number identification) increased over time although difficulty 

levels were adjusted to avoid ceiling effects. A clear ceiling effect was present for 

number reading at Time 1 with 45% of children achieving a maximum score. 

Furthermore, number reading and number writing were slightly negatively skewed at 

most testing points, contrary to number identification, with neither floor nor ceiling 

effects present. It is noteworthy that children’s performance on the counting one-to-

40 task at Time 3 was at ceiling level with more than half of the sample scoring at 

maximum. It seems that most children have mastered this section of the spoken count 

sequence at the age of five years and six months.  

 Children’s central executive functioning at Times 4 and 5 was assessed using 

a visual search task. Each child’s d prime was calculated as a measure of sensitivity, 
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whereas proportion correct is affected by both sensitivity and bias (range is -8.6 to 

8.6). At Time 4, the easy version was approaching ceiling level (M = 6.02, SD = 1.95 

with 27 children achieving a perfect score). In contrast, the Time 4 hard version as 

well as both Time 5 hard versions show a more balanced range (means around the 

value four) indicating that the harder version is a more sensitive measure of central 

executive functioning at the age of five to six. 

 Focusing on the descriptive statistics of arithmetic, there was a ceiling effect 

at Time 1 with 17 children reaching the maximum score. Hence the arithmetic task 

was administered with a time constraint at Time 2 (children had three minutes to 

complete ten additions). The TOBANS was introduced at Time 3. All measures of 

TOBANS improved over time and there were floor effects present in the ‘addition 

with carry’ subtask at Times 3 and 4 and the ‘subtraction’ subtask at Time 4. The 

WIAT-II was assessed at Time 5. All items of the test were administered and 

converted into standard scores. This sample scored within normal range (M = 102.77, 

SD = 1.14) suggesting that the sample is representative of the population regarding 

mathematical skills. In subsequent analyses, the first six items (identifying and 

writing Arabic numerals) were excluded, in order to focus on arithmetic skills per se. 
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Table 4.1 

Mean and standard deviations of predictor and criterion measures from all testing sessions 

  Time 1 Time 2 Time 3 Time 4 Time 5 

  M (SD) M (SD) M (SD) M (SD) M (SD) 

Nonverbal IQ Raven’s CPM 6.45 (1.57)     

Working 

Memory 

Visual Search Easy: 3.98 (1.70) [3]*  Easy: 5.43 (1.35) [10] 

Hard: 4.16 (.37) 

Easy: 6.021(.95) [27] 

Hard: 4.28 (.60) 

A: 4.52 (.39) 

B: 4.57 (.73) 

Language 

Comprehension 

TROG-2 3.15 (2.63)*     

Vocabulary BPVS-III 58.26 (16.77)*     

Literacy TOWRE-2     Words: 44.04 (15.44) 

Nonwords: 24.81 

(10.97) 

 SWST     23.68 (6.06) [15] 

Math-related 

Language 

TRC 

more 

less 

overall 

 

5.90 (2.00)* 

 

7.35 (2.44) [3] 

5.32 (2.52) [2] 

12.79 (4.20)* 

 

8.14 (2.67) [7] 

6.06 (2.67) [1] 

15.51 (3.89)* 

  

10.19 (1.61) [15] 

9.11 (2.74) [14] 

19.30 (3.71) [7]* 



Chapter 4 

89 

 

Numerical 

Knowledge 

Number Writing 6.86 (5.79)* 7.93 (2.96) [15]* 9.24 (2.42) [1] 8.44 (3.03) [10] 13.07 (4.17) [12] 

 Number Reading 8.02 (2.67) [45]* 14.76 (3.06) [4]* 12.77 (4.34) [6]* 15.47 (5.49) [7]* 23.95 (6.15) [14]* 

 Number 

Identification 

7.26 (2.60)* 10.99 (3.43) [1]* 11.99 (3.81)* 16.04 (4.24)* 22.81 (5.25) [1]* 

 Rote Counting 14.78 (12.84)* 44.38 (30.23)* 1 to 40: 34.84 (8.51) 

[60] 

94 to 110: 10.30 (5.34) 

[26] 

25 back.: 7.01 (7.73) 

[12]* 

  

Magnitude 

Comparison 

Digit Close 

Digit Far 

NS FS Close 

NS FS Far 

NS FS 2:3 

NS FS 3:4 

NS FS 5:6 

NS SA Close 

NS SA Far 

NS SA 2:3 

NS SA 3:4 

NS SA 5:6 

10.11 (3.21) [7] 

10.73 (3.59) [7] 

10.26 (2.16) [1] 

12.87 (2.57) [17] 

 

10.76 (2.72) [4] 

10.58 (2.29) [3] 

10.29 (2.28) [1] 

13.24 (2.43) [23] 

11.42 (2.42) [5] 

10.81 (2.03) [2]* 

11.97 (3.07) [20] 

13.64 (3.33) [60] 

10.64 (2.20) [1] 

14.13 (2.04) [34] 

13.18 (2.35) [24] 

11.97 (2.44) [16] 

11.23 (2.28) [3] 

10.67 (2.00)  

13.49 (2.09) [19] 

12.37 (2.28) [8] 

11.56 (2.23) [3] 

10.45 (2.11) [1]* 

10.90 (4.92) 

14.32 (4.85) 

9.99 (4.14) 

15.49 (6.11) 

13.90 (5.12) 

12.82 (5.38) 

9.86 (4.95) 

8.99 (3.64) 

14.48 (5.93) 

12.68 (5.51) 

10.92 (5.14) 

9.60 (4.13) 

13.04 (4.46) 

17.20 (5.33) 

12.12 (4.07) 

17.99 (5.31) 

17.63 (5.98) 

15.56 (5.23) 

12.40 (3.94) 

10.57 (3.77) 

17.78 (5.45) 

16.14 (5.42) 

13.40 (4.90) 

11.34 (3.73) 

16.89 (4.57) 

22.32 (5.82) [2] 

15.14 (4.33) 

21.68 (6.32) [3] 

21.98 (6.41) [4] 

19.68 (5.86) [2] 

14.81 (4.95) 

12.47 (3.93) 

21.96 (6.30) [2] 

19.12 (6.45) 

17.35 (5.45) 

13.23 (4.60) 
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Arithmetic Addition Tasks 6.33 (3.21) [17]* A: 5.23 (2.51) [3] 

B: 5.15 (2.55) [8]* 

  Addition: 6.02 (1.51) [10] 

Subtraction: 5.04 (2.41) 

[10] 

 TOBANS 

Addition 

Addition w/ 

carry 

Subtraction 

   

6.23 (4.55) 

1.75 (2.20) 

 

 

8.36 (5.09) 

2.56 (2.74) 

5.30 (4.12) 

 

12.74 (8.66) 

5.07 (5.01) [1] 

8.44 (5.10) 

 Approximate 

Arithmetic 

  Symbolic: 15.16 

(3.74) 

NS: 16.16 (3.51)* 

Symbolic: 16.44 (3.67) 

[4] 

NS: 18.07 (3.03) [1]* 

Symbolic: 18.53 (3.94) 

[13] 

NS: 19.72 (2.86) [5]* 

 WIAT     4.00 (2.27) 

Notes.  M = mean age. SD = standard deviation 
* 

individually administered tasks. The number of children scoring at maximum are shown in square brackets. All scores are 

presented as raw scores. For the Magnitude Comparison Tasks: NS = nonsymbolic. FS = fixed size trials. SA = surface-area matched trials.  
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 4.2.2. Structural Equation Modelling. 

 4.2.2.1 Concurrent prediction at Time 1. 

 The analysis of concurrent prediction of arithmetic at pre-school age included 

the latent independent predictors nonverbal intelligence (Raven’s CPM), general 

language comprehension (BPVS-III and TROG-2), math-related language (TRC) and 

transcoding (number writing, reading and identification), counting skills (rote 

counting) as well as the two magnitude comparison constructs (symbolic and 

nonsymbolic comparison) and the dependent outcome variable arithmetic (data of 

addition task was split into two manifest variables – odd and even numbered 

problems). Nonverbal intelligence, math-related language comprehension and 

counting were each assessed by only one indicator (Raven’s CPM, TRC and rote 

counting), which may distort the data as a result of measurement errors. Thus, these 

indicators were pre-specified with an error reflecting the reliability of the variable 

calculated on the sample. 

All manifest variables loaded significantly on their proposed latent 

constructs. It is worth mentioning that the easy nonsymbolic comparison surface-

area matched ratio 2:3 has the weakest loading of the comparison tasks. The path 

model depicted in Figure 4.3 provided an excellent fit, χ2 (84) = 92.439, p = .248, 

RMSEA = .032 (90% CI = .000 - .065), CFI = .981, SRMR = .059. The latent 

variables nonverbal intelligence and transcoding were the only unique predictors of 

children’s performance on simple arithmetic task at Time 1 (70.2% of variance was 

explained). This result suggests that only nonverbal intelligence and transcoding, 

children’s ability to translate between verbal number codes and Arabic numerals, 

may be crucial to the development of arithmetic at the age of 4 years 2 months, 

before the beginning of formal education. 
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Figure 4.3. Concurrent associations of arithmetic assessed at Time 1. * p < .05. ** p 

< .01. 

Similar to the previous chapter, the same Time 1 model as used above was re-

run only using the data for number wizards (45 children that achieved the maximum 

score on the numeral reading task). Based on the findings from chapter three, the 

magnitude comparison tasks formed on factor rather than two distinct factors. Also, 

surface-area matched stimuli were removed due to the fact that they did not 

significantly load onto the hypothesised general magnitude comparison factor and 

the number reading task was removed because the analysis only investigated children 

who have achieved the maximum. The model, shown in Figure 4.4, provided an 

excellent fit to the data, χ2 (51) = 46.587, p = .649, RMSEA = .000 (90% CI = .000 - 

.081), CFI = 1.00, SRMR = .058. Similar to the above model, transcoding was 

strongly predicting children’s early arithmetic scores. Surprisingly, nonverbal 

intelligence was not a unique predictor as seen in the model containing data from the 

whole sample. Yet math-related language comprehension was the second unique 

predictor of performance on arithmetic tasks at four years of age, with transcoding 

being the stronger predictor. This model explained 54.8% of variance. 



Chapter 4 

93 

 

Figure 4.4. Number wizards’ concurrent associations of arithmetic assessed at Time 1. * p < 

.05. ** p < .01. 

 Correlations. The correlations, based on the full sample, between the latent 

constructs are shown in Table 4.2. The latent outcome variable arithmetic correlated 

with all other variables, but the highest correlation was with nonverbal intelligence 

and transcoding which confirms the findings of prediction of the SEM path model. 

Furthermore, both symbolic and nonsymbolic magnitude comparison were also 

strongly associated with arithmetic.  

Interestingly, general language comprehension was strongly related to math-

related language comprehension and symbolic magnitude comparison. The former is 

easy to explain; both tests measure a form of language comprehension. Additionally, 

the TROG included a section which directly tested children’s understanding of more 

and less which was the focus of the math-related language comprehension task. The 

latter association with symbolic magnitude comparison may suggest that, at this age, 

children highly rely on language skills to compare two numbers due to the fact that 

they have not completely mastered the Arabic numeral system. This relationship may 

fade over time when children grow more confident in working with numerals. 
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Table 4.2 

Correlations between the predictor measures and the criterion measures at Time 1 (n = 100) 

 1 2 3 4 5 6 7 8 

1. Nonverbal Intelligence --- .451** .439** .409 .229 .437* .632** .757** 

2. Language Comprehension  ---- .621** .529** .290 .605** .469** .477** 

3. Math-related Language   --- .346* .212 .511** .376** .398** 

4. Transcoding    ---- .666** .672** .415** .638** 

5. Counting     ---- .406* .332* .399** 

6. Symbolic Comparison      ---- .556** .525** 

7. Nonsymbolic Comparison       ---- .540** 

8. Arithmetic        ---- 

Notes.  Pearson product-moment correlation coefficient. * p < .05. ** p < .01. 
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The variable transcoding correlated highly with counting as well as symbolic 

comparison whereas the relation to nonsymbolic comparison was weaker. It is worth 

mentioning that symbolic and nonsymbolic comparison were only moderately 

correlated which supports the idea of two individual constructs at this age. 

 4.2.2.2 Concurrent prediction at Time 2. 

 The path model investigated prediction of arithmetic in reception class, the 

first stage of formal schooling, between the independent variables math-related 

language (more and less), transcoding (number writing, reading and identification), 

counting skills (rote counting) as well as the two magnitude comparison constructs 

(symbolic and nonsymbolic comparison) and the dependent variable arithmetic 

(addition task, form A and B). Because counting was assessed by one indicator, it 

was pre-specified with an error to avoid distortions caused by measurement errors. 

Figure 4.5 shows the unique predictors of arithmetic at reception class age (4 

years and 11 months) confirming that the manifest variables load onto their 

hypothesised latent factors. Surprisingly, the prediction of transcoding was not 

significant for this age group. However, the model found that math-related language 

comprehension and counting were the only unique predictors of arithmetic with an 

excellent model-fit to the data, χ2 (66) = 63.676, p = .558, RMSEA = .000 (90% CI = 

.000 - .051), CFI = 1.00, SRMR = .046. The predictors explained 68.2% of variance. 

It is worth mentioning that not all tasks of Time 1 were retested and the list of tests 

was limited to mainly tasks strongly connected to numeracy skills. Measures of 

nonverbal intelligence and general language comprehension were not assessed. 
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Figure 4.5. Concurrent associations of arithmetic assessed at Time 2. * p < .05. ** p < .01. 

 Correlations. As expected, all latent factors correlated with arithmetic 

(correlations are shown in Table 4.3). However, the strongest correlations at Time 2 

were counting and transcoding and math-related language. Interestingly, the 

correlation with transcoding was higher than math-related language although 

transcoding did not uniquely predict arithmetic.  

Further inspection of the correlation matrix revealed a strong association 

between transcoding and counting skills (r = .774), suggesting that both factors share 

similar cognitive resources and constructs. The factor math-related language highly 

correlated with all other factors but counting. The strongest relation was with 

nonsymbolic magnitude comparison which may due to the fact that the nonsymbolic 

comparison greatly draws on children’s understanding of the term more (‘Which box 

has more dots?’) to excel on the task. 
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Table 4.3 

Correlations between the predictor and the criterion measures at Time 2 (n = 117) 

 1 2 3 4 5 6 

1. Math-related 

Language 

--- .554** .342 .582** .637** .658** 

2. Transcoding  ---- .774** .735** .495** .675** 

3. Counting   ---- .622** .549** .693** 

4. Symbolic 

Comparison 

   ---- .603** .608** 

5. Nonsymbolic 

Comparison 

    ---- .595** 

6. Arithmetic      ---- 

Notes.  Pearson product-moment correlation coefficient. * p < .05. ** p < .01 

 4.2.2.3 Concurrent prediction at Time 3. 

 Latent independent factors at Time 3 included transcoding, counting 

(counting to 40, counting from 94 to 110 and counting backwards from 25), as well 

as the two magnitude comparison constructs (symbolic and nonsymbolic 

comparison) and the dependent variable arithmetic (TOBANS, addition and addition-

with-carry).  

The path model predicting arithmetic in the autumn term of Year One (Figure 

4.6) provided an acceptable fit to the data, χ2 (66) = 86.382, p = .047, RMSEA = .052 

(90% CI = .000 - .080), CFI = .978, SRMR = .049 (loadings of manifest variables 

onto hypothesised latent factors was reasonable). Surprisingly, transcoding was not 

significantly predicting arithmetic and, interestingly, only symbolic magnitude 
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comparison and counting were unique predictors of arithmetic (86.5% of variance 

was explained).  

Figure 4.6. Concurrent associations of arithmetic assessed at Time 3. * p < .05. ** p < .01. 

 Correlations. The correlations between the latent constructs are shown in 

Table 4.4 and showed that all latent factors were related to arithmetic. Transcoding 

and both magnitude comparison factors showed the strongest relation.  

Table 4.4 

Correlations between the predictor and the criterion measures at Time 3 (n = 116) 

 1 2 3 4 5 

1. Transcoding ---- .880** .794** .636** .785** 

2. Counting  ---- .665** .587** .863** 

3. Symbolic Comparison   ---- .869 ** .805** 

4. Nonsymbolic 

Comparison 
   ---- .729** 

5. Arithmetic     ---- 

Notes.  Pearson product-moment correlation coefficient. * p < .05. ** p < .01  
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It is worth mentioning that symbolic magnitude comparison was highly 

related to transcoding and even more highly to nonsymbolic comparison. The latter 

supports the finding in Chapter 3 that the relationship between symbolic and 

nonsymbolic magnitude comparison slowly shifts around the time children enter 

formal schooling, moving from a two-factor structure towards one general magnitude 

comparison factor. Transcoding was highly correlated to arithmetic and counting. 

Interestingly, the path model found a nonsignificant prediction between arithmetic 

and transcoding though both correlated highly.  

 4.2.2.4 Concurrent prediction at Time 4. 

 The concurrent relationship model at Time 4 investigated prediction of 

arithmetic in the spring term of Year One. At this time all participants had been in 

formal education for at least two terms. The model comprised of the dependent 

variable arithmetic (TOBANS, addition, addition-with-carry and subtraction) and the 

latent independent variables transcoding (number writing, reading and 

identification), executive functioning and general magnitude comparison (symbolic 

and nonsymbolic comparison). 

The SEM path model of prediction of arithmetic (Figure 4.7) showed 

consistent high loading of the manifest variables onto their hypothesised latent 

factors. The model provided an acceptable fit to the data, χ2 (72) = 88.563, p = .09, 

RMSEA = .062 (90% CI = .000 - .102), CFI = .961, SRMR = .066. Interestingly, the 

only unique predictor in this model was the general magnitude comparison variable, 

nonetheless transcoding was marginally significantly predicting early arithmetic. It is 

worth mentioning that the number of independent variables was very limited due to 

testing time constraints. Only 54% of variance is explained by the model. 
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Figure 4.7. Concurrent associations of arithmetic assessed at Time 4. * p < .05. ** p < .01. 

Correlations. In contrast to previous testing sessions, the strongest 

association with arithmetic was found with the unique predictor general magnitude 

comparison (correlations are shown in Table 4.5). The correlations illustrate that 

general magnitude comparison tasks are highly correlated, not surprisingly, with both 

transcoding and executive functioning.  

Table 4.5 

Correlations between the predictor and the criterion measures at Time 4 (n = 115) 

 1 2 3 4 

1. Transcoding --- .658** .528* .619** 

2. Magnitude Comparison  ---- .831** .705** 

3. Executive Functioning   ---- .581** 

4. Arithmetic    ---- 

Notes.  Pearson product-moment correlation coefficient. * p < .05. ** p < .01 

 4.2.2.5 Concurrent prediction at Time 5. 

 The last path model (Figure 4.8) investigated concurrent prediction of 

arithmetic at Time 5 (summer term of Year One) between the predictor variables  

central executive functioning (Visual Search A and B), literacy (TOWRE-2 

nonwords, SWST), transcoding (number writing, reading and identification) and, 
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based on previous results (see Chapter 3) one general magnitude comparison 

construct and the outcome variable arithmetic (TOBANS, addition, addition-with-

carry and subtraction). The following correlated errors were included: Number 

writing with SWST because both task require the children to write the answer and 

may presumably share similar writing processes, and fixed size close items with 

surface-area matched ratio 3:4 items as they both share the same methodology and 

both are the harder version of each size condition. 

The manifest variables load satisfactorily onto their latent factors. As shown 

in previous testing time points, the latent variable transcoding and the general 

magnitude comparison factor were the only unique predictors of arithmetic of six 

year-old children. Although the chi-squared difference test was significant indicating 

that the theoretical model may be different from the observed data, all other indices 

of goodness of fit were acceptable, χ2 (94) = 144.445, p = .002, RMSEA = .064 (90% 

CI = .041 - .086), CFI = .964, SRMR = .052. This model only explained 45.5% of the 

variance indicating that there may be more predictors that contribute to the prediction 

of arithmetic scores at the end of Year One. Children’s understanding of Arabic 

numerals was a slightly stronger predictor of arithmetic scores than general 

magnitude comparison. 

Figure 4.8. Concurrent associations of arithmetic assessed at Time 5. * p < .05. ** p 

< .01. 

 Correlations. The correlation matrix for Time 5 latent factors is shown in 

Table 4.6. All independent factors correlated highly with arithmetic assessed at Time 

5 with the highest correlations with transcoding and magnitude comparison. Besides, 
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central executive functioning was related with magnitude comparison and, of 

particular interest, literacy with transcoding. The latter correlation may be due to 

shared linguistic components that influence both factors. 

Table 4.6 

Correlations between the predictor and the criterion measures at Time 5 (n = 119) 

 1 2 3 4 5 

1. Executive Functioning --- .469** .521** .693** .467** 

2. Literacy  ---- .724** .545** .501** 

3. Transcoding   ---- .493** .600** 

4. Magnitude Comparison    ---- .563** 

5. Arithmetic     ---- 

Notes.  Pearson product-moment correlation coefficient. * p < .05. ** p < .01.  

 4.3 Conclusion. 

The scope of this chapter was to investigate concurrent predictors of 

arithmetic skills at five time points from pre-school through to the end of the first 

year of formal schooling, taking snapshots of development at different stages. There 

are limitations to the conclusions that can be drawn, since the measurements taken 

differ at different time points. Nonetheless, the results are informative concerning the 

process of development, and provide a useful background to the research exploring 

longitudinal prediction of arithmetic. 

 To sum up the findings, nonverbal intelligence and transcoding were the only 

unique predictors of children’s performance on arithmetic tasks at age of four years 

and three months (Time 1). Although previous findings showed that general 

intelligence affects children’s early arithmetic skills were replicated (Cowan et al., 

2005; Noël, 2009) with children’s nonverbal intelligence being a slightly stronger 

predictor of variance in arithmetic tasks, neither of these studies assessed children’s 

numeracy skills measured by transcoding. Göbel et al. (2014) showed that 

transcoding plays a crucial role in the development of arithmetic in six year-old 

children. The current study transferred these findings to pre-school children showing 

that four year-olds ability to translate between the Arabic numerals and verbal codes 
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also affects arithmetic performance. However, a different pattern emerged when 

investigating the performance of number wizards (high achievers on the number 

reading task) on arithmetic. Transcoding was the strongest unique predictor of 

arithmetic scores. Surprisingly, nonverbal intelligence was not a unique predictor, yet 

math-related language comprehension was uniquely predicting performance on 

arithmetic tasks. It seems that either nonverbal intelligence may not be as important 

once children’s number recognition (number reading) was taken into account or that 

the relationship in number wizards is different from the general population. This 

could be the subject of further study. However, the findings support the idea that 

knowing your numbers is crucial for the development of early arithmetic and suggest 

that children who have already mastered the Arabic numerals from one to ten may 

not rely on cognitive processes such as nonverbal intelligence but rather specialised 

math-related skills such as math-related language and transcoding (numerical 

knowledge). 

A different pattern of relationship can be found at Time 2, with math-related 

language comprehension and counting being the only two unique predictors of 

children’s performance on arithmetic tasks. It seems that counting may be the 

stronger predictor confirming previous research findings that counting may be 

crucial for attainment of arithmetic (Butterworth, 2005; Desoete and Grégoire, 2006; 

Nunes and Bryant, 1996; Gelman and Gallistel, 1978). Indeed, researchers reported 

that counting is important for calculation (Ansari, Donlan, Thomas, Ewing, Peen and 

Karmiloff-Smith, 2003; Cowan et al, 2005). Furthermore, Donlan et al. (2007) found 

a strong association between counting and calculation suggesting that the 

performance on both tasks draw from a common representational system.  

Moreover, the results regarding math-related language comprehension 

support the notion that language impacts early arithmetic (Donlan et al., 1998; 

Donlan, and Gourlay, 1999; Fazio, 1994; 1996; Donlan et al., 2007; Cowan et al., 

2005; Kleemans et al., 2011; 2012). However, most studies more general language 

skills neglecting language specific to mathematics. Indeed, this study found that 

arithmetic may be predicted by language specific to mathematics.  

Neither nonverbal intelligence nor transcoding significantly contribute to 

explaining the variance in children’s arithmetic scores at 4;11 years. However, the 

Time 2 path model only included few variables, most of them numeracy tasks. It will 
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be interesting to examine if counting and math-related language may longitudinally 

become a key foundation of arithmetic.  

 At Time 3, counting was a unique predictor of arithmetic, as was symbolic 

comparison tasks. These results confirm previous findings that counting 

(Butterworth, 2005; Desoete and Grégoire, 2006; Nunes and Bryant, 1996; Gelman 

and Gallistel, 1978; Ansari et al., 2003; Cowan et al, 2005) and symbolic magnitude 

comparison (Holloway and Ansari, 2009; de Smedt et al., 2013; Siegler, 2016) are 

important concurrent predictors of children’s arithmetic ability. 

Comparable to the results from Time 3, magnitude comparison seems to play 

a crucial part in children’s performance on arithmetic tasks at Time 4. The 

contribution of transcoding was only marginally significant which suggests that it 

may not substantially contribute to explaining the variance of arithmetic at five years 

and ten months of age. It seems that the influence of transcoding diminishes over 

time in favour of the strengthened relation between arithmetic and magnitude 

comparison. Also, this is the first time that symbolic and nonsymbolic comparison 

tasks load onto a unitary factor rather than two distinct factors which may explain 

why magnitude comparison impacts arithmetic so strongly. 

 At Time 5, transcoding and the general magnitude comparison factor 

uniquely predicted arithmetic scores, with transcoding being the stronger predictor. 

These findings support the hypothesis that the ability to translate between Arabic 

numeral and their verbal code crucially impact the development of early arithmetic. 

Interestingly, it is widely held that working memory contributes to arithmetic skills 

in typically developing children (Berg, 2008; Kleemans et al., 2012) and central 

executive functioning in particular (Gathercole and Pickering, 2000). Gilmore et al. 

(2014) proposed that executive functioning may consist of three types: working 

memory, inhibition and shifting. Previous research typically used recall tasks, such 

as digit recall, listening recall or backward digit recall which are more in line with 

monitoring and manipulating information (working memory). Also, digit recall tasks 

may share cognitive processes with arithmetic because they tap into numerical 

knowledge and processes. The executive functioning task in this study was assessing 

inhibition aspects of executive functioning which may explain why the current 

measure of executive functioning was not a powerful predictor of early arithmetic at 

Times 4 and 5.  
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Overall, transcoding, children’s ability to translate between spoken and 

symbolic form of numbers, seems to play the most consistently important role in the 

development of early arithmetic skills. Transcoding may not have been the strongest 

or only predictor at times, and other factors may also impact the development of 

early arithmetic at different time points. At an early, pre-school age, it appears that 

nonverbal intelligence, counting and math-related language, particularly children’s 

understanding of more, in addition to transcoding, affect the performance on 

arithmetic tasks. These relations however, weaken in favour of the relationship with 

magnitude comparison in early school years (Year One). After children entered the 

formal schooling system, both transcoding and a general magnitude comparison 

factor were crucial for arithmetic development.  

The transcoding factor entails both Arabic-digit knowledge and place-value 

understanding. According to previous research, children’s understanding of place-

value may be a key foundation for the development of later arithmetic skills. Möller, 

Pixner, Zuber, Kaufmann, and Nürk (2011) showed that seven-year-olds place-value 

understanding predicted their performance on addition tasks two years later.  

Additionally, this study confirms previous research findings which suggest 

that Arabic-digit knowledge at school entry may play a crucial role on children’s 

arithmetic development (Kolkman et al., 2013; Krajewski and Schneider, 2009; 

Mundy and Gilmore, 2009). This relationship appears to be directly analogous to the 

critical longitudinal role of early letter knowledge on the development of reading 

skills (Caravolas et al., 2012; Hulme, Bowyer-Crane, Carroll, Duff, and Snowling, 

2012). Indications from latent factor correlations at Time 5 suggest that learning 

arithmetic may share some developmental pathways with learning to read. It appears 

that learning the symbol set (Arabic numerals or letters) and their verbal labels is a 

critical foundational skill for later literacy and arithmetic skills. 

It must be critically mentioned that not all measures were assessed at all 

testing points, thus constraining conclusions drawn about the concurrent prediction 

of arithmetic and the change of the relationships with arithmetic over time. Also, the 

testing procedure of tasks was changed to adjust for children’s growing learning 

experience in the tasks measured (see assessment of magnitude comparison and 

arithmetic for more details). Further studies are needed to investigate the concurrent 

prediction using the same tasks at all testing points to enable comprehensive 
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conclusions about prediction of early arithmetic and how the concurrent relationships 

may change over time.   

Although cross-sectional relationships may draw attention towards special 

and changing relations between arithmetic and its precursors, they do not test 

longitudinal prediction of arithmetic skills. 
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Chapter 5. Longitudinal Prediction of Early Arithmetic 

 Recent longitudinal studies investigating the influence of ANS measures on 

math achievement produced mixed results (Desoete et al., 2012; Lyons et al., 2014; 

Kolkman et al., 2012). Lyons and colleagues (2014) explored the prediction of 

arithmetic through primary school and found no evidence that individual differences 

on nonsymbolic comparison were a unique predictor of arithmetic scores at any 

grade. Kolkman et al. (2012) examined the relationship between arithmetic and 

nonsymbolic, symbolic and number estimation skills at age four, five and six. The 

findings suggest that nonsymbolic, symbolic and number estimation skills were 

separate skills at a younger age integrating over time into one general numeracy 

skills concept. Only children’s number estimation skills were uniquely predictive of 

math performance at six years. A recent study by Göbel et al. (2014) addressed the 

relation between nonsymbolic and symbolic judgement tasks and their role as 

longitudinal predictors of arithmetic development in six-year-olds. The path model 

revealed that number identification was the most powerful longitudinal predictor of 

arithmetic skills at age seven, apart from the auto-correlate.  

The main focus of this chapter is to identify the longitudinal predictors of 

arithmetic across a two year period focusing on the role of ANS and language in 

particular. To capture children’s pre-school abilities before formal schooling, it was 

decided that the base model should be the concurrent model at Time 1 (Chapter 4). 

This base model was then regressed onto arithmetic performance at Times 2, 3, 4 and 

5. 

5.1 Methods. 

The same participants were used as described in Chapter 2 (p. 42) 

5.1.2 Materials. 

Children were assessed on the following measures. 

 5.1.2.1 Baseline Prediction Model assessed at Time 1.  

The following tasks were administered individually to the four nursery 

classes in the summer term of the nursery age (four years; see Chapter 4, pp. 76-79 

for more details): Nonverbal intelligence (Raven’s CPM; Raven et al., (1993), 
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grammatical ability (TROG-2; Bishop, 2003), vocabulary (BPVS - III; Dunn et al., 

2010), specific math-related language ability (TRC), transcoding (Number 

Identification, Number Writing and Reading Arabic numerals),  rote counting and 

symbolic and nonsymbolic magnitude comparison.  

 5.1.2.2 Arithmetic Skills.  

Time 1. The children’s basic arithmetic skills were assessed using simple 

addition problems. The test comprised ten simple additions with sums less than ten 

(1 + 3; 2 + 1; 2 + 2; 1 + 4; 3 + 1; 1 + 5; 2 + 3; 1 + 6; 3 + 3; 4 + 4). All arithmetic 

problems were presented in Arabic notation (MS Office 2013, Comic Sans MS, size 

260) and, simultaneously, in spoken form most familiar to the child. Problems were 

arranged so that additions with same sums or similar summands were never adjacent. 

Children were encouraged to use wooden sticks provided or their fingers if needed. 

Before two practice problems (1 + 1, 1 + 2) were administered, the preferred method 

of referring to additions (“add” or “plus”) was determined by asking the teachers. 

Testing was only terminated early if a child showed signs of confusion or lack of 

concentration. The maximum score was ten.  

Time 2. Due to the ceiling level performance at Time 1, the following 

adjustments have been made to the basic addition task: 

Two parallel forms of the tasks have been created which comprised of ten simple 

additions with sums less than ten (both forms were equal in difficulty level; Form A: 

1 + 3; 2 + 1; 1 + 5; 2 + 3; 4 + 5; 7 + 2; 3 + 5; 4 + 2; 5 + 2 and 2 + 6; Form B: 1 + 4; 3 

+ 1; 2 + 5; 4 + 2; 1 + 6; 3 + 6; 2 + 7; 6 + 2; 4 + 3 and 3 + 5). To raise the sensitivity 

of the task further, children were given only three minutes to solve as many problems 

as possible. The two forms were given in two separate testing sessions. To avoid 

training effects, the order of the forms was counterbalanced. The total number of 

correctly solved problems was recorded. 

Time 3. Fluency. Children’s speeded arithmetic skills (fluency) was assessed 

using the ‘addition’ and ’addition with carry’ subtests of the TOBANS (Brigstocke et 

al., 2016). Children were asked to complete as many arithmetic problems as possible 

in one minute. In the ‘addition’ subtask, children were presented with simple 

addition problems with sums less than ten and in the ‘addition with carry’ subtask the 

sums were greater than ten but less than twenty. One point was awarded even if the 
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numeral was written backwards (maximum score addition = 90; maximum score addition 

with carry = 30). This task was administered as a group task according to the manual. 

Time 4. Fluency. In addition to the same tasks as at Time 3 (addition and 

addition with carry), children were also presented with the ‘subtraction’ subtask 

(Brigstocke et al., 2016). Similar to addition, children were asked to solve as many of 

the 90 subtraction problems as possible in one minute.  

Time 5. Fluency. The same tasks as at Time 4 were used (see above for more 

details). 

Accuracy. Children’s basic arithmetic skills were assessed using the 

Numerical Operations subtest of the second edition of the Wechsler Individual 

Achievement Test (WIAT-II; Wechsler, 2005). The first six items (identifying and 

writing Arabic numerals) were excluded because we were only interested in a more 

conventional measure of arithmetic. The test was executed according to the manual 

and children were allowed to complete the task in their own time (maximum score = 

25).  

5.1.3. Procedure. 

All measures in this chapter were part of comprehensive test battery. Tests 

were divided into 20 to 40-minute-blocks at each time point to counterbalance effects 

of order such as learning and motivational effects. Even the testing order within each 

block was counterbalanced. Testing was carried out five times over a 25-month 

period from the summer term of nursery through to the summer term of Year One. 

Wherever possible, each child was seen by the same experimenter. The main 

researcher was assisted by several research assistants from undergraduate psychology 

classes. They were trained on how to administer the test battery and were given 

instructions on how to work with young children. The baseline predicting model was 

assessed individually at Time 1. Children’s arithmetic skills were tested individually 

at Times 1 and 2. Arithmetic tasks at Times 3, 4 and 5 were administered in small 

groups in a separate room or another quiet place in the school. Each child met with 

the experimenter ideally two to four days in a row, depending on the number of 

blocks, to avoid lack of motivation or concentration. If testing in groups, the ratio of 

experimenters to children was 1:3.  
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Preliminary to the testing, the experimenters attended at least one day in each 

class so that the children got to know them and felt more comfortable around them. 

Moreover, the experimenters told each child that they would play games and asked 

questions such as “How are you?” or “How old are you?”.  

All unstandardized tests included practice items. Concerning feedback, 

children received only concrete feedback on their performance for practice items and 

general praise and encouragement throughout the tests. 

 5.2 Results. 

To answer this research question concerning the longitudinal prediction of 

early arithmetic, a set of SEM path models were estimated with Mplus Version 7 

(Muthén and Muthén, 2013) using the Time 1 concurrent prediction model as the 

base model onto which arithmetic scores at later time points were regressed. 

Dependent variable was the latent arithmetic factor at each testing point and 

independent variables included the latent factors of the baseline Time 1 model: 

nonverbal ability, general language comprehension, math-related language 

comprehension, counting, transcoding, nonsymbolic and symbolic magnitude 

comparison as well as the auto-correlate arithmetic Time 2. To visually simplify the 

path models, the coefficients of the relations between the factors are not presented 

but can be found in Appendix 21 (and Appendix 22 for number wizards). 

 5.2.1 Descriptive Statistics. 

 The descriptive analysis of all measures taken at all testing points can be seen 

in Table 5.1. Descriptive statistics were conducted using IBM SPSS Statistics 22. It 

emerged that performance of all tasks assessed increased over time. Children’s math-

related language comprehension improved over time, but clear ceiling effects were 

present at Time 5. It is worth mentioning that only their understanding of more was 

assessed at Time 1.  

 Children’s performance on number writing and number reading showed clear 

ceiling effects with 45% of children achieving a maximum score on number reading 

at Time 1. Furthermore, neither floor nor ceiling effects were present regarding the 

number identification task.  
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 Focusing on the descriptive statistics of arithmetic, there was a ceiling effect 

at Time 1 with 17 children reaching the maximum score. Hence the arithmetic task 

was administered with a time constraint at Time 2 (children had three minutes to 

complete ten additions). Although fewer children scored at ceiling level at Time 2, 

the data suggested that this measure was still too easy at the age of four years and 

four months and would have probably been too easy at later testing points. Thus the 

TOBANS was introduced at Time 3. All measures of TOBANS improved over time 

and there were floor effects present at ‘addition with carry’ subtask at Times 3 and 4 

and the ‘subtraction’ subtask at Time 4. Furthermore, the WIAT-II was assessed at 

Time 5. All items of the test were administered and converted into standard scores. 

This sample scored within normal range (M = 102.77, SD = 1.14) suggesting that the 

sample was representative of the population regarding mathematical skills. Raw 

scores were used in further analyses. However, the first six items (identifying and 

writing Arabic numerals) were excluded in order to avoid confounding with other 

measures, and to provide a purer and more conventional measure of arithmetic. 
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Table 5.1 

Mean and standard deviations of predictor and criterion measures from all testing sessions 

  Time 1 Time 2 Time 3 Time 4 Time 5 

  M (SD) M (SD) M (SD) M (SD) M (SD) 

Nonverbal IQ Raven’s CPM 6.45 (1.57)     

Working 

Memory 

Visual Search Easy: 3.98 (1.70) [3]*     

Language 

Comprehension 

TROG-2 3.15 (2.63)*     

Vocabulary BPVS-III 58.26 (16.77)*     

Math-related 

Language 

TRC 

 

5.90 (2.00)*     

Numerical 

Knowledge 

Number Writing 6.86 (5.79)*     

 Number Reading 8.02 (2.67) [45]*     

 Number 

Identification 

7.26 (2.60)*     

 Rote Counting 14.78 (12.84)*     
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Magnitude 

Comparison 

Congruent (FS) 

Incongruent (SA) 

33.89 (5.87) 

34.34 (4.98) 

61.15 (7.85) 

58.54 (7.31) 

57.74 (21.54) 

53.21 (20.20) 

75.32 (20.19) 

68.83 (18.69) 

84.92 (25.42) 

77.45 (23.11) 

Arithmetic Addition Tasks 6.33 (3.21) [17]* A: 5.23 (2.51) [3] 

B: 5.15 (2.55) [8]* 

  Addition: 6.02 (1.51) 

[10] 

Subtraction: 5.04 (2.41) 

[10] 

 TOBANS 

Addition 

Addition w/ carry 

Subtraction 

   

6.23 (4.55) 

1.75 (2.20) 

 

 

8.36 (5.09) 

2.56 (2.74) 

5.30 (4.12) 

 

12.74 (8.66) 

5.07 (5.01) [1] 

8.44 (5.10) 

 WIAT     4.00 (2.27) 

Notes.  M = mean age. SD = standard deviation 
* 

individually administered tasks. The number of children scoring at maximum are shown in square brackets. All scores are 

presented as raw scores. For the Magnitude Comparison Tasks: NS = nonsymbolic. FS = fixed size trials. SA = surface-area matched trials.  
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 5.2.2 Predicting Time 2.   

 Investigation of longitudinal prediction of early arithmetic after nine months 

included the Time 1 base model (independent variables) regressed onto arithmetic 

(dependent variable) taken at Time 2 (mean age 4 years and 11 months). The Time 1 

base model was established as follows: The analysis of concurrent prediction of 

arithmetic at pre-school age included the latent predictive variables nonverbal 

intelligence (Raven’s CPM), general language comprehension (BPVS-III and 

TROG-2), math-related language (TRC) and transcoding (number writing, reading 

and identification), counting skills (rote counting) as well as the two magnitude 

comparison constructs (symbolic and nonsymbolic comparison) and the outcome 

variable arithmetic (data of addition task was split into two manifest variables – odd 

and even numbered problems). Nonverbal intelligence, math-related language 

comprehension and counting were each assessed by only one indicator (Raven’s 

CPM, TRC and rote counting), which may distort the data as a result of measurement 

errors. Thus, these indicators were pre-specified with an error reflecting the 

reliability of the variable calculated on the sample. All manifest variables loaded 

significantly on their proposed latent constructs. It is worth mentioning that the easy 

nonsymbolic comparison surface-area matched ratio 2:3 had the weakest loading of 

the comparison tasks. The path model depicted in Figure 4.3 provided an excellent fit 

(see Chapter 4, p. 91).  

The path model depicted in Figure 5.1 shows the longitudinal predictors of 

early arithmetic at Time 2. The model fit was acceptable, χ2 (84) = 99.058, p = .125, 

RMSEA = .036 (90% CI = .000 - .061), CFI = .962, SRMR = .064. Transcoding and 

math-related language comprehension uniquely predicted arithmetic at Time 2 

(71.4% of variance explained).  However, this models did not include the 

autoregressor (arithmetic taken at Time 1). The model with autoregressor arithmetic 

Time 1 (shown in Figure 5.2) provided a similar fit to the data as the previous model, 

χ2 (111) = 127.824, p = .131, RMSEA = .033 (90% CI = .000 - .056), CFI = .969, 

SRMR = .060. In Chapter 4 it was noted that nonverbal intelligence and transcoding 

uniquely contributed to explaining the variance of the concurrent outcome arithmetic 

at Time 1 (63.8% of variance explained), whereas math-related language 

comprehension just did not contribute to predicting arithmetic at Time 1. Thus the 

concurrent model was not confirmed by the prediction pattern for the longitudinal 
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data (Times 1 and 2), with or without the autoregressor, in which transcoding and 

math-related language comprehension were significant unique predictors of 

arithmetic (72.9% of variance explained). Interestingly, the autoregressor did not 

uniquely predict arithmetic at Time 2.  

Figure 5.1. Prediction of arithmetic at Time 2 by Time 1 base model without autoregressor. 

* p < .05. ** p < .01. 

Figure 5.2. Prediction of arithmetic at Time 2 by Time 1 base model with autoregressor * p 

< .05. ** p < .01. 
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 5.2.3 Predicting Time 3. 

Next, longitudinal prediction of children’s performance of arithmetic 16 

months later (autumn term Year One) was modelled using the Time 1 base model 

(independent variables) and arithmetic outcomes of the TOBANS subtasks from 

Time 3 (independent variable). Because the path models with autoregressor (Times 1 

and 2) were similar in fit and predictors, it was decided that only one path model 

with autoregressor will be compared henceforward to the model without the 

autoregressor. The Time 2 autoregressor was chosen based on the fact that 

assessment of arithmetic at Time 1 showed ceiling effects and differed in 

methodology (not constrained for time). First, the base model was regressed on Time 

3 arithmetic without the autoregressor and the second model investigated prediction 

with Time 2 autoregressor present. The models included correlated error between 

number reading and number identification because of a systematic misunderstanding 

of the items which causes correlated measurement errors. Children who cannot read 

the Arabic numerals will struggle with the number identification task as well. 

 Figure 5.3 shows the prediction model without the autoregressor confirming 

the results found in predicting Time 2 that the latent variable transcoding, children’s 

understanding and ability to manipulate the Arabic numeral system, was the only 

unique predictor with an acceptable model-fit to the data, χ2 (84) = 100.915, p = 

.101, RMSEA = .038 (90% CI = .000 - .062), CFI = .963, SRMR = .063. Transcoding 

explained 51% of the variance.  
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Figure 5.3. Prediction of arithmetic at Time 3 by Time 1 base model without autoregressor. 

* p < .05. ** p < .01. 

Figure 5.4. Prediction of arithmetic at Time 3 by Time 1 base model with autoregressor * p 

< .05. ** p < .01. 

The model with autoregressor is displayed in Figure 5.4. The model provided 

an excellent fit to the data, χ2 (112) = 130.483, p = .112, RMSEA = .034 (90% CI = 

.000 - .056), CFI = .967, SRMR = .067. Similar to the first model, transcoding was 

the only unique predictor of arithmetic at Time 3 and the autoregressor Time 2 was 

not a significant predictors (the model explained 53.9% of the variance).  
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 5.2.4 Predicting Time 4. 

Similar to Time 3, two models (without autoregressor and with autoregressor 

Time 2, shown in Figure 5.5 and 5.6) were conducted to investigate the longitudinal 

prediction of the Time 1 base model (independent variables) onto arithmetic skills at 

Time 4 (independent variable comprised latent factor of TOBANS subtasks assessed 

in spring term of Year One, 20 months after Time 1). The path model without the 

autoregressor provided an adequate fit to the data, χ2 (100) = 117.411, p = .113, 

RMSEA = .035 (90% CI = .000 - .059), CFI = .969, SRMR = .065. The findings 

support previous results that children’s ability to translate between verbal number 

codes and Arabic numerals (transcoding) was the only unique predictor of early 

arithmetic, explaining 45.9% of the variance. The same pattern can be observed 

when using the autoregressor arithmetic Time 2 (model-fit to data was acceptable, χ2 

(130) = 146.419, p = .154, RMSEA = .030 (90% CI = .000 - .052, CFI = .975, SRMR 

= .068, 47% of variance explained). 

Figure 5.5. Prediction of arithmetic at Time 4 by Time 1 base model without autoregressor. 

* p < .05. ** p < .01. 
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Figure 5.6. Prediction of arithmetic at Time 4 by Time 1 base model with 

autoregressor * p < .05. ** p < .01. 

 5.2.5 Predicting Time 5. 

The last set of longitudinal prediction models investigated which Time 1 

latent, independent variables play an important role in children’s performance of 

arithmetic 25 months later (latent factor consisting of TOBANS subtasks and WIAT-

II in summer term of Year One). The nonsymbolic magnitude comparison subtask 

surface-area matched ratio 2:3 was excluded because it loaded poorly on the 

hypothesised latent variable nonsymbolic magnitude comparison (p = .02). 

The SEM path models showed that transcoding uniquely predicted arithmetic 

corroborating the previous finding that children’s understanding of the Arabic 

numeral system as well as their ability to translate between numerals and verbal 

codes may be central to the development of early arithmetic skills (48.3% of variance 

explained). Figure 5.7 depicts the model without the autoregressor (model-fit: χ2 

(100) = 115.579, p = .137, RMSEA = .033 (90% CI = .000 - .057), CFI = .974, SRMR 

= .070). The model with Time 2 autoregressor provided an acceptable fit to the data, 

χ2 (130) = 151.006, p = .100, RMSEA = .033 (90% CI = .000 - .054), CFI = .969, 

SRMR = .070, 43.2% of variance explained (Figure 5.8). In accordance with previous 

longitudinal path models, the autoregressor was not a unique significant predictor of 

arithmetic assessed 25 months later. 
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Figure 5.7. Prediction of arithmetic at Time 5 by Time 1 base model without autoregressor. 

* p < .05. ** p < .01. 

Figure 5.8. Prediction of arithmetic at Time 5 by Time 1 base model with autoregressor * p 

< .05. ** p < .01. 

Similar to the previous chapters, the same Time 5 model with Time 1 

arithmetic as autoregressor (Figure 5.9) was conducted only using the data for 

number wizards (high achievers on the number reading task). However, the findings 

from chapter three suggest that the magnitude comparison tasks should form one 

factor rather than two distinct factors. Also, surface-area matched stimuli with 
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symbolic far items were removed due to the fact that they did not significantly load 

onto the hypothesised general magnitude comparison factor. The number reading 

task was also removed since this analysis only investigates children who have 

achieved the maximum score. The model provided an acceptable fit to the data, χ2 

(104) = 113.377, p = .249, RMSEA = .045 (90% CI = .000 - .092), CFI = .962, SRMR 

= .084, with 53.0% of variance explained. Confirming previous results, transcoding 

and math-related language (both Time 1) comprehension were significant predictors 

of arithmetic at Time 1 and only transcoding at Time 1 was a significant longitudinal 

predictor of children’s arithmetic scores assessed at Time 5. The prediction from the 

autoregressor arithmetic at Time 1 was not significant. 

  

Figure 5.9. Prediction of children’s arithmetic performance at Time 5 by Time 1 base model 

with autoregressor Time 1. The model was run using only the data from high achievers on 

number reading task at Time 1. * p < .05. ** p < .01. 

 Correlations. The correlations between the latent constructs are shown in 

Table 5.2 to 5.5 (for the path models with Time 2 as the autoregressor). The 

correlation matrices revealed the same correlation pattern across time thus only 

crucial associations that are stable over time will be discussed.  

It seems that the latent outcome variable arithmetic correlated with all other 

variables, except nonverbal intelligence. Moreover, math-related language 

comprehension was poorly related with arithmetic and the highest correlation was 

transcoding which confirmed the findings of prediction of the SEM path models. 

Furthermore, the variable transcoding correlated highly with counting as well as 

symbolic comparison whereas the relation to nonsymbolic comparison was fairly 
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weak. It is worth mentioning that counting was associated with transcoding and 

arithmetic. It seems that numeracy tasks are highly related sharing similar cognitive 

processes. Interestingly, correlations with nonverbal intelligence were not significant 

but for nonsymbolic comparison. 

 5.3 Conclusion. 

This chapter explored the longitudinal prediction of early arithmetic in 

typically developing children over a 25-months period. The main focus was to what 

extent the ANS and language comprehension specific to mathematical abilities 

constrain the development of early arithmetic (Libertus et al., 2011; Libertus, 

Feigenson and Halberda, 2013; Piazza and Dehaene, 2004) and furthermore, to what 

extent transcoding skills impact early arithmetic. In regards of the results from 

concurrent prediction of arithmetic (Chapter 4), the findings confirmed that 

transcoding, children’s understanding of the Arabic numeral system, was the only 

stable longitudinal precursor of early arithmetic skills.  

To sum up, transcoding and math-related language comprehension at Time 1 

were the only unique longitudinal predictors of children’s performance on arithmetic 

tasks after nine months. It seems that children’s early transcoding performance was a 

slightly stronger predictor of variance in arithmetic tasks than their math-related 

language comprehension. The autoregressor arithmetic assessed at Time 1 was not 

uniquely predicting arithmetic. The Time 1 arithmetic measure varied in method and 

administration from arithmetic at Times 2, 3, 4 and 5. It was not constrained for time 

and showed ceiling effects.  

The results regarding math-related language comprehension support the 

notion that language impacts early arithmetic. However, most studies have assessed 

language skills more generally, rather than focusing on language specific to 

mathematics. Indeed, this thesis may be the first to identify prediction of arithmetic 

from math-specific language. The findings indicate in particular that understanding 

of more, may be an important foundation in the development of arithmetic.  
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Table 5.2 

Correlations between Time 1 baseline model and arithmetic at Time 2 (n = 142) 

 1 2 3 4 5 6 7 8 9 

1. Nonverbal Intelligence --- .303 .173 .380 .194 .321 .596** .642** .387* 

2. Language  ---- .601** .514** .283 .603** .463** .479** .573** 

3. Math-related Language   --- .323* .219 .517** .367** .448** .627** 

4. Transcoding    ---- .672** .653** .415** .625** .728** 

5. Counting     ---- .392* .326* .393** .484** 

6. Symbolic Comparison      ---- .551** .518** .615** 

7. Nonsymbolic Comparison       ---- .518** .448** 

8. Arithmetic Time 1        ---- .685** 

9. Arithmetic Time 2         ---- 

Notes.  Pearson product-moment correlation coefficient. * p < .05. ** p < .01 
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Table 5.3 

Correlations between Time 1 baseline model with Time 2 autoregressor and arithmetic at Time 3 (n = 143) 

 1 2 3 4 5 6 7 8 9 

1. Nonverbal Intelligence --- .238 .246 .397* .179 .208 .581** .330 .296* 

2. Language  ---- .581** .496** .271 .594** .456** .532** .403** 

3. Math-related Language   --- .302* .204 .508** .375** .607** .325** 

4. Transcoding    ---- .666** .612** .405** .693** .706** 

5. Counting     ---- .375* .312* .463** .470** 

6. Symbolic Comparison      ---- .541** .565** .471** 

7. Nonsymbolic Comparison       ---- .391** .316** 

8. Arithmetic Time 2        ---- .635** 

9. Arithmetic Time 3         ---- 

Notes.  Pearson product-moment correlation coefficient. * p < .05. ** p < .0 
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Table 5.4 

Correlations between Time 1 baseline model with Time 2 autoregressor and arithmetic at Time 4 (n = 143) 

 1 2 3 4 5 6 7 8 9 

1. Nonverbal Intelligence --- .231 .241 .415* .169 .195 .578** .346* .289* 

2. Language  ---- .581** .479** .264 .519** .451** .538** .354** 

3. Math-related Language   --- .304* .204 .504** .372** .630** .266** 

4. Transcoding    ---- .672** .622** .397** .707** .678** 

5. Counting     ---- .359* .304* .474** .456** 

6. Symbolic Comparison      ---- .535** .584** .443** 

7. Nonsymbolic Comparison       ---- .396** .286** 

8. Arithmetic Time 2        ---- .552** 

9. Arithmetic Time 4         ---- 

Notes.  Pearson product-moment correlation coefficient. * p < .05. ** p < . 
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Table 5.5 

Correlations between Time 1 baseline model with autoregressor Time 2 and arithmetic at Time 5 (n = 148) 

 1 2 3 4 5 6 7 8 9 

1. Nonverbal Intelligence --- .236 .240 .410* .182 .203 .520** .338 .270* 

2. Language  ---- .589** .496** .276 .598** .403** .549** .328** 

3. Math-related Language   --- .306* .206 .506** .348** .637** .205* 

4. Transcoding    ---- .671** .630** .358** .693** .657** 

5. Counting     ---- .370* .267 .465** .441** 

6. Symbolic Comparison      ---- .496** .583** .415** 

7. Nonsymbolic Comparison       ---- .360** .236** 

8. Arithmetic Time 2        ---- .460** 

9. Arithmetic Time 5         ---- 

Notes.  Pearson product-moment correlation coefficient. * p < .05. ** p < .0
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 A stable pattern emerged that only transcoding at Time 1 was uniquely 

predicting arithmetic skills after 16-months, 20-months and even 25-months and 

children’s math-related language comprehension may not play an important role in 

children’s performance on arithmetic tasks anymore when investigating the 

prediction of arithmetic over a longer period. The autoregressor arithmetic assessed 

at Time 2 were not unique predictors of arithmetic. The findings suggest that 

children’s ability to translate between Arabic numerals and verbal codes substantially 

impacts the development of early arithmetic skills. The lack of significant prediction 

from the autoregressor suggests a change in the nature of arithmetic performance at 

different time points, possibly accounting for the limited timeframe of prediction 

from math specific language comprehension. 

Although the concurrent model showed that nonverbal ability predicted 

arithmetic skills at Time 1 (Chapter 4), this was not confirmed longitudinally. 

Results from the concurrent prediction of arithmetic examining only the performance 

of number wizards (high achievers on the number reading task) found that children’s 

nonverbal intelligence was not a significant predictor of arithmetic. However, 

nonverbal ability was a unique predictor when analysing the whole sample. These 

findings suggest that pre-schooler’s nonverbal intelligence may not be as important 

once children’s number recognition (number reading) skills are sufficiently 

developed. This implies that the link between general intelligence and mathematical 

skills (Cowan et al., 2005; Noël, 2009) may be mediated by early number recognition 

skills.  

Moreover, children’s counting scores were a concurrent predictor of early 

arithmetic at Times 2 and 3 (Chapter 4) confirming a number of previous research 

findings (Butterworth, 2005; Desoete and Grégoire, 2006; Nunes and Bryant, 1996; 

Gelman and Gallistel, 1978; Ansari et al., 2003; Cowan et al, 2005; Donlan et al. 

(2007)).  Most studies assessed concurrent prediction rather than longitudinal, though 

Desoete and Grégoire (2006) reported in their longitudinal study that children 

performing poorly in arithmetic in grade 1 already struggled in pre-school with 

number sequence knowledge. The current results reveal that though concurrently 

predicting arithmetic, children’s performance on counting tasks was not a significant 

longitudinal predictor of arithmetic as suggested in some models of arithmetic 

development (Aunola et al., 2004; Zhang et al., 2014 and LeFevre et al., 2010)). 
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Nonetheless, high longitudinal correlations have been reported between counting and 

arithmetic (Zhang et al., 2014).  

Aunola et al. (2004) found that counting was the strongest longitudinal 

predictor of five-to six-year-olds math achievement. They measured counting in a 

more complex way than in the current study, including rote counting, counting 

forwards and backwards from given number and counting in steps. Of particular 

interest is the fact that Aunola et al. (2004) included a number identification task 

(similar to measure used in the current study) as part of the outcome measure of 

maths. It could be that the administration of a broader, more complex counting task 

as well as the difference in designing the SEM path model (number identification 

was part of the outcome math measure in Aunola et al. (2004) compared to being a 

predictor in the current path models) may be reason for the contrasting results.  

Also, LeFevre et al. (2010) showed that linguistic and spatial skills form 

distinct pathways in the development of arithmetic. Linguistic skills contributed to 

symbolic number system (number naming) and spatial attention skills were related to 

various math outcome measures (number naming and magnitude comparison). The 

two links between arithmetic and linguistic skills as well as spatial attention may be 

mediated by counting sequence knowledge. Zhang et al. (2014) reported in their 

longitudinal study that children’s pre-school letter knowledge and spatial 

visualisation were predicting first and third grade arithmetic performance. These 

associations were mediated by counting sequence knowledge assessed in first grade. 

Further research is necessary to determine the impact of counting on arithmetic 

development and whether the link between language and math achievement may be 

mediated by knowledge of the spoken number sequence.  

Likewise, measures of the ANS in the cross-sectional analysis (Chapter 4) 

were significantly predicting children’s arithmetic scores at Time 3, 4 and 5. 

Concerning the longitudinal role of ANS, the findings extend those by Göbel et al. 

(2014), indicating children’s accuracy in magnitude comparison tasks at four years, 

though strongly correlating with later arithmetic skills, is not a unique predictor of 

arithmetic skill assessed 25 months later. It was noted that, contrary to Göbel et al. 

(2014), the symbolic and nonsymbolic magnitude comparison tasks comprised of 

two independent latent factors. This questions previous findings concerning the 

involvement of the ANS in early arithmetic development (e.g., Piazza, 2010). Further 
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studies are necessary to clarify the longitudinal role of the ANS in the development 

of early arithmetic and whether the results hold stable for longer follow-up. 

It is important to take account of the finding that neither of the autoregressors 

(Time 1 and Time 2 arithmetic performance) significantly predicted arithmetic at 

later stages. This could be due to the fact that the testing procedure for early 

arithmetic was changed over the course of the study to adjust for children’s growing 

learning experience in arithmetic. In particular, there were ceiling effects in 

arithmetic scores assessed at Time 1, which children could complete in their own 

time. At Time 2, time to solve arithmetic was limited to three minutes, but the time 

given may have been too long to achieve high sensitivity at this age. It seems that the 

TOBANS was a sensitive measure of arithmetic and it may be interesting to see in 

future studies if children as young as four years can successfully perform on the 

TOBANS. 

Also, the Time 1 counting measure (highest number produced in correct 

order) produced high variability in scores. A more complex measure such as the 

composite of different counting tasks used by Aunola et al. (2004) may prove to be 

useful in further examining the relationship between ANS, counting, transcoding and 

arithmetic.  

A further constraint of the study was the relatively small sample size which 

makes it impractical to investigate more complex SEM path models including 

additional covariates of math achievement such as children’s early memory or spatial 

skills. Further large scale studies are needed to clarify longitudinal prediction using 

more sensitive and comprehensive measures to enable more detailed conclusions 

about prediction of early arithmetic, and to ascertain whether the findings hold stable 

for longer-term follow-up. 
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Chapter 6. Relations between Inhibitory Control, Approximate Number 

System and Early Arithmetic 

A number of studies provide evidence for the link between the ANS and math 

achievement (Halberda et al., 2008, Libertus et al., 2013 and Piazza et al., 2010). 

Some researchers argue that it is possible that this link may not be driven by 

numerical processing but inhibition skills, based on the findings that children’s 

inhibition skills are reported to also strongly relate to math learning (Gilmore et al., 

2013, Gilmore et al., 2014 and Fuhs and McNeill, 2013). McCelland, Cameron, 

Connor, Farris, Jewkes and Morrison (2007) reported that four-year-olds’ 

behavioural regulation scores were significantly and positively correlated with their 

literacy, vocabulary and math skills after five months. 

In a recent study, Gilmore et al. (2013) showed that children performing 

nonsymbolic magnitude comparison tasks were less accurate on incongruent trials 

(where dot size and envelope area are negatively correlated with number of dots) 

than congruent trials (where dot size and envelope area are positively correlated with 

number of dots) suggesting that to solve incongruent problems children had to draw 

on the additional processing step of inhibitory control. Furthermore, the results 

showed that incongruent and not congruent items correlated significantly with maths 

achievement. They further argued that the correlation found between maths and dot 

comparison was driven by incongruent trials and hence children’s inhibition skills.  

In a second experiment they found that children’s performance on ANS tasks did not 

significantly predict math achievement once inhibition skills had been accounted for 

supporting the hypothesis that the relationship between ANS and arithmetic is not 

driven by the nature of underlying numerical representations but by inhibitory 

control demands of some dot comparison trials. However, the age range of the study 

was large (5 to 12 years in first experiment and 8 to11 years in second experiment), 

and children’s age was not taken into account. 

In addition, Fuhs and McNeill (2013) showed that nonsymbolic magnitude 

comparison was predicting children’s mathematical skills, but nonsymbolic 

comparison was not a predictor once inhibition was taken into account. All of these 

studies only investigated inhibition tasks and ANS neglecting other important 

covariates of math learning thus risking false attribution of causation. Gilmore et al. 

(2013) argues that their study has the benefit of including a naming task as well as an 
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inhibition measure, but this is still a limited model. Fuhs and McNeil (2013) have a 

low income sample but it is substantial. The age range of four to six may seem broad, 

but they controlled for age and the analysis was more comprehensive, though still 

failing to take account of children’s knowledge of symbolic versus nonsymbolic 

magnitude comparison. 

 To answer the research question concerning the relationship between 

inhibition, ANS and early arithmetic, the current chapter assesses to what extent 

children’s performance on early arithmetic tasks can be predicted by magnitude 

comparison and to what extent this relationship is driven by children’s inhibitory 

control. The same behavioural regulation task as used by McClelland et al. (2007) 

was administered. The analyses will only investigate performance on ANS and 

inhibition, although findings from Chapters 4 and 5 suggest that neither of the two 

measures may be crucial in math learning when a number of covariates such as 

transcoding are taken into account. 

 First, children’s performance on congruent and incongruent dot comparison 

items will be examined as well as their relationship to early arithmetic, replicating 

the first experiment of Gilmore et al. (2013). The second part of the chapter will 

replicate the second experiment of Gilmore et al. (2013), analysing the link between 

inhibition, ANS and arithmetic. 

 6.1 Congruent versus Incongruent ANS Trials. 

The experiment focuses on children’s performance on congruent (smaller 

array of dots covers a smaller area compared to larger array of dots with a larger 

surface; fixed size condition from Chapter 3) and incongruent (smaller array of dots 

covers larger area compared to larger array of dots with small surface; surface-area 

matched condition from Chapter 3) magnitude comparison tasks. The relationships 

between early arithmetic and congruent or incongruent items were examined to 

establish which of the two may be important in the development of arithmetic.  

 6.1.1 Method. 

 6.1.1.1 Participants. 

The same participants were used as described in Chapter 2 (p. 42)  
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 6.1.1.2 Materials. 

6.1.1.2.1 Measures taken at Times 1 and 2. 

Magnitude Comparison. Various nonsymbolic comparison tasks were 

created for the study, based on those used in Göbel et al. (2014). Each comparison 

pair was presented on a single page (see Figure 6.1). Children were given one point 

for every correct comparison with a maximum score of 16 for each version and 160 

overall (for more details see Chapter 3, pp.50). The experimenter made sure that 

children did not count the dots.  

 Congruent trials were the trials called fixed size. Because the size of dots was 

fixed, the larger array of dots was also the array with the larger area printed in black. 

Contrary, the incongruent items were the surface-area matched items where the area 

printed in black was the same, meaning the smaller array had bigger dots compared 

to the larger array. 

Arithmetic Skills. The children’s basic arithmetic skills at Time 1 were 

assessed using simple addition problems. The test comprised ten simple additions 

with sums less than ten (1 + 3; 2 + 1; 2 + 2; 1 + 4; 3 + 1; 1 + 5; 2 + 3; 1 + 6; 3 + 3; 4 

+ 4). All arithmetic problems were presented in Arabic notation (MS Office 2013, 

Comic Sans MS, size 260) and, simultaneously, in spoken form most familiar to the 

child. Problems were arranged so that additions with same sums or similar 

summands were never adjacent. Children were encouraged to use wooden sticks 

provided or their fingers if needed. Before two practice problems (1 + 1, 1 + 2) were 

administered, the preferred method of referring to additions (“add” or “plus”) was 

determined by asking the teachers. Testing was only terminated early if a child 

showed signs of confusion or lack of concentration. The maximum score was ten.  

Due to the ceiling effect performance at Time 1, the following adjustments 

were made to the basic calculation task for Time 2: Two parallel forms of the tasks 

have been created which comprised of ten simple additions with sums less than ten 

(both forms were equal in difficulty level; Form A: 1 + 3; 2 + 1; 1 + 5; 2 + 3; 4 + 5; 7 

+ 2; 3 + 5; 4 + 2; 5 + 2 and 2 + 6; Form B: 1 + 4; 3 + 1; 2 + 5; 4 + 2; 1 + 6; 3 + 6; 2 + 

7; 6 + 2; 4 + 3 and 3 + 5). To raise the sensitivity of the task even further, children 

had only three minutes to solve as many problems as possible.  The two forms were 

given in two separate testing sessions. To avoid training effects, the order of the 
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forms was counterbalanced. The total number of correctly solved problems was 

recorded. 

 6.1.1.2.2 Measures taken at Times 3, 4 and 5. 

Magnitude Comparison. A recent study by (Göbel et al., 2014) showed that 

children in Year One can successfully perform magnitude comparison tasks in a 

group setting. Thus the magnitude comparison task used in this study was redesigned 

as a group test using the same stimuli pairs created at Times 1 and 2. Nonsymbolic 

comparisons were presented in pairs of two adjacent 2.1 cm x 2.1 cm boxes. Children 

were asked to tick the bigger number or box with more dots (for more details see 

Chapter 3, pp.50). 

Arithmetic Skills. Fluency. Children’s speeded arithmetic skills (fluency) at 

Time 3 was assessed using the ‘addition’ and ’addition with carry’ subtests of the 

Test of Basic Arithmetic and Numeracy Skills (TOBANS; Brigstocke et al., 2016). 

Children were asked to complete as many arithmetic problems as possible in one 

minute. In the ‘addition’ subtask, children were presented with simple addition 

problems with sums less than ten and in the ‘addition with carry’ subtask the sums 

were bigger than ten but smaller than twenty. One point was awarded even if the 

numeral was written backwards (maximum score addition = 90; maximum score addition 

with carry = 30). This task was administered as a group task. 

 At Times 4 and 5, children were also presented with the ‘subtraction’ subtask 

of the TOBANS in addition to the ‘addition’ and ‘addition with carry’ subtasks. 

Similar to ‘addition’, children were asked to solve as many of the 90 subtraction 

problems as possible in one minute.  

Accuracy. Children’s basic arithmetic accuracy was assessed using the 

Numerical Operations subtest of the second edition of the Wechsler Individual 

Achievement Test (WIAT-II; Wechsler, 2005) at Time 5. The first six items 

(identifying and writing Arabic numerals) were excluded because we were only 

interested in a more conventional measure of arithmetic. The test was executed 

according to the manual and children were allowed to complete the task in their own 

time (maximum score = 25).  
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6.1.1.3 Procedure. 

The ANS and arithmetic tasks were part of a comprehensive test battery. 

Testing was carried out five times over a 25-month period from the summer term of 

nursery through to the summer term of Year One. Wherever possible, each child was 

seen by the same experimenter two to four days in a row. The main researcher was 

assisted by several research assistants from undergraduate psychology classes. They 

were trained on how to administer the test battery and were given instructions on 

how to work with young children. Children were tested in a separate room or another 

quiet place in the school.  

Arithmetic was assessed individually at Times 1 and 2 and in groups at Times 

3, 4 and 5. Children could solve the addition problems at Time 1 on their own time, 

whereas the Times 2, 3, 4 and 5 arithmetic tasks were time limited. Similarly, the 

magnitude comparison task at Times 1 and 2 were individually assessed and children 

were allowed to finish the tasks on their own time. The magnitude comparison task 

was re-designed as a group task at Time 3 and was hence forward assessed in a group 

setting with a ratio of experimenters to children of 1:3 (for order of fixed size and 

surface-area matched subtasks see Appendix 19). 

Preliminary to the testing, the experimenters attended at least one day in each 

class so that the children got to know them and felt more comfortable around them. 

Moreover, the experimenters told each child that they would play games and asked 

questions such as “How are you?” or “How old are you?”.  

All unstandardized tests included practice items. Concerning feedback, 

children received only concrete feedback on their performance for practice items and 

general praise and encouragement throughout the tests.  
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Table 6.1 

Mean and standard deviations of predictor and criterion measures from all testing sessions 

  Time 1 Time 2 Time 3 Time 4 Time 5 

  M (SD) M (SD) M (SD) M (SD) M (SD) 

Behavioural 

regulation 

HTSK   A: 14.71 (4.41) [9] 

B: 10.30 (5.90) ( 

[3]* 

A: 17.25 (3.00) [16] 

B: 15.47 (4.66) [16]* 

 

Magnitude 

Comparison 

Congruent (FS) 

Incongruent 

(SA) 

Digit Close 

Digit Far 

NS FS Close 

NS FS Far 

NS FS 2:3 

NS FS 3:4 

NS FS 5:6 

33.89 (5.87) 

34.34 (4.98) 

10.11 (3.21) [7] 

10.73 (3.59) [7] 

10.26 (2.16) [1] 

12.87 (2.57) [17] 

 

10.76 (2.72) [4] 

10.58 (2.29) [3] 

10.29 (2.28) [1] 

61.15 (7.85) 

58.54 (7.31) 

11.97 (3.07) [20] 

13.64 (3.33) [60] 

10.64 (2.20) [1] 

14.13 (2.04) [34] 

13.18 (2.35) [24] 

11.97 (2.44) [16] 

11.23 (2.28) [3] 

10.67 (2.00)  

57.74 (21.54) 

53.21 (20.20) 

10.90 (4.92) 

14.32 (4.85) 

9.99 (4.14) 

15.49 (6.11) 

13.90 (5.12) 

12.82 (5.38) 

9.86 (4.95) 

8.99 (3.64) 

75.32 (20.19) 

68.83 (18.69) 

13.04 (4.46) 

17.20 (5.33) 

12.12 (4.07) 

17.99 (5.31) 

17.63 (5.98) 

15.56 (5.23) 

12.40 (3.94) 

10.57 (3.77) 

84.92 (25.42) 

77.45 (23.11) 

16.89 (4.57) 

22.32 (5.82) [2] 

15.14 (4.33) 

21.68 (6.32) [3] 

21.98 (6.41) [4] 

19.68 (5.86) [2] 

14.81 (4.95) 

12.47 (3.93) 
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NS SA Close 

NS SA Far 

NS SA 2:3 

NS SA 3:4 

NS SA 5:6 

13.24 (2.43) [23] 

11.42 (2.42) [5] 

10.81 (2.03) [2]* 

13.49 (2.09) [19] 

12.37 (2.28) [8] 

11.56 (2.23) [3] 

10.45 (2.11) [1]* 

14.48 (5.93) 

12.68 (5.51) 

10.92 (5.14) 

9.60 (4.13) 

17.78 (5.45) 

16.14 (5.42) 

13.40 (4.90) 

11.34 (3.73) 

21.96 (6.30) [2] 

19.12 (6.45) 

17.35 (5.45) 

13.23 (4.60) 

Arithmetic Addition Tasks 6.33; 3.21 (17)* A: 5.23; 2.51 (3) 

B: 5.15; 2.55 (8)* 

  Addition: 6.02; 1.51 (10) 

Subtraction: 5.04; 2.41 

(10) 

 TOBANS 

Addition 

Addition w/ 

carry 

Subtraction 

   

6.23; 4.55 

1.75; 2.20 

 

 

8.36; 5.09 

2.56;2.74 

5.30; 4.12 

 

12.74; 8.66 

5.07; 5.01 (1) 

8.44; 5.10 

 WIAT     4.00; 2.27 

Notes.  M = mean age. SD = standard deviation 
* 

individually administered tasks. The number of children scoring the maximum score are shown in square brackets. All scores are 

presented as raw scores. For the Magnitude Comparison Tasks: NS = nonsymbolic. FS = fixed size trials. SA = surface-area matched trials.  
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 6.1.2 Results. 

The descriptive statistics of the congruent (fixed size) items and incongruent 

(surface-area matched) items are shown in Table 6.1. To answer the research 

question regarding the relationship between congruency and early arithmetic 

performance, it was decided to focus on inhibition and ANS only, to see whether the 

findings from Gilmore et al. (2013) can be replicated. More complex analyses of 

predictors of arithmetic are discussed in Chapters 4 and 5. Descriptive statistics are 

examined first, followed by simple linear regression run on IBM SPSS Statistics 22 

(dependent variable comprised of the composite score of arithmetic subtask raw 

scores and independent variables were composite scores for incongruent and 

congruent items from the magnitude comparison task), followed by structural 

equation modelling using MPlus Version 7. In the SEM path models, the dependent 

variable was the latent factor arithmetic and the independent variables were the latent 

factors for congruent and incongruent trials. Congruent trials were the trials called 

fixed size. In contrast, the incongruent items were the surface-area matched items.  

 6.1.2.1 Time 1. 

 Children answered 53.66% of the incongruent trials correctly (32 children 

scored below chance level), and 52.95% of congruent (42 children scored below 

chance level). On average, children did not perform significantly better on 

incongruent trials (M = 34.34, SD = 4.98) than congruent trials (M = 34.34, SD = 

4.98), t(99) = -.814, p = .417. The correlation between congruent and incongruent 

conditions was significant, r = .528. As shown in scatterplots (Figure 6.1), 

relationship between congruent items and early arithmetic at Time 1 (r2
congruent = 

.145) was somewhat stronger than the relation between incongruent items and 

arithmetic (r2
incongruent = .098). Congruent trials significantly predicted arithmetic 

scores, ß= .30, t(97) = 2.81, p = .006, contrary to incongruent trials, ß = .17, t(97) = 

1.55, p = .124. 
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Figure 6.1. Scatterdot plot of congruent trial performance and arithmetic skills (r2 = .145 left 

side) compared to incongruent trial performance and arithmetic skills at Time 1 (r2 = .098, 

right side). 

 The second analysis focused on investigating the relationship between 

congruency of magnitude comparison items and children’s performance on early 

arithmetic tasks using structural equation modelling. The path model (Figure 6.2) 

shows that neither congruent nor incongruent trials were significant predictors of 

arithmetic at Time 1. The model fit was excellent, χ2 (17) = 18.636, p = .350, 

RMSEA = .031 (90% CI = .000 - .098), CFI = .993, SRMR = .041, 25% of variance 

explained. 

Figure 6.2. Prediction of arithmetic scores by congruent and incongruent latent factors at 

Time 1. 

 6.1.2.2 Time 2. 

 Children’s performance at Time 2 was more accurate than Time 1, with 

76.44% of correctly answered congruent trials compared to 73.18% of correctly 

answered incongruent trials. Contrary to Time 1, children performed significantly 

better on congruent trials (M = 61.15, SD = 7.85) than incongruent trials (M = 58.54, 
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SD = 7.31), t(116) = 4.807, p < .001. The correlation between congruent and 

incongruent conditions was highly significant, with r = .703.  

 The relationship between congruent items and early arithmetic at Time 2 

(r2
congruent = .189) was stronger than the relationship between incongruent items and 

arithmetic at Time 2 (r2
incongruent = .131) as indicated in scatterplot graphs (Figure 

6.3). Similarly, congruent trials significantly predicted arithmetic scores, ß = .36, 

t(114) = 3.009, p = .003, in contrast to incongruent trials, ß = .11, t(114) = .950, p = 

.344. 

  

Figure 6.3. Scatterdot plot of congruent trial performance and arithmetic skills (r2 = .189, left 

side) compared to incongruent trial performance and arithmetic skills at Time 2 (r2 = .131, 

right side). 

 The SEM path model examining the relationship between congruency of 

magnitude comparison items and children’s performance on early arithmetic tasks at 

Time 2 provided an excellent fit to the data, χ2 (51) = 58.438, p = .221, RMSEA = 

.035 (90% CI = .000 - .072), CFI = .980, SRMR = .050, 47.3% of variance explained 

(Figure 6.4). Again, neither the congruent nor the incongruent factor predicted 

children’s arithmetic scores, but the congruent factor was the strongest predictor. The 

model estimation terminated normally, nonetheless, parameters from congruent and 

incongruent factors to arithmetic factor were both greater than 1, most likely due to 

the high correlation between congruent and incongruent trials (r = .977). 
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Figure 6.4. Prediction of arithmetic scores by congruent and incongruent latent 

factors at Time 2. 

 6.1.2.3 Time 3. 

 Children’s accuracy at Time 3 increased further with 83.30% of accuracy on 

congruent trials and 76.16% of accuracy on incongruent trials. The performance on 

congruent trials (M = 57.74, SD = 21.54) was significantly better than the 

performance on incongruent trials (M = 53.21, SD = 20.20), t(115) = 6.055, p < .001. 

Congruent and incongruent conditions correlated highly, r = .927. The relationship 

between congruent items and arithmetic scores at Time 3 substantially improved 

compared to Time 2 (r2
congruent = .378).  The relationship between incongruent items 

and arithmetic at Time 3 (r2
incongruent = .360) also substantially improved over time 

(Figure 6.5). Arithmetic performance at Time 3 was significantly predicted by 

congruent items, ß = .419, t(113) = 2.127, p = .036, but not incongruent trials, ß = 

.211, t(113) = 1.07, p = .287. 

 Running the SEM path model on prediction of arithmetic at Time 3 through 

MPlus 7 resulted in the warning that the latent variable covariance matrix was not 

positive defined. Examining the correlation matrix showed that congruent and 

incongruent magnitude comparison factors were linear dependent, with r = 1.035 

suggesting that they form one unitary factor and not two distinct factors. Hence, 

further structural equation modelling was deemed to be invalid for Time 3.    
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Figure 6.5. Scatterdot plot of congruent trial performance and arithmetic skills (r2 = .378, left 

side) compared to incongruent trial performance and arithmetic skills at Time 3 (r2 = .360, 

right side). 

 6.1.2.4 Time 4. 

 Similar to previous testing points, performance on congruent trials (M = 

75.32, SD = 20.19) was significantly different from the performance on incongruent 

trials (M = 68.83, SD = 18.69), t(110) = 8.663, p < .001 and congruent and 

incongruent conditions correlated highly, r = .920. At Time 4, the relationship 

between congruent trials and arithmetic (r2
congruent = .332) was similar to the 

relationship between incongruent trials and arithmetic (r2
incongruent = .309), and 

comparable to Time 3.  The relationships are shown as scatterplot graphs in Figure 

6.6. 

Figure 6.6. Scatterdot plot of congruent trial performance and arithmetic skills (r2 = .332, left 

side) compared to incongruent trial performance and arithmetic skills at Time 4 (r2 = .309, 

right side). 
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  Congruent trials were significantly predicting children’s arithmetic scores at 

Time 4, ß = .425, t(108) = 2.117, p = .037. Incongruent trials did not predict 

arithmetic, ß = .165, t(108) = .822, p = .413. 

 Similar to Time 3, MPlus 7 running SEM path models resulted in a latent 

variable covariance matrix not positively defined, due to linear dependency between 

congruent and incongruent trials, r = 1.045. Again, further structural equation 

modelling was deemed to be invalid and was abandoned.    

 6.1.2.5 Time 5. 

 Children performed significantly better on congruent trials (M = 84.92, SD = 

25.42) compared to incongruent trials (M = 77.45, SD = 23.11), t(116) = 8.101, p < 

.001, r = .920).  

 At Time 5, congruent trials and arithmetic scores were moderately related 

(r2
congruent = .244), similar to the relationship between incongruent items and 

arithmetic performance (r2
incongruent = .230). Scatterplot graphs depicting the 

relationships are shown in Figure 6.7. Interestingly, neither congruent items (ß = 

.339, t(114) = 1.639, p = .104) nor incongruent trials (ß = .167, t(114) = .808, p = 

.421) were significant predictors of children’s arithmetic scores at Time 5. 

Figure 6.7. Scatterdot plot of congruent trial performance and arithmetic skills (r2 = .244, left 

side) compared to incongruent trial performance and arithmetic skills at Time 5 (r2 = .230, 

right side). 

  

 



Chapter 6 

143 

 

 As seen in the previous two testing points, running the SEM path model on 

prediction of arithmetic at Time 5 resulted in a latent variable covariance matrix not 

positively defined. The correlation matrix showed that congruent and incongruent 

factors were linear dependent, with r = 1.000 suggesting that they form one unitary 

factor and not two distinct factors. Hence, further structural equation modelling was 

deemed to be invalid for Time 5. 

 6.1.3 Conclusion. 

 Overall, children’s performance on congruent as well as incongruent items 

improved over time. They performed significantly better on the congruent condition 

than the incongruent condition replicating the findings by Gilmore et al. (2013) at all 

time-points except for Time 1. At Time 1, at least a third of children performed 

below chance level, though by Time 2 all of the children scored above chance level. 

It may be that, as Gilmore suggests, solving incongruent items is harder for children 

due to the added cognitive process of inhibiting the salient, but not useful feature of 

dot size. However, the results failed to reproduce the finding that performance on 

incongruent items predicted arithmetic.  

 Gilmore et al. (2013) argued that relationships between dot comparison and 

arithmetic are explained by inhibition and that the underlying relationship between 

inhibition processes and arithmetic is the sole driver for the link between ANS and 

arithmetic. For Gilmore, this was demonstrated by the finding that incongruent, but 

not congruent trials, are correlated with arithmetic. The results of this study showed 

the reverse that congruent (but not incongruent) condition scores predicted children’s 

arithmetic scores in linear regressions. This pattern emerged across all time points 

except for Time 5 where neither congruent nor incongruent items predicted 

arithmetic. It seems that children’s inhibition skill may not be as crucial in early 

arithmetic as shown by Gilmore et al. (2013). This was confirmed through SEM path 

models for at least Times 1 and 2. Again, neither predicted children’s arithmetic 

scores though accuracy on congruent trials showed a stronger relation to early 

arithmetic. After Time 3, the latent congruent and incongruent factors were highly 

correlated suggesting the two form one factor and should not be considered to be 

distinct constructs. Thus it seems that both congruent and incongruent trials access a 

common representation after five years ten months of age.  
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There are various reasons why our study failed to replicate Gilmore et al.’s (2013) 

findings: One major difference between the studies was the age range. This study 

focused on a narrow age range critical to the period of arithmetic development. 

Gilmore and colleagues assessed a wider age range but failed to control for age. 

Furthermore, the congruent and incongruent trials were not the exact same stimuli as 

used in Gilmore et al. (2013). 

6.2 Inhibitory Control, ANS and Arithmetic. 

The next experiment assessed the relationship between ANS, inhibition and 

arithmetic (second experiment of Gilmore et al. (2013)).  

 6.2.1 Method. 

 6.2.1.1 Participants. 

The same participants were used as described in Chapter 2 (p. 42) 

 6.2.1.2 Materials. 

 Children were assessed on the following measures at Times 3 and 4. 

Inhibition. To assess children’s inhibition skills at Times 3 and 4, we 

individually administered the Head-to-Toes task (Cameron Ponitz, McClelland, 

Jewkes, McDonald Connor, Farris and Morrison, 2008; Appendix 16)). The task 

requires the children to do the opposite of what the experimenter asks them to do. If 

children were asked to touch their head (or their toes), the correct response would be 

to touch the toes (head). The experimenter demonstrated the task to the child before 

four practice items were administered where instructions were repeated up to three 

times. After the practice items, the test items were executed comprising of one block 

with ten head-toe items. One point was awarded if the child had to self-correct the 

answer (child first moves to incorrect response but then stops and response correctly) 

and two points were given if a child gave the correct response without hesitation or a 

prior movement to the incorrect response.  The second block was administered if the 

child responded correctly to at least five test trials. This block involved a second set 

of commands - if the child was asked to touch their shoulders (or knees), they had to 

touch their knees (or shoulders). Similar to the first block, the experimenter first 

demonstrated the task before administering the four practise items. After the practice 
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items, ten further test trials were given with commands from the first block mixed 

with the new commands. The total score possible on each block was 20 points and 

the maximum overall score was 40 points.  

Magnitude Comparison. The magnitude comparison task used in this study 

was assessed as a group test (see Göbel et al., 2014) using the same stimuli pairs 

created at Times 1 and 2. Nonsymbolic comparisons were presented in pairs of two 

adjacent 2.1 cm x 2.1 cm boxes. Children were asked to tick the bigger number or 

box with more dots (for more details see Chapter 3, pp.50).  

Arithmetic Skills. Children’s speeded arithmetic skills (fluency) at Time 3 

was assessed using the ‘addition’ and ’addition with carry’ subtests of the TOBANS 

(Brigstocke et al., 2016). Children were asked to complete as many arithmetic 

problems as possible in one minute. In the ‘addition’ subtask, children were 

presented with simple addition problems with sums less than ten and in the ‘addition 

with carry’ subtask the sums were bigger than ten but smaller than twenty. One point 

was awarded even if the numeral was written backwards (maximum score addition = 

90; maximum score addition with carry = 30). This task was administered as a group task. 

 At Time 4, children were also presented with the ‘subtraction’ subtask of the 

TOBANS in addition to the ‘addition’ and ‘addition with carry’ subtasks. Similar to 

‘addition’, children were asked to solve as many of the 90 subtraction problems as 

possible in one minute.  

6.2.1.3 Procedure.  

The inhibition task, nonsymbolic ANS and arithmetic tasks were part of a 

comprehensive test battery. Testing was carried out at two consecutive testing points 

within a 4-month period which were part of a longitudinal study. Testing started 

when children were in the autumn term of Year One and the second testing took 

place during the spring term of Year One. Wherever possible, each child was seen by 

the same experimenter two to four days in a row. The main researcher was assisted 

by several research assistants from undergraduate psychology classes. They were 

trained on how to administer the test battery and were given instructions on how to 

work with young children. 
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Arithmetic and magnitude comparison task were assessed as group tasks with 

a ratio of experimenters to children of 1:3. The inhibition task was assessed 

individually. Testing was carried out tested in a separate room or another quiet place 

in the school. 

Preliminary to the testing, the experimenters attended at least one day in each 

class so that the children got to know them and felt more comfortable around them. 

Moreover, the experimenters told each child that they would play games and asked 

questions such as “How are you?” or “How old are you?”.  

All tests included practice items. Concerning feedback, children received 

only concrete feedback on their performance for practice items and general praise 

and encouragement throughout the tests. 

 6.2.2 Results. 

 The descriptive statistics are shown in Table 6.1. To answer the research 

question regarding the relationship between inhibition, nonsymbolic ANS and early 

arithmetic performance, a series of hierarchical multiple regression models were 

conducted using IBM SPSS Statistics 22. The dependent variable comprised of the 

composite score of arithmetic subtask raw scores and independent variables were 

composite scores comprising all nonsymbolic magnitude comparison task and a 

second independent variable of the composite score of inhibition comprising the raw 

scores of block one and two of the Head-to-Toe-task.  

 Furthermore, the same hierarchical regression models were run using MPlus 

Version 7 and the technique of Cholesky factorisation with phantom factors in a 

latent variable model (de Jong, 1999) was applied. One advantage of this method is 

that SEM models use latent variables rather than manifest, observed variables. Latent 

variables may reduce the dimensionality of data and may impute relationships 

between unobserved constructs (latent variables) from observable variables. Various 

measured variables are aggregated to represent an underlying concept. In the SEM 

path models, the dependent variable was the latent factor of children’s arithmetic 

scores. The independent variables included the latent factors for magnitude 

comparison and inhibition. 
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6.2.2.1 Hierarchical regression models. 

6.2.2.1.1 Relationship between inhibition, ANS and arithmetic at Time 3. 

The correlation matrix for magnitude comparison, inhibition and arithmetic is shown 

in Table 6.2. Not surprisingly, all measures related significantly to each other, but 

magnitude comparison tasks correlated higher with arithmetic than inhibition at Time 

3. 

Table 6.2 

Correlations between ANS, inhibition and arithmetic at Time 3 (n = 76) 

 1 2 3 

1. Inhibition --- .327** .316** 

2. Magnitude Comparison  ---- .621** 

3. Arithmetic   ---- 

Notes.  Pearson product-moment correlation coefficient. Variables entered are composite scores. * p < .05. ** p 

< .01 

With a composite TOBANS raw score as the dependent variable (arithmetic) 

and composite scores of magnitude comparison and inhibition task as independent 

variables, hierarchical regression models were conducted in which magnitude 

comparison was entered in the first step and inhibition was entered in the second 

step. As shown in Table 6.3, magnitude comparison significantly predicted 

performance on arithmetic tasks when entered in step one (ß= .621, t(74) = 6.823, p 

< .001, r2 = .386), however adding inhibition in step two did not significantly 

improve the model (ß= .126, t(73) = 1.312, p = .194, r2 = .400, rchange
2 = .014, 

Fchange(1, 73) = 1.721, p = .194). 

 A second hierarchical regression model was conducted with the reverse 

order: The inhibition score was entered in the first step and magnitude comparison 

was added in the second step (Table 6.4). Inhibition significantly predicted arithmetic 

when entered in the first step (ß= .316, t(74) = 2.861, p = .005, r2 = .100), but 

magnitude comparison added significantly to the model when entered in the second 

step (ß= .580, t(73) = 6.051, p < .001, r2 = .400, rchange
2 = .301, Fchange(1, 73) = 

36.610, p < .001). Inhibition was not a significant predictor in the second step. 
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In other words, inhibition did not significantly explain variance in arithmetic 

performance at Time 3 once performance on magnitude comparison tasks had been 

taken into account.  

Table 6.3 

Hierarchical Regressions for ANS, Inhibition and arithmetic at Time 3 (n = 76) and 

Time 4 (n = 108) 

 Time 3 Time 4 

 B SE B ß B SE B ß 

Step 1       

Constant -3.56 1.78  -8.02 3.47  

Magnitude 

comparison 
.10 .01 .62** 

.17 .02 .58** 

Step 2       

Constant -5.22 2.17  -12.91 4.94  

Magnitude 

comparison 
.09 .02 .58** 

.16 .03 .54** 

Inhibition .10 .07 .13 .20 .15 .12 

Notes. Time 3t: Step 1 R2 = .386, Step 2 ΔR2 = .014. Time 4: Step 1 R2 = .331, Step 2 ΔR2 = .012. * p < .05. ** p 

< .01. 
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Table 6.4 

Hierarchical Regressions for Inhibition, ANS and arithmetic at Times 3 and 4 

 Time 3 Time 4 

 B SE B ß B SE B ß 

Step 1       

Constant 1.85 2.23  -.62 5.32  

Inhibition .24 .09 .32** .52 .16 .30** 

Step 2       

Constant -5.22 2.17  -12.91 4.94  

Inhibition .10 .07 .13 .20 .15 .12 

Magnitude 

comparison 
.09 .02 .58** 

.16 .03 .54** 

Notes. Time 3t: Step 1 R2 = .100, Step 2 ΔR2 = .301. Time 4: Step 1 R2 = .090, Step 2 ΔR2 = .253. * p < .05. ** p 

< .01. 

6.2.2.1.2 Relationship between inhibition, ANS and arithmetic at Time 4. 

The correlation matrix for magnitude comparison, inhibition and arithmetic is 

shown in Table 6.5. All measures related significantly to each other, but magnitude 

comparison tasks correlated higher with arithmetic than inhibition at Time 4. 

The dependent variable was the composite TOBANS raw score (arithmetic) 

and composite scores of magnitude comparison and inhibition task were the 

independent variables. Hierarchical regression models, similar to Time 3, were 

conducted in which magnitude comparison was entered first and inhibition was 

entered in the second step (Figure 6.3). Magnitude comparison was a significant 

predictor of children’s performance on arithmetic tasks when entered in step one (ß= 

.575, t(106) = 7.242, p < .001, r2 = .331), but entering inhibition in step two did not 

significantly improve the model fit (ß= .117, t(105) = 1.388, p = .168, r2 = .343, 

rchange
2 = .012, Fchange(1, 105) = 1.927, p = .168), as shown in Table 6.4. 
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Table 6.5 

Correlations between ANS, inhibition and arithmetic Time 4 (n = 108) 

 1 2 3 

1. Inhibition --- .343** .301** 

2. Magnitude Comparison  ---- .575** 

3. Arithmetic   ---- 

Notes.  Pearson product-moment correlation coefficient. Variables entered are composite scores. * p < .05. ** p 

< .01 

 As shown in Table 6.4, the second hierarchical regression model was 

conducted with the reverse order: The inhibition score was entered in the first step 

and magnitude comparison was added in the second step. This time, inhibition did 

significantly predicted arithmetic when entered in the first step (ß= .301, t(106) = 

3.246, p = .002, r2 = .090), but magnitude comparison added significantly to the 

model when entered in the second step (ß= .535, t(105) = 6.355, p < .001, r2 = .343, 

rchange
2 = .253, Fchange(1, 105) = 40.385, p < .001). Inhibition was not a significant 

predictor in the second step. 

The findings confirmed the results form Time 3 that inhibition did not 

significantly explain variance in arithmetic performance once performance on 

magnitude comparison tasks had been taken into account. 

6.2.2.2. Hierarchical regressions using structural equation modelling. 

6.2.2.2.1 Relationship between inhibition, ANS and arithmetic at Time 3. 

 To further strengthen the findings of the hierarchical regression models using 

IBM SPSS Statistics 22, the same hierarchical regression models were conducted 

using MPlus Version 7 and the technique of Cholesky factorisation with phantom 

factors in a latent variable model (de Jong, 1999) was applied. In the SEM path 

models, the dependent variable was the latent factor of children’s arithmetic scores. 

The independent variables included the latent factors for magnitude comparison and 

inhibition task. In Cholesky factorisation, the individual steps of the hierarchical 

regression were coded as phantom latent factors which were then regressed onto 

arithmetic outcome scores. 
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In the first hierarchical regression model (Figure 6.8), the phantom latent 

factor magnitude comparison was entered first and the phantom latent factor 

including magnitude comparison and inhibition was entered in the second step. Both 

phantom latent factors were then regressed onto arithmetic performance at Time 3. 

The path model provided an acceptable fit to the data, χ2 (71) = 97.323, p = .021, 

RMSEA = .057 (90% CI = .023 - .083), CFI = .976, SRMR = .043, explaining 46.4% 

of variance. Both phantom latent factors significantly predicted arithmetic meaning 

that step one, magnitude comparison, as well as step two, magnitude comparison and 

inhibition, were significant. 

Figure 6.8. Hierarchical SEM regression model of arithmetic at Time 3. Step 1: Magnitude 

Comparison. Step 2: Magnitude Comparison and Inhibition. * p < .05. ** p < .01. 

The second hierarchical regression model (Figure 6.9) was conducted with 

the reverse order: The inhibition score was coded as the first phantom latent factor 

(step one) and inhibition and magnitude comparison coded as the second phantom 

latent factor (step two). The path model provided an acceptable fit to the data, χ2 (71) 

= 97.323, p = .021, RMSEA = .057 (90% CI = .023 - .083), CFI = .976, SRMR = 

.043, explaining 46.4% of variance. The phantom latent factor for step two 

(inhibition and magnitude comparison) was the only unique predictor of arithmetic 

performance. The phantom latent factor including only inhibition did not 

significantly contributed to explaining the variance.  
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Figure 6.9. Hierarchical SEM regression model of arithmetic at Time 3. Step 1: Inhibition. 

Step 2: Inhibition and Magnitude Comparison. * p < .05. ** p < .01. 

In other words, the results of the SEM path models confirmed the findings of 

the SPSS hierarchical regressions that inhibition did not significantly explain 

variance in arithmetic performance at Time 3 once performance on magnitude 

comparison tasks had been taken into account.  

6.2.2.2.2 Relationship between inhibition, ANS and arithmetic at Time 4. 

Similar to Time 3, the first hierarchical regression model (Figure 6.10) 

included the phantom latent factor magnitude comparison at Time 4 which was 

entered first and the phantom latent factor including magnitude comparison and 

inhibition which was entered in the second step. Both phantom latent factors were 

then regressed onto arithmetic performance at Time 4. The path model provided a 

moderate fit to the data, χ2 (98) = 142.120, p = .002, RMSEA = .063 (90% CI = .038 

- .085), CFI = .961, SRMR = .058, explaining 39.3% of variance. Again, both 

phantom latent factors were significantly predicting arithmetic suggesting that step 

one, magnitude comparison, as well as step two, magnitude comparison and 

inhibition, were significantly predicting arithmetic score. 
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Figure 6.10. Hierarchical SEM regression model of arithmetic at Time 4. Step 1: Magnitude 

Comparison. Step 2: Magnitude Comparison and Inhibition. * p < .05. ** p < .01. 

Figure 6.11. Hierarchical SEM regression model of arithmetic at Time 4. Step 1: Inhibition. 

Step 2: Inhibition and Magnitude Comparison. * p < .05. ** p < .01. 

The second hierarchical regression model (Figure 6.11) was conducted in 

reverse order: The inhibition score was coded as the first phantom latent factor (step 

one) and inhibition and magnitude comparison coded as the second phantom latent 

factor (step two). The path model provided an acceptable fit to the data, χ2 (98) = 

142.120, p = .002, RMSEA = .063 (90% CI = .038 - .085), CFI = .961, SRMR = .058, 

explaining 39.3% of variance. The phantom latent factor for step two (inhibition and 
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magnitude comparison) was the only unique predictor of arithmetic performance. 

The phantom latent factor including only inhibition did not contribute significantly.  

These findings confirmed the Time 3 results and the Time 4 results of the 

SPSS hierarchical regression models that inhibition did not significantly explain 

variance in arithmetic performance at Time 4 once performance on magnitude 

comparison tasks had been taken into account.  

6.2.3 Conclusion. 

 Contrary to the findings of Gilmore et al. (2013) showing that children’s 

inhibitory control predicted arithmetic after controlling for performance on dot 

comparison, this study showed the reverse pattern. It is worth mentioning that the 

sample in Gilmore et al. (2013) were older and, despite the broad age range (seven to 

ten years), the analyses did not control for age. Also, this study assessed a different 

tsk of a GoNoGo inhibition task than in Gilmore et al. (2013) using the NEPS-II 

inhibition subtask (Korkman, Kirk, and Kemp, 1998), a GoNoGo test. Both 

inhibition tasks are a GoNoGo inhibition test but it may be possible that they 

measure different aspects of inhibition, thus causing the contrasting results.  

The finding of the current study was that children’s performance on inhibition 

tasks did not explain variance of arithmetic scores once performance on nonsymbolic 

magnitude comparison has been accounted for. Both conventional hierarchical 

regression models and SEM phantom latent factor regressions confirmed that the 

ANS is more important in the development of early arithmetic. It must be mentioned, 

that the model fit indices of the path models were moderate at best. Unique variance 

per predictor was low indicating that shared variance is substantial. Neither 

inhibitory control nor nonsymbolic magnitude comparison may play the most 

important role in predicting arithmetic. These results support the findings from the 

longitudinal prediction in Chapter 5 that transcoding skills, children’s understanding 

of the Arabic numeral system, was the only stable longitudinal precursor of early 

arithmetic skills. 
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Chapter 7. Approximate Arithmetic Performance 

The main focus of this chapter was to examine the developmental relation 

between symbolic and nonsymbolic approximate arithmetic, and the developmental 

relation between approximate and exact arithmetic. The chapter will then further 

explore longitudinal predictors of symbolic and nonsymbolic approximate arithmetic 

(Barth et al., 2005; 2006; Gilmore et al., 2007). Also, I will compare the performance 

of the current sample with the results from Gilmore et al. (2007), focusing on 

accuracy, ratio effects and differences in performance between symbolic and 

nonsymbolic approximate arithmetic. Gilmore et al. (2007) showed that pre-school 

children, before formal training in arithmetic, are capable of performing approximate 

arithmetic, based on double digit numbers, with accuracy above chance; Gilmore 

proposed that this ability is based on nonsymbolic approximate representations. 

Halberda and Feigenson (2008) showed that the acuity of the nonsymbolic ANS 

increases between three and six years of age and may not reach adult-like levels of 

performance until early adolescence. Gilmore et al. (2007) referred to three signature 

properties of nonsymbolic number representation: (1) Performance on comparison, 

addition and subtraction tasks are subject to ratio limits. (2) Addition is as accurate as 

performance on comparison problems. (3) Subtraction is less accurate then 

comparison (Gilmore et al., 2007, p. 590). The ratio limit in particular is of interest to 

this study, as research shows that accuracy on nonsymbolic number representations 

falls as the ratios to be compared approach one (Barth et al., 2005; 2006). 

 Furthermore, this chapters aims to identify the structure of the relation 

between symbolic and nonsymbolic approximate arithmetic tasks. As seen in Chapter 

3, there is evidence that the structure of the relation between magnitude comparison 

tasks shift over time from a two-factor (symbolic and nonsymbolic comparison) 

towards a general comparison factor in Year One (6 years of age). Pre-school 

children still have an immature knowledge of the Arabic numeral system and may 

hence rely heavily on general cognitive resources as well as magnitude estimation 

processes to solve symbolic comparison tasks. However, after having mastered the 

Arabic numeral system, solving symbolic comparison may draw directly on 

estimation processes similar to those involved in the nonsymbolic comparison tasks. 

Arguably, approximate arithmetic may behave similarly with two distinct factors for 

pre-school children (symbolic versus nonsymbolic approximate arithmetic) which 
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may shift towards a general approximate arithmetic factor. Thus, detailed 

confirmatory factor analyses were conducted examining this relationship. 

 7.1 Methods. 

 7.1.1 Participants. 

The same participants were used as described in Chapter 2 (p. 42) 

 7.1.2 Materials. 

 Children were assessed on the following measures. 

 7.1.2.1 Baseline Prediction Model assessed at Time 1.  

The following tasks were administered individually to the four nursery 

classes in the summer term of the nursery age (4 years of age): Nonverbal 

intelligence (Raven’s CPM; Raven et al., (1993), grammatical ability (TROG-2; 

Bishop, 2003), vocabulary (BPVS - III; Dunn et al., 2010), specific math-related 

language ability (TRC), transcoding (Number Identification, Number Writing and 

Reading Arabic numerals), rote counting and magnitude comparison tasks.  

7.1.2.2 Measures taken at Time 3. 

 Magnitude Comparison. Various symbolic and nonsymbolic comparison 

tasks were created for the study, based on those by Göbel et al. (2014). Each 

comparison pair was presented on a single page. Children were given one point for 

every correct comparison with a maximum score of 16 for each version and 160 

overall (for more details see Chapter 3, pp.50).  

Arithmetic Skills. Fluency. Children’s speeded arithmetic skills (fluency) was 

assessed using the ‘addition’ and ’addition with carry’ subtests of the TOBANS 

(Brigstocke et al., 2016). Children were asked to complete as many arithmetic 

problems as possible in one minute. In the ‘addition’ subtask, children were 

presented with simple addition problems with sums less than ten and in the ‘addition 

with carry’ subtask the sums were bigger than ten but smaller than twenty. One point 

was awarded even if the numeral was written backwards (maximum score addition = 

90; maximum score addition with carry = 30). This task was administered as a group task. 

Approximate arithmetic. Symbolic and nonsymbolic approximate arithmetic 

problems were assessed based on those typically used in literature (Barth et al., 2005; 
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2006; Gilmore et al., 2007). Children were given the problems both verbally and 

visually on a computer screen. Initially, a female character called Sarah appeared on 

the screen with a bag while the experimenter stated that “Sarah has fifteen candies 

(or “a bag full of that many marbles” in the nonsymbolic part). The Arabic numeral 

or the appropriate number of dots corresponding to the trial were displayed in the 

bag. On the next screen, a second bag appeared above the same character and the 

experimenter stated that “Sarah gets nineteen more candies” (or “she gets that many 

more marbles”). Again, the Arabic numeral or dots were displayed in the bag. A plus 

sign connected the two bags only in the symbolic version. On the last screen, 

children could see Sarah and her two bags and a second character called John. John 

had a different coloured bag and the experimenter stated that “John has fifty-one 

candies” (or “a bag full of that many marbles”). Similar to Sarah, the correct Arabic 

numeral or number of dots was displayed in the bag (Figure 7.1). Finally, the 

experimenter asked the child who they think has more candies (marbles). See 

Appendix E for the complete list of trials (Appendix 14).  

In the nonsymbolic condition (Appendix 15), children were asked not to 

count the dots but rather estimate who they think has more. If a child attempted to 

count the dots, the experimenter reminded the child not to count the dots. The 

pictures were displayed shortly on the screen to further discourage counting 

strategies.  

First, children had to solve the symbolic problems followed by the 

nonsymbolic problems. Each condition comprised of 24 problems of larger numbers 

in the range 5 to 58 divided into three ratios – 4:7; 4:6; 4:5 – eight trials per ratio. 

The sum was greater than the comparison number on half the trials. The same 

comparisons were used for symbolic and nonsymbolic conditions. The task was 

administered in a one-on-one setting and one point was awarded for each correct 

answer. 
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Figure 7.1. Example item of the Symbolic 

Approximate Arithmetic Problems. “Sarah has 

21 candies. She gets 30 more candies. John has 

34 candies. Who has more candies?” 

 

 

 

 7.1.2.3 Measures taken at Time 4. 

Magnitude Comparison. The same tasks as at Time 3 were used. 

Arithmetic. Fluency. In addition to the same TOBANS tasks at Time 3 

(addition and addition with carry), children were also presented with the 

‘subtraction’ subtask (Brigstocke et al., 2016). Similar to addition, children were 

asked to solve as many of the 90 subtraction problems as possible in one minute.  

Approximate arithmetic. The same tasks as at Time 3 were used. 

7.1.2.4 Measures taken at Time 5.  

Magnitude Comparison. The same tasks as at Time 3 were used. 

Arithmetic. Fluency. The same tasks as at Time 4 were used. 

Accuracy. Children’s basic arithmetic skills were assessed using the 

Numerical Operations subtest of the second edition of the Wechsler Individual 

Achievement Test (WIAT-II; Wechsler, 2005). The first six items (identifying and 

writing Arabic numerals) were excluded because we were only interested in a more 

conventional measure of arithmetic. The test was executed according to the manual 
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and children were allowed to complete the task in their own time (maximum score = 

25).  

Approximate arithmetic. The same tasks as at Time 3 were used. 

7.1.3 Procedure. 

The ANS and arithmetic tasks were part of a comprehensive test battery. 

Testing was carried out at three consecutive testing points within a 10-month period 

which were part of a longitudinal study. Testing started when children were in the 

autumn term of Year One, the second testing took place during the spring term of 

Year One and the last testing session was carried out in the summer term of Year 

One. Wherever possible, each child was seen by the same experimenter two to four 

days in a row. The main researcher was assisted by several research assistants from 

undergraduate psychology classes. They were trained on how to administer the test 

battery and were given instructions on how to work with young children. 

TOBANS, WIAT and magnitude comparison tasks were assessed as group 

tasks with a ratio of experimenters to children of 1:3. The approximate arithmetic 

task was assessed individually on a laptop or tablet. Children were discouraged to 

use counting strategies to solve the problems Testing was carried out tested in a 

separate room or another quiet place in the school. Preliminary to the testing, the 

experimenters attended at least one day in each class so that the children got to know 

them and felt more comfortable around them. Moreover, the experimenters told each 

child that they would play games and asked questions such as “How are you?” or 

“How old are you?”. All unstandardized tests included practice items. Concerning 

feedback, children received only concrete feedback on their performance for practice 

items and general praise and encouragement throughout the tests. 

 7.2 Results. 

To address research questions concerning approximate arithmetic, descriptive 

statistics were analysed first, followed by the analysis of ratio effects over time and 

correlations between the approximate arithmetic and TOBANs and WIAT arithmetic 

subtasks. A set of CFAs path models were estimated with Mplus Version 7 (Muthén 

and Muthén, 2013) to examine whether the relationship between symbolic and 

nonsymbolic approximate arithmetic changes from a two-factor model towards a 

unitary model, similar to the magnitude comparison task, with the latent factor 
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symbolic approximate arithmetic and nonsymbolic approximate arithmetic.. Last, 

SEM path models were conducted investigating the longitudinal prediction of 

approximate arithmetic, with the latent factor arithmetic (consisting of TOBANS 

subtasks at Time 3 and TOBANS and WIAT at Time4) as the dependent variable and 

the Time 1 baseline model as independent variables. To visually simplify the path 

models, the coefficients of the relations between the factors are not presented but can 

be found in Appendices 23 and 24. 
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Table 7.1 

Mean and standard deviations of predictor and criterion measures from all testing sessions 

  Time 1 Time 3 Time 4 Time 5 

  M (SD) M (SD) M (SD) M (SD) 

Nonverbal IQ Raven’s CPM 6.45 (1.57)    

Language 

Comprehension 

TROG-2 3.15 (2.63)*    

Vocabulary BPVS-III 58.26 (16.77)*    

Math-related 

Language 

TRC 5.90 (2.00)*    

Numerical 

Knowledge 

Number Writing 6.86 (5.79)*    

 Number Reading 8.02 (2.67) [45]*    

 Number Identification 7.26 (2.60)*    

 Rote Counting 14.78 (12.84)*    

Magnitude 

Comparison 

Digit Close 

Digit Far 

NS FS Close 

10.11 (3.21) [7] 

10.73 (3.59) [7] 

10.26 (2.16) [1] 
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NS FS Far 

NS FS 3:4 

NS FS 5:6 

NS SA Close 

NS SA Far 

NS SA 2:3 

NS SA 3:4 

12.87 (2.57) [17] 

 

10.76 (2.72) [4] 

10.58 (2.29) [3] 

10.29 (2.28) [1] 

13.24 (2.43) [23] 

11.42 (2.42) [5] 

10.81 (2.03) [2]* 

Arithmetic Addition Tasks 6.33 (3.21) [17]* A: 5.23 (2.51) [3] 

B: 5.15 (2.55) [8]* 

  

 TOBANS 

Addition 

Addition w/ carry 

Subtraction 

  

6.23 (4.55) 

1.75 (2.20) 

 

 

8.36 (5.09) 

2.56 (2.74) 

5.30 (4.12) 

 

12.74 (8.66) 

5.07 (5.01) [1] 

8.44 (5.10) 

 Approximate 

Arithmetic 

 Symbolic: 14.30 (.3.54) 

NS: 15.70 (3.41)* 

Symbolic: 15.87 (3.74) [4] 

NS: 18.02 (3.09) [1]* 

Symbolic: 18.37 (3.66) [13] 

NS: 19.16 (2.76) [5]* 

 WIAT    4.00 (2.27) 

Notes.  M = mean age. SD = standard deviation 
* 

individually administered tasks. The number of children scoring maximum level are shown in square brackets. All scores are 

presented as raw scores. For the Magnitude Comparison Tasks: NS = nonsymbolic. FS = fixed size trials. SA = surface-area matched trials.  
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 7.2.1 Descriptive Statistics. 

 The descriptive analysis of all measures are shown in Table 7.1. Descriptive 

statistics were conducted using IBM SPSS Statistics 22. Performance on the 

approximate arithmetic tasks increased over time and nonsymbolic approximate 

arithmetic was more accurate than symbolic approximate arithmetic. A ceiling effect 

was present at Time 5, with thirteen children reaching the maximum score on the 

symbolic approximate arithmetic and five children scoring at ceiling level on the 

nonsymbolic approximate arithmetic. 

 Children answered 59.17% of the symbolic items correctly and 65.00% of 

nonsymbolic items at Time 3. On average, children did perform significantly better 

on nonsymbolic trials (M = 15.70, SD = 3.41) than symbolic trials (M = 14.30, SD = 

3.54), t(114) = 4.644, p < .001. The correlation between symbolic and nonsymbolic 

conditions was highly significant, r = .557, p < .001.  

 Children’s performance increased in accuracy, with 75.07% of correctly 

answered nonsymbolic trials compared to 68.58% of correctly answered symbolic 

trials at Time 4. Children performed significantly better on nonsymbolic trials (M = 

18.02, SD = 3.09) than symbolic trials (M = 16.59, SD = 3.74), t(112) = 4.812, p < 

.001. The correlation between symbolic and nonsymbolic conditions was highly 

significant, with r = .491, p < .001. 

 Accuracy at Time 5 increased even further with 79.60% of accuracy on 

nonsymbolic trials and 75.79% of accuracy on symbolic trials. The performance on 

nonsymbolic trials (M = 19.16, SD = 2.76) significantly different from the 

performance on symbolic trials (M =18.37, SD = 3.67), t(115) = 2.917, p = .004. 

Symbolic and nonsymbolic approximate arithmetic correlated highly, r = .520, p < 

.001.  

One-sample two-tailed t-tests comparing performance on symbolic and 

nonsymbolic approximate arithmetic with chance level (50%) showed that children 

significantly performed above chance level on all symbolic and nonsymbolic 

arithmetic problems (see Table 7.2 for individual t-test statistics).  
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Table 7.2 

 Children’s Performance on Symbolic and Nonsymbolic Approximate Arithmetic 

compared to chance level at Times 3, 4 and 5 

 Symbolic Approximate Arithmetic 
Nonsymbolic Approximate 

Arithmetic 

 t 

value 

Degrees 

of 

Freedom 

p 

value 

M 

(SD) 

t 

value 

Degrees 

of 

Freedom 

p 

value 

M 

(SD) 

Time 3 6.755 1, 114 
˂.001 14.20 

(3.49) 

11.45

2 
1, 114 

˂.001 15.60 

(3.37) 

Time 4 
12.85

3 
1, 112 

˂.001 16.46 

(3.69) 

21.05

4 
1, 112 

˂.001 18.02 

(3.04) 

Time 5 
17.45

3 
1, 115 

˂.001 18.19 

(3.82) 

26.83

5 
1, 115 

˂.001 19.10 

(2.85) 

Notes.  M = mean. SD = standard deviation. One-sample two-tailed t-Tests comparing to chance level (50%).  

 7.2.2 Ratio effects. 

To test for ratio effects, children’s performance at each of the three ratios was 

compared for each form of presentation (symbolic versus nonsymbolic). Simple 3 

(ratio: 4:5, 4:6, 4:7) by 2 (presentation: symbolic versus nonsymbolic) ANOVAs 

were conducted for each testing point. Analysis of the ratios at Time 3 showed a 

main effect for ratio (F(2,228) = 52.715, p ˂ .001, ŋp
2 = .316) and presentation 

(F(1,114) = 22.523, p ˂ .001, ŋp
2 = .165), but no significant interaction. Children 

showed greater performance on nonsymbolic trials (M = 5.21, SD = .11) than 

symbolic (M = 4.728, SD = .11), and performed significantly better on 4:7 ratio (M = 

5.42, SD = .12), followed by 4:6 ratio (M = 5.01, SD = .11) and 4:5 ratio (M = 4.47, 

SD = .09).  

At Time 4, main effects for ratio (F(2,230) = 54.246, p ˂ .001, ŋp
2 = .321) 

and presentation (F(1,115) = 8.649, p = .004, ŋp
2 = .070) were present. Children 

showed greater performance on nonsymbolic trials (M = 6.01, SD = .10) than 

symbolic (M = 5.487, SD = .12). Ratio 4:7 was the easiest (M = 6.27, SD = .11) 
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compared to 4:6 (M = 5.84, SD = .11) and 4:5 (M = 5.13, SD = .10; all ratio 

comparisons were significant). 

 Analysis of Time 5 data revealed the same findings as in previous time 

points, with significant main effects for ratio (F(2,232) = 54.246, p ˂ .001, ŋp
2 = 

.321) and presentation (F(1,116) = 8.649, p = .041, ŋp
2 = .07), but no significant 

interaction. Performance on nonsymbolic stimuli (M = 6.37, SD = .09) was greater 

than symbolic (M = 6.06, SD = .12). Inspection of children’s performance on ratio 

trials showed greater performance on 4:7 (M = 6.69, SD = .10) ratios compared to 4:6 

(M = 6.28, SD = .11) and compared to 4:5 (M = 5.67, SD = .11). 

7.2.3 Exploration of the structure of approximate arithmetic. 

Next, the relation between the approximate arithmetic tasks and exact 

arithmetic tasks was assessed. Exact arithmetic was defined as children’s 

performance on composite scores. First, the correlations between the composite 

scores of exact arithmetic, including both TOBANS and WIAT, and symbolic as 

well as nonsymbolic approximate arithmetic were conducted (Figure 7.3). The 

composite score of symbolic approximate arithmetic comprised of the scores of the 

three ratios 4:5, 4:6 and 4:7 and separately, for nonsymbolic tasks. At Time 3, the 

composite of the two TOBANS addition subtasks scores were used whereas Times 4 

and 5 consisted of composite scores of the TOBANS addition and subtraction 

subtasks and WIAT.  

Table 7.3 

 Correlation matrix between Symbolic and Nonsymbolic Approximate Arithmetic and 

Exact Arithmetic at Times 3, 4 and 5 

 Exact Arithmetic 

 Time 3 Time 4 Time 5 

Symbolic approximate 

arithmetic 
.499** .530** .389** 

Nonsymbolic 

approximate arithmetic 
.392** .275** .260** 

Notes.  Pearson product-moment correlation coefficient. * p < .05. ** p < .01. 
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Both the symbolic and nonsymbolic approximate arithmetic skills 

significantly correlated with the TOBANS at Time 3. The correlation between 

TOBANS and symbolic approximate arithmetic was higher (r = .499) than 

nonsymbolic (r = .392). Similarly, symbolic was highly related to TOBANS at Time 

4 (r = .530). The correlation between TOBANS and nonsymbolic approximate 

arithmetic at Time 4 was significant (r = .275) but much lower than symbolic. The 

correlations at Time 5 were overall lower than the other two testing points but still 

significant. The correlation to symbolic approximate arithmetic was again higher (r = 

.389) compared to nonsymbolic approximate arithmetic (r = .260). 

 Similar to the analysis of the structure of the magnitude comparison (see 

Chapter 3), a series of confirmatory factor analyses were conducted to investigate the 

relation between the two approximate arithmetic tasks. The CFAs examined in what 

way symbolic and nonsymbolic approximate arithmetic latent factors are related by 

comparing a one-factor (general approximate arithmetic ability) and a two-factor 

model (symbolic and nonsymbolic approximate arithmetic).  Furthermore, it was 

investigated whether this relationship changes over time and if the structure switches 

from a two-factor towards a unitary factor model as was found in the case of 

magnitude comparison. 

 7.2.3.1 Time 3. The first set of CFAs examined the nature of approximate 

arithmetic tasks at Time 3. All tasks loaded significantly on the single factor 

approximate arithmetic CFA (Figure 7.2). The model did not provide an acceptable 

fit to the data, χ2 (9) = 38.328, p < .001, RMSEA = .168 (90% CI = .116 - .225), CFI 

= .872, SRMR = .066, suggesting that a single factor is not sufficient and a better 

model would involve at least the two factors symbolic and nonsymbolic approximate 

arithmetic. Figure 7.2 shows the two-factor model which provided an excellent fit to 

the data, χ2 (8) = 13.712, p = .090, RMSEA = .079 (90% CI = .000 - .148), CFI = 

.975, SRMR = .007.  A chi-squared difference test confirmed that this model fits the 

data significantly better than the unitary model (χ2
diff (1) = 24.616, p < .001). 
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Figure 7.2. One factor (left side) and two factor (right side) CFA of symbolic and 

nonsymbolic approximate arithmetic tasks (Time 3).  p < .001. * p < .05, ** p < .01 

  

 7.2.3.2 Time 4. The second set of CFAs (Figure 7.3) assessed the relationship 

of approximate arithmetic at Time 4. The first model presented the single factor 

model. Although all variables loaded significantly onto the hypothesised general 

approximate arithmetic factor, it is worth mentioning that the nonsymbolic ratio 4:5 

had a low loading. The model did not provide an adequate fit to the data, χ2 (9) = 

40.111, p < .001, RMSEA = .175 (90% CI = .122 - .232), CFI = .854, SRMR = .078. 

Contrary, the two-factor model provided an excellent fit to the data χ2 (8) = 11.216, p 

= .190, RMSEA = .060 (90% CI = .000 - .134), CFI = .985, SRMR = .038, which was 

significantly better than the single-factor model (χ2
diff (1) = 28.895, p < .001). 

Figure 7.3. One factor (left side) and two factor (right side) CFA of symbolic and 

nonsymbolic approximate arithmetic tasks (Time 4).  p < .001. * p < .05, ** p < .01 

 

 7.2.3.3 Time 5. The last set of CFAs investigated the structure of the 

approximate arithmetic tasks at Time 5 (Figure 7.4). The single-factor model 

provided a weak fit to the data, χ2 (9) = 20.253, p = .016, RMSEA = .104 (90% CI = 

.042 - .165), CFI = .935, SRMR = .053 compared to the two-factor model which 

provided an excellent fit to the data, χ2 (8) = 8.946, p = .347, RMSEA = .032 (90% CI 

= .000 - .116), CFI = .995, SRMR = .032.  However, the chi-squared difference test 

confirmed that the two-factor model fitted the data significantly better than the 

single-factor model (χ2
diff (1) = 11.307, p < .001).  
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Figure 7.4. One factor (left side) and two factor (right side) CFA of symbolic and 

nonsymbolic approximate arithmetic tasks (Time 5).  p < .001. * p < .05, ** p < .01 

 7.2.4 Predicting approximate arithmetic using Time 1 baseline model. 

 To assess the longitudinal prediction of approximate arithmetic, the Time 1 

base model (latent independent variables: nonverbal intelligence, general language 

comprehension, math-related language and transcoding, counting skills as well as the 

two magnitude comparison constructs as used in Chapter 4, pp. 76-79) was regressed 

onto the dependent latent factor symbolic and, separately, nonsymbolic approximate 

arithmetic at Times 3, 4 and 5. Latent variables assessed by only one indicator were 

pre-specified with an error reflecting the reliability of the variable calculated on the 

sample to minimise distortions caused by measurement errors.  

The path model depicted in Figure 7.5 shows the longitudinal predictors of 

symbolic approximate arithmetic at Time 3. The model provided an excellent fit to 

the data, χ2 (100) = 117.541, p = .111, RMSEA = .035 (90% CI = .000 - .059), CFI = 

.959, SRMR = .074, and symbolic magnitude comparison at Time 1 was the only 

unique predictor of symbolic approximate arithmetic at Time 3 (41.3% of variance 

explained).  Likewise, nonsymbolic approximate arithmetic at Time 3 was uniquely 

predicted by children’s performance on the symbolic comparison at Time 1, χ2 (100) 

= 112.078, p = .193, RMSEA = .029 (90% CI = .000 - .055), CFI = .970, SRMR = 

.067 (Figure 7.6). The model only explained 25.1% of variance. 
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Figure 7.5. Prediction of symbolic approximate arithmetic at Time 3 by Time 1 base model. 

* p < .05. ** p < .01. 

Figure 7.6. Prediction of nonsymbolic approximate arithmetic at Time 3 by Time 1 

base model. * p < .05. ** p < .01. 

At Time 4, symbolic approximate arithmetic scores were uniquely predicted 

by symbolic approximate arithmetic at Time 3 (autoregressor) and transcoding at 

Time 1. The model provided an excellent fit to the data, χ2 (149) = 170.826, p = .107, 

RMSEA = .032 (90% CI = .000 - .052), CFI = .964, SRMR = .074, (shown in Figure 
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7.7). The autoregressor was predicted by symbolic magnitude comparison at Time 1 

(41.4% of variance of symbolic approximate arithmetic at Time 3 and 54.1% of 

variance of arithmetic at Time 4 was explained). Children’s nonsymbolic 

approximate arithmetic, shown in Figure 7.8, fitted the data acceptably, χ2 (149) = 

180.147, p = .042, RMSEA = .038 (90% CI = .000 - .057), CFI = .937, SRMR = .080. 

Interestingly, both nonverbal intelligence (Time 1) and the autoregressor (predicted 

by symbolic magnitude comparison at Time 1), were unique predictors of 

nonsymbolic approximate arithmetic at Time 4. Nonverbal intelligence was the 

stronger predictor (symbolic magnitude comparison at Time 1 explained 22.8% of 

variance of nonsymbolic approximate arithmetic at Time 3, and the autoregressor at 

Time 3 and nonverbal ability at Time 1 explained 51.3% of variance at Time 4). 
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Figure 7.7. Prediction of symbolic approximate arithmetic at Time 4 by Time 

1 base model and Time 3 autoregressor. * p < .05. ** p < .01. 

Figure 7.8. Prediction of nonsymbolic approximate arithmetic at Time 4 by Time 1 

base model and Time 3 autoregressor. * p < .05. ** p < .01. 

At Time 5, the model assessing the prediction of symbolic approximate 

arithmetic provided an adequate fit to the data, χ2 (149) = 178.178, p = .052, RMSEA 

= .036 (90% CI = .000 - .055), CFI = .949, SRMR = .078. Figure 7.9 shows that 

symbolic magnitude comparison at Time 1 was the only unique predictor of the 
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autoregressor symbolic approximate arithmetic at Time 3, and the autoregressor and 

transcoding at Time 1 were the two unique predictors of symbolic approximate 

arithmetic performance at Time 5 (42.3% of variance of symbolic approximate 

arithmetic at Time 3 and 54.9% of variance of arithmetic at Time 5 explained).  

Figure 7.9. Prediction of symbolic approximate arithmetic at Time 5 by Time 1 base 

model and Time 3 autoregressor. * p < .05. ** p < .01. 

 Likewise, nonsymbolic approximate arithmetic at Time 5 (Figure 7.10) was 

predicted by the autoregressor Time 3 and transcoding at Time 1 which was the 

stronger predictor. The model fit was excellent, χ2 (149) = 160.343, p = .248, RMSEA 

= .023 (90% CI = .000 - .046), CFI = .976, SRMR = .080. The autoregressor was 

predicted by symbolic magnitude comparison assessed at Time 1. Symbolic 

magnitude comparison at Time 1 explained 28.9% of variance in nonsymbolic 

approximate arithmetic at Time 3 and the autoregressor at Time 3 and transcoding at 

Time 1 explained 40.0% of variance of nonsymbolic approximate arithmetic at Time 

5. 



Chapter 7 

173 

 

Figure 7.10. Prediction of nonsymbolic approximate arithmetic at Time 5 by Time 1 

base model and Time 3 autoregressor. * p < .05. ** p < .01. 

 7.3 Conclusion. 

 The main focus of the chapter was to investigate the approximate arithmetic 

as used in Gilmore et al. (2007). In general, the results of these analyses replicated 

the findings that young children can perform nonsymbolic as well as symbolic 

approximate arithmetic with accuracy above chance, and that nonsymbolic 

approximate arithmetic was easier for young children than symbolic approximate 

arithmetic. Gilmore and colleagues (2007) sampled a relatively wide age range (five 

to six year old children) and reported accuracy levels of 70% or more for symbolic 

approximate arithmetic. In the current study, children at three time points were 

assessed from five years, six months to six years, four months. The results showed 

that the younger children at were not as accurately as reported in Gilmore et al. 

(2007) and only children at Times 4 and 5 (six years and over) showed similar 

performance as in the Gilmore study. 

 Second, the results revealed ratio effects (4:7 > 4:6 > 4:5) for symbolic and 

nonsymbolic approximate arithmetic across all three time points. Children performed 

more accurately on ratios with a large difference (4:7) than ratios with a small 

difference (4:5) similar to Gilmore et al. (2007). The results suggest an increase in 
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the ratio effects over time, as indicated by the rise of the effect size partial eta-

squared. 

 Additionally, the chapter examined the correlation between measures of 

approximate arithmetic and the correlation between these and measures of exact 

arithmetic. First, symbolic and nonsymbolic approximate arithmetic were 

significantly related (rT3 = .557, rT4 = .492 and rT5 = .520, p’s < .001). Composite 

scores of symbolic and nonsymbolic approximate arithmetic were examined in 

relation to composite scores of the TOBANS subtasks. Both symbolic and 

nonsymbolic approximate arithmetic correlated significantly with TOBANS, the 

correlations with symbolic approximate arithmetic were higher than with 

nonsymbolic. It seems that symbolic approximate arithmetic is more closely related 

to traditional arithmetic tasks. Children may not only rely on mental arithmetic when 

performing nonsymbolic approximate arithmetic but performance may also be 

underpinned by broader magnitude estimation processes which are not necessary 

when solving conventional, exact arithmetic. It must be critically mentioned, that 

nonsymbolic approximate arithmetic was only weakly related to exact arithmetic and 

symbolic approximate arithmetic moderately. 

 Questions remain regarding the relationship between approximate and exact 

arithmetic. To what extent do the correlations noted above suggest common 

processes in the performance of approximate and exact arithmetic? Might the 

moderate correlation between symbolic approximate arithmetic and exact arithmetic 

tasks be explained by common demand on symbol identification? Note in general 

that these are zero-order correlations which allow only limited interpretation.  

 In regards to the structure and relationship of the symbolic and nonsymbolic 

approximate arithmetic tasks, no shift from a two-factor model towards a single-

factor model, as found in the development of magnitude comparison, could be noted. 

At Time 3, only the two-factor model adequately fitted the data suggesting that 

symbolic and nonsymbolic approximate arithmetic tasks loaded on separate factors at 

five years and six months. Likewise, it seems that approximate arithmetic at Time 4 

also comprises of two separate constructs: symbolic and nonsymbolic approximate 

arithmetic. The same result was found at Time 5 (age six years, four months) though 

the model fit of the unitary factor model was improving over time. The findings 

indicate that the current study may have failed to measure the sensitive period for 
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this switch from the two-factor towards the one-factor model. It may be possible that 

the shift happens later, perhaps in the second year of formal schooling. It could be 

that, similar to the development of magnitude comparison, children have to master 

their knowledge of simple arithmetic problems. As demonstrated in Chapter 3, the 

shift in magnitude comparison did not occur until children had basic mastery of the 

Arabic numeral system suggesting that pre-school children’s performance on 

symbolic and nonsymbolic magnitude comparison may rely on distinct forms of 

representation. Arguably, children have to master simple arithmetic skills before a 

shift in approximate arithmetic towards the unitary factor may happen.  

 Alternatively, symbolic and nonsymbolic approximate arithmetic may never 

form one factor due to the nature of the tasks being so distinct. Symbolic 

approximate arithmetic may provide underpinning for the more traditional exact 

arithmetic route whereas nonsymbolic may depend more on magnitude estimation 

processes. Further research is needed to assess if and when this shift may occur. 

 Last but not least, the chapter also examined to what extent approximate 

arithmetic may be predicted by the Time 1 base model. At Time 3, both symbolic 

and nonsymbolic approximate arithmetic were uniquely predicted by Time 1 

symbolic magnitude comparison. At Time 4, symbolic approximate arithmetic was 

uniquely predicted by the autoregressor (Time 3) and by transcoding (Time 1) 

whereas nonsymbolic approximate arithmetic at Time 4 was predicted by the 

autoregressor Time 3 and nonverbal intelligence (Time 1, the stronger predictor). 

Symbolic approximate arithmetic assessed at Time 5 was predicted by the 

autoregressor at Time 3 and transcoding at Time 1.  Likewise, children’s Time 5 

nonsymbolic approximate arithmetic performance was predicted by the autoregressor 

at Time 3 and transcoding (Time 1). 

Some tentative conclusions may be drawn. It seems that symbolic magnitude 

comparison is crucial for children’s understanding of early approximate arithmetic, 

whether symbolic or nonsymbolic. Why would that be? Easier to interpret is the 

early and specific involvement of nonverbal ability (nonverbal reasoning) in later 

nonsymbolic approximate arithmetic. However, over time we observe this 

involvement to be overtaken by transcoding, which operates as a consistent 

longitudinal predictor of both symbolic and nonsymbolic approximate arithmetic in 

six year olds. It would be valuable to research this relationship in detail assessing to 
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what extent the knowledge of the symbol system underpins arithmetic generally, and 

to what extent the relationships observed here are due to the shared cognitive 

processes of magnitude comparison. Also to be considered is the cumulative effect of 

increasing practice in exact arithmetic in the early years of formal schooling. 

Overall, the symbolic approximate arithmetic task introduced by Gilmore et 

al. (2007) has proven useful when testing pre-school children who have an immature 

knowledge of exact arithmetic and had no formal training of exact arithmetic, yet are 

able to perform above chance level on approximate arithmetic based on double digit 

numbers. Current findings indicate that general magnitude estimation processes 

underlie this ability. However, detailed analyses do not support the statement made 

by Gilmore et al. (2007) that children ‘used nonsymbolic number representations to 

solve symbolic problems’ (p.590). There is no direct evidence to support this 

statement.  

Confirmatory factor analyses of current data show that a two-factor model, in 

which symbolic and nonsymbolic approximate arithmetic are identified as separate 

latent variables, is preferred across the testing period observed in both studies. 

Longitudinal analyses showed a common dependence on symbolic comparison and a 

specific contribution of nonverbal ability to nonsymbolic approximate arithmetic, 

which is then superceded by a common influence of early symbol transcoding.  

Taken together, these findings indicate that performance on ANS comparison 

tasks, as well as symbolic transcoding, should be taken into account when examining 

the relationship between approximate arithmetic and exact arithmetic. It will be 

interesting for future research to explore the development of symbolic and 

nonsymbolic approximate arithmetic at later stages, and to see whether there will be 

a shift, similar to magnitude comparison, from a two-factor model with symbolic and 

nonsymbolic approximate arithmetic as distinct constructs towards a unitary model 

with one general approximate arithmetic construct. 
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Chapter 8. The Importance of Children’s Number Estimation on 

Arithmetic 

There is evidence that there is a shift from a logarithmic to a linear 

distribution of numerical magnitude representations in children between five and 

eight years (Booth and Siegler, 2008; Siegler et al., 2009), and that older children 

perform better on number lines (as indicated by the difference between actual 

position and children’s estimated position) than younger children, and that 

performance on the number line is significantly associated with arithmetic skills 

(Siegler and Booth, 2004; Booth and Siegler, 2006, 2008). However, these findings 

come mostly from cross-sectional studies.  

Some studies identified the involvement of language, counting and magnitude 

estimation as developmental associates of early arithmetic (Praet et al., 2013, Wiese, 

2003). Indeed, Praet and Desoete (2013) explored the relationship between 

arithmetic and children’s estimation using number words, dots and Arabic numerals, 

adding language as a covariate (from kindergarten till grade two). The results 

revealed that Arabic numerals were more linearly distributed than number words and 

that language explained kindergartener’s arithmetic performance, but not the growth 

of arithmetic. Children’s untimed math performance was predicted by number line 

estimation. There is further evidence for the importance of number estimation in the 

development of arithmetic skills (Muldoon et al., 2013). They authors noted that 

five-year-olds’ counting ability was the largest contributor to children’s math 

performance and only linear fit of number estimation on the 0-20 scale at 5 years and 

linear fit of number estimation on the 0-100 scale at six years made a significant 

contribution. Some studies propose that, rather being a predictor of mathematical 

achievement, number line acuity and math performance both influence each other 

during development from pre-school through early school years (Friso-van den Bos 

et al., 2014; LeFevre et al., 2013). 

There is some evidence that children know and rely on multiple numerical 

representations (Siegler and Opfer, 2003). The authors further showed that children 

rely more on linear representations rather than intuitive, logarithmic ones and that 

numerical context (0-100 or 0-1000 scale) affects the type of representation. The 

study examined performance on numerical estimation tasks in second, fourth and 

sixth grade children and adults.  
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The present study examined the nature and development of young children’s 

numerical estimation abilities and its relation to arithmetic over the time course from 

pre-school to the conclusion of the first year of formal schooling. The relation 

between numerical estimation, counting and arithmetic proposed by Muldoon et al. 

(2013) were tested, and the predictive value of numerical estimation within a 

comprehensive model of the development of arithmetic was further explored. 

 8. 1 Methods. 

8.1.1 Participants.  

The same participants were used as described in Chapter 2 (p. 42) 

8.1.2. Materials. 

Children were assessed on the following measures. 

8.1.2.1 Baseline model taken at Time 1.  

The following tasks (independent variables) were administered individually 

to the four nursery classes in the summer term of the nursery age (4 years; see 

Chapter 4, pp. 76-79 for more details): Nonverbal intelligence (Raven’s CPM; Raven 

et al., (1993), grammatical ability (TROG-2; Bishop, 2003), vocabulary (BPVS - III; 

Dunn et al., 2010), specific math-related language ability (TRC), transcoding 

(Number Identification, Number Writing and Reading Arabic numerals),  rote 

counting, magnitude comparison and arithmetic (simple addition problems).  

8.1.2.2 Numerical Estimation. 

Time 1.  Children’s numerical estimation skill was assessed using the 

Number-to-Position task of the traditional number line task (Siegler and Opfer, 2003; 

Whyte and Bull, 2008). Nine 20 cm lines with a start anchor point of 0 (left end of 

line) and end anchor point of 10 (right end) were presented to the child. The child 

was asked to mark the position of the target number on the number line. The target 

numbers (1, 2, 3, 4, 6, 7, 8, or 9) were presented verbally in random order. 

Furthermore, children were also assessed on two items (13 and 16) on the number 

line scale 0-to-20.  

The experimenter explained the number line and start and end anchor 

beforehand. One practice trial (5) was given to familiarise the child with the task. 
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Feedback on how to mark the position was given to the child due to the fact that 

many children seemed not to fully understand the task. 

Time 3.  Testing procedure was the same as in Time 1 but the difficulty level 

of the task was adjusted for age. Two number line ranges were included (0-to-10 and 

0-to-20). Five 25 cm lines for each number range were presented with the 

appropriate start and end anchor points. The target numbers for 0-to-10 were 6, 2, 9, 

12 and 7 and for 0-to-20 were 3, 8, 14, 6 and 17. Five practice trials (number 3 and 5 

for 0-10, 12 for 0-20 and 72 and 29 for 0-100) were presented prior to test trials.  

Time 5.  Testing procedure was the same as in Time 3. The number line 

ranges were 0-to-10 and 0-to-20. Each number line was 20 cm in length and was 

presented with the appropriate start and end anchor points. The target numbers for 0-

to-10 were 6, 2, 9, 1, 7, 3, 8 and 4 and for 0-to-20 were 3, 8, 14, 6, 17, 4 and 12. Four 

practice trials (number 5 for 0-10 and numbers 9, 15 and 10 for 0-20) were tested 

prior to test trials. 

8.1.2.3 Arithmetic measures taken at Time 5.  

Arithmetic. Fluency. Children’s speeded arithmetic skills (fluency) was 

assessed using the ‘addition’, ’addition with carry’ and ‘subtraction’ subtask’ 

subtests of the TOBANS (Brigstocke et al., 2016). Children were asked to complete 

as many arithmetic problems as possible in one minute. In the ‘addition’ subtask, 

children were presented with simple addition problems with sums less than ten and in 

the ‘addition with carry’ subtask the sums were bigger than ten but smaller than 

twenty. One point was awarded even if the numeral was written backwards 

(maximum score addition, subtraction = 90; maximum score addition with carry = 30). This task 

was administered as a group task. 

Accuracy. Children’s basic arithmetic skills were assessed using the 

Numerical Operations subtest of the second edition of the Wechsler Individual 

Achievement Test (WIAT-II; Wechsler, 2005). The first six items (identifying and 

writing Arabic numerals) were in order to provide a more specific and conventional 

measure of arithmetic. The test was executed according to the manual and children 

were allowed to complete the task in their own time (maximum score = 25).  
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8.1.3 Procedure. 

Testing was carried out three times over a 25-month period from the summer 

term of nursery through to the summer term of Year One. Wherever possible, each 

child was seen by the same experimenter. The author was assisted by several 

research assistants from undergraduate psychology classes. They were trained on 

how to administer the test battery and were given instructions on how to work with 

young children. Children were tested individually at Times 1 and 2, and at Times 3, 4 

and 5 individually or in small groups in a separate room or another quiet place in the 

school. Numerical estimation was individually assessed at all three time points. Each 

child met with the experimenter ideally two to four days in a row, depending on the 

number of blocks, to avoid lack of motivation or concentration. If testing in groups, 

the ratio of experimenters to children was 1:3.  

Preliminary to the testing, the experimenters attended at least one day in each 

class so that the children got to know them and felt more comfortable around them. 

Moreover, the experimenters told each child that they would play games and asked 

questions such as “How are you?” or “How old are you?”.  

All unstandardized tests included practice items. Concerning feedback, 

children received only concrete feedback on their performance for practice items and 

general praise and encouragement throughout the tests. 

8.2 Results. 

Descriptive statistics for the number estimation task are shown in Table 8.1. 

To answer the research question regarding the relationship between number 

estimation and early arithmetic performance, descriptive statistics are first examined, 

followed by repeated-measures ANOVAs run on IBM SPSS Statistics 22. The 

dependent variable was children’s performance on arithmetic tasks at each time point 

and the independent variable consisted of children’s linear and logarithmic fit to 

number line estimates (difference between child’s mark and target position); factors 

included time and scale of number line. Then, hierarchical regressions established the 

relationship between early arithmetic, linear and logarithmic fit to number line 

estimates (difference between child’s mark and position of target number) and 

counting. Further analyses examined the extent to which number estimation may 

predict early arithmetic skills, based on SEM path models using MPlus Version 7. In 
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the SEM path models, the independent variables comprised the Time 1 baseline 

model, expanded to include children’s number estimation (difference between child’s 

mark and position of target number) was regressed onto the dependent latent factor 

of children’s arithmetic scores at Time 5 (TOBANS and WIAT subtasks). To 

visually simplify the path models, the coefficients of the relations between the factors 

are not presented but can be found in Appendix 25. 

Estimation data was analysed for changes in both linearity and accuracy 

(error). Linear and logarithmic functions (using difference scores between child’s 

mark and target position) were fitted using the equations employed by Muldoon et al. 

(2013): y = slopex + b (linear function) and y = clnx +b (logarithmic function). Error 

denotes error percentage (percentage of how much the child’s answer deviates from 

the target position) and absolute error (difference between child’s answer and target 

number). Error percentage was calculated using the equation error = (child’s 

estimate – number to be estimated) / number line scale x 100.  Children’s absolute 

error values were used in the SEM path model analysis. 

8.2.1 Descriptive Statistics 

Descriptive statistics are shown in Table 8.1. At Time 1, children’s 

performance on 0-10 scaled items was most accurate for number ‘6’ (19.67% error) 

and number ‘8’ (42.34% error) showed the worst performance. A different pattern 

was found for Time 3 with number ‘3’ and number ‘1’ (14.20% error and 8.88% 

error respectively) being the most accurate item and performance on number ‘6’ at 

Times 3 and 5 being the least accurate (33.14% error and 27.69% error respectively). 

Children’s accuracy on 0-10 items increased over time. Interestingly, it seems that 

children were more accurate on small numbers compared to larger numbers. The 

error percentage at Time 1 for items 1-7 was overall smaller than items ‘8’ and ‘9’. 

Surprisingly, error seems to be relatively higher than expected for numbers ‘1’ and 

‘2’ at Time 1. At Times 3 and 5, it seems that the breakpoint may be around number 

‘5’ with numbers in the subitizing range (1-4) being easier to estimate than large 

numbers reflecting most likely the frequency input (Dehaene and Mehler, 1992). 

In regards to performance on 0-20 scaled items, children performed most 

accurately on number ‘3’ (11.29% error Time 3 and 7.37% error at Time 5) and 

performance on number ‘17’ was the least accurate (28.99% error at Time 3 and 
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21.16% error at Time 5). Children’s accuracy on 0-20 items improved over time and 

children’s estimates on the 0-20 scale were more accurate than on the 0-10 scale. 

Children‘s estimates on numbers smaller than ten was more accurate on the 0-20 

scale compared to the 0-10 scale. 
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Table 8.1 

Mean and standard deviations of predictor and criterion measures from all testing sessions 

  Time 1 Time 3 Time 5 

  M (SD) M (SD) M (SD) 

Nonverbal IQ Raven’s CPM 6.45 (1.57)   

Language 

Comprehension 

TROG-2 3.15 (2.63)*   

Vocabulary BPVS-III 58.26 (16.77)*   

Math-related Language TRC - more 5.90 (2.00)*   

Numerical Knowledge Number Writing 6.86 (5.79)*   

 Number Reading 8.02 (2.67) [45]*   

 Number Identification 7.26 (2.60)*   

 Rote Counting 14.78 (12.84)* 1 to 40: 34.84 (8.51) [60] 

94 to 110: 10.30 (5.34) [26] 

25 back.: 7.01 (7.73) [12]* 

 

Magnitude Comparison Digit Close 

Digit Far 

NS FS Close 

NS FS Far 

10.11 (3.21) [7] 

10.73 (3.59) [7] 

10.26 (2.16) [1] 

12.87 (2.57) [17] 
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NS FS 3:4 

NS FS 5:6 

NS SA Close 

NS SA Far 

NS SA 2:3 

NS SA 3:4 

10.76 (2.72) [4] 

10.58 (2.29) [3] 

10.29 (2.28) [1] 

13.24 (2.43) [23] 

11.42 (2.42) [5] 

10.81 (2.03) [2]* 

Arithmetic Addition Tasks 6.33 (3.21) [17]* A: 5.23 (2.51) [3] 

B: 5.15 (2.55) [8]* 

 

 TOBANS 

Addition 

Addition w/ carry 

Subtraction 

   

12.74 (8.66) 

5.07 (5.01) [1] 

8.44 (5.10) 

 WIAT   4.00 (2.27) 

 

  Time 1 Time 3 Time 5 

  Position Error % Position Error % Position Error % 

  M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) 

Number Estimation 0-10 

1 

2 

3 

4 

6 

7 

 

3.2 (2.7) 

3.9 (2.7) 

4.1 (2.7) 

4.1 (3.0) 

10.8 (2.3) 

5.2 (2.4) 

 

25.92 (23.0) 

26.13 (19.2) 

24.09 (16.3) 

22.40 (19.4) 

19.67 (16.4) 

23.53 (18.4) 

 

1.1 (2.4) 

1.3 (2.1) 

 

 

3.0 (2.1) 

4.6 (2.9) 

 

14.20 (18.7) 

17.41 (14.4) 

 

 

33.14 (15.3) 

31.94 (20.1) 

 

.4 (1.0) 

.9 (1.1) 

1.2 (.8) 

1.8 (1.3) 

3.3 (1.4) 

4.6 (1.8) 

 

8.88 (7.9) 

13.83 (7.1) 

19.18 (5.9) 

24.21 (7.5) 

27.69 (12.8) 

25.01 (17.1) 



Chapter 8 

185 

 

8 

9 

0-20 

3 

4 

6 

7 

8 

12 

13 

14 

16 

17 

10.0 (4.9) 

5.9 (2.6) 

 

 

 

 

 

 

 

10.5 (5.4) 

 

10.8 (5.3) 

 

 

42.34 (31.9) 

32.67 (23.9) 

 

 

 

 

 

 

 

25.25 (15.3) 

 

30.82 (20.4) 

 

6.3 (3.6) 

 

3.0 (3.8) 

 

5.7 (4.3) 

 

8.5 (5.5) 

 

 

11.4 (6.0) 

 

12.0 (5.6) 

 

32.09 (31.1) 

 

11.29 (15.3) 

 

15.4 (14.8) 

 

22.29 (16.3) 

 

 

25.82 (19.7) 

 

28.98 (23.9) 

5.8 (2.0) 

6.4 (2.3) 

 

2.0 (1.6) 

2.8 (1.8) 

4.6 (2.1) 

 

8.0 (3.4) 

9.8 (3.2) 

 

11.2 (3.0) 

 

12.8 (2.8) 

22.01 (20.1) 

25.83 (23.2) 

 

7.37 (6.1) 

8.82 (6.3) 

10.68 (6.6) 

 

13.70 (9.9) 

15.30 (11.7) 

 

16.56 (12.1) 

 

21.16 (14.0) 

Notes.  M = mean age. SD = standard deviation 
* 

individually administered tasks. The number of children scoring at maximum level are shown in square brackets. All scores are 

presented as raw scores. For the Magnitude Comparison Tasks: NS = nonsymbolic. FS = fixed size trials. SA = surface-area matched trials.  
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8.2.2 The associations between children’s number line estimation and 

early arithmetic. 

Descriptive statistics of children’s overall error percentage of estimates as 

well as linear and logarithmic function fits to number estimation line using absolute 

errors (difference between child’s mark and target position) are shown in Table 8.2. 

The analysis of children’s estimates at Time 1 showed a significantly better 

linear fit (R2
lin) than logarithmic fit (R2

log), t(99) = 7.168, p < .001, r = .980. Next, a 2 

by 2 repeated-measures ANOVA with Time (Times 3 and 5) and Scale (0-10 and 0-

20) as factors and the linear fit (R2
lin) as dependent variable revealed that linear fit 

significantly improved over time (F(1,106) = 30.604, p ˂ .001, ŋp
2 = .224; T3: M = 

.650, SD = .02; T5: M = .813, SD = .01), but the linear performance on scale 0-10 (M 

= .752, SD = .02) and 0-20 (M = .710, SD = .01) did not differ (F(1,106) = 2.705, p = 

.103, ŋp
2 = .025). There was also a significant interaction between time and scale 

(F(1,106) = 4.407, p = .038, ŋp
2 = .040). Post-hoc t-tests showed that at Time 3, 

performance on 0-20 (M = .607, SD = .03) was less linear than 0-10 (M = .693, SD = 

.03), t(113) = 2.501, p = .014, whilst there was no difference on linearity at Time 5, 

t(114) = -.244, p = .807, 0-10: M = .812, SD = .02, 0-20: M = .813, SD = .02). 

A further 2 by 2 repeated-measures ANOVA investigated the fit of the 

logarithmic function (R2
log), with Time (Times 3 and 5) and Scale (0-10 and 0-20) as 

the factors. The results showed that the logarithmic fit improved over time (F(1,106) 

= 22.333, p ˂ .001, ŋp
2 = .174; T3: M = .627, SD = .02; T5: M = .757, SD = .01). 

There was also a significant main effect for scale (F(1,106) = 7.603, p = .007, ŋp
2 = 

.067), with a more logarithmic performance on the 0-20 scale (M = .724, SD = .02) 

compared to 0-10 (M = .660, SD = .01). Again, the interaction was significant 

(F(1,106) = 10.512, p = .002, ŋp
2 = .090). Post-hoc t-tests showed that there was no 

effect of scale at Time 3 (t(113) = -.012, p = .991, 0-10: M = .626, SD = .03, 0-20: M 

= .628, SD = .03), but at Time 5 (t(114) = -.5.508, p < .001), there was a less strongly 

logarithmic performance on 0-10 (M = .690, SD = .02) scale than 0-20 (M = .820, SD 

= .02) scale. 
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Table 8.2 

Estimation error, R2
lin and R2

log for 0-10 and 0-20 scale of number estimation task at 

all three time points  

 0-10 0-20 

Measure T1 T3 T5 T1 T3 T5 

 Analysis of individual children’s estimates (mean values) 

Error (%) 27.29 32.68 20.75 28.03 40.60 13.45 

R2
lin .329 .679 .815  .593 .822 

R2
log .284 .612 .697  .613 .827 

 Analysis by group (median values) 

R2
lin .476 .867 .935  .967 .985 

R2
log .414 .707 .758  .978 .975 

Notes.  Although children were assessed on two 0-20 scaled targets at Time 1, only errors could be analysed.  

8.2.3 The quality of children’s number line estimation as a predictor of 

early arithmetic. 

To answer the question of whether these changes in children’s estimates are 

related to changes in children’s performance on early arithmetic, correlations 

between arithmetic scores (composite scores of the arithmetic subtasks assessed at 

each time point) at all three time points and function fits of number estimates for the 

scales 0-10 and 0-20 were compared for both linear and logarithmic function. As 

shown in Table 8.3, neither the linear nor the logarithmic estimates of the scale 0-10 

were significantly related to arithmetic at Time 1. Significant correlations were 

observed between arithmetic scores and R2
lin values on the 0-20 scale and a weak 

correlation on the 0-10 scale at Time 3, whereas neither 0-10 values nor 0-20 values 

were significantly correlated to arithmetic at Time 5. A similar pattern emerged for 
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logarithmic fits. R2
log values on the 0-20 scale were significantly related with 

arithmetic at Time 3. At Time 5, there were no significant correlations with neither 

0-10 nor 0-20. 

Table 8.3 

Correlations between the linear and logarithmic function fits and arithmetic at Times 

1, 3 and 5 

 Time 1 Time 3 Time 5 

 1 2 3 1 2 3 1 2 3 

1. Linear fit 0-10 --- ---- .128 --- .283** .210* --- -

.003 

.098 

2. Linear fit 0-20  ---- ----  ---- .417**  ---- .106 

3. Arithmetic   ----   ----   ---- 

 

1. Logarithmic 

fit 0-10 

--- ---- .122 --- .302** .163 --- .080 .060 

2. Logarithmic 

fit 0-20 

 ---- ----  ---- .352**  ---- .133 

3. Arithmetic   ----   ----   ---- 

Notes.  Pearson product-moment correlation coefficient. Arithmetic variables entered are composite scores of 

raw scores. * p < .05. ** p < .01 

Next, it was investigated to what extent the relationship between children’s 

number line estimation skills (linear and logarithmic function fit; independent 

variable) and early arithmetic (dependent variable; composite scores of arithmetic 

subtasks) was mediated by other covariates including counting ability and 

transcoding (independent variables). The analysis focused on Times 1 and 3 

performance. At Time 1, most children (85%) could count up to ten, but only 18% 

could count up to twenty. At Time 3, 96.5% of the children could count up to 10, 

86% up to twenty and 52.6% could count up to 40. The correlation between 

arithmetic and rote counting at Time 1 was significant (r = .28), as were the 
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correlations between arithmetic at Time 3 and counting to 40 (r = .34), counting from 

94 to 110 (r = .53) and counting backwards from 25 (r = .65). 

Regression analyses were used to examine to what extent the relationship 

between number line estimation and early arithmetic was mediated by counting skills 

and transcoding at Time 1. The Time 1 correlation matrix for counting, transcoding 

tasks and linear and logarithmic fit for the 0-10 scale is shown in Table 8.4.  

Table 8.4 

Correlations between the linear and logarithmic function fits, counting and 

transcoding at Time 1 

 1. 2. 3. 4. 5. 6. 

1. Counting ---- .341** .228* .475** .124 .123 

2. # ID  ---- .562** .586** .206* .181 

3. # Reading   ---- .579** .254* .243* 

4. # Write    ---- .261** .254* 

5. Linear fit 0-

10 

    ---- .980** 

6. Logarithmic 

fit 0-10 

     ---- 

Notes.  Pearson product-moment correlation coefficient. All variables entered were of raw scores. 

 * p < .05. ** p < .01 

Hierarchical regressions were conducted in which counting was entered in 

step one, transcoding tasks (number reading, writing and identification scores were 

entered seperately) were added in the second step and R2 values in step three 

(separate regressions for linear and logarithmic function fits). As shown in Table 8.5, 

counting was significantly predicting arithmetic (ß = .281, t(98) = 2.903, p = .005, r2 

= .281). Adding transcoding, was significantly improving the model, with number 

identification being the only unique predictor (ß = .514, t(97) = 5.387, p < .001, r2 = 

.480, rchange
2 = .212, Fchange(1, 97) = 29.023, p < .001).  
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Table 8.5 

Hierarchical Regressions for Counting, Transcoding and linear and logarithmic 

function fits and Arithmetic at Time 1 

 Linear Fit Logarithmic Fit 

 B SE B ß B SE B ß 

Step 1       

Constant 5.291 .47  5.291 .47  

Counting .07 .02 .28** .07 .02 .28** 

Step 2       

Constant 2.703 1.03  2.703 1.03  

Counting  .013 .03 .05 .013 .03 .05 

Transcoding 

 # Id 

 # Reading 

 # Write 

 

.208 

.045 

.211 

 

.07 

.14 

.14 

 

.38** 

.04 

.18 

 

.208 

.045 

.211 

 

.07 

.14 

.14 

 

.38** 

.04 

.18 

Step 3       

Constant 2.750 1.04  2.754 1.04  

Counting  .013 .03 .05 .013 .03 .05 

Transcoding 

 # Id 

 # Reading 

 # Write 

 

.210 

.046 

.216 

 

.07 

.14 

.14 

 

.38** 

.04 

.18 

 

.210 

.044 

.216 

 

.07 

.14 

.14 

 

.38** 

.04 

.18 

0-10 -.364 1.05 -.03 -.405 1.12 -.03 

Notes. Linear Fit: Step 1 R2 = .079, p = .005, Step 2 ΔR2 = .219, p < .001, Step 3 ΔR2 = .001, p = .729. 

Logarithmic Fit: Step 1 R2 = .079, p = .005, Step 2 ΔR2 = .219, p < .001, Step 3 ΔR2 = .001, p = .734. * p < .05. 

** p < .01. 

The R2
lin values on the 0-10 scale did not significantly contribute to the 

variance on arithmetic scores (ß = -.028, t(96) = -.317, p = .752, r2 = -.032), rchange
2 = 

.001, Fchange(1, 96) = .101, p = .752). 



Chapter 8 

191 

 

A second hierarchical regression model was conducted adding R2
log values on 

the 0-10 scale in step three (shown in Table 8.5). The same pattern was observed that 

counting was a significant predictor of arithmetic at Time 1, adding measures of 

transcoding, and number identification in particular, in step two significantly 

improved the model, but adding R2
log values on the 0-10 scale did not significantly 

improve the model (ß = -.026, t(96) = -.289, p = .773, r2 = -.029), rchange
2 = .001, 

Fchange(1, 96) = .084, p = .773). 

 The Time 3 correlation matrix for counting (counting to 40, from 94-110 and 

backwards from 25 were entered separately), transcoding tasks (entered separately) 

and linear and logarithmic fit for the 0-10 scale are shown in Table 8.6. At Time 3, a 

set of hierarchical regressions were run in which counting (counting to 40, counting 

from 94 to 110 and counting backwards from 25) was entered in step one, the 

transcoding tasks number reading, writing and identification were added seperately 

in the second step and R2 values on the 0-10 and 0-20 scale were added in step three 

(separate regressions for linear and logarithmic function fits). The linear hierarchical 

regression (Table 8.7) showed that both counting from 94 to 110 (ß = .269, t(106) = 

3.242, p = .002, r2 = .300) and counting backwards from 25 (ß = .508, t(106) = 

6.344, p < .001, r2 = .525) were significantly predicting arithmetic, but counting to 

40 was not significant (ß = .040, t(106) = .500, p = .618, r2 = .049). The addition of 

transcoding made a significant improvement on the model (ß = .387, t(105) = 4.439, 

p < .001, r2 = .397, rchange
2 = .082, Fchange(1, 105) = 19.7011, p < .001). Neither R2

lin 

values on the 0-10 scale (ß = .058, t(103) = .836, p = .405, r2 = .082) nor R2
lin values 

on the 0-20 scale (ß = .068, t(103) = .913, p = .363, r2 = .090) were significantly 

predicting arithmetic (rchange
2 = .009, Fchange(1, 103) = 1.089, p = .340).  

The Time 3 correlation matrix for counting, transcoding tasks and linear and 

logarithmic fit for the 0-10 scale are shown in Table 8.6. At Time 3, a set of 

hierarchical regressions were run in which counting (counting to 40, counting from 

94 to 110 and counting backwards from 25) was entered in step one, the transcoding 

tasks number reading, writing and identification were added in the second step and 

R2 values on the 0-10 and 0-20 scale were added in step three (separate regressions 

for linear and logarithmic function fits).  
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Table 8.6 

Correlations between the linear and logarithmic function fits, counting and transcoding at Time 3 

 1 2 3 4 5 6 7 8 9 10 

1. Counting to 40 ---- .426** .348** .405** .440** .459** .202* .357** .124 .333** 

2. Counting from 94 to 110  ---- .461** .392** .500** .417** .090 .371** .028 .329** 

3. Counting backwards   ---- .460** .472** .390** .157 .385** .086 .297** 

4. # ID    ---- .689** .519** .234* .304** .179 .297** 

5. # Reading     ---- .597** .190* .305** .146 .276** 

6. # Write      ---- .195* .379** .146 .365** 

7. Linear fit 0-10       ---- .283** .949** .337** 

8. Linear Fit 0-20        ----- .235* .955** 

9. Logarithmic fit 0-10         ---- .302** 

10. Logarithmic fit 0-20          ---- 

Notes.  Pearson product-moment correlation coefficient. Arithmetic variables entered are composite scores of raw scores. 

 * p < .05. ** p < .01 
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Table 8.7 

Hierarchical Regressions for Counting, Transcoding and linear and logarithmic 

function fits and arithmetic at Time 3 

 Linear Fit Logarithmic Fit 

 B SE B ß B SE B ß 

Step 1       

Constant 1.161 1.40  1.161 1.40  

Counting 0-40 

Counting 94-110 

Counting backwards 

.023 

.279 

.420 

.05 

.09 

.07 

.04 

.27** 

.51** 

.023 

.279 

.420 

.05 

.09 

.07 

.04 

.27** 

.51** 

Step 2       

Constant -3.163 1.60  -3.163 1.60  

Counting 0-40 

Counting 94-110 

Counting backwards 

-.046 

.174 

.313 

.04 

.08 

.07 

-.08 

.17* 

.38** 

-.046 

.174 

.313 

.04 

.08 

.07 

-.08 

.17* 

.38** 

Transcoding 

 # Id 

 # Reading 

 # Write 

 

.225 

.108 

.525 

 

.15 

.13 

.18 

 

.14 

.08 

.25** 

 

.225 

.108 

.525 

 

.15 

.13 

.18 

 

.14 

.08 

.25** 

Step 3       

Constant -3.628 1.66  -3.743 .168  

Counting 0-40 

Counting 94-110 

Counting backwards 

-.056 

.163 

.297 

.05 

.09 

.07 

-.10 

.16 

.37** 

-.052 

.173 

.309 

.05 

.09 

.07 

-.09 

.17* 

.37** 

Transcoding 

 # Id 

 # Reading 

 # Write 

 

.207 

.117 

.478 

 

.15 

.13 

.18 

 

.13 

.09 

.23** 

 

.205 

.112 

.490 

 

.15 

.13 

.18 

 

.13 

.09 

.23** 

0-10 

0-20 

.776 

1.619 

1.27 

1.37 

.04 

.09 

1.199 

.910 

1.39 

1.38 

.06 

.09 

Notes. Linear Fit: Step 1 R2 = .479, p < .001, Step 2 ΔR2 = .095, p < .001, Step 3 ΔR2 = .009, p = .336. 

Logarithmic Fit: Step 1 R2 = .479, p < .001, Step 2 ΔR2 = .095, p < .001, Step 3 ΔR2 = .007, p = .440. * p < .05. 

** p < .01. 
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The linear hierarchical regression (Table 8.7) showed that both counting from 

94 to 110 (ß = .269, t(106) = 3.242, p = .002, r2 = .300) and counting backwards 

from 25 (ß = .508, t(106) = 6.344, p < .001, r2 = .525) were significantly predicting 

arithmetic, but counting to 40 was not significant (ß = .040, t(106) = .500, p = .618, 

r2 = .049). The addition of transcoding (number writing) made a significant 

improvement on the model (ß = .387, t(105) = 4.439, p < .001, r2 = .397, rchange
2 = 

.082, Fchange(1, 105) = 19.7011, p < .001). Neither R2
lin values on the 0-10 scale (ß = 

.058, t(103) = .836, p = .405, r2 = .082) nor R2
lin values on the 0-20 scale (ß = .068, 

t(103) = .913, p = .363, r2 = .090) were significantly predicting arithmetic (rchange
2 = 

.009, Fchange(1, 103) = 1.089, p = .340).  

Likewise, counting was not a unique predictor of arithmetic once transcoding 

(number writing) was taken account of and both R2
log values on the 0-10 scale (ß = 

.043, t(103) = .622, p = .535, r2 = .061) and R2
log values on the 0-20 scale (ß = .107, 

t(103) = 1.416, p = .160, r2 = .138, rchange
2 = .009, Fchange(1, 103) = 1.089, p = .340) 

failed to make a significant contribution to the prediction of arithmetic scores. 

8.2.4 Longitudinal prediction of arithmetic. 

 The longitudinal SEM analysis of prediction of arithmetic (dependent 

variable) at Time 5 included  the following independent variables assessed at Time 1: 

the absolute error (difference between child’s estimate and number to be estimated) 

data from the 0-10 scale items of the number estimation task and the Time 1 baseline 

model as used in previous chapters. Data from 0-20 scale proved difficult to model. 

It was decided to measure number line estimation as absolute error rather than error 

percentage because absolute error not only gives an estimate on the accuracy of the 

answer, but also includes information on whether children underestimated (negative 

value) or overestimated the target number (positive value). 

 Latent predictive variables included transcoding (number writing, reading and 

identification), counting skills (rote counting), the two magnitude comparison 

constructs (symbolic and nonsymbolic comparison) as well as two factors for number 

estimation (small range and large range) and the autoregressor arithmetic (addition 

task). The factors nonverbal intelligence (Raven’s CPM), general language 

comprehension (BPVS-III and TROG-2), math-related language (TRC) were 

excluded based on their failure to show significant prediction in previous models, 

and on a non-positive definite first-order derivative product matrix which is most 
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likely due to having more parameters than the sample size allows. Counting was 

assessed by only one indicator and thus it was pre-specified with an error term 

reflecting the reliability of the variable calculated on the sample. 

 The 0-10 scale items of number estimation task formed two distinct factors 

because smaller numbers did not load significantly onto one hypothesised factor: 

small numbers (0-4, children’s subitizing range) and large numbers (numbers ‘6’ and 

‘8’). The numbers ‘7’ and ‘9’ were further removed from the large-numbers- factor 

because of nonsignificant loadings at the alpha level of .01 (‘7’ (p = .201) and ‘9’(p = 

.021).  

 The path model shown in Figure 8.1 provided a weak fit to the data, χ2 (184) 

= 239.465, p = .004, RMSEA = .046 (90% CI = .027 - .061), CFI = .928, SRMR = 

.085. Similar to previous longitudinal findings, transcoding was the strongest unique 

predictor of children’s performance on arithmetic tasks (56.8% of variance was 

explained). Performance of large number estimations was also a significant predictor 

of arithmetic, in a negative direction, consistent with the expectation that the smaller 

the difference between answer and target number the better the performance on 

arithmetic at Time 5.  

Figure 8.1. Prediction of arithmetic at Time 5 by Time 1 latent factors Transcoding, 

Counting, Symbolic and Nonsymbolic comparison tasks, number line 0-10 small and number 

line 0-10 large as well as Time 1 arithmetic autoregressor. * p < .05. ** p < .01. 



Chapter 8 

196 

 

The fact that the model provided a poor fit and the nonsignificant correlations 

between latent number line factors with other independent variable factors, and 

between both number line factors in particular (Table 8.8), limits possible 

interpretation. 

Correlations. The correlation matrix for the latent variables is shown in Table 

8.8. As expected, most Time 1 latent factors were significantly correlated with 

arithmetic at Times 1 and 5, except for both number line factors. Transcoding was 

the strongest correlate of arithmetic at both time points. Transcoding was further 

significantly related to counting and symbolic magnitude comparison suggesting that 

the three numeracy abilities may share some cognitive processes. Both symbolic and 

nonsymbolic magnitude comparison factors were significantly correlated.  

Surprisingly, the number line factor 0-10 for small numbers was only 

significantly correlated with symbolic magnitude comparison. Children’s number 

line 0-10 scores for large numbers did not significantly correlate with any other 

factor. Interestingly, the two number line factors were not correlated. The negative 

correlations, albeit not significant, with the other factors can be explained by the fact 

that number line was estimated using difference between children’s answers and 

target position. It shows that the bigger the difference between target and answer the 

poorer the performance on the other factors.
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Table 8.8 

Correlations between Time 1 baseline model, number estimation 0-10 scale and arithmetic at Time 5 (n = 148) 

 1 2 3 4 5 6 7 8 

1. Transcoding --- .679** .646** .429** -.189 .226 .631** .694** 

2. Counting  ---- .365* .342* -.129 .195 .405** .463** 

3. Symbolic Comparison   --- .531** -.336* -.094 .558** .493** 

4. Nonsymbolic Comparison    ---- -.167 -.016 .533** .291** 

5. 0-10 small numbers     ---- -.095 -.064 -.125 

6. 0-10 large numbers      ---- .125 -.106 

7. Arithmetic Time 1       ---- .335** 

8. Arithmetic Time 5        ---- 

Notes.  Pearson product-moment correlation coefficient. * p < .05. ** p < .01 
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8.3 Conclusion. 

Overall, three findings emerged: Children’s accuracy as well as linear and 

logarithmic function fits in number estimation significantly improved over the 25-

months’ time span from nursery to the end of Year One. Second, it seems that pre-

school children really struggled with the number estimation tasks. At Times 1 and 3, 

most children (78.1% and 79.1% respectively) had a mean error rate of 20%. In 

contrast, at Time 5, less than half of the children (44.3%) had a mean error rate of 

20%. This pattern may be due to children’s lack of exposure to number lines before 

they enter school. Last but not least, the current study showed a weak relationship 

between early arithmetic and number estimation. Multiple regression analyses 

showed that counting, and especially transcoding are stronger concurrent predictors 

of arithmetic than numerical estimation. SEM path models revealed that the 0-20 

scale was problematic to model and the 0-10 scale at Time 1 was best described as 

two distinct factors: small numbers within children’s subitizing range (numbers 1-4 

on the 0-10 scale) and large numbers on the 0-10 scale. The large-numbers-factor 

was a significant predictor of arithmetic 25 months later, but transcoding was the 

strongest predictor. It should be noted that the SEM model as a whole did not 

provide a good fit to the data. 

The results overall support previous findings of number estimation in young 

children (Muldoon et al., 2013). The results confirmed that children’s estimates on 

the 0-20 scale were better fit by a logarithmic function. Muldoon and colleagues 

further reported a significant correlation between children’s maths achievement and 

their linear and logarithmic function fits on the scales 0-20 and 0-100 at five years 

and four months. This study also found that the linear as well as the logarithmic 

function fits were significantly related to arithmetic at Time 3 (comparable to Time 1 

in Muldoon et al., 2013), but not Time 5. However, neither linear nor logarithmic 

function fit on the 0-10 scale at pre-school age (Time 1) were correlated to 

arithmetic. It must be noted that pre-school children in this study were not assessed 

on either scale 0-20 nor 0-100 at Time1 because of the unfamiliarity of the task 

(there were high error rates and low linear and logarithmic function fits on the 0-10 

scale). Pre-school children in the current study had no exposure to number lines. 

Descriptive statistics showed that though linear and logarithmic function fits at Time 

3 may be comparable to Muldoon et al. (2013), error rates were much higher 
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suggesting that even children in the first year of formal schooling may find number 

estimation too difficult. 

 Children’s counting scores were significantly associated with arithmetic 

scores at the three time points. The significant relation between counting and 

arithmetic (Muldoon et al., 2013), was not found once children’s performance on 

transcoding tasks was taken into account. Neither linear nor logarithmic function fits 

on the scales 0-10 and 0-20 were significant predictors of arithmetic. In contrast, 

Muldoon et al. (2013) found a significant contribution from linear function fits on the 

0-20 scale at five years of age and linear function fits on the 0-100 scale at six years.  

In contrast to the findings in the literature that children’s estimation on the 0-

20 and 0-100 scales are predictive of arithmetic scores, the longitudinal SEM path 

models showed that, besides transcoding (strongest predictor), four-year-olds 

estimation on large numbers on the 0-10 scale (numbers ‘6’ and ‘8’) was a 

significant unique predictor of arithmetic 25-months later. However, there were 

issues when modelling the number estimation data. First, estimations on the 0-10 

formed two factors (small numbers in the subitizing range and large numbers) and 

second, not all large numbers were significantly loading onto the hypothesised factor 

(‘7’ and ‘9’ had to be excluded) which raises the question whether the drawn 

conclusions on number estimation affecting arithmetic may be invalid, especially 

considering the poor performance of pre-school children on number estimation. The 

fact that the model provided a poor fit and the nonsignificant correlations of number 

estimation to other factors, and between both number line factors in particular, limits 

the interpretation. 

 Muldoon’s study showed that children’s estimation on the 0-100 scale is 

particularly important when it comes to math achievement. As this study did not 

assess number estimation on the 0-100 scale, little can be said about this link 

between number line estimation and arithmetic. However, given the struggle the 

current sample already had with estimation on the 0-10 and 0-20 scales, it seems 

unlikely that they would perform with any accuracy on the 0-100 scale. Current 

findings suggest that understanding of the number line task is limited in pre-school 

children, and that other factors are driving the development of arithmetic at this age.  
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Chapter 9. General Discussion 

 This thesis aimed to explore the relationship between early arithmetic skills 

(approximate and exact arithmetic skills) and ANS, language and numeracy skills in 

children transitioning from pre-school to their first years of formal schooling. Four 

year-old children were assessed on a comprehensive test battery including measures 

of magnitude comparison, language comprehension and number knowledge 

(counting, number estimation, number reading, writing and identification) as well as 

background measures of cognitive skills and inhibition in particular and re-tested 

four times over a 25-month period.  

 First, the results showed that children’s ability to translate between verbal 

number codes and Arabic numerals (transcoding) was the only unique significant 

predictor of children’s arithmetic skills two years later. Second, the relationship 

between symbolic and nonsymbolic magnitude comparison shifts from a two-factor 

structure in younger children to a unitary, general magnitude comparison factor in 

Year One. Third, symbolic magnitude comparison at four years was a significant 

predictor of both symbolic and nonsymbolic approximate arithmetic at five years, six 

months. Children’s performance on transcoding tasks was a significant predictor of 

symbolic approximate arithmetic and nonverbal intelligence at four years was a 

significant predictor of nonsymbolic approximate arithmetic. Both symbolic and 

nonsymbolic approximate arithmetic assessed at six years, four months was 

significantly predicted by transcoding scores of four year-olds. 

9.1 Concurrent and longitudinal relations between arithmetic and 

transcoding, ANS, counting, number estimation, language, nonverbal 

intelligence and inhibition skills. 

 Overall, the following findings emerge:  

 Children’s ability to translate between verbal number codes and Arabic 

numeral (transcoding; measured as number reading, writing and identification) was a 

significant concurrent predictor of arithmetic at four years (Time 1), five years; ten 

months (Time 4) and six years (Time 5). These results confirm and extend Göbel et 

al.’s (2014) finding that transcoding was a unique longitudinal predictor of six-year-

olds’ performance on arithmetic. It was noted that the contribution of transcoding at 

Time 4 was only marginally significant (p = .063) which suggests that it may not 
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substantially contribute to explaining the variance in arithmetic at that particular 

stage. Nonetheless, these findings support the hypothesis that the ability to translate 

between Arabic numeral and their verbal code crucially impact the development of 

early arithmetic.  

 Moreover, a stable pattern emerged when investigating longitudinal 

prediction of arithmetic. Only transcoding at Time 1 was uniquely predicting 

arithmetic skills after 9-months, 16-months, 20-months and even 25-months. Few 

studies have followed children’s mathematical development at this early stage. 

Jordan et al. (2009) investigated the relation between early number competence and 

mathematics achievement from beginning of kindergarten to the middle of grade 1 

showing that early number competence predicted the rate of growth in mathematics 

achievement. However, their number competency factor comprised of a wide range 

of numerical skills including counting and number recognition, number comparisons, 

nonverbal calculation, story problems, and number combinations. 

 There is ample evidence for the developmental importance of ANS in 

arithmetic, and the possibility that ANS drives exact arithmetic via approximate 

arithmetic skills (Halberda et al., 2008; Gilmore et al. 2010; Libertus et al., 2011; 

Mazzocco et al., 2011). Previous analyses of concurrent associations with arithmetic 

found that symbolic magnitude comparison in particular was a significant predictor 

of early arithmetic (Holloway and Ansari, 2009; de Smedt et al., 2013; Siegler, 

2016).  In the present study, as children moved to formal schooling, symbolic and 

nonsymbolic comparison tasks loaded significantly onto a unitary factor rather than 

two distinct factors. The general magnitude comparison factor was a significant 

concurrent predictor of arithmetic at five years, ten months and six years. It seems 

that formal magnitude representations may be crucial at particular stages in 

children’s arithmetic development. However, when looking at the longitudinal 

prediction of ANS, this study did not find a significant contribution to children’s 

performance on arithmetic tasks assessed later on, , though strongly correlating with 

later arithmetic skills, confirming  Göbel et al. (2014). It was noted that, contrary to 

Göbel et al. (2014), the symbolic and nonsymbolic magnitude comparison tasks at 

four years comprised of two separate latent factors. This questions previous findings 

concerning the central role of the ANS in early arithmetic development (e.g., Piazza, 

2010). Further studies are necessary to clarify the longitudinal role of the ANS in the 
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development of early arithmetic and whether the present results hold stable for 

longer follow-up. 

Gilmore and colleagues argue that relationships between nonsymbolic 

magnitude comparison and arithmetic may be driven by inhibition skills. Contrary to 

the findings of Gilmore et al. (2013) showing that children’s inhibitory control 

predicted arithmetic after controlling for performance on dot comparison, this study 

showed the reverse pattern that only dot comparison (ANS) predicted children’s 

arithmetic even after taking inhibition into account. It is worth mentioning that the 

sample in Gilmore et al. (2013) were older and, despite the broad age range (seven to 

ten years), the analyses did not control for age. Their measure of inhibition was the 

NEPS-II inhibition subtask (Korkman, Kirk, and Kemp, 1998), a GoNoGo test, 

similar to our Head-Toes-Shoulders-Knees task. Children’s performance on 

inhibition tasks did not explain variance of arithmetic scores once performance on 

nonsymbolic magnitude comparison has been accounted for. 

In regards to counting, we found that counting was unique predictor of pre-

school children’s arithmetic performance. Indeed, researchers have reported that 

counting is important for calculating (Ansari et al., 2003; Cowan et al, 2005). 

Furthermore, Donlan et al. (2007) found a strong association between counting and 

calculation suggesting that the performance on both tasks draw from a common 

representational system.  

However, the current results reveal that though concurrently predicting 

arithmetic, children’s performance on counting tasks was not a significant 

longitudinal predictor of arithmetic as suggested in some models of arithmetic 

development (Aunola et al., 2004; Zhang et al., 2014 and LeFevre et al., 2010). 

Aunola et al. (2004) measured counting in a more complex way than in the current 

study, including rote counting, counting forwards and backwards from given number 

and counting in steps. Of particular interest is the fact that Aunola et al. (2004) 

included a number identification task (similar to measure used in the current study) 

as part of the outcome measure of maths. It could be that the administration of a 

broader, more complex counting task as well as the difference in designing the SEM 

path model (number identification was part of the outcome math measure in Aunola 

et al. (2004) compared to being a predictor in the current path models) may be reason 

for the contrasting results.  
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In regards to the contribution of children’s number estimation, the 

longitudinal SEM CFAs showed that four-year-olds number line estimation was best 

described by two factors: performance on 0-10 scale small numbers (subitizing 

range) and 0-10 scale large numbers. The results showed that transcoding (strongest 

predictor) and children’s performance on large number not within the subitizing 

range (numbers ‘6’ and ‘8’) were uniquely predicting arithmetic 25-months later. 

However, there were issues when modelling the number estimation data which raises 

the question whether the drawn conclusions on number estimation affecting 

arithmetic may be void considering the poor performance of pre-school children. The 

fact that the model provided a poor fit limits the interpretation. 

Evidence for the importance of language in the development of arithmetic 

comes from studies assessing the mathematical skills of children with SLI which 

performed lower in rote counting than typically developing children of the same age 

(Donlan et al., 2007). SLI may affect a wide range of numeracy skills differently 

(Donlan, Bishop and Hitch, 1998; Donlan, and Gourlay, 1999; Fazio, 1994, 1996), 

but the relationship between these skills is complex, and runs counter to other 

findings which indicate independence between verbal and nonverbal calculation 

skills (Nunes and Bryant, 1996; Jordan et al., 1994). 

This thesis did not find a significant relationship between language 

comprehension in general and early arithmetic, neither cross-sectional nor 

longitudinal. However, the study found significant, concurrent relationship between 

math-related language comprehension and arithmetic at four years, eleven months as 

well as longitudinally. Math-related language comprehension assessed at four years 

was a significant predictor of arithmetic skills assessed nine months later, supporting 

the notion that language impacts early arithmetic (Donlan et al., 1998; Donlan, and 

Gourlay, 1999; Fazio, 1994; 1996; Donlan et al., 2007; Cowan et al., 2005; 

Kleemans et al., 2011; 2012). However, most studies assessed language skills by 

more general language tasks neglecting language specific to mathematics. It appears 

that not general language comprehension but math-related language comprehension, 

such as the understanding of more, may be a key foundation in acquiring arithmetic. 

In regards to nonverbal ability, the current study found that children’s 

nonverbal intelligence was the strongest significant predictor of arithmetic tasks at 

age of 4 years, 3 months (Time 1) supporting the claim that general intelligence 
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affects children’s early arithmetic skills (Cowan et al., 2005; Noël, 2009). However, 

this was not confirmed for the longitudinal prediction of arithmetic. Also, findings 

from studying number wizards (high achievers on the number reading task) showed 

that the importance of nonverbal ability in pre-schoolers drops once children’s 

number recognition (number reading task) was taken into account. This could be the 

subject of further study. The findings, however, support the idea that knowing your 

numbers is crucial for the development of early arithmetic and that children who 

have already mastered the Arabic numerals from one to ten may not rely on cognitive 

processes such as nonverbal intelligence but rather engage specialised math-related 

skills such as math-related language and transcoding (numerical knowledge). 

Last but not least, it is important to take account of the finding that neither of 

the arithmetic autoregressor (Times 1 or 2 arithmetic performance) significantly 

predicted arithmetic at later stages. This could be due to the fact that the testing 

procedure for early arithmetic was changed over the course of the study to adjust for 

children’s growing learning experience in arithmetic. In particular, there were ceiling 

effects with arithmetic scores assessed at Time 1 (children could complete the test in 

their own time). At Time 2, time to solve arithmetic was limited to three minutes, but 

the time limit may have been too long to achieve high sensitivity at this age. It seems 

that the TOBANS, used in later testing, was a sensitive measure of arithmetic and it 

would be interesting to see if children as young as four years can successfully 

perform on the TOBANS. 

9.2 Development of magnitude comparison 

Overall, the comprehensive analyses of children’s performance on symbolic 

and nonsymbolic magnitude comparison tasks revealed three findings: First, 

children’s performance on magnitude comparison tasks generally showed significant 

distance effects for both symbolic and nonsymbolic comparisons with better 

performance on the far than close trials confirming previous findings (Barth et al., 

2003; Piazza et al., 2010; Xu and Spelke, 2000; Halberda et al., 2008; Gilmore et al. 

2010; Libertus et al., 2011; Mazzocco et al., 2011; Halberda and Feigenson, 2008). 

However, the symbolic distance effect was not evident at Time 1. Some children had 

difficulties reading the Arabic numerals at Time 1. A third of the children made at 

least two mistakes in reading the single digit Arabic numerals 0-9. After taking 

mastery of the single digit Arabic numerals into account, a marginal distance effect 
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was found even in young children. As expected, no such limitations applied to 

performance on nonsymbolic comparison.  

Second, the results revealed ratio effects (2:3 > 3:4 > 5:6) across all time 

points. Children performed more accurately on ratios with a large difference (i.e. 2:3) 

than ratios with a small difference (5:6). The feature size (fixed size versus surface-

area matched) impacted children’s performance on comparison tasks. Fixed size 

arrays were easier to discriminate for both, distance and ratio trials, than surface-area 

matched arrays suggesting that it is more difficult for children to ignore the 

prominent feature size in the surface-area matched condition where the array with 

fewer stimuli has bigger squares compared to many tiny squares. The results showed 

an increase in performance over time with six year-olds performing almost adult-like 

confirming Halberda and Feigenson (2008).  

 Third, the relation between symbolic and nonsymbolic magnitude comparison 

tasks is dynamic and changes over time. The change from a two-factor model 

(symbolic and nonsymbolic) to a single-factor model occurs with children’s entry to 

the formal school system. Symbolic and nonsymbolic comparison tasks loaded on 

separate factors at pre-school age confirming Libertus et al. (2011), Piazza (2010) 

and Piazza and Dehaene (2004). The distinction between the factors is declining over 

time and it seems that the children’s representation and processing of magnitude 

comparison tasks at the age of 5 years, 6 months (autumn term of Year One) is 

changing towards the general comparison ability construct. At Times 4 and 5, the 

single-factor model was the best fitting model meaning that magnitude comparison 

tasks load onto one general comparison factor and not two distinct factors confirming 

the developmental trend towards a general magnitude comparison factors (see also 

Kolkman et al., 2013; Göbel et al., 2014). Questions remain on why this change in 

the representation and processing of the magnitude comparison occurs.   

 9.3 Performance and structure of early approximate arithmetic skills  

 With regards to children’s performance on approximate arithmetic tasks, the 

results replicated the finding that young children can perform nonsymbolic as well as 

double-digit symbolic approximate arithmetic with accuracy above chance, and that 

nonsymbolic approximate arithmetic was easier for young children than symbolic 

approximate arithmetic (Gilmore et al., 2007). The young children tested in this 

thesis were not as accurately as reported in Gilmore et al. (2007) and only children at 
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Times 4 and 5 (six years and over) showed comparable performance. The results 

further revealed ratio effects (4:7 > 4:6 > 4:5) for symbolic and nonsymbolic 

approximate arithmetic across all three time points. Children performed more 

accurately on ratios with a large difference (4:7) than ratios with a small difference 

(4:5) similar to Gilmore et al. (2007).  

 Symbolic approximate arithmetic showed higher correlations with exact 

arithmetic compared to nonsymbolic approximate arithmetic suggesting that 

symbolic approximate arithmetic may be more closely related to conventional exact 

arithmetic tasks. It must be critically mentioned that nonsymbolic approximate 

arithmetic was only weakly related to exact arithmetic, and symbolic approximate 

arithmetic correlated only moderately. To what extent these correlations represent 

common processes in the performance of approximate and exact arithmetic is still 

unclear. Might the moderate correlation between symbolic approximate arithmetic 

and exact arithmetic tasks be explained by common demand on symbol 

identification? Note in general that these are zero-order correlations which allow 

only limited interpretation.  

Some tentative conclusions may be drawn when investigation to what extent 

language, ANS and transcoding may impact approximate arithmetic. It seems that 

symbolic magnitude comparison at Time 1 is crucial for children’s understanding of 

early approximate arithmetic, whether symbolic or nonsymbolic. Why would that 

be? Easier to interpret is the involvement transcoding, which operates as a consistent 

longitudinal predictor of both symbolic and nonsymbolic approximate arithmetic in 

six year olds. This result strengthens the finding of transcoding as the only unique 

longitudinal predictor of exact arithmetic. To what extent does knowledge of the 

symbol system underpin arithmetic, and to what extent can the relationships 

observed here explained by shared cognitive processes, such as magnitude 

comparison.  

Symbolic and nonsymbolic approximate arithmetic tasks are best explained 

by independent factors. This relationship does not change over time contrary to the 

development of magnitude comparison. Does this switch from the two-factor towards 

the one-factor model occur later, perhaps in the second full year of formal schooling? 

Or maybe symbolic and nonsymbolic approximate arithmetic may never form one 

factor due to the nature of the tasks being so distinct. Further research is needed to 
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clarify the structure of symbolic and nonsymbolic approximate arithmetic as well as 

their relation to exact arithmetic. 

9.4 Children’s performance on number estimation line tasks 

Children’s accuracy as well as linear and logarithmic function fits on a 

number estimation task significantly improved over the 25-months time span from 

nursery to the end of Year One supporting Muldoon et al. (2013). It seems that pre-

school children struggled with the number estimation tasks which may be explained 

by children’s lack of exposure to number lines before they enter school. The reported 

significant relation between counting and arithmetic (Muldoon et al., 2013), was not 

found once children’s performance on transcoding tasks was taken into account. 

Neither linear nor logarithmic function fits on the scales 0-10 and 0-20 were 

significant predictors of arithmetic.  

Muldoon’s study showed that children’s estimation on the 0-100 scale is 

particularly important when it comes to math achievement. This study did not assess 

number estimation on the 0-100 scale because of the unfamiliarity of the task which 

was supported by children’s high error rates and low linear and logarithmic function 

fits on the 0-10 scale. It would be of interest to establish pre-school children’s 

performance on number estimation on the 0-100 scale. Nonetheless, it can be 

speculated that young children most likely fail to produce sensible data considering 

the struggle the current sample already had with estimation on the 0-10 and 0-20 

scales. Results of young children and pre-school children in particular will be 

invaluable when it comes to the understanding of the development and linearity of 

the number estimation task.  

9.5 Implications for models of mathematical development 

Based on Dehaene’s Triple Code (1992) it can be hypothesised that 

arithmetic at a young age may draw on the magnitude code (ANS). This analogue 

magnitude code is involved in the direct route for solving problems and is proposed 

to be used in subtractions and more complex addition problems. This route seems to 

be the most applicable to the early stage of arithmetic. The pre-school children 

assessed in this study were not formally trained on arithmetic, it can be assumed that 

even simple additions as used at Time 1 are as challenging and difficult as complex 

additions are for older children. Interestingly, the current results found that ANS, as 
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proposed by the Triple Code (1992), is not the primary driver of early arithmetic 

development. Rather children’s ability to translate between the verbal and written 

form of Arabic numerals was the primary driver of the development. 

These findings bear some very interesting implications to the developmental 

models of arithmetic of children’s problem solution discussed in the opening chapter, 

especially the Four-Step Developmental Model of Numerical Cognition (von Aster 

and Shaley, 2007), the Pathway Model (LeFevre et al., 2010) and the Integrated 

Theory of Numerical Development (Siegler and Braithwaite, 2017). 

The Four-Step Developmental Model of Numerical Cognition (von Aster & 

Shalev, 2007) proposes that children move through four stages as they progress in 

arithmetic through exposure and an increase in working memory capacity (Figure 

1.6). The inherited core-system of magnitude representation (first stage) entails 

subitizing and approximation abilities. The finding that pre-school children score 

highly on an individual administered non-time-constrained magnitude comparison 

task, confirms the model’s first assumption, that children learn the first core system 

of magnitude in infancy. 

Of particular interest for our findings are steps 2 and 3 (pre-school and school 

age, respectively) as this thesis investigated this sensitive period of transitioning 

from pre-school to school stage. According to the model, pre-school children move 

on to the linguistic stage of numeracy (step 2) where children acquire the verbal 

number codes (counting). In step 3, children learn the Arabic number system and the 

symbolic representations of magnitudes in school. Typical mathematical skills 

developing at this stage are written calculations and odd-even decisions.  

The results showed that pre-school children acquired the counting words as 

predicted by the model, however pre-schoolers have not fully mastered the number 

word sequence making mistakes in the teen-numbers. Only few could count up to 30 

or above. The results further showed that the sample performed above chance level 

on tasks assessing Arabic number system (transcoding tasks) and written additions 

using counting strategies supporting step 2 of the model. Further evidence for step 2 

comes from the concurrent associations between counting and arithmetic in pre-

schoolers’ confirming that children learn to count before entering formal schooling. 

However, the current sample could also solve subtractions at the beginning of Year 

One which suggests that their arithmetic skills may be more advanced than proposed 
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by Von Aster and Shalev (2007). Subtractions at this age can be considered as a 

more complex arithmetic skills because children have not been formally taught 

neither additions nor subtractions. 

In the four-step-developmental model, acquisition of the Arabic number 

system such as the digits. Contrary to the model, our analyses found that pre-school 

children have already a basic understanding of the Arabic number system 

(transcoding tasks, especially number identification). Four-year-old children 

performed above chance level on the number identification task, including double 

digits. The results showed that this basic Arabic number system knowledge, 

preceding formal arithmetic training, plays a crucial role in later exact arithmetic. 

The final stage of the model, understanding and manipulation of the mental 

number line, develops during school years as children acquire the concept of 

ordinality, a second core principal of number. The model posits approximate 

arithmetic skills and mental number line estimations at this later stage. The current 

findings confirmed that pre-school children as well as Year One children struggled 

on number estimation tasks, however, we found that approximate arithmetic has 

proven useful when testing pre-school children who have an immature knowledge of 

exact arithmetic and had no formal training of exact arithmetic, yet are able to 

perform above chance level on approximate arithmetic, contradicting the model 

(approximate arithmetic is supposed to emerge later in school). It may be that 

children’s early approximate arithmetic skills foster later exact arithmetic abilities. 

To sum up, in accordance with the model, the current findings support the 

idea that children learn magnitude comparison early in life, followed by counting in 

pre-school moving on to additions, more complex calculations in school and the 

mental number line. In contrast to the model, the results suggest that children’s 

understanding of the Arabic number system develops in pre-school, hence earlier 

than proposed in the model. Also, it seems that approximate arithmetic may be 

acquired in the first school years and not later on. 

A second important developmental model is the Pathways to Mathematics 

model (LeFevre et al., 2010; Figure 1.7) focusing on the relationships between 

children's cognitive precursors of early numeracy skills and mathematical outcomes. 

This model posits three separate pathways: quantitative, linguistic, and spatial 

attentional. Each of these pathways contributes individually to the acquisition of 
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early numeracy abilities. Furthermore, the models proposes that the linguistic, 

quantitative and spatial attention pathways vary in their contribution to mathematical 

performance depending on the demands of the arithmetic problem. Only the 

linguistic and quantitative pathway are important to this thesis. According to the 

model, linguistic skills are directly linked to children’s symbolic number system 

knowledge which is further linked to geometry, numeration skills (number line and 

calculation) and magnitude comparison. Quantitative skills are related to processing 

numerical magnitudes and magnitude comparison.  

LeFevre and colleagues only assessed general receptive language 

comprehension (vocabulary test) and phonological awareness to capture linguistic 

precursors. In this thesis both, general language comprehension as well as math-

related language were assessed. The results showed that math-related language, not 

language comprehension in general, was a significant predictor of arithmetic 

(concurrent analyses at Times 2 and 3; longitudinal prediction of arithmetic 9-months 

later). Contrary to the model, linguistic skills affected arithmetic directly and not via 

children’s symbolic number system (number naming task similar to the one included 

in transcoding factor) as proposed in the model. This further shows that it is 

important to analyse the distinct contributions of general language comprehension 

and math-related language. Nonetheless, the link between symbolic number system 

(similar to the transcoding factor) and arithmetic was confirmed in this study because 

children’s transcoding skills were the only stable and unique longitudinal predictor of 

arithmetic performance. 

The Pathways model assessed quantitative skills through children’s subitizing 

skills. This study showed that symbolic magnitude comparison was a significant 

concurrent precursor of arithmetic at Time 3 supporting the quantitative pathway. 

Symbolic and nonsymbolic magnitude comparison gradually integrated to a general 

magnitude comparison factor (five years, six months of age). The results further 

showed significant associations between the integrated, general magnitude factor and 

arithmetic in Year One (Times 4 and 5). However, magnitude comparison 

performance was not a significant longitudinal predictor once children’s 

understanding of the Arabic number system (transcoding) was taken into account, 

suggesting a particular driving force in number symbol knowledge. 
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To sum up, contrary to the model the results suggest a direct linguistic 

pathway between math-related language comprehension and arithmetic. It is 

important that future models should distinguish between children’s general language 

comprehension and language related to mathematics. Furthermore, the analyses 

confirmed the quantitative pathway. No statements can be made of the spatial 

pathways because the current thesis did not measure any spatial skills. Because of the 

sample size, we only investigated direct prediction of children’s arithmetic skills, but 

not complex mediation models. 

The Integrated Theory of Numerical Development (Siegler and Braithwaite, 

2017) proposes that numerical magnitudes are represented on a mental number line, 

providing the basis for mathematical activity. Smaller numbers are presented on the 

left and larger number on the right of the number line. The representation of whole 

numbers shifts from a logarithmic distribution towards a linear distribution during 

the primary school years. This shift occurs first for small whole numbers than larger 

whole numbers based on children’s experience with the number range. Siegler and 

Braithwaite (2017) posit that numerical magnitude knowledge is related to and 

predictive of arithmetic development. The model is very sparse. It does not identify 

factors or systems which might drive numerical development, and does not 

differentiate, for example, spoken versus written number forms. 

This model states that the development of small whole numbers on a 0-10 

number line occurs in pre-school (three to five years) and that school children (five 

to seven years) can solve number line estimations on a 0-100 scale. Our results 

contradict these assumptions showing that pre-school children struggled on number 

estimation tasks on the 0-10 scale.  Children’s error rates were very high in pre-

schoolers’ and were only acceptable at the end of Year One. Regarding the 

proposition that mental number representation is predictive of arithmetic, the results 

found that only number estimations for the numbers ‘6’ and ‘8’ were weakly 

predictive of arithmetic skills 25-months later, while children’s transcoding skills 

proved to be a more powerful and consistent predictor of arithmetic.  

Some studies propose that, rather than being a precursor of mathematical 

achievement, number line acuity and math performance both influence each other 

during development from pre-school through early school years (Friso-van den Bos, 

Kroesbergen, Van Luit, Xenidou-Dervou, Jonkman, Van der Schoot and Van 
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Lieshout, 2014; LeFevre, Lira, Sowinski, Cankaya, Kamawar and Skwarchuk, 2013). 

The relation between number estimation and arithmetic, particularly in pre-school 

and primary school, needs to be further studied, in the context of other factors, 

especially transcoding. 

Furthermore, children’s number estimation on the 0-10 scale showed a more 

linear distribution at all testing points contradicting Siegler’s proposition that mental 

representation shifts from a logarithmic to a more linear distribution. Children’s 

number estimates for the 0-20 scale showed similar linear and logarithmic 

distributions. Either mental number representation does not undergo this shift from 

logarithmic to linear, and these representations may be even more complex than 

proposed by Siegler, or this shift happened before the testing period started. 

However, the latter seems improbable because neither the model nor our accuracy 

data suggest that children younger than four years have an established mental 

number line for small whole numbers. 

To sum up, the findings suggest that the model overestimates the age at 

which a mental number representation is established. Our results are more in line 

with the four-step-developmental-model supporting the idea that children acquire an 

understanding of the mental number line later on in school. 

9.6 Method Constraints. 

It must be critically mentioned that not all measures were assessed at all 

testing points, thus constraining conclusions drawn about the concurrent prediction 

of arithmetic and the change of the relationships with arithmetic over time. Also, the 

testing procedure of tasks was changed to adjust for children’s growing learning 

experience in the tasks measured (see assessment of magnitude comparison and 

arithmetic for more details). Further studies are needed to investigate the concurrent 

prediction using the same tasks at all testing points to enable comprehensive 

conclusions about prediction of early arithmetic and how the concurrent relationships 

may change over time. 

Also, the Time 1 counting measure (highest number produced in correct 

order) produced high variability in scores. A more complex measure such as the 

composite of various counting tasks assessing a wider range of counting skills used 
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by Aunola et al. (2004) may prove to be useful in examining the relationship between 

ANS, counting, transcoding and arithmetic.  

A further constraint of the study was the relatively small sample size which 

made it impractical to investigate more complex SEM path models including 

additional covariates of math achievement such as children’s early memory or spatial 

skills. Further large scale studies are needed to clarify longitudinal prediction using 

more sensitive and comprehensive measures to enable more detailed conclusions 

about the prediction of early arithmetic, and to ascertain whether the findings hold 

stable for longer-term follow-up. 

9.7 Future Directions. 

 This thesis has focused only on ANS, language and numerical knowledge as 

predictors of arithmetic. There is widespread evidence that other factors might be 

important too. Other abilities, than those investigated in this thesis, that have been 

reported to be important in children’s arithmetic development are aspects of working 

memory, such as central executive functioning (Bull et al., 2011), phonological loop 

(Swanson and Sachse-Lee, 2001; Wilson and Swanson, 2001) and the visuo-spatial 

sketchpad (Bull et al., 2008; Rasmussen and Bisanz, 2005; Holmes, Adams, and 

Hamilton, 2008; LeFevre et al., 2011) and phonological awareness (Baldo and 

Dronkers, 2007; Dehaene et al., 2003). 

Another point to consider is children’s early number estimation ability. There 

is evidence (Muldoon et al., 2013) that young children (five years-olds) accurately 

place numbers on a horizontal 0-10, 0-20 or 0-100 number line. However, this study 

found that young children, and pre-school children without any formal teaching on 

arithmetic or exposure to number lines, struggled considerably with the 0-10 and 0-

20 scaled trials questioning the idea to assess pre-school number estimation. Simms 

et al. (2013) showed that four- to seven-years old children displayed numbers as 

accurately in the vertical as the horizontal orientation. It would be of interest to 

explore pre-school children’s number estimation on vertical number lines and 

compare the performance with horizontal number line. It is possible that vertical 

number lines may be easier because children in pre-school have much more exposure 

to stacking bricks and blocks to build towers, counting the objects as they go. These 

observations highlight the role of input and experience in forming early 
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representations of number, and the importance of including these measures in future 

studies. 

Of particular interest for future research is the finding that literacy and 

transcoding factors at six years were highly correlated (Table 4.6). An important 

correlate of maths disability is reading disability. It is estimated that 40% of 

dyslexics also have maths disability (Lewis, Hitch, and Walker, 1994). It is still 

debated whether there are cognitive processes that are shared between the two 

learning disorders or whether dyslexia and dyscalculia are largely independent on a 

cognitive level. The finding that children’s ability to translate between the spoken 

and written form of numbers is a powerful longitudinal predictor of arithmetic skills 

in primary school (current study; Göbel et al., 2014) suggests that children’s 

knowledge of Arabic numerals may represent a critical foundational skill underlying 

early arithmetic, analogous to the role of letter knowledge in reading, and may be 

crucial for further arithmetic development. Further research is needed to establish 

whether reading and arithmetic share common cognitive processes supporting the 

association between written and their spoken referents. 

9.8 Conclusion 

The scope of this thesis was to investigating predictors of arithmetic skills at 

five time points from pre-school through to the end of the first year of formal 

schooling.  

Regarding the concurrent associations, transcoding, children’s ability to 

translate between spoken and symbolic form of numbers, was shown to play an 

important role in the development of early arithmetic skills in one form or another at 

every testing point. Transcoding may not have been the strongest or only predictor at 

times, and other factors may also impact the development of early arithmetic at 

different time points. At an early, pre-school age, it appears that nonverbal 

intelligence, counting and math-related language, particularly children’s 

understanding of more, in addition to transcoding affect the performance on 

arithmetic tasks. These relations however, weaken in favour of the relationship with 

magnitude comparison in early school years (Year One). After children entered the 

formal schooling system, both transcoding and a general magnitude comparison 

factors were crucial for arithmetic development.  
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Cross-sectional designs only take snapshots of development at different 

stages. There are limitations to the conclusions that can be drawn, since the 

measurements taken differ at different time points. Nonetheless, the results are 

informative concerning the process of development, and provide a useful background 

to the research exploring longitudinal prediction of arithmetic. Although cross-

sectional relationships may draw attention towards special relations between 

arithmetic and its precursors, it is only one way of investigating the development of 

arithmetic skills. 

 As for longitudinal prediction, a stable pattern emerged that only four-year-

olds’ transcoding ability was uniquely predicting arithmetic skills after 9-months, 16-

months, 20-months and even 25-months. This finding extends the findings of 

previous studies (Göbel et al., 2014; Jordan et al., 2009) and challenges the proposal 

that the approximate number system at pre-school age drives the development of 

arithmetic (Mazzocco et al., 20011). Children’s ability to translate between spoken 

form and Arabic numeral relies on Arabic-digit knowledge and place-value 

understanding. Children’s understanding of place-value may be a key foundation for 

the development of later arithmetic skills (Möller et al., 2011), as may Arabic-digit 

knowledge at school entry (Kolkman et al., 2013; Krajewski and Schneider, 2009; 

Mundy and Gilmore, 2009). The latter relationship appears to be directly analogous 

to the critical longitudinal role of early letter knowledge on the development of 

reading skills (Caravolas et al., 2012; Hulme et al., 2012). In short, the results 

suggest that learning arithmetic may share some developmental pathways with 

learning to read. Learning the symbol set (Arabic numerals or letters) and their 

verbal labels is a critical foundational skill of later arithmetic skills. 

The thesis further clarified the little investigated developmental structure of 

symbolic and nonsymbolic magnitude comparison. At pre-school age, ANS tasks 

describe two distinguishable skills compared to the later integration of ANS skills 

into one general magnitude comparison structure. In view of these recent results, 

previous findings on the relationship between symbolic and nonsymbolic 

comparisons and their impact on arithmetic skills at school age should carefully be 

re-examined. 

Furthermore, the symbolic approximate arithmetic task introduced by 

Gilmore et al. (2007) has proven useful when testing pre-school children who have 
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an immature knowledge of exact arithmetic and had no formal training of exact 

arithmetic. However, detailed analyses do not support the statement made by 

Gilmore et al. (2007) that children ‘used nonsymbolic number representations to 

solve symbolic problems’ (p.590). Longitudinal analyses showed a common 

dependence on symbolic comparison and a specific contribution of nonverbal ability 

to nonsymbolic approximate arithmetic, which is then superceded by a common 

influence of early symbol transcoding. Future research may explore whether there 

will be a later shift, similar to magnitude comparison, from a two-factor model with 

symbolic and nonsymbolic approximate arithmetic as distinct constructs towards a 

unitary model with one general approximate arithmetic construct. 

It is hoped that the detailed findings summarized above, emphasizing the 

importance of number symbol knowledge, will prove useful both in enhancing the 

educational experience of young children learning about numbers, and in identifying 

and supporting those who struggle.
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Appendix 1: Symbolic and Nonsymbolic Magnitude Comparison Tasks 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example symbolic (above) and nonsymbolic (fixed size in the middle and surface-area matched 

below) distance effect comparison (close items are on the left and far items on the right). 

 

 

 

 

 

 

 

 

 

 

 

Example ratio effects for fixed size (above; 2:3 on the left and 3:4 on the right) and surface-area 

matched (below; 3:4 on the left and 5:6 on the right). 
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Appendix 2: Test of Relation Concepts (TRC) at Time 1 

Part 1 - Easy 

Practice items Correct Response Response Given 

A The boy has more carrots than the girl 1  

B The brown sheep has more wool than the grey sheep 3  

C The purple witch is more beautiful than the yellow witch 2  

 

1 The girl has more chocolate than the boy 1  

2 The boy has more pasta than the girl 3  

3 The boy has more bananas than the girl 3  

4 The girl has more flowers than the boy 4  

5 The boy has more ice-cream than the girl 2  

6 The girl has more milk than the boy 4  

7 The girl is more colourful than the boy 1  

8 The yellow bed is more comfortable than the blue bed 4  

9 The girl has more balloons than the boy 1  

10 The boy has more biscuits than the boy 2  

11 The short dress is more colourful than the long dress 3  

12 The green chair is more comfortable than the red chair 2  

/12 

Part 2 - Hard 

Practice items Correct Response Response Given 

A The boy has more carrots than the girl 1  

B The brown sheep has more wool than the grey sheep 3  

C The purple witch is more beautiful than the yellow witch 2  

 

1 The pink man is more handsome than the blue man 2  

2 The red house has more smoke than the blue house 3  

3 The girl has more chips than the boy 3  

4 The girl has more butter than the boy 3  

5 The yellow planet has more aliens than the yellow planet 2  

6 The girl has more cheese than the boy 1  

7 The boy has more apples than the girl 3  

8 The green prince is more handsome than the blue prince 4  

9 The girl has more eggs than the boy 1  

10 The red baby is more beautiful than the blue baby 1  

11 The boy has more bread than the girl 4  

12 The blue princess is more beautiful than the green princess 4  

/12 
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Appendix 3: Test of Relation Concepts (TRC) more and less (Times 2, 3, 4 and 5) 

Practice items Correct 

Response 

Response 

Given 

a the boy has more carrots than the girl 4  

b the brown sheep has less wool than the grey sheep 3  

c 
the purple witch is more beautiful than the yellow 

witch 
3 

 

 

1 the girl has more chocolate than the boy 1  

2 the boy has less pasta than the girl 3  

3 the boy has more bananas than the girl 2  

4 the girl has fewer flowers than the boy 2  

5 the red baby is less beautiful than the blue baby  4  

6 the boy has more ice-cream than the girl 2  

7 the girl has more milk than the boy 3  

8 the girl is less colourful than the boy 1  

9 the red house has less smoke than the blue house 1  

10 
the yellow bed is more comfortable than the blue 

bed 
4 

 

11 the girl has more balloons than the boy 3  

12 the boy has more biscuits than the girl 1  

13 the long dress is more colourful than the short dress 4  

14 
the green chair is less comfortable than the red 

chair 
2 

 

15 
the yellow planet has fewer aliens than the red 

planet 
1 

 

16 the pink man is more handsome than the blue man 2  

17 the girl has more chips than the boy 4  

18 the girl has more butter than the boy 3  

19 the girl has less cheese than the boy 4  

20 the boy has fewer apples than the girl 2  

21 
the green prince is less handsome than the blue 

prince 
4 

 

22 
the blue princess is more beautiful than the green 

princess 
1 

 

23 the girl has fewer eggs than the boy 3  

24 the boy has less bread than the girl 3  
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Appendix 4: Number Identification Task Time 1 

11 1 

3 13 8 

15 7 50 5 

 

9 6 8 3 

82 208 20 28 

206 260 26 2060 

706 17 7 70 

19 119 91 9 

12 22 1 2 

41 42 14 4 

‘[502 25 52 5 

1 101 111 11 

96 69 6 49 

37 13 713 73 

7800 807 870 78 

43 4 34 304 

17 174 74 7 

1068 618 18 168 

13 3 30 33 

58 850 5 85 
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Appendix 5: Number Identification Task Time 2 

11 1 

3 13 8 

15 7 50 5 

 

9 6 8 3 

82 208 20 28 

206 260 26 2060 

706 17 7 70 

19 119 91 9 

3056 356 35 536 

12 22 1 2 

41 42 14 4 

502 25 52 5 

1 101 111 11 

96 69 6 49 

37 13 713 73 

7800 807 870 78 

43 4 34 304 

17 174 74 7 

1068 618 18 168 

13 3 30 33 

67 670 6710 461 

461 14 614 6104 

58 850 5 85 
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Appendix 6: Number Identification Task Time 3 

11 1 

3 13 8 

15 7 50 5 

 

9 6 8 3 

82 208 20 28 

206 260 26 2060 

706 17 7 70 

19 119 91 9 

3056 356 35 536 

15 59 50 505 

41 42 14 4 

502 25 52 5 

1 101 111 11 

96 69 6 49 

37 13 713 73 

7800 807 870 78 

43 4 34 304 

17 174 74 7 

1068 618 18 168 

13 3 30 33 

67 670 6710 461 

461 14 614 6104 

58 850 5 85 
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Appendix 7: Number Identification Task Time 4 

11 1 

3 13 8 

15 7 50 5 

 

9 6 8 3 

82 208 20 28 

206 260 26 2060 

706 17 7 70 

19 119 91 9 

3056 356 35 536 

15 59 50 505 

41 42 14 4 

502 25 52 5 

1 101 111 11 

96 69 6 49 

37 13 713 73 

3013 10313 313 3030 

7800 807 870 78 

43 4 34 304 

17 174 74 7 
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1068 618 18 168 

13 3 30 33 

67 670 6710 461 

461 14 614 6104 

58 850 5 85 

8090 890 89 819 

1901 11009 1109 109 

617 167 670 6107 

11120 1220 100120 120 
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Appendix 8: Number Identification Task Time 5 

11 1 

3 13 8 

15 7 50 5 

 

9 6 8 3 

82 208 20 28 

206 260 26 2060 

706 17 7 70 

114 414 440 40014 

19 119 91 9 

3056 356 35 536 

15 59 50 505 

41 42 14 4 

4017 714 70040 7014 

502 25 52 5 

1 101 111 11 

96 69 6 49 

37 13 713 73 

582 5028 538 528 

3013 10313 313 3030 

7800 807 870 78 

4708 4807 40087 478 

43 4 34 304 

17 174 74 7 

1068 618 18 168 

70031 31 731 713 
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13 3 30 33 

67 670 6710 461 

461 14 614 6104 

852 925 952 90052 

58 850 5 85 

8090 890 89 819 

1901 11009 1109 109 

617 167 670 6107 

10212 1220 122 2120 

493 943 4930 439 
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Appendix 9: Arithmetic at Time 1 

Practice 

items 

Correct 

Response 

Response 

Given 

Method 

Used* 

 

1 + 1 2    

1 + 2 3    

 

1 + 3 4    

2 + 1 3    

2 + 2 4    

1 + 4 5    

3 + 1 4    

1 + 5 6    

2 + 3 5    

1 + 6 7    

3 + 3 6    

4 + 4 8    

 

*Method Used: retrieval, counting objects, fingers, guessing etc. 
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Appendix 10: Arithmetic at Time 2 

Form A 

Practice 

items 

Correct 

Response 

Response 

Given 

Method 

Used* 

 

1 + 1 2    

1 + 2 3    

 

1 + 3 4    

2 + 1 3    

1 + 5 6    

2 + 3 5    

4 + 5 9    

7 + 2 9    

3 + 5 8    

4 + 2 6    

5 + 2 7    

2 + 6 8    

Form B 

Practice 

items 

Correct 

Response 

Response 

Given 

Method 

Used* 

 

1 + 1 2    

1 + 2 3    

 

1 + 4 5    

3 + 1 4    

2 + 5 7    

4 + 2 6    

1 + 6 7    

3 + 6 9    

2 + 7 9    

6 + 2 8    

4 + 3 7    

3 + 5 8    

*Method Used: retrieval, counting objects, fingers, guessing etc. 
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Appendix 11: TOBANS Simple Addition (Times 3, 4 and 5) 
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Appendix 12: TOBANS Addition with carry (Times 3, 4 and 5) 
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Appendix 13: TOBANS Simple Subtraction (Times 4 and 5) 
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Appendix 14: Symbolic Approximate Arithmetic 

Symbolic Sarah John 

1 

Sarah has 6 candies 

…she gets 6 more 

John has 15. Who has more? 

 

 

2 
S. has 15 and gets 25 more. John has 50. Who has 

more? 
 

 

3 S. has 8 and gets 6 more. J. has 21. Who has more?   

4 S. has 9 and gets 12 more. J. has 14. Who has more?   

5 S. has 7 and gets 9 more. J. has 20. Who has more?   

6 
S. has 27 and gets 31 more. J. has 33. Who has 

more? 
 

 

7 
S. has 10 and gets 11 more. J. has 12. Who has 

more? 
 

 

8 
S. has 16 and gets 16 more. J. has 56. Who has 

more? 
 

 

9 
S. has 11 and gets 12 more. J. has 13. Who has 

more? 
 

 

1

0 

S. has 9 and gets 6 more. J. has 12. Who has more? 
 

 

1

1 

S. has 5 and gets 5 more. J. has 15. Who has more? 
 

 

1

2 

S. has 21 and gets 30 more. J. has 34. Who has 

more? 
 

 

1

3 

S. has 25 and gets 20 more. J. has 36. Who has 

more? 
 

 

1

4 

S. has 6 and gets 6 more. J. has 21. Who has more? 
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1

5 

S. has 25 and gets 20 more. J. has 30. Who has 

more? 
 

 

1

6 

S. has 20 and gets 30 more. J. has 40. Who has 

more? 
 

 

1

7 

S. has 30 and gets 26 more. J. has 32. Who has 

more? 
 

 

1

8 

S. has 9 and gets 6 more. J. has 10. Who has more? 
 

 

1

9 

S. has 16 and gets 17 more. J. has 58. Who has 

more? 
 

 

2

0 

S. has 15 and gets 19. J. has 51. Who has more? 
 

 

2

1 

S. has 20 and gets 16 more. J. has 45. Who has 

more? 
 

 

2

2 

S. has 12 and gets 8 more. J. has 16. Who has more? 
 

 

2

3 

S. has 6 and gets 7 more. J. has 23. Who has more? 
 

 

2

4 

S. has 15 and gets 15 more. J. has 51. Who has 

more? 
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Appendix 15: Nonsymbolic Approximate Arithmetic 

 

Non-Symbolic Sarah John 

1 

Sarah has that many marbles 

…she gets that many more  

John has that many marbles. Who has more? 

 

 

2 
S. has that many marbles and gets that many more. J. has that many 

marbles.  
 

 

3 
S. has that many marbles and gets that many more. J. has that many 

marbles.  
 

 

4 
S. has that many marbles and gets that many more. J. has that many 

marbles.  
 

 

5 
S. has that many marbles and gets that many more. J. has that many 

marbles.  
 

 

6 
S. has that many marbles and gets that many more. J. has that many 

marbles.  
 

 

7 
S. has that many marbles and gets that many more. J. has that many 

marbles.  
 

 

8 
S. has that many marbles and gets that many more. J. has that many 

marbles.  
 

 

9 
S. has that many marbles and gets that many more. J. has that many 

marbles.  
 

 

10 
S. has that many marbles and gets that many more. J. has that many 

marbles.  
 

 

11 
S. has that many marbles and gets that many more. J. has that many 

marbles.  
 

 

12 
S. has that many marbles and gets that many more. J. has that many 

marbles.  
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13 
S. has that many marbles and gets that many more. J. has that many 

marbles.  
 

 

14 
S. has that many marbles and gets that many more. J. has that many 

marbles.  
 

 

15 
S. has that many marbles and gets that many more. J. has that many 

marbles.  
 

 

16 
S. has that many marbles and gets that many more. J. has that many 

marbles.  
 

 

17 
S. has that many marbles and gets that many more. J. has that many 

marbles.  
 

 

18 
S. has that many marbles and gets that many more. J. has that many 

marbles.  
 

 

19 
S. has that many marbles and gets that many more. J. has that many 

marbles.  
 

 

20 
S. has that many marbles and gets that many more. J. has that many 

marbles.  
 

 

21 
S. has that many marbles and gets that many more. J. has that many 

marbles.  
 

 

22 
S. has that many marbles and gets that many more. J. has that many 

marbles.  
 

 

23 
S. has that many marbles and gets that many more. J. has that many 

marbles.  
 

 

24 
S. has that many marbles and gets that many more. J. has that many 

marbles.  
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Appendix 16: Head-Toes-Shoulders-Knees Task 

Part 1 

Training  Incorrect Self-

Correct 

Correct 

A1 What would you do if I say “touch your toes?”  

a) verbal response  B) behavioural 

response 

0 1 2 

A2 What would you do if I say “touch your toes?”  

a) verbal response  B) behavioural 

response 

0 1 2 

 

Practice  0 1 2 

B1 Touch your head 0 1 2 

B2 Touch your toes 0 1 2 

B3 Touch your head 0 1 2 

B4 Touch your toes 0 1 2 

 

Test  0 1 2 

1 Touch your head 0 1 2 

2 Touch your toes 0 1 2 

3 Touch your toes 0 1 2 

4 Touch your head 0 1 2 

5 Touch your toes 0 1 2 

6 Touch your head 0 1 2 

7 Touch your head 0 1 2 

8 Touch your toes 0 1 2 

9 Touch your head 0 1 2 

10 Touch your toes 0 1 2 

 

 

 

 

 

 

 

 

 

 



Appendices 

237 

 

Part 2 

Training  Incorrect Self-

Correct 

Correct 

C1 What would you do if I say “touch your knees?”  

a) verbal response  B) behavioural 

response 

0 1 2 

C2 What would you do if I say “touch your shoulders?”  

a) verbal response  B) behavioural 

response 

0 1 2 

 

Practice  0 1 2 

D1 Touch your knees 0 1 2 

D2 Touch your shoulders 0 1 2 

D3 Touch your knees 0 1 2 

D4 Touch your shoulders 0 1 2 

 

Test  0 1 2 

11 Touch your head 0 1 2 

12 Touch your toes 0 1 2 

13 Touch your knees 0 1 2 

14 Touch your toes 0 1 2 

15 Touch your shoulders 0 1 2 

16 Touch your head 0 1 2 

17 Touch your knees 0 1 2 

18 Touch your knees 0 1 2 

19 Touch your shoulders 0 1 2 

20 Touch your toes 0 1 2 
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Appendix 17: Visual Search Task 

Easy Part Time 1 

 

 

 

 

 

 

 

 

 

 

Hard Part Time 1 
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Appendix 18: Calculation of d’ (d prime) 

 

 

Variables recorded:  Hits  = Number of correctly crossed out red apples  

     (out of 17) 

   Missed  = Number of missed red apples 

   Strawberries = Number of wrongly crossed out red 

strawberries  

     (out of 37) 

   White apples = Number of wrongly crossed out white apples 

     (out of 36) 

   Correct-Rejects = Number of correctly rejected distractors  

     (out of 73) 

 

 

   False-Alarm  = Strawberries + White apples 

 

 

 

Hit-Rate = Hits / (Hits + Missed) 

 

False-Alarm-Rate = False-Alarm / (False-Alarm + Correct-Rejects) 

 

d’ =    z(Hit-Rate) – z(False-Alarm-Rate) 

 

 

Online d’- calculator: http://memory.psych.mun.ca/models/dprime/
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Appendix 19: Booklet Order of Magnitude Comparison at Times 3, 4 and 5 

 

 

Booklet 1 

 Nonsymbolic fixed size far 

 Nonsymbolic surface-area matched ratio 5:6 

 Symbolic close 

 Nonsymbolic fixed size ratio 3:4 

 Nonsymbolic surface-area matched ratio 2:3 

 

Booklet 2 

 Symbolic far 

 Nonsymbolic fixed size ratio 2:3 

 Nonsymbolic surface-area matched far 

 Nonsymbolic fixed size ratio 5:6 

 Nonsymbolic fixed size close 

 Nonsymbolic surface-area matched ratio 3:4 
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Appendix 20: Standardized coefficients of Structural Equation Modelling of Concurrent Associations of arithmetic at Times 1, 2, 3, 4 

and 5 

 Time 1   Time 2   Time 3   Time 4   Time 5 

 Estimate p-value   Estimate p-value   Estimate p-value   Estimate p-value   Estimate p-value 

Nonverbal IQ with 

  

 Math-Language 

with 
  

 Counting with 
  

 Transcoding with 
  

 Executive with 
  

Language  

.451 .01 

 Transcoding 
.554 

<.001 

 Transcoding 
.880 

<.001 

 Executive 

Function 
.528 .015 

 Literacy 
.469 

<.001 

Math-Language .439 .011  Counting .342 .046  Digit Magnitude .665 <.001  Magnitude .658 <.001  Transcoding .521 <.001 

Transcoding .409 .073  Digit Magnitude .582 <.001  NS Magnitude .587 <.001      Magnitude .693 <.001 

Counting .229 .308  NS Magnitude .637 <.001             

Digit Magnitude .437 .033                 

NS Magnitude .632 <.001                 

Language with    Transcoding with    Transcoding with    Executive with    Literacy with   

Math-Language .621 <.001  Counting .774 <.001  Digit Magnitude .794 <.001  Magnitude .831 <.001  Transcoding .724 <.001 

Transcoding .529 <.001  Digit Magnitude .735 <.001  NS Magnitude .636 <.001      Magnitude .545 <.001 

Counting .290 .058  NS Magnitude .495 <.001             

Digit Magnitude .605 <.001                 

NS Magnitude .469 <.001                 

Math-Language 

with   

 Counting with 
  

 Digit with 
  

  
  

 Transcoding with 
  

Transcoding .346 .008  Digit Magnitude .622 <.001  NS Magnitude .869 <.001      Magnitude .493 <.001 

Counting .212 .208  NS Magnitude .549 <.001             

Digit Magnitude .511 <.001                 

NS Magnitude .376 .007                 

Transcoding with    Digit with               

Counting .666 <.001  NS Magnitude .603 <.001             

Digit Magnitude .672 <.001                 

NS Magnitude .415 <.001                 

Counting with                   

Digit Magnitude .406 .011                 

NS Magnitude .332 .024                 

Digit with                   

NS Magnitude .556 <.001                 
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Appendix 21: Standardized coefficients SEM of Longitudinal Prediction of arithmetic at Times 2, 3, 4 and 5 by Time 1 base model 

 Time 2   Time 3   Time 4   Time 5 

 
Estimate p-value 

  
Estimate p-value 

  
Estimate p-value 

  
Estimate 

p-

value 

Nonverbal IQ T1 with    Nonverbal IQ T1 with    Nonverbal IQ T1 with    Nonverbal IQ T1 with   

Language  T1  .238 .297  Language  T1  .240 .292  Language  T1  .234 .307  Language  T1  .249 .274 

Math-Language T1 .247 .302  Math-Language T1 .199 .418  Math-Language T1 .195 .430  Math-Language T1 .206 .400 

Transcoding T1 .403 .045  Transcoding T1 .395 .046  Transcoding T1 .411 .039  Transcoding T1 .416 .041 

Counting T1 .185 .470  Counting T1 .181 .479  Counting T1 .172 .504  Counting T1 .195 .444 

Digit Magnitude T1 .218 .374  Digit Magnitude T1 .218 .374  Digit Magnitude T1 .205 .404  Digit Magnitude T1 .223 .362 

NS Magnitude T1 .583 .006  NS Magnitude T1 .582 .006  NS Magnitude T1 .578 .007  NS Magnitude T1 .522 .009 

Language T1 with    Language T1 with    Language T1 with    Language T1 with   

Math-Language T1 .585 <.001  Math-Language T1 .620 <.001  Math-Language T1 .618 <.001  Math-Language T1 .624 <.001 

Transcoding T1 .510 <.001  Transcoding T1 .511 <.001  Transcoding T1 .491 <.001  Transcoding T1 .520 <.001 

Counting T1 .282 .065  Counting T1 .277 .072  Counting T1 .268 .083  Counting T1 .294 .054 

Digit Magnitude T1 .602 <.001  Digit Magnitude T1 .598 <.001  Digit Magnitude T1 .594 <.001  Digit Magnitude T1 .608 <.001 

NS Magnitude T1 .457   NS Magnitude T1 .458 <.001  NS Magnitude T1 .453 <.001  NS Magnitude T1 .411 <.001 

Math-Lang. T1 with    Math-Lang. T1 with    Math-Lang. T1 with    Math-Lang. T1 with   

Transcoding T1 .322 .011  Transcoding T1 .325 .009  Transcoding T1 .323 .009  Transcoding T1 .343 .008 

Counting T1 .216 .189  Counting T1 .205 .222  Counting T1 .199 .239  Counting T1 .216 .197 

Digit Magnitude T1 .506 <.001  Digit Magnitude T1 .512 <.001  Digit Magnitude T1 .511 <.001  Digit Magnitude T1 .520 <.001 

NS Magnitude T1 .378 .004  NS Magnitude T1 .375 .005  NS Magnitude T1 .372 .005  NS Magnitude T1 .360 .002 

Transcoding T1 with    Transcoding T1 with    Transcoding T1 with    Transcoding T1 with   

Counting T1 .670 <.001  Counting T1 .669 <.001  Counting T1 .674 <.001  Counting T1 .679 <.001 

Digit Magnitude T1 .638 <.001  Digit Magnitude T1 .628 <.001  Digit Magnitude T1 .634 <.001  Digit Magnitude T1 .656 <.001 

NS Magnitude T1 .412 <.001  NS Magnitude T1 .411 <.001  NS Magnitude T1 .400 <.001  NS Magnitude T1 .372 <.001 

Counting T1 with    Counting T1 with    Counting T1 with    Counting T1 with   

Digit Magnitude T1 .388 .017  Digit Magnitude T1 .386 .018  Digit Magnitude T1 .371 .025  Digit Magnitude T1 .394 .015 

NS Magnitude T1 .317 .029  NS Magnitude T1 .314 .030  NS Magnitude T1 .306 .035  NS Magnitude T1 .277 .046 

Digit T1 with    Digit T1 with    Digit T1 with    Digit T1 with   

NS Magnitude T1 .547 <.001  NS Magnitude T1 .546 <.001  NS Magnitude T1 .540 <.001  NS Magnitude T1 .504 <.001 
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Appendix 22: Standardized coefficients of SEM of Number Wizards’ Concurrent 

Associations at Time 1 and Longitudinal Prediction of arithmetic at Time 5 by Time 1 base 

model 

 Concurrent Time 1   Longitudinal Time 5 

 Estimate p-value   Estimate p-value 

Nonverbal IQ T1 with    Nonverbal IQ T1 with   

Language  T1  .513 .090  Language  T1  .497 .100 

Math-Language T1 -.067 .843  Math-Language T1 .007 .983 

Transcoding T1 .511 .049  Transcoding T1 .564 .028 

Counting T1 .098 .736  Counting T1 .098 .736 

Magnitude T1 .499 .092  Magnitude T1 .371 .233 

Language T1 with    Language T1 with   

Math-Language T1 .708 <.001  Math-Language T1 .740 <.001 

Transcoding T1 .408 .027  Transcoding T1 .414 .023 

Counting T1 .142 .505  Counting T1 .133 .525 

Magnitude T1 .669 <.001  Magnitude T1 .633 .001 

Math-Lang. T1 with    Math-Lang. T1 with   

Transcoding T1 .254 .236  Transcoding T1 .255 .234 

Counting T1 .156 .486  Counting T1 .185 .417 

Magnitude T1 .615 .001  Magnitude T1 .628 .003 

Transcoding T1 with    Transcoding T1 with   

Counting T1 .641 <.001  Counting T1 .640 <.001 

Magnitude T1 .597 <.001  Magnitude T1 .578 .002 

Counting T1 with    Counting T1 with   

Magnitude T1 .374 .051  Magnitude T1 .300 .152 
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Appendix 23: Standardized coefficients SEM of Symbolic Approximate Arithmetic at Times 3, 4 and 5 by Time 1 base model 

 

 

 Time 3   Time 4   Time 5 

 Estimate p-value   Estimate p-value   Estimate p-value 

Nonverbal IQ T1 with    Nonverbal IQ T1 with    Nonverbal IQ T1 with   

Language  T1  .242 .289  Language  T1  .244 .285  Language  T1  .245 .283 

Math-Language T1 .206 .403  Math-Language T1 .206 .401  Math-Language T1 .207 .398 

Transcoding T1 .394 .057  Transcoding T1 .384 .064  Transcoding T1 .414 .044 

Counting T1 .192 .453  Counting T1 .192 .452  Counting T1 .194 .448 

Digit Magnitude T1 .275 .256  Digit Magnitude T1 .273 .259  Digit Magnitude T1 .293 .226 

NS Magnitude T1 .585 .006  NS Magnitude T1 .585 .006  NS Magnitude T1 .586 .006 

Language T1 with    Language T1 with    Language T1 with   

Math-Language T1 .623 <.001  Math-Language T1 .624 <.001  Math-Language T1 .624 <.001 

Transcoding T1 .528 <.001  Transcoding T1 .509 <.001  Transcoding T1 .525 <.001 

Counting T1 .295 .053  Counting T1 .296 .052  Counting T1 .298 .050 

Digit Magnitude T1 .628 <.001  Digit Magnitude T1 .620 <.001  Digit Magnitude T1 .629 <.001 

NS Magnitude T1 .462 <.001  NS Magnitude T1 .464 <.001  NS Magnitude T1 .464 <.001 

Math-Lang. T1 with    Math-Lang. T1 with    Math-Lang. T1 with   

Transcoding T1 .342 .009  Transcoding T1 .346 .008  Transcoding T1 .344 .008 

Counting T1 .215 .200  Counting T1 .216 .198  Counting T1 .217 .195 

Digit Magnitude T1 .446 .002  Digit Magnitude T1 .449 .002  Digit Magnitude T1 .446 .002 

NS Magnitude T1 .382 .004  NS Magnitude T1 .382 .004  NS Magnitude T1 .383 .004 

Transcoding T1 with    Transcoding T1 with    Transcoding T1 with   

Counting T1 .667 <.001  Counting T1 .670 <.001  Counting T1 674 <.001 

Digit Magnitude T1 .709 <.001  Digit Magnitude T1 .715 <.001  Digit Magnitude T1 .711 <.001 

NS Magnitude T1 .414 <.001  NS Magnitude T1 .413 <.001  NS Magnitude T1 .418 <.001 

Counting T1 with    Counting T1 with    Counting T1 with   

Digit Magnitude T1 .405 .009  Digit Magnitude T1 .415 .007  Digit Magnitude T1 .414 .007 

NS Magnitude T1 .324 .025  NS Magnitude T1 .325 .025  NS Magnitude T1 .326 .024 

Digit T1 with    Digit T1 with    Digit T1 with   

NS Magnitude T1 .505 <.001  NS Magnitude T1 .507 <.001  NS Magnitude T1 .513 <.001 
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Appendix 24: Standardized coefficients SEM of Nonsymbolic Approximate Arithmetic at Times 3, 4 and 5 by Time 1 base model 

 Time 3   Time 4   Time 5 

 Estimate p-value   Estimate p-value   Estimate p-value 

Nonverbal IQ T1 with    Nonverbal IQ T1 with    Nonverbal IQ T1 with   

Language  T1  .241 .293  Language  T1  -.022 .926  Language  T1  .246 .281 

Math-Language T1 .204 .407  Math-Language T1 .455 .043  Math-Language T1 .208 .397 

Transcoding T1 .392 .057  Transcoding T1 .402 .060  Transcoding T1 .393 .057 

Counting T1 .190 .458  Counting T1 .312 .174  Counting T1 .195 .445 

Digit Magnitude T1 .247 .302  Digit Magnitude T1 .104 .699  Digit Magnitude T1 .258 .282 

NS Magnitude T1 .588 .006  NS Magnitude T1 .834 <.001  NS Magnitude T1 .590 .006 

Language T1 with    Language T1 with    Language T1 with   

Math-Language T1 .621 <.001  Math-Language T1 .606 <.001  Math-Language T1 .624 <.001 

Transcoding T1 .524 <.001  Transcoding T1 .519 <.001  Transcoding T1 .522 <.001 

Counting T1 .291 .057  Counting T1 .296 .050  Counting T1 .299 .050 

Digit Magnitude T1 .590 <.001  Digit Magnitude T1 .601 <.001  Digit Magnitude T1 .592 <.001 

NS Magnitude T1 .463 <.001  NS Magnitude T1 .446 <.001  NS Magnitude T1 .468 <.001 

Math-Lang. T1 with    Math-Lang. T1 with    Math-Lang. T1 with   

Transcoding T1 .337 .009  Transcoding T1 .333 .011  Transcoding T1 .342 .009 

Counting T1 .212 .207  Counting T1 .208 .216  Counting T1 .219 .191 

Digit Magnitude T1 .493 <.001  Digit Magnitude T1 .487 .001  Digit Magnitude T1 .496 <.001 

NS Magnitude T1 .379 .005  NS Magnitude T1 .363 .010  NS Magnitude T1 .383 .005 

Transcoding T1 with    Transcoding T1 with    Transcoding T1 with   

Counting T1 .667 <.001  Counting T1 663. <.001  Counting T1 .675 <.001 

Digit Magnitude T1 .665 <.001  Digit Magnitude T1 .662 <.001  Digit Magnitude T1 .681 <.001 

NS Magnitude T1 .414 <.001  NS Magnitude T1 .410 <.001  NS Magnitude T1 .414 <.001 

Counting T1 with    Counting T1 with    Counting T1 with   

Digit Magnitude T1 .441 .004  Digit Magnitude T1 .433 .005  Digit Magnitude T1 .460 .003 

NS Magnitude T1 .325 .026  NS Magnitude T1 .335 .024  NS Magnitude T1 .332 .022 

Digit T1 with    Digit T1 with    Digit T1 with   

NS Magnitude T1 .512 <.001  NS Magnitude T1 .503 <.001  NS Magnitude T1 .513 <.001 



Appendices 

246 

 

Appendix 25: Standardized coefficients SEM of Longitudinal Prediction of 

arithmetic at Time 5 by Time 1 base model and number line estimation 

 

 

 

 Time 5 

 Estimate p-value 

Arithmetic Time 1 with   

Transcoding T1 .623 <.001 

Counting T1 .405 .002 

Symbolic Magnitude T1 .559 <.001 

Nonsymbolic Magnitude T1 .513 <.001 

Number Line 0-10: small numbers -.062 .648 

Number line 0-10: large numbers .124 .483 

Transcoding T1 with   

Counting T1 .684 <.001 

Symbolic Magnitude T1 .634 <.001 

Nonsymbolic Magnitude T1 .431 <.001 

Number Line 0-10: small numbers -.179 .173 

Number line 0-10: large numbers .222 .123 

Counting T1 with   

Symbolic Magnitude T1 .365 .031 

Nonsymbolic Magnitude T1 .344 .021 

Number Line 0-10: small numbers -.337 .426 

Number line 0-10: large numbers .195 .334 

Symbolic Magnitude T1 with   

Nonsymbolic Magnitude T1 .535 <.001 

Number Line 0-10: small numbers -.337 .020 

Number line 0-10: large numbers -.095 .583 

Nonsymbolic Magnitude T1 with   

Number Line 0-10: small numbers -.142 .321 

Number line 0-10: large numbers -.035 .818 

Number line 0-10: small numbers T1 with   

Number line 0-10: large numbers T1 -.092 .622 
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