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Abstract  

In   this   PhD   thesis   I   summarize   my   research   into   the   genetics   and  

pathophysiology   of   progressive  myoclonus   epilepsy   (PME)   associated   with  

mutations   in  GOSR2.  This  disorder   is  characterized  by  early  disease  onset  

with   ataxia   around   3   years   of   age,   followed   by   development   of   cortical  

myoclonus,  generalized  epilepsy  and  a  rapid  deterioration  of  motor  function.  

Upon   beginning   my   PhD,   only   one   homozygous   GOSR2   mutation   –  

c.430G>T   (p.G144W)   –   had   been   shown   to   cause   PME.   Furthermore,  

because  GOSR2   encodes   a   Golgi   SNARE   protein   (termed   Membrin)   that  

mediates  ER-­to-­Golgi   trafficking   in  every  cell  of   the  human  body,   it  was  an  

unresolved   mystery   how   this   mutation   gives   rise   to   a   largely   selective  

neuronal  disorder.  

I   first   describe   my   discovery   of   the   novel   c.491-­493delAGA   (p.K164del)  

GOSR2  mutation  in  a  PME  patient  who  also  carried  the  previously  described  

c.430G>T  variant   in   the  compound  heterozygous  state.  Overall,   the  clinical  

phenotype   of   this   patient   was   remarkably   consistent   with   previous   cases,  

although  her  disease  course  appeared  milder.  My  finding  thus  expanded  the  

phenotypes   and   genotypes   linked   to   this   disorder,   thus   providing   an  

additional  tool  to  investigate  the  underlying  disease  mechanisms.  

In   the   subsequent   chapters   I   summarize   our   attempts   to   unravel   why   the  

nervous   system   is   selectively   affected   in   GOSR2-­PME.   To   this   end   I  

examined   how   pathogenic   Membrin   mutations   impacted   ER-­to-­Golgi  

trafficking   in   patient-­derived   fibroblasts,   and   developed   novel   Drosophila  

models   of   GOSR2-­PME   to   study   neuronal   pathophysiology.   Intriguingly,  

while   ER-­to-­Golgi   trafficking   was   remarkably   preserved   in   G144W   mutant  

Membrin   fibroblasts,   neuronal   integrity   was   severely   disturbed   in  GOSR2-­

PME  model  Drosophila,  where  dendrites  were  significantly  shorter.  Neurons  

have  special  secretory  demands  owing  to  their  very  large  surface  area,  and  

hence   appear   selectively   vulnerable   to   partial   loss   of   function  mutations   in  

Membrin.   Thus,   the   results   presented   in   this   thesis   provide   a   possible  

explanation  for  the  nervous  system  specificity  of  GOSR2-­PME.     
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LDS         Lithium  Dodecyl  Sulfate  
LIMP2        Lysosomal  Integral  Membrane  Protein  2  
MEAK   Myoclonus   Epilepsy   and   Ataxia   due   to   potassium   (K+)  

channel  mutation  
MEM         Minimum  Essential  Media  
MERRF      Myoclonic  Epilepsy  with  Ragged  Red  Fibers  
MFI         Mean  Fluorescence  Intensity  
MOPS        3-­(N-­Morpholino)Propanesulfonic  acid  
MRI         Magnetic  Resonance  Imaging  
NA         Numerical  Aperture  
NBD         7-­Nitro-­2-­1,3-­Benzoxadiazol-­4-­yl  
NCBI         National  Center  for  Biotechnology  Information  
NCL         Neuronal  Ceroid  Lipofuscinosis  
NMJ         Neuromuscular  Junction  
NSF         N-­ethylmaleimide-­Sensitive  Factor  
nsyb         neuronal  synaptobrevin  
PBS         Phosphate  Buffered  Saline  
PBT         Phosphate  Buffer  Triton  X-­100  
PCC         Pearson’s  Correlation  Coefficient  
PCR         Polymerase  Chain  Reaction  
PDI         Protein  Disulfide  Isomerase  
PFA         Paraformaldehyde  
PMA         Progressive  Myoclonus  Ataxia  
PME         Progressive  Myoclonus  Epilepsy  
ppk         pickpocket  
PVDF        Polyvinylidene  Difluoride  
RFP         Red  Fluorescent  Protein  
RNA         Ribonucleic  Acid  
ROI         Region  of  Interest  
SCA         Spinocerebellar  Ataxia  
Sco         Scutoid  
SD         Standard  Deviation  
SDS         Sodium  Dodecyl  Sulfate  
SEM         Standard  Error  of  the  Mean  
SIFT         Sorting  Tolerant  From  Intolerant  
SM         Sec1/Munc18-­like  
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SNAP        Soluble  NSF-­Attachment  Protein  
SNAP-­25      Synaptosomal-­associated  Protein  25  
SNARE      SNAP  Receptor  
SNP         Single  Nucleotide  Polymorphism  
ssDNA      single  stranded  DNA  
Tb         Tubby  
TBST         Tris-­Buffered  Saline  Tween  20  
tdGFP        tandem  GFP  
TeNT         Tetanus  Neurotoxin  
TGN         Trans-­Golgi  Network  
TM2/3/6B      Third  Multiple  2/3/6B  
TMR         Tetramethylrhodamin  
TRAPP      Transport  Protein  Particle  
UAS         Upstream  Activating  Sequence  
ULD         Unverricht-­Lundborg  Disease  
UTR         Untranslated  Region  
v-­/t-­SNARE      vesicle-­/target-­SNARE  
VAMP        Vesicle-­Associated  Membrane  Protein  
VSV         Vesicular  Stomatitis  Virus  
VTC         Vesicular  Tubular  Clusters  
w         white  
WT         Wild-­Type  
y         yellow  
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Chapter  1.            Introduction  

Scientific   endeavor   aims   to   provide   a   better   understanding   of   the   ‘inner  

workings’   of   the  world.   This   knowledge   allows   predictions   to   be  made   and  

targeted   interventions   to   be   undertaken   in   an   attempt   to   benefit   mankind.  

Especially   in  disease   research   this  notion   is  a  common  driving   force.  Here,  

the  ultimate  aim  consists   in  developing  better  treatments  to  alleviate  human  

suffering.   To   discover   such   treatments   one   can   either   take   a   brute-­force  

approach  and  test  for  treatments  that  reduce  phenotypes  in  disease  models  

or   rationally   design   compounds   that   interfere   with   a   previously   discovered  

disease  mechanism.   The   power   of   the   latter   approach   is   illustrated   by   the  

potency  of   the  anti-­cancer  drug   imatinib,  which   is  a  specific   tyrosine-­kinase  

inhibitor  that  targets  the  Bcr-­Abl  oncogene.  It  thereby  directly  interferes  with  a  

previously  discovered  molecular  cause  of  chronic  myeloid   leukemia  (Druker  

et  al.,  2001;;  1996).  

Also   in  neurology   research  our  highest-­resolution  understanding  of  disease  

mechanisms   stem   from   investigating   the   malfunctions   of   individual  

molecules,  which   can   serve  as  a   fundament   for   drug  design.  An   incredible  

number  of  such  culprit  molecules  has  been  uncovered  by  extensive  studies  

into   the   genetics   of   neurological   disorders,   yet   often   the   precise   causal  

chains   that   lead   to   the   respective   phenotypic   changes   are   unclear.   Thus,  

important   lessons   about   disease   pathways   can   be   learned   by   in   depth  

functional   investigations   of   such   genetic   variants.   These   findings   in   turn  

might   one   day   serve   as   a   stepping   stone   to   ultimately   be   able   to   design  

treatments  for  the  same  or  related  disorders.  

In  the  present  study  we  are  aiming  to  provide  one  such  mechanism  –  ideally  

the   most   proximal   causal   ‘bottleneck’   –   which   bridges   the   gaping   gorge  

between  genotype  and  phenotype.  The  disease  at  hand  is  one  specific  form  

of  progressive  myoclonus  epilepsy  (PME)  caused  by  mutations   in   the  Golgi  

SNAP   receptor   complex  member  2   (GOSR2)   gene.  Even   though   this   is  an  

extremely   rare   disorder   it   captured   my   attention   because   of   its   striking  

phenotype,   that   cannot   intuitively   be   linked   with   the   mutated   gene’s  
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physiological  function.  The  nervous  system  of  GOSR2-­PME  patients  is  in  an  

almost   constant   state   of   hyperexcitablity,   as   they   suffer   from   generalized  

action-­myoclonus.   In   addition,   they   are   severely   uncoordinated,   yet   no  

profound   neurodegeneration   is   apparent.   Interestingly,   these   changes   are  

the   result   of   the  mutation   in   a   Golgi   SNARE   protein,   which   at   first   glance  

appears   as   an   unlikely   candidate   to   cause   a   disorder   restricted   to   the  

nervous   system.   Because   the   neuronal   intricacies   of   Golgi   trafficking   has  

received   comparably   little   attention,   it   seemed   that   studying   the  

pathophysiology  of  GOSR2-­PME  was  not  only  interesting  from  a  disease  but  

also   from   a   general   cell   biological   point   of   view.   The   notion   that   in-­depth  

disease   studies   can   teach   important   lessons   in   physiology   is   prominently  

exemplified  by  the  discovery  of  receptor-­mediated  endocytosis   in  fibroblasts  

derived   from  patients  with   familial  hypercholesterinemia,  which  harbor  LDL-­

receptor  mutations  (Brown  and  Goldstein,  1986).  

In  this  section  I  will  introduce  the  group  of  progressive  myoclonus  epilepsies;;  

focus  more  specifically  on  GOSR2-­PME;;  summarize  the  physiological  role  of  

Membrin,   which   is   encoded   by   the   GOSR2   gene;;   and   discuss   SNARE  

proteins,  the  secretory  pathway  and  its  intricacies  within  neurons.  

1.1          The  progressive  myoclonus  epilepsies  

The  progressive  myoclonus  epilepsies  (PME)  are  a  heterogeneous  group  of  

severe   neurological   disorders   characterized   by   myoclonus   and   epileptic  

seizures  with  a  progressive  disease  course  often  involving  cerebellar  ataxia,  

and  the  development  of  dementia  in  some  but  not  all  forms  (Michelucci  et  al.,  

2012).   Overall,   they   are   rare   entities   and   their   abundance   varies   with  

geographical   location   (Marseille  Consensus  Group,   1990).   These  disorders  

often   manifest   for   the   first   time   in   childhood   and   thereafter   relentlessly  

progress,  with  no  effective  treatment  available  to  reverse  or  halt  the  disease  

course.  While  generalized  seizures  may  be  reduced  with  currently  available  

antiepileptic  drugs,  myoclonus  is  often  only  poorly  controllable  (Michelucci  et  

al.,  2016).  These  myoclonic   jerks  are  characterized  by  sudden,   involuntary,  

brief   muscle   contractions   leading   to   small   movements.   Also   ‘negative  

myoclonus’  occurs  in  PME,  where  muscle  tone  is  transiently  lost  (Kojovic  et  
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al.,  2011).  These  movement  disorder   features  of  PME  are  of  cortical  origin,  

and   therefore   constitute   ‘cortical   myoclonus’.   The   causative   cortical  

hyperactivity  can  appear  subtle  in  EEG  recordings.  Averaging  the  EEG  signal  

prior  to  the  muscle  jerks  as  detected  by  electromyography  (EMG)  in  a  time-­

locked  manner  increases  sensitivity  (Avanzini  et  al.,  2016).  While  myoclonus  

is  a  defining  feature  of  PME,  other  forms  of  epilepsy  such  as  generalized  or  

focal   seizures   can   be   infrequent   or   absent,   and   instead   ataxia   more  

dominant.   Such   syndromes   are   therefore   rather   referred   to   as   progressive  

myoclonus   ataxias   (PMA),   which   are   phenotypically   continuous   with   the  

PMEs   (Marseille   Consensus   Group,   1990).   For   simplicity,   I   will   use   the  

concept  PME  collectively   for   this   spectrum.  Because  PME   is   a   very  widely  

encompassing  term  –  it  broadly  describes  neurological  syndromes  of  cortical  

myoclonus   and   epilepsy   with   progressive   disease   features   such   as  

deteriorating   ataxia   and   often   cognitive   decline   –   this   group   of   disorders  

exhibits   large   phenotypic   variability   and   contains   many   different   individual  

diseases.  The  known  causes  of  PME  are  mutations  in  single  genes,  of  which  

several   have   been   discovered   to   date.   A   large   fraction   of   PME   cases   still  

lacks  molecular  diagnoses  despite   thorough   investigation,  which  makes   the  

discovery  of  more  genes  linked  to  this  syndrome  likely  (Franceschetti  et  al.,  

2014;;  Muona  et  al.,  2015).  Amongst   the  PMEs  two  main  subcategories  can  

phenotypically  be  distinguished.  One  group  of  PMEs  deteriorates  cognitively  

to   a   substantial   degree   during   the   course   of   the   disease   while   the   other  

group   largely   retains   normal   cognitive   abilities   or   only   develops   mild  

impairment  (Michelucci  et  al.,  2012).    

1.1.1          PMEs  with  dementia  

One   common   group   of   disorders   within   the   PMEs   that   cause   cognitive  

impairment   are   the   neuronal   ceroid   lipofuscinoses   (NCLs),   where   currently  

14  loci  are  known  (CLN1-­14;;  for  an  overview  of  PME  syndromes  see  Table  

1)   (Nita   et   al.,   2016).   These   disorders   are   the   most   frequent   causes   of  

childhood  neurodegeneration   (Nita  et  al.,  2016).  According   to  age  of  onset,  

infantile,   late-­infantile,   juvenile   and   adult   onset  NCL   are   distinguished   from  

each   other.   Several   NCLs   also   affect   the   retina,   leading   to   blindness.   The  

defining   feature   of   these   disorders   is   the   accumulation   of   auto-­fluorescent  
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lipofuscin   in   neurons   and   non-­neuronal   cells.   Characteristically,   in   electron  

microscopy,   distinct   aggregate   profiles   can   frequently   be   seen   (Minassian,  

2014).   Interestingly,  many  of  the  NCL  genes  encode  lysosomal  degradation  

enzymes,   therefore   linking   these   disorders   to   the   lysosomal   compartment  

(Nita  et  al.,  2016).  Another  common  PME  with  dementia   is  Lafora  disease,  

caused  by  mutations  of  the  genes  encoding  laforin  and  malin  (Turnbull  et  al.,  

2016).  In  this  disorder  abnormal  insoluble  glycogen  accumulates  in  neurons  

and  also  outside   the  brain   (Girard  et  al.,  2013).  These  deposits  are   termed  

Lafora  bodies  and  can  be  diagnostic  if  detected  in  skin  biopsies  (Turnbull  et  

al.,  2016).  Mutations  in  the  mitochondrial  genome  can  also  give  rise  to  PME  

with   cognitive   decline,   such   as   in   Myoclonic   Epilepsy   with   Ragged   Red  

Fibers   (MERRF),   which   is  most   commonly   causes   by   an   A>G  mutation   at  

position   8344   in   the  mitochondrial   lysine   tRNA   gene  MT-­TK   (Lamperti   and  

Zeviani,   2016).   Sialidoses,   which   are   caused   by   NEU1   mutations,   are  

amongst   the  more  common   forms  of  PME.  Of   the   two  subforms   the  milder  

sialidosis  I  has  a  more  typical  PME  phenotype  while  type  II  exhibits  additional  

disease   features,   such   as   dysmorphic   facial   features   or   hepatomegaly  

(Franceschetti  and  Canafoglia,  2016).  Due  to  sialidase-­1  (encoded  by  NEU1)  

deficiency,   lysosomal   sialic   acid   removal   is   impaired   in   this   disorder   and  

therefore   leads   to   storage   of   incompletely   degraded   macromolecules  

(Franceschetti   and   Canafoglia,   2016).   Also   dentatorubral-­pallidoluysian  

atrophy  due   to  mutations   in   the  DRPLA   (ATN1)  gene  can  give   rise   to  PME  

with  cognitive  decline,  with   the  additional  clinical   feature  of  choreoathetosis  

(Tsuji,  2012).  

PME   Gene   Mechanism   Clinical  notes   References  
  

with  dementia  
  

NCL   CLN1-­14   enrichment  of  
lysosomal  genes;;  
frequently  
lysosomal  storage  
material  

blindness;;  (late-­)  
infantile,  juvenile  
and  adult  onset  
forms  

Nita  et  al.,  
2016  

Lafora  disease   laforin,  malin   involvement  in  
glycogen  
metabolism  

cellular  
inclusions  of  
insoluble  
glycogen  called  
Lafora  bodies  

Turnbull  et  al.,  
2016  
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MERRF   MT-­TK   mitochondrial  
defects  

ragged  red  
fibres  in  muscle  
biopsy;;  multi-­
system  disorder    

Lamperti  and  
Zeviani,  2016  

Sialidosis  type  I   NEU1   impaired  lysosomal  
sialic  acid  removal  

visual  
impairment,  
macular  cherry  
red  spot  

Franceschetti  
and  
Canafoglia,  
2016  

DRPLA   ATN1   polyglutamine  
disease  

dentatorubral-­
pallidoluysian  
atrophy  can  
present  as  PME  
  

Tsuji,  2012  

Gaucher  
disease  type  III  

GBA   defects  in  
lysosomal  β-­
glucocerebrosidase  

neuronopathic  
Gaucher  
disease  (type  III)  
can  present  as  
PME  

Park  et  al.,  
2003  

  
without  dementia  

  
ULD   CSTB   deficiency  of  the  

cysteine  proteinase  
inhibitor  cystatin  B  

‘pure’  form  of  
PME,  
phenotypic  
severity  variable  

Lalioti  et  al.,  
1997a;;  1997b;;  
Pennacchio  et  
al.,  1996;;  
Crespel  et  al.,  
2016  

AMRF   SCARB2   mutations  in  the  
lysosomal  sorting  
receptor  LIMP-­2    

SCARB2  
mutations  can  
also  cause  PME  
without  renal  
failure  

Balreira  et  al.,  
2008;;  Berkovic  
et  al.,  2008;;  
Dibbens  et  al.  
2009  

PRICKLE1-­PME   PRICKLE1   gene  linked  to  
planar  cell  polarity  
pathway  and  
neurite  growth  

impaired  upgaze  
reported  in  a  
fraction  of  
patients  

Bassuk  et  al.,  
2008;;  Liu  et  
al.,  2013  

North  Sea  PME   GOSR2   study  aim  of  this  
thesis  

areflexia,  
scoliosis,  
elevated  
creatine  kinase  
levels  

Corbett  et  al.,  
2011;;  Boissé  
Lomax  et  al.,  
2013  

MEAK   KCNC1   R320H  mutant  
KV3.1  causes  loss  
of  function  and  acts  
as  a  dominant-­
negative  

transient  
symptom  
improvement  
with  fever  

Muona  et  al.,  
2015;;  Oliver  et  
al.,  2017  

SMA-­PME   ASAH1   reduced  acid  
ceramidase  activity  

spinal  muscular  
atrophy  
associated  with  
PME  

Zhou  et  al.,  
2012;;    

Table  1.  List  of  different  PMEs  
This   heterogeneous   group   of   disorders   –   commonly   characterized   by  
myoclonus,   ataxia,   epilepsy   and   a   progressive   disease   course   –   was   further  
subdivided  according  to  whether  mental  deterioration  is  a  prominent  part  of  the  
syndrome.    
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1.1.2          PMEs  without  dementia  

The   paradigmatic   PME   with   generally   preserved   cognition   is   Unverricht-­

Lundborg  disease  (ULD).  It  is  regarded  the  ‘purest’  form  of  PME  due  to  lack  

of  additional  neurological  features  and  was  the  first  disorder  that  was  named  

PME  (Genton  et  al.,  2016).  The  pathogenic  changes  that  give  rise  to  ULD  are  

homozygous   mutations   in   the   Cystatin-­B   encoding   gene   CSTB   or   repeat  

expansions   close   to   its   transcription   start   site   (Lalioti   et   al.,   1997a;;   1997b;;  

Pennacchio   et   al.,   1996).   Cystatin-­B   deficient   mice   exhibit   myoclonic  

seizures   and   mild   ataxia,   with   apoptosis   of   cerebellar   granule   cells  

(Pennacchio  et  al.,  1998).  In  human  ULD  patients  phenotypic  severity  varies  

widely   from   fully   wheelchair   bound   states   to   mild   disease   courses   with  

normal   professional   employment   (Crespel   et   al.,   2016).   Besides   CSTB,  

several   other   genes   have   been   linked   to   PME   with   largely   preserved  

cognition.  Mutations   in  SCARB2,   the   gene   encoding   the   lysosomal   sorting  

receptor  (LIMP-­2)  for  b-­glucocerebrosidase,  have  originally  been  discovered  

as  the  cause  of  action-­myoclonus  renal  failure  syndrome  (AMRF)  (Balreira  et  

al.,   2008;;   Berkovic   et   al.,   2008).   This   PME   form   exhibits   as   distinguishing  

features   proteinuria   and   renal   failure.   Later,   homozygous  mutations   in   this  

gene  have  been  shown  to  also  cause  PME  without  renal  failure  (Dibbens  et  

al.,   2009).   Peripheral   neuropathy   and   auditory   changes   have   infrequently  

been   reported   in   this   disease,   thereby   partially   recapitulating   features   of  

Limp2  knock-­out  mice,  which  otherwise  do  not  exhibit  myoclonus  or  epilepsy  

(Berkovic   et   al.,   2008;;   Dibbens   et   al.,   2016).      Despite   rapid   disease  

progression  with   premature   death   approximately   one   decade   after   disease  

onset,   cognitive   function   remains   remarkably   preserved   in   SCARB2-­PME  

(Dibbens  et  al.,  2016).  Also  mutations  in  PRICKLE1,  a  gene  involved  in  the  

planar  cell  polarity  pathway,  have  been  shown  to  cause  PME  without  gross  

intellectual   impairment   (Bassuk   et   al.,   2008).   The   first   symptom   typically   is  

ataxia   around   4   years   of   age   and   impaired   upgaze   and   mild   sensory  

neuropathy   have   been   reported   as   additional   features   in   some   of   these  

patients.  Pronounced  cognitive  decline  seems  not   to  be  part  of  PRICKLE1-­

PME   (Bassuk   et   al.,   2008).   Recently,   mutations   in   KCNC1,   encoding   the  

Kv3.1   potassium   channel   subunit,   have   been   shown   to   cause   PME   with  
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largely   preserved   intellect   (Muona   et   al.,   2015).   This   syndrome   is   also  

referred  to  as  myoclonus  epilepsy  and  ataxia  due  to  potassium  (K+)  channel  

mutation  (MEAK).  In  contrast  to  autosomal-­recessive  inheritance  in  the  other  

PMEs   without   dementia,   MEAK   is   caused   by   the   same   R320H   dominant-­

negative  loss  of  function  mutation,  which  typically  arises  de  novo  and  rarely  

is  transmitted  across  generations  (Oliver  et  al.,  2017).  It  was  suggested  that  

KV3.1   has   an   important   role   in   fast-­firing   GABAergic   interneurons   and  

therefore  it  was  speculated  that  hyperexcitability  in  MEAK  could  be  explained  

by   preferential   impairment   of   inhibitory   neurotransmission   (Muona   et   al.,  

2015).  

Several  other  genetic  mutations  can  give  rise  to  a  PME  phenotype,  which  are  

rare   and/or   unlike  GOSR2-­PME  and   therefore   not   elaborated  upon  here   in  

further  detail.    

  

1.2          GOSR2-­PME  

Mutations   in   GOSR2   were   first   described   as   a   novel   cause   of   PME   by  

Corbett   and   colleagues   (Corbett   et   al.,   2011).   They   applied   homozygosity  

mapping   to  an  Australian  PME  patient  with   second-­cousin   consanguineous  

British   parents   and   subsequently   identified   the   same   homozygous   G144W  

(c.430G>T)  GOSR2  mutation  in  four  further  pedigrees.  Subsequently  Lomax  

et  al.  provided  a  more  detailed  clinical  description  of   this  disorder  based  on  

the  previous  six  and  an  additional  six  patients   (Boissé  Lomax  et  al.,  2013).  

Because  the  birthplaces  of   the  patients’  parents  all  clustered   in  proximity  of  

the  North  Sea  –   they  originated   form   the  Netherlands,  Germany,  Denmark,  

Belgium,   the  UK  and  Norway  –   they   termed   this  disorder   ‘North  Sea  PME’.  

Van  Egmond  et   al.   published  an  additional   five  GOSR2-­PME  patients   (van  

Egmond   et   al.,   2015;;   2014).   All   of   these   17   patients   exhibited   the   same  

homozygous  G144W  GOSR2  mutation,  which  likely  originated  approximately  

3600  years  ago  in  a  single  founder  (Boissé  Lomax  et  al.,  2013;;  Corbett  et  al.,  

2011).   The  GOSR2-­PME   summary   below   is   based   on   information   derived  
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from  these  four  reports  (Corbett  et  al.,  2011;;  Boissé  Lomax  et  al.,  2013;;  van  

Egmond  et  al.,  2015;;  2014).  

The   clinical   characteristics   of   the   GOSR2-­PME   patients   are   remarkably  

uniform.  Typically,   the   first   symptom   is   ataxia  with   onset   between  one   and  

five   years   of   age.   Subsequently,   within   the   first   decade   of   life,   cortical  

myoclonus  develops.  These  muscle   jerks  are  pronounced  upon  action,   less  

frequent   or   absent   if   patients   are   at   rest   or   relaxed,   can   be   focal   or  multi-­

focal,   and   often   are   generalized.   Furthermore,   they   are   sensitive   to   photic,  

tactile  and  auditory  stimuli  and  emotional  stress  (Boissé  Lomax  et  al.,  2013;;  

van  Egmond  et  al.,  2014).  Usually  after  the  onset  of  myoclonus  other  forms  

of   seizures   develop.   Generalized   tonic-­clonic   seizures   are   present   in  most  

GOSR2-­PME   patients,   also   absence   seizures   are   frequently   observed   and  

other   seizure   types   such   as   febrile   seizures,   status  myoclonicus,   nocturnal  

myoclonus,   clonic   seizures,   tonic   seizures   and   drop   attacks   have   been  

reported.   Due   to   rapid   disease   progression   patients   are   wheelchair-­bound  

mostly   by   their   second   decade   of   life.   This   is   usually   not   due   to   a   lack   of  

strength,   but   rather   because   of   the   highly   disabling   action-­myoclonus   and  

ataxia   (Boissé   Lomax   et   al.,   2013).   Because   of   the   relentless   motor  

deterioration,   premature   death   in   the   third   or   fourth   decade   of   life   has  

frequently   been   reported.   In   contrast   to   this   rapid   worsening   of   movement  

disorder   features   in   GOSR2-­PME,   cognitive   functions   remain   mostly  

unchanged,  except  in  some  patients  where  mild  deficits  have  been  reported  

in  the  last  years  prior  to  their  death  (Boissé  Lomax  et  al.,  2013).  The  absence  

of  deep-­tendon  reflexes  –  areflexia  –  has  been  reported  in  most  patients  with  

GOSR2-­PME,  which  seems  to  be  specific  to  this  PME  subtype.  Furthermore,  

the   development   of   scoliosis   prior   to   adolescence   is   very   common.   The  

presence   of   early   onset   areflexia   and   scoliosis   in   a   PME   patient   without  

dementia   thus   can   be   important   clinical   clues   towards   an   underlying  

pathogenic   GOSR2   mutation.   In   addition   to   scoliosis,   also   other   skeletal  

abnormalities  have  been  described.  Four  GOSR2-­PME  patients  have  been  

reported  to  have  pes  cavus,  a  distinct  foot  shape  with  an  unusually  high  arch.  

This   deformity   is   also   seen   in   peripheral   neurological   disorder   such   as  

Charcot-­Marie-­Tooth   disease   (Saporta   et   al.,   2011).   Three   GOSR2-­PME  
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patients  have  been  reported  with  syndactyly,  where  fingers  or  toes  are  fused  

to   each   other   (Boissé   Lomax   et   al.,   2013;;   van   Egmond   et   al.,   2014).  

Neurodegeneration  appears  not   to   be  a  prominent   feature  of  GOSR2-­PME  

as   MRI   scans   were   mostly   reported   to   be   normal.   Neuropathological  

examination  of   the  Australian  case   revealed  only  a  minor   loss  of  cerebellar  

Purkinje   cells   and   no   abnormal   storage   material,   such   as   Lafora   bodies  

(Corbett  et  al.,   2011).  One  characteristic   laboratory   finding   in  GOSR2-­PME  

patients   is   the   elevation   of   serum   creatine   kinase   levels,   which   has   been  

reported   in   most   patients.   However,   muscle   biopsies   were   usually   normal  

(Boissé   Lomax   et   al.,   2013;;   van   Egmond   et   al.,   2014).   Nerve   conduction  

studies  revealed  neuropathy   in  some  patients.  While  Corbett  et  al.   reported  

mostly   normal   electromyography   (EMG),   van   Egmond   et   al.   found   in   the  

majority   of   their   patients   clear   signs   of   neuromuscular   junction   motor   unit  

abnormalities   (Corbett   et   al.,   2011;;   van   Egmond   et   al.,   2014).   EEG  

recordings  typically  exhibit  generalized  epileptic  discharges  in  GOSR2-­PME,  

which  are  often  accentuated  in  the  posterior  regions  of  the  brain  and  can  be  

triggered   with   photic   stimulation.   Also   focal   and   multi-­focal   discharges   are  

frequently   present.   Furthermore,   concomitant   EEG-­EMG   recordings   in  

several  patients  have  revealed  that  cortical  epileptic  discharges  precede  the  

muscle   jerks,   which   is   neurophysiological   evidence   of   cortical   myoclonus  

(Corbett   et   al.,   2011;;   van  Egmond   et   al.,   2015).   This   finding   illustrates   the  

epileptic   nature   of   these   myocloni.   Because   they   are   so   frequent   and  

pronounced   and   GOSR2-­PME   patients   also   have   various   other   forms   of  

epilepsy,   it   is   clear   that   this   is   a   disorder   of   profound   nervous   system  

hyperexcitability.   Given   the   treatment   difficulty   inherent   to   many   forms   of  

PME,  GOSR2-­PME  patients   typically   require  a  combination  of   several  anti-­

epileptic  drugs  (Boissé  Lomax  et  al.,  2013).  One  recent  study  suggested  that  

some  GOSR2-­PME  patients  might  benefit  from  the  modified  Atkins  diet.  This  

is   based   on   health-­related   quality   of   life   improvements   in   one   out   of   four  

tested  patients,  however  with  no  effect  on  seizure  frequency  (van  Egmond  et  

al.,  2017).  

Taken  together,  mutations  in  GOSR2  cause  an  almost  exclusive  neurological  

disorder   characterized   by   early   onset   ataxia   and   severe   hyperexcitability,  
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with   a   rapid   deterioration   of   motor   function.   Despite   our   knowledge   of   the  

causative  genetic  mutations,  we  have  no  understanding  as  how   this  ataxia  

and  hyperexcitability  might   arise   from   these  genomic   sequence  alterations,  

as   the   known   function   of   GOSR2   is   not   intuitively   linked   to   a   selective  

neurological  ataxia-­epilepsy  disorder.    

1.3          Physiological  role  of  the  GOSR2  encoded  protein  Membrin  

The   GOSR2   gene   does   not   encode   an   ion   channel   or   neurotransmitter  

receptor,  which  would  directly  suggest  a  disease  mechanism  accounting  for  

alterations  in  nervous  system  excitability  and  motor  coordination.  It  encodes  

a  Golgi  SNARE  protein,  termed  Membrin,  which  mediates  membrane  fusion  

at   the  Golgi   apparatus   and   thereby   facilitates   anterograde   cargo   trafficking  

via   the  ER-­Golgi   route.   Because   this   is   a   fundamental   process   required   in  

every  cell  of  the  human  body,  it  is  surprising  that  GOSR2  mutations  result  in  

an  almost  purely  neurological  disease;;  indeed,  consistent  with  the  ubiquitous  

necessity   of   the   Golgi   apparatus,   many   mutations   affecting   this   organelle  

result   in  broad  syndromes  affecting  multiple  organ  systems  (De  Matteis  and  

Luini,  2011;;  Freeze  and  Ng,  2011).  

Membrin   is   a   212   amino   acid,   cytoplasmically   oriented   single-­pass  

transmembrane   protein   (Käll   et   al.,   2004).   Besides   its   critical   soluble   NSF  

attachement  protein  receptor  (SNARE)  motif  (residues  129-­182  (Kloepper  et  

al.,   2007)),  Membrin   is  also  predicted   to   form  a  coiled  coil   in   its  N-­terminal  

portion   (residues  61-­107  (Lupas  et  al.,  1991)),   the   function  of  which   is   thus  

far   unclear.   Along   its   SNARE   motif,   Membrin   forms   a   quaternary   SNARE  

complex  with  its  partner  SNAREs  Sec22b,  Syntaxin-­5  and  Bet1  and  thereby  

contributes  to  fusion  of  opposing  lipid  bilayers  (Xu  et  al.,  2000;;  Parlati  et  al.,  

2000).  
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Figure  1.  Membrin  domain  structure  
Coiled   coil,   SNARE   and   trans   membrane   (TM)   domains   are   shown.   Arrows  
indicate  the  positions  of   the  two  pathogenic  SNARE  motif  mutations  studied  in  
this   thesis   as   well   as   a   coiled   coil  mutation,   that   is   associated   with   essential  
hypertension  (see  below).  

  

The   yeast   orthologue   of  GOSR2   (which   encodes   Membrin)   was   originally  

discovered  as  BOS1.  Following  up  on  Peter  Novick’s  and  Randy  Schekman’s  

seminal   genetic   screen   of   the   secretory   pathway   (Novick   et   al.,   1980;;  

Schekman   and   Novick,   2004),   Newman   and   Ferro-­Novick   modified   the  

selection  methods   for  EMS  mutated  yeast   in  order   to  specifically  enrich   for  

early   secretory   pathway   defects   (Newman   and   Ferro-­Novick,   1987).   They  

retrieved  the  temperature  sensitive  bet1-­1  mutant  –  which  is  ‘blocked  early  in  

transport’   –   and   subsequently   cloned   the   corresponding   BET1   gene  

(Newman  et  al.,  1990).   In  doing  so,   they  also  retrieved  BOS1,  which  was  a  

gene-­dosage   dependent   ‘bet   one   suppressor’   that   was   nonetheless  

incapable  of  functionally  replacing  the  BET1  gene  (Newman  et  al.,  1990).  In  

this   study,   they   also   established   the   genetic   interaction   with   a   third   early  

secretory  pathway  gene  –  SEC22  –  by  showing  that  overexpression  of  BET1  

or  BOS1   could   suppress   the   sec22-­3   phenotype   and   crossing   bet1-­1   and  

sec22-­3   caused   synthetic   lethality.   BET1,   BOS1   and   SEC22   mutants   all  

presented   phenotypically   in   a   similar   pattern   with   bloated   ER   and   an  

accumulation  of  vesicles,  thereby  suggesting  a  failure  of  fusion  of  ER-­derived  

vesicles  with  the  Golgi  apparatus  (Newman  et  al.,  1990;;  Novick  et  al.,  1980;;  

Shim   et   al.,   1991).   Indeed,   depletion   of   functional   Bos1   by   an   anti-­Bos1  

antibody   impaired   ER-­to-­Golgi   transport   (Lian   and   Ferro-­Novick,   1993).  

Disruption   of   BOS1   was   not   tolerated,   as   mutated   spores   could   not   be  

cultured   and   only   initiated   one   round   of   mitosis   (Shim   et   al.,   1991).   This  

finding   illustrates   that   BOS1   is   an   essential   gene   in   yeast.   Because   the  
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human  and  Drosophila  genomes  harbor  single  BOS1  orthologues  –  GOSR2  

and   membrin   respectively   –   a   central   importance   of   this   gene   in   the  

eukaryotic   taxon   can   be   inferred   (Kloepper   et   al.,   2007).   Consistently,  

homozygosity   for   a   membrin   null   allele   has   been   shown   to   cause   early  

developmental  lethality  in  Drosophila  (Ghabrial  et  al.,  2011).  

Mammalian   Membrin   was   first   described   as   a   protein   that   co-­immuno-­

precipitates  with  Syntaxin-­5,  Sec22b  and  Bet1   (and  GOS28,   rsly1)   (Hay  et  

al.,  1997).  This  name  was  chosen  because  Membrin  was  a  member  of   this  

complex  and  a  role  in  membrane  trafficking  was  hypothesized  by  the  authors  

of  this  study.  Another  group  named  the  same  protein  GS27  –  Golgi  SNARE  

protein   of   27   kDa   (Lowe   et   al.,   1997).   However,   its   calculated   molecular  

weight   is   approximately   25   kDa   and   also   Hay   et   al.   suggested   earlier   this  

comparably  lower  molecular  weight  (Gasteiger  et  al.,  2003;;  Hay  et  al.,  1997).  

It  is  thought  that  ER-­to-­Golgi  and  intra-­Golgi  trafficking  rely  upon  the  action  of  

two  sets  of  SNARE  proteins  which  share  the  t-­SNARE  heavy  chain  Syntaxin-­

5   (Malsam   et   al.,   2008).   The   Membrin-­Sec22b-­Syntaxin5-­Bet1   complex   is  

believed   to  mediate  early  membrane   fusion  between  ER  and  cis-­Golgi   and  

potentially   also   in   intra-­Golgi   transport.   In   contrast,   the   complex   GOS28-­

Ykt6-­Syntaxin5-­GS15  is  thought  to  act  at  later  stages,  within  Golgi  cisternae  

located   in   the  middle  and  the  trans  face.  This   idea   is  suggested  by  the  fact  

that   Membrin,   Bet1   and   Sec22b   localize   largely   to   the   ER,   ER-­Golgi  

intermediate   compartment   (ERGIC)   and   the   cis-­Golgi,  whereas   the   highest  

concentrations  of  the  GS15  SNARE  are  found  at  the  trans  cisternae  (Hay  et  

al.,  1998;;  Volchuk  et  al.,  2004).  Besides  being  critical  for  membrane  fusion  in  

the  early  secretory  pathway,  Membrin  also  appears   to  be  an  Arf1   receptor,  

which   is  an   important   regulator  of  ER-­Golgi   trafficking.  Thereby   it   facilitates  

the   localization  of  Arf1   to   the  Golgi  apparatus   (Honda  et  al.,  2005).  Also,  a  

direct   interaction   of   Membrin   with   the   conserved   oligomeric   Golgi   (COG)  

complex  subunits  COG6  and  8  has  been  described  (Willett  et  al.,  2013).  

1.4          SNARE  proteins  

To  understand  at  the  molecular  level  how  mutations  in  Membrin  cause  PME  

we  need  to  further  dissect  the  general  mode  of  action  of  SNARE  proteins,  as  
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Membrin  belongs  to  this  group.  The  function  of  SNARE  proteins  is  contained  

in  their  family  name  in  two  distinct  ways:  Firstly,  like  a  mechanical  trap/snare,  

these   proteins,   localized   on   opposing   lipid   bilayers,   rapidly   change  

confirmation   once   in   contact   with   each   other,   generating   a   force   that  

eventually   mediates   fusion   of   these   membranes   (Rothman,   2014;;   Südhof,  

2014;;   Südhof   and   Rothman,   2009).   Secondly,   ‘SNARE’   being   a   nested  

acronym,  the  direct  molecular  interaction  necessary  to  recycle  the  individual  

components   of   the   SNARE   complex   after   a   completed   round   of   fusion   is  

summarized:  These  proteins  are  SNAp  REceptors,  as  they  bind  the  adaptor  

protein  SNAP  (soluble  NSF  attachment  protein),  which  in  turn  binds  NSF  (N-­

ethylmaleimide  sensitive   factor),  which  hydrolyses  ATP   in  order   to  dissolve  

the  cis-­SNARE  complex  (Söllner  et  al.,  1993a;;  1993b).   Importantly,  SNARE  

proteins  are  sufficient   to  overcome  the  repulsive  forces  of  two  adjacent  lipid  

bilayers   on   their   own   and   thus   are   the   ‘minimal   machinery’   for   membrane  

fusion  (Weber  et  al.,  1998).  This  notion  is  underlined  by  experiments  where  

only  SNARE  proteins  and  no  accessory  regulatory  proteins  are  purified  and  

introduced   into   artificial   liposomes.   Even   in   such   a   reductionist   model  

SNARE  proteins   are   capable   of  mediating  membrane   fusion   (Weber   et   al.,  

1998).   However,   the   remarkable   speed   of   fusion   that   occurs   during  

stimulated   secretion   of   neurotransmitter   has   so   far   not   been   successfully  

replicated  in  cell-­free  systems  (Jahn  and  Scheller,  2006).    

1.4.1          SNARE  mode  of  action  

SNAREs  are  membrane-­anchored   proteins  with   the  majority   of   their   amino  

acid   residues   facing   the   cytoplasm,  where   the   force-­generating   complex   is  

formed.   Usually   the   C-­terminus   contains   a   single   transmembrane   domain  

and   only   few   residues   are   located   inside   the   lumen   of   intracellular  

compartments  or   in  the  extracellular  space  in  case  of  cell  surface  SNAREs.  

In  contrast,  SNAP-­25-­like  SNARE  proteins  are  attached  to   lipid  membranes  

via  a  palmitoyl  group  (Veit  et  al.,  1996).  Also  Syntaxin-­17  is  unusual  as  it  has  

two   C-­terminal   transmembrane   domains   (Kienle   et   al.,   2009a).   In   close  

proximity   of   the   membrane   anchors,   SNARE   proteins   harbor   stereotypic  

stretches  of  53  amino  acids  –  the  SNARE  domain.  When  a  single  v-­SNARE-­

containing   vesicle   approaches   its   target   compartment,   which   harbors   the  
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three   complementary   t-­SNARE  domains,   the  motifs   form  alpha-­helices   that  

tightly   interact   with   each   other,   giving   rise   to   a   stable   tetra   helical   bundle  

(Sutton  et  al.,  1998).  This   trans-­SNARE  complex,  or  SNAREpin,  exerts   the  

driving   force   to   overcome   the   repulsive   forces   of   the   two   adjacent   lipid  

bilayers   (Südhof   and   Rothman,   2009).   Ultimately,   this   process   leads   to  

membrane   fusion  and   to   the  SNARE  complex  being  deposited   in   the   target  

membrane  as  a  cis-­SNARE  complex.  

The   most   detailed   structural   and   biophysical   understanding   of   SNARE-­

mediated  membrane   fusion   stems   from   over   two   decades   of   research   into  

the  synaptic  SNARE  complex,  which  mediates  neurotransmitter  release  and  

thus   is   of   central   interest   to   neuroscience:   The   neurotransmitter-­loaded  

synaptic   vesicle   contains   the   v-­SNARE   VAMP2   (vesicle-­associated  

membrane   protein   2),   also   referred   to   as   Synaptobrevin-­2,   which   interacts  

with   the   target   membrane   t-­SNAREs   SNAP-­25   (synaptosomal-­associated  

membrane  protein  25)  and  Syntaxin-­1A  (see  Figure  5  of  Sutton  et  al.,  1998;;  

Südhof,   2014).  SNAP-­25   contributes   two  SNARE  domains   to   the   t-­SNARE  

complex,  which   is  different   to  other   intracellular   fusion  steps,  where  usually  

all   three   t-­SNARE   domains   are   contributed   by   distinct   proteins.   The  

intracellular  t-­SNAREs  thereby  are  comprised  of  one  Syntaxin-­1A  like  ‘heavy  

chain’   and   two   ‘light   chains’   (Fukuda   et   al.,   2000).   Because   the   folding  

energy  of   a   single   synaptic  SNARE  complex  amounts   to  68   (±4)  kBT   (kB   –  

Boltzmann’s   constant,   T   –   temperature),   which   is   approximately   the   same  

energy   that   repulses   membranes,   it   is   thought   that   even   one   SNARE  

complex  is  sufficient  to  mediate  membrane  fusion  (Gao  et  al.,  2012;;  Zhang,  

2017).  

1.4.2          SNARE  structure  

The  cytoplasmic  portions  of  VAMP2,  Syntaxin-­1A  and  SNAP-­25  are   largely  

unstructured  until   their   initial   engagement   (Fasshauer  et   al.,   1997a;;  1997b;;  

Margittai   et   al.,   2001).   They   then   form  alpha-­helices,  which   align   in   a   tetra  

helical  bundle.  Because  the  crystal  structure  of  this  synaptic  SNARE  complex  

was  reported  by  Sutton  et  al.  in  1998  at  2.4  Å  resolution  (see  Figure  2C  and  

Figure  5  of  Sutton  et  al.,  1998),  we  now  have  a  detailed  understanding  of  the  
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precise   molecular   interactions   (Sutton   et   al.,   1998).   The   SNARE   domains  

wrap  around  each  other  in  a  contorted  manner  and  form  a  120  Å  long,  stable  

four-­helix  bundle  of  cylindrical  shape  (Sutton  et  al.,  1998).  The  cross-­section  

is   circular   with   varying   radii   across   different   positions   of   the   complex.   All  

SNARE  motifs  are  aligned  in  a  parallel  manner  so  that  the  N-­  and  C-­termini  

of  the  VAMP2,  Syntaxin-­1A  and  both  SNAP-­25  SNARE  domains  are  aligned  

with   each   other’s   respective   counterpart   (Sutton   et   al.,   1998).   The  SNARE  

domains  interact  along  leucine-­zipper-­like  layers.  These  layers  are  positioned  

at  every   third  or   fourth   residue  and   frequently  are  occupied  by  hydrophobic  

residues.  They  range  from  the  identifying  residue  numbers  -­7  to  +8  from  the  

N-­   to  C-­terminus  of   the  SNARE  domains,  where   -­7   to   -­1  are  part  of   the  N-­  

and  +1  to  +8  part  of  the  C-­terminal  SNARE  domain  portions  (see  Figure  2C  

of  Sutton  et  al.,  1998).  The  C-­terminal  halves  of  the  Syntaxin-­1A/B,  VAMP1/2  

and   SNAP-­25   SNARE   domains   are   targets   of   clostridial   neurotoxins   (see  

Figure  5  of  Sutton  et  al.,  1998)  (Schiavo  et  al.,  1992;;  2000).  Eight  botulinum  

toxin  serotypes  and  tetanus  toxin  have  distinct  cutting  sites.  By  cleaving  the  

un-­   or   partially   assembled   synaptic   SNARE   complex   they   inhibit  

neurotransmission   and   thus   cause   the   very   severe   disorders   botulism   or  

tetanus  respectively  (Schiavo  et  al.,  2000;;  Sutton  et  al.,  1998;;  Zhang  et  al.,  

2017).  Between  layers  -­1  and  +1  is  the  central  ‘ionic  layer’  (layer  0)  with  the  

positively  charged  side  chain  of  an  arginine  residue  (R)  and  three  glutamine  

(Q)  side  chains.  The  presence  of  three  central  glutamines  and  one  arginine  is  

highly   conserved  across  different  SNARE  complexes  and  across  evolution.  

Therefore   an   additional   classification   of   SNARE   proteins,   besides   the  

topological  distinction  between  v-­  and  t-­SNAREs,  has  been  introduced,  which  

distinguishes  Q-­SNAREs   from  R-­SNAREs  (Fasshauer  et  al.,  1998).  The  Q-­

SNAREs   have   further   been   subdivided   into   three   distinct   classes   –  Qa,  Qb  

and   Qc-­SNARE   domains,   which   are   similar   to   the   Syntaxin-­1A,   N-­terminal  

SNAP-­25   and   C-­terminal   SNAP-­25   SNARE   domains   respectively   (Bock   et  

al.,  2001).  Typically,  fusogenic  SNARE  complexes  consist  of  one  R-­  and  one  

Qa-­,  one  Qb-­  and  one  Qc-­SNARE  domain.  The  R-­SNARE  is  also  often  the  v-­

SNARE,  as  is  the  case  for  the  synaptic  SNARE  complex.  However,  this  is  not  

true  for  all  SNARE  pairs.    
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The   synaptic   SNARE   complex   has   been   shown   to   ‘zipper   up’   along   the  

mostly  hydrophobic   layers   from   the  N-­   to   the  C-­terminus   (Gao  et  al.,  2012;;  

Melia   et   al.,   2002).   High   resolution   biophysical   studies   utilizing   optical  

tweezers   have   established   distinct   steps   in   the   assembly   of   SNARE  

complexes:   an   initial   slow  N-­terminal   assembly   followed   by   fast   C-­terminal  

zippering,   which   constitutes   the   energetically   important   driving   force   of  

membrane   fusion   (Gao   et   al.,   2012;;   Zorman   et   al.,   2014).   The   C-­terminal  

complex   formation   is   followed   by   assembly   of   the   linker   domain,   which  

bridges  the  SNARE  domains  with  the  transmembrane  domains  and  thus  is  of  

critical   importance   for   transmitting   the   fusion   force   upon   the   lipid   bilayers  

(Gao  et  al.,  2012;;  Stein  et  al.,  2009).  Between  N-­  and  C-­terminal  zippering,  

around  the  ionic  layer,  a  pause  in  complex  formation  has  been  noted,  which  

is   thought   to   allow   for   clamping   of   the   synaptic   SNARE   complex   by  

complexin   (Gao   et   al.,   2012;;   Giraudo   et   al.,   2006;;   Huntwork   and   Littleton,  

2007).    

1.4.3          SNARE  evolution  

SNAREs   are   ubiquitously   important   force-­generators   across   the   whole  

eukaryotic   taxon   and   act   at   many   diverse   intracellular   fusion   steps.  

Accordingly,   eukaryotic   genomes   encode   several   different  SNARE  proteins  

destined  for  distinct  compartments.  While  the  yeast  and  Drosophila  genomes  

contain  24  and  26  SNARE  genes  respectively,  the  human  genome  contains  

an   enlarged   set   of   44   (Bock   et   al.,   2001;;   Kienle   et   al.,   2009a).   The   first  

expansion  of  SNARE  proteins   is   thought   to  have   taken  place  between  uni-­  

and   multicellular   evolution   and   have   affected   mostly   endosomal   SNAREs.  

The   second   expansion   is   thought   to   have   occurred   in   vertebrate   evolution  

and   have   affected   primarily   secretory   SNARE   proteins   (Kloepper   et   al.,  

2008).    Importantly,  along  the  early  secretory  pathway,  where  Membrin  acts  

(see  below),  the  same  set  of  SNAREs  has  largely  been  preserved  throughout  

evolution  (Kloepper  et  al.,  2007).  This  supports  the  utility  of  simpler  models,  

such  as  Drosophila  and  yeast,  in  order  to  investigate  the  pathophysiology  of  

GOSR2-­PME.  
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1.4.4          Overview  of  different  SNAREs  in  a  cell  

SNARE   proteins   not   only  mediate  membrane   fusion   at   presynaptic   termini  

and   thereby   enable   neurotransmitter   release,   but   also   fuse  membranes   at  

several   distinct   intracellular   transport   steps.   They   act   at   the  ER,   the  Golgi,  

the  trans-­Golgi  network,  endosomes,  the  cell  surface,   lysosomes  in  animals  

and  the  vacuole  in  yeast  (Jahn  and  Scheller,  2006).  20  distinct  subgroups  of  

SNARE  proteins  have  been  determined  using  bioinformatics  tools  and  these  

SNAREs   can   be   allocated   to   five   steps   along   the   secretory   pathway  

(Kloepper   et   al.,   2007).   Accordingly,   the   eukaryotic   ancestor   is   thought   to  

have  contained  20  SNARE  proteins  (Kloepper  et  al.,  2007).  The  similarity  of  

the   crystal   structures   of   the   early   (Syntaxin-­13   (Qa),   Vti1a   (Qb),   Syntaxin-­6  

(Qc)  and  VAMP4   (R))  and   late   (Syntaxin-­7   (Qa),  Vti1b   (Qb),  Syntaxin-­8   (Qc)  

and   VAMP8   (R))   endosomal   SNARE   complexes   with   the   synaptic   SNARE  

complex   suggests   a   high   degree   of   structural   and   functional   stereotypy  

across   other   SNARE   complexes,   even   to   a   higher   degree   than   sequence  

similarities  would  suggest  (Antonin  et  al.,  2002;;  Zwilling  et  al.,  2007).    

Despite   a   high   degree   of   conservation   of   the   SNARE   domain   across   the  

SNARE  family,  specificity  of  distinct  intracellular  fusion  steps  is  necessary  to  

maintain  ordered  membrane  and  cargo   flow.  Thus   the   ‘SNARE  hypothesis’  

suggests   that   this   specificity   is   encoded   in   the   SNARE   protein   sequence  

(Rothman,  2014).  This   idea  has  been  systematically   tested   in   reconstituted  

liposomes,   where   only   v-­SNAREs   together   with   their   respective   t-­SNARE  

partners,  and  not  the  other  t-­SNAREs  of  the  SNARE  family,  mediated  fusion  

(McNew  et  al.,  2000).    

1.4.5          Early  secretory  pathway  SNAREs  

In  respect  to  the  Membrin-­containing  cis-­Golgi  SNARE  complex  we  can  infer  

its  functional  microanatomy  from  liposome  fusion  assays  performed  with  the  

yeast  orthologues  Bos1  (Membrin),  Sed5  (Syntaxin-­5),  Sec22  (Sec22b)  and  

Bet1  (Parlati  et  al.,  2000).  Only  one  out  of  eight  possible  combinations  was  

fusogenic,   hence   we   can   infer   that   in   mammals   the   situation   might   be  

analogous.  The  Qb-­SNARE  Membrin  and  the  R-­SNARE  Sec22b  would  thus  
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be  the  t-­SNARE  light  chains,  the  Qa-­SNARE  Syntaxin-­5  the  t-­SNARE  heavy  

chain  and  the  Qc-­SNARE  Bet1  the  v-­SNARE.  This  is  different  to  the  situation  

at   the  presynaptic   terminal,  where  an  R-­SNARE  –  VAMP2  –   is   also   the   v-­

SNARE.   Based   on   the   fact   that   Sec22b   is   an   R-­SNARE   it   was   previously  

proposed  that  similarly  to  the  synaptic  SNARE  complex,  the  v-­SNARE  at  the  

cis-­Golgi  would  be  Sec22b  (Xu  et  al.,  2000).  However,  only  binding  studies  of  

these  SNARE  proteins  have  been  reported,  and  not  liposome  fusion  assays.  

Interestingly,   Sec22b   is   not   only   part   of   the   cis-­Golgi   but   also   the   ER  

localized  SNARE  complex,  which  mediates   fusion  of  Golgi  derived  vesicles  

with   this   compartment   and   thus   facilitates   retrograde   transport   in   the   early  

secretory  pathway.  At  the  ER  it  acts  as  a  v-­SNARE  in  concert  with  Syntaxin-­

18,   Sec20   and   Use1   (Malsam   and   Söllner,   2011).   Also   within   the   Golgi  

apparatus  one  SNARE  protein  –  Syntaxin-­5  –  is  shared  between  two  distinct  

complexes.   Based   on   the   observation   that   mammalian   Syntaxin-­5   and   its  

yeast   orthologue   Sed5   formed   complexes   with   seven   SNARE   proteins,  

Parlati   et   al.   used   liposome   fusion   assays   to   systematically   search   for   the  

fusogenic   complexes   (Parlati   et   al.,   2002).   They   found   that,   besides  Bos1-­

Sed5-­Sec22-­Bet1,   also   Gos1-­Sed5-­Ykt6-­Sft1   (mammalian   orthologues:    

GOS28-­Syntaxin5-­Ykt6-­GS15)   formed   a   functional   Golgi   SNARE   complex  

(Parlati  et  al.,  2002).  These  complexes  are  thought  to  act  sequentially  along  

the   Golgi   apparatus   from   cis   to   trans   (Volchuk   et   al.,   2004).   Interestingly,  

subunits  of  these  cis-­  and  trans-­Golgi  SNARE  complexes  partially  inhibit  the  

non-­cognate  SNARE   complexes   in   a   concentration-­dependent  manner   and  

therefore   act   as   ‘i-­SNAREs’   (Varlamov   et   al.,   2004).   This   mechanism   is  

thought  to  further  increase  specificity  of  the  precise  site  of  membrane  fusion  

across  the  Golgi  stack  (Varlamov  et  al.,  2004).  

1.4.6          The  GOSR2-­PME  causing  Membrin  mutation  

Given   the   critical   importance   of   the   SNARE   domains   in   the   formation   of  

SNARE   complexes,   it   is   not   surprising   that   mutations   in   this   motif   –  

particularly  alterations  which  modify  the  interaction  of  layer  residues  –  disrupt  

SNARE   function.   Many   different   SNARE  mutations   have   been   reported   in  

different   organisms   such   as   yeast,   mouse   and   human   (Fasshauer   et   al.,  

1998;;  Jeans  et  al.,  2007;;  Rao  et  al.,  2001;;  Schubert  et  al.,  2014;;  Shen  et  al.,  
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2014).  Their  effects  upon  SNARE  complex   formation  and  membrane   fusion  

depend   upon   the   precise   position   in   respect   to   the   layers   of   the   SNARE  

complex  and  on  the  nature  of   the  change.  The  phenotypic  result   in  turn  will  

depend  upon  which  of  the  many  different  fusion  events  mediated  by  SNARE  

proteins  are  disrupted  as  a  result  of  the  SNARE  mutations.    

Prior   to  my   PhD   research,  GOSR2-­PME   had   only   been   associated   with   a  

single  homozygous  missense  mutation  –  G144W  (Corbett  et  al.,  2011).  This  

exchange  of  a  glycine   for  a   tryptophan  occurs  at   layer   -­3   in   the  N-­terminal  

half  of  Membrin’s  SNARE  domain.  Layer  -­3  is  a  position  of  comparably  small  

cross-­sectional  SNARE  complex  radius  in  the  synaptic  SNARE  complex  and  

is  occupied  by  one  large  and  three  small  residues  –  phenylalanine  (Syntaxin-­

1A),  methionine  (VAMP2),  glycine  and  alanine  (SNAP-­25)  (see  Figure  2D  of  

Sutton   et   al.,   1998   and   Figure   2   of   Fasshauer   et   al.,   1998)   (Sutton   et   al.,  

1998).  As  a   comparison,   the   central   layer   of   the   synaptic  SNARE  complex  

exhibits  a   larger  radius  (see  Figure  2D  and  Figure  3  of  Sutton  et  al.,  1998).  

The  amino  acid  composition  at  layer  -­3  is  conserved  in  the  orthologous  yeast  

secretory  complex  Sso-­Sec9-­Snc1,  where  the  exchange  of  the  small  glycine  

in   the  N-­terminal  SNARE  motif  of  Sec9  at   layer   -­3   for  aspartic  acid  causes  

exocytosis   defects   (Brennwald   et   al.,   1994;;   Novick   et   al.,   1980).   Layer   -­3  

glycine  to  glutamate  mutations  in  Drosophila  SNAP-­25  causes  temperature-­

induced   SNARE   complex   instability,   reduction   in   evoked   release   and  

paralysis   (Rao   et   al.,   2001).   Similarly,   layer   -­3   at   the   cis-­Golgi   complex  

consists  of  one  large  and  three  small  residues  -­  phenylalanine  (Syntaxin-­5),  

serine  (Bet1),  glycine  (Membrin)  and  methionine  (Sec22b)  (Figure  2).  Given  

the   presence   of   one   bulky   phenylalanine   in   this   complex   at   layer   -­3,   the  

exchange   of   a   small   hydrogen   for   a   large   indol   side   chain   in   the  Membrin  

SNARE  domain  at  this  position  suggests  that  the  N-­terminal  assembly  of  this  

complex   might   be   impaired   due   to   steric   constraints.   Also,   biophysical  

studies   of   the   synaptic   SNARE   complex   suggest   that   the   layer   -­3   G144W  

Membrin  mutation  might  be  disruptive,  as  it  highlights  special  vulnerability  of  

this   position   in   an   alanine   substitution   screen.   While   single   alanine  

replacements   of   all   tested   N-­terminal   layers   resulted   in   no   profound   N-­

terminal  SNARE  domain  assembly  deficiency,  only  the  methionine  to  alanine  
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substitution   at   layer   -­3   had   marked   detrimental   effects   in   the   synaptic  

complex   (Ma   et   al.,   2015).   Layer   +1   leucine   to   serine   substitution   in   the  

Membrin  yeast  orthologue  Bos1  has  been  reported   to   impair   the   respective  

SNARE  complex  and  interfere  with  trafficking  (Fasshauer  et  al.,  1998).  One  

mutation  outside  Membrin’s  SNARE  domain  and  within  its  coiled  coil  domain  

–   L76R   –   has   been   associated   with   essential   hypertension,   however   the  

mechanism   remains   unclear   (International   Consortium   for   Blood   Pressure  

Genome-­Wide  Association  Studies,  2011;;  Meyer  et  al.,  2009;;  Simino  et  al.,  

2014).   Taken   together,   the   position   and   nature   of   the   disease-­causing  

G144W   GOSR2-­PME   mutation   suggests   disruption   in   cis-­Golgi   SNARE  

complex  formation  and  in  turn  reduced  membrane  fusion  rates.  

  

Figure  2.  Alignment  of  cis-­Golgi  SNARE  domain  sequences  
SNARE  domains  of  Membrin  (uniprot  O14653-­1),  Bet1  (O15155-­1),  Syntaxin-­5  
(Q13190-­1)  and  Sec22b  (O75396-­1)  were  determined  as  previously  described  
and   subsequently   aligned   (Kloepper   et   al.,   2007).   Interacting   layers,   ranging  
from   -­7   to   -­1   in   the   N-­terminal   and   +1   to   +8   in   the   C-­terminal   halves   of   the  
SNARE  motifs  are  highlighted   in  green.  Central   layer  glutamines  and  arginine  
are  red.  The  PME-­associated  Membrin  G144W  mutation  causes  the  exchange  
of   a   small   glycine   for   a   large   tryptophan   at   layer   -­3,   which   physiologically  
harbors  a  bulky  phenylalanine.  

  

1.5          The  Golgi  apparatus  

The   Golgi   apparatus   was   first   described   in   1898   by   Camillo   Golgi   –   from  

whom   it   now   derives   its   name   –   as   an   ‘internal   reticular   apparatus’    

surrounding   the  nucleus  of  Purkinje  cells   (Farquhar  and  Palade,  1998).  Yet  

over  the  following  50  years  it  was  widely  argued  to  be  an  artifact  of  metallic  

impregnations   used   to   visualize   this   structure   and   thus   generally   not  

accepted  as  a  novel  cell  organelle   (Bechtel,  2006).  Only  with   the  advent  of  

thin-­section   electron   microscopy   could   the   light   microscopic   metallic  

depositions   be   correlated   to   a   distinct   membrane   complex,   which   rapidly  

convinced   the   scientific   community   of   the   true   existence   of   the   Golgi  

apparatus  (Farquhar  and  Palade,  1981;;  1998).    



  

   35  

The  Golgi  apparatus  is  a  central  distribution  and  modification  hub  within  the  

secretory  pathway,  which  is  the  protein,  lipid  and  carbohydrate  synthesis  and  

transport   route   within   eukaryotic   cells   (Palade,   1975).   To   increase  

compartmentalization   of   biochemical   reactions   and   facilitate   cellular  

secretion,   eukarya   have   developed   a   sophisticated   endomembrane   system  

separating  distinct  organelles  and  vesicular  shuttle  carriers  from  the  cytosol.  

Proteins  that  are  destined  for  such  intracellular  sub-­compartments,  as  well  as  

secreted   and   membrane-­associated   proteins   undergo   a   different   fate   than  

their  cytosolic  counterparts.  While  the  latter  proteins  are  synthesized  on  free  

cytosolic   ribosomes,   in   the   former   case   these  synthetic  machines  attach   to  

the   surface   of   the   endoplasmic   reticulum   (ER),  which   is   a   highly   branched  

tubular  network  that  is  continuous  with  the  nuclear  membrane  (Nixon-­Abell  et  

al.,   2016).   The   ER-­attached   ribosomes   confer   its   rough   appearance   when  

viewed  under   the  electron  microscope  –   therefore   termed   ‘rough  ER’  –  and  

allow   proteins   to   be   co-­translationally   translocated   into   the   ER   lumen  

(Palade,   1975;;   Walter   et   al.,   1984).   There,   protein   folding   and   correct  

formation  of  disulfide  bonds   facilitated  by  chaperones  and  oxidoreductases,  

and   carbohydrate   protein   modifications   are   undertaken   (Braakman   et   al.,  

2013;;  Bulleid  et  al.  2012).  Eventually,  proteins  and  ER-­synthesized  lipids  are  

selected  and  shuttled  to  the  Golgi  apparatus  and  transition  this  compartment  

from   its   cis   to   trans   face.  Finally,   at   the   trans-­Golgi   network   (TGN),   cargos  

are  again  selected  into  vesicular  carriers  and  shuttled  to  distinct  intracellular  

sites   such   as   lysosomes,   endosomes,   secretory   vesicles   and   the   cell  

surface.  The  discovery  of   this  directed  process  originating  in  the  ER  and  its  

underlying   microanatomy   was   pioneered   in   detailed   electron-­microscopic  

studies  and  pulse-­chase  experiments  by  George  Palade  (Palade,  1975).  The  

opposite  direction  of  cargo   flow  –   from  outside   to   inside  –   is  also  critical   in  

eukaryotic  cells.  This  process  is  termed  endocytosis  and  can  be  selective  or  

non-­selective   in   respect   to   the   endocytosed   molecules   (Goldstein   et   al.,  

1979;;  Silverstein  et  al.,   1977).  A  common  denominator  across   the  different  

transport  steps  of   the  secretory  pathway   is   the  necessity  of  vesicles   to  bud  

off   donor   membranes   to   then   be   transported   to,   and   fuse   with,   target  

membranes   (Rothman,   1994).   Specificity   in   cargo   selection   within   forming  

vesicles,   and   fusion   of   these   vesicles   with   target  membranes,   is   critical   in  
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maintaining   cellular   integrity   (Rothman,   2014).   The   former   is   mediated   by  

vesicle  coating  proteins  and  sorting  receptors,  while  the  latter  is  thought  to  be  

mediated  by   the  specificity  of   the  SNARE  fusion  machinery   (Barlowe  et  al.,  

1994;;  Bonifacino  and  Glick,  2004;;  Mancias  and  Goldberg,  2008;;  McNew  et  

al.,  2000;;  Rothman  and  Wieland,  1996).  

1.5.1          Golgi  apparatus  structure  

The  Golgi  apparatus,  also  called  ‘Golgi  complex’  or  simply  ‘Golgi’,  consists  of  

several  disc-­like  membrane  sacs  stacked  in  close  proximity,  which  appear  as  

stacked   tubuli   in   electron   microscopy   (EM)   sections   (Klumperman,   2011).  

These   individual   membrane   sheets   are   referred   to   as   Golgi   cisternae,   of  

which   there   usually   are   4-­11   per   Golgi   apparatus   in   mammalian   cells  

(Klumperman,  2011).  Centrally,  the  cisternal  diameter  often  amounts  to  only  

10-­20   nm,   while   the   rims   are   usually   wider   (Klumperman,   2011).   In  

mammalian   cells,   individual   complexes   can   be   laterally   connected   via   a  

reticular   network   termed   ‘non-­compact   zone’   and   thereby   form   ribbon-­like  

structures  (Klumperman,  2011).  In  Drosophila  tissues  usually  no  ribbons  are  

formed,   but   individual   stacks   rather   group   laterally   as   duplicates   (Kondylis  

and   Rabouille,   2009).   Cis-­   and   trans-­faces   of   the   Golgi   apparatus   are  

distinguished   from  each  other  based  on  distinct  biochemical  properties  and  

molecular  compositions   (Alberts,  2015).  The   trans-­most  cisterna   is   followed  

by   the   trans-­Golgi  network   (TGN).  Prior   to   the  cis-­most  cisterna  –  between  

ER   and   Golgi   –   vesicular   tubular   clusters   (VTCs)   can   be   found,   which  

comprise   the   biochemically   unique   ER-­Golgi   intermediate   compartment  

(ERGIC)   (Schweizer  et   al.,   1991).  Surrounding   the  Golgi,   vesicular   carriers  

are   abundantly   present,   with   different   molecular   identities.   At   the   EM-­level  

the  spiky  clathrin  coat  can  readily  be  distinguished  from  dense  COPI  coating.  

COPII   coated   vesicles   are   usually   found   at   the   ER-­Golgi   interface  

(Klumperman,  2011).  

1.5.2          Carbohydrate  processing  

The  Golgi   apparatus   is   a   central   processing   station   for   carbohydrate   side-­

chains,  which  are  common  post-­translation  protein  modifications   initiated   in  
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the  ER  (Stanley,  2011).  In  a  highly  sequential  process,  sugars  are  removed  

and   added,   which   ultimately   radically   alters   the   glycosylation   profile   of  

glycoproteins.  These  step-­wise  biochemical  alterations  are   facilitated  by   the  

compartmentalization   of   glycosyltransferases   and   glycosidases   into   distinct  

cisternae.   Due   to   the   stacked   nature   of   the   Golgi,   the   subsequent  

carbohydrate-­processing  enzymes  are  in  close  proximity  while  being  spatially  

separated.  Unlike  in  mammals  and  Drosophila,  Golgi  cisternae  are  dispersed  

in   yeast,   which   suggests   that   a   stacked   conformation   is   not   absolutely  

necessary   to   facilitate   efficient   sequential   modifications   and   trafficking  

(Preuss   et   al.,   1992).   Several   different   protein   glycosylation   pathways  

operate   in   mammalian   cells,   and   also   lipids   can   by   modified   with  

carbohydrates   (Freeze  and  Ng,  2011).  Sugars  can  either  be  N-­  or  O-­linked  

onto  asparagine  or  serine/threonine  amino  acid  side  chains  (Stanley,  2011).  

To  illustrate  the  sequential  action  of  glycosylation  enzymes  and  glycosidases  

in   the   ER   and   Golgi,   I   will   to   briefly   summarize   the   key   steps   of   the   N-­

glycosylation   pathway.   Initially,   an   oligosaccharide   consisting   of   three  

glucose   (Glc),   9   mannose   (Man)   and   two   N-­acetylglucosamine   (GlcNAc)  

groups   is   attached   via   the   latter   sugar   group   to   asparagine   residues   of  

nascent   proteins   in   the   ER   lumen   (Freeze   and   Ng,   2011).  Within   the   ER,  

three   Glc   and   subsequently   one   Man   unit   are   enzymatically   removed.  

Thereafter,  as  a   first  step   in   the  Golgi,   ‘Golgi  mannosidase   I’   cleaves   three  

Man   after   which   N-­acetylglucosamine   transferase   I   (GlcNAcT-­I)   adds   one  

GlcNAc.   This   is   followed   by   the   action   of   ‘Golgi   Mannosidase   II’,   which  

removes  two  Man  (Alberts,  2015).  Up  to  this  point  N-­glycans  are  regarded  as  

‘high  mannose’.  Thereafter,  a  further  GlcNAc  can  be  added  and  the  glycan  is  

now   referred   to   as   ‘complex’.   Further   to   this,   additional   sugars   such   as  

galactose,  fucose,  GlcNAc  and  sialic  acid  can  be  added  (North  et  al.,  2010;;  

Stanley,   2011).   The   sequential   nature   of   this   glycosylation   pathway   can  

effectively  be  exploited  in  the  study  of  Golgi  trafficking.  One  widely  used  tool  

is   Endo   H   (endoglycosidase   H),   which   cleaves   asparagine-­linked   ‘high  

mannose’  glycans  only  and  therefore  only  carbohydrate  side  chains  prior   to  

modifications   undertaken   by   Golgi   mannosidase   II.   With   this   tool,   the  

experimenter   can   assess   whether   a   secretory   cargo   has   been   transported  

past  the  medial  Golgi,  where  this  enzyme  is  enriched  (Velasco  et  al.,  1993).  
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The  lack  of  GlcNAcT-­I  in  the  15B  chinese  hamster  ovary  (CHO)  cell  line  has  

been  utilized  to  develop  a  cell-­free  transport  model  of  the  vesicular  stomatitis  

virus   (VSV)   glycoprotein   from   15B   cells   infected   with   VSV   into   wild-­type,  

uninfected   CHO   cells   (Balch   et   al.,   1984).   This   system   has   provided  

pioneering  insights  into  vesicular  cargo  trafficking  (Rothman,  2014).  

1.5.3          ER-­Golgi  anterograde  transport  

ER-­derived   secretory   pathway   cargo   molecules   are   first   packaged   into  

transport  vesicles,  then  translocate  to  the  cis-­Golgi  (and  ERGIC,  see  below),  

where   they   fuse   in   a   Membrin-­dependent   manner   and   thus   deposit   their  

contents   into   the   cisternal   lumen   and   membrane   (Brandizzi   and   Barlowe,  

2013).  These  are  highly  orchestrated  processes  with  much  of  the  underlying  

molecular  machinery  known  today.  Vesicle  budding  and  accompanying  cargo  

selection  occurs  at  specialized  ER  exit  sites   (ERES)   (Bannykh  et  al.,  1996;;  

Brandizzi   and   Barlowe,   2013).   There,   the   Sec12   guanine   nucleotide  

exchange  factor  (GEF)  converts  the  inactive  Sar1-­GDP  into  the  active  Sar1-­

GTP,   which   then   becomes   membrane-­associated   (Brandizzi   and   Barlowe,  

2013).   Sar1-­GTP   recruits   the   Sec23/Sec24   pre-­budding   complex   and   an  

outer  layer,  which  is  comprised  of  a  Sec13/31  octahedral  cage  that  deforms  

the  membrane  to  form  an  approximately  60  nm  COPII  vesicle  (Barlowe  et  al.,  

1994;;  Bi  et  al.,  2002;;  2007;;  Fath  et  al.,  2007).  Sec24  isoforms  are  critical  for  

selecting  the  cis-­Golgi  SNAREs  into  COPII  vesicles  (Mancias  and  Goldberg,  

2008).  While   initially   it  was   reported   that  Membrin   residues   I118  and  M120  

directly   interact  with  Sec24C/D,  a   later   study  suggested   that  Membrin   itself  

does   not   directly   bind   to   Sec24   but   is   sorted   indirectly   via   binding   to  

Syntaxin-­5   (Mancias  and  Goldberg,  2008;;  Adolf  et  al.,  2016).  After  budding  

off   the   ERES   cargo   carriers   are   transported   towards   the   cis-­Golgi.   This  

process   involves   the   dynein-­dynactin   complex,   which   translocates   the  

attached   containers   along   microtubules   towards   their   minus   ends   at   the  

microtubule   organizing   centre,   where   the  Golgi   resides   (Allan   et   al.,   2002;;  

Yadav   and   Linstedt,   2011).   If   microtubules   are   disrupted   by   nocodazole  

treatment,  Golgi  mini-­stacks   form  at  ERES   in  mammalian  cells   (Cole  et  al.,  

1996;;  Presley   et   al.,   1997).  However,   this  microtubule-­dependent   transport  

appears  not  to  occur  in  plant  cells  (Brandizzi  and  Barlowe,  2013).  Transport  
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vesicles   are   then   captured   by   tethering   proteins   prior   to   SNARE-­mediated  

membrane   fusion,   which   occurs   at   close   proximity   between   vesicle   and  

target  membrane.  One  important  multi-­domain  elongated  tethering  protein  is  

p115   (Uso1   in   yeast),  which   is   recruited   by  Rab1-­GTP   (Lorente-­Rodríguez  

and  Barlowe,  2011;;  Wang  et  al.,  2015).  Rab1-­GTP  and  its  yeast  orthologue  

Ypt1  in  turn  are  activated  by  the  multi-­component  transport  protein  particle  I  

(TRAPP   I),   which   is   also   capable   of   binding   Sec23   –   a   component   of   the  

COPII  coat  –  and  therefore  represents  a  central  component  of  the  cis-­Golgi  

cargo  entry  machinery  (Cai  et  al.,  2007a;;  2007b;;  2008).  The  final  Membrin-­

Sec22b-­Syntaxin5-­Bet1   (yeast   Bos1-­Sec22-­Sed5-­Bet1)   fusion   reaction   is  

thought   to   be   regulated  and   facilitated   by   the  Sec1/Munc18-­1   (SM)   protein  

Sly1,   which   binds   a   distinct   region   of   the   Syntaxin-­5   N-­terminus   (Dascher  

and  Balch,  1996;;  Lorente-­Rodríguez  and  Barlowe,  2011;;  Yamaguchi   et   al.,  

2002).  

1.5.4          The  ER-­Golgi  intermediate  compartment  (ERGIC)  

COPII-­mediated  anterograde  cargo  transport  from  the  ER  directly  to  the  cis-­

Golgi   is   a   simplified  model,   which   holds   true   for   yeast,   but   omits   a   critical  

intermediate  step  in  mammalian  cells.  There,  the  ERGIC/VTC  serves  as  the  

first  sorting  station  after  exit   from  ERES.  This  compartment   is  characterized  

by   ERGIC-­53,   which   is   the   procathepsin   Z   sorting   receptor   (Appenzeller-­

Herzog  and  Hauri,  2006;;  Schweizer  et  al.,  1988).  These  ERGIC-­53  positive  

membranes   can   be   found   both   in   vicinity   to   ERES   and   close   to   the  Golgi  

apparatus   (Ben-­Tekaya   et   al.,   2005).   With   a   15°C   block,   cargo   can   be  

trapped  in  this  compartment  and  subsequently  released  at  32°C  (Schweizer  

et  al.,  1990).  Two  models  of  ER-­to-­Golgi  transport  via  the  ERGIC  have  been  

proposed   (Appenzeller-­Herzog   and   Hauri,   2006).   The   transport   complex  

model  posits  that  ERES-­derived  COPII  vesicles  undergo  homotypic  fusion  –  

alternatively,  it  has  been  suggested  that  larger  membrane  saccules  can  form  

at   the   ER,   which   do   not   appear   to   fuse   in   a   SNARE-­dependent   manner  

(Mironov   et   al.,   2003)   –   and   these   transport   complexes   then   translocate  

towards   the  Golgi   apparatus   (Appenzeller-­Herzog   and   Hauri,   2006).   There  

two  mechanisms  have  been  proposed:  Either  the  transport  carriers  fuse  with  
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each  other  and  mature  into  the  cis-­Golgi  cisternae,  or  they  fuse  with  the  latter  

compartment  directly  (Appenzeller-­Herzog  and  Hauri,  2006).  The  alternative  

model   for   ER-­to-­Golgi   trafficking   suggests   that   the   ERGIC   is   a   stable  

compartment   and   that   it   receives   cargo   via   COPII   vesicles.   Secretory  

molecules  would   then  exit   the  ERGIC  and   translocate   towards   the  Golgi   in  

anterograde  carriers  (Appenzeller-­Herzog  and  Hauri,  2006).  This  latter  stable  

compartment   model   is   favored   by   live-­imaging   experiments,   which   have  

revealed   long-­lived   stationary   GFP-­ERGIC-­53   labelled   structures   (Ben-­

Tekaya   et   al.,   2005).   Given   that   Membrin,   Sec22b,   Syntaxin-­5   and   Bet1  

localize   to  VTC/ERGIC   it   is   likely   that   the  Membrin-­Sec22b-­Syntaxin5-­Bet1  

complex  not  only  mediates  cargo  entry  into  the  cis-­Golgi,  but  also  membrane  

fusion  at   the  ERGIC  (Volchuk  et  al.,  2004).   Indeed,   it  has  been  shown   that  

COPII  homotypic  fusion  is  dependent  upon  Syntaxin-­5  and  Sly1  (Rowe  et  al.,  

1998;;  Xu  and  Hay,  2004).    

1.5.5          Golgi-­ER  retrograde  transport  

To   enable   a   net   balance   of   ER   and   Golgi   size,   and   to   maintain   their  

molecular  compositions,   transport  not  only  occurs   from   the  ER   to   the  Golgi  

but  also  from  the  Golgi  to  the  ER.  While  anterograde  cargo  transport  from  the  

ER  to  the  Golgi  is  mediated  by  COPII  coated  vesicles,  the  reverse  transport  

axis   is   thought   to   rely   upon   a   different   vesicle   population   –   COPI   coated  

cargo   carriers   (Brandizzi   and   Barlowe,   2013).   This   coat   consists   of   seven  

subunits.   Similar   to   the   clathrin   coat,   an   inner   and   outer   shell   can   be  

distinguished  (Popoff  et  al.,  2011).  The  cycle  of  COPI  assembly  and  vesicle  

budding  off   the  cis-­Golgi   is   initiated  by  Arf1   (Brandizzi  and  Barlowe,  2013).  

Arf1’s  activity   in   turn   relies  upon   its  conversion   from  the  GDP   into   the  GTP  

bound  state  by  guanine  nucleotide  exchange  factors  (GEF)  such  as  GBF1  –  

which  is  inhibited  by  the  drug  brefeldin  A  (BFA)  and  golgicide  A  (Helms  and  

Rothman,   1992;;   Lippincott-­Schwartz   et   al.,   1989;;   Lorente-­Rodríguez   and  

Barlowe,  2011;;  Sáenz  et  al.,  2009).  At  the  ER,  cargo  is  thought  to  enter  this  

compartment   via   the   Sec20-­Use1-­Syntaxin18-­Sec22b   SNARE   complex  

(Malsam   and   Söllner,   2011).   That   reverse   transport   of   proteins   and   lipids  

from   the   Golgi   to   the   ER   is   critical   for   maintaining   organellar   identity   is  

illustrated   by   the   KDEL   retrieval   pathway   for   ER   lumen-­residing   proteins.  
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When  escaped  into  the  early  secretory  pathway  they  are  recognized  via  a  C-­

terminal   lysine-­aspartate-­glutamate-­leucine   (KDEL)   sequence   by   the   KDEL  

receptor,  which  in  turn  associates  with  the  COPI  coat  and  thereby  relocates  

these  proteins   into  their   target  ER  compartment  (Majoul  et  al.,  2001;;  Munro  

and  Pelham,  1987).  

1.5.6          Intra-­Golgi  transport  

The  mode  of  cargo  transport   from  cis   to   trans  across  the  Golgi  stack   is  still  

unresolved  and  an  area  of  ongoing  controversy  (Emr  et  al.,  2009;;  Glick  and  

Luini,  2011).  Two  main  models  have  been  proposed,  which  either  regard  the  

individual  Golgi  cisternae  as  fixed  entities  or  as  cargo  carriers  themselves.  In  

the  first  model  cargo  is  thought  to  be  transported  by  COPI  vesicles  between  

successive   cisternae,  while   resident   proteins  must   be   excluded   in   order   to  

maintain  the  individual  enzymatic  signatures  (Glick  and  Luini,  2011).  Such  a  

view   is   supported   by   findings   that   small   cargos   are   still   capable   of  moving  

across   a   modified   Golgi   apparatus,   where   individual   cisternae   are  

synthetically  ‘glued’  to  each  other  and  therefore  cannot  themselves  progress  

(Dancourt   et   al.,   2016).   Alternatively,   the   cisternal   progression/maturation  

model   posits   that   entire   cisternae   shuttle   cargos   within   them   and   change  

their  molecular  make-­up  by  recycling  the  resident  enzymes  via  COPI  vesicles  

(Glick   and   Luini,   2011).   Such   transitions   have   been   visualized   in   yeast,  

where  an  un-­stacked  Golgi  allows   for   live   imaging  of  distinct   cisternae  with  

diffraction   limited   optics   (Losev   et   al.,   2006;;  Matsuura-­Tokita   et   al.,   2006).  

However,   in   the   stacked   mammalian   Golgi   apparatus   cisternal   maturation  

cannot  be  optically  resolved  by  conventional  means.  Progress  in   live  super-­

resolution   microscopy   may   ultimately   allow   to   directly   assess   whether  

cisternal  progression  facilitates  anterograde  cargo  transport  across  the  Golgi  

complex   (Rothman,   2010).   As   of   now   the   main   argument   for   cisternal  

progression  is  the  finding  that  large  procollagen  fibrils,  which  extend  the  size  

of   typical   COPI   vesicles   several-­fold,   are   efficiently   transported   across   the  

Golgi  apparently  without  leaving  the  cisternal  lumen  (Bonfanti  et  al.,  1998).  In  

a   more   recent   study   it   was   suggested   that   the   dilated   cisternal   rims   are  

capable   of   progression   –   which   therefore   could   account   for   the   rapid  

transport  of  large  molecules  –  while  the  more  central  parts  remained  in  place  
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(Lavieu  et  al.,  2013).   It  has  also  been  suggested   that   inter-­cisternal   tubules  

might  contribute  to  efficient   intra-­Golgi   transport  (Marsh  et  al.,  2004;;  Trucco  

et   al.,   2004).  While   the   precise  mode   of  Golgi   trafficking   is   still   debated,   it  

should  be  said  that  at  a  joint  meeting  of  several  leading  Golgi  researchers  in  

2009  extensive  support  was  voiced  for  a  cisternal  progression  model  (Emr  et  

al.,  2009).  

Once  the  anterograde  secretory  pathway  cargo  has  reached  the  trans-­Golgi  

network   (TGN),   it   is   distributed   to   various   intracellular   locations   or   guided  

towards   the   plasma  membrane   (Alberts,   2015).  One  well   established   post-­

Golgi   trafficking   pathway   is   the   receptor-­mediated   selective   delivery   of  

lysosomal  enzymes,  which  serves  here  as  an  example  (reviewed  in  Ghosh  et  

al.,   2003   and   Kornfeld,   1987).   Within   the   Golgi   a   mannose-­6-­phosphate  

(M6P)   group   is   added   to   acid   hydrolases,   which   then   is   recognized   in   the  

TGN  by  one  of  two  M6P  receptors.  The  receptor-­acid  hydrolases  complexes  

then  pinch  off  the  TGN  in  clathrin  coated  vesicles  and  are  delivered  to  early  

endosomes   (Ghosh   et   al.,   2003).   There,   the   enzymes   dissociate   from   the  

M6P-­receptors   due   to   the   lower   pH,   which   allows   for   recycling   of   the  

receptors  back  to  the  TGN  and  acid  hydrolase  delivery  to  lysosomes.    

1.6          Secretory  pathway  in  neurons  

Despite  the  Golgi  apparatus  having  been  originally  discovered  in  the  nervous  

system   more   than   a   hundred   years   ago,   most   of   the   seminal   work   in  

understanding   this   organelle   has   been   carried   out   in   non-­neuronal   cells  

(Farquhar   and  Palade,   1998).   This   is   not   surprising,   as   non-­neuronal   cells  

are  experimentally  more  easily  accessible.  Yet   the  secretory  pathway  faces  

special  challenges  in  neurons,  as  their  great  size,  intricate  shape  and  highly  

specialized  functions  pose  unique  demands.  Nerve  cells  have  up  to  10  000  

times  larger  surface  areas  than  many  non-­neuronal  cells,  which  requires  high  

rates   of   secretory   trafficking   –   especially   during   development   –   in   order   to  

provide  sufficient  lipid  and  protein  supplies  (Ehlers,  2013;;  Horton  and  Ehlers,  

2004).   In   addition,   neurons   are   often   highly   branched   and   elongated,   with  

their  most   distal   processes   far   away   from   the   nucleus,   which   contains   the  
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blueprints   for   proteins   that   are   required   at   these   remote   locations.   Thus,  

long-­range  transport  must  occur  at  the  RNA  and/or  protein  levels.    

1.6.1          Secretory  pathway  in  dendrites  

In  neuronal  dendrites,  the  full  machinery  of  the  secretory  pathway  has  been  

described  (Hanus  and  Ehlers,  2008).  They  contain  mostly  smooth  ER  –  also  

some  attached   ribosomes  can  be  observed  –  ERGIC  as  well  as  Golgi  mini  

stacks,   termed   ‘Golgi   outposts’   (Hanus   and   Ehlers,   2016;;   Valenzuela   and  

Perez,  2015).  Diffusion  of  secretory  cargo  within  the  continuous  dendritic  ER  

lumen  is  restricted  by  local  zones  of  increased  ER  complexity  mainly  around  

dendritic   branch  points,  which  are  also   the  primary   sites   for  Golgi   outposts  

(Cui-­Wang  et  al.,  2012).  These  stacked  mini  Golgi  complexes  are  not  present  

in  all  neurons  and  overall  are   infrequent   (Horton  et  al.,  2005).  Moreover,   in  

dendritic  spines  a   ‘satellite  secretory  pathway’  has  been  described   (Gardiol  

et  al.,  1999;;  Pierce  et  al.,  2001;;  2000).  The  complete  secretory  machinery  as  

well   as   the   presence   of   mRNAs   encoding   secretory   pathway   dependent  

proteins   in   dendrites   suggest   local   trafficking   of   such   proteins   as   an  

additional   path   besides   canonical   trafficking   via   the   somatic   rough  ER   and  

Golgi  apparatus  (Cajigas  et  al.,  2012).  Also,  long-­range  retrograde  trafficking  

occurs,   where   cargo   transitions   through   the   somatic   Golgi   after   local  

synthesis   at   dendritic  ER-­associated   ribosomes   (Horton   and  Ehlers,   2003).  

Post-­ER  trafficking  has  been  shown  to  be  spatially  restricted   in  response  to  

increased  neuronal  activity  (Hanus  et  al.,  2014).  Interestingly,  it  has  recently  

been   suggested   that   many   proteins   might   bypass   the   Golgi   apparatus   in  

neurons   (Hanus   et   al.,   2016).   This   idea   is   based   on   the   finding   that   in  

neurons,   unlike   in   non-­neuronal   cells,   hundreds   of   cell   surface   proteins  

harbor   ‘high  mannose’   type  carbohydrates  side-­chains  (Hanus  et  al.,  2016).  

Such   a   glycosylation   pattern   is   otherwise   found   on   proteins   that   have   not  

transitioned   the  Golgi   apparatus  and   thus  were  not   turned   into   complex  N-­

glycans   (see   above   ‘Carbohydrate   processing’)   (Freeze   and   Ng,   2011;;  

Stanley,  2011).  
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1.6.2          Secretory  pathway  in  axons  

In  contrast  to  dendrites,  classical  Golgi  stacks  have  not  been  found  in  axons  

or  at  the  presynaptic  termini,  yet  Golgi  apparatus  resident  proteins  have  been  

detected  by  means  of  immuno-­fluorescence  microscopy  in  axons  (González  

and  Couve,  2014;;  González  et  al.,  2016;;  Merianda  and  Twiss,  2013).  While  

the   smooth   ER   is   present   also   in   axons,   attached   ribosomes   are   either  

scarce  or  absent  (Cornejo  et  al.,  2017).  Nevertheless,  proteins  critical  for  ER-­

associated  protein   synthesis,   such  as  Sec61,   ribophorin   I  &   II,  SRP54  and  

PDI  have  been  immuno-­localized  in  axons  (González  et  al.,  2016;;  Merianda  

and  Twiss,  2013;;  Merianda  et  al.,  2009).  Also,  the  ER-­exit  protein  Sar1,  the  

COPII   component   Sec23   and   the   ERGIC   marker   ERGIC53   have   been  

detected   in   axons   (Aridor   and   Fish,   2009;;   González   et   al.,   2016).   These  

observations,  and  the  finding  that  many  mRNAs  encoding  secretory  pathway  

dependent   transmembrane   proteins   are   present   in   axons,   suggest   that   a  

local  secretory  pathway  might  contribute  to  the  proteome  of  this  compartment  

(Cornejo  et  al.,  2017).  Indeed,  it  has  recently  been  shown  that  the  b2  voltage-­

gated   sodium   channel   subunit   can   be   trafficked   locally   from   the  ER   to   the  

plasma  membrane   in   axons   without   access   to   the   soma   (González   et   al.,  

2016).   We   can   speculate   that   such   a   route   might   involve   Golgi-­like  

membranes,  which  contain  a  similar  enzymatic  set-­up  as  the  somatic  Golgi,  

but   do   not   organize   in   a   classical   stacked   order.   Alternatively,   Golgi  

processing  might   be   by-­passed,   as   indicated   by   the   presence   of   immature  

carbohydrates   on   many   neuronal   cell   surface   proteins.   Amongst   them   are  

also  several  voltage-­gated  sodium  channel  subunits  (Hanus  et  al.,  2016).  

1.7          Aims  and  research  questions  

The  aims  of  my  PhD  were   to   study   the  genetics  of   progressive  myoclonus  

epilepsy,  which  led  to  the  discovery  of  the  novel  K164del  GOSR2  mutation,  

and  to  shed  light  upon  the  obscure  pathophysiology  of  GOSR2-­PME.    

Expanding  the  genotype  of  GOSR2-­PME  is  not  only  relevant  to  the  study  of  

clinical   genotype-­to-­phenotypes   relationships,   but   is   also   important   for  

disease   mechanism   research.   The   availability   of   additional   alleles   with  
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varying   severity   aids   interpretation   of   experimental   results   and   thereby  

facilitates  investigating  the  pathophysiology  of  this  disorder.    

Solely  by  looking  at  the  molecular  change  in  the  SNARE  domain  of  Membrin  

due   to   the   G144W   and   K164del   mutations,   one   can   hypothesize   that  

membrane  fusion  mediated  by  the  Membrin-­Sec22b-­Syntaxin5-­Bet1  complex  

might   be   reduced.   This   in   turn   might   abolish   or   reduce   the   rates   of  

membrane   fusion   at   the   cis-­Golgi,   and   thus   block   or   reduce   the   rates   of  

anterograde   cargo   transport.   Taking   into   account   that   the   GOSR2-­PME  

mutations  do  not  cause  zygote  or  early  embryonic  lethality  –  otherwise  these  

patients   would   not   be   alive   –   a   complete   trafficking   interruption   seems  

unlikely.  Yet,  if  an  anterograde  cargo  trafficking  defect  is  indeed  at  the  heart  

of   the   pathophysiology   of   GOSR2-­PME,   then   we   are   facing   the   difficult  

challenge  of  explaining  how  this  might  disturb  human  physiology  in  a  nervous  

system   restricted   manner.   GOSR2   is   required   for   every   cell's   basic  

physiology  and  expressed   throughout   the  human  body   to  similar   levels,  yet  

patients   present   with   a   phenotype  mostly   restricted   to   the   nervous   system  

(Corbett  et  al.,  2011;;  Su  et  al.,  2004;;  Wu  et  al.,  2016).  If  we  assume  a  broad  

trafficking  defect,  why  do   these  patients  not  present  with   immunodeficiency  

or  exocrine  pancreas  insufficiency?  After  all,  antibody  secreting  plasma  cells  

and  digestive  enzyme  secreting  pancreatic  acinar  cells  depend  heavily  upon  

the   function  of   the  secretory  pathway   (Farquhar  and  Palade,  1981;;  Palade,  

1975).   Therefore,   the   central   aim  of   this  PhD  was   to   unravel   the   ‘neuronal  

bottleneck’  of  this  disorder,  which  promised  to  hold  the  key  to  understand  the  

genotype-­to-­phenotype  relationship  of  GOSR2-­PME.    

To   achieve   these   aims   I   have   used   Sanger   sequencing   of   a   cohort   of  

patients  with  PME-­like  phenotypes,  and  disease  modelling  in  patient-­derived  

fibroblasts  and  Drosophila.  Chapter  2  will  summarize  how  I  have  identified  a  

novel   K164del   GOSR2-­PME   mutation.   Chapter   3   will   describe   how   the  

pathogenic   Membrin   mutations   affect   SNARE   function   and   basic   non-­

neuronal   cell   biology.   Chapter   4   finally   summarizes   our   investigations   into  

how  Membrin  mutations   impact  neuronal  development  and   function.  To   this  

end,   I   have   introduced   the   disease  mutations   into  Drosophila   and   thereby  

generated   the   first   multicellular   model   of  GOSR2-­PME.   In   Chapter   5   I   will  
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summarize  our  main   insights   into  GOSR2-­PME  that  are  derived   from  these  

studies,  their  relevance  to  neuronal  cell  biology,  and  potential  future  research  

avenues  related  to  this  work.  
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Chapter  2.            Expanding   the  mutational   spectrum  of  GOSR2  
mediated  progressive  myoclonus  epilepsy  

2.1          Introduction  

During  my  first  3  month  PhD  laboratory  rotation  I  was  working  on  the  human  

genetics   of   a   very   severe   set   of   neurological   disorders   –   the   progressive  

myoclonus  epilepsies  (PME).  This   is  a  broad  group  of  diseases  with  similar  

core  symptoms,  i.e.  epilepsy,  myoclonus,  ataxia,  dementia  and  a  progressive  

disease  course   (Michelucci  et  al.,  2012).  The   initial  aim  was   to  assemble  a  

cohort  of  patients  with  PME-­like  presentations   from  DNA  samples  stored  at  

the   National   Hospital   for   Neurology   and   Neurosurgery   and   Institute   of  

Neurology.   Such   a   collection   of   patient   DNAs   could   then   be   Sanger  

sequenced   for   target   genes   and   ultimately   subjected   to   next   generation  

sequencing.   Because   the   initial   aim   was   to   uncover   novel   variants   and  

potentially   broaden   the   phenotype   of   SCARB2,   we   loosely   assembled   a  

cohort  around  the  phenotype  of  SCARB2-­PME,  which  belongs   to   the  group  

of  PMEs  without  prominent  dementia  (Berkovic  et  al.,  2008;;  Michelucci  et  al.,  

2012).  The  paradigmatic  disorder  of  this  PME  subset  is  Unverricht-­Lundborg  

disease   (ULD),   which   is   caused   by   mutations   in   the   CSTB   gene,   most  

commonly  by  a  dodecamer  expansion  in  the  promoter  region  (Crespel  et  al.,  

2016;;   Lalioti   et   al.,   1997b).  Other,  much   rarer   forms   of  PME  without   gross  

cognitive   decline   are   due   to  PRICKLE1   and  GOSR2  mutations   (Bassuk   et  

al.,   2008;;   Corbett   et   al.,   2011).   While   all   of   the   above   are   autosomal-­

recessive   disorders,   recently   also   a   dominant   form   has   been   described,  

which  is  caused  by  mutations  in  the  KCNC1  potassium  channel  gene  (Muona  

et   al.,   2015,   Oliver   et   al.,   2017).   Because   my   initial   sequencing   of   all   12  

SCARB2  exons  in  this  cohort  did  not  reveal  any  novel  pathogenic  mutations,  

I   subsequently   investigated   the   GOSR2   gene   for   sequence   alterations.  

Initially   I   focused   on   the   only   known   GOSR2-­PME   associated   c.430G>T  

(p.G144W)   mutation   and   discovered   one   patient   heterozygous   for   this  

mutation  (Corbett  et  al.,  2011;;  Praschberger  et  al.,  2015).  Because  GOSR2-­

PME   is   an   autosomal-­recessive   disorder   this   sequence   alteration   was   not  



  

   48  

sufficient  to  explain  the  phenotype.  Given  the  phenotypic  resemblance  of  this  

patients  with  other  GOSR2-­PME  cases,  we  hypothesized   that  an  additional  

mutation  located  in  a  different  exon  might  be  present  in  the  second  GOSR2  

allele.  Indeed,  I  identified  a  novel  c.491_493delAGA  (p.K164del)  mutation  by  

screening  the  remaining  exons  in  this  patient.  In  the  following  chapter  I  detail  

the   involved   genetic   screening   that   led   to   this   discovery   and   outline   the  

phenotype   of   this  GOSR2-­PME   patient,   who   harbored   the   second  GOSR2  

mutation  currently  associated  with  PME.  

2.2          Statement  of  Contribution  

I  assembled  the  final  cohort  of  patients  screened  in  this  study  and  performed  

the   Sanger   sequencing   under   the   guidance   of   Niccolo   Mencacci.   Henry  

Houlden   and   Joshua   Hersheson   provided   an   initial   selection   of   potential  

patients   for   this   study.   Bettina   Balint   and   Kailash   Bhatia   contributed  

extensive   clinical   data   and   examinations   for   the   compound   heterozygous  

GOSR2-­PME   patient   that   we   describe   here.   I   also   investigated   the   clinical  

phenotype  of  this  patient  based  on  medical  records.  

This   work   has   already   been   published   under   the   title   ‘Expanding   the  

Phenotype   and   Genetic   Defects   Associated   with   the   GOSR2   Gene’  

(Praschberger  et  al.,  2015).  
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2.3          Materials  and  Methods  

2.3.1          Patient  cohort  

We  assembled  a  cohort  of  43  patients  with  a  clinical  presentation  suggestive  

of  progressive  myoclonus  epilepsy/ataxia.  These  patients  were  negative   for  

mutations   in  ATN1   and   the   8344   and   3243  mutations   in   the  mitochondrial  

lysine   and   leucine   tRNA   genes,   respectively.   DNA   had   previously   been  

extracted   and   stored   at   the   National   Hospital   for   Neurology   and  

Neurosurgery.   The   study   was   approved   by   the   local   ethical   board   and  

informed  consent  was  given  by  all  patients.    

2.3.2          Sanger  Sequencing  

Oligonucleotide   primers   used   in   this   study  were   designed  with   the  Primer3  

software   (Koressaar   and   Remm,   2007;;   Untergasser   et   al.,   2012)   (Table   2  

and  Table  3).  The  SCARB2  and  exon  5  GOSR2  primers  were  designed  prior  
to  my  arrival  to  the  project.  The  subsequent  GOSR2  primers  were  designed  

by  myself.  

Exon   Forward  primer  (5’-­3’)   Reverse  primer  (5’-­3’)  

1   TCCCTCCTTGCAGTTGGATC   TGTAGCAGCAGGGATGGGAG  

2   GATCTAGGAGGTCAGAATAGGGG   GAAAGTGTGCTCCCACACAG  

3   TTGCTTATTAAAGTGGTGTC   ACTTAATGGCTCCTAAATG  

4   CCCCTTTGCTATGGGGTAG   AGTTAATCTGGCTTGGGGTG  

5   CTTCACCACACCATCTGGG   TGTTTTACCACCATCTTGATTTG  

6   GACAGCTCCAGTTAAATCTTGC   TCCTCATGCTTTTGGTGGTC  

7   TGCTAACTTGCGGATTTCG   AGCTGGGACTGTAGGTGTGC  

8   CTTTAGGAACCAGGCTGTGG   CAGGACTAAACTGGTGAACAATG  

9   GGACTACACAGAAATGGTGCTC   ACTCCTCCTGACATCAACCC  

10   GTCTGTCCGGGAAAGTGTG   TTTTGCCCTTCTGTCATAACTTAC  

11   GCTAACAGGAGGACATTCCC   AGCTGACAGCCCTTCAGTG  

12   ACTCCCCACCCAAACTTTTC   CTTTCAACAGGCAACAAGCC  

Table  2.  SCARB2  primers  
These  primers  bind  intronic  regions  flanking  the  exons  of  the  SCARB2  gene.  
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Exon   Forward  primer  (5’-­3’)   Reverse  primer  (5’-­3’)  

1   CAACCACTGCTAGTAAGGCG   AAAACTCGGCCTCTACCCTG  

2   GGACCTAAAGTGCCACATACA   AGAGTGCAGTCAGGAAGCC  

3   ACAACATTTACGGCCTAACTTGA   AACATGTACGTTGGTTTTCAGAA  

4   TCCTCAGTACAAAGCCTGGC   CAAAACAGATGGCGCTCAGA  

5   AAGACAGAGCAGTGAGACCC   TCAAGGGCTCTGTCTTGTCA  

6   GTTGGCAAAGCTCCATCTCC   AAACATTTCAAAAGGCGGCC  

7   TCCATTACACACAGCACTGC   TCAAAGCCAACCACTGTCAAG  

Table  3.  GOSR2  primers  
These  primers  bind  intronic  regions  flanking  the  exons  of  the  GOSR2  gene.    

  

The  PCR  reaction  mixture  consisted  of  50  ng  of  DNA,  0,5  µM  of  forward  and  

reverse  primer  and  10  µl  FastStart  PCR  Master  (Roche)   in  a  20  µl   reaction  

volume.   1  µl   of   DMSO  was   added   to   the   PCR   reaction   in   order   to   enable  

amplification  of  GOSR2  exon  1.  One  of  two  touch-­down  PCR  protocols  was  

used  –  65td55  (SCARB2  exon  5  and  7)  or  60td50  (SCARB2  exon  1-­4,  6,  8-­

12  and  all  GOSR2  exons)  (Korbie  and  Mattick,  2008)  (Table  4).  

   65td55   60td50  
initial   94°C  5  min   94°C  5  min  

8x   94°C  30  s  

65°C  30  s  

72°C  60  s  

94°C  30  s  

60°C  30  s  

72°C  60  s  

16x   94°C  30  s  

65°C*  30  s  

72°C  60  s  

94°C  30  s  

60°C‡  30  s  

72°C  60  s  

16x   94°C  30  s  

55°C  30  s  

72°C  60  s  

94°C  30  s  

50°C  30  s  

72°C  60  s  

final   72°C  7  min   72°C  7  min  

  

Table  4.  PCR  cycling  conditions  
The   two   above   cycling   protocols   were   trialed   for   each   primer   pair   outlined   in  
Table  2  and  Table  3  with  and  without  the  addition  of  DMSO  and  one  successful  
condition  used  for   the  screening.  */‡  denotes  that   in  each  subsequent  step  the  
annealing  temperature  was  reduced  by  0.5/0.6°C.  
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After   confirmation   of   successful   PCR   reaction   via   visualisation   of  

amplification  products  on  a  2%  agarose  gel,  excess  dNTPs  and  ssDNA  were  

inactivated   by   the   addition   of   Fast-­AP   (Thermo   Fisher   Scientific)   and  

Exonuclease  I   (Thermo  Fisher  Scientific)  and   incubation  for  30  min  at  37°C  

and  15  min  at  80°C.  3  µl  of   the  cleaned  PCR  product  was   then  mixed  with  

0,5  µl  BigDye  Terminator  v.3.1   (Thermo  Fisher  Scientific),  2  µl  Sequencing  

Buffer,  500  nM  primer  and  subjected  to   thermal  cycling  (Table  5)   in  a  10  µl  

total   volume.   The   resulting   product   was   cleaned   with   Sephadex   G-­50  

(Sigma)  filled  Corning  FiltrEX  plates  (Sigma).  

initial   94°C  1  min  

16x   94°C  30  s  

50°C  15  s  

60°C  4  min  

Table  5.  Cycling  condition  for  Sanger  sequencing  reaction  
  

Capillary  gel  electrophoresis  and  fluorescent  dye  detection  was  performed  on  

the  ABI  3730  DNA  Analyser  (Life  Technologies)  and  the  resulting  sequences  

where  viewed  with  the  Sequencher  software  (Gene  Codes).  

2.3.3          Repeat-­primed  PCR  

To  screen  our  PME  cohort   for   the  CSTB   dodecamer  expansion  we  utilized  

repeat-­primed   PCR   (Lalioti   et   al.,   1997b).   This   technique   is   designed   to  

identify   large  DNA   repeat  expansions,  which  would  otherwise  be  difficult   to  

amplify   (Warner   et   al.,   1996).   Therefore,   the   PCR   reaction   contains   three  

primers,   one   flanking   the   expansion,   one   corresponding   to   the   repeat  

sequence   plus   an   additional   overhang   and   a   third   primer   recognizing   this  

overhang.  This  combination  allows  for  priming  from  multiple   locations  within  

the  repeat  expansion  and  subsequent  amplification  of  these  differently  sized  

fragments.   A   fluorescent   tag   on   one   of   the   primers   then   allows   for   the  

visualization  of  the  varying  fragment  sizes  in  this  amplification  reaction.  The  

same   repeat-­primed   PCR   primers   for   the  CSTB   expansion   were   used   as  
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previously   described   (Table   6)   (Krysa   et   al.,   2012).   For   thermal   cycling,  

reactions  contained  12  µl  of  Extensor  Long  PCR  Master  Mix  (Thermo  Fisher  

Scientific),  2  M  betaine,  330  nM  of  the  CSTB_R  and  P3R  primers  and  33  nM  

of  the  CSTB_rpF  primer  in  a  25  µl  total  reaction  volume.    

Name   Primer  sequence  (5’-­3’)   Description  
CSTB_R   [6FAM]GGCCGGGGAGGAGGCACT  

  

Reverse   primer   flanking   the  

expansion   +   5’   fluorescence  

tag  

CSTB_rpF   TACGCATCCCAGTTTGAGACGCC  

CCGCCCCGCGCCCCGCCCCGCG  

  

Forward   primer   recognising  

the   expansion   (underscore)  

+  5’  overhang  

P3R   TACGCATCCCAGTTTGAGACG   Additional   reverse   primer  

recognising   the   above  

overhang  

Table  6.  CSTB  expansion  repeat-­primed  PCR  primers  
  

  

Cycling   condition  were   based   on   a   previous   protocol   amplifying   a   different  

disease-­associated  expansion  (Table  7)  (Hantash  et  al.,  2010).  

Initial   98°C  10  min  

10x   97°C  35  s  

53°C  2  min  

68°C  2  min  

25x   97°C  35  s  

53°C  2  min  

68°C  2  min  +  20  s/cycle  

Final   68°C  10  min  

Table  7.  CSTB  expansion  repeat-­primed  PCR  cycling  conditions  
  

2  µl  of  these  PCR  products  where  then  mixed  with  0.3  µl  of  Liz  500  (ABI)  and  

9.2   µl  HiDi   formamide   (ABI),   incubated   at   95°C   for   3  min   and   immediately  

afterwards   placed   on   ice   for   a   minimum   of   5   min.   Fragments   were  

subsequently   run   on   an   ABI   3730   (ABI)   and   analysed   with   GeneMapper  

(ABI).     
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2.4          Results  

In   the   present   study   we   screened   a   cohort   of   43   patients   exhibiting   a  

progressive   myoclonus   epilepsy/ataxia-­like   presentation   for   mutations   in  

genes   associated  with   this   phenotype.   Patients  with   previously   established  

CSTB   mutations   and   additional   cases   revealed   by   repeat-­primed   PCR  

accounted   for   13   cases   and   were   excluded   from   further   analysis.   The  

remaining  30  patients  did  not  harbour  pathogenic  mutations  in  any  of  the  12  

SCARB2  exons  or  their  adjacent  splice  sites,  while  four  previously  reported,  

heterozygous   single   nucleotide   polymorphisms   (SNPs)   were   detected  

(rs143655258,  rs180948007,  rs2228380  and  rs143699909).  When  these  30  
patients  were  also  screened  for  the  c.430G>T  mutation  in  exon  5  of  GOSR2,  

one  patient  was  discovered,  who  carried  this  allele  in  the  heterozygous  state  

(Figure  3A,  B).  Given  that  GOSR2  mediated  PME  is  a  recessive  disease,  this  

finding  did  not  fully  explain  the  patient’s  phenotype.  We  therefore  sequenced  

the   remaining  GOSR2   exons   in   this   patient   and   discovered   a   novel,   three  

base-­pair  deletion  (c.491-­494delAGA)  in  exon  6  resulting  in  the  deletion  of  a  

lysine  (p.K164del)  in  the  functionally  important  and  highly  conserved  SNARE  

domain   of   the   encoded   SNARE   protein   Membrin.   None   of   the   other   29  

patients   in   the   cohort   harboured   this   variant.  Because   the  patient’s   healthy  

son  was  heterozygous   for  c.491-­494delAGA,  but  not   for  c.430G>T,  we  can  

infer   that   these   mutations   are   on   separate   alleles   and   that   the   patient  

therefore   is   compound  heterozygous   for   these  defects   in   the  GOSR2   gene  

(Figure  3).  
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Figure  3.  Chromatograms  of  the  novel  GOSR2-­PME  mutation  
(A)  Family  tree  depicting  the  patient’s  (arrow)  healthy  children  and  brother,  who  
suffered  from  cervical  dystonia.  
(B)   Chromatograms   of   one   child   and   the   brother   indicate   that   the   novel   and  
previously   described  GOSR2  mutations   segregate   independently   and   that   the  
patient  therefore  carries  them  in  the  compound  heterozygous  state.  

  

She  also  harboured  a  c.7C>T  missense  variant,  encoding  the  substitution  of  

a  proline  residue  for  a  serine  (p.P3S).  This  change  is  classified  as  benign  by  

the  in  silico  tools  PolyPhen-­2  and  SIFT  (Adzhubei  et  al.,  2010;;  Kumar  et  al.,  

2009).   Furthermore,   an   A/C   polymorphism   (rs12944167)   –   resulting   in   the  

similar  P3T  (both  threonine  and  serine  are  characterised  by  a  hydroxyl  side  

chain)   –   has   been   reported   in   the   1000  Genomes   Project   phase   3   with   a  

minor  allele  frequency  of  1%,  which  further  suggests  that  the  P3S  change  in  

our  patient  is  non-­pathogenic.  

The  G144W-­K164del  compound  heterozygous  GOSR2-­PME  patient  reported  

here  was  a  British-­Caucasian  woman  who  passed  away  at  62  years  of  age.  

Prior   to   this   this   she   lived   in   a   care   facility,   largely   bed-­bound   and   fully  

supported   for   all   activities   of   daily   living.   Her   disease   started   with   ataxia  

around  age  2  with  motor  deterioration  associated  with   infections  and   febrile  

episodes.   Subsequently   the   patient   developed   myoclonus   and   the   first  

seizure   was   reported   at   the   age   of   14.   She   was   able   to   attend   a   normal  

school  until  11  years  of  age  and  retained  some  fine  motor   tasks  during  her  

second  decade  of  life.  Owing  to  progressive  motor  deterioration  she  became  

fully  wheelchair-­bound  around  age  30.    

Clinical  examinations  by  Bettina  Balint  revealed  that  the  patient’s  speech  was  

interrupted   by   myoclonus   and   highly   dysarthric.   She   also   displayed   other  
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signs  consistent  with  ataxia,  such  as  broken  pursuit,  gaze-­evoked  nystagmus  

and   profound   limb   dysmetria.   Myoclonus   was   very   prominent,   of   cortical  

origin,  worse   under   action,   less   pronounced   at   rest,   stimulus   sensitive   and  

affected   the   patient’s   face,   neck   and   upper   limbs.   Interestingly,   she   also  

displayed  both  areflexia  and  scoliosis,  which  have   frequently  been  reported  

in  GOSR2-­PME.  However,  she  did  not  have  syndactyly  or  pes  cavus,  which  

have  been  reported  in  a  minority  of  GOSR2-­PME  patients  (Boissé  Lomax  et  

al.,  2013;;  van  Egmond  et  al.,  2014).  Cognitive  function  was  largely  preserved  

in   this   patient,   with   only   a   mild   cognitive   decline   reported.   However,   brain  

imaging  revealed  cerebral  and  cerebellar  atrophy  (Figure  4).  

  

Figure  4.  Brain  imaging  
(A)  Sagital  and  (B)  axial  MRI  images  of  the  GOSR2-­PME  depicting  cerebral  and  
cerebellar  atrophy.  

  

While   EEG   revealed   generalized,   epileptiform   activity,   a   photo-­paroxysmal  

response  and  an  overall   slowed  background,  nerve  conduction  studies  and  

EMG   recordings   were   normal.   The   patient’s   serum   creatine   kinase   levels  

were   within   normal   limits,   as   opposed   to   several   previous   GOSR2-­PME  

patients   who   displayed   significant   elevations   (Boissé   Lomax   et   al.,   2013).  

Seizures  were  effectively  supressed  and  myoclonus  partially  reduced  with  a  

combination  of  valproate,  clonazepam,  primidone  and  levetiracetam.  

Prior  to  our  finding  of  this  novel  GOSR2  mutation  several  other  genetic  tests  

had  been  performed  on  this  patient.  No  CSTB  expansion  could  be  detected,  

and  sequencing  of  all  CSTB  exons  did  not  reveal  any  mutation.  Sequencing  

of   the   exons   and   the   flanking   intronic   regions   of  PRICKLE1   did   not   reveal  

any   sequence  alterations,   and  no  expansion   could  be  detected   in  SCA1-­3.  
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No  other   family  member  was  reported   to  suffer   from  a  similar  syndrome  as  

the  patient  described  here.  Her  brother  suffers  from  primary  cervical  dystonia  

and   he   is   heterozygous   for   the   c.430G>T  mutation   but   does   not   carry   the  

novel   c.491-­494delAGA  mutation.   A  maternal   uncle   was   reported   to   suffer  

from  ‘athetoid  cerebral  palsy’.  The  patient  had  two  healthy  sons.  One  of  them  

was   genetically   tested   and   found   to   be   heterozygous   for   c.491-­494delAGA  

and  not  carry  c.430G>T.     
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2.5          Discussion  

In   the   present   study   I   identified   a   novel   c.491-­494delAGA   (p.K164del)  

GOSR2  mutation  in  a  patient  suffering  from  progressive  myoclonus  epilepsy,  

who  harboured  the  previously  described  c.430G>T  (p.G144W)  variant  on  her  

second  GOSR2   allele.   Importantly,   this   is   thus   far   the   only   variant   besides  

the   previously   reported   G144W   mutation,   which   was   homozygous   in   all  

GOSR2-­PME   patients   described   previously   (Boissé   Lomax   et   al.,   2013;;  

Corbett  et  al.,  2011;;  van  Egmond  et  al.,  2014;;  2015).  

The   clinical   presentation   of   our   patient   recapitulates   many   characteristic  

features  of  GOSR2-­PME,  including  an  early  disease  onset  around  2  years  of  

age  with  ataxia,  as  well   as  areflexia,  worsening  of   symptoms  during   febrile  

episodes   and   remarkably   preserved   cognitive   function   with   only   a   mild  

deterioration   later   in   the   disease   course.   Other   GOSR2-­PME   associated  

features  were  not  present   in  the  patient  presented  herein.  She  did  not  have  

elevated   creatine   kinase   levels,   nor   EMG   abnormalities,   syndactyly   or   pes  

cavus.   While   MRI   studies   in   previous   GOSR2-­PME   cases   were   mostly  

unremarkable  –  except  in  two  patients  where  atrophy  of  the  cerebellar  vermis  

or  asymmetric  cerebral  and  cerebellar  atrophy  was  reported  (Boissé  Lomax  

et  al.,  2013)  –  the  compound  heterozygous  patient  described  here  displayed  

cerebral   and   cerebellar   atrophy.   This   could   not   be   solely   attributed   to   her  

comparable   high   age,   because   these   changes   were   already   noted   in   her  

thirties.  Our  patient  appears   to  have  suffered   from  a  milder  disease  course  

given   that   she   lived   up   to   62   years   and   several   other   patients   with   this  

syndrome   died   around   30   years   (Boissé   Lomax   et   al.,   2013).   She   was  

ambulant   until   her   thirties   and   not   wheelchair   bound   since   the   second  

decade   of   life   as   several   other   patients   with   this   disease,   which   further  

suggests   a   less   aggressive   disease   course.   This   might   be   due   to   normal  

variability  within  the  phenotypic  spectrum  of  GOSR2-­PME.  Alternatively,  this  

could   also   be   a   consequence   of   the   different   mutation   (K164del)   that   this  

patient  carries  in  the  compound  heterozygous  state  with  the  original  mutation  

(G144W).   This   possibility   was   addressed   in   experimental   studies  

investigating   the   functional   consequences   of   both   disease   associated  

mutations  and  is  summarized  in  the  following  two  chapters.  However,  solely  
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by  a  priori  assessment  of  the  location  of  both  mutations,  we  would  expect  the  

novel  c.491-­494delAGA  variant  to  confer  more  severe  defects,  not  less.  This  

mutation  causes  the  deletion  of  one  of  two  consecutive  lysines  (either  K163  

or  K164)   in  Membrin’s  C-­terminal  half  of   the  SNARE  domain.  Given  that  C-­

terminal  SNARE  zippering  is  critical  for  force  generation,  this  change  should  

result  in  more  profound  lipid  fusion  rate  deficiencies  as  compared  to  G144W,  

a  missense  mutation  in  the  N-­terminal  half  of  Membrin  SNARE  domain  (Gao  

et  al.,  2012).  

In  summary,   I  discovered  a  novel  PME  associated  GOSR2  mutation,  which  

further   reinforces   the   relevance   of   this   gene   to   PME   and   provides   an  

additional   allele   in   the   quest   to   uncover   the   disease   mechanism   of   this  

unresolved  disorder.  
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Chapter  3.            Investigating   the   pathophysiology   of   GOSR2  
mediated  progressive  myoclonus  epilepsy   in  patient-­derived  
fibroblasts  

3.1          Introduction  

Chapter  3  and  Chapter  4  summarize  the  main  project  carried  out  during  my  

PhD   research,   where   we   investigated   how   mutations   in   the   Golgi   SNARE  

protein   Membrin   –   encoded   by   the   GOSR2   gene   –   cause   the   severe  

neurological   syndrome   progressive   myoclonus   epilepsy   (PME).   When   I  

started   my   PhD,   the   G144W  GOSR2   mutation   had   been   demonstrated   to  

cause  PME  (Boissé  Lomax  et  al.,  2013;;  Corbett  et  al.,  2011;;  van  Egmond  et  

al.,   2014).   In   the   first   year   of   my   research   I   identified   a   novel   K164del  

GOSR2   mutation   associated   with   this   syndrome   (see   previous   chapter)  

(Praschberger   et   al.,   2015).   Yet   how   these   mutations   give   rise   to   this  

complex  neurological  disorder  was  completely  obscure.  Thus,  we  set  out   to  

answer   this   question.   At   a   first   glance   this   question   appears   to   be   quite  

narrow.  However,  upon  closer  examination  it  turns  out  to  be  broad.  This  has  

its  origins   in   the   fact   that  a  human  disease  phenotype  always   is  a  complex  

phenomenon   where   several   cellular   processes   –   downstream   of   the   initial  

pathogenic   ‘insult’   –   interact   to   give   rise   to   symptoms   and   clinical   signs.  

Accordingly,   we   can   understand   and   study   any   human   disorder   at   varying  

degrees   of   magnification.   As   in   microscopy,   the   most   zoomed   view   will  

provide  exquisite   details   but   necessarily   omit   the  wider   context.  Vice   versa  

will   a   zoomed   out   perspective   provide   a   high   level   understanding   but  

overlook   relevant   details.   Each   of   these   levels   of   understanding   will   have  

their  own  disease  mechanisms  at  heart,  which  together  will  ultimately  provide  

a   comprehensive   explanation   of   an   observed   disease   phenotype.  

Fortunately,  we  know  which  are   the   first  causes  of   this   form  of  progressive  

myoclonus   epilepsy   –   they   are   sequence   alterations   in   the  GOSR2   gene,  

which  will  eventually  translate  into  SNARE  domain  mutant  forms  of  the  Golgi  

SNARE  protein  Membrin.  Given  that  every  molecule  in  a  cell  and  every  cell  

in  a  multicellular  organism   is  embedded   in  a  plethora  of   direct   and   indirect  
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interdependencies,   these   Membrin   mutations   (and   every   other   pathogenic  

insult  at  the  heart  of  different  disorders)  will  have  a  wide  range  of  molecular  

and   cellular   consequences.   Some   of   these   consequences   will   be   directly  

relevant   for   the   disorder   at   hand,   others   unimportant   byproducts.   This  

complexity   and   high   degree   of   interdependency   of   physiological   processes  

makes  the  study  of  their  diseased  states  inherently  blurry.  Therefore,  I  want  

to  rephrase  our  prime  study  aim  and  specify  the  levels  of  understanding  we  

wished   to   achieve.   The   important   paradox  which   needed   to   be   resolved   is  

how  mutations   in   the  ubiquitously   important  Golgi  SNARE  protein  Membrin  

can  give  rise   to  a  selective  neurological  syndrome  with   the  core   features  of  

ataxia  and  hyperexcitability.  Which  aspect  of  the  neuronal  secretory  pathway  

is   special   and   sufficiently   different   to   non-­neuronal   cell   types   such   that   a  

Golgi  defect  would  show  up  almost  exclusively   in   the  nervous  system?  And  

how   would   such   a   defect   broadly   relate   to   a   lack   of   coordination   and   an  

epileptic  phenotype?  

In  order  to  comprehensively  link  the  mutant  GOSR2  genotype  with  the  PME  

phenotype  we  have  to  start  with  the  most  upstream  cause  and  test  how  the  

Membrin  mutations  impact  its  ability  to  perform  its  role  as  a  SNARE  protein.  

From   there   we   need   to   carry   on   and   test   how   such   alterations   impact  

Membrin’s   function   in   facilitating  anterograde  cargo   trafficking   via   the  Golgi  

apparatus  in  a  non-­neuronal  cell  (this  Chapter  3).  After  these  steps,  we  have  

to   enter   terra   incognita   and   unravel   the   ‘neuronal   bottleneck’   of   these  

mutations  (Chapter  4).  These  investigations  have  the  potential  –  if  successful  

–  to  provide  the  key  to  resolve  the  seeming  paradox  of  how  mutations  in  an  

integral   Golgi   protein   can   give   rise   to   a   neurological   disorder.   They   might  

thereby   uncover   the   most   critical   disease   mechanism   underlying  GOSR2-­

PME.  After   this  step,  we  can  aim  to   take  our  understanding  of   this  disorder  

one   level   higher   and   try   to   provide   a   preliminary   explanation   how   these  

neuronal  abnormalities  might   impact  a  complex  neuronal  circuit   in  a  way   to  

give  rise  to  ataxia  and  hyperexcitability.  
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3.2          Statement  of  contribution  

The   study   summarized   in   Chapter   3   and   Chapter   4   of   this   thesis   is   a  

collaborative   effort   with   several   scientists   having   made   important  

contributions,  both   intellectually  and  experimentally.  James  Jepson  was  not  

only  my  primary  supervisor  but  also  a  prolific  experimenter  on  this  project.  He  

extensively   characterized   the   effects   of   membrin   mutations   upon  

neuromuscular   junction   (NMJ)   morphology   and   proteome,   upon   the   distal  

axonal   secretory   pathway   and   also   contributed   to   Drosophila   stock  

generation.   Nancy   Malintan   in   James   Rothman’s   lab   performed   liposome  

fusion   assays   to   characterize   the   effects   of   the   PME-­associated   Membrin  

SNARE  motif  mutations  in  the  yeast  Bos1  orthologue.  She  thereby  provided  

key   insight   into   the   pathophysiology   of   GOSR2-­PME   at   this   ‘highest  

resolution’  perspective.  Simon  Lowe  in  James  Hodge’s  and  Maria  Usowicz’s  

labs  performed  a  detailed  analysis  of  the  effects  of  the  pathogenic  Membrin  

mutations   upon   synaptic   transmission   at   the   L3  Drosophila   neuromuscular  

junction   (NMJ).   He   thus   added   crucial   insights   into   the   GOSR2-­PME  

pathophysiology   at   a   higher   level.   Carlo   Giachello   in   Richard   Baines’   lab  

provided  experimental  evidence  for  seizure-­like  phenotypes  of  GOSR2-­PME  

model  Drosophila.  Nian  Patel  studied  the  phenotypic  consequences  of  wild-­

type   and  mutant  Membrin   overexpression   in  wild-­type  membrin   animals   as  

well   as   the   consequences   of   global   Membrin   knock-­down.   Shyam  

Krishnakumar,   Andreas   Ernst   and   James   Rothman   have   been   critical   in  

developing   ideas   and   experimental   strategies   for   this   study.   Several   other  

scientists  have  contributed   important  guiding   thoughts,  either  as  a   result   of  

meetings  or  informal  conversations.  

My  contributions  to  this  project  are  several-­fold.  Being  struck  by  the  severity  

of   the   disorder   during   my   human   genetics   work   on   GOSR2-­PME   (see  

above),  I  introduced  it  to  the  experimental  neuroscience  realm  and  assumed  

a  leading  role  in  intellectually  and  experimentally  pushing  towards  unraveling  

a   comprehensive   disease   mechanism.   Experimentally,   I   performed   the  

fibroblast  work  comprising  of  subcellular  localization  studies,  Golgi  trafficking  

assays  and  protein  quantification.  Furthermore,  I  generated  the  GOSR2-­PME  

Drosophila   models,   analyzed   their   core   organismal   phenotypes   (except  
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seizure-­like   behavior,   see   above)   and   uncovered   the   consequences   of  

membrin  mutations  upon  dendrite  growth.  

In   the   results  section  of   this  chapter   I  will   primarily   focus  on  my  own  work.  

However,  for  completeness,  I  will  also  include  results  from  other  researchers.  

When  results  were  not  obtained  by  myself,  I  will  explicitly  state  the  source  of  

the   experimental   contribution.   For   an   overview   of   the   experimental   figures,  

that  are  not  based  on  results  generated  by  myself,  please  refer  to  Table  8.    

Figure  6   Nancy  Malintan  
Figure  27C,  Figure  28A   Nian  Patel  
Figure  29C   Carlo  Giachello  

Figure  33D-­G,  Figure  36   James  Jepson  
Figure  37   Simon  Lowe  

Table  8.  Experimental  figures  contributed  by  other  researchers  
  

Also,   each   of   the   respective   figure   legends   contains   a   statement   of   the  

source  of  the  contribution.  

A   complete   and   concise   overview   of   the   entire   project   has   already   been  

published   under   the   title   ‘Mutations   in   Membrin/GOSR2   reveal   stringent  

secretory   pathway   demands   of   dendritic   growth   and   synaptic   integrity’  
(Praschberger  et  al.,  2017).    
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3.3          Materials  and  Methods  

3.3.1          Plasmids  

Human  GOSR2  coding  sequence  (CDS  of  NCBI  cDNA  NM_004287.3)  were  

custom  synthesized  by  GeneArt   (Thermo  Fisher  Scientific).  A  cgac  Kozac’s  

sequence  is  5’  of  the  initial  ATG  to  facilitate  efficient  translation  initiation.  The  

start  codon  is  directly  followed  by  a  FLAG  tag  coding  sequence  and  therefore  

gives   rise   to  N-­terminal   FLAG   tagged  Membrin   isoforms.   These   constructs  

were  5’/3’   flanked  by  NotI/KpnI  restriction  sites  (for  annotated  sequences  of  

the  custom  synthesized  fragments,  see  Appendix)  and  delivered  to  us  by  the  

company  in  a  pMA  vector,  which  contains  an  ampicillin  resistance  gene.  To  

enable   transient  overexpression  of  wild-­type  and  mutant  Membrin  (encoded  

by   the   GOSR2   gene)   in   mammalian   cells   these  

pMA_FLAG::GOSR2[WT]/[G144W]/[K164del]   inserts   were   subcloned   into  

pcDNA3.1(-­),   giving   rise   to   pcDNA3.1(-­)_FLAG::GOSR2[WT]  

/[G144W]/[K164del].   To   this   end,  

pMA_FLAG::GOSR2[WT]/[G144W]/[K164del]   plasmids   were   transformed  

into  chemically  competent  E.  coli  such  as  XL1-­blue  (Agilent)  and  amplified  by  

overnight   liquid  bacterial   culturing.  The  pcDNA3.1(-­)  backbone  was  derived  

from   pcDNA3.1(-­)   mouse   C/EBP   beta   (LAP)   (Addgene   plasmid   #12557),  

which  was  provided  as  a  bacterial  stab  culture  and  subsequently  amplified  by  

overnight   liquid  bacterial  culturing.  Plasmids  where  then  extracted  using  the  

PureYield   Plasmid   Miniprep   kit   (Promega)   and   DNA   concentrations  

determined   with   a   NanoDrop   1000   spectrophotometer   (Thermo   Fisher  

Scientific).   Approximately   1   µg   of  

pMA_FLAG::GOSR2[WT]/[G144W]/[K164del]   and   pcDNA3.1(-­)   mouse  

C/EBP   beta   (LAP)   plasmids   where   then   double   digested   with   NotI-­KpnI  

(NEB)   according   to   the   manufacturers   recommendations.   Cut   fragments  

were  electrophoretically  separated  on  a  1%  agarose  gel  supplemented  with  

[1/10000]   GelRed   (Biotium).   After   visualization   on   a   Benchtop   UV  

transilluminator   (UVP),   bands   were  manually   excised   and   purified   with   the  

Wizard  SV  Gel  and  PCR  clean-­up  kit   (Promega).  Subsequently,   the   inserts  

from  the  pMA  plasmids  were  ligated  into  the  cut  pcDNA3.1(-­)  backbone  with  

T4   ligase   (Promega),   transformed   into   chemically   competent   E.   coli.   and  
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individual   colonies   screened   for   successful   subcloning  by   restriction  digest.  

The   presence   of   the   correct   open   reading   frame   was   then   validated   by  

Sanger   sequencing   with   the   forward   (CMVF_pCDNA3:   5’-­

CAACGGGACTTTCCAAAATG-­3’)   and   reverse   (bGH_R:   5’-­

TGTCCAATTATGTCACACCACAG-­3’)  primers  by  Source  Biosciences.  

The   Halo::FM4::hGH   containing   plasmid   was   previously   cloned   in   the  

Rothman   lab   (Lavieu   et   al.,   2013).   GalT::RFP   was   a   kind   gift   from   Derek  

Toomre   and   encodes   mTagRFP   N-­terminally   fused   to   the   first   82   amino  

acids  of  the  human  Beta-­1,4-­galactosyltransferase  1.  

3.3.2          Bioinformatics  

SNARE  motifs   in   human   and  Drosophila  Membrin,   as   well   as   yeast   Bos1,  

were   identified   as   described  previously   (Kloepper   et   al.,   2007)   and  aligned  

with   Clustal   Omega   (McWilliam   et   al.,   2013).   Conserved   residues   were  

highlighted  using  BoxShade.  

3.3.3          Cell  culture  and  transfections  

Primary  skin-­derived  fibroblasts  from  the  first  described  GOSR2-­PME  patient  

were   kindly   shared  by  Mark  Corbett   (Corbett   et   al.,   2011).  As   controls,  we  

used   fibroblasts   from  healthy   individuals  of  either   the  same  sex  and  similar  

age,   or   opposing   sex   and   divergent   age   (control   1   =   23   year   old   female;;  

control  2  =  60  year  old  male  at  time  of  biopsy;;  the  G144W  mutant  Membrin  

fibroblasts  were  derived  from  a  32  year  old  female  patient).  Fibroblasts  and  

HEK293T   cells   were   grown   in   DMEM   (Thermo   Fisher   Scientific)  

supplemented  with  10%  fetal  bovine  serum  (FBS)  (Thermo  Fisher  Scientific)  

at  37°C  and  humidified  air  with  5%  CO2.  Fibroblast  transfections  were  carried  

out  with  Lipofectamine  2000  (Thermo  Fisher  Scientific).   In  order   to  obtain  a  

sufficient   number   of   transfected   cells   of   these   hard   to   transfect   cells,   the  

following   approach  was   taken.   For   paraformaldehyde   (PFA)   fixed   analysis,  

5000-­7000  fibroblast  cells  were  seeded  onto  19  mm  #1.5  barosilicate  cover  

glasses  (VWR)   in  12-­well  plates  and  allowed  to  grow  until  80%  confluence.  

For  live  imaging,  cells  were  seeded  into  35  mm  #1.5  CELLView  glass  bottom  

dishes  (Greiner).  3  µg  of  plasmid  DNA  and  6  µl  of  Lipofectamine  2000  were  
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each   diluted   in   75   µl   Opti-­MEM,   mixed   and   incubated   for   at   least   5   min  

before   addition   to   the   cultures.   To   avoid   excessive   Lipofectamine   toxicity  

complexes  were   removed  after  approximately  6-­8.5  hours  and  washed  with  

Dulbecco’s   phosphate   buffered   saline   (DPBS)   (Thermo   Fisher   Scientific).  

Human  embryonic   kidney   (HEK293T)   cells  were   transfected  with  Effectene  

(Qiagen).  

3.3.4          Fibroblast  imaging  

3.3.4.1          Immuno-­fluorescence  microscopy  

Cells  were   grown   on   13/19  mm  #1.5   glass   coverslips   (VWR)   in   24/12-­well  

plates  and  fixed  in  4%  PFA  (Alfa  Aesar)  for  15  min  followed  by  3x  phosphate  

buffered   saline   (PBS)   washes   and   a   3   min   permeabilization   step   in   PBS  

supplemented   with   0.3%   NP40,   0.05%   Triton-­X   100   and   0.1%   IgG   free    

bovine  serum  albumin  (BSA)  (Sigma).  Subsequently,  cells  were  rinsed  3x  in  

wash  buffer  (PBS  +  0.05%  NP40  +  0.05%  Triton-­X  100  +  0.2%  IgG  free  BSA)  

and  blocked  for  45  min  in  blocking  buffer  (PBS  +  0.05%  NP40  +  0.05%  Triton  

X-­100  +  5%  goat  serum).  Primary  antibodies  were  diluted  in  blocking  buffer  

and   incubated   overnight   rocking   at   4°C   followed   by   3x   5   min   washes   in  

washing   buffer.   Secondary   antibodies   were   diluted   in   blocking   buffer   and  

incubated   for   1   h   rocking   at   room   temperature.   Before   mounting   in   2   µl  

SlowFade  Gold  (Thermo  Fisher  Scientific),  cells  were  washed  3x  in  washing  

buffer   for   5   min,   then   3x   briefly   with   PBS   and   finally   immersed   once   in  

deionized   water.   The   following   antibodies   were   used:  mouse   anti-­Membrin  

(clone  25,  BD  Biosciences;;  1:500;;  this  antibody  was  raised  against  Membrin  

residues   5-­124   and   therefore   should   not   be   affected   by   the   G144W  

mutation.),   mouse   anti-­FLAG   (clone   M2,   Sigma;;   1:1000),   rat   anti-­FLAG  

(Agilent;;  1:1000),  rabbit  anti-­GPP130  (Cambridge  Bioscience;;  1:1000),  rabbit  

anti-­PDI   (Sigma;;   1:500),   mouse   anti-­GM130   (clone   35,   BD   Biosciences;;  

1:1000),   mouse   anti-­p230   (clone   15,   BD   Biosciences;;   1:250),   rabbit   anti-­

ERGIC-­53   (Sigma,   1:500)   and   goat   anti-­mouse/rabbit/rat   Alexa   Fluor  

488/555/647   conjugated   secondaries   (Thermo   Fisher   Scientific;;   1:500).  

Samples   were   imaged   on   inverted   confocal   Zeiss   LSM710   or   LSM880  

microscopes  with  63x  1.4NA  oil  immersion  objectives.  
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3.3.4.2          hGH  Golgi  trafficking  assay  

For   Golgi   trafficking   studies   cells   were   loaded   with   HaloTag  

tetramethylrhodamin   (TMR)   Ligand   (Promega)   24   h   post   transfection   with  

Halo::FM4::hGH  according   to   the  manufacturer’s   protocol.   Fibroblasts  were  

incubated   for   15  min  with   [1/1000]   TMR   ligand,   subsequently  washed  with  

medium  3x  and   incubated   for  a   further  30  min  at  37°C   to   remove  unbound  

ligand.  Thereafter  medium  containing  1.5  µM  D/D  solubilizer  (Clontech)  was  

added   in   order   to   release   the   aggregated   and   therefore  ER   retained  Halo-­

TMR::FM4::hGH  cargo.  Subsequently  fibroblasts  were  PFA  fixed.  In  order  to  

microscopically  correlate   the  cargo  derived  TMR  signal  with   the  cis-­Golgi,   I  

stained   this   compartment   with   an   anti-­GM130   antibody   as   outlined   above.  

Imaging  was  carried  out  with  a  Plan-­Apochromat  63x  1.4  NA  oil   immersion  

objective  on  a  Zeiss  confocal  LSM880  microscope.  Halo-­TMR::FM4::hGH  –  

GM130   Pearson’s   correlation   coefficients   (PCC)   were   extracted   with   the  

Coloc  2  ImageJ  plugin.  

3.3.4.3          GalT::RFP  FRAP  

For   fluorescence   recovery   after   photobleaching   (FRAP)   studies   I   imaged  

GalT::RFP   transfected   fibroblasts   in   35  mm  glass  bottom  dishes  24  h  post  

transfection  with  a  Plan-­Apochromat  63x  1.4  NA  oil  immersion  objective  on  a  

Zeiss  confocal  LSM880  microscope.  The  phenol  red  containing  DMEM  used  

for  culturing  these  cells  was  exchanged  for  DMEM  without   this  pH   indicator  

(Thermo   Fisher   Scientific)   in   order   to   reduce   background   fluorescence.  

Temperature   was   maintained   at   37°C   throughout   the   experiment   with   an  

environmental  chamber  and  a  stage  heater.  The  temperature  of  the  imaging  

system  was  allowed  to  equilibrate  for  at  least  30  min  in  order  to  warrant  that  

all   microscope   parts   in   proximity   to   the   cells   –   such   as   the   objective   –  

reached   37°C.   In   addition,   the   imaging   chamber   was   perfused   with  

humidified  air  supplemented  with  5%  CO2.  The  pinhole  was   fully  opened   in  

order   to   also   collect   photons   derived   from  Golgi   resident  GalT::RFP  above  

and  below  the  optical  plane.  Every  30  s  one  frame  was  acquired  –  4  pre-­  and  

40  post-­bleach.  To  achieve  effective  focus  correction  and  thereby  remain   in  

the  intended  optical  plane  over  this  comparably  long  acquisition  time,  Definite  
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Focus   (Zeiss)   was   used.   Photobleaching   was   carried   out   by   scanning   the  

entire  Golgi   resident  GalT::RFP   twice  at   100%   transmission  of   the  561  nm  

laser   line,   which   decreased  mean   fluorescence   intensity   in   this   area   by   at  

least  84%.  Only  cells  with  low  GalT::RFP  expression  levels  were  selected  for  

these  experiments.  All  image  processing  and  analysis  was  carried  out  in  Fiji.    

3.3.5          Western  blot  

For   western   blot   studies,   fibroblasts   were   grown   in   10   cm   dishes   and  

HEK293T  cells  in  6-­well  plates.  200/300  µl  lysis  buffer  (HEPES-­NaOH  pH  7.5  

20   mM,   KCl   100   mM,   glycerol   5%,   EDTA   10   mM,   Triton   X-­100   1%,   1x  

PhosSTOPTM   phosphatase   inhibitor   cocktail   (Roche),   1x   cOmpleteTM  

protease   inhibitor   cocktail   (Roche))  was  added   to  each  10cm  dish/6-­well  of  

PBS   washed   fibroblasts   or   FLAG::GOSR2[WT]   overexpressing   or   native  

HEK293T  cells  and   incubated  at   -­80°C  for  1  min   followed  by  resuspension.  

Lysed  cells  were  centrifuged  at  16  000  g,  4°C  for  10  min  and  the  liquid  phase  

transferred  to  a  fresh  Eppendorf  tube.  Protein  concentrations  were  quantified  

with   the   Pierce   660   nm   Protein   Assay   (Thermo   Fisher   Scientific).   Equal  

amounts   of   protein   (5   µg   for   fibroblasts,   15   µg   for  HEK293T   lysates)  were  

used  per   lane  of  a  10-­well,  1.5  mm  NuPAGE  Novex  4-­12%  Bis-­Tris  Protein  

Gel   (Thermo  Fisher  Scientific).  Prior   to  electrophoresis   in  a  XCell  SureLock  

Mini-­Cell   with   1x   NuPAGE   MOPS   SDS   running   buffer   and   NuPAGE  

Antioxidant  (Thermo  Fisher  Scientific),  protein  was  denaturated  for  10  min  at  

70°C   in   1x   NuPAGE   LDS   Sample   Buffer   (Thermo   Fisher   Scientific)  

supplemented  with  50  mM  DTT  (Sigma).  Protein  was  allowed  to  enter  the  gel  

at  80V  for  10  min  and  then  separated  for  90  min  at  160  V.  The  transfer  onto  

an  Immobilon-­P  PVDF  (Millipore)  membrane  was  carried  out  with  the  XCell  II  

Blot   Module   (Thermo   Fisher   Scientific)   in   Tris-­glycine-­methanol   transfer  

buffer  (20  mM  Tris,  150  mM  glycine,  20%  methanol)  at  30  V  for  90  minutes.  

Successful  transfer  was  validated  by  visualizing  protein  bands  with  Ponceau  

S  solution  (Sigma).  Remaining  Ponceau  S  solution  was  removed  by  washing  

the  membrane   in   tris   buffered   saline  Tween   20  TBST   (Tris  HCl   pH  7.5   10  

mM,  NaCl   140  mM,  Tween  20  0.1%)  and   then  blocked   in   a   rotating  50  ml  

Falcon  tube  in  TBST  supplemented  with  5%  dried  skimmed  milk  powder  for  1  

h   at   room   temperature.   Primary   and   secondary   antibodies   were   diluted   in  
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TBST+5%   dried   skimmed   milk   powder   and   incubated   in   a   50   ml   rotating  

Falcon   tube   overnight   4°C   and   2   h   at   room   temperature   respectively.   The  

following   antibodies   were   used:   mouse   anti-­Membrin   (clone   25,   BD  

Biosciences;;  1:2000),  rabbit  anti-­Membrin  (Synaptic  Systems,  1:2500),  rabbit  

anti-­hamster  Syntaxin-­5  (Rothman  lab;;  1:1000;;  Orci  et  al.,  2000),  rabbit  anti-­

Sec22b   (Rothman   lab;;   1:1000;;   Volchuk   et   al.,   2004),   rabbit   anti-­rat   Bet1  

(Rothman   lab;;  1:1000;;  Volchuk  et  al.,  2004),  mouse  anti-­b-­actin   (clone  AC-­

74,   Sigma;;   1:5000)   and   HRP-­conjugated   anti-­mouse/rabbit   secondaries  

(Jackson  Immuno;;  1:2500-­8000).  In  case  PVDF  membranes  were  re-­probed  

for   proteins   of   similar   molecular   weight   as   previously   tested   proteins   they  

were   stripped   with   Restore   Western   Blot   stripping   Buffer   (Thermo   Fisher  

Scientific),   followed  by  a  1  h  blocking  step  and   the  above  outlined  antibody  

incubations.   For   semi-­quantitative   western   blots,   detection   was   carried   out  

with   SuperSignal   West   Pico   Chemiluminescent   Substrate   (Thermo   Fisher  

Scientific)   and   a  ChemiDocTM   Imaging   system   (Bio-­Rad).   Band   intensities  

were   extracted   with   Image   Studio   Lite   (Li-­cor).   Alternatively,   signal   was  

detected  with  FUJI  RX  X-­Ray   films  after   incubation  with  SuperSignal  West  

Pico  Chemiluminescent  Substrate  (Thermo  Fisher  Scientific).  

  

  

     



  

   69  

3.4          Results  

3.4.1          GOSR2-­PME  mutations  cause  partial  SNARE  dysfunction  

To  assess   the  disease  mechanism  of  GOSR2-­PME  at   the  highest  possible  

resolution,   we   first   have   to   turn   our   investigation   towards   the   molecular  

changes   encoded   by   the   GOSR2   mutations.   Both   pathogenic   mutations  

result   in   amino   acid   changes   within   the   evolutionarily   conserved   Membrin  

SNARE   domain   (Figure   5).   Such   alterations   suggest   impaired   SNARE  

complex   formation   with   its   cis-­Golgi   partner   SNAREs   Bet1,   Sec22b   and  

Syntaxin-­5.   Physiologically   this   process   is   thought   to   occur   via   N-­   to   C-­  

terminal  zippering  along  stereotypically  spaced  interacting  layer  amino  acids  

(ranging   from   -­7   to   +8)   within   the   respective   SNARE   domains   (Figure   5)  

(Fasshauer   et   al.,   1998;;   Gao   et   al.,   2012).   Both   GOSR2-­PME   disease  

mutations  –  G144W  and  K164del  –  affect  this  critical  layered  structure,  which  

directly   suggests   that   cis-­Golgi   SNARE   complex   assembly   might   be  

impaired.  

  

Figure  5.  Membrin  SNARE  domain  sequence  alignment  
SNARE   domain   alignment   of   Homo   sapiens   (Hs),   Drosophila   melanogaster  
(Dm)   and   Saccharomyces   cerevisiae   (Sc)   Membrin   (uniprot   ID   O14653-­1),  
Membrin   (Q9VRL2)   and  Bos1   (P25385)   respectively.  Conserved   residues   are  
highlighted   in   black,   similar   residues   in   grey.   Layer   amino   acids   critical   for  
forming   the   tetrameric   cis-­Golgi   SNARE   complex   are   indicated   in   green.   The  
disease-­causing   G144W   and   K164del   (one   of   two   consecutive   lysines   is  
deleted)  and  their  Drosophila  and  yeast  orthologous  residues  are  highlighted  in  
blue  and  red.  

  

This  hypothesis  was  tested  by  Nancy  Malintan  in  James  Rothman’s  lab  and  I  

will   briefly  summarize  her  key   findings,  as   they   represent   the   fundament  of  

the  experimental  pyramid  described  in  this  thesis.  Nancy  Malintan  performed  

liposome   fusion   assays   with   the   wild-­type   and   mutant   Membrin   yeast  

orthologue  Bos1  and  its  respective  yeast  partner  SNAREs  (Bet1,  Sec22  and  

Sed5).   Yeast   proteins   where   chosen   because   of   inherent   difficulties   of  

working   with   purified   mammalian   Syntaxin-­5   and   because   yeast   Golgi  
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SNARE   liposome   fusion   assays   represent   a   well   established   experimental  

system   (Parlati   et   al.,   2000;;   2002).   Golgi   SNARE   proteins   are   conserved  

throughout   eukaryotic   evolution,   which   is   why   our   experimental   results  

derived   from   yeast  will   likely   also   be   applicable   to   human   (Kloepper   et   al.,  

2007).  The  validity  of  our  approach  is  further  reinforced  by  observations  that  

mammalian  and  yeast  Golgi  SNARE  can  be   functionally   interchangeable   in  

liposome   fusion   assays   and   living   cells   (Fischer   von  Mollard   and   Stevens,  

1998;;   McNew   et   al.,   1997;;   Varlamov   et   al.,   2004).   To   determine   the  

functional   impact  of  Bos1/Membrin  SNARE  motif  mutations  Nancy  Malintan  

introduced   purified   Bet1   into   one   liposome   population,   wild-­type   or  

G176W/D196del  (orthologous  to  G144W/K164del  in  human  Membrin)  mutant  

Bos1,   Sec22   and   Sed5   in   another   population   and   read   successful   fusion  

after  mixing  of  the  two  populations  with  a  Förster  resonance  energy  transfer  

(FRET)  based  approach.  This   readout   is  based  on   the  de-­quenching  of   the  

NBD-­rhodamine  FRET  pair  as  a  result  of  fusion  induced  spatial  separation  of  

the   lipid   tethered   fluorophores   (Struck   et   al.,   1981).   Consistent   with   the  

predictions   Nancy   Malintan   found   that   both   yeast   orthologous   Bos1  

mutations  caused  reduced  fusion  rates,  which  were  nevertheless  larger  than  

negative  control,  where  Bet1  was  omitted  (Figure  6A,  B).  

  

Figure  6.  Reduced  liposome  fusion  rates  due  to  GOSR2-­PME  mutations  
(A)   Example   traces   showing   increase   in   NBD   fluorescence   due   to   liposome  
fusion   between   wild-­type   and   G176W/D196del   mutant   Bos1   containing  
liposome   fusion   reactions.   Expressed   as   a   fraction   of   maximal   NBD  
fluorescence  after  addition  of  detergent.  
(B)   Endpoint   (120   min)   quantification   of   experiment   as   described   in   (A),  
normalized   to   wild-­type.   n   =   8,   8,   7   for  WT,   G176W   and   D196del.   Replicate  
values   derived   from   repeat   experiments,   mean   and   SD   are   shown.   **,   ***  
represent  p  <  0.01,  0.001;;  ANOVA  with  Dunnett’s  multiple  comparison  test.  
These  experiments  were  performed  and  analysed  by  Nancy  Malintan  in  James  
Rothman’s  laboratory.  
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These   findings   suggest   that   the  GOSR2-­PME  mutations   cause  partial,   and  

not   complete   loss   of   function.   In   addition,   Nancy   Malintan   found   that   the  

effect   size   scaled   with   the   nature   of   the   change.   The   missense   mutation  

(G176W)   in   the   N-­terminal   half   of   the   Bos1   SNARE   domain   had   a   more  

subtle  effect,  while   the  deletion  mutation  (R196del)   in   the  C-­terminal  half  of  

the   Bos1   SNARE   domain   was   more   deleterious   (Figure   6A,   B).   This   is  

consistent   with   the   critical   importance   of   SNARE   complex   C-­terminal  

zippering  for  force  generation  (Gao  et  al.,  2012)  and  a  probable  misalignment  

of  the  C-­terminal  layers  +3  to  +8  as  a  result  of  the  single  amino  acid  deletion.  

In  summary,  we  can  infer  from  these  yeast   liposome  fusion  studies  that  the  

G144W  and  K164del  Membrin  mutations   likely   cause  a  partial   decrease  of  

cis-­Golgi  SNARE  complex   formation,  and   in   turn   reduced  membrane   fusion  

of  ER-­derived  vesicles  with   the  Golgi  apparatus  and  ER-­Golgi   intermediate  

compartment  (ERGIC).    

3.4.2          Mutant  Membrin  retains  the  capability  to  localize  to  the  cis-­
Golgi  

Only  Membrin  localized  to  the  Golgi  and  ERGIC  will  be  capable  of  mediating  

ER-­to-­Golgi   transport   via   fusing   opposing   lipid   bilayers   together   with   its  

partner   SNAREs   Bet1,   Syntaxin-­5   and   Sec22b.   Previous   electron  

microscopy   immuno-­gold   studies   have   established   that   Membrin  

physiologically   localizes   primarily   to   the   cis-­Golgi   as  well   as   to   the   ERGIC  

(Hay   et   al.,   1998;;   Volchuk   et   al.,   2004).   Thus,   in   a   first   step   –   in   order   to  

serve  as  an  internal  control  and  to  confirm  these  findings  in  the  experimental  

system   of   this   study   –   I   have   tested   these   findings   with   indirect   immuno-­

fluorescence  confocal  microscopy   in  primary  skin   fibroblasts  derived   from  a  

healthy  human.  It  has  to  be  noted  however,  that  by  doing  so,  we  are  pushing  

the  boundaries  of  diffraction  limited  optics  (maximum  200  nm  resolution)  and  

therefore  will  not  be  able   to  unambiguously  distinguish  between  the  ERGIC  

in  Golgi  proximity  –  as  opposed  to  the  peripheral  ERGIC  next  to  ER  exit  sites  

–   as   well   as   cis-­   from   trans-­Golgi.   Nevertheless,   this   system   is   sensitive  

enough   to  evaluate  whether  Membrin   is   correctly   localized  within   the  Golgi  

area   and   if   so,   whether   it   is   shifted   towards   the   cis-­Golgi/ERGIC   or   trans-­

Golgi/trans-­Golgi  network.  At  the  light  microscopy  level  I  found  a  high  degree  
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of  colocalization  of  endogenous  Membrin  with  the  cis-­Golgi  marker  GPP130,  

the  ERGIC  marker  ERGIC-­53  and  a   less  colocalization  with   the   trans-­Golgi  

marker  p230  (Figure  7A,  B).  These  findings  are  consistent  with  the  previously  

established  predominant  localization  of  Membrin  in  the  cis-­Golgi  and  ERGIC,  

and  therefore  confirm  the  validity  of  my  imaging  approach.    

  

Figure  7.  Subcellular  localization  of  endogenous  Membrin  
(A)  Example  confocal  slices  of  human  control  fibroblasts  co-­stained  for  Membrin  
and   the   ERGIC,   cis-­   and   trans-­Golgi   markers   ERGIC53,   GPP130   and   p230  
respectively.  
(B)  Pearson’s  correlation  coefficients  (PCC)  of  experiment  as  outlined  in  (A).  N  
=  6,  6  and  7   for  ERGIC53,  GPP130  and  p230.  Replicate  values  derived   from  
individual  cells  of  one  experiment,  mean  and  SD  are  shown.  ***  represents  p  <  
0.001;;  ANOVA  with  Dunnett’s  multiple  comparison  test.  

  

Corbett  et  al.  suggested  that  G144W  mutant  Membrin  fails  to  localize  to  the  

Golgi   apparatus   (Corbett   et   al.,   2011).   This   observation   implies   that   the  

G144W   Membrin   mutation   confers   complete   loss   of   function   due   to   an  

absence   from   its   target   compartment,   which   however   would   not   be  

compatible   with   organismal   life.   In   addition,   the   partial   membrane   fusion  

defects  observed   in   liposome   fusion  studies  are  only   relevant   for   impacting  

ER-­to-­Golgi  trafficking  rates  if  mutant  Membrin  also  localizes  to  its  native  site  

of  action  –  the  ERGIC  and  cis-­Golgi.  This  is  why  we  tested  whether  Membrin  

harboring   the   SNARE   motif   mutations   could   in   principle   localize   to   these  

sites.   To   this   end   I   overexpressed   wild-­type   or   G144W/K164del   mutant  

Membrin  in  primary  human  skin  fibroblasts  derived  from  a  healthy  control  and  

assessed   their   subcellular   localization   with   confocal   microscopy.   The  
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Membrin  constructs  were  N-­terminal  fused  to  a  FLAG  tag  in  order  to  be  able  

to   distinguish   the   transgenically   expressed   Membrin   from   the   endogenous  

protein.   Overexpressed   wild-­type   as   well   as   mutant   Membrin   successfully  

exited   the   ER,   which   is   apparent   from   confocal   images   where   the   FLAG  

staining   did   not   overlap   with   the   ER   resident   enzyme   protein   disulfide  

isomerase  (PDI)  (Figure  8A,  B).  

  

Figure  8.  Mutant  Membrin  successfully  exits  the  ER  
(A)   Example   confocal   slices   of   wild-­type,   G144W   and   K164del   FLAG-­tagged  
Membrin  overexpressed   in  control   fibroblasts.  Cells  were  co-­stained   for  FLAG  
and   the   ER   resident   protein   PDI.   Comparable   results   were   obtained   in  
HEK293T  cells.  
(B)  Pearson’s  correlation  coefficients  (PCC)  of  experiment  as  outlined  in  (A).  N  
=  12,  13,  13  for  WT,  G144W,  K164del.  Replicate  values  derived  from  individual  
cells  of  one  experiment,  mean  and  SD  are  shown.  ***  represents  p  <  0.001, ns  
=  not  significant  (p  >  0.05);;  ANOVA  with  Dunnett’s  multiple  comparison  test.  

  

In   contrast,   overexpressed   wild-­type   and   mutant   Membrin   localized   to   the  

cis-­Golgi,  as  colocalization  of  all  FLAG::Membrin  variants  with   the  cis-­Golgi  

marker   GPP130   was   apparent   (Figure   9A).   Nevertheless,   a   subtle   but  

statistically  significant  decrease  of  colocalization  was  present  in  G144W  and  

K164del   compared   to   wild-­type   Membrin   when   Pearson’s   correlation  

coefficients  were  extracted  (Figure  9B).  I  speculate  that  this  finding  might  be  

explained  by  a  decrease  of  cis-­Golgi  entry  of  mutant  Membrin  due  to  SNARE  

defects   and   a   consecutive   build-­up   of  mutant  Membrin   containing   vesicles  

adjacent   to   the   cis-­Golgi.   To   confirm   this   idea   immuno-­gold   electron  
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microscopy   would   have   to   be   carried   out,   which   however   surpasses   the  

scope  of  these  experiments.  

  

Figure  9.  Mutant  Membrin  localizes  to  the  cis-­Golgi  
(A)   Example   confocal   slices   of   wild-­type,   G144W   and   K164del   FLAG-­tagged  
Membrin  overexpressed   in  control   fibroblasts.  Cells  were  co-­stained   for  FLAG  
and  the  cis-­Golgi   resident  protein  GPP130.  Comparable  results  were  obtained  
in  HEK293T  cells.  
(B)  Pearson’s  correlation  coefficients  (PCC)  of  experiment  as  outlined  in  (A).  N  
=  16,  16,  17  for  WT,  G144W,  K164del.  Replicate  values  derived  from  individual  
cells  of  one  experiment,  mean  and  SD  are  shown.  *,  **  represent  p  <  0.05,  0.01;;  
ANOVA  with  Dunnett’s  multiple  comparison  test.  

  

To  test  whether  also  endogenous  G144W  mutant  Membrin  could  localize  to  

this   compartment,   we   re-­examined   the   patient   fibroblasts   from   the   original  

GOSR2-­PME   study   (Corbett   et   al.,   2011).   Prior   to   performing   experiments  

with   these   fibroblasts,   which   where   kindly   shared   by   Mark   Corbett,   I  

confirmed   the   presence   of   the   GOSR2   gene   alteration   that   gives   rise   to  

G144W  mutant  Membrin  by  means  of  Sanger  sequencing  (Figure  10).    
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Figure  10.  Sequence  confirmation  of  G144W  mutant  Membrin  fibroblasts  
Fibroblasts   derived   from   a   GOSR2-­PME   patient   were   sequenced   prior   to  
performing   experiments   in   order   to   confirm   the   presence   of   the   pathogenic  
c.430G>T   nucleotide   alteration   in   exon   5   of   the  GOSR2   gene.   This   change  
gives  rise  to  G144W  mutant  Membrin.  

  

Next,   I   examined   the   specificity   of   commercially   available   anti-­Membrin  

antibodies.   A   mouse   monoclonal   Membrin   antibody   purchased   from   BD  

Biosciences  appeared  specific  in  western  blot,  as  it  detected  a  band  around  

the   expected   25   kDa   molecular   weight   (Figure   11A).   Also,   in   immuno-­

fluorescence   microscopy   it   clearly   recognized   the   overexpressed   protein  

(Figure   11B).   This   antibody   was   used   for   western   blot   quantifications   and  

immuno-­fluorescence  microscopy  presented  in  this  thesis.  Exceptions  to  this  

are   the   anti-­p230   co-­staining   (Figure   7),  which   required   a   non-­mouse   anti-­

Membrin   antibody   and   one   control   western   blot   (Figure   13D).   For   these  

experiments   I   used   a   Synaptic   Systems   polyclonal   rabbit   anti-­Membrin  

antibody,   which   detected   Membrin   in   western   blot   and   recognized   the  

overexpressed  protein  in  immuno-­fluorescence  microscopy  (Figure  11C,  D).    
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Figure  11.  Anti-­Membrin  antibody  validation  
(A)  The  mouse   (ms)  monoclonal  Membrin  antibody  used   in   this  study  exhibits  
specificity  in  western  blot.  Only  one  band  around  the  expected  molecular  weight  
of  approximately  25  kDa  is  apparent.  Equal  total  protein  amounts  of  HEK293T  
cell  lysate  (lane  2)  or  HEK293T  cells  overexpressing  WT  FLAG::Membrin  (lane  
1)  were  probed.    
(B)   The   mouse   monoclonal   Membrin   antibody   used   in   this   study   recognizes  
wild-­type   FLAG::Membrin   overexpressed   in   control   fibroblasts   and   processed  
with   the   same   immuno-­fluorescence   protocol.   Top   row   shows   an  
overexpressing   cell,   where   Membrin   and   FLAG   signal   clearly   colocalize.   At  
identical   settings,   endogenous   Membrin   cannot   be   seen   in   an   untransfected  
cell.  Boundaries   of   nuclei   and  Golgi   region   (*),   as   seen  by  Membrin   signal   at  
much  higher  contrast  settings,  are  outlined.  
(C)   Western   blot   of   HEK293T   cell   lysate   (lane   2)   or   HEK293T   cells  
overexpressing   WT   FLAG::Membrin   (lane   1)      with   the   rabbit   (rb)   polyclonal  
Membrin  antibody,  which  was  used   in   this  study.  One  strong  band  around   the  
expected   molecular   weight   of   approximately   25   kDa   is   apparent.   Also,   one  
lower  molecular  weight  band  and  several  of  higher  molecular  weight  are  visible,  
albeit  of  much  weaker  signal  intensity.    
(D)  Two  HEK293T  cells  overexpressing  WT  FLAG::Membrin  are  shown,  where  
FLAG  and  rabbit  anti-­Membrin  staining  colocalise.    
  
  

Utilizing  this  validated  antibody,  Membrin  could  clearly  be  detected  at  the  cis-­

Golgi   of   G144W  mutant   fibroblasts   (Figure   12A,   B)   and   did   not   appear   to  

accumulate   in   the  ER   (Figure  12C),   thereby   confirming  our   overexpression  

results  also  in  patient  cells  harboring  endogenous  G144W  mutant  Membrin.  
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Figure  12.  Endogenous  G144W  mutant  Membrin  localizes  to  the  Golgi  
(A)  Example  confocal  slices  of  control  and  G144W  mutant  Membrin  fibroblasts  
co-­stained   for  Membrin   and  GPP130.  Membrin   in   control   and  G144W  mutant  
fibroblasts  localized  to  the  Golgi  apparatus.  However,  G144W  Membrin  levels  in  
the  Golgi  area  was  greatly  reduced  as  compared  to  both  controls.  This  was  also  
seen  in  several  repeat  anti-­Membrin  stainings.  
(B)   Pearson’s   correlation   coefficients   between   endogenous   Membrin   and  
GPP130  signals  of   the  experiment  described  in  (A)  are  shown.  N  =  12,  13,  15  
for  control  1,  control  2,  G144W.  Replicate  values  derived  from  individual  cells  of  
one   experiment,  mean   and   SD   are   shown.   **,   ***   represent   p   <   0.01,   0.001,  
ANOVA  with  Dunnett’s  multiple  comparison  test.  
(C)  Example  confocal  slices  of  control  and  G144W  mutant  Membrin  fibroblasts  
co-­stained  for  the  ER  resident  protein  PDI.  

  

Taken  together  our  subcellular  localization  experiments  suggest  that  both  the  

G144W  and  K164del  mutant  forms  of  Membrin  retain  their  intrinsic  capability  

to   localize   to   their   cis-­Golgi   target   compartment.   This   suggests   that   the  

partial   SNARE   domain   deficiencies   as   found   in   liposome   fusion   assays   by  
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Nancy   Malintan   are   likely   also   relevant   in   determining   lipid   bilayer   fusion  

rates  at  the  cis-­Golgi  in  a  living  cell.  

3.4.3          Reduced  levels  of  G144W  mutant  Membrin  

While   overexpressed   and   endogenous  G144W  mutant  Membrin   could   also  

be   detected   at   the   cis-­Golgi,   Membrin   levels   in   the   Golgi   area   of   G144W  

mutant   fibroblasts  were   significantly   decreased  when   compared   to   controls  

as   measured   by   quantitative   immuno-­fluorescence   (Figure   13A).   Western  

blots  confirmed  an  overall   reduction  of  Membrin   levels   in  mutant   fibroblasts  

(Figure  13B,  C).  Because  Corbett  et  al   reported  unchanged  Membrin   levels  

in   the  same  cell   line,   I  utilized  an   independent   rabbit  polyclonal  antibody   to  

confirm  this  finding  (Figure  13D).  

  

Figure  13.  Reduced  Membrin  levels  in  G144W  mutant  fibroblasts  
(A)  Membrin  mean  fluorescence  intensity  in  the  Golgi  region  as  demarcated  by  
GPP130  of  experiment  as  described  in  Figure  12A.  N  =  12,  13,  15  for  control  1,  
control   2,   G144W.   Replicate   values   derived   from   individual   cells   of   one  
experiment,  mean  and  SD  are  shown.  
(B)   Western   blot   of   lysates   from   control   and   G144W   Membrin   fibroblasts   is  
shown.  
(C)   Quantification   of   experiment   as   described   in   (B).   N   =   8   replicate   values,  
derived   from   three   independent   lysates   per   genotype   and   immunoblotted  
twice/three  times.  Mean  and  SD  are  shown.    
(D)   Western   blot   of   lysates   from   control   and   G144W   Membrin   fibroblasts   is  
shown  utilizing  a  different  anti-­Membrin  antibody  as  in  (B).  
Replicate   values,  mean  and  SD  are   shown.   **,   ***   represent   p  <  0.01,   0.001,  
ANOVA  with  Dunnett’s  multiple  comparison  test.  

  

If   fewer   cis-­Golgi   SNARE   complexes   are   formed,   either   due   to   a   SNARE  

domain  defect  or  the  presence  of  fewer  Membrin  molecules  at  the  cis-­Golgi,  

Membrin’s  partner  SNAREs  might  also  be  present  at  different  levels.  I  tested  

this   notion   with   western   blot,   where   Bet1,   Syntaxin-­5   and   Sec22b   levels  
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appeared  grossly  unchanged  between  G144W  mutant  fibroblasts  and  either  

control  (Figure  14).  

  

Figure  14.  Western  blot  of  Membrin’s  partner  SNAREs  
Equal   amounts   of   lysates   derived   from   healthy   control   or   G144W   mutant  
Membrin  fibroblasts  were  loaded  into  each  lane.  Immuno-­detection  was  carried  
out   with   anti-­Bet1,   Syntaxin-­5   and   Sec22b   antibodies.   b-­actin   served   as   a  
loading   control.   Note   that   Syntaxin-­5   exists   as   a   long   and   a   short   isoform.  
Similar  results  were  obtained  with  three  independent  lysates  using  each  of  the  
depicted  antibodies.  

  

In  summary,  we   found  reduced  Membrin   levels   in  G144W  fibroblasts,  while  

the   relative   amounts   of   its   partner   SNARE   proteins   remained   largely  

unchanged.  The  availability   of   fewer  G144W  mutant  Membrin  molecules  at  

the  ERGIC  and  cis-­Golgi  could  provide  an  additional  mechanism  –  besides  

the  SNARE  dysfunction  as  observed  in  liposome  fusion  studies  –  of  delaying  

membrane  fusion  at  the  ERGIC/cis-­Golgi.    

3.4.4          Intact  ER-­to-­Golgi  trafficking  in  G144W  fibroblasts  

To  assess  how  SNARE  dysfunction  –  and  potentially  how  reduced  amounts  

of  G144W  mutant  Membrin  at  the  cis-­Golgi  –  affect  ER-­to-­Golgi  transport  in  a  

non-­neuronal  cell,  I  performed  Golgi  trafficking  assays  in  control  and  G144W  

mutant   Membrin   fibroblasts.   Therefore   I   overexpressed   human   growth  

hormone  (hGH)  fused  to  four  FM  domains  and  a  Halo-­tag.  The  FM  domains  

self-­aggregate  in  the  absence  of  a  solubilizing  drug  and  thus  do  not  allow  ER  

exit  of  this  model  cargo  (Rivera  et  al.,  2000;;  Rollins  et  al.,  2000).  When  D/D  

solubilizer   is   added,   this   chimeric   protein   disaggregates   and   enters   the  

secretory  route,  where  it  can  be  optically  visualized  after  addition  of  a  Halo-­

tag  TMR  ligand.  

I   co-­stained   for   the  cis-­Golgi   resident  protein  GM130   in  order   to  be  able   to  

test   the   colocalization   of   the   cargo   with   this   compartment   as   a   function   of  

time.   To   obtain   quantitative   information   I   assessed   the   degree   of   TMR-­
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GM130   covariance   in   the  Golgi   region   by   computing   Pearson’s   correlation  

coefficients   (PCC).   The   validity   and   interpretation   of   this   measure   of  

colocalization   critically   depends   upon   well   controlled   image   acquisition  

conditions  (Dunn  et  al.,  2011),  which  is  particularly   important  when  trying  to  

assess   small   effect   sizes   such   as   are   expected   in   our   case.   Therefore   I  

performed   technical   controls   prior   to   commencing   the   extensive   image  

acquisition   for   this   experiment.   No   substantial   chromatic   shift   between   the  

two  acquisition  channels  –  green  and  red  –  were  detected  with  0.5  and  0.1  

µm   TetraSpeck   beads   (Figure   15A).   In   addition,   the   full   width   at   half  

maximum   of   the   X-­Y   point   spread   function   for   both   channels   indicated  

adequate   resolving   capabilities   for   the   employed   confocal   system   (Figure  

15B)  (Cole  et  al.,  2011).    

  

Figure  15.  Optical  properties  of  the  imaging  setup  
(A)  Confocal  slices  of  0.1  or  0.5  µm  TetraSpeck  beads  acquired  with  green  and  
red  acquisition  settings  as  used  for  the  TMR-­GM130  colocalization  studies  (see  
Figure  17).  
(B)  X-­Y  point  spread  function  derived  from  0.1  µm  TetraSpeck  beads  as  shown  
in   (A).  Normalized  pixel   values   (circles  and   triangles),  Gaussian   fit   (lines)  and  
full   width   at   half   maximum   (fwhm)   are   depicted.   N   =   13   beads   from   one  
experiment.  

  

Finally,   I  evaluated   the  prediction   that   ‘perfect’   colocalization  should  yield  a  

PCC  of  1,  while  no  colocalization  should  yield  0.  To  this  end  I  stained  control  

fibroblasts   with   a   rabbit   anti-­GPP130   primary   antibody   and   two   anti-­rabbit  

secondary   antibodies   –   one   conjugated   with   an   Alexa   Fluor   488   and   the  

other  one  with  Alexa  Fluor  555  (Figure  16A).   Indeed,   this  yielded  a  PCC  of  

approximately   1   (Figure   16B).   If   one   channel   was   turned   by   90°   and  

therefore   a   purely   random   relationship   modeled,   the   PCC   dropped   to  

approximately   0   (Figure   16B).   In   addition,   bleed-­through   or   potential   dye  
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cross-­reactivity   between   the   green   and   red   acquisition   channels   were   not  

present   in   my   sample   preparation   and   imaging   settings   (Figure   16C).   In  

summary,   these   technical   controls   suggested   that   the   experimental   system  

was   thoroughly   calibrated   and   therefore   capable   of   delivering   meaningful  

quantitative  results.  

  

Figure  16.  PCC  and  bleed  through  controls  
(A)  Healthy  control   fibroblasts  were  stained  with  an  anti-­GPP130  antibody  and  
colocalization   of   Alexa   Fluor   488   and   555   tagged   secondary   antibodies  
detected  in  single  confocal  slices.  
(B)   Pearson   correlation   coefficients   (PCC)   of   experiment   (A)   were   computed  
either   in   the  original  acquisition   image  orientation,  or  with  one  channel   rotated  
by   90°   in   respect   to   the   other   channel.      N   =   3   individual   cells   from   one  
experiment.  Mean  and  SD  are  shown.    
(C)  Confocal   control   images   showing  no  bleed-­through  or   dye   cross-­reactivity  
between   the   green   and   red   acquisition   channels.   Control   fibroblasts   were  
stained   with   anti-­GM130   (cis-­Golgi)   and   Halo-­tag   TMR   ligand.   They   were  
imaged  with  identical  laser  intensities  and  gain  settings  and  are  shown  with  the  
same  contrast  settings.  Image  one  depicts  an  experimental  image  as  analysed  
in  Figure  17,  were   the  artificial   secretory   pathway   cargo  Halo::FM4::hGH  was  
transfected   and   released   from   the  ER   via   the   addition   of  D/D   solubilizer   (see  
below).  Colocalisation  between  the  GM130  and  TMR  signals  is  apparent.  Image  
two  depicts  a  cell  that  was  not  transfected  with  Halo::FM4::hGH  but  loaded  with  
TMR.  Only  green,  but  no  red  fluorescence  can  be  observed.  Image  three  shows  
a   cell   where   Halo::FM4::hGH   was   transfected   but   not   released   from   the   ER.  
Thus,  GM130  and  TMR  anti-­localise  and  no  green  fluorescence  can  be  seen  in  
the  regions  were  red  signal  is  detected.  
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After   completion   of   the   above   technical   validations   and   thereby   gained  

confidence  into  the  accuracy  of  my  imaging  set-­up  I  imaged  G144W  mutant  

and   control   fibroblasts   with   no   release   and   10,   20   and   30  min   after   cargo  

release.   By   10   min   after   the   addition   of   D/D   solubilizer   cargo   appeared  

accumulated   in   the   cis-­Golgi   (Figure   17A).   After   20   and   30   min   cargo  

accumulated   adjacent   to   the   cis-­Golgi   and   colocalization   with   GM130   was  

reduced   compared   to   the   10   min   time   point   (Figure   17A).   In   addition,  

vesicular   structures   became   apparent,   consistent   with   cargo   that   has  

successfully  transitioned  the  Golgi  apparatus  and  is  now  being  distributed  via  

the   trans-­Golgi   network   towards   the   plasma   membrane.   Remarkably,   the  

pattern   of   prominent   TMR-­GM130   colocalization   after   10   min   of   D/D  

solubilizer  incubation,  and  a  decrease  by  20  and  30  min,  was  very  similar  in  

G144W  mutant  fibroblasts.  This  qualitative  observation  indicates  that  ER-­to-­

Golgi  trafficking  in  G144W  fibroblasts  is  not  grossly  abnormal.  
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Figure  17.  ER-­to-­Golgi  trafficking  in  G144W  mutant  Membrin  fibroblasts  
(A)   Example   confocal   slices   of   control   1   &   2   and   G144W   mutant   Membrin  
fibroblasts  overexpressing  the  artificial  Halo::FM4::hGH  cargo  loaded  with  TMR.  
When   no   D/D   solubilizer   was   present   the   cargo   remained   in   the   ER   due   to  
aggregation   of   the   FM   domains.   10   min   after   solubilization   significant  
colocalization  with  the  cis-­Golgi  marker  GM130  was  apparent,  which  decreased  
after   20   and   30   min   of   solubilization.   Remarkably,   also   G144W   mutant  
fibroblasts  appeared  to  traffic  this  cargo  efficiently.  This  was  also  observed  in  a  
small  pilot  experiment,  where  G144W  mutant  and  control  1  cells  were  studied.  
(B)   Quantification   of   experiment   as   described   in   (A).   Pearson’s   correlation  
coefficients  of  Halo-­TMR::FM4::hGH  and  GM130  were  calculated  for  each  time  
point.  Number  of   individual  cells  of  one  experiment  quantified  for  control  1  &  2  
and  G144W  are  as  follows:  no  solubilizer  –  23,  21,  23;;  10  min  –  27,  28,  27;;  20  
min  –  26,  29,  28;;  30  min  –  27,  26,  28.  Mean  and  SD  are  shown.  ***  represents  
p   <   0.001, ns   =   not   significant   (p   >   0.05);;   one-­way   ANOVA   with   Dunnett’s  
multiple  comparison  test.  

  

PCCs  at  each  time  point  quantitatively  confirmed  these  observations.  With  no  

D/D  solubilizer  present,  the  ER  retained  hGH  cargo  and  the  cis-­Golgi  marker  

GM130  were   negatively   correlated   (Figure   17B).   10  min   after   solubilization  
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PCCs  rose  to  approximately  0.7,  and  subsequently  significantly  decreased  to  

approximately  0.5  and  0.4  by  20  and  30  min  respectively.  Importantly,  ER-­to-­

Golgi   trafficking   in   G144W   fibroblasts   was   quantitatively   almost  

indistinguishable   from   both   controls   (Figure   17B).   Only   a   very   subtle  

decrease   in   colocalization   of   the   cargo  with  GM130  was   apparent   after   10  

min  of  disaggregation.  Conversely,  after  20  min,  a   trend   towards   increased  

PCCs  was  measured   in  G144W   fibroblasts.  Collectively,   these   effect   sizes  

were   marginal   and   did   not   consistently   reach   statistical   significance.  

Nevertheless,   their  pattern   suggests   a   very   subtle   rate   change  of   cis-­Golgi  

entry.   In  such  a  scenario  we  expect  the  peak  of  TMR-­GM130  colocalization  

to  appear  later  than  in  the  controls  and  therefore  to  maintain  high  PCCs  until  

later  time  points.    

To   complement   the   hGH   data   I   performed   fluorescence   recovery   after  

photobleaching   (FRAP)   experiments   as   an   additional   ER-­to-­Golgi   transport  

readout.  To  this  end  I  overexpressed  a  chimeric  reporter  construct  consisting  

of  an  N-­terminal  portion  of  a  trans-­Golgi  resident  galactosyltransferase  and  a  

RFP   tag   (GalT::RFP).   Thereafter   I   photobleached   the   entire   pool   of   Golgi  

resident  GalT::RFP   in   control  and  G144W   fibroblasts   in  order   to  assess   its  

recovery   through   ER-­to-­Golgi   transport   of   non-­bleached   molecules   (Figure  

18A)  (Sengupta  et  al.,  2015;;  Zaal  et  al.,  1999).  To  minimize  bleach-­artefact  

as  a  result  of  acquiring  44  frames  in  this  approximately  20  min   live   imaging  

experiment,   I   collected   photons   with   a   highly   sensitive   Gallium   arsenide  

phosphide   (GaAsP)  detector,  which  enabled  me   to  use  a   very   low  561  nm  

excitation   laser   power.   Indeed,   these   acquisition   settings   resulted   in  

comparably  stable  GalT::RFP  fluorescence  in  non-­bleach  control  acquisitions  

(Figure   18B).   GalT::RFP   fluorescence   recovered   by   approximately   50%   in  

the   Golgi   area   following   experimental   photo-­bleaching   by   scanning   this  

region   twice   with   100%   transmission   of   the   561   nm   laser   (Figure   18B).  

Recovery   kinetics   were   remarkably   similar   between   G144W   and   control  

fibroblasts.  Only  a  trend  towards  reduced  recovery  in  G144W  was  apparent.  

However,  no  statistically  significant  difference  after  10  or  19.5  min  recovery  

times  could  be  detected.  These  data  are  consistent  with  our  hGH  trafficking  

results  and  might  be  the  consequence  of  a  minor  trafficking  delay  in  G144W  
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fibroblasts,   which   is   too   small   to   conclusively   be   demonstrated   with   these  

common  ER-­to-­Golgi  trafficking  assays.    

  

Figure  18.  Golgi  FRAP  
(A)  GalT::RFP  in  the  entire  Golgi  region  of  control  and  G144W  mutant  Membrin  
fibroblasts  was  photo-­bleached  and  recovery  assayed  over   the  course  of  19.5  
min.  Example  images  of  pre-­bleach,  immediately  post-­bleach,  10  and  19.5  min  
recovery  time  points  are  shown  in  successive  order  for  each  genotype.  
(B)  Control  acquisition  with  the  same  settings  as  (A)  and  (C),  however  without  
experimental   photo-­bleaching.  Mean   fluorescence   intensity   (MFI)   in   the  Golgi  
area   of   two   individual   control   1   and   one   control   2   cells   are   shown.   Graph  
represents  mean  and  SD  for  each  time  point.    
(C)  Quantification  of  experiment  as  described   in   (A).  MFIs  of   the  Golgi   region  
were  extracted,  expressed  as  relatives   to  baseline   fluorescence  and  corrected  
for   post-­bleach   residual   fluorescence.  Mean   recovery   of   controls   and  G144W  
are   shown.   N   =   16,   16,   13   individual   cells   from   five   independent   imaging  
sessions  for  control  1,  control  2,  G144W.  ns  =  not  significant  (p  >  0.05)  after  10  
and  19.5  min  of  recovery;;  ANOVA  with  Dunnett’s  multiple  comparison  test.  

  

Taken   together,   these  ER-­to-­Golgi   trafficking  studies  with  an  artificial   cargo  

that  is  synchronously  released  from  the  ER,  as  well  as  our  GalT::RFP  FRAP  

studies,   demonstrate   remarkably   preserved   Golgi   entry   kinetics   in   G144W  

fibroblasts.   This   finding   in   a   non-­neuronal   cell   type   is   consistent   with   the  

observation  that  GOSR2-­PME  almost  exclusively  affects  the  nervous  system  

and  does  not  manifest  as  a  broad  multi-­system  disorder  as  one  might  expect  

from   a   Golgi   disorder   (Freeze   and   Ng,   2011).   It   further   reinforces   the  

importance   of   studying   the   pathophysiology   of   GOSR2-­PME   in   neurons,  

which   might   display   differential   vulnerability   to   subtle   Golgi   trafficking  
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alterations  owing  to   their  very   large  secretory  demands  (Horton  and  Ehlers,  

2004;;  Pfenninger,  2009).     
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3.5          Discussion  

3.5.1          Necessary  steps  for  understanding  GOSR2-­PME  

To   gain   an   overarching,  multi-­level   insight   into   how  mutations   in   the  Golgi  

SNARE  protein  Membrin  ultimately   give   rise   to  PME,  we  have   to   trace   the  

effects  of   the  pathogenic   sequence  alterations   from  protein   to  organism.   In  

this  directional   endeavour  we  have   to   first   establish  a   solid   fundament  and  

thus  start   at   the  protein  and  basic   cellular   levels  –  which   is   summarized   in  

this   chapter.   Given   that   a   physiological   function   has   previously   been  

established  for  Membrin,  we  can  directly  test  how  this  function  changes  as  a  

consequence  of   the  GOSR2-­PME  mutations.  Only   then  will  we  move  on   to  

the  neuronal  and  organismal  levels  (Chapter  4),  which  deal  with  phenomena  

more   distant   of   the   first   cause   of   GOSR2-­PME   –   i.e.   GOSR2   sequence  

alterations.  However,  functional  roles  for  Membrin  are  not  well  established  at  

these   remote   levels.   The   current   literature   does   not   comprise   studies  

detailing   the   relationship   of  Membrin   and  neuronal   cell   biology   or  Membrin  

and  its  impact  upon  neural  circuits.  Thus,  it  is  the  more  important  to  start  with  

a  fixed  stepping  stone  in  proximity  of  the  first  cause  of  GOSR2-­PME  and  in  

the   realm  of   the  known  and  gradually  ascend   into   the  unknown   that   is  also  

further  downstream  of  the  initial  pathogenic  insults.  

Previous  research  has  established  that  Membrin  is  a  SNARE  protein,  which  

largely  acts  at   the  ERGIC  and  cis-­Golgi  and   thereby  mediates  anterograde  

cargo  trafficking  in  the  early  secretory  pathway  (Hay  et  al.,  1997;;  Volchuk  et  

al.,   2004).   SNARE   proteins   have   been   shown   to   represent   the   minimal  

machineries  responsible  for  fusing  opposing  lipid  bilayers  via  the  formation  of  

tight   hetero-­tetrameric   SNARE   complexes   along   conserved   SNARE  motifs  

(Südhof   and   Rothman,   2009).   The   known   role   of   Membrin   is   thus  

summarized  by  its  function  of  enabling  ERGIC/cis-­Golgi  cargo  deposition  via  

SNARE  complex  mediated  membrane   fusion.  Central   to   this  process   is   the  

structural  integrity  of  Membrin’s  SNARE  motif,  which  is  necessary  to  form  the  

cis-­Golgi   SNARE   complex.   Intriguingly,   both   pathogenic   disease  mutations  

alter   Membrin’s   SNARE   domain.   These   changes   thus   directly   suggest  

impaired   SNARE   complex   formation   and   resulting   alterations   in   secretory  
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trafficking.  We  therefore  set  out  to  test  these  predictions  with  liposome  fusion  

assays  and  Golgi  trafficking  studies.  We  also  tested  whether  mutant  Membrin  

localizes  to  the  ERGIC/Golgi  –  a  prerequisite  for  its  physiological  function.  

3.5.2          SNARE  defects  

Prior   to  my  PhD   research  only   one  GOSR2  mutation  had  been  associated  

with  PME,  i.e.  G144W.  I  discovered  the  novel  K164del  mutation,  which  gave  

rise   to   PME   in   the   compound   heterozygous   state   with   G144W.   Having   a  

second  disease  allele  at  hand  for  the  investigation  of  the  pathophysiology  of  

this  severe  neurological  condition  promised  to  be  a  useful  tool  and  a  valuable  

internal  control.  After  all,  both  alleles  are  expected  to  display  effects  with  the  

same  directionality.  They  are  both  expected   to  decrease  Membrin   function,  

because  GOSR2-­PME   is   an   autosomal-­recessive   disorder.   However,   their  

effect   sizes  might   vary,   particularly   if   we   consider   the   precise   location   and  

nature   of   the   mutations   within   Membrin’s   SNARE   domain.   G144W   is   a  

missense   mutation   in   the   N-­terminal   half   of   Membrin’s   SNARE   domain,  

K164del  a  single  amino  acid  deletion   in   its  C-­terminal  half.  Because   the  C-­

terminal  half  of  SNARE  domains   is   thought   to  generate   the   force  critical   to  

membrane   fusion   and   because   the   K164   deletion   likely   causes   the  

misalignment   of   several   interacting   residues   in   this   part   of   the   SNARE  

complex,   we   were   expecting   to   see   more   dramatic   consequences   upon  

SNARE  function  in  this  mutant  (Gao  et  al.,  2012;;  Zhang,  2017).  Indeed,  this  

is  what  Nancy  Malintan’s   liposome  fusion  assays  revealed.  Bos1  (the  yeast  

Membrin  orthologue)  carrying  either  mutation  was  capable  of  fusion,  yet  both  

mutations  caused  decreased  rates  of  liposome  fusion  mediated  by  yeast  cis-­

Golgi   SNARE   proteins.   Furthermore,   the   effect   size   of   this   reduction   was  

larger   in   the   D196del   allele   (orthologous   to   K164del).   These   experiments  

established  the  furthest  upstream  disease  mechanism  due  to  the  pathogenic  

GOSR2-­PME   mutations,   i.e.   membrane   fusion   deficits   as   a   result   of   the  

SNARE  motif  disruptions.    
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3.5.3          Mutant  Membrin  at  the  cis-­Golgi  

To  study  the  physiological  consequences  of   the   in  vitro  established  SNARE  

defects   in   a   living   cell,   I   utilized   healthy   control   and  GOSR2-­PME   patient-­

derived   skin   fibroblasts.   In   a   first   step,   I   wanted   to   know   whether   the  

pathogenic   Membrin   mutations   caused   abnormalities   of   its   subcellular  

localization,   which   was   suggested   in   previous   work   from   Corbett   et   al.  

(Corbett   et   al.,   2011).   Such   a   defect   would   be   physiologically   relevant,   as  

only   Membrin   localized   to   the   ERGIC/cis-­Golgi   is   capable   of   mediating  

membrane   fusion   at   this   site.   In   addition,   Membrin   localizing   to   different  

subcellular  compartments  might   interfere  with   resident  proteins  and   thereby  

contribute   to   the   disease   phenotype.   Therefore,   we   transiently  

overexpressed   N-­terminal   FLAG   tagged   wild-­type   and   mutant   Membrin   in  

healthy   control   fibroblasts   and   studied   its   subcellular   localization   with  

confocal  microscopy.  Both  mutants  clearly  exited  the  ER  and  localized  to  the  

cis-­Golgi   in   a   pattern   comparable   to  wild-­type  Membrin.  While   there  was  a  

clear  positive  correlation  between  G144W/K164del  mutant  Membrin  and  the  

cis-­Golgi  marker  GPP130,   it  was  nevertheless   significantly   decreased  by  a  

small  amount  compared  to  wild-­type  Membrin.  Such  a  result  is  not  surprising  

considering  that  Membrin  is  required  for  proteins  to  enter  the  Golgi.  If  mutant  

Membrin  is  overexpressed  it  presumably  enriches  in  the  ERGIC/Golgi,  which  

itself   might   cause   a   partial   membrane   fusion   deficit   and   therefore   a   peri-­

ERGIC/Golgi   enrichment   of   mutant   Membrin   enriched   membranes.  

Nevertheless,   because   of   the   observed   high   correlation   between   mutant  

Membrin   and  GPP130  we   conclude   that   the  G144W  and  K164del   disease  

mutations   do   not   impair   Membrin’s   capability   to   localize   to   the   Golgi   by   a  

large   degree.   From   this   it   follows   that   the   lipid   fusion   deficits   as   found   in  

liposome   fusion   assays   likely   have   a   direct   impact   upon   the   cargo   entry  

kinetics  at  the  ERGIC/Golgi.  

While   we   found   that   overexpressed  G144W  mutant   Membrin   could   clearly  

localize   to   the   cis-­Golgi,   Corbett   et   al.   reported   that   endogenous   G144W  

mutant   Membrin   failed   to   localize   to   this   compartment   in   patient-­derived  

fibroblasts   (Corbett   et   al.,   2011).   This   finding  has   far-­reaching   implications,  

as   it   suggests   that   the   G144W   mutation   –   even   though   it   only   partially  
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impairs   the   Membrin   SNARE   domain   –   could   be   a   true   null   allele   as   a  

consequence  of   its   inability   to   localize   to   its  physiological  site  of  action.  We  

therefore  sought  to  repeat  the  finding  of  Corbett  et  al.  using  the  same  patient  

cells  harboring  a  homozygous  G144W  Membrin  mutation.  However,  we  used  

a  different  antibody,  which  we  thoroughly  validated  before  commencing  with  

these   experiments.   Under   our   experimental   conditions   we   could   clearly  

detect  Membrin  at  the  cis-­Golgi  of  these  cells,  but  to  significantly  decreased  

levels.   It   appears   conceivable   that   under   low   contrast   conditions   this  

decrease  might  be  misinterpreted  as  an  absence  of  the  protein,  which  could  

be   an   explanation   for   the   discrepant   conclusions   of   Corbett   et   al.   and   our  

own.   This   significant   decrease   of   G144W   mutant   Membrin   at   the   Golgi  

apparatus   might   either   be   the   consequence   of   localization   to   a   different  

subcellular   compartment   or   an   overall   reduction,   possibly   due   to   increased  

protein   turn-­over.   Because   G144W   mutant   Membrin   did   not   appear  

accumulated   in   the   ER   nor   strikingly   enriched   elsewhere   within   mutant  

fibroblasts,   the   latter   notion   appeared   more   likely.   We   addressed   this  

hypothesis   with   western   blot   studies   and   found   significantly   decreased  

G144W   mutant   Membrin   levels   in   patient   fibroblasts   when   compared   to  

healthy  controls.  Also  this  finding  is  in  disaccord  with  the  study  of  Corbett  et  

al.,  who   reported  unchanged  Membrin   levels   in  G144W   fibroblasts   (Corbett  

et  al.,  2011).  The   fact   that  we  used  a   thoroughly  validated  antibody   for  our  

studies,   plus   an   additional   independent   antibody   and   furthermore   that   also  

our   immuno-­fluorescence  microscopy   studies   confirmed  decreased  G144W  

Membrin  levels,  argues  for  the  validity  of  our  results.  Whether  this  decrease  

is   functionally   relevant   is   presently   unclear,   especially   in   the   light   of  

substantial  Membrin   level   fluctuations   that  we   observed   also   between  both  

healthy   controls   (Figure   13B)   and   the   availability   of   only   a   single   patient  

fibroblast   line   in   this   study.  Of  note,  Bethani  et  al.   showed   that  10%  of   the  

physiological   endosomal   SNARE   levels   were   often   sufficient   for   unaltered  

endosomal  trafficking,  lending  support  to  the  idea  that  some  SNARE  proteins  

might   be  more   abundantly   expressed   than   required   (Bethani   et   al.,   2009).  

Such   a   scenario   could   also   be   true   for   the   cis-­Golgi   SNARE   proteins,   in  

which   case   our   finding   of   reduced   G144W   Membrin   would   likely   not  

contribute   to   the   disease   phenotype.   If   however   this   change   is   disease  
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relevant,   then   its   effect   is   expected   to   further   aggravate   the   partial   loss   of  

function  nature  of  the  G144W  mutation.  

Unfortunately,   we   were   not   able   to   obtain   fibroblasts   from   the   G144W   –  

K164del   compound   heterozygous   patient   reported   in   this   thesis  

(Praschberger   et   al.,   2015).   This   fibroblast   line   would   have   served   as   an  

additional   validation   platform   of   our   studies,   although   disentangling   the  

relative  contribution  of  either  mutation  would  have  been  difficult.    

3.5.4          Unimpaired  ER-­to-­Golgi  trafficking  in  a  non-­neuronal  cell  

Nancy  Malintan’s   liposome   fusion   assays   revealed  SNARE  defects   caused  

by   the   GOSR2-­PME   mutations   and   my   subcellular   localization   studies  

suggested  that  the  disease  mutations  do  not  prevent  Membrin  from  reaching  

its  site  of  action  –  the  ERGIC  and  cis-­Golgi.  As  a  result,  lipid  fusion  rates  of  

ER-­derived,   cargo   loaded   COPII   vesicles   with   these   compartment   is  

expected   to   be   reduced   in   a  Membrin  mutant   cell.   To   test  whether   such   a  

lipid   fusion   deficit   leads   to   reduced   cis-­Golgi   cargo   entry   rates   I   performed  

two   independent   sets   of   ER-­to-­Golgi   trafficking   assays   in   G144W   mutant  

Membrin   fibroblasts.   In   one   experiment,   I   synchronously   released   ER-­

retained  model  cargo  into  the  secretory  pathway  and  assayed  its  arrival  time  

in   the  cis-­Golgi.   In  a  complementary  approach,   I  measured   the  ER-­to-­Golgi  

recycling   rates  of  a   fusion  construct  between  RFP  and  a  portion  of  a  Golgi  

enzyme  (Sengupta  et  al.,  2015;;  Zaal  et  al.,  1999).  Both  experiments  revealed  

remarkably   convergent   results,   as   they   showed  Golgi   entry   comparable   to  

two   fibroblast   lines  derived   from  healthy  control  subjects,  with  only  a  subtle  

trend   towards   reduced  rates.  This   finding  appears  surprising  at   first  glance,  

considering   the   pathogenic   SNARE   motif   defects.   Of   note   however,   the  

G176W   Bos1   mutation   (orthologous   to   the   G144W   Membrin   mutation)  

exhibited  very  mild  effects  in  liposome  fusion  studies.  Equivalent  changes  in  

lipid  fusion  kinetics  at  the  ERGIC/cis-­Golgi  of  a  living  cell  might  be  below  the  

detection   limit   of   the   employed   trafficking   assays.   In   addition,   this   subtle  

SNARE  defect  might  possibly  be  absorbed  by  the  physiological  presence  of  

supernumerous  Membrin  molecules   and   the   compensatory   engagement   of  

20%  more  cis-­Golgi  SNARE  complexes.  Maybe  such  partial  SNARE  defects  



  

   92  

are   only   physiologically   relevant   under   conditions   of   very   large   trafficking  

rates,  while  not  being  functionally  relevant  for  providing  a  basic  ER-­to-­Golgi  

cargo   flux   as   required   by   most   cell   types.   Importantly,   the   finding   of  

unimpaired   early   secretory   pathway   trafficking   in   a   G144W   mutant   non-­

neuronal   cell  model   provides  a   likely  explanation  why  most   tissues  –  apart  

from  the  nervous  system  –  do  not  exhibit  symptoms  in  GOSR2-­PME,  despite  

the  disease-­causing  mutation  affecting  a  ubiquitously  important  protein.  

3.5.5          Considerations  about  the  fibroblast  studies  

Due  to  limited  availability,  I  was  only  able  to  obtain  one  GOSR2-­PME  patient-­

derived   fibroblast   line.   GOSR2-­PME   is   a   very   rare   disorder   with   only   18  

patients  worldwide  reported  and  thus  biological  material  is  scarce.  Therefore,  

the  interpretation  of  the  observed  results  is  more  difficult.  Given  that  we  are  

comparing   results   from   one   patient-­derived   fibroblast   line   with   fibroblasts  

derived  from  two  different  healthy  controls,  we  are  comparing  cells  which  not  

only  differ  in  the  pathogenic  mutation,  but  also  in  the  presence  of  thousands  

of  unrelated  SNPs.  Therefore,   the  observed  cellular  phenomena  might  also  

be  influenced  by  this  genetic  heterogeneity.  Further  disease  cell  lines  would  

thus   increase   the   confidence   of   attributing   observed   effects   to   the   disease  

mutation  and  rule  out  the  possibility  that  the  effects  are  caused  by  unrelated  

SNPs.  In  addition,  subtle  effects,  such  as  those  that  are  expected  for  the  ER-­

to-­Golgi   traffic   rate   change   due   to   G144W,   might   be   overshadowed   by  

natural   variation   in   the   kinetics   of   this   process.   These   changes  might   only  

become   fully   apparent   by   comparing   several  GOSR2-­PME   fibroblast   lines  

with  healthy  controls.  To  circumvent  these  intrinsic  difficulties,  future  studies  

into   the   cell   biology   of   GOSR2-­PME   would   greatly   benefit   from   the  

generation   of   G144W/K164del   mutant   Membrin   knock-­in   cell   lines   utilizing  

the  CRISPR/Cas9  genome  editing  technology  (Cong  et  al.,  2013;;  Mali  et  al.,  

2013).  The  unedited  cell   line  would   then  be   the  perfect  control,  as   it  would  

contain  the  same  genetic  background.  
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3.5.6          The  importance  of  a  neuronal  model  

The   experiments   at   the   protein   and   basic   cellular   levels   outlined   in   this  

Chapter  have  provided  solid  foundations  for  our  quest  to  shed  light  upon  the  

pathophysiology  of  GOSR2-­PME.  They  have  not  yet,  however,  touched  upon  

the  cardinal  point  related  to  our  investigation,  i.e.  how  neurons  are  exquisitely  

sensitive   to   Membrin   mutations.   In   fact,   the   apparent   lack   of   ER-­to-­Golgi  

trafficking   impairment   in   a   non-­neuronal   mutant   Membrin   model   cell   has  

consolidated   the   spotlight   that   was   already   directed   toward   the   nervous  

system   because   of   the   almost   exclusive   neurological   symptomatology   of  

GOSR2-­PME  patients.  This   is  why  we  developed  Drosophila  models  of   this  

disorder,   which   not   only   allows   for   the   study   of   Membrin   mutant   neurons  

grown  in  their  natural  environment,  but  also  provides  an  organismal  read-­out  

of  the  disease  mutations.  The  summary  of  our  Drosophila  investigations  into  

GOSR2-­PME  are  detailed  in  the  following  Chapter.  
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Chapter  4.            Investigating   the   pathophysiology   of   GOSR2  
mediated   progressive   myoclonus   epilepsy   in   novel  
Drosophila  models  of  the  disorder  

4.1          Introduction  

The   previous   Chapter   has   established   the   impact   of   the   GOSR2-­PME  

mutations   upon   SNARE-­mediated   membrane   fusion   and   ER-­to-­Golgi  

trafficking  in  a  non-­neuronal  cell.  While  the  G176W/R196del  Bos1  mutations  

(orthologous  to  human  G144W/K164del  Membrin  mutations)  both  decreased  

lipid   fusion   in   a   cell   free   reconstitution   assay   and   G144W/K164del   mutant  

Membrin   correctly   localized   to   their   ERGIC/cis-­Golgi,   G144W   mutant  

Membrin   fibroblasts   appeared   to   traffic   cargo   to   the   Golgi   in   rates  

comparable  to  healthy  controls.  This  finding  might  explain  why  tissues  other  

than   the   nervous   system  are   not   symptomatically   affected   in  GOSR2-­PME  

and   further   reinforced   the   idea   that  neurons  might  be  selectively  vulnerable  

to   these   partial   loss   of   function   Membrin   mutations.   To   investigate   which  

aspects   of   neuronal   cell   biology  might   be   affected   and   how   such   changes  

could   affect   neural   circuits   in   a   way   to   give   rise   to   ataxia   and  

hyperexcitability,  we  introduced  the  disease  mutations  into  Drosophila.  These  

GOSR2-­PME  models  exhibited  severe  motor,  seizure-­like  and  early  lethality  

phenotypes.   Dendritic   growth   was   highly   impaired   in   the   presence   of  

Membrin  mutations,   presumably   due   to   restrictions   in  ER   synthesized,   and  

therefore   ER-­to-­Golgi   trafficking   and   Membrin   dependent,   lipid   supplies,  

which   are   required   for   plasma   membrane   expansion.   Intriguingly,   also  

synaptic   morphological   and   physiological   abnormalities,   such   as   reduced  

trans-­synaptic   stability   and   hyperactive   neurotransmission,   were   detectable  

at   the   experimentally   highly   accessible   neuromuscular   model   synapse.  

These   findings  collectively  show   that  dendritic  growth  and  synaptic   integrity  

depend   upon   tightly   controlled   trafficking   rates.   Our   neuronal   findings   in  

Drosophila   outlined   in   this   Chapter   thereby   provide   the   missing   key   to  

understand   how   the   GOSR2-­PME   mutations   result   in   nervous   system  

dysfunction.  
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4.2          Statement  of  contribution  

Please   refer   to   the   ‘Statement   of   contribution’   section   in   Chapter   3   for   a  

detailed  account  of  my  contribution  to  our  collaborative  investigations  into  the  

pathophysiology   of   GOSR2-­PME.   Experimental   results   from   other  

researchers  than  myself  are  included  also  in  this  section  to  facilitate  a  more  

holistic  view  of  the  project.  The  respective  sources  are  clearly  identified  in  the  

text  and  figure  legends.  
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4.3          Materials  and  Methods  

4.3.1          Plasmids  

Drosophila  melanogaster  membrin  CDS  (of  NCBI  cDNA  NM_139703.4)  with  

and  without  the  G147W  and  K166del  mutations  were  custom  synthesized  by  

GeneArt  (Thermo  Fisher  Scientific)  according  to  the  same  design  as  outlined  

in  ‘Materials  and  Methods’  of  Chapter  3  for  the  GOSR2  constructs,  giving  rise  

to   pMA_FLAG::membrin[WT]/[G147W]/[K166del]   (annotated   sequences   of  

the  custom  synthesized  fragments  can  be  found  in  the  Appendix).    

In  order  to  create  wild-­type  and  mutant  GOSR2/membrin  transgenic  flies  the  

inserts   of   the   pMA   plasmids   were   subsequently   cloned   via   NotI   and   KpnI  

(NEB)   into   pUASTattB   (Bischof   et   al.,   2007),   giving   rise   to  

pUASTattB_FLAG::GOSR2[WT]/[G144W]/[K164del]   and  

pUASTattB_FLAG::membrin[WT]/[G147W]/[K166del]   according   to   the  

subcloning   protocol   as   outlined   in   ‘Materials   and   Methods’   of   Chapter   3.  

Subcloning   of   FLAG::GOSR2[WT]   was   carried   out   by   Kofan   Chen.   The  

presence   of   the   correct   open   reading   frame   was   validated   by   Sanger  

sequencing   with   the   primers   pUASTattB_F2   (5’-­

GCAACCAAGTAAATCAACTGCA-­3’)   and   pUASTattB_R2   (5’-­

TGTCCAATTATGTCACACCACAG-­3’)  by  Source  Biosciences.  

4.3.2          Drosophila  stocks  

4.3.2.1          membrin1524  

A  membrin   null   (membrin1524)   allele   was   previously   generated   in   an   EMS  

screen   investigating   tube   morphogenesis   and   kindly   shared   by   Mark  

Krasnow  (Ghabrial  et  al.,  2011).  These   flies  harbor  a  c.255C>T  mutation   in  

the   membrin   gene,   which   gives   rise   to   a   premature   stop   codon   causing  

termination  of   translation  47  amino  acids  prior   to  membrin’s  critical  SNARE  

domain.  To  control   for   potential   genetic  background  effects,  we  outcrossed  

membrin1524  for  five  generations  into  the  isogenised  white  mutant  (white1118)  

strain   iso31  by   following  an  AccI   (NEB)   restriction  site   that   is   introduced  by  

the   nonsense  mutation.   To   this   end   individual   females   –   either  w[1118];;   +;;  

membrin1524/+  or  w[1118];;  +;;  +/+  –  where  crossed  to  iso31  males.  After  egg  
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laying  and  hatching  of  L1  larvae,  mother  animals  were  removed,  frozen  at  -­

20°C   and   subsequently   ground   in   40   µl   of   ‘dirty   genomic   prep   buffer’  

(Proteinase  K  0.32  U,  10  mM  Tris-­HCl  pH  7.6,  1  mM  EDTA,  25  mM  NaCl).  

Samples   were   subsequently   incubated   for   30   min   at   37°C   followed   by  

Proteinase   K   heat   inactivation   at   95°C   for   10   min.   The   mixture   was   spun  

down  for  30  s  at  14000  g  and  2  µl  of  the  supernatant  used  as  the  template  for  

PCR   with   0.8   µM   of   forward   (mem1524_OUTF1:   5’-­

GTGGTAAAGGACATCGAGCG-­3’)   and   reverse   (mem1524_OUTR1:   5’-­

CCACCACTCCTCCGATGAAT-­3’)   primers   and   12.5   µl   GoTaq   G2   Green  

Master  Mix  (Promega)  in  a  25  µl  final  volume.  Initial  denaturation  at  95°C  for  

2  min  was  followed  by  35  cycles  of  95°C  30  s,  60°C  30  s,  73°C  60  s  and  a  

final  extension  at  73°C  for  5  min.  5  µl  of  this  PCR  product  was  digested  with  

5   U   of   AccI   in   Cutsmart   Buffer   (NEB)   for   2   h   at   37°C,   separated   by   1%  

agarose   gel   electrophoresis   and   visualized   with   UV   light   and   GelRed  

[1/10000]   (Biotium).  A  double  band  around  350/300  basepairs   indicated   the  

desired  genotype,  where  membrin1524  was  present  in  the  heterozygote  state  

(Figure  19).  

  

Figure  19.  Diagnostic  digest  during  outcrossing  of  the  membrin1524  allele  
A   double   band   of   the   expected   size   in   lanes   2,   6,   7,   8   and   10   indicates   that  
these  F2   females,  which  were   previously   individually   crossed   to   iso31  males,  
carried   the   membrin1524   allele   in   the   heterozygous   state.   Therefore,   their  
offspring   virgin   females  were   selected   for   further   backcrossing  and  diagnostic  
AccI  digest.  

  

The  presence  of   the   c.255C>T  membrin1524  was  also   confirmed  by  Sanger  

sequencing.  Therefore,  the  same  fragment  as  above  was  PCR  amplified  with  

Q5  high-­fidelity  DNA  polymerase  (NEB),  cleaned  up  with  the  Wizard  SV  Gel  

and   PCR   clean   up   system   (Promega)   and   sequenced   with  

mem1524_OUTF1  and  mem1524_OUTR1  by  Source  Biosciences.  
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4.3.2.2          Generation   of   wild-­type   and   mutant  GOSR2   and  membrin  
transgenic  flies  

Transgenic   fly   lines   under   the   control   of   the   UAS-­enhancer   (Brand   and  

Perrimon,   1993)   were   generated   by   microinjection   of  

pUASTattB_FLAG::GOSR2[WT]/[G144W]/[K164del]/pUASTattB_FLAG::me

mbrin[WT]/[G147W]/[K166del]   into   y[1]   M{vas-­int.Dm}ZH-­2A   w*;;   M{3xP3-­

RFP.attP'}ZH-­51C  embryos  (Cambridge  fly  facility).  Because  the  pUASTattB  

plasmid  harbors  an  attB  sequence  and  this  fly  line  a  specific  attP  landing  site,  

it   allows   for   site-­specific   integration   into   this   locus   in   germline   cells   via   the  

action   of   phiC31   integrase,   which   is   transgenically   provided   via   the   vasa  

promoter  (Bischof  et  al.,  2007).  This  approach  has  the  advantage  of  ensuring  

that  all  transgenes  are  integrated  precisely  in  the  same  genomic  localization  

and   hence   observed   differences   in   phenotypes   can   be   attributed   to   the  

respective   mutations   rather   than   differences   in   transcription   due   to  

integration   into   transcriptionally   silent   regions   of   the   genome.   The   ZH-­51C  

landing   platform   was   chosen,   as   in   the   current   gene   annotation   (FlyBase  

release  FB2017_03)   it   is  clearly   localized  between  genes  and  not   in  exons,  

introns  or  UTRs,  which  makes  it  less  likely  to  cause  insertional  mutagenesis  

(see  Figure  20).  

  

Figure  20.  Intergenic  localisation  of  the  ZH-­51C  landing  platform  
HSP(1)  indicates  the  position  of  this  transgene  integration  site  on  the  right  arm  
of   chromosome   two.   Screen   shot   is   taken   from   FlyBase   release   FB2017_03  
after  performing  BLAST  with   the   flanking  sequence  of  ZH-­51C  provided  at   the  
flyc31.org  website.  

  

Additionally,  the  light  orange  eye  color  of  pUASTattB  (which  also  contains  a  

mini-­white   gene)   transgene   insertions   in   this   site   facilitates   selection   for  
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additive   mini-­white   effects   when   crossed   to   other   transgenic   flies.  

Furthermore,  ZH-­51C  is  localized  on  the  second  chromosome,  which  allows  

to  readily  combine  these  transgenic  flies  with  the  membrin1524  allele,  which  is  

localized  on  the  third  chromosome.  After  removal  of  the  integrase  from  the  X-­

chromosome,  balanced  transformants  were  provided  to  us  by  the  Cambridge  

Fly  Facility.  Thereafter  UAS-­FLAG::GOSR2[WT]/[G144W]/[K164del]  or  UAS-­

FLAG::membrin[WT]/[G147W]/[K166del]   flies   were   backcrossed   for   five  

generations  into  iso31.  

4.3.2.3          Assembly  of  model  stocks  

In  order  to  express  wild-­type  or  mutant  GOSR2  or  membrin   in  membrin  null  

flies  we  generated  two  stocks  that  then  need  to  be  crossed  to  each  other  –

one  of  them  containing  the  transgenes  plus  the  membrin  null  allele,  the  other  

one  the  membrin  null  allele  plus  a  global  driver.  

To  generate  the  transgene  half  of   the  ‘model  cross’,   I   first  balanced  second  

chromosome  transgenic  flies  for  the  third  chromosome  and  membrin1524  flies  

for   the   second   chromosome.   The   resulting   w[1118];;   UAS-­

FLAG::GOSR2[WT]/[G144W]/[K164del]/+;;   TM2/TM6B-­Tb   or   UAS-­

FLAG::membrin[WT]/[G147W]/[K166del]/CyO;;   MKRS/TM6B-­Tb   were  

crossed  with  w[1118];;  CyO/Sco;;  membrin1524/TM6B-­Tb  and  Curly,  non-­Sco,  

non-­ebony/non-­MKRS   bearing,   mini-­white   males   and   virgin   females   were  

selected  to  establish  the  stocks,  which  were  subsequently  homozygosed  for  

the  second  chromosome  transgene.  This  crossing  gave  rise  to  the  first  half  of  

the  ‘model  cross’  (I.):  w[1118];;  UAS-­FLAG::GOSR2[WT]/[G144W]/[K164del];;  

membrin1524/TM6B-­Tb   or   w[1118];;   UAS-­

FLAG::membrin[WT]/[G147W]/[K166del];;  membrin1524/TM6B-­Tb.  

In   order   to   obtain   the   driver   half   of   the   ‘model   cross’,   membrin1524   was  

combined   with   the   daughterless-­Gal4   (da-­Gal4,   Bloomington   stock   centre  

#55850)   driver,  which  was   outcrossed   for   5   generations   into   iso31   prior   to  

stock  generation  by  members  of  the  Jepson  lab.  w[1118];;  +;;  membrin1524  and  

w[1118];;   +;;  da-­Gal4  were   combined   by   selecting   for  meiotic   recombinants.  

Therefore,  w[1118];;  +;;  membrin1524/da-­Gal4  transheterozygote  virgin  females  

were   crossed   to  w[1118]/Y;;   +;;   TM2/TM6B-­Tb.   In   the   next   generation  mini-­
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white   expressing   males   over   TM6B-­Tb   were   selected   and   individually  

crossed  to  virgins  w[1118];;  +;;  TM2/TM6B-­Tb.  After  egg   laying  and  hatching  

of  L1  larvae  the  presence  of  membrin1524  in  the  father  animals  was  tested  by  

PCR   and   diagnostic   digest   with   AccI   as   described   above.   Where   AccI  

restriction   sites  were  detected,   stocks  were  established   from   their   offspring  

by   crossing  mini-­white   expressing  males  and   virgin   females  over  TM6B-­Tb  

with  each  other.  The  full  genotype  of  the  resulting  second  half  of  the  ‘model  

cross’  is  (II.):  w[1118];;  +;;  membrin1524,  da-­Gal4/TM6B-­Tb.  

In  order  to  express  wild-­type  or  mutant  GOSR2  or  membrin   in  membrin  null  

flies  the  following  ‘model  cross’  is  required:  

I.  

w[1118];;  UAS-­FLAG::GOSR2[WT]/[G144W]/[K164del];;  membrin1524/TM6B-­

Tb  

or  

w[1118];;  UAS-­FLAG::membrin[WT]/[G147W]/[K166del];;  membrin1524/TM6B-­

Tb  

X  

II.  

w[1118];;  +;;  membrin1524,  da-­Gal4/TM6B-­Tb  

Three   of   the   four   possible   genotypes   of   this   cross   are   theoretically   viable  

(homozygosity   for   the   third  chromosome  balancer  TM6B-­Tb   is  known   to  be  

lethal)   and   the   absence   of   the   Tubby   allele   indicates   the   presence   of   the  

desired  genotype  (a)  (X  =  any  of  the  GOSR2  or  membrin  transgenes):  

a)   w[1118];;  UAS-­FLAG::X/+;;  membrin1524,  da-­Gal4/membrin1524  

b)   w[1118];;  UAS-­FLAG::X/+;;  membrin1524/TM6B-­Tb  

c)   w[1118];;  UAS-­FLAG::X/+;;  membrin1524,  da-­Gal4/TM6B-­Tb  
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Because  mutant  human  Membrin  did  not  rescue  membrin  null  animals  to  the  

L3   stage   and   wild-­type   human   Membrin   rescue   yielded   severely   impaired  

adults,  we  based  our  experiments  on  more  physiological  Drosophila  Membrin  

rescue  models.  In  order  to  increase  readability  of  the  full  genotypes  of  these  

flies   I   used   Mem-­WT,   Mem-­G147W   and   Mem-­K166del   as   abbreviations  

throughout  this  thesis  (Table  9).  

Mem-­WT   w[1118];;   UAS-­FLAG::membrin[WT]/+;;   membrin1524,   da-­

Gal4/membrin1524  

Mem-­G147W   w[1118];;   UAS-­FLAG::membrin[G147W]/+;;   membrin1524,   da-­

Gal4/membrin1524  

Mem-­K166del   w[1118];;   UAS-­FLAG::membrin[K166del]/+;;  membrin1524,   da-­

Gal4/membrin1524  

Table  9.  Full  genotypes  of  GOSR2-­PME  model  Drosophila    
  

To  genetically   label   the  highly  elaborate  class   IV  dendritic  arborization   (da)  

neurons  –  which  comprise  of  one  ddaC,  one  v’ada  and  one  vdaB  neuron  per  

hemisegment  (Grueber  et  al.,  2002)  –  for  dendritic  analysis  (see  below),  the  

w[1118];;   ppk-­CD4::tdGFP   (Bloomington   stock   centre   #35842)   stock   was  

used.   This   fly   line   is   an   optimized   expression   system   comprising   of   one  

EGFP  plus  one  GFP  fused  to  the  CD4  transmembrane  domain  downstream  

the  pickpocket  (ppk)  promoter  (Grueber  et  al.,  2003;;  Han  et  al.,  2011).  James  

Jepson  combined  w[1118];;  ppk-­CD4::tdGFP  with  w[1118];;  +;;  membrin1524  da-­

Gal4/TM6B-­Tb   according   to   standard   Drosophila   mating   schemes   (Roote  

and  Prokop,  2013).  The  resulting  stock  is  the  driver  half  of  the  ‘model  cross’  

with  an  additional  ppk-­CD4::tdGFP  transgene  with   the   following  genotype  –

w[1118];;  ppk-­CD4::tdGFP;;  membrin1524,  da-­Gal4/TM6B-­Tb.  These  flies  need  

to  be  crossed  to  (I.)  (see  above)  and  non-­Tubby  animals  selected  for  further  

analysis.  
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4.3.2.4          emp-­GFP  knock-­in  

In   the   course   of   this   PhD   project   I   also   generated   an   endogenously  GFP-­

tagged   emp   allele,   which   is   the   Drosophila   orthologue   of   the   PME-­gene  

SCARB2   (Berkovic   et   al.,   2008).   However,   time   constraints   precluded   me  

from  undertaking  further  investigation  into  SCARB2-­PME  utilizing  these  flies.  

The   emp-­GFP   knock-­in   fly   was   generated   by   recombination-­mediated  

cassette  exchange  of  a  MiMIC  insertion  (Mi12296,  Bloomington  stock  centre  

#57917)  between  exon  1  and  exon  2  of  the  emp  gene.  The  plasmid  pBS-­KS-­

attB1-­2-­PT-­SA-­SD-­1-­EGFP-­FIAsH-­StrepII-­TEV-­3xFlag   was   injected   by   the  

Cambridge   Fly   Facility,   who   provided   us   with   five   independent   flies   with  

successful  cassette  exchange.  Diagnostic  PCR  confirmed  that   in  three  lines  

the  EGFP  coding   sequence  had   inserted   into   the   correct   strand.  Details   of  

this  technique  are  described  in  (Venken  et  al.,  2011).    

4.3.2.5          Additional  Drosophila  stocks  utilized  in  this  study  

To  evaluate  the  lethal  phase  of  membrin1524  at  the  L1  and  L2  larval  stages,  I  

rebalanced   this   allele   over   the   fluorescent   TM3   Kr   >   GFP   balancer  

chromosome  (Casso  et  al.,  2000),  which  was  also  backcrossed  to  iso31  for  5  

generations.   For   nervous   system   overexpression   of   Membrin,   nsyb-­Gal4  

(Bloomington   stock   centre   #51635)   was   used,   which   was   previously  

backcrossed   to   iso31   for   5   generations   by   members   of   the   Jepson   lab.  

w[1118];;   +;;   ppk-­Gal4   (#32079;;   previously   backcrossed   to   iso31   for   5  

generations   by   members   of   the   Jepson   lab),  w[1118];;   +;;   UAS-­RedStinger  

(#8547),   w[*];;   +;;   nsyb::eGFP   (#6922),   w[*];;   nompC-­Gal4   (derived   from  

#36361)  were  from  Bloomington  stock  centre.  Membrin  RNAi  transgene  was  

from  the  Vienna  Drosophila  Research  Center   (GD  44535)  and  backcrossed  

for  5  generations  into  iso31  (Dietzl  et  al.,  2007).    

4.3.3          Fly  husbandry  

Flies  were  reared  on  solid  fly  food  (1  w/v%  agar,  1.5  w/v%  sucrose,  3.3  w/v%  

glucose,   3.5  w/v%   yeast,   1.5  w/v%   corn  meal,   1.5   v/v%   soy   flour,   3  w/v%  

treacle,   1  w/v%  wheat  germ,  0.1  w/v%  nipagin,   0.5   v/v%  propionic  acid)   in  

polystyrene   tubes.   Experimental   flies   were   incubated   at   25°C   with   a   12   h  
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light-­dark  cycle  unless  specified  otherwise.  Stocks  were  maintained  either  at  

room  temperature  or  18  °C.    

4.3.4          Viability  experiments  

To   evaluate   the   lethal   phase   of   the   disease-­causing  membrin   mutations   I  

crossed  20  virgin  females  w[1118];;  +;;  membrin1524,  da-­Gal4/TM6B-­Tb  with  30  

males   w[1118]/Y;;   UAS-­FLAG::membrin[WT]/[G147W]/[K166del];;  

membrin1524/TM6B-­Tb   and   collected   embryos   overnight   with   dedicated  

embryo   collection   cages   (FlyStuff,   Dutscher)   and   apple   juice-­sucrose   agar  

plates   containing   yeast   paste.   These   crosses  were   allowed   to   lay   eggs   for  

several  consecutive  nights  onto  fresh  plates  and  set  up  twice.  During  the  day  

egg/embryos  were  mobilized  with   a   paintbrush,   rinsed  with   water,   counted  

and  transferred  to  standard  food  tubes.  After  10  days  of   incubation  at  25°C  

(11  days  after  initiation  of  egg-­laying)  non-­Tubby  pupae  were  counted.  Given  

that   theoretically  only  one  quarter  of   the  collected  eggs/embryos  are  of   the  

correct  genotype,  we  used   the   following   formula   to  calculate  egg/embryo   to  

pupa   viability:   non-­Tubby   pupae/(total   eggs/4).   The   resulting   fraction   was  

normalized   to   wild-­type   because   we   found   a   considerable   reduction   with  

consecutive  egg-­lays,  presumably  reflecting  decreasing  fertilization.  Eclosion  

rates  were   determined   11   days   (for  GOSR2-­PME   ‘model   crosses’)   and   12  

days   (for   nsyb-­Gal4   and   da-­Gal4   x   UAS-­membrin   crosses   (the   latter  

experiment  was  carried  out  by  Nian  Patel))  after  onset  of  egg  laying,  a  time  

point   where   under   our   conditions   non-­eclosion   was   equal   to   death   or  

imminent   death   in   the   pupal   case.      The   eclosion   data  were   pooled   as   the  

eclosion  rates  did  not  change  over  consecutive  egg-­lays.  

In  mutant  GOSR2   rescue   animals   no   non-­Tubby   pupae   or   L3   larvae  were  

observed.   Therefore   only   eclosion   rates   of   w[1118];;   UAS-­

FLAG::GOSR2[WT]/+;;   membrin1524,   da-­Gal4/membrin1524   animals   were  

determined.   Furthermore,   I   counted   non-­Tubby   and   Tubby   pupae   of   the  

respective   ‘model   cross’,   in   order   to   screen   for   large   deviations   from   the  

expected  Mendelian  ratios.  



  

   104  

4.3.5          Larval  crawling  assay  

To   test   for   motor   defects   of   GOSR2-­PME   model   larvae,   we   quantified  

locomotion   in   non-­Tubby   third   instar   larvae   from   the   ‘model   cross’   as  

described  above.  Larvae  were  removed  from  their  standard  food  tubes  by  an  

approximately   10   min   incubation   with   20%   sucrose   solution.   This   caused  

larvae   to   emerge   from   the   food   and   to   float   on   the   surface   (Bhatt   and  

Neckameyer,   2013).   Thereafter   L3   larvae   were   selected,   rinsed   with  

deionized  water  and  transferred  to  sucrose-­agar  plates  (2  w/v%  agar,  4  w/v%  

sucrose).   Individual   animals  were   then   picked   up  with   a   paintbrush,   briefly  

dried  with  a  Kimwipe  and  placed   in   the  center  of  a  9  cm  diameter  sucrose-­

agar   dish   residing   above   a   4   mm   grid.   Larvae   were   allowed   to   orient  

themselves   for   30   s   and   filmed   for   the   next   60   s.   A   minimum   total   of   19  

larvae  per  genotype  in  two  independent  experiments  were  recorded  and  grid  

breaks  in  60  s  were  scored  offline.    

4.3.6          Developmental  delay  assay  

Egg-­laying  of   the  membrin   ‘model  crosses’  was  allowed  overnight  on  apple  

juice   agar   plates   as   outlined   above.   The   following   day   yeast   paste   was  

removed  and  fresh  paste  added.  Plates  were  then   incubated  at  25  degrees  

for  24  hours  to  allow  hatching  of  L1   larvae  and  movement   into  the  centrally  

located   yeast   paste.   The   following   day   the   yeast   paste   containing   L1/L2  

larvae   were   transferred   to   fresh   apple   juice   agar   plates,   fresh   yeast   paste  

was   added   and   the   plates   were   again   incubated   overnight.   On   day   three  

yeast  paste  and  apple  juice  agar  plates  were  thoroughly  rinsed  and  animals  

collected   in   70   µm  Falcon  Cell   Strainers.   Late   L2   and   early   L3   non-­Tubby  

larvae  were   then   transferred   into   standard   food   tubes   and   every   day   for   5  

consecutive  days  the  appearance  of  pupae  counted.  Four  batches  of  animals  

derived   from   consecutive   overnight   egg-­lays   of   the   same   parents   were  

pooled.  Counted  pupae  for  each  day  were  expressed  as  percentages  of  the  

overall  counted  pupae  of  the  respective  genotype.  
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4.3.7          Dendritic  analysis  

To  study  dendrites  of  mutant  membrin  animals  the  ‘model  cross’  was  carried  

out  with  the  ppk-­CD4::tdGFP  containing  driver  line  and  non-­Tubby  L3  larvae  

of  the  following  genotypes  were  selected:  

1)   w[1118];;  UAS-­FLAG::membrin[WT]/ppk-­CD4::tdGFP;;  membrin1524,  da-­

Gal4/membrin1524  

2)   w[1118];;  UAS-­FLAG::membrin[G147W]/ppk-­CD4::tdGFP;;  

membrin1524,  da-­Gal4/membrin1524  

3)   w[1118];;  UAS-­FLAG::membrin[K166del]/ppk-­CD4::tdGFP;;  

membrin1524,  da-­Gal4/membrin1524  

Alternatively,  wild-­type  or  mutant  Membrin  was  selectively  overexpressed   in  

class  IV  da  neurons  with  the  ppk  promoter.  Therefore  the  driver  line  w[1118];;  

ppk-­CD4::tdGFP;;  ppk-­Gal4  was  generated  according  to  standard  Drosophila  

mating   schemes   and   crossed   to   w[1118];;   UAS-­

membrin[WT]/[G147W]/[K166del]   as  well   as   to   iso31  and  w[1118];;   +;;  UAS-­

RedStinger.  

Throughout  the  following  experiments  either  the  left  or  right  ddaC  neuron  in  

abdominal  segment  5  of  L3  larvae  was  imaged  (Grueber  et  al.,  2002).  

4.3.7.1          Dendritic  morphology  of  GOSR2-­PME  model  neurons  

In   order   to   avoid  movement   artefacts   L3   larvae   were   heat-­killed   (70°C   for  

approximately   5   s)   and   mounted   under   a   #1.5   glass   coverslip   prior   to  

imaging.   Z-­stacks   of   ddaC   neurons   were   obtained   with   a   Zeiss   confocal  

LSM710  microscope   and   a  N-­Achroplan   10x   0.25  NA  objective.   To   extract  

total  dendrite  length  and  to  serve  as  a  template  for  the  ImageJ  Sholl  Analysis  

plugin,  dendrites  were  semi-­manually  traced  with  the  ImageJ  NeuronJ  plugin  

(Ferreira   et   al.,   2014;;   Meijering   et   al.,   2004).   Terminal   branches   were  

manually  counted  on  dendrite  tracings  with  the  ImageJ  multi-­point  tool.    
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4.3.7.2          Dendritic   baseline   fluorescence   of   GOSR2-­PME   model  
neurons  

The  same  prep  as  outlined  above  for  the  dendritic  morphology  analysis  was  

used  to  obtain  baseline  CD4::tdGFP  fluorescence  in  proximal  dendrites  and  

axons  of  GOSR2-­PME  model  neurons.  Z-­stacks  were  acquired  with  a  Zeiss  

confocal  LSM510  microscope  and  a  Plan-­Neofluar  20x  0.5  NA  objective  and  

a  150  x  150  µm  field  of  view.  After  maximum  intensity  projection  of  z-­stacks  

in  Fiji,  a  region  of  interest  (ROI)  of  axons  and  major  dendrites  contained  in  a  

37.5  µm  radius  ddaC  soma  enclosing  circle  was  manually  drawn  and  mean-­

fluorescence  intensities  extracted  and  background  subtracted  (Figure  21).  

  

Figure  21.  ddaC  baseline  fluorescence  analysis  
Regions  of  interest  around  axon  (*)  and  major  dendrites  contained  within  a  37.5  
µm   circle   around   the   ddaC   abdominal   segment   5   soma   were   drawn.   Mean  
fluorescence   intensities   of   these   regions   were   background   (small   circle)  
corrected.  

  

4.3.7.3          Dendritic  FRAP  of  GOSR2-­PME  model  neurons  

For  FRAP  experiments,   L3   larvae  were   fillet-­prepped   in  HL3  saline  without  

Ca2+   (70   mM   NaCl,   5   mM   KCl,   20   mM   MgCl2,   10   mM   NaHCO3,   5   mM  

trehalose,   115   mM   sucrose,   5   mM   HEPES-­NaOH   pH   7.2).   Animals   were  

opened  along  the  anterior  midline  to  maintain  the  integrity  of  the  dorsal  body  

wall,   where   ddaC   neurons   are   located.   Fillets   were   transferred   to   a   #1.5  

glass  bottom  dished  and  submerged  in  fresh  HL3  saline  with  a  custom-­made  

platinum  wire  anchor  with  the   interior  body  wall   facing  the  solution.   Imaging  
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was  carried  out  on  an  inverted  Zeiss  confocal  LSM510  with  a  Plan-­Neofluar  

20x  0.5  NA  objective.  A  z-­stack  was  taken  every  30  s  –  2  pre-­  and  60  post-­

bleach.  Bleaching  of  a  50  µm2  area  encompassing  major  primary  dendrites  

directly  adjacent  to  the  soma  was  carried  out  by  scanning  for  200  iterations  

with  100%  transmission  of  the  488  nm  Argon  laser  at  a  tube  current  of  6  A.  

Prior  to  extracting  fluorescence  intensities,  z-­stacks  were  maximum  intensity  

projected  for  each  time  point  and  each  resulting  projection  image  aligned  to  

the  first  time  point  with  the  TurboReg  ImageJ  plugin,  in  order  to  compensate  

for   x-­y   optical   drift   during   the   approximately   30   min   acquisition   period  

(Thévenaz   et   al.,   1998).   Mean   fluorescence   intensity   of   a   small   dendritic  

region   contained   in   a   5   µm   diameter   circle   25   µm   from   the   bleach   border  

adjacent   to   the   soma   served   as   a   read-­out   (Figure   22),   which   was  

background  corrected  in  each  frame.  This  is  the  most  distant  dendritic  region  

from  either  bleach  margin  and  thus  the  contribution  to  fluorescence  recovery  

from  lateral  diffusion  of  dendrite  surface  localizing  CD4::tdGFP  is  minimized.  

Bleach  depth  in  this  region  was  consistently  greater  than  87%.    

  

Figure  22.  Dendrite  FRAP  analysis  
Mean  fluorescence   intensity  of  a  small  dendritic   fragment  contained   in  a  5  µm  
circle,  25  µm  (large  circle)  from  the  soma  bleach  margin  was  extracted  over  the  
time  course  and  background  subtracted  for  each  frame  (small  ROI  adjacent  to  
dendrite).   Depicted   is   the   first   maximum   projected   z-­stack,   prior   to  
photobleaching  of  a  50  µm2  area  (square).  
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4.3.7.4          Class  IV  da  neuron  overexpression  studies    

L3   larvae   overexpressing   wild-­type   or   mutant   Membrin   or   control   animals  

were  heat-­killed  and  mounted  as  described  above.  Z-­stacks  were  acquired  

with  an  inverted  Zeiss  confocal  LSM710  with  a  Plan-­Apochromat  20x  0.8  NA  

objective.   To   facilitate   rapid   quantification   of   the   observed   qualitative  

differences,  a  previously  validated  protocol  was  used,  where  Sholl  analysis  is  

performed   directly   on   binary   images   (Ferreira   et   al.,   2014).   Therefore,   all  

image   z-­stack   were   first   maximum   intensity   projected.   Then,   the   same  

thresholds   (10000   –   65535   for   these   16-­bit   images)   were   applied   to   all  

images,  which  yielded  binary   images  with  clearly  visible  dendrites  and  only  

occasional   background   pixels.   The   Sholl   analysis   ImageJ   plugin   was   then  

used  to  compute  total  intersections  with  1  pixel  increasing  radii  starting  at  the  

center   of   the   cell   soma   (Ferreira   et   al.,   2014).   400  µm  was   chosen  as   the  

ending   radius   to   cover   the   majority   of   the   abdominal   segment   5   ddaC  

dendrite   arbor.   Because   these   neurons   are   tightly   surrounded   by   tiling  

neighbouring  class  IV  da  neurons,  some  of  the  more  distal  Sholl  circles  also  

intersect   with   these   dendrites.   Specifically,   these   Sholl   settings   also   yield  

intersections   with   some   distal   branches   of   the   contralateral   abdominal  

segment  5  and  the  ipsilateral  abdominal  segment  3  and  6  ddaC  neurons  as  

well   as   the   ipsilateral   abdominal   segment   5   v’ada   neuron.  However,   these  

additional  intersections  do  not  render  the  experiment  less  powerful,  because  

these  neurons  have  similarly  large  dendritic  arbors,  which  thus  will  be  equally  

vulnerable  to  the  Membrin  mutations.    

4.3.8          Drosophila  brain  immuno-­fluorescence  microscopy  

Dissection   and   immuno-­staining   of   adult   fly   brains   largely   followed   a  

published  protocol  (Wu  and  Luo,  2006).  Flies  were  anaesthetized  with  CO2,  

immersed  in  70%  ethanol,  dissected  with  sharp  forceps  in  phosphate  buffer  

Triton  X-­100   (  PBT;;   100  mM  phosphate   buffer   pH   7.2   plus   0.3%  Triton  X-­

100)  and  fixed  in  4%  PFA  (Alfa  Aesar)  at  room  temperature  for  15  min  under  

constant   agitation.   Remaining   fixative,   as   well   as   primary   and   secondary  

antibodies  were  removed  by  3  short  and  3  x  10  min  washes  with  PBT.  Prior  

to  antibody  labeling,  brains  were  blocked  in  PBT  +  5%  goat  serum.  Primary  
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and   secondary   antibodies   were   diluted   in   PBT   +   5%   goat   serum   and  

incubated  at  4°C  overnight.  The  following  antibodies  and  respective  dilutions  

were   used:   mouse   anti-­FLAG   (clone   M2,   Sigma;;   1:1000),   rat   anti-­FLAG  

(Agilent;;   1:1000),   mouse   anti-­GFP   (clone   3E6,   Thermo   Fisher   Scientific;;  

1:1000),   rabbit   anti-­Drosophila   Membrin   (cusMEM4;;   custom   polyclonal  

production  by  Biomatik  (see  below);;  1:500),  goat  anti-­mouse/rabbit/rat  Alexa  

Fluor  488/647  (Thermo  Fisher  Scientific,  1:500-­1000).  Stained  fly  brains  were  

mounted   in   SlowFade   Gold   antifade   (Thermo   Fisher   Scientific)   with   the  

brain’s   anterior   facing   a   #1.5   glass   coverslip   and   between   #1.5   glass  

coverslip   bridges,   in   order   to   preserve   the   structure   of   the  whole   brain.   Z-­

stacks  were  acquired  with  an   inverted  Zeiss  confocal  LSM710  with  a  Plan-­

Apochromat  20x  0.8  NA  objective.  

4.3.9          Western  blot  

Drosophila  western  blots  were  carried  out  according  to  the  same  protocol  as  

used   for  mammalian  cultured  cells   (described   in   ‘Materials  and  Methods’  of  

Chapter   3).   To   lyse   Drosophila   L3   larvae,   5   animals   were   placed   in   an  

Eppendorf  tube  containing  50  or  100  µl  of  the  above  lysis  buffer  and  ground  

for   10   s   with   Pellet   pestles   (Kimble   Kontes).   For   immuno-­detection  mouse  

anti-­FLAG   (clone   M2,   Sigma;;   1:2000),   rabbit   anti-­Drosophila   Membrin  

(cusMEM4;;   custom   polyclonal   production   by   Biomatik   (see   below);;   1:500),  

mouse  anti-­b-­actin  (clone  AC-­74,  Sigma;;  1:2000)  and  HRP-­conjugated  anti-­

mouse/rabbit  secondaries  (Jackson  Immuno;;  1:1000-­5000)  were  used.  

4.3.10          Antibody  production  

Polyclonal   anti-­Drosophila   Membrin   antibodies   were   custom   produced   by  

Biomatik   for   this   study.   To   this   end   they   synthesized   two   peptides  

corresponding   to   two   independent   regions   of   Drosophila   Membrin.   Both  

peptides   were   injected   into   two   rabbits   (Table   10).   Thereafter,   antibodies  

were  affinity  purified  from  the  rabbit’s  sera,  lyophilized  and  shipped  to  us.    
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MESLYHQTNNVVKDIERDFQRLSQLSAQESLDVENGIQLKITQANANCDRLDVLLYKVPPSQRQSSKL

RVDQLKYDLRHLQTSLQTARERRQRRMQEISEREQLLNHRFTANSAQPEETRLQLDYELQHHTQLGNA

HRGVDDMIASGSGILESLISQRMTLGGAHKRIQAIGSTLGLSNHTMKLIERRLVEDRRIFIGGVVVTL

LIIALIIYFLVL 

Peptide  ID   465774   465775  

Animal  ID   RB6725   RB6726   RB6725   RB6726  

Short  name   cusMEM1   cusMEM2   cusMEM3   cusMEM4  

Table  10.  Summary  of  custom  anti-­Drosophila  Membrin  antibodies  
Two   rabbits   were   immunized   with   independent   peptides   corresponding   to  
Drosophila   Membrin   (uniprot   Q9VRL2),   giving   rise   to   four   variants   of   custom  
rabbit  polyclonal  anti-­Drosophila  Membrin  antibodies.  

  

I   reconstituted   these   antibodies   with   deionized   water   to   a   final   1   mg/ml  

concentration  and  screened  each  of   the   four  different   rabbit  polyclonal  anti-­

Drosophila   Membrin   antibodies   for   specificity   in   immuno-­fluorescence  

microscopy  of  Drosophila  brains.  While  cusMEM3  and  4  clearly   recognized  

transgenically   expressed  FLAG::membrin[WT]   in   adult  Mem-­WT  Drosophila  

brains,  cusMEM1  and  2  barely  did  (Figure  23A  and  data  not  shown).    

  

Figure  23.  Custom  anti-­Drosophila  Membrin  antibody  validation  
(A)  Confocal  slices  through  an  adult  Drosophila  Mem-­WT  brain,  co-­stained  with  
an   anti-­FLAG   and   the   custom   anti-­Drosophila   Membrin   antibody   cusMEM4.  
Prominent  colocalization  between   the   two  channels   in  somatic  areas,  such  as  
adjacent  to  the  antennal  lobes  (arrowheads)  indicates  that  the  custom  antibody  
has   the   capability   of   recognizing   Membrin   in   an   immuno-­fluorescence  
preparation.  
(B)  Western  blot  of  L3  larvae  lysates  probed  with  cusMEM4.  The  band  around  
approximately  25  kDa  appears  to  represent  Drosophila  Membrin,  as  it  is  greatly  
reduced   upon   RNAi   mediated   global   Membrin   knock-­down.   15   µg   of   total  
protein  was   loaded   into  each   lane  and  equal   loading  confirmed  with  an  anti-­b-­
actin  antibody.  
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However,   none   of   these   custom   antibodies   yielded   a   robust   perinuclear  

staining   –   as   expected   for   an   antibody   targeting   a   Golgi   protein   –   in  

Drosophila   brains   with   physiological   Membrin   levels   (data   not   shown).  

Because   of   its   superiority   in   immuno-­fluorescence   studies,   cusMEM4   was  

further   validated   in   western   blot.   There   it   recognized   a   band   around   the  

expected   25   kDa   size,   which   disappeared   almost   entirely   upon   Membrin  

RNAi  mediated  knock-­down  (Gasteiger  et  al.,  2003)  (Figure  23B).  This  result  

not  only  suggests  that  the  observed  band  around  25  kDa  indeed  represents  

Drosophila  Membrin,  but  also  that  the  GD  44535  membrin  RNAi  line  induces  

efficient  knock-­down  of  Membrin   levels.  Thus,  cusMEM4  represents  a  good  

tool   for   western   blot   and   might   also   be   useful   for   immuno-­fluorescence  

studies,   should   an   optimization   of   the   immuno-­staining   protocol   provide  

increased  sensitivity  towards  endogenous  Membrin  expression  levels.  
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4.4          Results  

4.4.1          A  novel  Drosophila  model  of  GOSR2-­PME    

In  order  to   investigate  the  pathophysiological  consequences  of  the  GOSR2-­

PME  mutations  in  our  primary  cell  type  of  interest  –  neurons  –  as  well  as  in  

an   entire   organism,   we   developed   the   first   in   vivo   model   of   this   disorder.  

Because  Golgi   SNARE   proteins   are   highly   conserved   throughout   evolution  

(Kienle   et   al.,   2009a;;   2009b;;   Kloepper   et   al.,   2008;;   2007),   we   chose   the  

comparably  simple  yet  genetically  powerful  Drosophila  melanogaster  as  our  

experimental  model.  Drosophila  harbors  a  single  GOSR2  orthologue,  which  

is  termed  membrin.  We  obtained  a  membrin  null  strain  (membrin1524)  for  this  

study,   which   was   previously   generated   in   an   EMS   screen   for   defective  

trachea  morphogenesis  and  kindly  shard  by  Mark  Krasnow  (Ghabrial  et  al.,  

2011).  This  fly  harbors  a  c.253C>T  mutation  in  membrin,  which  gives  rise  to  

a   premature   stop   codon   (Q85X)   upstream   Membrin’s   critical   SNARE   and  

transmembrane  domains  and  is   therefore  a  null  allele.  The  presence  of   this  

mutation  was  confirmed  by  Sanger  sequencing  in  our  lab  (Figure  24A).  

  

Figure  24.  The  membrin  null  allele  membrin1524  
(A)   Chromatogram   depicting   the   heterozygous   c.253C>T  membrin   sequence  
alteration  in  w[1118];;  +;;  membrin1524/TM6B-­Tb.  
(B)   membrin1524   was   balanced   over   the   fluorescently   labeled   TM3   Kr>GFP  
chromosome   to   discern   heterozygote   animals.   Homozygosity   for  membrin1524  
caused   largely   L1   lethality,   as   at   the   L2   stage   hardly   any   non   GFP-­positive  
larvae  could  be  detected.  N  =  50,  53,  56  quantified  larvae  at  the  L1,  2,  3  stages;;  
***  represents  p  <  0.001;;  Fisher’s  exact  test  and  Bonferroni  correction.  

  

Homozygosity   for   membrin1524   caused   pre-­L3   lethality,   as   only   Tubby   L3  

larvae   could   be  observed   in  Drosophila   stock  where   this   allele   is   balanced  

over   TM6B-­Tb.   To   further   investigate   the   lethal   phase   of   this   allele   I  

rebalanced  this  stock  over  the  fluorescent  TM3  Kr>GFP  chromosome,  which  
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allows   to   discern   heterozygous   from   homozygous   animals   from   the   germ  

band   extension   embryonic   stage   onwards   (Casso   et   al.,   2000).   These  

investigations   revealed   that   homozygosity   for  membrin1524   is   largely   lethal  

between  the  L1  and  L2  larval  stages  (Figure  24B).  This  finding  is  surprising  if  

we  consider  Membrin’s  essential  role  in  mediating  ER-­to-­Golgi  trafficking  and  

the  observation  that  BOS1  null  yeast  are  incapable  of  mitotic  growth  (Shim  et  

al.,   1991).   An   explanation   of   this   extended   viability   in  Drosophila  might   be  

maternal  Membrin  mRNA  and/or   protein   deposition   into   the   embryo,  which  

could  rescue  homozygous  membrin1524  to  the  L1  stage.  This  notion  was  not  

experimentally  tested  as  it  goes  beyond  the  central  aim  of  our  investigation,  

which   aimed   to   unravel   how   partial   loss   of   function  Membrin   alleles   cause  

neuronal  disease.  

To  investigate  the  consequences  of  G144W  and  K164del  GOSR2  or  G147W  

and  K166del  membrin  mutations   in  Drosophila  we   first   generated  wild-­type  

and   mutant   UAS-­GOSR2/UAS-­membrin   transgenes,   which   harbor   an   N-­

terminal   FLAG   tag.   Each   of   these   transgenes   was   inserted   into   the   same  

genomic   localization   by  FC31   integrase   mediated   site-­specific   integration,  

thus  enabling  similar  expression  levels  between  the  different  alleles  (Bischof  

et   al.,   2007).   To   activate   the   otherwise   inert   UAS-­transgenes   the   global  

daughterless-­Gal4   (da-­Gal4)   driver   was   used   (Brand   and   Perrimon,   1993).  

Finally,   after   backcrossing   UAS-­GOSR2/UAS-­membrin,   da-­Gal4   and  

membrin1524   into   the   w[1118]   mutant   isogenic   iso31   strain   to   control   for  

genetic  background  effects,  we  combined  all  components  in  a  way  to  enable  

expression   of   wild-­type   or   mutant   GOSR2/membrin   in   a   membrin   null  

background.  

To   assess   functional   conservation,   I   tested   whether   Drosophila   membrin  

could  be  replaced  by  human  GOSR2.  Indeed,  I  found  that  global  expression  

of   wild-­type   GOSR2   was   capable   of   partially   rescuing   homozygous  

membrin1524   animals   –   which   otherwise   would   die   between   the   L1   and   L2  

larval   stages   –   to   the   pupal   and   adult   stages   (Figure   25A,   B).   This  

experiment   provides   evidence   supporting   the   otherwise   bioinformatically  

determined  conservation  between  human  GOSR2  and  Drosophila  membrin.  
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It   therefore   validates   our   approach   of   studying  GOSR2-­PME   in   this  model  

organism.  Furthermore,   this  observation   illustrates   that  our  genetic  setup   is  

functional   and   that   the   N-­terminal   FLAG   tag   does   not   abolish   Membrin’s  

function.   It   has   to   be   noted,   however,   that   these  GOSR2   rescue   animals  

appeared   slow   and   weak   at   the   adult   stage   and   usually   died   within   three  

days   after   eclosion.   Thus,   human   GOSR2   is   only   capable   of   partially  

rescuing  membrin   null   animals.   Furthermore,   G144W   and   K164del   mutant  

GOSR2  were  not   capable  of   rescuing  homozygous  membrin1524   animals   to  

the  pupal  stage,  as  only  Tubby  L3  pupae  were  observed  from  the  respective  

‘model  crosses’  (Figure  25A).  

  

Figure  25.  Wild-­type  human  GOSR2  enables  early  developmental  viability  
of  membrin  null  Drosophila  
(A)   Wild-­type   and   mutant   human   GOSR2   was   globally   expressed   with   the  
daughterless-­Gal4   driver   in   a   membrin   null   genetic   background.   Early  
developmental   viability   was   assessed   at   the   pupal   stage.   Non-­Tubby   pupae  
indicate   the   desired   genotypes   resulting   from   the   necessary   genetic   cross   as  
described   in   the   Methods   section.   No   obvious   shift   from   the   expected  
Mendelian   ratios  was  observed   in  WT,  while  G144W/K164del  mutant  GOSR2  
failed   to   rescue   to   the   pupal   stage.   N   =   139,   87,   115   quantified   total  
WT/G144W/K164del  pupae.  
  (B)  All   scored  WT  GOSR2   non-­Tubby  animals  managed   to   eclose   from   their  
pupal  cases.  N  =  51  quantified  non-­Tubby  pupae.  

  

We  therefore  shifted  our  focus  to  UAS-­membrin  transgenes,  which  are  closer  

to   the   normal   physiology   of   Drosophila.   Expressing   wild-­type   or  

G147W/K166del   mutant   Membrin   in   a  membrin1524   background   yields   two  

GOSR2-­PME  model  mutant  fly  lines  and  one  control.  Their  full  genotypes  are  

abbreviated  Mem-­G147W,  Mem-­K166del  and  Mem-­WT  in  this  thesis  (Figure  

26).  
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Figure  26.  Genetics  of  the  GOSR2-­PME  model  used  in  this  study  
Genotypes   of   the   GOSR2-­PME   Drosophila   model   used   in   this   study.   Four  
components  –  two  membrin  null  alleles  (membrin1524),  the  global  da-­Gal4  driver  
and  UAS-­membrin   transgenes  –  are  combined  by  a  single  genetic  cross   (See  
‘Materials  and  Methods’  for  details).  

  

4.4.2          Early  phenotypes  in  mutant  Membrin  Drosophila  

To  investigate  whether  mutant  Membrin  causes  Drosophila  phenotypes  that  

are   informative   for   the   investigation  of   the  GOSR2-­PME  pathophysiology,   I  

carefully   assessed   the   resulting   organismal   consequences.   Global  

expression  of  wild-­type  as  well  as  G147W  and  K166del  mutant  Membrin  was  

capable   of   rescuing   homozygous  membrin1524   animals   to   the   pupal   stage,  

which  indicates  that  both  mutations  do  not  render  the  protein  completely  un-­

functional   (Figure   27A).  Both  mutants   exhibited   subtle   reductions   in   egg   to  

pupa   viability   rates   when   compared   to   Mem-­WT,   which   reached   statistical  

significance   only   in  Mem-­K166del   (Figure   27A).  While   these   effects   where  

mild,   we   observed   a   striking   clustering   of   lethality   of  GOSR2-­PME  mutant  

Drosophila  at   the  young  adult  stage.  While  Mem-­WT  successfully  managed  

to  eclose   from   their   pupal   cases  and  emerged  as   freely  moving  adults,  we  

observed  that  Mem-­G147W/Mem-­K166del  frequently  died  as  fully  developed  

pharate  adults  within   their  pupal  cases   (Figure  27B).  When  surgically   freed  

from  their  pupal  cases  they  appeared  weak  and  uncoordinated.  While  98%  of  

Mem-­WT  animals  managed  to  eclose,  only  around  10%  of  Mem-­G147W  and  

33%   of   Mem-­K166del   did   (Figure   27B).   Those   mutant   animals   that  

succeeded  in  freeing  themselves  from  the  pupal  cases  often  got  stuck  in  the  

food   and   died   within   a   few   days.   This   aggregation   of   early   lethality   at   the  

pharate   adult   stage   might   be   because   eclosion   represents   a   considerable  

hurdle,  which  might  be  too  big  to  overcome  for  motor  impaired  Mem-­G147W  
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or  Mem-­K166del  animals.  Given   that  G147W  and  K166del  mutant  Membrin  

was   only   partially   able   to   rescue   lethality   arising   from   homozygosity   for   a  

membrin   null   allele,  we   present   organismal   data   that   support   the   liposome  

fusion   assay   derived   notion   that   the  GOSR2-­PME  mutations   confer   partial  

loss  of  Membrin  function.  Further  experimental  evidence  supporting  this  idea  

stems   from   global   Membrin   knock-­down   via   RNA-­interference,   which   also  

resulted  in  pharate  stage  lethality  (Figure  27C,  quantified  by  Nian  Patel).  

  

Figure  27.  Membrin  mutations  cause  early  lethality  
(A)   Global   expression   of  WT,   G147W   and   K166del   mutant   Membrin   rescues  
membrin  null  homozygous  animals  to  the  pupal  stage.  A  subtle  decrease  in  egg  
to  pupa  viability  is  apparent  in  Mem-­K166del  when  compared  to  Mem-­WT.  Data  
expressed   as   relatives   to   Mem-­WT.   N   =   1222,   1308,   1260   counted   total  
eggs/embryos  for  Mem-­WT/-­G147W/-­K166del  crosses.  Statistical  analysis  was  
performed   based   on   the   theoretically   determined   number   of   eggs/embryos   of  
the  desired  genotype,  i.e.  N  =  306,  327,  315  for  Mem-­WT/-­G147W/-­K166del.  
(B)  Mem-­G147W  and  Mem-­K166del   frequently  die  as   fully   developed  pharate  
adults  within  their  pupal  cases  as  shown  by  a  drastic  decrease  in  eclosion  rates  
compared  to  Mem-­WT.  N  =  120,  112,  97  individual  non-­Tubby  pupae  scored  for  
Mem-­WT/-­G147W/-­K166del.  
(C)   Global   RNAi   mediated   Membrin   knock-­down   with   the   da-­Gal4   driver  
resulted   in  pharate  stage   lethality.  N  =  378,  162,  313   individual  pupae  scored  
for   the   da-­Gal4   driver,  membrin   RNAi   only   and   knock-­down   genotypes.   Data  
were  obtained  and  analysed  by  Nian  Patel.  
*,   ***   represent  p  <  0.05,  0.001,  ns  =  not  significant   (p  >  0.05);;  Fisher’s  exact  
test  with  Bonferroni  correction.  

  

Also   global   overexpression   of   mutant   Membrin   in   a   wild-­type   membrin  

background   resulted   in   substantial   pharate   stage   lethality   (Figure   28A   –  

quantified   by   Nian   Patel),   presumably   by   outcompeting   endogenous   wild-­

type   Membrin.   If   the   overexpressed   mutant   Membrin   isoform   is   far   more  

concentrated  in  the  cis-­Golgi,  then  we  can  easily  imagine  a  scenario  where  it  

is  preferentially   integrated   into   the  cis-­Golgi  SNARE  complex   instead  of   the  

endogenous  wild-­type  protein.  Because  endogenous  Membrin  is  still  present  
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and   likely   still   contributes   to   membrane   fusion   in   this   setting,   the   eclosion  

deficits  are  reduced  compared  to  those  observed  in  Mem-­G147W  and  Mem-­

K166del  (compare  Figure  28A  with  Figure  27B).    

  

Figure  28.  Global  and  nervous  system  overexpression  of  mutant  Membrin  
(A)   Global   overexpression   of   mutant   UAS-­membrin   in   wild-­type   membrin  
animals  with  da-­Gal4   resulted   in   reduced   eclosion   rates   due   to   pharate   adult  
lethality.   N   =   284,   514,   403   individual   pupae   scored   for   UAS-­
membrin[WT]/[G147W]/[K166del].   This   experiment   was   performed   and  
analysed  by  Nian  Patel.  
(B)   Nervous   system   specific   overexpression   of   mutant   UAS-­membrin   in   wild-­
type  membrin  animals  with  nsyb-­Gal4  resulted  in  reduced  eclosion  rates  due  to  
pharate   adult   lethality.   N   =   616,   491,   618   individual   pupae   scored   for   UAS-­
membrin[WT]/[G147W]/[K166del].  
***  represent  p  <  0.001;;  Fisher’s  exact  test  with  Bonferroni  correction.  

  

Nevertheless,   this   experiment   suggested   to   us   that   the   genetically   simple  

approach   of   overexpressing   mutant   Membrin   in   an   otherwise   wild-­type  

membrin  animal  could  serve  as  a  tool   to  test  whether  the  observed  lethality  

phenotypes   in   Mem-­G147W/Mem-­K166del   are   derived   from   neuronal  

abnormalities.   Indeed,   when   we   selectively   overexpressed   G147W   or  

K166del  mutant  Membrin  in  the  nervous  system  of  Drosophila  with  the  nsyb-­

Gal4  driver  line  we  observed  pharate  adult  stage  lethality  (Figure  28B),  with  a  

relative   severity   comparable   to   global   overexpression   with   da-­Gal4.   These  

findings  suggest  that  expression  of  mutant  Membrin  in  neurons  is  sufficient  to  

cause  the  lethality  phenotypes  observed  in  Mem-­G147W  and  Mem-­K166del.  

They   therefore   reinforce   the   notion   that   the   GOSR2-­PME   phenotype   can  

arise   from   selective   vulnerability   of   neurons   to   the   respective   Membrin  

mutations.    
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Next   I   tested   whether   GOSR2-­PME   model   Drosophila   also   exhibited  

organismal  phenotypes  prior  to  their  premature  death  as  young  adults,  which  

occurred  either  within   the  pupal   cases  or   soon  after   eclosion.   Interestingly,  

membrin   mutant   animals   appeared   to   be   developmentally   delayed.   I  

quantified  this  effect  by  selecting  late  L2/early  L3  Mem-­WT,  Mem-­G147  and  

Mem-­K166del  larvae,  transferring  them  to  fresh  food  tubes  and  counting  the  

appearance   of   pupae   daily   for   the   next   five   days.   Onset   of   pupation   was  

observed   two  days  after  selection  of   larvae.  While  31%  of  Mem-­WT  rescue  

animals  pupated  by  this  day,  only  around  8%  of  Mem-­K166del  and  none  of  

Mem-­G147W  were  observed  to  reach  this  developmental  stage  (Figure  29A).  

By   day   three   almost   all   Mem-­WT   and   Mem-­K166del   animals   were   pupae  

whereas   only   approximately   21%   of   Mem-­G147W   animals   pupated   and   it  

took  this  group  of  animals  until  day  five  for  all  animals  to  initiate  pupation.    

Given   that   GOSR2-­PME   is   a   severe   epilepsy   syndrome   and   movement  

disorder,  we  wanted   to   find  out  whether  GOSR2-­PME  Drosophila   exhibited  

signs   of   motor   abnormalities.   I   therefore   quantified   larval   locomotion   by  

counting   4  mm  grid   crosses  within   60   s.  Mem-­WT   crossed   on   average   10  

grids   in   60   s   (Figure   29B),   whereas   Mem-­G147W   and   Mem-­K166del   only  

approximately  7.5  grids.  This   finding   illustrates  clear  motor  defects   in   these  

mutants,  which  otherwise  appear  morphologically  grossly  normal.    
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Figure   29.   Developmental   delay,   locomotor   deficits   and   seizure-­like  
behavior  in  GOSR2-­PME  model  larvae  
(A)  Mem-­WT,  Mem-­G147W  and  Mem-­K166del  larvae  were  transferred  to  fresh  
food  tubes  at  the  late  L2/early  L3  developmental  stages.  Onset  of  pupation  was  
subsequently  scored  for  5  consecutive  days  and  expressed  as  a  fraction  of  total  
pupae.  N  =   36,   58,   59   individual   pupae  were   counted   for  Mem-­WT/-­G147W/-­
K166del.    
(B)  Freely  moving  Mem-­G147W  and  Mem-­K166del  L3   larvae  crossed   fewer  4  
mm   grids   in   60s   than   Mem-­WT.   Replicate   values   derived   from   individual   L3  
larvae,   mean   and   SD   are   shown.   N   =   19,   20,   21   for   Mem-­WT/-­G147W/-­
K166del.  
(C)  Recovery  time  after  a  30  V  electroshock  to  the  central  nervous  system  of  L3  
larvae   was   quantified   as   an   indirect   readout   of   seizure   severity/duration.   A  
significant   increase   in   Mem-­G147W   and   Mem-­K166del   is   apparent   when  
compared   to   Mem-­WT.   Both   mutants   are   comparable   to   the   seizure   mutant  
bang-­senseless   (bss).   Replicate   values   derived   from   30   larvae   per   genotype,  
mean   and   SD   are   shown.   This   experiment   was   carried   out   and   analysed   by  
Carlo  Giachello  in  Richard  Baines’  lab.  
*,   ***   represent  p  <  0.05,  0.001,  ns  =  not  significant   (p  >  0.05);;  Fisher’s  exact  
test  with  Bonferroni  correction  (A),  ANOVA  with  Dunnett’s  multiple  comparison  
test  (B),  Kruskal-­Wallis  test  with  Dunn’s  post-­hoc  test  (C).  

  

Because  GOSR2-­PME   is  a  severe  epilepsy  syndrome,  we  wanted   to  know  

whether   also   Mem-­G147W   and   Mem-­K166del   had   hyperexcitability  

phenotypes.  Indeed,  Carlo  Giachello  in  Richard  Baines’  lab  found  that  Mem-­

G147W  and  Mem-­K166del  L3   larvae  exhibit  seizure-­like  phenotypes,  with  a  

relative  severity  comparable  to  the  bang-­senseless  Drosophila  seizure  model  

(Figure   29C)   (Giachello   and   Baines,   2015;;   Parker   et   al.,   2011).   They  

displayed   significantly   larger   recovery   times   from   electro-­shock   induced  

seizures  when  compared  to  Mem-­WT,  which  is  thought  to  be  a  consequence  

of  increased  seizure  severity  and/or  persistent  epileptiform  activity  in  mutant  

membrin   animals   (Giachello   and   Baines,   2015).   GOSR2-­PME   Drosophila  

therefore   not   only   exhibit   ataxia-­like   locomotor   deficits   but   also   seizure-­like  

phenotypes,  which  are  correlates  of  two  core  neurological  features  observed  

in  the  human  disorder.  
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Collectively,   these   phenotypes   are   thought   to   arise   from   a   decrease   in  

ERGIC/cis-­Golgi  lipid  fusion  rates  due  to  partial  Membrin  SNARE  defects.  In  

order  to  test  whether  also  reductions  in  G147W  mutant  Membrin  levels  could  

contribute   to   the   observed   phenotypes   –   as   is   suggested   by   decreased  

G144W   mutant   Membrin   levels   in   patient   fibroblasts   –   I   performed   semi-­

quantitative  western  blot  with  Mem-­WT,  Mem-­G147W  and  Mem-­K166del  L3  

larvae  lysates  (Figure  30A).  These  studies  revealed  similar  Membrin  levels  in  

Mem-­G147W   and  Mem-­K166del   when   compared   to   Mem-­WT,   with   only   a  

subtle  reduction  in  Mem-­G147W  (Figure  30B).  

  

Figure  30.  Membrin  levels  in  GOSR2-­PME  Drosophila  models  
(A)   Western   blot   of   Mem-­WT,   Mem-­G147W   and   Mem-­K166del   L3   larvae  
lysates.  Animals  were  raised  at  25°C  and  shifted  overnight  to  18°C  prior  to  lysis,  
in   order   to   reduce   Gal4   expression   and   therefore   facilitate   unmasking   of  
potentially   reduced  protein   stability   of  G147W  Membrin   (Duffy,   2002).   5  µg  of  
total  protein  was  loaded  into  each  lane  and  equal  loading  verified  with  Ponceau  
S  staining.  
(B)  Quantification  of  experiment  as  described  in  (A).  Normalized  to  Mem-­WT.  N  
=  6  replicate  values,  derived  from  three  independent  lysates  per  genotype  and  
immunoblotted  twice.  Mean  and  SD  are  shown.  **  represents  p  <  0.01,  ns  =  not  
significant  (p  >  0.05);;  ANOVA  with  Dunnett’s  multiple  comparison  test.  
  

  

This   indicates   that   the   observed  phenotypes   in   our  Drosophila  models   can  

solely   be   attributed   to   the  SNARE  defects   and   not   to   reductions   in  mutant  

Membrin  levels.  One  possible  explanation  for  the  discrepancy  between  high  

G147W  Membrin   levels   in   our  Drosophila  models   and   a   large   reduction   of  

G144W   mutant   Membrin   in   fibroblasts   (Figure   13)   might   be   that   the  

expression  levels  in  our  model  are  artificially  high  and  therefore  largely  mask  

G144W   mutant   Membrin   proteostasis   alterations.   Alternatively,   this   result  

might   further   indicate   that   the   fibroblast   data   are   rather   due   to   individual  

variations   in  Membrin   levels  –  as   is   suggested  by  Membrin   level   variations  
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between  the  healthy  controls  –  and  thus  do  not  represent  changes   incurred  

by   the   G144W   mutation.   To   further   investigate   whether   G144W   causes  

Membrin  protein  instability  it  would  be  revealing  to  overexpress  wild-­type  and  

mutant  Membrin  fused  to  a  Halo  or  SNAP  tag  in  HEK  cells.  These  constructs  

could   then   be   pulse   labelled,   which   would   enable   to   determine   whether  

protein  turnover  rates  are  increased  due  to  the  G144W  mutation.    

In   summary,   I   have   developed   the   first   GOSR2-­PME   in   vivo   models   by  

utilizing   Drosophila.   These   models   exhibit   severe   and   early   phenotypes,  

which   recapitulate  key  aspects  of  human  patients.  By  demonstrating  partial  

functional   inter-­changeability   of   human  GOSR2   and  Drosophila   membrin   I  

have   further   confirmed   the   validity   of   our   choice   of   model   organism.  

Furthermore,   our   phenotypic   data   suggest   partial   loss   of  Membrin   function  

due   to   GOSR2-­PME   mutations,   which   likely   results   in   the   observed  

organismal  phenotypes  due  to  neuronal  abnormalities.  

4.4.3          Profound   dendrite   growth   deficits   in   GOSR2-­PME   model  
neurons  

Important  clues  towards  the  mechanism  underlying  neuronal  dysfunction  due  

to   Membrin   mutations   stemmed   from   studies   investigating   neuronal  

consequences   of   mutations   in   other   ER-­to-­Golgi   trafficking   proteins.  

Overexpression   of   GTP-­locked   Arf1[Q71L]   in   developing   cultured  

hippocampal  neurons  led  to  severely  impaired  dendritic  growth  (Dascher  and  

Balch,  1994;;  Horton  et  al.,  2005).  Similarly,  Ye  et  al.   found   in  a  Drosophila  

forward   genetic   screen   that   mutations   in   Sec23,   Sar1   and   Rab1   cause  

dendritic   growth   deficiencies   (Ye   et   al.,   2007).   The   explanation   for   this  

observation   is   that   an   early   secretory   pathway   block   likely   prevents   ER-­

derived   lipids   and   proteins   from   reaching   the   surface   of   a   growing   neuron,  

which  poses  immense  demands  on  such  supplies  due  to  its  very  large  area  

(Hanus  and  Ehlers,  2008).  

However,   in   contrast   to   Arf1[Q71L]   and   the   truncated   Sar1,   which   was  

studied   due   to   organismal   lethality   in  mosaic   animals   (Dascher   and  Balch,  

1994;;  Horton  et  al.,  2005;;  Ye  et  al.,  2007),  the  G144W  and  K164del  Membrin  
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mutations  will  not  cause  a  complete  block  of  anterograde  trafficking.  After  all,  

yeast  liposome  fusion  studies  and  Drosophila  phenotypes  of  the  orthologous  

mutations   suggested  partial   and   not   complete   loss   of  Membrin   function.   In  

addition,   ER-­to-­Golgi   trafficking   in  G144W  mutant  Membrin   fibroblasts  was  

efficient   (Figure   17   and   Figure   18).   Thus,   we   tested   whether   even   such   a  

partial  decrease  might  be  sufficient  to  impair  dendritic  growth.  To  this  end  we  

utilized  a  set  of  highly  elaborate  sensory  neurons  within  the  larval  body-­wall  

neurons   termed   class   IV   dendritic   arborization   (da)   neurons,   which   we  

genetically   labeled   with   the   ppk   promoter   and   a   membrane   tagged   –   and  

therefore   secretory  pathway  dependent   –  CD4::tdGFP   reporter   (Grueber  et  

al.,   2003;;   Han   et   al.,   2011).   This   is   a   well   established   and   widely   used  

dendritogenesis   model   because   these   neurons   have   highly   sophisticated,  

tiled  dendritic  arbors  that  branch  in  2D  and  they  are  unambiguously  polarized  

into  a   single  axon  and  multiple  dendrites   (Figure  31A;;  arrowhead   indicates  

the   single   axon,   the   remaining   processes   are   dendrites)   (Grueber   et   al.,  

2002).   Amongst   the   three   class   IV   da   neurons,   which   are   labeled   in   each  

hemisegment  by   the  ppk   promoter,  we   imaged  a  particular   subtype   termed  

ddaC   neuron   (the   other   ppk-­positive   larval   body   wall   neurons   are   termed  

v’ada   and   vdaB)   in   abdominal   segment   5   of   Mem-­WT,   Mem-­G147W   and  

Mem-­K166del  L3  larvae  (Figure  31A).  
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Figure  31.  Membrin  mutations  cause  dendritic  growth  deficits  
(A)   Maximum   intensity   projections   of   ddaC   abdominal   segment   5   neurons  
genetically   labeled   with   ppk   >   CD4::tdGFP   in   Mem-­WT/-­G147W/-­K166del.  
Respective   tracings   of   the   dendritic   arbors   are   shown   below.   Arrowheads  
indicate  axons.   9  abdominal   segment  5  ddaC  neurons   from  7/7/8  different   L3  
larvae   for  Mem-­WT/G147W/-­K166del  were   traced  and  analyzed   in   (B,  C)  and  
Figure  32.	
 
(B)   Total   dendritic   length   extracted   from   tracings   as   shown   in   (A).   Replicate  
values  derived  from  individual  ddaC  neurons,  mean  and  SD  are  shown.   
(C)   Number   of   terminal   branches   of   ddaC   A5   neurons   as   shown   in   (A).  
Replicate   values   derived   from   individual   ddaC   neurons,   mean   and   SD   are  
shown. 	
 
**,   ***   represent   p   <   0.01,   0.001;;   one-­way   ANOVA   with   Dunnett’s   multiple  
comparison  test.    

  

The  unique  advantage  of  this  approach  is  that  we  were  able  to  image  exactly  

the   same   identifiable   neuron   across   different   genotypes   and   thus   reduced  

intrinsic   variation   of   dendritic   size   to   a  minimum.  Strikingly,   both  mutations  

caused   substantial   dendritic   growth   deficiencies.   Mean   reduction   of   total  

dendritic  length  amounted  to  approximately  40%  in  Mem-­G147W  and  67%  in  

Mem-­K166del   when   compared   to   Mem-­WT   (Figure   31B).   Similarly,   the  

average   number   of   terminal   dendritic   branches   was   decreased   in   Mem-­

G147W   and  Mem-­K166del   by   45%   and   64%   respectively   (Figure   31C).   In  

addition,   Sholl   analysis   revealed   a   clearly   reduced   elaboration   of   dendritic  

arborization  in  both  mutants  from  approximately  100  µm  away  from  the  soma  

(Figure   32A)   and   a   significant   decrease   of   overall   dendritic   intersections  

(Figure  32B).  
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Figure  32.  Sholl  analysis  
(A)   Number   of   intersections   of   dendritic   tracings   (Figure   31A)  with   concentric  
circles   with   2   pixel/circle   increasing   radii.   Mean   and   SEM   of   9   abdominal  
segment  5  ddaC  neurons  are  shown  for  each  genotype.	
 
(B)   Total   intersection   of   Sholl   analysis   as   described   in   (A).   Replicate   values  
derived   from   individual   ddaC   neurons,   mean   and   SD   are   shown.    **,   ***  
represent  p  <  0.01,  0.001;;  one-­way  ANOVA  with  Dunnett’s  multiple  comparison  
test.    

  

Taken  together  we  found  that  the  partial  loss  of  function  G147W  and  K166del  

Membrin   mutations   exert   a   substantial   effect   upon   neuronal   growth   in  

Drosophila  model  neurons.  This  may  be  the  consequence  of  a  subtle  delay  in  

the   early   secretory   pathway,   thus   limiting   the   availability   of   plasma  

membrane,  which  can  be  added  to  the  growing  dendritic  arbor.  

To   test   whether   a   secretory   pathway   deficit   is   the   cause   of   the   observed  

dendrite  growth  deficits,   I  quantified   the  steady  state   levels  of   the  secretory  

pathway   dependent   CD4::tdGFP   model   cargo   in   proximal   dendrites   of  

GOSR2-­PME   model   Drosophila   (Figure   33A).   Indeed,   mean   fluorescence  

intensity   of   this   cargo   was   significantly   decreased   in   proximal   dendrites   of  

Mem-­K166del   (Figure   33A,   B).   Similarly,   CD4::tdGFP   levels   were  

significantly   reduced   in  proximal  ddaC  axons  of  Mem-­K166del   (Figure  33A,  

C).   It   has   to   be   noted,   however,   that   we   did   not   distinguish   between   cell  

surface   and   intracellular   fluorescence   in   this   experiment.   Thus,   an  

accumulation   of   pre-­Golgi   CD4::tdGFP   –   which   might   be   the   result   of   the  

Membrin  mutations   –  might   be   contributing   to   the   fluorescence   signal   and  

therefore   subtle   effects   could   be   masked.   A   way   to   circumvent   this   issue  

would  be  to  selectively  antibody  stain   the  extracellularly   located  GFP  tag  of  

cell   surface   localizing   CD4::tdGFP   by   omitting   detergent   in   the   staining  

protocol.  Another   potential   pitfall   is   that   I   quantified  neurites   in   proximity   to  

the  somatic  Golgi,  which  might  not  be  sensitive  enough   to  detect  a  smaller  
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effect  size,  such  as  we  would  expect  in  Mem-­G147W.  Indeed,  James  Jepson  

found  that  distal  axonal/synaptic  CD4::tdGFP  was  significantly  reduced  both  

in  Mem-­K166del  and  Mem-­G147W,  which  was   not   significantly   different   to  

Mem-­WT   proximally   in   neither   axons   nor   dendrites   (Figure   33).   James  

Jepson   also   found   that   the   endogenous   synaptic   cargo   cysteine   string  

protein  (CSP)  was  significantly  reduced  at  the  neuromuscular  junction  (NMJ)  

of  Mem-­G147W  and  Mem-­K166del   L3   larvae  when   compared   to  Mem-­WT  

(Figure  33F,  G).  
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Figure  33.  Steady-­state  dendritic,  axonal  and  synaptic  secretory  pathway  
deficits  
(A)   Maximum   intensity   projections   of   abdominal   segment   5   ddaC   neurons   in  
Mem-­WT,  Mem-­G147W  and  Mem-­K166del  L3   larvae  expressing   the  secretory  
pathway  dependent  CD4::tdGFP  model  cargo.  Arrowheads  indicate  axons.	
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(B)   Mean   fluorescence   intensity   (MFI)   in   major   dendrites   within   37.5   µm  
distance  from  the  soma  center  of  neurons  as  described  in  (A).  Replicate  values  
were   derived   from   10   ddaC   neurons   per   genotype   (5   L3   larvae   each).  Mean  
and  SD  are  shown.  
(C)  Mean   fluorescence   intensity   (MFI)   in   the   axon  within   37.5  µm  distance   of  
the  soma  center  of  neurons  as  described  in  (A).  Replicate  values  were  derived  
from   10   ddaC   neurons   per   genotype   (5   L3   larvae   each).   Mean   and   SD   are  
shown.  
(D)   Quantification   of   CD4::tdGFP   fluorescence   in   ppk   neuron   axons   and  
synapses  in  the  L3  larval  VNC,  normalized  to  BRP,  as  shown  in  (E).  N  =  5,  6,  6  
for   Mem-­WT/-­G147W/-­K166del.   Replicate   values   derived   from   different   larval  
brains,  mean  and  SD  are  shown.  
(E)  Maximum   intensity  projections  of  distal  ppk  neuron  axons/synapses   reveal  
reduced   levels  of  CD4::tdGFP   in   the  VNC  of  Mem-­G147W  and  Mem-­K166del  
compared  to  Mem-­WT.  Neuropil  is  stained  with  anti-­BRP.  
(F)   NMJs  were   stained  with   anti-­CSP   and   anti-­horseradish   peroxidase   (HRP)  
antibody,  which   labels  neuronal  membranes  due   to  crossreactivity  with  certain  
surface   glycans   (Fabini   et   al.,   2001).   A   significant   reduction   of   CSP   levels   is  
apparent  in  Mem-­WT  as  compared  to  Mem-­G147W  and  Mem-­K166del.  
(G)  Quantification  of  experiment  as  shown   in  (F).  CSP  levels  were  normalized  
to   HRP   and   expressed   relative   to   Mem-­WT.   N   =   77/47/72   synaptic   boutons  
from  9/8/7  L3   larvae   for  Mem-­WT/-­G147W/-­K166del.  Replicate  values  derived  
from  individual  synaptic  boutons,  mean  and  SD  are  shown.  
**,   ***   represent   p   <   0.01,   0.001,   ns   =   not   significant   (p   >   0.05);;   one-­way  
ANOVA  with  Dunnett’s  multiple  comparison  test  (B-­D);;  Kruskal-­Wallis  test  with  
Dunn’s  post-­hoc  test  (G).  
Experiments  and  analysis  shown  in  (D-­G)  were  carried  out  by  James  Jepson.  

  

Importantly,  a  CD4::tdGFP  secretory  pathway   transport  deficit  might  not  be  

apparent  at  steady  state  but  only  when  its  trafficking  is  dynamically  studied.  

In  theory,  we  could  imagine  that  an  ER-­to-­Golgi  trafficking  deficit  would  result  

in  the  availability  of  fewer  post-­Golgi  carriers,  which  are  transported  from  the  

trans-­Golgi   network   to   the   dendritic   surface   and   thereby   enable   its   growth.  

Thus,  to  visualize  the  trafficking  of  CD4::tdGFP  I  photo-­bleached  abdominal  

segment  5  ddaC  soma  adjacent  major  dendrites.  A   large  dendritic   region  –  

contained   within   a   50   µm2   bleach   area   –   was   photo-­bleached   and   the  

recovery  measured  in  a  small  dendritic  region  25  µm  from  the  soma  (Figure  

34A).   This   approach   was   chosen   in   order   to   minimize   the   contribution   of  

lateral   diffusion   of   cell   surface   localized   CD4::tdGFP   into   the   quantified  

region.  After  all,  the  signal  of  interest  is  not  surface  localized  cargo  per  se  but  

CD4::tdGFP  molecules  which  are  trafficked  via  the  secretory  pathway  to  the  

dendritic   surface.   As   a   control   for   my   imaging   settings   I   also   quantified  

fluorescence   in   non-­bleached   dendrites,   which   remained   stable   over   the  

approximately   30   min   time   course   (Figure   34B).   Consistent   with   more  

profound  SNARE  and  secretory  trafficking  defects  in  Mem-­K166del  we  could  



  

   128  

detect   a   clear   reduction   in   fluorescence   recovery   after   experimental   photo-­

bleaching   in   this   mutant   and   only   a   non-­significant   trend   towards   reduced  

recovery  in  Mem-­G147W  when  compared  to  Mem-­WT  (Figure  34C).    

  

Figure  34.  Dendritic  FRAP  in  Membrin  mutant  ddaC  neurons  
(A)  CD4::tdGFP  in  large  segments  of  major  ddaC  A5  dendrites  adjacent  to  the  
soma  were  photobleached  with  a  50  µm2  region  of  interest  (large  square  in  first  
column)   and   fluorescence   recovery   quantified   25   µm   from   the   soma  proximal  
bleach  margin  for  29.5  min.    
(B)   Non-­bleach   control   measurements   of   unbleached   dendrites.   Mean  
fluorescence   intensities   (MFI)   in   non-­bleached   regions   of   interest   of   5   ddaC  
neurons,   from   5   different   L3   larvae   per   genotype   were   pooled   in   this   graph.  
Mean  and  SD  are  shown.  
(C)   Average   FRAP   traces   of   experiment   as   described   in   (A).  Means   of   9/8/9  
abdominal   segment   5   ddaC   neurons,   from   9/8/9   different   L3   larvae   for  Mem-­
WT/-­G147W/-­K166del  are  shown.  */ns  indicate  endpoint  comparison  after  29.5  
min   recovery.   *   represents   p   <   0.05,   ns   =   not   significant   (p   >   0.05);;   one-­way  
ANOVA  with  Dunnett’s  multiple  comparison  test.  

  

In   summary,   I   found   reduced   dendritic   growth   in   Mem-­G147W   and   Mem-­

K166del,   which   is   likely   caused   by   reduced   cargo   trafficking   into   growing  

dendrites  as  a  result  of  partially  decreased  ER-­to-­Golgi  trafficking  rates.    

4.4.3.1          Overexpression  of  mutant  Membrin   in  class   IV  da  neurons  
causes  dendrite  growth  deficits  

Previous   organismal   data   suggested   that   mutant   Membrin   could   be  

overexpressed   in   otherwise   wild-­type   membrin   Drosophila   to   recapitulate  

aspects  of  GOSR2-­PME  in  a  genetically  more  simple  and  versatile  way  than  



  

   129  

our   models   permit.   To   validate   the   idea   that   mutant   Membrin   transgenes  

could  serve  as  tools,  I  sought  to  also  study  their  effects  on  the  neuronal  level.  

Therefore,   I   overexpressed   wild-­type   and   mutant   Membrin   in   class   IV   da  

neurons   of   wild-­type   membrin   Drosophila.   To   visualize   ddaC   neurons   in  

abdominal  segment  5,  CD4::tdGFP  was  expressed  with  the  ppk  promoter  (as  

described  above).  This  experiment  revealed  that  also  simple  overexpression  

of  mutant  Membrin  –  when  compared  to  wild-­type  Membrin  overexpression  –  

is  sufficient  to  result  in  less  elaborate  dendrites  (Figure  35A).    

  

Figure  35.  Overexpression  of  mutant  Membrin  in  ddaC  neurons  
(A)   Maximum   intensity   projections   of   ddaC,   abdominal   segment   5   neurons.  
w[1118];;   ppk-­CD4::tdGFP;;   ppk-­Gal4   were   crossed   to   w[1118];;   UAS-­
membrin[WT]/[G147W]/[K166del],  iso31  or  w[1118];;  +;;  UAS-­RedStinger.  
(B)  Sholl   analysis  of   experiment   as  described   in   (A).  N  =  9,   7,   11,   9,   9  ddaC  
neurons   from   9/7/11/9/9   different   L3   larvae   for   iso31,   UAS-­RedStinger,   UAS-­
membrin[WT]/[G147W]/[K166del].   Replicate   values   derived   from   individual  
ddaC  neurons,  mean  and  SD  are  shown.  **,  ***  represent  p  <  0.01,  0.001;;  one-­
way  ANOVA  with  Tukey’s  multiple  comparison  test.  

  

To  rapidly  retrieve  quantitative  results  from  these  neurons,  I  performed  Sholl  

analysis   directly   from   thresholded   images   (Ferreira   et   al.,   2014).   This  

revealed   a   significantly   decreased   number   of   total   intersection   for   G147W  

and   K166del   when   compared   to   wild-­type   (Figure   35B).   Because   the  

mutations  only  affect   the  class  IV  da  neurons  in  this  experiment,   it  provides  

evidence   that   the   dendrite   growth   deficits   as   observed   in   GOSR2-­PME  

Drosophila  is  due  to  a  cell  autonomous  deficiency  and  not  due  to  e.g.  a  lack  

of  trophic  factors  from  other  cell  types  in  the  larval  body  wall.  Given  the  tight  
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connection   between   the   secretory   pathway   and   plasma   membrane  

expansion,  a  primarily  cell  autonomous  deficit  was  a  priori  most  likely,  which  

was   hereby   also   experimentally   confirmed.   The   relative   severity   of   the  

dendritic   growth   deficits   was   lower   in   the   overexpression   setting   when  

compared  to  the  GOSR2-­PME  models.  This  is  expected  and  consistent  with  

less  severe  organismal  phenotypes,  when  endogenous  Membrin   is  present  

(compare  Figure  28A,  Figure  27B).  Of  note,  also  overexpression  of  wild-­type  

Membrin   in   ddaC   neurons   induced   dendrite   growth   deficiencies,   thereby  

suggesting   that   increased   Membrin   levels   can   partially   impair   secretory  

trafficking,  potentially  by   interfering  with   the  trans-­Golgi  SNARE  complex  as  

an   inhibitory   (i-­)  SNARE  (Varlamov  et  al.,  2004).  This   is  apparent  when  we  

compare   wild-­type   Membrin   overexpressing   ddaC   neurons   with   ddaC  

neurons   where   only   CD4::tdGFP   and   Gal4   is   present   and   those,   with  

additional   expression   of   an   unrelated   RFP   and   a   nuclear   localization  

sequence   (Figure   35A,  B).   In   summary,   these   experiments   further   suggest  

that   mutant   Membrin   transgenes   can   readily   be   used   for   the   study   of  

GOSR2-­PME.   Furthermore,   it   highlights   how   increased   Membrin   levels   in  

itself   are   sufficient   to   partially   impair   dendritic   growth   and   confirmed   that  

Membrin   mutation   induced   dendrite   growth   deficits   are   due   to   cell  

autonomous  defects.    

4.4.4          Morphological   and   physiological   abnormalities   at   mutant  
Membrin  synapses  

While  dendritic   length  of  ppk   labelled  ddaC  neurons  was  greatly  reduced   in  

GOSR2-­PME  model  Drosophila,  James  Jepson  found  that  ppk  labelled  class  

IV  da  neuron  axon  bundles  (comprising  of  one  ddaC,  v’ada,  vdaB  axon  per  

hemisegment)   reached   their   target   synaptic   regions   in   the   center   of   the  

ventral   nerve   cord   (Figure   33E)   (Grueber   et   al.,   2007).   This   finding   clearly  

illustrates  that  axonal   length   is  preserved  in  class  IV  da  sensory  neurons  of  

GOSR2-­PME   Drosophila.   These   cells   have   elaborate   dendrites   and   long  

axons,  which  therefore  points  towards  a  preferential  vulnerability  of  dendrites  

due  to  Membrin  mutations.  Thus,  our  finding  underscores  results  from  Ye  et  

al.,  who   suggested   that   axonal   growth   is   less   vulnerable   to   early   secretory  

pathway  defects  than  dendritic  growth  (Ye  et  al.,  2007).  Nevertheless,  James  
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Jepson   found   a   clear   secretory   pathway   deficit   in   distal   axons,   as   steady  

state  levels  of  CD4::tdGFP  levels  were  significantly  reduced  in  Mem-­G147W  

and   Mem-­K166del   when   compared   to   Mem-­WT   (Figure   33D).   Because  

synaptic  development  and  function  are  highly  orchestrated  processes,  where  

many  proteins  must  be  provided  in  the  right  quantity  at  the  right  time  via  the  

secretory  pathway,  we  speculated  that  synaptic  integrity  might  be  altered  as  

a  result  of  the  pathogenic  Membrin  mutations.  In  order  to  evaluate  potential  

synaptic   morphological   abnormalities   in   GOSR2-­PME   Drosophila,   James  

Jepson   studied   the   NMJ   of   L3   larvae.   These   are   glutamatergic   contacts  

between  motoneurons  and  body  wall  muscles,  which  have  been  widely  used  

as   model   synapses   due   to   their   large   size   and   ease   of   experimental  

manipulation   (Harris  and  Littleton,  2015).  Strikingly,   James  Jepson   found  a  

host   of   abnormalities   at   mutant   Membrin   NMJs,   including   elongated  

protrusions   reminiscent   of   collapsed   boutons,   synaptic   retraction,   and  

cytoskeletal  abnormalities  (Figure  36A-­D  and  data  not  shown).  
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Figure  36.  Structural  abnormalities  at  GOSR2-­PME  model  NMJs  
(A)   Muscle   6/7,   abdominal   segment   3   NMJs   were   stained   with   an   anti-­HRP.  
Maximum   intensity   projections   of   confocal   z-­stacks   show   rounded   boutons   in  
Mem-­WT   and   elongated   terminal   protrusions   in   Mem-­G147W   and   K166del.  
Arrowheads   indicate   isolated   boutons,   which   are   indications   of   synaptic  
retraction  and  was  was  further  investigated  in  (C)  and  (D).  
(B)   Quantification   of   experiment   as   described   in   (A).   N   =   32,   31,   31   scored  
NMJs   from  21/19/20  different  L3   larvae   for  Mem-­WT/-­G147W/-­K166del.  Mean  
and  SEM  are  shown.  
(C)   Apposition   between   pre-­   and   postsynaptic   membranes   was   evaluated   by  
co-­staining   the   presynaptic   active   zone   protein   Bruchpilot   (BRP)   and   the  
postsynaptic   glutamate   receptor   (GLURIII).   Arrowheads   indicate   synaptic  
retraction,  where  GLURIII  lacks  its  presynaptic  active  zone.  
(D)  Quantification  of  experiment  as  described  in  (C).  N  =  14,  13,  12  NMJs  from  
9/8/9  L3   larvae   for  Mem-­WT/-­G147W/-­K166del.  Replicate  values  derived   from  
individual  NMJs,  mean  and  SEM  are  shown.  
*,**  represent  p  <  0.05,  0.01;;  Kruskal-­Wallis  test  with  Dunn’s  post-­hoc  test.  
These  experiments  were  carried  out  and  analysed  by  James  Jepson.  

  

These  morphological  changes   in  GOSR2-­PME  Drosophila  and   the   fact   that  

human   patients   suffering   from   this   disorder   are   profoundly   hyperexcitable  
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suggested  to  us   that  also  synaptic  physiology  might  be  altered.  This   is  why  

Simon   Lowe   extended   these   morphological   studies   by   evaluating   synaptic  

transmission  at  this  NMJ  model  synapse.  He  found  a  significant  decrease  in  

spontaneous  neurotransmitter  release  in  mutant  animals  (Figure  37A,  B).   In  

addition,   Mem-­G147W   and   Mem-­K166del   displayed   a   striking   effect   of  

hyperactive   evoked   synaptic   transmission.   Muscular   responses   to   supra-­

threshold   stimulation   of   the   innervating   nerve   frequently   resulted   in  

dysmorphic   and   broadened   excitatory   postsynaptic   potentials   (EPSPs),  

which  was  particularly  striking  under  10  Hz  repetitive  stimulation  (Figure  37C,  

D).  

  

Figure  37.  Hyperactive  GOSR2-­PME  model  NMJs  
(A)   mEPSP   traces   of   Mem-­WT/-­G147W/-­K166del   recorded   from   muscle   6,  
abdominal  segments  2-­4.  
(B)  Cumulative  frequency  of  mEPSP  inter-­event  interval  times  of  recordings  as  
shown  in  (A).  800  mEPSPs  from  8  animals  per  genotype  were  analysed.  
(C)   EPSPs,   evoked   by   5   stimuli   at   10   Hz,   were   recorded   from   muscle   6,  
abdominal   segments   2-­4.   Example   traces   are   shown,   ranging   from   normal   to  
severely  distorted  shapes.  Traces  are  normalized  to  the  peak  amplitude.  
(D)   EPSP   train  morphology  was   classified   by   a   blinded   observer.   10   animals  
per  genotype  were  recorded  and  for  each  of  them  15  EPSP  trains  analyzed.  
***   represents   p   <   0.001;;   Kolmogorov-­Smirnov   test   and   Bonferroni   correction  
(B),  Fisher’s  exact  test  and  Bonferroni  correction  (D).  
These   experiments   were   carried   out   and   analysed   by   Simon   Lowe   in   James  
Hodge’s  and  Maria  Usowicz’s  lab.  

  

Thus,   the   PME   causing  Membrin  mutations   not   only   significantly   disturbed  

dendritic   development   in   our   Drosophila   models,   but   also   caused  
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morphologically  and  physiologically  abnormal  synapses.  This  finding  not  only  

contributes   to   our   understanding   of   how   Membrin   mutations   cause   a  

hyperexcitable   nervous   system   but   also   suggests   a   tight   dependence   of  

synaptic  integrity  upon  efficient  secretory  trafficking.  

Interestingly,   I   have   also   detected   overexpressed   Membrin   in   axons   and  

synapses  of  Drosophila  neurons  (Figure  38A,  B).  

  

Figure  38.  Axonal  and  synaptic  localization  of  overexpressed  Membrin  
(A)  Wild-­type  FLAG::Membrin  was  co-­overexpressed  with   the  synaptic  marker  
nsyb::GFP   utilizing   the   nompC-­Gal4   driver.   Maximum   intensity   projections  
indicating  overlap  between  the  FLAG  and  GFP  signals  in  the  ellipsoid  body  (EB,  
*)  and  antennal  mechanosensory  and  motor  center  (AMMC,  **)  are  shown.  
(B)  Single  confocal  slices  in  the  AMMC  of  a  Drosophila  brain  as  described  in  (A)  
are  depicted.   In  several   instances  colocalization  between  FLAG::Membrin  and  
nsyb::GFP  is  apparent  (arrowheads).  
(C,  D)  Wild-­type  or  mutant  Membrin  was  overexpressed  with   the  nompC-­Gal4  
driver   and   EB   MFI   quantified   from   maximum   intensity   projections.   N   =   8  
Drosophila  brains  per  genotype.  Replicate  values  from  individual  brains,  mean  
and   SD   are   shown.   *,   ***   represent   p   <   0.05,   0.001;;   one-­way   ANOVA   with  
Dunnett’s  multiple  comparison  test.  
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At   present   it   is   unclear  whether   this   represents   spill-­over   from   the   somatic  

Golgi   due   to   artificially   high   expression   levels   or   reflects   the   localization   of  

endogenous  Membrin.   If  Membrin   indeed   localizes   to   this   compartment  we  

could  imagine  a  local  ERGIC  or  Golgi-­like  function,  which  is  suggested  by  the  

observation   that   axons   contain   several   key   components   of   the   secretory  

pathway   (González   et   al.,   2016).   This   could   serve   as   an   additional  

explanation   for   the   observed   synaptic   abnormalities.   Interestingly,   G147W  

mutant   Membrin   localized   to   the   synapse   to   greatly   decreased   amounts,  

while  K166del  mutant  Membrin  was  only  subtly   reduced  when  compared   to  

wild-­type   (Figure   38C,   D).   Thus,   G147W/G144W   might   confer   additional  

pathogenicity   by   this   localization   defect.   In   order   to   unambiguously   study  

such  a  potential  local  axonal/synaptic  role  of  Membrin,  additional  Drosophila  

models   with   lower   expression   levels   would   need   to   be   created.   Therefore  

knock-­in   fly   lines   would   be   the   ideal   tools,   which   should   also   be   epitope  

tagged  to  allow  for  unambiguous  immuno-­staining.  
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4.5          Discussion  

In   this   study,  we  developed   the   first  multicellular   in   vivo  model   of  GOSR2-­

PME,  which  was  an  important  step  towards  uncovering  disease  mechanisms  

that   are   less   intuitively   inferable   from   the   sequence   alterations   and   more  

informative   as   to   what   the   neuronal   bottleneck   might   be.   Previous  

investigations   into   the   molecular   consequences   of   the   GOSR2-­PME  

mutations  carried  out  by  Nancy  Malintan  revealed  that  these  mutations  cause  

a   partial   SNARE   domain   deficit   in   the   yeast   orthologue   Bos1   and   by  

inference  the  Drosophila  and  mammalian  Membrin  SNARE  motifs.  

4.5.1          The  choice  of  in  vivo  model  system  

After  careful  consideration  we  chose  Drosophila  as  our  prime  model.  ER-­to-­

Golgi   trafficking   is   a   highly   conserved   fundamental   mechanism   in   all  

eukaryotic   cells,   which   is   illustrated   by   the   fact   that   several   of   its   key  

molecular  players  were   first   identified   in  yeast   (Bonifacino  and  Glick,  2004;;  

Novick   et   al.,   1980).   Importantly,  Drosophila,   as   well   as   yeast,   contains   a  

single  Membrin  orthologue  and  no   redundancy   for   this  protein   is  present   in  

the  human  genome.  Thus,  Drosophila,  with   its   powerful   genetics  and   rapid  

life  cycle,  appeared  as  the  ideal   ‘minimal’  model  to  gain  critical   insights   into  

the   neuronal   consequences   of   the   GOSR2-­PME   mutations.   It   facilitated  

expression  of  transgenic  wild-­type  or  mutant  Membrin  variants  in  flies  where  

no  endogenous  wild-­type  Membrin  was  present,  which  could  have  otherwise  

potentially  masked  effects  of  the  mutations.  In  this  system,  human  Membrin  

was  capable  of  partially   functionally   replacing   its   fruit   fly  orthologue,   further  

supporting   the   validity   of   our   approach.   However,   this   was   only   an  

incomplete   rescue,   as   human   GOSR2   expressing   membrin   null   animals  

usually  died  within  three  days  after  eclosion  from  their  pupal  case.  While  this  

early   lethality   represents   a   profoundly   reduced   adult  Drosophila   life   span,  

human   GOSR2   nevertheless   was   capable   of   extending   the   viability   of  

membrin   null   animals   approximately   10-­fold,   as   they   otherwise   died   as   L1  

larvae.  Thus,   this  genetic  evidence  suggests   that  human  Membrin  might  be  

functionally   incorporated   into   the  Drosophila  cis-­Golgi  SNARE  complex  and  

thereby  mediate  ER-­to-­Golgi  membrane  fusion.  While  12  of  the  16  interacting  
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layer  amino  acids   in   the  SNARE  motifs  of  human  and  Drosophila  Membrin  

are  conserved,  4  are  not   (Figure   5).   It   is   therefore  conceivable   that  human  
Membrin   in   the   Drosophila   cis-­Golgi   SNARE   complex   might   change   the  

functional   properties   of   this   complex   –   such   as   force   generation   during  

SNARE   zippering,   overall   SNARE   complex   stability   and/or   recycling   of   the  

SNARE   complex   after   a   completed   round   of   fusion   –   and   thus   ultimately  

impair   secretory   trafficking.   Therefore,   in   order   to   evaluate   the   human  

GOSR2-­PME  mutations  in  a  more  physiologic  approach,  we  utilized  wild-­type  

or   mutant   Drosophila   Membrin   to   rescue   homozygous   membrin   null  

animals.Lessons  from  organismal  Drosophila  phenotypes  

Remarkably,  the  Membrin  mutations  resulted  in  dramatic  phenotypes  also  in  

Drosophila,  with  premature   lethality,   locomotor  and  seizure-­like  phenotypes,  

thereby   recapitulating   key   aspects   of   the   disorder   in   human   patients.   The  

early   onset   of   symptoms   in   GOSR2-­PME   patients   and   early   organismal  

abnormalities   in   the   Drosophila   models   suggested   developmental  

abnormalities   as   a   source   of   the   phenotypes.   Because  GOSR2-­PME   is   a  

neurological   syndrome,   we   hypothesized   that   aspects   of   neuronal  

development   might   be   impaired.   This   idea   was   further   reinforced   by   the  

finding   that   nervous   system   restricted   over-­expression   of   mutant   Membrin  

was  sufficient  to  recapitulate  early  adult  lethality  as  observed  in  GOSR2-­PME  

Drosophila.  However,   these  experiments  do  not  establish  whether  neuronal  

Membrin  mutations  are  also  necessary  to  cause  the  organismal  phenotypes,  

which  can  readily  be  tested  in  Drosophila  by  overexpressing  mutant  Membrin  

in   the   entire   animal   except   the   nervous   system.   Therefore,   the   global   da-­

Gal4   driver   could   be   used   and   Gal4   selectively   inhibited   in   the   nervous  

system   with   elav-­Gal80   (Suster   et   al.,   2004).   Should   also   these   genetic  

modifications  yield  pharate  adult  stage   lethality  we  know   that  also  Membrin  

mutations   in  non-­neuronal  cell   types  can  give   rise   to   this  phenotype,  which  

could  then  be  further  dissected  with  tissue  specific  Gal4  driver  lines.  

Both   Membrin   mutations   only   partially   rescued  membrin   null   animals   and  

global  Membrin  knockdown  had  similar  phenotypic  consequences.  Therefore  

our  Drosophila   phenotypic   data   also   provide   genetic   support   for   the   notion  
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that   the   disease   mutations   confer   partial   (not   complete)   loss   of   function,  

which  is  consistent  with  Nancy  Malintan’s  yeast  liposome  fusion  studies.    

4.5.2          Considerations  about  the  GOSR2-­PME  Drosophila  model  

In   our   Drosophila   GOSR2-­PME   models   and   their   control   –   in   shorthand  

termed   Mem-­G147W   (orthologous   to   human   G144W),   Mem-­K166del  

(orthologous  to  human  K164del)  and  Mem-­WT  –  the  effects  of  the  mutations  

are   studied   separately.   We   do   not   take   into   account   the   compound  

heterozygous  state  of  G144W-­K164del.  It  has  to  be  noted  however,  that  the  

Mem-­K166del   model   does   not   reflect   any   known   human   patient.   This  

mutation   has   a   greater   impact   upon   the   Bos1/Membrin   SNARE   domain  

function   and,   judging   from   the   profound   reduction   of   steady   state   dendritic  

and  axonal  CD4::tdGFP,  upon  Golgi  trafficking.  Therefore  I  hypothesize  that  

a  K164del  GOSR2  homozygous  patient  might  present  with  a  different  clinical  

syndrome,   which   might   also   include   abnormalities   in   other   highly   Golgi-­

dependent   organ   systems.   Paradoxically,   the   compound   G144W-­K164del  

GOSR2-­PME  patient  did  not  have  a  more  severe  phenotype  when  compared  

to   G144W   homozygous   patients,   but   a   slightly   milder   presentation.   This  

patient   lived   beyond   60   years   of   life   as   opposed   to   several   homozygous  

G144W  GOSR2-­PME  patients  who  died  prematurely  around  30  years  of  age  

(Boissé  Lomax  et  al.,  2013;;  Praschberger  et  al.,  2015).  However,  it  has  to  be  

noted   that   this   observed   difference  might   simply   reflect   an   outlier   within   a  

very  small  patient  cohort  (less  than  20  reported  cases).  Besides,  the  relative  

contribution   of   the   K164del   Membrin   allele   to   the   phenotype   might   be  

marginal,  as  a  less  disrupted  G144W  Membrin  allele  was  also  present  in  this  

patient.  

Our   Drosophila   model   also   does   not   take   into   account   reduced   G144W  

Membrin   levels  as  observed   in  patient   fibroblasts,   as  expression   levels  are  

artificially   high.   Should   decreased   G144W   Membrin   levels   indeed   be  

functionally   relevant   –   which   thus   far   is   unresolved   –   it   would   further  

aggravate  the  effects  as  seen  in  Mem-­G147W.  Therefore,  if  reduced  G144W  

Membrin   levels   contribute   to  GOSR2-­PME,   our  Mem-­G147W  model   would  

underestimate   the   severity   of   G144W   and   does   not   bear   the   danger   of  
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aggravating,   or   providing   false   positive   results.   Nevertheless,   we   detect   a  

clear   difference   between   Mem-­G147W   and   Mem-­WT,   which   is   the   ideal  

internal   control,   given   that   these   flies   are   genetically   identical   except   the  

absence   of   the   pathogenic   single   codon   alteration.   Thus,   all   observed  

differences   are   directly   attributable   to   the   respective  GOSR2-­PME   disease  

mutations  in  our  Drosophila  models.  Because  our  Mem-­G147W  model  shows  

clear  organismal  and  cellular  phenotypes  while  having  high  expression  levels  

of  the  mutant  protein,  we  can  infer  that  the  SNARE  domain  defect  in  itself  is  

highly  deleterious.  Nevertheless,   it  would  be  an  interesting  avenue  of   future  

research   to   further   investigate   the   potential   pathogenicity   of   reduced  

amounts   of   Membrin   due   to   the   G144W  mutation,   as   observed   in   patient-­

derived   fibroblasts.   Therefore,   Drosophila   phenotypes   as   a   function   of  

varying  degrees  of  RNAi  mediated  Membrin  knock-­down  could  be  evaluated.  

For  this  purpose,  different  RNAi  targets  within  the  Membrin  mRNA  could  be  

utilized   as  well   as   varying   ambient   temperatures   of   the   necessary   crosses  

(da-­Gal4   X   UAS-­Membrin   RNAi),   which   changes   the   activity   of   Gal4   and  

therefore  will  impact  the  degree  of  knock-­down  (Duffy,  2002).  

I   also   note   that   Mem-­WT   controls   are   not   entirely   wild-­type   but   suffer  

presumably   from   mild   secretory   pathway   impairment.   This   is   likely   due   to  

artificially  high  Membrin   levels   in   this  control   line,  which  has  been  shown   in  

yeast   liposome   fusion  studies   to  harbor   the  potential  of   inhibiting   the   trans-­

Golgi   SNARE   complex   in   a   concentration-­dependent  manner   (Varlamov   et  

al.,   2004).   Consistently,   we   observed   that   Mem-­WT   animals   sometimes  

exhibited   downward   turned   wings,   low   penetrance   dendrite   growth   and  

synaptic  morphological  abnormalities  and  also  NMJ  physiological  alterations.  

Importantly   however,   phenotypic,   cellular   and   physiological   abnormalities  

were  strikingly  worse  in  either  mutant  and  these  effects  can  thus  directly  be  

attributed  to  the  disease  mutations.  

4.5.3          Dendrite  growth  deficits  

Utilizing   our  GOSR2-­PME   Drosophila   models   we   were   able   to   show   that  

these   mutations   cause   substantial   dendritic   growth   deficits   in   genetically  

labeled  model   neurons.   These   results   build   upon   the   findings   of   Ye   el   al.,  
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who  discovered  in  a  Drosophila  dendritogenesis  screen  that  mutations  in  the  

ER-­to-­Golgi   transport   proteins   Sec23,   Sar1   and   Rab1   severely   interfered  

with  dendritic  outgrowth   (Ye  et  al.,  2007).  Membrin   is   involved   in   the  same  

trafficking   step   and   thought   to  mediate   its   final   task   –  membrane   fusion   of  

transport   carriers   with   ERGIC   and   Golgi   membranes   and   thereby   the  

deposition   of   anterograde   cargo   into   these   compartments.   Consistent   with  

the  previously  established   importance  of  ER-­to-­Golgi   trafficking   for  dendritic  

growth,   we   also   found   significantly   shorter   dendrites   in   Membrin   mutant  

Drosophila.   Importantly,   because   our   results   are   based   on   the   study   of   a  

Mendelian  human  disorder,  we  thereby  provide  proof  of  principle  that  this  key  

cellular   pathway   can   be   directly   relevant   for   understanding   the  

pathophysiology  of  a  neurological  disease.    

Interestingly,  other  Mendelian  human  disorders  due  to  ER-­to-­Golgi  trafficking  

mutations  in  Sec23A,  Sec23B,  Sec24D  and  Sar1b  present  with  largely  non-­

neuronal  clinical  phenotypes  of  cranio-­lenticulo-­sutural  dysplasia,  congenital  

dyserythropoietic  anemias,  a  syndromic  form  of  osteogenesis  imperfecta  and  

lipid  absorption  disorders  (Annesi  et  al.,  2007;;  Bianchi  et  al.,  2009;;  Boyadjiev  

et  al.,  2006;;  Garbes  et  al.,  2015;;  Jones  et  al.,  2003;;  Schwarz  et  al.,  2009).  

This  appears  to  be  a  consequence  of  tissue-­specific  differential  utilization  of  

the  two  available  isoforms  of  Sec23  and  Sar1  and  special  demands  upon  the  

COPII  coat  due  to  the  large  size  of  procollagen  and  chylomicrons  (Canty  and  

Kadler,  2005;;  Fromme  et  al.,  2008;;  2007;;  Jones  et  al.,  2003).    

A   dendritic   growth   bottle-­neck   as   observed   in   our   GOSR2-­PME   model  

Drosophila  directly  links  back  to  the  human  disease  phenotype  and  provides  

a   potential   high-­level   mechanism   for   one   of   its   hallmarks,   i.e.   ataxia.   If  

Membrin   mutations   cause   reduced   dendritic   growth   due   to   limited   lipid  

supplies   during   times   of   fast   surface   expansion,   we   would   expect   that  

neurons  with   the   largest   dendritic   arbors  would   be   affected  most   severely.  

One   such   neuron   subtype   with   a   particularly   large   dendritic   arbor   is   the  

cerebellar   Purkinje   cell   (Ramón   y   Cajal,   1906).   These   neurons   and   their  

cognate  brain  structure  –  the  cerebellum  –  are  critical   for  motor  control  and  

their  dysfunction  are   tightly   linked   to  many  ataxias   (Cerminara  et  al.,  2015;;  

Kasumu   and   Bezprozvanny,   2010).   Interestingly,   cerebellar   defects   have  



  

   141  

also   been   implicated   in   the   generation   of   cortical   myoclonus,   which   is  

another  clinical  hallmark  of  GOSR2-­PME  (Ganos  et  al.,  2014).  In  Drosophila  

the  idea  that  neurons  with  larger  dendritic  arbors  are  more  severely  affected  

by  Membrin  mutations  could  be  experimentally  addressed.  Therefore,  highly  

elaborate  class   IV  da  neurons  (as  studied  here)  could  be  compared   to   less  

elaborate  sensory  body  wall  neurons,  such  as  class   I-­III  da  neurons,   in   the  

presence  of  Membrin  mutations  (Grueber  et  al.,  2002).  

4.5.4          Partial  ER-­to-­Golgi  delays  are  sufficient   to   impair  dendrite  
growth  

Importantly,   the   impact   of   the   Membrin   PME   mutations   upon   dendritic  

development  also  extends  previous  findings,  because  it  clearly  demonstrates  

that  also  partial  delays  –  and  not  only  a  very  large  or  complete  block  –  in  ER-­

to-­Golgi   transport  can  be  sufficient   to  significantly   impact  neuronal   integrity.  

Such  subtle  defects  in  this  core  cell  biological  process  are  more  likely  to  be  

relevant   for  human  disorders  as  opposed   to  a  complete  block,  which  would  

presumably  cause  zygotic  or  early  developmental  lethality.  Intriguingly,  while  

we   could   clearly   detect   a   secretory   pathway   deficit   in   Membrin   mutant  

neurons,   ER-­to-­Golgi   trafficking   was   almost   indistinguishable   in   G144W  

mutant   Membrin   fibroblasts   when   compared   to   healthy   controls.   Neurons  

have   extremely   large   secretory   pathway   demands,   as   their   lipid   surface   is  

several   orders   of  magnitude   larger   than   in   non-­neuronal   cells   (Horton   and  

Ehlers,   2004).   Therefore,   our   finding   lends   experimental   support   to   the  

postulated   idea   that   because   of   special   neuronal   demands   upon   the  

secretory   pathway,   even   subtle   alterations   could   result   in   a   selective  

neurological   disorder  while   falling  below  a  critical   threshold   in  other  organs  

(Pfenninger,  2009).  This  notion  in  turn  provides  an  attractive  solution  for  the  

seeming   paradox   of   how   mutations   in   this   ubiquitously   important   protein  

could   give   rise   to   a   selective   neurological   condition.   The  G144W  Membrin  

SNARE   motif   mutation   appears   to   only   very   subtly   alter   ER-­to-­Golgi  

trafficking   rates   –   at   the   edge   of   detection   thresholds   of   common   assays  

used   in   this   study   –  which   therefore   likely   only   affects   cell   types  with   high  

rates   of   secretion.   Non-­neuronal   cell   types   with   such   characteristics   might  

also   display   altered   trafficking   kinetics  without   leading   to   clinical   symptoms  
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due  to  smaller  temporal  constraints  than  those  imposed  by  a  growing  neuron.  

For   example,   plasma   or   exocrine   pancreas   cells   have   high   secretory  

demands,   but   GOSR2-­PME   patients   are   not   reported   to   have   immuno-­

deficiency   or   exocrine   pancreas   insufficiency   (Boissé   Lomax   et   al.,   2013;;  

Farquhar   and   Palade,   1981;;   Palade,   1975).   We   can   easily   imagine   a  

scenario  where  antibody  and  digestive  enzyme  secretion  is  subtly  delayed  in  

these   patients,   which   however   might   not   be   physiologically   relevant.   An  

antibody   that   is  available   in   the  plasma  or  a  digestive  enzyme   in   the  small  

intestine   with   a   30   min   delay   as   compared   to   a   healthy   human  might   not  

significantly   change   the   fate   of   combating   a   viral   infection   or   significantly  

impact  the  digestion  of  a  meal.  

4.5.5          Privileged  axonal  growth  

Our   study   also   reinforces   further   findings   of   Ye   et   al.,   who   proposed   that  

axonal  growth  can  be  privileged  in  the  face  of  secretory  pathway  defects  (Ye  

et   al.,   2007).   Consistent   with   this   notion   James   Jepson   found   in   Mem-­

G147W  and  Mem-­K166del  that  class  IV  da  neuron  axon  bundles  (comprising  

of   ddaC,   v’ada,   vdaB   neuron   axons)   still   managed   to   reach   their   distant  

ventral   nerve   cord   targets.   The   mechanism   of   how   axonal   growth   is  

preserved  while  dendritic  growth  is  reduced  during  limitations  in  lipid  supplies  

is   currently   unclear.   It   has   been   proposed   that   higher   endocytosis   rates   in  

dendrites   might   account   for   this   effect   (Zhong,   2011).   Nevertheless,   the  

secretory   pathway   clearly   is   also   required   for   axonal   outgrowth   because  

Brefeldin  A   treatment  as  well   as  early  developmental  Sar1b  knock-­down   in  

mammalian   neuronal   cultures   resulted   in   reduced  axonal   outgrowth   (Aridor  

and  Fish,  2009;;  Jareb  and  Banker,  1997).  The  notion   that  also  axons  have  

high   trafficking  demands   is   illustrated  by  James  Jepson’s   finding   that  while  

class  IV  da  neuron  axons  still  reached  their  distant  targets  in  membrin  mutant  

Drosophila,   they   displayed   significant   steady-­state   reductions   of   secretory  

pathway   dependent   cargo   in   the   larval   ventral   nerve   cord.   Such   secretory  

pathway   deficits   in   distal   axons   and/or   synapses   suggested   that   also  

synapses  might  be  impaired  as  a  consequence  of  delayed  cargo  delivery.  
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4.5.6          Synaptic  abnormalities  

We  not  only  found  that  the  partial  loss  of  function  Membrin  mutations  impair  

dendritic  growth  but   that   they  also  disrupt  synaptic   integrity.   James  Jepson  

performed   a   comprehensive   structural   investigation   of   the   neuromuscular  

junction   (NMJ)   synapse,   which   revealed   several   salient   abnormalities.  

Amongst   them   were   malformed   boutons,   pre-­synaptic   retraction   and  

cytoskeletal  fragmentation.  An  interesting  parallel  of  these  NMJ  abnormalities  

in   our   disease   model   has   been   reported   in   the   human   disorder.   Some  

GOSR2-­PME   patients   displayed   signs   of   ongoing   denervation   in   needle  

electromyography   (EMG)   studies   (van   Egmond   et   al.,   2014).   Importantly,  

Simon  Lowe  found  at  the  NMJ  of  GOSR2-­PME  Drosophila  also  physiological  

defects.   Spontaneous   release   was   reduced   and   evoked   synaptic  

transmission  appeared  hyperactive,  which  was  particularly  pronounced  under  

repetitive  stimulation.  Given  that  Membrin  is  a  ubiquitously  important  protein  

critical   for   the   basic   cell   biology   of   every   neuron   we   can   infer   that   similar  

structural   and   physiological   synaptic   changes   might   also   affect   central  

synapses   of  GOSR2-­PME  model   flies   and   human   patients.   Such   synaptic  

abnormalities   in   turn   would   likely   contribute   to   the   severe   neurological  

phenotype   of   GOSR2-­PME   patients.   Given   that   the   core   neurological  

features   of   GOSR2-­PME   are   of   central   origin,   it   would   be   important   to  

address   whether   the   morphological   and   physiological   synaptic   changes   at  

the  NMJ  model  synapse  indeed  also  affect  excitatory  and  inhibitory  synapses  

of  the  central  nervous  system  in  our  Drosophila  models.    

The   GOSR2-­PME   models   revealed   that   synaptic   integrity   depends   upon  

tightly   controlled   ER-­to-­Golgi   trafficking   rates,   which   is   a   notion   that   has  

received   little   attention   thus   far   and   might   have   broad   physiological  

relevance.  It  is  not  all  too  surprising,  if  we  consider  that  synapses  are  highly  

specialized  neuronal  domains  with  many  resident  proteins  that  are  secretory  

pathway  dependent  (Wilhelm  et  al.,  2014).  Given  that  Membrin  is  a  cis-­Golgi  

gatekeeper  for  all  these  proteins  it  is  unlikely  that  individual  proteins  mediate  

these   cellular   phenotypes   but   rather   the   complex   interaction   of   several   of  

them.   Presumably   synaptic   proteins  with   the   highest   turn-­over   and   tightest  

temporal  constrains  will  contribute  to  the  synaptic  abnormalities  as  observed  
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in  GOSR2-­PME  model  Drosophila.   It   is   conceivable   that   changes   in   trans-­

synaptic   anchoring   proteins,   ion   channels,   trophic   factors   and   cytoskeleton  

regulating   proteins   could   lead   to   synaptic   retraction,   changes   in   excitability  

and  morphology  of  the  GOSR2-­PME  model  NMJ.  Given  the  vast  number  of  

synaptic   proteins   that   are   secretory   pathway   –   and   thus   Membrin   –  

dependent,  unbiased  synaptic  proteomics  in  these  mutants  might  be  able  to  

point   towards   critical   candidates.   In   addition,   an  EM  based   investigation   of  

the   ultrastructural   changes   at   the   NMJs   and   brains   of   our   GOSR2-­PME  

models   might   yield   further   mechanistic   insights   into   the   observed   synaptic  

defects.   To   further   dissect   the   relative   contribution   of   the   pre-­   vs.   the  

postsynapse,  Membrin  mutations  should  selectively  be  introduced  either  into  

glutamatergic   neurons   or   muscle   and   the   resulting   NMJ   abnormalities  

evaluated.   A   very   elegant  way   to   establish   the   genetics   of   this   experiment  

would   be   to   replace   endogenous  membrin   by   a   cassette   containing   FRT  

flanked  wild-­type  membrin  upstream  of  G147W  or  K166del  mutant  membrin  

(Baena-­Lopez   et   al.,   2013).   Motoneuron   or   muscle   specific   expression   of  

flippase  would   then   yield   animals   that   express  mutant  Membrin   only   in   the  

pre-­   or   postsynaptic   cells   of   the   NMJ   in   an   otherwise   wild-­type   Membrin  

animal.  

In  summary,  the  development  of  Drosophila  models  of  GOSR2-­PME  allowed  

us   extend   our   investigations   at   the   protein   and   basic   cellular   levels   and  

unravel   the   disease   mechanisms   which   lie   at   the   heart   of   neuronal  

dysfunction  of   this   severe  ataxia-­epilepsy  syndrome.  We   therefore  are  now  

left  with  a  deeper  understanding  of  this  disorder  at  the  molecular,  cellular  and  

neuronal   levels,   which   will   be   summarized   in   Chapter   5.   In   addition,   I   will  

discuss  lessons  for  neuronal  cell  biology  learned  from  GOSR2-­PME  and  how  

the  disease  mutations  might  serve  as  novel  tools  for  future  research.    
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Chapter  5.            Concluding  remarks  

The   main   aim   of   this   PhD   project   was   to   shed   light   upon   the   unresolved  

disease  mechanism  of  GOSR2-­PME.  Prior  to  our  functional   investigations,  I  

have  expanded   the  genetics   of   this   disorder   by   the  novel  K164del   disease  

allele,  and  thereby  facilitated  our  subsequent  work  by  being  able  to  compare  

the   novel   with   the   previously   reported  G144W  mutation.   The   key   scientific  

challenge  we  faced  was  how  mutations   in   the  ubiquitously   important  ER-­to-­

Golgi  SNARE  protein  Membrin  could  be  reconciled  with  an  almost  exclusive  

neuronal   phenotype.   A   priori,   one   can   speculate   that   such   selective  

vulnerability  could  either  originate   in  particularly  high  demands  of  Membrin-­

mediated   processes   within   the   nervous   system   or   alternatively   in   an  

additional,  nervous  system  specific  function  of  wild-­type  or  mutant  Membrin.  

5.1          The  GOSR2-­PME  disease  mechanisms  

By  utilizing  a  multi-­layered  approach  spanning  from  molecule  to  organism  we  

have   provided   evidence   for   the   prior   notion.   Nancy   Malintan’s   work   has  

revealed  partial  SNARE  defects   in   liposome  fusion  studies  conferred  by  the  

yeast   orthologous   GOSR2-­PME   mutations.   These   mutations   were  

nevertheless   substantial   enough   to   severely   disturb   dendritic   growth   and  

synaptic   integrity   in  Drosophila.   Intriguingly,   the  G144W  Membrin  mutation  

did   not   cause   significantly   delayed   ER-­to-­Golgi   trafficking   rates   in   a   non-­

neuronal   cell   type,   which   therefore   suggests   that   the   selective   nervous  

system   vulnerability   as   observed   in  GOSR2-­PME   might   have   its   origin   in  

uniquely  high  Golgi  trafficking  demands  of  neurons  (Horton  and  Ehlers,  2004;;  

Pfenninger,   2009).   Our   work   has   thereby   not   only   provided   a   possible  

explanation   for   the  central  paradox  of   this  disease  but  also  yielded   insights  

into   the   pathophysiology   GOSR2-­PME   at   multiple   levels,   ranging   from  

protein   dysfunction   to   higher   level   neuronal   circuit   disturbances   (for   a  

summary  illustration  see  Figure  39).    
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Figure  39.  GOSR2-­PME  pathophysiology  summary  
The  missense  (blue)  and  deletion  (red)  mutations  are  shown  in  a  portion  of  the  
Membrin/Bos1  SNARE  domain  of  Homo  sapiens  (Hs),  Drosophila  melanogaster  
(Dm)  and  Saccharomyces  cerevisiae  (Sc).  These  changes  are  thought  to  result  
in   reduced   cis-­Golgi  membrane   fusion.  While   the   effects   of   the  GOSR2-­PME  
mutations   appear   to   fall   below   a   critical   threshold   in   non-­neuronal   cells,   they  
severely   impair   neurons.   The   core   findings   in   GOSR2-­PME   Drosophila   of  
reduced   dendritic   growth,   synaptic   retraction   (by   James   Jepson)   and  
hyperactive   evoked   neurotransmission   (by   Simon   Lowe)   are   depicted.   Such  
changes   ultimately   give   rise   to   severe   ataxia   and   profound   nervous   system  
hyperexcitability.  

  

5.1.1          The  molecular  mechanism  

The   furthest   ‘upstream’   mechanism   of   the   GOSR2-­PME   phenotype   is  

partially   impaired  Membrin   due   to   the   pathogenic   SNARE  motif   mutations.  

This   conclusion   is   most   directly   suggested   by   Nancy   Malintan’s   yeast  

liposome   fusion   data.   Indirectly,   also   the   partial   phenotypic   rescue   of  

membrin   null   Drosophila   by   mutant   Membrin   also   supports   this   notion.  

Similarly,  the  observation  that  a  key  phenotype  of  GOSR2-­PME  Drosophila  –  

pharate   adult   stage   lethality   –   are   recapitulated   by  membrin   RNAi   knock-­

down  are   in  accord  with   reduced   function   conferred  by  mutant  Membrin.  A  

partial   loss   of   function   mechanism   –   as   opposed   to   gain   of   function   –   is  

consistent  with  the  autosomal-­recessive  transmission  of  the  disorder  and  the  

observation   that   both   pathogenic   mutations   disrupt   the   essential   SNARE  

domain.   Membrin   with   a   reduced   capability   of   forming   a   tight   cis-­Golgi  

SNARE  complex  (with  its  SNARE  partners  Bet1,  Syntaxin-­5  and  Sec22b)  will  
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cause   reduced  membrane   fusion   rates   at   the   cis-­Golgi.   Increases   in   body  

temperature  might   further  destabilize  the  mutant  cis-­Golgi  SNARE  complex,  

which   could   be   an   explanation   why   several   GOSR2-­PME   patients   were  

reported  to  have  suffered  from  fever  induced  declines  (Boissé  Lomax  et  al.,  

2013;;  Praschberger  et  al.,  2015).  

5.1.2          Non-­neuronal  mechanism  

Based  on  unimpaired  ER-­to-­Golgi   trafficking   rates   in  a  non-­neuronal  model  

cell  type  we  now  believe  that  these  partial  ERGIC/cis-­Golgi  fusion  deficits  are  

not  sufficient  to  impair  non-­neuronal  cells  to  a  large  enough  degree  to  cause  

symptoms.  This  notion  serves  as  a  plausible  explanation  why   tissues  other  

than  the  nervous  system  do  not  largely  contribute  to  the  disease  phenotype.  

It   has   to   be   noted   however,   that   more   detailed   experimental   and   clinical  

analysis   might   reveal   measurable   abnormalities   also   in   non-­neuronal,  

asymptomatic   organ   systems.   For   instance,   it   is   likely   that   other   cell   types  

with   large   ER-­to-­Golgi   trafficking   demands   –   such   as   plasma   or   exocrine  

pancreas   cells   –   will   display   subtle   delays   when   harboring   a   G144W   or  

K164del  Membrin  mutation.  

A   non-­neuronal   cell   type   that   appears   to   frequently   cause   measurable  

changes   in  GOSR2-­PME   is   muscle,   as   several   patients   were   reported   to  

have   increased   creatine   kinase   levels.   However,   muscle   histology   was  

reported  as  normal   throughout   (Boissé  Lomax  et  al.,  2013;;  van  Egmond  et  

al.,   2015).   Nevertheless,   this   finding   indicates   that   also   muscle   might   be  

highly  vulnerable  to  Membrin  mutations.  

5.1.3          Neuronal  mechanisms  

While  partial  ERGIC/cis-­Golgi  lipid  fusion  deficiencies  due  to  the  pathogenic  

Membrin  mutations  might  fall  below  a  symptomatic  threshold  in  organs  other  

than   the  nervous  system,   they  seem  nevertheless  substantial  enough  to  be  

highly   deleterious   in   the   context   of   the   very   large   trafficking   demands   of  

neurons.  Neurons  appear   like  magnifying  glasses   for  subtle  early  secretory  

pathway  deficits  induced  by  Membrin  mutations.  Our  study  thereby  provides  

experimental   support   for   the   postulated   idea   that   ‘because   of   the   extreme  
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and   specialized   demands   of   neuronal   membrane   growth,   relatively   small  

losses  of   function   in   the  pathway   from  synthesis   to   insertion  might   interfere  

with  neuronal  membrane  expansion  and  nervous  system  function  selectively,  

without   critically   affecting   other   organs’   (Pfenninger,   2009).   Also  

oligondendrocytes  and  Schwann  cells  have  very  large  membrane  demands,  

because   they   wrap   around   axons   multiple   times   with   thin   membrane  

protrusions   in  order   to  provide  efficient   insulation   (Nave  and  Werner,  2014;;  

Sherman  and  Brophy,   2005).   Therefore   it   is   conceivable   that   also  a   partial  

hypomyelination  might  contribute   to   the  neurological  phenotype  of  GOSR2-­

PME.  However,  due  to  their  expected  partial  nature  they  might  frequently  fall  

below   the  detection   threshold  of   common  clinical   tests,  which  might  be   the  

explanation   why   nerve-­conduction   studies   and   MRI   investigations   do   not  

typically  indicate  myelination  defects  in  GOSR2-­PME  patients  (Boissé  Lomax  

et  al.,  2013).  

Similar  to  the  selective  vulnerability  of  neurons  amongst  all   the  different  cell  

types   constituting  a  human  being,  we  postulate   that   also  amongst   neurons  

certain   neuronal   subtypes   are   likely   to   be   more   severely   disturbed   than  

others   by   the   pathogenic   Membrin   mutations.   Such   differential   changes  

amongst   various   neuronal   subpopulations   might   be   the   explanation   of   the  

neurological  GOSR2-­PME  hallmarks,  which  are  high  level,  complex  network  

phenomena   ultimately   triggered   by   an   innumerable   number   of   individual  

neurons.    

GOSR2-­PME   model   Drosophila   exhibited   profoundly   impaired   dendritic  

growth   in   highly   elaborate   sensory   body   wall   neurons   –   which   served   as  

model  neurons  to  study  dendritic  plasma  membrane  expansion.  This  finding  

highlights   the   notion   that   the   pathogenic   Membrin   mutations   act   as  

hindrances  for  dendritic  growth  by  limiting  the  large  amounts  of  required  lipid  

supplies.   Such   a   bottleneck  might   be   particularly   relevant   for   neurons  with  

very   large  dendritic  arbors,  which   require  proportionally   larger   lipid  supplies  

to  enable  their  growth.  One  such  neuron  type  is  the  cerebellar  Purkinje  cell.  

Thus   we   hypothesize   that   this   neuron   type   is   very   likely   to   have  

underdeveloped  dendritic  arbors   in  GOSR2-­PME  patients.   Its  dysfunction   is  

an   attractive   explanation  why  one  of   the   syndrome’s   hallmarks   is   profound  
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ataxia,   given   the   Purkinje   cell’s   established   role   in   motor   coordination  

(Cerminara   et   al.,   2015).   In   order   to   test   our   prediction,   Golgi   staining   of  

GOSR2-­PME   cerebellar   Purkinje   cells   would   be   an   interesting   future  

research  avenue,  should  sufficient  human  brains  of  this  very  small  cohort  of  

patients  become  available.  

Patients  with  GOSR2-­PME  do  not  typically  present  with  mental  retardation  or  

a  profound  reduction  in  cognitive  function,  as  opposed  to  several  other  forms  

of   progressive   myoclonus   epilepsy,   which   are   characterized   by   the  

development   of   dementia   (Michelucci   et   al.,   2012).   While   intelligence   is  

usually   largely   normal   in   the   early   disease   course   of  GOSR2-­PME,   some  

patients   have   been   reported   with   mild   cognitive   impairment   later   in   life  

(Boissé   Lomax   et   al.,   2013).   We   hypothesize   that   this   remarkable  

preservation   of   cognitive   function  might   also   be   explained   by   a   differential  

effect  of   the  Membrin  mutations  upon  different  neuronal  subtypes.  Possibly  

only   neurons   with   very   large   dendritic   arbors   exhibit   growth   defects,   while  

most   neurons   with   smaller   neuronal   dendritic   trees   are   spared   from   such  

defects.   This   hypothesis   could   readily   be   addressed   in   Drosophila   by  

comparing  dendritic  growth  defects  in  Membin  mutant  larval  sensory  neurons  

that  are  highly  elaborate  (class   IV  da  neurons  –  see  above)  with   those  that  

have  fewer  and  shorter  dendrites  (class  I  and  II)  (Grueber  et  al.,  2002).  

Consistent  with  the  previous  literature,  we  found  that  early  secretory  pathway  

defects   conferred   by   Membrin   mutations   did   not   critically   affect   axonal  

outgrowth,  while  significantly  impacting  dendrite  length  (Ye  et  al.,  2007).  This  

privileged   role   of   axons   in   GOSR2-­PME   Drosophila   might   provide   an  

explanation  why  patients  with  this  disorder  suffer  from  ataxia,  but  not  spastic  

paraplegia.  After  all,  corticospinal  neurons  serving   the   lower   limbs  have   the  

longest  axons,  which  thus  would  be  highly  vulnerable  targets  should  dendritic  

and  axonal  development  be  affected  in  equal  measure  (Synofzik  and  Schüle,  

2017).    

Also   synaptic   abnormalities   found   in   GOSR2-­PME   Drosophila   reveal  

valuable  insights  into  the  pathophysiology  underlying  the  clinical  presentation  

of   this   disorder.   As   a   model   synapse,   James   Jepson   and   Simon   Lowe  
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studied  the  morphology  and  physiology  of  the  larval  neuromuscular   junction  

(NMJ),   because   it   is   highly   amenable   for   experiments   (Harris   and  Littleton,  

2015).   There   the   most   salient   findings   were   a   decrease   in   trans-­synaptic  

stability  and  hyperactive  evoked  neurotransmission.  Because  the  underlying  

partial  secretory  pathway  disruption  due  to  Membrin  mutations  are  ubiquitous  

to  all  neurons  we  hypothesize  that  similar  alterations  are  likely  to  also  affect  

central   synapses.   Given   that   EPSP  malformations   were   more   pronounced  

under  high-­frequency  stimulation  we  would  expect  central  neurons  with  rapid  

firing   patterns   to   be  more   severely   affected,   such   as   fast-­firing  GABAergic  

neurons   (McCormick   et   al.,   1985).   It   is   conceivable   that   a   systematic  

impairment   of   distinct   neuronal   subclasses   based   on   their   intrinsic  

electrophysiological   properties   would   eventually   tilt   the   balance   between  

excitation  and  inhibition  towards  hyper-­excitation.  This  thought  thus  provides  

–   a   necessarily   oversimplified   –   explanatory   framework   of   how   cortical  

myoclonus  and  generalized  epilepsy  might  arise  from  the  GOSR2  mutations.    

Our   NMJ   findings   of   synaptic   retraction   and   altered   neurotransmission   in  

GOSR2-­PME   Drosophila   have   interesting   parallels   in   human   patients.  

Several   of   them   were   found   in   electromyography   studies   to   suffer   from  

neuromuscular   denervation   (van   Egmond   et   al.,   2014).   The  GOSR2-­PME  

clinical   hallmark   of   absence   of   deep   tendon   reflexes   might   also   be   an  

indication  of  such  changes,  but  could  also  point  towards  other  deficiencies  in  

the   reflex   arc,   such   as   in   afferent   sensory   neurons   (Boissé   Lomax   et   al.,  

2013).    

Skeletal   abnormalities   have   been   reported   in  GOSR2-­PME   patients,   most  

commonly   scoliosis.   As   of   now   it   is   unclear   whether   this   is   a   secondary  

consequence   due   to   the   severe   neurological   deficits   in   this   disorder   or   a  

spine   intrinsic   developmental   abnormality   (Grauers   et   al.,   2016;;   Trontelj   et  

al.,   1979).   Possibly   delayed   cell   surface/extracellular   localisation   of   Notch,  

Wnt  and/or  fibroblast  growth  factor,  which  are  critical  for  segmentation,  could  

contribute  to  the  development  of  scoliosis  in  GOSR2-­PME  (Boissé  Lomax  et  

al.,  2013;;  Pourquié,  2011).    
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Why   GOSR2-­PME   is   a   progressive   disorder,   characterized   by   rapid  

deterioration   of   movement   disorder   features   and   subsequent   loss   of  

ambulation,   is  presently  unclear.  Nevertheless,  our  Drosophila   findings  offer  

starting   points   to   formulate   hypotheses   regarding   the   underlying  

pathophysiology.  Several  processes  might  act  collectively  at  the  heart  of  the  

disease   progression   observed   in   GOSR2-­PME.   The   pathogenic   Membrin  

mutations   might   continue   to   negatively   impact   neurodevelopment   as   the  

brains   of   children   suffering   from  GOSR2-­PME   mature   and   grow   into   their  

fully   connected  adult   versions   (Giedd  et   al.,   1999;;  Passemard  et   al.,   2017;;  

Supekar   et   al.,   2009).   In   addition,   our   finding   of   trans-­synaptic   instability  

implies   that   functional   active   zones   might   gradually   be   removed   with  

increasing   age.   It   is   also   conceivable   that   changes   in   synaptic   or   dendritic  

proteomes  as   a   result   of   secretory   pathway  deficits   could   contribute   to   the  

progressive   nature   of   the   disease.  For   instance,   reduced   levels   of   proteins  

critical   for   maintaining   proteostasis   could   have   age   dependent  

synaptic/dendritic   degeneration   as   a   consequence.   Interestingly,   James  

Jepson  found  significantly  reduced  levels  of  the  synaptic  chaperone  CSP  at  

the  NMJ  of  Membrin  mutant  Drosophila.  The  mammalian  CSPa  orthologue  is  

a   synaptic   vesicle-­associated   chaperone   that   is   critical   for   preventing  

neurodegeneration  (Chandra  et  al.,  2005;;  Fernández-­Chacón  et  al.,  2004).  In  

turn,   mutations   in   CSPa   have   been   demonstrated   to   cause   adult-­onset  

neuronal   ceroid-­lipofuscinosis,   which   is   a   neurodegenerative   form   of   PME  

(Benitez   et   al.,   2011;;   Nosková   et   al.,   2011).   Thus,   Membrin   and   more  

generally,   efficient   ER-­to-­Golgi   trafficking,   might   not   only   be   critical   for  

dendritic   and   synaptic   development,   but   also   its   maintenance.   This   is   a  

readily   testable   hypothesis,   with   scientific   relevance   beyond   the   immediate  

problem   of   disentangling   the   causes   of   the   progressive   nature   of  GOSR2-­

PME.  To  this  end,  we  could  express  the  Membrin  mutations  –  or  induce  even  

more  severe  secretory  pathway  disruption  by  expressing  Rab1,  Sar1  or  Arf1  

mutants   –   selectively   at   the   adult   stage   and   thereby   bypass  

neurodevelopmental   defects.   Starting  with   a   healthy   neuron  we   could   then  

assess   the   impact   of   the   acutely   induced   disturbances   upon   dendritic  

elaboration  and  synaptic  integrity  as  a  function  of  time.  
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5.2          Lessons  for  neuronal  cell  biology  

The   mechanisms   presented   in   this   thesis   are   relevant   for   the  

pathophysiology  of   a   very   small   patient   cohort   of   thus   far  only  18  GOSR2-­

PME  cases.  However,  this  does  not  limit  the  relevance  of  our  investigations,  

as   we   also   yielded   insights   into   the   cell   biology   of   neurons.  We   therefore  

provide   results   with   wider   applicability.   While   previous   studies   have  

established   that   a   very   large   or   complete   block   of   ER-­to-­Golgi   trafficking  

prevents   efficient   dendritic   outgrowth,   we   have   added   experimental   data,  

which  support  the  postulated  idea  that  even  minor  alterations  along  this  route  

are   sufficient   to   negatively   impact   neuronal   plasma   membrane   expansion  

(Horton  et  al.,  2005;;  Ye  et  al.,  2011;;  Pfenninger,  2009).  Partial  alterations  in  

this  pathway  are  likely  to  be  more  relevant  for  human  disorders  as  compared  

to   a   complete   block,   which   is   not   compatible   with   cellular,   let   alone  

multicellular,  life.  Our  study  has  also  taught  us  that  synaptic  morphology  and  

physiology  depends  upon  tightly  regulated  ER-­to-­Golgi  trafficking  rates.  One  

might   think   that  such  a  result  does  not  come  as  a  complete  surprise,  given  

that  functional  synapses  require  timely  delivery  of  a  whole  host  of  secretory  

pathway  dependent  proteins.  Yet   to  our  knowledge   this  connection  of  early  

secretory   pathway   trafficking   rates   and   synaptic   abnormalities   has   thus   far  

not  been  a  focus   in   the   literature  (Passemard  et  al.,  2017).  Taken  together,  

because  our  findings  are  based  on  a  very  severe  Mendelian  human  disorder  

we   provide   an   instance   that   directly   illustrates   that   partial   ER-­to-­Golgi  

trafficking  reductions  can  be  highly  relevant  for  human  disease.  

5.3          Future  perspectives  

Our  study  has  provided  a  possible  solution  for  the  apparent  paradox  of  how  

mutations   in   the  ubiquitous  Golgi  SNARE  protein  Membrin  can   result   in  an  

almost   exclusive   neuronal   phenotype.   Yet   some   questions   remain   to   be  

answered  and  several  new  questions  have  arisen  from  our  results.   It  would  

be   interesting   to   test  whether   neurons  with   very   large   dendritic   arbors   and  

neurons   with   high   firing   frequencies   indeed   are   most   vulnerable   to   the  

pathogenic   Membrin   mutations.   The   contribution   of   impaired   dendritic   and  

synaptic   maintenance   –   as   opposed   to   impaired   development   of   these  
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compartments   –   to   the   pathogenesis   of  GOSR2-­PME   is   another   intriguing  

issue.   Also,   the   mechanisms   underlying   the   multifaceted   synaptic  

abnormalities   caused   by   Membrin   mutations   require   further   investigation.  

More   generally,   the   relationship   of   tightly   controlled   trafficking   rates   and  

synaptic   integrity   could   reveal   insights   that   might   also   be   valuable   for   the  

research   of   unrelated   brain   disorders.   Which   are   the   cargoes   that   are  

particularly   relevant   for   the   observed   morphological   and   physiological  

abnormalities?  Is  it  trans-­synaptic  adhesion  molecules,  ion  channels,  trophic  

factors,  etc.?  Many  synaptic  proteins  will  presumably  be  dysregulated  due  to  

a   delay   in   transport   vesicle   fusion  with   the   ERGIC/cis-­Golgi.   Therefore  we  

are  likely  facing  a  complex  phenomenon,  which  bears  the  danger  of  residing  

beyond  the  explicitly  graspable.  Unbiased  synaptic  proteomics  in  Drosophila,  

where   key   ER-­to-­Golgi   trafficking   proteins   are   either   knocked-­down   or  

mutated,  might  nevertheless  provide   interesting  candidates,   that  could   then  

be   validated   in   genetic   interaction   studies.   However,   given   the   very   large  

amounts   of   Drosophila   heads   required   for   the   preparation   of   synaptic  

fractions,   mouse   models   might   be   experimentally   more   suitable   for   this  

question  (Depner  et  al.,  2014).  Another  interesting  avenue  of  future  research  

would   be   the   investigation   of   potential   shared   molecular   and/or   cellular  

pathways  of  GOSR2-­PME  with  other  phenotypically  similar  forms  of  PMEs.    

5.3.1          Knock-­in  strategy  

Future   studies   into   the   mechanisms   of   GOSR2-­PME   would   greatly   be  

facilitated   by   the   generation   of   additional   Drosophila   models.   Our   current  

models  harbor   two  membrin  null  alleles,   the  global  da-­Gal4  driver  and  wild-­

type   or  mutant   UAS-­membrin   transgenes.   These   components   occupy   both  

major  autosomal  Drosophila  chromosomes,  which  makes  genetic  interaction  

studies  more  difficult.  In  addition,  because  the  UAS-­Gal4  system  is  already  in  

use  to  globally  express  the  transgenes,  we  cannot  rely  upon  this  most  widely  

used  binary  system  to  access  distinct  neuronal  circuits  (Brand  and  Perrimon,  

1993).  Orthogonal  binary  systems,  such  as  LexAop-­LexA,  would  be  required,  

where   less   tools   are   currently   available   as   compared   to   the   UAS-­Gal4  

system   (Lai   and   Lee,   2006;;   Pfeiffer   et   al.,   2010).   The   availability   of   fewer  

driver   lines   as  well   as   high   complexity   of   genetic   crossing   schemes  would  
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make  it  rather  cumbersome  to  express  optogenetic  actuators,  neural  activity  

sensors   or   knock-­down   genes   of   interest   in   our  GOSR2-­PME   models.   To  

circumvent   these  problems,  membrin  manipulations  within   its   own  genomic  

locus   are   required.   Therefore,   I   have   carefully   designed   and   initiated   two  

independent   approaches,   one   based   on   ends-­out   homologous  

recombination,   the   other   one   based   on   CRISPR/Cas9   with   subsequent  

homology   directed   repair   from   a   single   stranded   oligonucleotide   donor  

(Baena-­Lopez  et  al.,  2013;;  Gratz  et  al.,  2013;;  2014;;  Rong  and  Golic,  2000).  

Their  common  goal   is   the  replacement  of   the  membrin  5’  UTR  and  most  of  

the  subsequent  coding  sequence  with  an  attP   landing  site  plus  an  adjacent  

loxP   site.   This   make-­up   allows   for   efficient,   site-­specific   retargeting   of   this  

membrin  null  locus  with  any  sequence  of  choice  and  for  the  subsequent  Cre-­

mediated   removal   of   the   plasmid   backbone   (Baena-­Lopez   et   al.,   2013;;  

Bischof  et  al.,  2007).  In  a  first  step,  I  would  retarget  wild-­type  and  mutant  N-­

terminal  FLAG  tagged  membrin  cDNA.  These  animals  would  represent  single  

component  GOSR2-­PME  Drosophila  models,  with  expression  levels  close  to  

physiological.   Such   models   would   also   allow   to   test   whether   endogenous  

wild-­type   and   mutant   Membrin   indeed   localize   to   axons/synapses,   as  

observed  in  overexpression  studies.  In  a  second  step,  I  would  retarget  a  FRT  

flanked   wild-­type  membrin   sequence,   that   is   followed   by   mutant  membrin.  

Such   FRT-­membrin[WT]-­FRT-­membrin[G147W]/[K166del]   flies   would   allow  

for  temporally  and/or  spatially  controlled  switching  of  the  wild-­type  isoform  for  

either   of   the  mutants   by   restricted   expression   of   the   recombinase   flippase  

(Baena-­Lopez   et   al.,   2013).   This   approach   would   facilitate   the   study   of  

potential   synaptic/dendritic   maintenance   defects   in   membrin   mutant  

Drosophila  as  well  as  the  investigation  of  the  relative  contributions  of  different  

neuronal  subclasses  to  the  pathophysiology  of  GOSR2-­PME.  

5.3.2          Shared  mechanisms  with  other  PMEs?  

The  progressive  myoclonus  epilepsies  are  phenotypically  heterogeneous  and  

several  different  causative  genes  are  known  to  date  (Michelucci  et  al.,  2012).  

Therefore  it  is  unlikely  to  find  a  common  pathophysiological  denominator  for  

this   whole   diverse   group.   Nevertheless,   some   of   the   phenotypically   more  

similar   PMEs   might   share   cellular   pathways   and/or   neural   circuits   with  
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GOSR2-­PME,  which  would   be   interesting   avenues   for   future   research.   For  

instance,  the  PME  gene  PRICKLE1  has  been  linked  to  neurite  growth,  which  

we   found   to   also   be   abnormal   in   Drosophila   harboring   the   pathogenic  

Membrin  mutations  (Liu  et  al.,  2013).  PME-­linked  mutations  in  the  potassium  

channel   gene   KCNC1   are   thought   to   mainly   impair   fast-­spiking   neurons  

(Muona  et  al.,  2015;;  Oliver  et  al.,  2017).  Such  a  preferential  defect   in  high-­

frequency   firing  neurons   is   also   conceivable   in  GOSR2-­PME,  where  EPSP  

dysmorphologies  are  more  pronounced  under  repetitive  stimulation.    

5.3.3          Membrin   mutations   as   tools   for   cell   biology   and  
neuroscience  

Finally,  our  study  also  suggests  that  the  pathogenic  GOSR2-­PME  mutations  

could   serve   as   tools   for   cell   biology   and   neuroscience.   Because   these  

mutations  are  not   cell   lethal   they   can  be   integrated   into   cell   lines  or  whole  

organisms.   Even   more   simple   than   that,   they   can   be   overexpressed   in  

otherwise   wild-­type   cells   or   animals,   as   we   found   that   overexpression   of  

mutant  Membrin   resulted   in   similar   phenotypes  as   in  our  models  where  no  

endogenous  wild-­type  Membrin  was  present.  Similarly,  dendritic  growth  was  

also   inhibited   when   mutant   Membrin   was   overexpressed   in   a   wild-­type  

membrin   Drosophila,   which   therefore   provides   an   indirect   readout   for  

impaired  secretory  trafficking.  These  findings  imply  that  the  more  abundantly  

present   mutant   Membrin   might   outcompete   the   endogenous   protein.   If  

several-­fold  more  mutant  than  wild-­type  Membrin  proteins  are  present  at  the  

ERGIC/cis-­Golgi,   then   it   is   conceivable   that   the   majority   of   these   SNARE  

complexes   might   contain   mutant   instead   of   wild-­type   Membrin.   Thus  

overexpression   of   the   reduction   of   function   mutant   Membrin   alleles   could  

mimic  a  gain  of  function  mechanism  and  serve  as  valuable  tools  for  basic  cell  

biology   studies.   Other   commonly   overexpressed   mutants   in   the   ER-­Golgi  

pathway  are  Sar1[H79G],  Sar1[T39N],  Arf1[Q71L],  Arf1[T31N],  Rab1[Q70L]  

and  Rab1[S25N],  which  all  disrupt  different  steps  in  this  process  (Allan  et  al.,  

2000;;   Dascher   and   Balch,   1994;;   Tisdale   et   al.,   1992;;   Ward   et   al.,   2001;;  

Zhang   et   al.,   2007).   Overexpression   of   G144W/G147W,   K164del/K166del  

mutant  Membrin  would  inhibit  another  distinct  step  in  this  pathway.  
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Even  overexpression  of  wild-­type  Membrin  could  be  utilized  as  a  milder  allele  

to   impair  secretory   trafficking.  After  all,  we  observed   that  overexpression  of  

wild-­type  Membrin  in  flies  where  endogenous  Membrin  was  present,  resulted  

in   organismal   and   dendritic   phenotypes.   However,   these   phenotypes   were  

significantly   weaker   than   those   observed   in   either   of   the   mutants.   The  

seeming   paradox   of   how   similar   phenotypes   can   arise   from   reduction   of  

function  Membrin  alleles  and  increased  wild-­type  Membrin  levels  might  have  

an   explanation   in   shared   cellular,   but   distinct  molecular  mechanisms.   Both  

interventions   might   partially   block   secretory   trafficking,   albeit   at   different  

steps.   While   the   Membrin   mutations   are   thought   to   impair   the   cis-­Golgi  

SNARE   complex,   we   hypothesize   that   increased   wild-­type   Membrin   levels  

partially   inhibit   the   trans-­Golgi   SNARE   complex   by   acting   as   an   i-­SNARE.  

Varlamov   et   al.   demonstrated   that   increasing   the   concentrations   of   the  

Membrin   ortholog   Bos1   (or   Bet1/Sec22)   causes   reduced   fusion   rates   of  

liposomes  reconstituted  with  the  yeast  trans-­Golgi  SNAREs  (Varlamov  et  al.,  

2004).  However,  endogenous  Membrin  concentrations  in  the  trans-­Golgi  are  

very  low  and  therefore  might  only  exert  a  comparably  subtle  inhibitory  effect,  

that   is   thought   to   be   relevant   only   for   fine-­tuning   of   fusion   specificity  

(Varlamov  et  al.,  2004;;  Volchuk  et  al.,  2004;;  Hay  et  al.,  1998).  In  contrast,  if  

we  artificially   increase  Membrin   in   this  compartment  by  overexpression,   the  

trans-­Golgi   SNARE   complex   might   be   significantly   inhibited   and   thus  

secretory  trafficking  rates  markedly  reduced.  

In   neuroscience   studies   the   mutant   (and   wild-­type)   Membrin   transgenes  

could   serve   as   tools   to   further   investigate   the   consequences   of   partial  

secretory  pathway  defects  in  different  neuron  subclasses  or  simply  to  restrict  

dendritic  outgrowth.  Overexpressing  the  Membrin  mutants  in  fully  developed  

wild-­type   neurons   would   also   allow   to   bypass   neurodevelopmental   defects  

conferred  by  the  Membrin  mutations  and  thus  disentangle  their  impact  upon  

neuronal  maintenance.    

5.4          Final  conclusions  

Taken  together,  our  study  investigating  the  pathophysiology  of  GOSR2-­PME  

provided   a   potential   multi-­level   explanation   of   this   previously   poorly  



  

   157  

understood   disorder.   Partial   SNARE   defects   are   thought   to   subtly   delay  

anterograde   cargo   trafficking   via   the   Golgi   apparatus.   This   kinetic   change  

presumably  falls  below  a  critical  threshold  in  non-­neuronal  cells  but  results  in  

multifaceted  effects  upon  neuronal  development  and   function,  because   this  

cell   type   poses   unique   demands   upon   this   basic   cellular   pathway.   The  

pathogenic  Membrin  mutations   significantly   reduce   dendritic   outgrowth   and  

cause   morphologically   abnormal,   hyperactive   synapses   –   neuronal  

abnormalities,  which   in   turn  are   thought   to  give   rise   to   the  core   features  of  

ataxia  and  hyperexcitability  as  observed  in  GOSR2-­PME  patients.  In  addition  

to   these   pathophysiological   insights,   our   study   also   highlights   lessons   for  

general  neuronal  cell  biology.  Our  findings  stress  a  very  intimate  connection  

of  tightly  controlled  anterograde  cargo  trafficking  rates  and  neuronal  integrity.  

Finally,   our   approach   of   overexpressing   mutant   Membrin   in   an   otherwise  

wild-­type   genetic   background   might   facilitate   future   cell   biological   and  

neuroscience  studies  by  readily  enabling  cis-­Golgi  SNARE  complex  inhibition  

in  a  temporally  controlled  and  cell  type  specific  manner.    
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Appendix  

Custom  human  GOSR2  transgenes  

WT 
 
gcggccgccgacATGGACTACAAAGACGATGACGACAAGGATCCCCTGTTCCAGCAAACGCACAAGCA
GGTCCACGAGATCCAGTCTTGCATGGGACGCCTGGAGACGGCAGACAAGCAGTCTGTGCACATAGTAG
AAAACGAAATCCAAGCAAGCATAGACCAGATATTCAGCCGTCTAGAACGTCTGGAGATTTTGTCCAGC
AAGGAGCCCCCTAACAAAAGGCAAAATGCCAGACTTCGGGTTGACCAGTTAAAGTATGATGTCCAGCA
CCTGCAGACTGCGCTCAGAAACTTCCAGCATCGGCGCCATGCAAGGGAGCAGCAGGAGAGACAGCGAG
AAGAGCTTCTGTCTCGAACCTTCACCACTAACGACTCTGACACCACCATACCAATGGACGAATCACTG
CAGTTTAACTCCTCCCTCCAGAAAGTTCACAACGGCATGGATGACCTCATTTTAGATGGGCACAATAT
TTTAGATGGACTGAGGACCCAGAGACTGACCTTGAAGGGGACTCAGAAGAAGATCCTTGACATTGCCA
ACATGCTGGGCTTGTCCAACACAGTGATGCGGCTCATCGAGAAGCGGGCTTTCCAGGACAAGTACTTT
ATGATAGGTGGGATGCTGCTGACCTGTGTGGTCATGTTCCTCGTGGTGCAGTACCTGACATGAggtac
c 
 
codons mutated in below transgenes 
 
G144W 
 
gcggccgccgacATGGACTACAAAGACGATGACGACAAGGATCCCCTGTTCCAGCAAACGCACAAGCA
GGTCCACGAGATCCAGTCTTGCATGGGACGCCTGGAGACGGCAGACAAGCAGTCTGTGCACATAGTAG
AAAACGAAATCCAAGCAAGCATAGACCAGATATTCAGCCGTCTAGAACGTCTGGAGATTTTGTCCAGC
AAGGAGCCCCCTAACAAAAGGCAAAATGCCAGACTTCGGGTTGACCAGTTAAAGTATGATGTCCAGCA
CCTGCAGACTGCGCTCAGAAACTTCCAGCATCGGCGCCATGCAAGGGAGCAGCAGGAGAGACAGCGAG
AAGAGCTTCTGTCTCGAACCTTCACCACTAACGACTCTGACACCACCATACCAATGGACGAATCACTG
CAGTTTAACTCCTCCCTCCAGAAAGTTCACAACGGCATGGATGACCTCATTTTAGATTGGCACAATAT
TTTAGATGGACTGAGGACCCAGAGACTGACCTTGAAGGGGACTCAGAAGAAGATCCTTGACATTGCCA
ACATGCTGGGCTTGTCCAACACAGTGATGCGGCTCATCGAGAAGCGGGCTTTCCAGGACAAGTACTTT
ATGATAGGTGGGATGCTGCTGACCTGTGTGGTCATGTTCCTCGTGGTGCAGTACCTGACATGAggtac
c 
 
K164del 
 
gcggccgccgacATGGACTACAAAGACGATGACGACAAGGATCCCCTGTTCCAGCAAACGCACAAGCA
GGTCCACGAGATCCAGTCTTGCATGGGACGCCTGGAGACGGCAGACAAGCAGTCTGTGCACATAGTAG
AAAACGAAATCCAAGCAAGCATAGACCAGATATTCAGCCGTCTAGAACGTCTGGAGATTTTGTCCAGC
AAGGAGCCCCCTAACAAAAGGCAAAATGCCAGACTTCGGGTTGACCAGTTAAAGTATGATGTCCAGCA
CCTGCAGACTGCGCTCAGAAACTTCCAGCATCGGCGCCATGCAAGGGAGCAGCAGGAGAGACAGCGAG
AAGAGCTTCTGTCTCGAACCTTCACCACTAACGACTCTGACACCACCATACCAATGGACGAATCACTG
CAGTTTAACTCCTCCCTCCAGAAAGTTCACAACGGCATGGATGACCTCATTTTAGATGGGCACAATAT
TTTAGATGGACTGAGGACCCAGAGACTGACCTTGAAGGGGACTCAGAAGA[]TCCTTGACATTGCCAA
CATGCTGGGCTTGTCCAACACAGTGATGCGGCTCATCGAGAAGCGGGCTTTCCAGGACAAGTACTTTA
TGATAGGTGGGATGCTGCTGACCTGTGTGGTCATGTTCCTCGTGGTGCAGTACCTGACATGAggtacc 
 
GOSR2 CDS 
FLAG 
Kozac sequence 
NotI 
KpnI 
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Custom  Drosophila  membrin  transgenes  

WT 
 
gcggccgccgacATGGACTACAAAGACGATGACGACAAGGAGAGCTTGTACCACCAAACCAACAATGT
GGTAAAGGACATCGAGCGCGATTTCCAGCGACTGAGTCAGCTCAGTGCCCAGGAATCGCTTGACGTGG
AAAACGGCATTCAATTGAAGATTACCCAGGCGAACGCAAACTGCGATCGGTTGGATGTGCTGTTGTAT
AAGGTGCCACCTTCGCAGCGACAAAGCTCCAAACTTCGTGTGGATCAGCTGAAATATGACCTGAGACA
CCTGCAGACATCACTGCAGACGGCGCGGGAACGAAGACAGCGACGGATGCAGGAGATCTCCGAGAGGG
AACAGCTGCTGAATCACAGATTCACGGCAAACAGCGCGCAGCCGGAGGAAACGCGCCTGCAATTGGAC
TACGAACTGCAGCATCATACGCAGCTGGGTAACGCCCATCGGGGTGTGGACGACATGATTGCCTCGGG
CAGCGGCATTCTCGAGAGCCTGATCTCGCAGAGAATGACGCTGGGCGGAGCGCACAAGAGAATCCAGG
CGATAGGCAGCACACTGGGTCTGTCCAATCACACGATGAAACTTATTGAACGCCGGCTGGTCGAGGAT
CGTCGGATATTCATCGGAGGAGTGGTGGTCACCTTGCTTATCATCGCCCTGATCATCTATTTCCTAGT
GCTCTAAggtacc 
 
codons mutated in below transgenes 
 
G147W 
 
gcggccgccgacATGGACTACAAAGACGATGACGACAAGGAGAGCTTGTACCACCAAACCAACAATGT
GGTAAAGGACATCGAGCGCGATTTCCAGCGACTGAGTCAGCTCAGTGCCCAGGAATCGCTTGACGTGG
AAAACGGCATTCAATTGAAGATTACCCAGGCGAACGCAAACTGCGATCGGTTGGATGTGCTGTTGTAT
AAGGTGCCACCTTCGCAGCGACAAAGCTCCAAACTTCGTGTGGATCAGCTGAAATATGACCTGAGACA
CCTGCAGACATCACTGCAGACGGCGCGGGAACGAAGACAGCGACGGATGCAGGAGATCTCCGAGAGGG
AACAGCTGCTGAATCACAGATTCACGGCAAACAGCGCGCAGCCGGAGGAAACGCGCCTGCAATTGGAC
TACGAACTGCAGCATCATACGCAGCTGGGTAACGCCCATCGGGGTGTGGACGACATGATTGCCTCGTG
GAGCGGCATTCTCGAGAGCCTGATCTCGCAGAGAATGACGCTGGGCGGAGCGCACAAGAGAATCCAGG
CGATAGGCAGCACACTGGGTCTGTCCAATCACACGATGAAACTTATTGAACGCCGGCTGGTCGAGGAT
CGTCGGATATTCATCGGAGGAGTGGTGGTCACCTTGCTTATCATCGCCCTGATCATCTATTTCCTAGT
GCTCTAAggtacc 
 
K166del 
 
gcggccgccgacATGGACTACAAAGACGATGACGACAAGGAGAGCTTGTACCACCAAACCAACAATGT
GGTAAAGGACATCGAGCGCGATTTCCAGCGACTGAGTCAGCTCAGTGCCCAGGAATCGCTTGACGTGG
AAAACGGCATTCAATTGAAGATTACCCAGGCGAACGCAAACTGCGATCGGTTGGATGTGCTGTTGTAT
AAGGTGCCACCTTCGCAGCGACAAAGCTCCAAACTTCGTGTGGATCAGCTGAAATATGACCTGAGACA
CCTGCAGACATCACTGCAGACGGCGCGGGAACGAAGACAGCGACGGATGCAGGAGATCTCCGAGAGGG
AACAGCTGCTGAATCACAGATTCACGGCAAACAGCGCGCAGCCGGAGGAAACGCGCCTGCAATTGGAC
TACGAACTGCAGCATCATACGCAGCTGGGTAACGCCCATCGGGGTGTGGACGACATGATTGCCTCGGG
CAGCGGCATTCTCGAGAGCCTGATCTCGCAGAGAATGACGCTGGGCGGAGCGCACA[]GAATCCAGGC
GATAGGCAGCACACTGGGTCTGTCCAATCACACGATGAAACTTATTGAACGCCGGCTGGTCGAGGATC
GTCGGATATTCATCGGAGGAGTGGTGGTCACCTTGCTTATCATCGCCCTGATCATCTATTTCCTAGTG
CTCTAAggtacc 
 
GOSR2 CDS 
FLAG 
Kozac sequence 
NotI 
KpnI 
 


