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Abstract    

 

Type IV secretion systems (T4SSs) are versatile multiprotein nanomachines spanning the entire bacterial cell 

envelope in Gram-negative and Gram-positive bacteria. They play important roles through the contact-

dependent secretion of effector molecules into eukaryotic hosts and conjugative transfer of mobile DNA 

elements as well as contact-independent exchange of DNA with the extracellular milieu. In the last few 

years, many details on the molecular mechanisms of T4SSs have been elucidated. Exciting structures of 

T4SS complexes from Escherichia coli plasmids R388 and pKM101, Helicobacter pylori and Legionella 

pneumophila have been solved. The structure of the F-pilus was also reported and surprisingly revealed a 

filament composed of pilin subunits in 1:1 stoichiometry with phospholipid molecules. Many new T4SSs 

have been identified and characterized, underscoring the structural and functional diversity of this secretion 

superfamily. Complex regulatory circuits also have been shown to control T4SS machine production in 

response to host cell physiological status or a quorum of bacterial recipient cells in the vicinity. Here, we 

summarize recent advances in our knowledge of ‘paradigmatic’ and emerging systems, and further explore 

how new basic insights are aiding in the design of strategies aimed at suppressing T4SS functions in bacterial 

infections and spread of antimicrobial resistances.  
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Introduction 

The T4SSs represent a highly diverse superfamily of secretion systems found in many bacterial species. This 

diversity is represented at a functional level by an astounding collective capacity of T4SSs to i) recognize 

and translocate single-stranded (ss) DNA substrates (conjugation machines) to bacterial recipients, ii) deliver 

effector proteins (effector translocator systems) to eukaryotic target cells, iii) exchange DNA with the milieu, 

iv) contribute to biofilm development, and v) deliver a killing toxin to bacterial neighbors (Figs. 1A-D). 

Many pathogenic bacteria deploy T4SSs as virulence determinants aiding their colonization and propagation 

in the eukaryotic host (Fig. 1E). Most if not all T4SS-carrying species alternatively utilize these machines to 

disseminate mobile genetic elements, often rife with antibiotic resistance genes and other fitness traits, for 

enhanced survival in clinical and other environmental settings. In this MicroReview, we summarize 

intriguing advances in studies of the evolution, structure, and function of T4SSs operating in various human 

pathogens. Our new insights form an important foundation for emerging translational studies aimed at 

suppressing the action of T4SSs in pathogenic bacteria or repurposing T4SSs for therapeutic ends.   

 

Evolution of the structurally and functionally diverse T4SS superfamily 

The T4SSs can be viewed as composite structures of two or more functional protein modules. The large 

subfamily of conjugation systems in Gram-negative (Gram-) bacteria is composed of four such units: i) the 

relaxosome responsible for nicking DNA substrates at their origin of transfer (oriT) sequences, ii) the type IV 

coupling protein (T4CP) functioning as a substrate receptor, iii) the cell-envelope-spanning T4SS machine 

constituting the mating channel, and iv) an extracellular pilus important for establishment of intercellular 

contacts and robust biofilm development (Alvarez-Martinez and Christie, 2009; Christie, 2016). Over the last 

few years, phylogenetic studies have focused on delineating the ancestral relationships of several key 

components of these functional modules. For example, the relaxase enzymes in the relaxosome likely 

evolved from rolling circle replicases (Garcillan-Barcia et al., 2009), whereas T4CPs and the VirB4 ATPase 

components of the T4SS channel evolved from ancestral SpoIIIE/FtsK-like ATPases (Guglielmini et al., 

2013; 2014). Mating channels likely functioned originally as protein transport systems and evolved as 
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conjugation systems through recognition by T4CPs of rolling circle replicases as substrates. By tracing the 

evolutionary paths of the signature T4CP and VirB4 ATPases, the conjugation systems are thought to have 

emerged first in the diderm (Gram-) species and then expanded to the monoderm Gram-positive (Gram+) 

species. These systems then diverged on a relatively recent evolutionary time scale to generate the extreme 

biological diversity of the T4SSs ranging from the widely distributed conjugation machines to dedicated 

effector translocator systems to various other systems adapted for entirely novel purposes (Bhatty et al., 

2013; Guglielmini et al., 2013; 2014).   

The T4SSs of Gram- bacteria have been classified into two broad phylogenetic subfamilies, 

designated as types IVA and IVB. The Agrobacterium tumefaciens VirB/VirD4 T4SS and E. coli 

conjugation apparatuses, encoded by the R388 and pKM101 plasmids, have served as paradigms of the type 

IVA systems (Chandran Darbari and Waksman, 2015; Christie, 2016). These T4SSs characteristically are 

composed of 12 subunits, each in multiple copies, termed VirB1 through VirB11 and VirD4 based on the A. 

tumefaciens subunit names as a unifying nomenclature for this secretion superfamily. Of these, VirB2-

VirB11 and VirD4 are required for substrate transfer, whereas VirB1 is necessary and VirD4 is dispensable 

for assembly of the conjugative pilus. The subunits can be grouped according to general function or 

subcellular location as: i) the cytoplasmic ATPases (VirB4, VirB11, VirD4), ii) components of an inner 

membrane platform (VirB3, VirB6, VirB8), iii) constituents of an outer membrane core complex (OMCC; 

VirB7, VirB9, VirB10), and iv) pilus-assembly components (VirB1 transglycosylase, VirB2 pilin, VirB5 

pilus-tip protein). As described in more detail below, recent structure - function studies are advancing our 

mechanistic knowledge of these ‘paradigmatic’ systems. Two other well-characterized systems, the T4SS 

encoded by E. coli F plasmids and the Cag (Cytotoxin-associated genes) T4SS encoded by H. pylori, are 

composed of orthologs by all the VirB/VirD4 proteins, and thus are classified as type IVA. However, these 

systems additionally require many F- and Cag-specific subunits for their assembly, and thus likely have 

novel structural and functional features (Backert et al., 2015; Christie, 2016). The type IVB transporters also 

require many (>25) proteins for their assembly, of which only a few are related to the VirB/VirD4 subunits 

and over 20 are specific for the IVB machineries. The L. pneumophila Dot/Icm (Defective for organelle 
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trafficking/Intracellular multiplication) system serves as a paradigm for this subfamily (Nagai and Kubori, 

2011).  

The T4SSs have evolved as highly-specialized nanomachines both in recognition of specific 

substrate repertoires and in delivery of substrates to specific prokaryotic or eukaryotic cell types. This 

specialization arose largely through appropriation by the ancestral conjugation systems of novel motifs, 

proteins or protein subassemblies (Christie, 2016). For example, there is accumulating evidence that many 

VirD4 substrate receptors have acquired sequence-variable C-terminal extensions (CTEs) that are capable of 

binding secretion chaperones or adaptors, often required for secretion of associated substrates. These VirD4 

CTE - adaptor interactions play important roles in defining the substrate repertoire of cognate T4SSs. 

Additionally, the VirB6 subunits typically consist of five or more inner membrane-spanning helices, but a 

large subfamily of these subunits (called extended VirB6’s) have acquired large hydrophilic domains shown 

to extend to the cell surface or into target cells to modulate the bacterial donor-target cell interaction. 

Similarly, the VirB7 and VirB10 subunits typically form part of the OMCC, yet variants of these subunits 

carry long variable repeat sequences implicated in specifying host cell recognition or immune evasion 

(Christie, 2016). Recent genomics studies also have identified redundant but sequence-variable copies of 

genes encoding VirB2 and VirB5 pilin subunits; these pilins also are thought to assemble as surface-variable 

structures enabling modulation of host cell binding or persistence in an infection setting (Alvarez-Martinez 

and Christie, 2009; Gillespie et al., 2009; 2010; Vayssier-Taussat et al., 2010). Finally, there also is 

increasing evidence that T4SSs have appropriated other bacterial host proteins, e.g., surface-exposed 

adhesins or outer membrane proteins (OMPs), to promote binding to other bacterial or eukaryotic cell targets 

as a prerequisite for interbacterial gene or interkingdom effector protein transfer (Bhatty et al., 2015; 

Javaheri et al., 2016; Königer et al., 2016). This structural and functional diversity is especially evident 

among the T4SSs deployed by important human pathogens for effector translocation, as highlighted later in 

this MicroReview.   
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T4SS architecture and pilus formation 

Over the last decade, there has been significant progress in deciphering the structures of T4SS subassemblies 

from conjugation machines functioning in E. coli and from T-DNA transfer in A. tumefaciens. These 

structures represent an architectural blueprint for the IVA transporters that, coupled with results of earlier 

formaldehyde crosslinking studies in the A. tumefaciens VirB/VirD4 system (Atmakuri et al., 2004; Cascales 

and Christie, 2004), generate a view of how secretion substrates are conveyed through the T4SS to the cell 

surface. Until now the structures of three T4SSs have been reported, two of isolated machines and one in the 

native context of the bacterial cell envelope. The best-characterized structures to date have been presented 

for the Trw T4SS encoded by plasmid R388, achieved by negative-stain and cryo-electron microscopy (cryo-

EM) imaging of isolated machines. The largest structure is designated the VirB3-10 assembly because it is 

composed of homologs of the A. tumefaciens VirB3-VirB10 subunits (Low et al., 2014). This 3 

MegaDalton complex consists of a large outer membrane subassembly called the core complex (Fig. 1F). 

Core complex structures also have been presented for the plasmid pKM101-encoded T4SS at a high 

resolution and for the A. tumefaciens VirB/VirD4 T4SS at a lower resolution (Chandran et al., 2009; Fronzes 

et al., 2009; Rivera-Calzada et al., 2013; Gordon et al., 2017). The R388 VirB3-10 structure is additionally 

composed of an inner membrane complex (IMC) of extraordinary design and a slight flexible section (the 

stalk), connecting the core complex with the IMC (Trokter et al., 2014). The IMC is composed of 12 copies 

each of VirB3, VirB4, VirB5, VirB6, and VirB8, coming together to form a double-barreled structure, each 

of the barrels protruding in the cytoplasm. These barrel-shaped structures are each made of the VirB4 

ATPase, observed here as trimers of VirB4 dimers. Cryo-EM of the pKM101 core complex identified a ring 

structure of 185 Å in diameter, comprising the VirB7, VirB9 and VirB10 proteins (Fig. 1G, top), each 

existent in 14 copies (Fronzes et al., 2009; Rivera-Calzada et al., 2013). In fact, this complex is composed of 

inner (I) and outer (O) layers. The O-layer is formed by VirB7 and the C-terminal domains of VirB9 and 

VirB10. The 2.6 Å resolution O-layer structure revealed that VirB10 forms the interior lining of the complex 

while VirB9/VirB7 forms a protective crown around it. Fourteen VirB10 subunits project each a helical 

bundle to form a highly unusual outer-membrane channel (Chandran et al., 2009). The cryo-EM assembly of 
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a truncated pKM101 core structure, lacking the N-terminus of VirB10 (Fig. 1G, bottom), was determined at 

8.5 Å resolution and provided further details on the structure of the I-layer (Rivera-Calzada et al., 2013). The 

I-layer in the arrangement is composed of 14 VirB9 N-terminal domains and covers the outer wall. 

Molecular modeling supported the view that these domains represent β-sandwich folds. Remarkable 

projections from a middle platform tighten the channel, connecting the chambers in the O-layer and I-layer 

(Fig. 1G, bottom right). This podium is apparently formed by VirB9, with proposed function in effector 

molecule delivery across the core complex. In addition, three NTPases (VirB4, VirB11 and VirD4) function 

as hexamers (Yeo et al., 2000; Gomis-Rüth et al., 2001; Savvides et al., 2003; Hare et al., 2006; Wallden et 

al., 2012). They face the cytoplasm and are essential for substrate secretion. Two of these NTPases (VirB4 

and VirB11) are also essential for extracellular pilus formation. T4SS-pili represent tube-like appendages 

(Eisenbrandt et al., 1999; Wang et al., 2009), and stimulate contact and subsequent mating pair formation 

with the recipient (Dürrenberger et al., 1991; Samuels et al., 2000; Hospenthal et al., 2017). However, the 

composition of these mating bridges is not fully explored. It appears that conjugative pili function as conduits 

for DNA transfer and can appear at significant cell-to-cell distances (Babic et al., 2008). Interestingly, 

uncoupling mutations in agrobacterial T4SS proteins blocked pilus biogenesis, but allowed proper DNA 

transfer (Jakubowski et al., 2009; Banta et al., 2011). This implied that intact pili are not necessary for 

substrate transfer. However, production of VirB2 and VirB5 is important for proper T4SS function and host 

cell interaction (Berger and Christie, 1993; Backert et al., 2008). These data together denote the existence of 

two configurations for the IVA-type T4SSs, a pilus biogenesis-competent form and a secretion-competent 

form, that may be composed of a pilus structure extending through the chamber of the OMCC (Banta et al., 

2011).  

 Several other T4SS-associated structures have been solved, including a recent cryo-EM 

structure of a relaxase that revealed the molecular basis of DNA unwinding during bacterial conjugation 

(Fig. 1H-J) (Ilangovan et al., 2017). A structure of a VirD4 coupling protein bound to a VirB-type T4SS 

machinery was also described, providing a view of how secretion substrates might be conveyed through the 

T4SS (Fig. 1J) (Redzej et al., 2017). Structures of the H. pylori Cag (Frick-Cheng et al., 2016) and L. 
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pneumophila Dot/Icm systems (Ghosal et al., 2017) have been reported, although not yet at the resolution of 

the R388 VirB3-10 structure. Even at this time, however, these structures allow for general comparisons 

between the ‘paradigmatic’ VirB/VirD4-like type IVA machines and phylogenetically diverse systems; for 

example, the IVA and IVB types have a similar architecture consisting of a 14-fold symmetrical core 

complex mounted through a stalk to a double-barreled IMC. Finally, in addition to the structures solved for 

plasmid-encoded T4SSs or subassemblies, in the last year atomic models were solved by cryo-EM for two F 

family pili. Strikingly, these pili are composed of TraA pilin subunits in 1:1 stoichiometric association with 

phospholipid (Costa et al., 2016). These structures provide a molecular basis for understanding the dynamics 

of F-pilus assembly and retraction (Costa et al., 2016). Taken together, these new T4SS structures represent 

significant breakthroughs in the field of bacterial secretion.    

 

Nature and recruitment of T4SS substrates 

Pioneering work on the nature and recruitment of T4SS substrates, with focus on conjugative plasmids from 

Gram- bacteria, has been performed by the groups of Llosa and Zechner (Fernandéz-Gonzaléz et al., 2011; 

Zechner et al., 2012; Lang et al., 2014; Gruber et al., 2016). All conjugative T4SSs encode relaxases, which 

initiate substrate processing by a nucleophilic attack of the active site tyrosyl-hydroxyl group of the enzyme 

on the scissile phosphate group within oriT, releasing the bridging oxygen and forming a long-lived ssDNA-

protein conjugate. This high-energy bond serves several functions: i) it physically links the ssDNA substrate 

with the relaxase whose translocation signal (TS) mediates transfer through the T4SS, ii) it protects the 

phosphate of the ssDNA from nucleophilic attack when it enters the recipient, and iii) it provides the means 

to rejoin the plasmid ends in the recipient (Zechner et al., 2012). T4SS substrates are equipped with TSs that 

identify them as substrates for secretion (Zechner et al., 2012). Redzej and co-workers reported the first 

structure of a TS in relaxase TraI from plasmid R1 (Redzej et al., 2013). The latter TS domain can be divided 

into three subdomains with striking structural homology to helicase subdomains of the SF1B family. This 

work provided the first evidence that the TS can be part of larger structural scaffolds, overlapping with 

translocation-independent activities (Redzej et al., 2013).  
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 Before entering the secretion channel, T4SS substrates form complexes with specific cytosolic 

binding partners, which can act as chaperones or adaptors to mediate substrate contacts with the cognate 

T4CP (Zechner et al., 2012). In the F system, for example, the TraM accessory factor functions in substrate 

selection by promoting a specific interaction between the F plasmid substrate and the F-encoded TraD T4CP 

(Wong et al., 2012). Other characterized T4SS accessory factors include the VirE1 chaperone, required for 

translocation of the VirE2 effector through the A. tumefaciens VirB/VirD4 T4SS, and the IcmS, IcmW, 

LvgA adaptors essential for translocation of different subsets of effectors through the Legionella Dot/Icm 

translocation apparatus (Alvarez-Martinez and Christie, 2009; Kwak et al., 2017). Par-like proteins such as 

A. tumefaciens VirC1 and VirC2 (Atmakuri et al., 2007) and R1 plasmid-encoded ParM and ParR (Gruber et 

al., 2016) also appear to play a role in promoting the docking of the T-DNA and R1 DNA substrates with 

their cognate T4SSs.  

In Gram+ bacteria, the DNA processing steps prior to conjugative transfer appear to be 

mechanistically very similar (Zechner et al., 2012). One exception to this generalization is that the 

Clostridium perfringens plasmid pCW3 codes for an atypical relaxase in the sense that it carries a catalytic 

tyrosine residue. Other catalytic residues conserved in tyrosine recombinases are not required for TcpM 

activity, suggesting that TcpM is not a site-specific recombinase (Wisniewski et al., 2016). Also, the first 

evidence was presented that a T4SS deployed by a Gram+ species functions to deliver effector proteins to 

eukaryotic host cells during the course of infection (Li et al., 2011; Zhao et al., 2011; Jiang et al., 2016; Yin 

et al., 2016). This T4SS is encoded by the 89 kb pathogenicity island (called 89K PAI) associated with 

Streptococcus suis and is also found in other pathogenic streptococci, e.g., S. pneumoniae, S. agalactiae 

(Wang et al., 2017). It will now be of considerable interest to confirm effector translocation, identify the 

effector repertoire, and define the nature of the translocation signals required for translocation through this 

and other possible effector translocators in Gram+ species.  

 

Conjugative transfer systems 

Conjugative T4SSs are encoded on conjugative plasmids, integrative and conjugative elements also known 

as ICEs or conjugative transposons, or genomic PAIs (Fig. 1A). These systems are found in most species of 
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Gram- and Gram+ bacteria, and conjugative plasmids also exist in a few species of archaea (Wagner et al., 

2017). In bacteria, these mobile genetic elements contribute to the spread of fitness traits and, more 

problematically from a clinical perspective, multiple antibiotic resistances (Christie, 2016; Grohmann et al., 

2016). As mentioned earlier, the prototypic systems among Gram- species include the A. tumefaciens 

VirB/VirD4 T4SS (Christie, 2016), and the E. coli conjugative plasmids F, R388, and pKM101 (Lawley et 

al., 2003; Llosa and de la Cruz, 2005; de la Cruz et al., 2010; Frost and Koraimann, 2010; Zechner et al., 

2012, Arutyunov and Frost, 2013; Koraimann and Wagner, 2014; Cabezon et al., 2015).  

 Currently, the best characterized T4SSs from Gram+ bacteria are those encoded by the 

Enterococcus faecalis sex-pheromone responsive plasmid pCF10 (Li et al., 2012; Clewell et al., 2014; 

Laverde Gomez et al.; 2014; Bhatty et al., 2015; Whitaker et al., 2015; Bhatty et al., 2017), C. perfringens 

plasmid pCW3 (Bantwal et al., 2012; Porter et al., 2012; Wisniewski et al., 2015; 2016; Wisniewski and 

Rood, 2017) and broad-host-range plasmid pIP501 originally isolated from S. agalactiae (Arends et al., 

2013; Goessweiner-Mohr et al., 2013 a and b; 2014 a and b; Fercher et al., 2016; Grohmann et al., 2016; 

Kohler et al., 2017; Laverde et al., 2017). The conjugation machines in Gram+ species differ from their 

Gram- species counterparts mainly by lacking the outer membrane core complex and the VirB11 ATPase. 

They also do not produce conjugative pili and instead rely on surface adhesins to mediate donor-recipient 

cell contacts (Bhatty et al., 2013; 2015). The Gram+ systems also typically employ VirB1-like lytic 

transglycosylases with two or more catalytic domains, presumably to allow for machine assembly across the 

thick peptidoglycan layer (Arends et al., 2013; Laverde Gomez et al., 2014).  

 With respect to structure - function advances of the Gram+ T4SSs, high-resolution structures of 

individual components from the pIP501 and pCW3 systems have been solved (Porter et al., 2012; 

Goessweiner-Mohr et al., 2013a; 2014b; Fercher et al., 2016), although no structures are presently available 

for larger T4SS machine assemblies. Considerable progress also has been made in defining signaling 

cascades and regulatory networks governing assembly of several Gram+ systems. In the E. faecalis T4SS, 

pheromone-dependent overproduction of PrgB, otherwise known as Aggregation Substance, induces 

formation of intercellular aggregates. Interestingly, however, upon overproduction, PrgB confers toxicity on 
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E. faecalis donors by a mechanism dependent on extracellular DNA (e-DNA) (Bhatty et al., 2015). A gene 

linked to prgB codes for a putative RNA-binding protein termed PrgU, whose synthesis mitigates PrgB-

overproduction toxicity by blocking transcription from the upstream prgQ promoter (Bhatty et al., 2017). 

Studies also have deciphered regulatory features and the molecular organization of the ICEBs1-encoded 

T4SS carried by Bacillus subtilis (Carraro and Burrus, 2014; DeWitt and Grossman, 2014; Johnson and 

Grossman, 2015; Leonetti et al., 2015; Auchtung et al., 2016). Finally, as noted above, the intriguing recent 

studies of the 89K PAI from S. suis for the first time have supplied evidence that a T4SS encoded by a Gram+ 

species is capable of translocating effector proteins into human host cells during the course of infection (Li et 

al., 2011; Jiang et al., 2016; Yin et al., 2016).  

 

DNA export and import systems 

The subfamily of contact-independent import/export machines is presently restricted to the H. pylori ComB 

competence system and the Neisseria gonorrhoeae DNA release apparatus (Figs. 1B,C). In the ComB 

system, the T4SS mediates the first step in DNA uptake across the outer membrane (Hofreuter et al., 1998; 

2000; Stingl et al., 2010, Krüger and Stingl, 2011). This apparatus was identified as the major mediator of 

DNA transfer between H. pylori strains, both in a DNaseI-sensitive (transformation) and DNaseI-resistant 

(conjugative transfer) manner (Rohrer et al., 2012). The ComB system comprises a nearly complete set of 

T4SS components, lacking only the homologs of VirB1, VirB5, and VirB11 ATPase (Fernández-González 

and Backert, 2014). An early study showed that all VirB homologs except for the VirB7-like subunit are 

required for DNA uptake (Hofreuter et al., 2003). In addition to the ComB subunits, the cytoplasmic protein 

DprA (Smeets et al., 2000a), the secreted protein ComH (Smeets et al., 2000b), and the cytoplasmic channel 

subunit ComEC (Yeh et al., 2003) are essential for DNA import by H. pylori (Fernández-González and 

Backert, 2014). Recently, a two-step DNA uptake mechanism was proposed in which ComB translocates 

double-stranded (ds) DNA across the outer membrane and delivers the substrate to the ComEC channel for 

uptake across the inner membrane (Stingl et al., 2010; Fernández-González and Backert, 2014). It also has 
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been suggested that some comB genes might contribute to H. pylori infection of mammalian host cells 

(Fernández-González and Backert, 2014).   

Neisseria gonorrhoeae is an obligate human pathogen responsible for the sexually transmitted 

disease gonorrhea. It encodes a plasmid F-like T4SS within the gonococcal genetic island (GGI), which 

secretes ssDNA directly into the external environment (Pachulec et al., 2014). This DNA is effective in 

transforming gonococci in the population, and may contribute to the high extent of genetic diversity in this 

species (Kohler et al., 2013). Secretion of ssDNA is also required for the initial stages of biofilm formation, 

presumably helping during colonization (Zweig et al., 2013; Obergfell and Seifert, 2015) (Fig. 1B). 

Sequence comparisons revealed that GGI-like T4SSs are highly conserved units located both on 

chromosomes and plasmids. The yaa-atlA and parA-parB gene regions were shown to be essential for DNA 

secretion (Pachulec et al., 2014). In addition, it was postulated that release of DNA occurs through the action 

of ParA, ParB, TraI, Yea, and TraD proteins. Reminiscent of the VirC1/VirC2 and ParM/ParR systems 

described earlier, the N. gonorrhoeae ParA and ParB are partitioning factors implicated in chromosome and 

plasmid DNA segregation during replication, but evidently also coordinate early DNA substrate docking 

reactions with the cognate GGI-encoded T4SSs (Leonard et al., 2005; Obergfell and Seifert, 2015).  

 

Host-pathogen interactions 

Helicobacter pylori 

Helicobacter pylori is a paradigm of persistent pathogens and major risk factor of peptic ulceration and 

gastric adenocarcinoma in humans (Salama et al., 2013). Highly virulent isolates elaborate a T4SS encoded 

by the cag PAI. Machine assembly requires orthologs of all 12 agrobacterial VirB/VirD4 proteins and about 

a dozen other subunits, making this system clearly distinct from the ‘paradigmatic’ IVA systems discussed 

above (Fischer et al., 2001; Backert et al., 2015). The T4SS core complex was visualized by negative-

staining EM, bearing some architectural similarity to the R388-encoded VirB3-10 subassembly (Frick-Cheng 

et al., 2016). However, the Cag structure is considerably larger with a cross-section of 41 nm as opposed to 

28 nm, and it is composed of five (Cag3, CagM, CagT, CagX, CagY) as opposed to three (VirB7, VirB9, 
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VirB10) subunits, respectively. The Cag T4SS also was shown to be associated with an extracellular pilus 

(Backert et al., 2015). Another distinction from the canonical systems is that several subunits, including 

CagL, CagI, CagY and the CagA secretion substrate, are associated with the surface-exposed portion of the 

pilus. These factors permit binding of the basolateral host receptor integrin α5β1, which is necessary for T4SS 

function (Kwok et al., 2007; Barden et al., 2013). New studies revealed that T4SS-pilus formation occurred 

predominantly at basolateral membranes during infection of polarized gastric epithelial cells, and not at 

apical sites. For this purpose, H. pylori secretes the serine protease HtrA, which opens cell-to-cell junctions 

through cleavage of the junctional proteins occludin, claudin-8 and E-cadherin (Schmidt et al., 2016; 

Tegtmeyer et al., 2017a). The only known Cag T4SS effector protein is CagA, and several crystal structures 

of CagA’s N-terminus are now available (Hayashi et al., 2012; Kaplan-Türköz et al., 2012). After delivery 

into host cells, CagA undergoes tyrosine phosphorylation by cellular Src and Abl kinases (Mueller et al., 

2012). CagA can then interact with about 25 signaling proteins, including Shp2, Grb2, Par1b, PI3-kinase or 

tumor suppressor ASPP2 (Higashi et al., 2002; Mimuro et al., 2002; Saadat et al., 2007; Selbach et al., 2009, 

Nešić et al., 2014; Zhang et al., 2015). Through these interactions, CagA interferes with fundamental host 

signaling cascades such as cell adhesion, polarity, proliferation, anti-apoptosis and inflammation (Tegtmeyer 

et al., 2017b). Functional studies in Mongolian gerbils (Franco et al., 2008) and transgenic mice (Ohnishi et 

al., 2008) have shown that CagA production is necessary and sufficient to stimulate gastric cancerogenesis. 

However, besides CagA, this T4SS can translocate chromosomal DNA (Varga et al., 2016), peptidoglycan 

(Viala et al., 2004) and D-glycero-β-D-manno-heptose 1,7-bisphosphate (Gall et al., 2017; Stein et al., 2017; 

Zimmermann et al., 2017) into epithelial cells, which respectively stimulate TLR-9, kinase AKAP and pro-

inflammatory transcription factor NF-B signaling modules. H. pylori also exploits host CEACAM 

(carcinoembryonic antigen-related cell adhesion molecules) receptors via the surface-exposed OMP HopQ, 

for bacterial adherence and translocation of CagA. The HopQ - CEACAM interaction is necessary for full 

T4SS function, gastric colonization and pathology (Javaheri et al., 2016; Königer et al., 2016).   
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Legionella pneumophila 

Several intracellular pathogens including Legionella, Coxiella, Bartonella and Brucella species produce 

specialized T4SSs to aid in survival and spread in the human host (Personnic et al., 2016; Sherwood and 

Roy, 2016). Legionella pneumophila is an environmental amoeba-adapted parasite that also colonizes human 

alveolar macrophages, hence triggering severe pneumonia, called Legionnaires' disease (Vogel and Isberg, 

1999). To evade killing by the host, the L. pneumophila convert phagosomes into a protective compartment 

termed the "Legionella-containing vacuole" (LCV). Formation of this replicative niche requires the Dot/Icm 

T4SS. EM studies have visualized the Dot/Icm T4SS core as a ring-shaped structure composed of five 

proteins, DotC, DotD, DotF, DotG and DotH (Kubori et al., 2014). More recently, the Dot/Icm core complex 

was visualized by cryo-electron tomography of L. pneumophila cells. This structure more closely resembles 

the H. pylori Cag T4SS in its size (41 nm cross-section) and overall architecture (Ghosal et al., 2017). 

However, in contrast to the R388-encoded VirB3-10 structure, which presents information about the IMC, at 

present there is no knowledge of how the inner membrane subassemblies of either the Dot/Icm or Cag T4SSs 

are architecturally configured. Interestingly, the Dot/Icm system assembles at Legionella cell poles, and polar 

translocation of effector proteins appears to be important for virulence (Jeong et al., 2017). Remarkably, this 

T4SS is postulated to translocate over 300 effectors during infection, many of which have been shown to 

target host cellular pathways controlling membrane transport processes (Sherwood and Roy, 2016). 

Legionella LCVs are designed to escape fusion with lysosomes but comprehensively interact with various 

endosomal and secretory vesicle trafficking cascades (Isberg et al., 2009; Personnic et al., 2016; Sherwood 

and Roy, 2016). The LCVs move along microtubules in the host cell and finally merge with the endoplasmic 

reticulum (ER) (Horwitz et al., 1983; Lu and Clarke, 2005; Robinson and Roy, 2006). In this scenario, 

translocated effector proteins deregulate crucial factors of host signaling including various 

phosphatidylinositol lipids (Weber et al., 2006; 2014; Ragaz et al., 2008; Brombacher et al., 2009; Hsu et al., 

2012; Toulabi et al., 2013), autophagy components (Choy et al., 2012), H+-ATPase (Xu et al., 2010) as well 

as the small GTPases Rab1 (Machner and Isberg, 2006; Murata et al., 2006; Schoebel et al., 2010; Itzen and 

Goody, 2011), Arf1 (Nagai et al., 2002) or Ran (Rothmeier et al., 2013; Simon et al., 2014). The 
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composition of LCVs formed in Dictyostelium discoideum was shown by proteomics to involve >560 host 

cell proteins (Brombacher, 2009; Urwyler, 2009; Hilbi et al., 2011). In addition, depletion of the D. 

discoideum OCRL ortholog Dd5P4, encoding an inositol polyphosphate 5-phosphatase, stimulated the 

intracellular replication of L. pneumophila (Weber et al., 2009, Finsel et al., 2013). Both catalytically active 

OCRL and Dd5P4 enzymes co-localize with LCVs and enhance the quantity of phosphatidylinositol 4-

phosphate accessible for binding of other Icm/Dot proteins (Weber et al., 2009). Taken together, L. 

pneumophila utilizes a sophisticated T4SS, manipulating intracellular trafficking machineries for growth and 

a functional retrograde transport pathway restricts the replication of the pathogen. 

 

Coxiella burnetii 

Coxiella burnetii is the causative agent of the zoonosis Q-fever in humans. Coxiella replicates effectively 

within a lysosome-like compartment called the “Coxiella-containing vacuole” (CCV). Similar to L. 

pneumophila, C. burnetii encodes a Dot/Icm-like T4SS whose function is to modify the host endocytic 

transport systems and generate the CCV replicative niches (Segal et al., 2005; Voth and Heinzen, 2009). The 

C. burnetii T4SS orthologs DotH, IcmV and IcmT localize at the bacterial cell poles in infected Vero cell, as 

shown by immunofluorescence microscopy (IFM) and EM combined with immunogold labeling (Morgan et 

al., 2010). Although the CCVs exhibit lysosomal capabilities, they display specific features such as 

homotypic fusion and a cholesterol-enriched limiting membrane, in addition to robustly interacting with 

autophagosomes (Howe and Heinzen, 2006; Kohler and Roy, 2015). Compelling evidence for the 

functionality of the Coxiella Dot/Icm subunits came from swapping experiments in L. pneumophila (Chen et 

al., 2010; Carey et al., 2011). In addition, axenic growth and methods for genetic manipulation were 

achieved for Coxiella, enabling proof that the Dot/Icm T4SS is essential for growth in CCVs and ultimately 

identified  >130 translocated effector proteins (Zamboni et al., 2003; Zusman et al., 2003;  Pan et al., 2008; 

Beare et al., 2011; Carey et al., 2011; Moffatt et al., 2015). Computer modeling coupled with a validation 

approach also has facilitated the identification of T4SS secretion signals that may prove useful for 

discovering novel effector proteins in Legionella and Coxiella (Lifshitz et al., 2013). The endosomal nature 
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of CCVs is reflected by the accumulation of late endosomal markers LAMP-1/-2, vasodilator-stimulated 

phosphoprotein (VASP), as well as the V-ATPase (Voth and Heinzen, 2007; Colonne et al., 2016). Genome-

wide gene silencing screens using siRNA identified additional host factors including the retromer complex 

(McDonough et al., 2013). Prominent effector proteins include Cig2, which promotes fusion of 

autophagosomes with the CCV to maintain this compartment in an autolysosomal maturation stage (Kohler 

et al., 2016). Another translocated effector, Cig57, co-opts clathrin-mediated trafficking to facilitate the 

biogenesis of the fusogenic CCVs (Latomanski et al., 2016). In addition, the ankyrin repeat (Ank) family 

member AnkG was found to interact with the host protein p32, regulating an anti-apoptotic pathway, 

required for Coxiella’s adaptation to mammalian hosts (Lührmann et al., 2010). Finally, C. burnetii inhibits 

caspase-mediated activation of the NLRP3 inflammasome in macrophages by the effector protein IcaA 

(Cunha et al., 2015). Thus, Coxiella appears to dampen the inflammasome machinery to avoid clearance by 

the host immune system.  

 

Bartonella henselae 

Bartonalla henselae is a zoonotic parasite colonizing cats and humans (Dehio, 2005; Regier et al., 2016). 

Clinical outcomes range from cat scratch disease to persistent bacteremia and vascular tumors. Bartonella 

exhibits a tropism towards endothelial cells and erythrocytes (Eicher and Dehio, 2012). Binding to the 

extracellular matrix by adhesins and the activity of a VirB/VirD4-type T4SS by B. henselae induces a 

massive rearrangement of the host cytoskeleton, which leads to uptake of the bacteria into endothelial cells. 

Bacterial entry into erythrocytes is mediated by a second T4SS designated Trw, which is followed by 

intracellular Bartonella growth and persistence. The infection process is aided at different steps by the 

Bartonella effector proteins (Bep’s). All known Bep’s carry a C-terminal BID (Bep intracellular delivery) 

domain acting in part as a T4SS translocation signal (Schulein et al., 2005). Many Beps also have an 

enzymatic N-terminal FIC (filamentation induced by cAMP) module that facilitates the AMPylation of host 

cell proteins (Siamer and Dehio, 2015). This AMPylation activity typically triggers the inactivation of yet 

unknown host cell proteins of 40–50 kDa (Palanivelu et al., 2011). In addition, three effectors (BepD, BepE 
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and BepF) harbor tyrosine phosphorylation motifs, which are targeted by host cell kinases similar to CagA 

described above (Schulein et al., 2005). A proteomics-based screen identified 8 cellular interaction partners 

(Grb2, Grb7, Shp1, Shp2 and others) of the Bep’s, which subvert host cell signaling with roles in pro-

inflammatory responses by activation of NF-B, anti-apoptosis, cell proliferation and others (Selbach et al., 

2009). Finally, more recent work established that the VirB/VirD4 T4SS functions as a delivery system for 

DNA both to other bacteria and human cells (Fernández-González et al., 2011; Schröder et al., 2011). 

Understanding the functions associated with interkingdom transfer of protein effectors, and potentially DNA 

substrates, will shed new light on the molecular bases underlying Bartonella - host cell interactions. 

 

Brucella abortus 

Brucella abortus is the causative agent of the zoonosis brucellosis and primarily infects phagocytes (Celli, 

2015). The intracellular replication cycle proceeds within the Brucella-containing vacuole (BCV), which 

initially traffics along the endocytic pathway, acquiring the cellular markers early endosome antigen-1 

(EEA-1), Rab5 and Rab7 (Pizarro-Cerdá et al., 1998; Chaves-Olarte et al., 2002; Celli et al., 2003; Starr et 

al., 2008; Lee et al., 2013). These BCVs fuse rapidly with lysosomes, which provides physicochemical cues 

for elaboration of the VirB T4SS (Pizarro-Cerdá et al., 1998; Boschiroli et al., 2002; Celli et al., 2003; Starr 

et al., 2008, Smith et al., 2016). Initially of endosomal origin, BCVs are converted through various VirB-

dependent steps into organelles derived from the ER that support bacterial proliferation, suggesting these 

events require the delivery of T4SS effector proteins. Presently, 15 T4SS effector proteins have been 

identified (de Jong et al., 2008; Marchesini et al., 2011; Myeni et al., 2013; Ke et al., 2015), although only a 

few are reported to play a clear role in Brucella pathogenesis. Inflammation and IL-6 production triggered by 

B. abortus infection induces significant ER stress via the T4SS effector protein VceC (Keestra-Gounder et 

al., 2016). This process is receptor NOD1/2-, TRAF2- and RIP2-dependent. The association of NOD1 and 

NOD2 with pro-inflammatory responses induced by the IRE1α/TRAF2 signaling pathway provides a novel 

link between innate immunity and ER-stress-induced inflammation. Further studies elucidating the functions 

of Brucella effector proteins will help clarify the molecular roles of the VirB T4SS during infection. 
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Anaplasma phagocytophilum and Ehrlichia chaffeensis  

T4SS nanomachines also have been encountered in obligatory intracellular human pathogens such as A. 

phagocytophilum and E. chaffeensis, which respectively cause human granulocytic anaplasmosis and 

monocytic ehrlichiosis (Ohashi et al., 2002). Both species are transmitted from tick vectors to mammalian 

hosts where they survive and proliferate in membrane-bound inclusions that lack lysosomal markers and 

components of NADPH oxidase. These intracellular pathogens depend mostly on host-synthesized nutrients, 

as they have only a limited number of genes for biosynthesis and metabolism. The first described T4SS 

effectors were AnkA and Ats-1 from A. phagocytophilum (Lin et al., 2007; Niu et al., 2010), and since then 

several additional effectors [AM185, AM470, AM705 (AnkA), AM1141] were identified in Anaplasma 

marginale (Lockwood et al., 2011). To promote their intracellular survival, Anaplasma and Ehrlichia 

modulate host cell apoptosis by secreting proteins that interfere with this cell death pathway. Strikingly, early 

studies showed that A. phagocytophilum Ats-1 translocates across the bacterial cell envelope, host cell 

membrane, and ultimately into mitochondria where it interferes with apoptosis induction (Niu et al., 2010; 

Niu and Rikihisa, 2013; 2014). More recently, in E. chaffeensis, a T4SS effector similarly was shown to 

block mitochondrion-mediated host cell apoptosis (Rikihisa, 2015). Ehrlichia chaffeensis infection was 

further shown to depend on the translocated ehrlichial translocated factor-1 (Etf-1), which induces Rab5-

regulated autophagy to provide host cytosolic nutrients to the pathogen. The role of Etf-1 in host cell 

autophagy and infection was confirmed by mutagenesis (Sharma et al., 2017). Etf-1-mediated manipulation 

of Rab5 is a simple strategy to avoid destruction of the pathogen in lysosomes, obtain membrane 

components, and establish a homeostatic intra-host cell environment for proliferation (Rikihisa, 2017). 

 

Conclusions and Outlook 

The recent structures of purified T4SS machine subunits and subassemblies continue to generate important 

molecular details about the paradigmatic systems. Furthermore, cryo-electron tomography yielding the first 

in situ image of a T4SS represents a promising new direction for structural definition of T4SSs in their native 

membrane environments (Ghosal et al., 2017). Equally importantly, new T4SSs are being described that 
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further highlight the biological diversity of this secretion superfamily. This has been exemplified by 

discovery that Xanthomonas citri employs a T4SS to kill competing bacteria in the close vicinity in a 

contact-dependent manner, reminiscent of the type VI secretion killing systems (Souza et al., 2015). An 

update of this system was presented at a T4SS conference held last December 2016 in Schloss Hirschberg, 

Germany (www.t4ss-conference.de). This T4SS translocates effectors bearing C-terminal translocation 

signals, whose bacteriolytic activities degrade peptidoglycan in target cells, but in the donor cell can be 

neutralized by the synthesis of cognate immunity proteins (Souza et al., 2015; 2016). Intriguingly, more than 

one thousand Xanthomonas T4SS effectors showing only very limited homology to each other or other 

proteins were found in protein databases (Souza et al., 2016). This T4SS appears to be widely dispersed 

among Xanthomonas and related species, making this a possible paradigm for an emerging new family of 

T4SS-killing machines in bacteria.   

In the course of ongoing high-throughput genome sequencing projects, hundreds of putative T4SSs 

have been identified in obligatory intracellular and other pathogens as well as endosymbionts, e.g., 

Anaplasma, Rickettsia, Orientia, and Wolbachia spp. (Gillespie et al., 2009; Sonthayanon et al., 2010; 

Gillespie et al., 2016; Ramirez-Puebla et al., 2016). Most strikingly, the virB/virD4-like genes are often 

distributed in clusters around the genomes, and the virB2 and virB6 gene families have undergone 

unprecedented expansions. How these T4SSs contribute to establishment of pathogen or symbiont - host 

relationships remain ripe areas for further study. Similarly, the accumulating evidence for effector protein 

transfer by the 89K PAI-encoded T4SS in S. suis raises intriguing questions about the extent to which Gram+ 

species deploy T4SSs for interkingdom effector translocation during infection.  

As our knowledge of T4SS structures and mechanisms of action deepens, the field is poised to 

develop effective therapies aimed at suppressing T4SS functions in clinical settings. Indeed, several studies 

already have targeted the conserved VirB8 homologs as potential drug targets. By screening of a small-

molecule library using Brucella VirB8 as a target, compounds were found that inhibited VirB8 dimerization 

(Paschos et al., 2011). These also were active against VirB8 from plasmid pKM101, resulting in disruption 

of VirB8 dimerization and inhibition of conjugation (Casu et al., 2016). A different approach was employed 
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for the inhibition of TraM, the VirB8-homolog associated with the pIP501-encoded T4SS as well as other 

Gram+ conjugation machines. Anti-TraM antibodies directed against the VirB8-homolog from plasmid 

pIP501 considerably reduced the survival of clinical E. faecalis and S. aureus strains harboring a putative 

T4SS in vitro and in an in vivo mouse infection model (Laverde et al., 2017). A recent study also established 

the value of testing the efficacy of small molecule inhibitors shown to block the production of 

phylogenetically unrelated pilus assembly or secretion systems for effects on T4SS biogenesis or function. 

For example, compounds containing a ring-fused 2-pyridone peptidomimetic fragment that previously had 

been shown to block the E. coli chaperone-usher pilus pathway also impaired H. pylori Cag pilus production, 

A. tumefaciens T-DNA transfer, and DNA transfer through the pKM101 and R1-16-encoded conjugation 

machines (Shaffer et al., 2016).  

Finally, recent work by the Llosa and Dehio groups has shown that T4SSs also are viable vectors for 

delivery of potentially therapeutic DNA into human cells. Escherichia coli and B. henselae donors 

successfully transfer DNA to human cells where the translocated DNA is stably integrated into the human 

genome (Schroder et al., 2011; Llosa et al., 2012; Alperi et al., 2013; Gonzalez-Prieto et al., 2017). TrwC-

relaxase mediated site-specific DNA integration into the human genome also has been demonstrated, albeit 

with very low efficiency compared to random integration. TrwC might stabilize the plasmid DNA in the 

nucleus of the human cell by promoting recircularization of the transferred strand, thus considerably 

increasing the chances for integration of the DNA by the host machinery (Gonzalez-Prieto et al., 2017). The 

implementation of state-of-the art metagenomics analyses, cell imaging, and ultrastructural approaches - 

along with the development of translational applications - promises a bright future for the T4SS field.   
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Figure legend   

 

Figure 1. Schematic representation of type IV secretion architecture and functions in bacteria.  

A. Conjugative T4SSs translocate DNA from the donor bacterium into various recipients, including other 

bacteria or eukaryotic cells.  

B. DNA release systems facilitate an exchange of DNA with the extracellular space as well as biofilm 

formation.  

C. DNA uptake from the environment proceeds by the ComB T4SS.  

D. The Xanthomonas citri T4SS can deliver a protein toxin to kill neighboring Gram- bacterial competitors.  

E. Various pathogenic bacteria and symbionts have evolved T4SSs to deliver effector proteins or DNA–

protein complexes into their host (either eukaryotic target cells or protozoan hosts). The T4SSs can either 

inject their effectors directly into the host cell or secrete them into the medium, thereby exerting remarkably 

different effects on host cell functions during infection.  

F. EM reconstructions showing the structure of the plasmid R388 T4SS complex and the core complex. 

Front view (left) and cut-away front view (right) of the T4SS complex (EMD-2567) comprising the 

core/outer membrane complex (core/OMC, green), the stalk (grey) and the inner membrane complex (IMC, 

blue). U-tier, M-tier and L-tier stand for upper, middle and lower tier, respectively. The inner (IM) and outer 

(OM) membranes are indicated.  

G. pKM101 core complex (EMD-2232) (top) and truncated core complex lacking the N-terminal part of 

VirB10 (EMD-2233) (bottom): side view (left) and cut-away side view (right). The bottom right panel shows 

the superposition of the difference map (between the full-length and the truncated core complex cryo-EM 

maps) in green, and the cryo-EM structure of the truncated core complex in orange (as in bottom left). The 

VirB10 N-terminus forms the inner wall of the I-layer and the base.  

H. Cryo-EM structure of the TraI relaxase-ssDNA complex revealed the molecular basis of DNA unwinding 

during bacterial conjugation.  
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I. To achieve genetic exchange during bacterial conjugation, two relaxase monomers collaborate, adopting 

distinct structural conformations to provide the two necessary enzymatic activities for processing the DNA.  

J.  Individual steps are indicated: (1) TraI opens to bind ssDNA and closes to surround DNA entirely during 

unwinding. (2) DNA binding to transesterase in closed TraI inhibits nicking. (3) DNA splitting by vestigial 

helicase. This figure was extensively updated from Backert and Meyer (2006), Trokter et al. (2014) and 

Ilangovan et al. (2017) with permission from CELL Press. 
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Type IV secretion in Gram-negative and Gram-positive bacteria 1 
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Abbreviated Summary 4 

 5 

Type IV secretion systems (T4SSs) are highly sophisticated nanomachines in the cell envelope of many 6 

bacteria. They exhibit crucial roles during infection of humans by the secretion of effector proteins, 7 

conjugative transfer of DNA and exchange of DNA with the extracellular environment. In this MicroReview, 8 

we summarize recent progress on T4SS composition, assembly and structure, and highlight how basic 9 

understanding of their functions is aiding in the design of novel strategies for antimicrobial therapies.  10 
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