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Abstract

The current state-of-the-art in many natural language processing and automated
knowledge base completion tasks is held by representation learning methods which
learn distributed vector representations of symbols via gradient based optimization.
They require little or no hand-crafted features, thus avoiding the need for most prepro-
cessing steps and task-specific assumptions. However, in many cases representation
learning requires a large amount of annotated training data to generalize well to
unseen data. Such labeled training data is provided by human annotators who often
use formal logic as the language for specifying annotations.

This thesis investigates different combinations of representation learning meth-
ods with logic for reducing the need for annotated training data, and for improving
generalization. We introduce a mapping of function-free first-order logic rules to loss
functions that we combine with neural link prediction models. Using this method,
logical prior knowledge is directly embedded in vector representations of predicates
and constants. We find that this method learns accurate predicate representations
for which no or little training data is available, while at the same time generalizing
to other predicates not explicitly stated in rules. However, this method relies on
grounding first-order logic rules, which does not scale to large rule sets. To overcome
this limitation, we propose a scalable method for embedding implications in a vector
space by only regularizing predicate representations. Subsequently, we explore a
tighter integration of representation learning and logical deduction. We introduce an
end-to-end differentiable prover — a neural network that is recursively constructed
from Prolog’s backward chaining algorithm. The constructed network allows us
to calculate the gradient of proofs with respect to symbol representations and to
learn these representations from proving facts in a knowledge base. In addition to
incorporating complex first-order rules, it induces interpretable logic programs via
gradient descent. Lastly, we propose recurrent neural networks with conditional
encoding and a neural attention mechanism for determining the logical relationship

between two natural language sentences.






Impact Statement

Machine learning, and representation learning in particular, is ubiquitous in many
applications nowadays. Representation learning requires little or no hand-crafted
features, thus avoiding the need for task-specific assumptions. At the same time, it
requires a large amount of annotated training data. Many important domains lack
such large training sets, for instance, because annotation is too costly or domain
expert knowledge is generally hard to obtain.

The combination of neural and symbolic approaches investigated in this thesis
has only recently regained significant attention due to advances of representation
learning research in certain domains and, more importantly, their lack of success
in other domains. The research conducted under this Ph.D. investigated ways of
training representation learning models using explanations in form of function-free
first-order logic rules in addition to individual training facts. This opens up the
possibility of taking advantage of the strong generalization of representation learning
models, while still being able to express domain expert knowledge. We hope that
this work will be particularly useful for applying representation learning in domains
where annotated training data is scarce, and that it will empower domain experts to

train machine learning models by providing explanations.
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Introduction

9

“We are attempting to replace symbols by vectors so we can replace logic by algebra.’
— Yann LeCun

The vast majority of knowledge produced by mankind is nowadays available in
a digital but unstructured form such as images or text. It is hard for algorithms to
extract meaningful information from such data resources, let alone to reason with it.
This issue is becoming more severe as the amount of unstructured data is growing
very rapidly.

In recent years, remarkable successes in processing unstructured data have been
achieved by representation learning methods which automatically learn abstractions
from large collections of training data. This is achieved by processing input data using
artificial neural networks whose weights are adapted during training. Representation
learning lead to breakthroughs in applications such as automated Knowledge Base
(KB) completion [Nickel et al., 2012, Riedel et al., 2013, Socher et al., 2013, Chang
et al., 2014, Yang et al., 2015, Neelakantan et al., 2015, Toutanova et al., 2015,
Trouillon et al., 2016], as well as Natural Language Processing (NLP) applications
like paraphrase detection [Socher et al., 2011, Hu et al., 2014, Yin and Schiitze,
2015], machine translation [Bahdanau et al., 2014], image captioning [Xu et al.,
2015], speech recognition [Chorowski et al., 2015] and sentence summarization
[Rush et al., 2015], to name just a few.

Representation learning methods achieve remarkable results, but they usually
rely on a large amount of annotated training data. Moreover, since representation
learning operates on a subsymbolic level (for instance by replacing words with lists
of real numbers — so-called vector representations or embeddings), it is hard to
determine why we obtain a certain prediction, let alone how to correct systematic
errors or how to incorporate domain and commonsense knowledge. In fact, a recent

General Data Protection Regulation by the European Union introduces the “right
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to explanation” of decisions by algorithms and machine learning models that affect
users [Council of the European Union, 2016], to be enacted in 2018. This has
profound implications for the future development and research of machine learning
algorithms [Goodman and Flaxman, 2016], especially for nowadays commonly used
representation learning methods. Moreover, for many domains of interests there is
not enough annotated training data, which renders applying recent representation
learning methods difficult.

Many of these issues do not exist with purely symbolic approaches. For instance,
given a KB of facts and first-order logic rules, we can use Prolog to obtain an answer
as well as a proof for a query to this KB. Furthermore, we can easily incorporate
domain knowledge by adding more rules. However, rule-based system do not
generalize to new questions. For instance, given that an apple is a fruit and apples
are similar to oranges, we would like to infer that oranges are likely also fruits.

To summarize, symbolic rule-based systems are interpretable and easy to modify.
They do not need large amounts of training data and we can easily incorporate domain
knowledge. On the other hand, learning subsymbolic representations requires a lot of
training data. The trained models are generally opaque and it is hard to incorporate
domain knowledge. Consequently, we would like to develop methods that take the
best of both worlds.

1.1 Aims

In this thesis, we are investigating the combination of representation learning with
first-order logic rules and reasoning. Representation learning methods achieve
strong generalization by learning subsymbolic vector representations that can capture
similarity and even logical relationships directly in a vector space [Mikolov et al.,
2013]. Symbolic representations, on the other hand, allow us to formalize domain and
commonsense knowledge using rules. For instance, we can state that every human
ismortal, or that every grandfather isa father of a parent. Such rules
are often worth many training facts. Furthermore, by using symbolic representations
we can take advantage of algorithms for multi-hop reasoning like Prolog’s backward
chaining algorithm [Colmerauer, 1990]. Backward chaining is not only widely used
for multi-hop question answering in KBs, but it also provides us with proofs in
addition to the answer for a question. However, such symbolic reasoning is relying
on a complete specification of background and commonsense knowledge in logical
form. As an example, let us assume we are asking for the grandpa of a person, but
only know the grandfather of that person. If there is no explicit rule connecting

grandpa to grandfather, we will not find an answer. However, given a large
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KB, we can use representation learning to learn that grandpa and grandfather
mean the same thing, or that a lecturer is similar to a professor [Nickel
et al., 2012, Riedel et al., 2013, Socher et al., 2013, Chang et al., 2014, Yang et al.,
2015, Neelakantan et al., 2015, Toutanova et al., 2015, Trouillon et al., 2016]. This
becomes more relevant once we do not only want to reason with structured relations
but also use textual patterns as relations [Riedel et al., 2013].

The problem that we seek to address in this thesis is how symbolic logical
knowledge can be combined with representation learning to make use of the best of

both worlds. Specifically, we investigate the following research questions.

» Can we efficiently incorporate domain and commonsense knowledge in form

of rules into representation learning methods?

» Can we use rules to alleviate the need for large amounts of training data while

still generalizing beyond what is explicitly stated in these rules?

» Can we synthesize representation learning with symbolic multi-hop reasoning

as used for automated theorem proving?
* Can we learn rules directly from data using representation learning?

* Can we determine the logical relationship between natural language sentences

using representation learning?

1.2 Contributions

This thesis makes the following core contributions.

Regularizing Representations by First-order Logic Rules We introduce a method
for incorporating function-free first-order logic rules directly into vector representa-
tions of symbols, which avoids the need for symbolic inference. Instead of symbolic
inference, we regularize symbol representations by given rules such that logical rela-
tionships hold implicitly in the vector space (Chapter 3). This is achieved by mapping
propositional logical rules to differentiable loss terms so that we can calculate the
gradient of a given rule with respect to symbol representations. Given a first-order
logic rule, we stochastically ground free variables using constants in the domain,
and add the resulting loss term for the propositional rule to the training objective
of a neural link prediction model for automated KB completion. This allows us to
infer relations with little or no training facts in a KB. While mapping logical rules to
soft rules using algebraic operations has a long tradition (e.g. in Fuzzy logic), our

contribution is the connection to representation learning, i.e., using such rules to
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directly learning better vector representations of symbols that can be used to improve
performance on a downstream task such as automated KB completion. Content in

this chapter first appeared in the following two publications:

Tim Rocktidschel, Matko Bosnjak, Sameer Singh and Sebastian Riedel. 2014.
Low-Dimensional Embeddings of Logic. In Proceedings of Association for

Computational Linguistics Workshop on Semantic Parsing (SP’14).

Tim Rocktischel, Sameer Singh and Sebastian Riedel. 2015. Injecting Logical
Background Knowledge into Embeddings for Relation Extraction. In Pro-
ceedings of North American Chapter of the Association for Computational
Linguistics — Human Language Technologies (NAACL HLT 2015).

Lifted Regularization of Predicate Representations by Implications For the sub-
class of first-order logic implication rules, we present a scalable method that is
independent of the size of the domain of constants, that generalizes to unseen con-
stants, and that can be used with a broader class of training objectives (Chapter 4).
Instead of relying on stochastic grounding, we use implication rules directly as
regularizers for predicate representations. Compared to the method in Chapter 3,
this method is independent of the number of constants and ensures that a given
implication between two predicates holds for any possible pair of constants at test
time. Our method is based on Order Embeddings [Vendrov et al., 2016] and our
contribution is the extension to the task of automated KB completion which requires
constraining entity representations to be non-negative. This chapter is based on the

following two publications:

Thomas Demeester, Tim Rocktéschel and Sebastian Riedel. 2016. Regularizing
Relation Representations by First-order Implications. In Proceedings of North
American Chapter of the Association for Computational Linguistics (NAACL)
Workshop on Automated Knowledge Base Construction (AKBC).

Thomas Demeester, Tim Rocktischel and Sebastian Riedel. 2016. Lifted Rule
Injection for Relation Embeddings. In Proceedings of Empirical Methods in
Natural Language Processing (EMNLP).

My contribution to this work is the conceptualization of the model, the design of

experiments, and the extraction of commonsense rules from WordNet.

End-to-end Differentiable Proving Current representation learning and neural link
prediction models have deficits when it comes to complex multi-hop inferences
such as transitive reasoning [Bouchard et al., 2015, Nickel et al., 2016]. Automated

theorem provers, on the other hand, have a long tradition in computer science and
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provide elegant ways to reason with symbolic knowledge. In Chapter 5, we propose
Neural Theorem Provers (NTPs): end-to-end differentiable theorem provers for
automated KB completion based on neural networks that are recursively constructed
and inspired by Prolog’s backward chaining algorithm. By doing so, we can calculate
the gradient of a proof success with respect to symbol representations in a KB. This
allows us to learn symbol representations directly from facts in a KB, and to make use
of the similarities of symbol representations and provided rules in proofs. In addition,
we demonstrate that we can induce interpretable rules of predefined structure. On
three out of four benchmark KBs, our method outperforms ComplEx [Trouillon
et al., 2016], a state-of-the-art neural link prediction model. Work in this chapter

appeared in:

Tim Rocktischel and Sebastian Riedel. 2016. Learning Knowledge Base
Inference with Neural Theorem Provers. In Proceedings of North American
Chapter of the Association for Computational Linguistics (NAACL) Workshop
on Automated Knowledge Base Construction (AKBC).

Tim Rocktidschel and Sebastian Riedel. 2017. End-to-End Differentiable
Proving. In Advances in Neural Information Processing Systems 31: Annual

Conference on Neural Information Processing Systems (NIPS).

Recognizing Textual Entailment with Recurrent Neural Networks Representa-
tion learning models such as Recurrent Neural Networks (RNNs) can be used to
map natural language sentences to fixed-length vector representations, which has
been successfully applied for various downstream NLP tasks including Recognizing
Textual Entailment (RTE). In RTE, the task is to determine the logical relationship
between two natural language sentences. This has so far been either approached
by NLP pipelines with hand-crafted features, or neural network architectures that
independently map the two sentences to fixed-length vector representations. Instead
of encoding the two sentences independently, we propose a model that encodes the
second sentence conditioned on an encoding of the first sentence. Furthermore, we
apply a neural attention mechanism to bridge the hidden state bottleneck of the RNN
(Chapter 6). Work in this chapter first appeared in:

Tim Rocktédschel, Edward Grefenstette, Karl Moritz Hermann, Tomas Kocisky
and Phil Blunsom. 2016. Reasoning about Entailment with Neural Attention. In

Proceedings of International Conference on Learning Representations (ICLR).
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1.3 Thesis Structure

In Chapter 2, we provide background on representation learning, computation graphs,
first-order logic, and the notation used throughout the thesis. Furthermore, we
explain the task of automated KB completion and describe neural link prediction and
path-based approaches that have been proposed for this task. Chapter 3 introduces
a method for regularizing symbol representations by first-order logic rules. In
Chapter 4, we subsequently focus on direct implications between predicates, a subset
of first-order logic rules. For this class of rules, we provide an efficient method
by directly regularizing predicate representations. In Chapter 5, we introduce a
recursive construction of a neural network for automated KB completion based on
Prolog’s backward chaining algorithm. Chapter 6 presents a RNN for RTE based on
conditional encoding and a neural attention mechanism. Finally, Chapter 7 concludes

the thesis with a discussion of limitations, open issues, and future research avenues.



Chapter 2

Background

This chapter introduces core methods used in the thesis. Section 2.1 explains function
approximation with neural networks and backpropagation. Subsequently, Section 2.2
introduces function-free first-order logic, the backward chaining algorithm, and
inductive logic programming. Finally, Section 2.3 discusses prior work on automated

knowledge base completion, linking the first two sections together.

2.1 Function Approximation with Neural Networks

In this thesis, we consider models that can be formulated as differentiable func-
tions fg : X — ) parameterized by 8 € O. Our task is to find such functions, i.e.,
to learn parameters @ from a set of training examples 7 = {(z;, y;)} where x; € X
is the input and y; € ) some desired output of the ith training example. Both, x; and
i, can be structured objects. For instance, x; could be a fact about the world, like
directedBy(INTERSTELLAR, NOLAN), and y; a corresponding target truth score
(e.g. 1.0 for TRUE).

We define a loss function £ : Y x Y x © — R that measures the discrepancy
between a provided output y and a predicted output fp(x) on an input x, given a
current setting of parameters 8. We seek to find those parameters 8* that minimize
this discrepancy on a training set. We denote the global loss over the entire training

data as £. Our learning problem can thus be written as

1
0" = argmin £ = arg min —
0 (@y) T

o ||

Note that £ is also a function of 0, since we might not only want to measure the
discrepancy between given and predicted outputs, but also use a regularizer on the
parameters to improve generalization. Sometimes, we omit 8 in L for brevity. As £

and fy are differentiable functions, we can use gradient-based optimization methods,
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such as Stochastic Gradient Descent (SGD) [Nemirovski and Yudin, 1978], for
iteratively updating @ based on mini-batches B C T of the training data'

> L(fo(x),y.6,) 2.2)

1
| (z.y)€B

0,11 =0,—1nVy, B8

where 7 denotes a learning rate, and Vg denotes the differentiation operation of the

loss with respect to parameters, given the current batch at time step .

2.1.1 Computation Graphs

A useful abstraction for defining models as differentiable functions are computation
graphs which illustrate the computations carried out by a model more precisely
[Goodfellow et al., 2016]. In such a directed acyclic graph, nodes represent variables
and directed edges from one or multiple nodes to another node correspond to a
differentiable operation. As variables we consider scalars, vectors, matrices, and,
more generally, higher-order tensors.> We denote scalars by lower case letters ,
vectors by bold lower case letters x, matrices by bold capital letters X, and higher-
order tensors by Euler script letters X'. Variables can either be inputs, outputs, or
parameters of a model.

Figure 2.1a shows a simple computation graph that calculates z = o(zy).

Here, o and sigm refer to the element-wise (or scalar) sigmoid operation

1

= 2.3
l1+e™ 23)

o(z)
and dot and x 'y denote the dot product between two vectors. Furthermore, we
name the ith intermediate expression as u;. Figure 2.1b shows a slightly more
complex computation graph with two parameters w and b. This computation graph

in fact represents logistic regression f(x) = o(w 'z +b).

2.1.2 From Symbols to Subsymbolic Representations

In this thesis, we will use neural networks to learn representations of symbols. For
instance, such symbols can be words, constants, or predicate names. When we say
we learn a subsymbolic representation for symbols, we mean that we map symbols

to fixed-dimensional vectors or more generally tensors. This can be done by first

Note that there are many alternative methods for minimizing the loss in Eq. 2.1, but all models in
this thesis are optimized by variants of SGD.

For implementation purpose we will also consider structured objects over such tensors, like tuples
and lists. Current deep learning libraries such as Theano [Al-Rfou et al., 2016], Torch [Collobert
et al., 2011] and TensorFlow [Abadi et al., 2016] come with support for tuples and lists. However, for
brevity we leave them out of the description here.
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Figure 2.1: Two simple computation graphs with inputs (gray), parameters (blue), inter-
mediate variables u;, and outputs (dashed). Operations are shown next to the
nodes.

(P)—

matmul matm : matmul

Figure 2.2: Computation graph for z = ||C1; + P1, — C1,]||;.

enumerating all symbols and then assigning the number ¢ to the ¢th symbol. Let
S be the set of all symbols. We denote the one-hot vector for the ith symbol as
1; € {0,1}5], which is 1 at index  and 0 everywhere else. Figure 2.2 shows a
computation graph whose inputs are one-hot vectors of some symbols with indices

s, i, and j. In the first layer, these one-hot vectors are mapped to dense vector
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representations via a matrix multiplication with so-called embedding lookup matrices
(P and C in this case).

This computation graph corresponds to a neural link prediction model that we
explain in more detail in Section 2.3.2. Here it serves only as an illustration for how
symbols can be mapped to vector representations. In the remainder of this thesis,
we will often omit the embedding layer for clarity. The goal is to learn symbol
representations such as v,, v; and v; automatically from data. To this end, we need
to be able to calculate the gradient of the output of the computation graph with

respect to its parameters (the embedding lookup matrices in this case).

2.1.3 Backpropagation

For learning from data, we need to be able to calculate the gradient of a loss with
respect to all model parameters. As we assume all operations in the computation

graph are differentiable, we can recursively apply the chain rule of calculus.

Chain Rule of Calculus Assume we are given a composite function z = f(y) =
f(g(x)) with f : R — R™ and g : R® — R™. The chain rule allows us to
decompose the calculation of V,z, i.e., the gradient of the entire computation z

with respect to x, as follows [Goodfellow et al., 2016]

oy T
Vez= (7] Vyz. (2.4)

Here, a_z is the Jacobian matrix of g, i.e., the matrix of partial derivatives, and V,z
is the gradient of z with respect to y. Note that this approach generalizes to matrices
and higher-order tensors by reshaping them to vectors before the gradient calculation
(vectorization) and back to their original shape afterwards.

Backpropagation uses the chain rule to recursively define the efficient calcula-
tion of gradients of parameters (and inputs) in the computation graph by avoiding
recalculation of previously calculated expressions. This is achieved via dynamic
programming, i.e., storing previously calculated gradient expressions and reusing
them for later gradient calculations. We refer the reader to Goodfellow et al. [2016]
for details. In order to run backpropagation with a differentiable operation f that
we want to use in a computation graph, all we need to ensure is that this function is

differentiable with respect to each one of its inputs.

Example Let us take the computation graph depicted in Fig. 2.1a as an example.
Assume we are given an upstream gradient V, and want to compute the gradient of z

with respect to the inputs  and y. The computations carried out by backpropagation
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Figure 2.3: Backward pass for the computation graph shown in Fig. 2.1a.

are depicted in Fig. 2.3. For instance, by recursively applying the chain rule we can

calculate V2 as follows:

0z 0z Ouy
Vez = ox  Ou, 0w o(ur)(1—o(u))y. (2.5)

Note that the computation of 59—12 can be reused for calculating V, 2. We get the
gradient of the entire computation graph (including upstream nodes) with respect
to « via V.V z. Later we will use computation graphs where nodes are used in
multiple downstream computations. Such nodes receive multiple gradients from
downstream nodes during backpropagation, which are summed up to calculate the
gradient of the computation graph with respect to the variable represented by the

node.

In Chapter 3, we will use backpropagation for computing the gradient of differ-
entiable propositional logic rules with respect to vector representations of symbols
to develop models that combine representation learning with first-order logic. In
Chapter 5, we take this further and construct a computation graph for all possible
proofs in a Knowledge Base (KB) using the backward chaining algorithm. This will
allow us to calculate the gradient of proofs with respect to symbol representations and
to induce rules using gradient descent. Finally, in Chapter 6, we will use Recurrent
Neural Networks (RNNs), i.e., computation graphs that are dynamically constructed

for input varying-length input sequences of word representations.
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Prolog/Datalog Syntax List Representation

1 fatherOf(ABE, HOMER). [[fatherOf, ABE, HOMER]]

2 parentOf(HOMER,LISA). [[parentOf, HOMER, LISA]]

3 parentOf(HOMER, BART). [[parentOf, HOMER, BART]]

4 grandpaOf(ABE,LISA). [[grandpaOf, ABE, LISA]]

5 grandfatherOf(ABE,MAGGIE). [[grandfatherOf,ABE, MAGGIE]]

6 grandfatherOf(Xi,Y;) - [[grandfatherOf, Xy, Y4,
fatherOf(Xy,Z,), [fatherOf, Xy, Z4],
parentOf(Z,Yy). [parentOf,Z;, Y]]

7 grandparentOf(Xs, Ys) :— [[grandparentOf, Xo, Yo,
grandfatherOf(Xs, Ysa). [grandfather0Of, Xs, Yo

P {fatherOf,parentOf,grandpaOf,grandfatherOf,grandparentOf}
C {ABE,HOMER, LISA, BART, MAGGIE}
V {X17Y17Z17X27Y2}

Table 2.1: Example knowledge base using Prolog syntax (left) and as list representation as
used in the backward chaining algorithm (right).

2.2 Function-free First-order Logic

We now turn to a brief introduction of function-free first-order logic to the extent it is
used in subsequent chapters. This section follows the syntax of Prolog and Datalog
[Gallaire and Minker, 1978], and is based on Lloyd [1987], Nilsson and Maluszynski
[1990], and Dzeroski [2007].

2.2.1 Syntax

We start by defining an atom as a predicate® symbol and a list of terms. We will
use lowercase names to refer to predicate and constant symbols (e.g. fatherOf
and BART), and uppercase names for variables (e.g. X, Y, Z). In Prolog, one
also considers function terms and defines constants as function terms with zero
arity. However, in this thesis we will work only with function-free first-order logic
rules, the subset of logic that Datalog supports. Hence, for us a term can be a
constant or a variable. For instance, grandfatherOf(Q, BART) is an atom with
the predicate grandfatherOf, and two terms, the variable Q and the constant
BART, respectively. We define the arity of a predicate to be the number of terms
it takes as arguments. Thus, grandfatherOf is a binary predicate. A literal
is defined as a negated or non-negated atom. A ground literal is a literal with no
variables (see rules 1 to 5 in Table 2.1). Furthermore, we consider first-order logic
rules* of the form H :— B, where the body B (also called condition or premise) is

a possibly empty conjunction of atoms represented as a list, and the head H (also

3We will use predicate and relation synonymously throughout this thesis.
“We will use rule, clause and formula synonymously.
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called conclusion, consequent or hypothesis) is an atom. Examples are rules 6 and
7 in Table 2.1. Such rules with only one atom as the head are called definite rules.
In this thesis we only consider definite rules. Variables are universally quantified
(e.g. VX1,Y1,Z, inrule 6). A rule is a ground rule if all its literals are ground. We
call a ground rule with an empty body a fact, hence the rules 1 to 5 in Table 2.1
are facts.’ We define S = C U P UV to be the set of symbols, containing constant
symbols C, predicate symbols P, and variable symbols V. We call a set of definite
rules like the one in Table 2.1 a knowledge base or logic program. A substitution
U = {X;/t1,...,Xn/ty} is an assignment of variable symbols X; to terms ¢;, and
applying a substitution to an atom replaces all occurrences of variables X; by their
respective term ¢;.

What we have defined so far is the syntax of logic used in this thesis. To assign
meaning to this language (semantics), we need to be able to derive the truth value for
facts. We focus on proof theory, i.e., deriving the truth of a fact from other facts and
rules in a KB.°® In the next subsection we explain backward chaining, an algorithm
for deductive reasoning. It is used to derive atoms from other atoms by applying

rules.

2.2.2 Deduction with Backward Chaining

Representing knowledge (facts and rules) in symbolic form has the appeal
that one can use automated deduction systems to infer new facts. For in-
stance, given the logic program in Table 2.1, we can automatically deduce that
grandfatherOf(ABE,LISA) is a true fact by applying rule 6 using facts 1 and 2.

Backward chaining is a common method for automated theorem proving, and
we refer the reader to Russell and Norvig [2010], Gelder [1987], Gallaire and
Minker [1978] for details and to Fig. 2.4 for an excerpt of the pseudocode in style
of a functional programming language. Particularly, we are making use of pattern
matching to check for properties of arguments passed to a module. Note that ”_”
matches every argument and that the order matters, i.e., if arguments match a line,
subsequent lines are not evaluated. We denote sets by Euler script letters (e.g. &),
lists by small capital letters (e.g. E), lists of lists by blackboard bold letters (e.g. [E)
and we use : to refer to prepending an element to a list (e.g. ¢ : E or E : [E). While
an atom is a list of a predicate symbol and terms, a rule can be seen as a list of atoms
and thus a list of lists where the head of the list is the rule head.’

SWe sometimes only call a rule a rule if it has a non-empty body. This will be clear from the
context.

6See Dzeroski [2007] for other methods for semantics.

"For example, [[grandfatherof, X, Y], [fatherOf, X, Z], [parentOf,Z, Y]].
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1. or(G,S) =[5 | S’ € and(B, unify(H, G, S)) for H .= B € f]

2. and(_,FAIL) = FAIL
3. and([],5) =S
G,

4. and(G : G,S) = [S" | " € and(G, S’) for S’ € or(substitute(G, S), S)]
5. unify(_, ,FAIL) = FAIL

6. unify([],[],5) = S

7. unify([ ], -, ) = FAIL

8. unify(_,[],-) = FAIL

Su{h/g} ifheV
SuU{g/h} ifgeV,hgV
S ifg=~h

FAIL otherwise

9. unify(h : H,g: G, S) = unify | H, G,

10. substitute([],-) =[]

x ifg/xesS

11. substitute(g : G, S) = { g otherwise

} : substitute(G, S)

Figure 2.4: Simplified pseudocode for symbolic backward chaining (cycle detection omitted
for brevity, see Russell and Norvig [2010], Gelder [1987], Gallaire and Minker
[1978] for details).

Given a goal such as grandparentOf(Q;,Q,), backward chaining
finds substitutions of free variables with constants in facts in a KB (e.g.
{Q,/ABRAHAM, Q,/BART}). This is achieved by recursively iterating through
rules that translate a goal into subgoals which we attempt to prove, thereby exploring
possible proofs. For example, the KB could contain the following rule that can be

applied to find answers for the above goal:

grandfatherOf(X,Y) :— fatherOf(X,Z),parentO£f(Z,Y).

The proof exploration in backward-chaining is divided into two functions called
or and and that perform a depth-first search through the space of possible proofs.
The function or (line 1) attempts to prove a goal by unifying it with the head of every
rule in a KB, yielding intermediate substitutions. Unification (lines 5-9) iterates
through pairs of symbols in the two lists corresponding to the atoms that we want

to unify and updates the substitution set if one of the two symbols is a variable. It
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Rule Remaining Goals S
[[grandparentOf, Qy, Q] {}
7 [[grandfatherof, Q;, Q,] {X2/Q1, Y2/Q5}
6 [[fatherOf,Q,,Z], [parentOf,Z1,Q,]] {X2/Qi, Y2/Qs, X1/Q1, Y1/Qs}
1 [[parentOf, HOMER, Q,]] {X2/Q1,Y2/Qs,X1/Q1,Y1/Q,, Qi /ABE,Z; /HOMER}
2 (] {X2/Q1,Y2/Qy,X1/Qy, Y1/Qy, Q1 /ABE, Z; /HOMER, Q,/LISA}

Table 2.2: Example proof using backward chaining.

?7— grandfatherOf (ABE, BART). Query
Example Knowledge Base: / RN
1. fatherOf(ABE, HOMER). 1 9 3 or 1
2. parentOf (HOMER, BART). x Y
3. grandfatherOf(X,Y) = failure failure success
father0f (X, Z), {X/ABE, Y/BART} and 1
parent[]f(Z’Y), 3.1 7- fatherOf(ABE, Z)
— 273 or 2
— X v
success failure failure

{X/ABE, Y/BART, Z/HOMER} ' |
3.2 7— parent0f (BART, HOMER).

|
T PR or 2
v Y ~a

failure success failure

{X/ABE, Y /BART, Z/HOMER}

Figure 2.5: Full proof tree for a small knowledge base.

returns a failure if two non-variable symbols are not identical or the two atoms have
different arity. For rules where unification with the head of the rule succeeds, the
body and substitution are passed to and (lines 2-4), which then attempts to prove
every atom in the body sequentially by first applying substitutions and subsequently
calling or. This is repeated recursively until unification fails, atoms are proven by
unification via grounding with facts in the KB, or a certain proof-depth is exceeded.
Table 2.2 shows a proof for the query grandparent0f(Q,, Q,) given the KB in
Table 2.1 using Fig. 2.4. The method substitute (lines 10-11) replaces variables in
an atom by the corresponding symbol if there exists a substitution for that variable
in the substitution list. Figure 2.5 shows the full proof tree for a small knowledge
base and the query ?- grandfatherOf(ABE, BART).® The numbers on the arrows
correspond to the application of the respective rules. We visualize the recursive calls
to or and and together with the proof depth on the right side. Note how most proofs
can be aborted early due to unification failure.

Though first-order logic can be used for complex multi-hop reasoning, a draw-
back is that for such symbolic inference there is no generalization beyond what we

explicitly specify in the facts and rules. For instance, given a large KB we would

8We denote queries by the prefix “?-".
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like to learn automatically that in many cases where we observe fatherOf we
also observe parentOf. This can be approached by statistical relational learning,
inductive logic programming, and particularly neural networks for KB completion

which we discuss in the remainder of this chapter.

2.2.3 Inductive Logic Programming

While backward chaining is used for deduction, i.e., for inferring facts given rules
and other facts in a KB, Inductive Logic Programming (ILP) [Muggleton, 1991]
combines logic programming with inductive learning to learn logic programs from
training data. This training data can include facts, but also a provided logic program
that the ILP system is supposed to extend. Specifically, given facts and rules, the task
of an ILP system is to find further regularities and form hypotheses for unseen facts
[Dzeroski, 2007]. Crucially, these hypothesis are again formulated using first-order
logic.

There are different variants of ILP learning tasks [Raedt, 1997] and we focus
on learning from entailment [Muggleton, 1991]. That is, given examples of positive
facts and negative facts, the ILP system is supposed to find rules such that positive
facts can be deduced, but negative facts cannot. There are many variants of ILP
systems, and we refer the reader to Muggleton and Raedt [1994] and Dzeroski [2007]
for an overview. One of the most prominent systems is the First Order Inductive
Learner (FOIL) [Quinlan, 1990], which is a greedy algorithm that induces one rule
at a time by constructing a body that satisfies the maximum number of positive facts
and the minimum number of negative facts.

In Chapter 5, we will construct neural networks for proving facts in a KB
and introduce a method for inducing logic programs using gradient descent while

learning vector representations of symbols.

2.3 Automated Knowledge Base Completion

Automated KB completion is the task of inferring facts from information contained in
a KB and other resources such as text. This is an important task as real-world KBs are
usually incomplete. For instance, the placeOfBirth predicate is missing for 71%
of people in Freebase [Dong et al., 2014]. Prominent recent approaches to automated
KB completion learn vector representations of symbols via neural link prediction
models. The appeal of learning such subsymbolic representations lies in their ability
to capture similarity and even implicature directly in a vector space. Compared to
ILP systems, neural link prediction models do not rely on a combinatorial search

over the space of logic programs, but instead learn a local scoring function based on
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subsymbolic representations using continuous optimization. However, this comes
at the cost of uninterpretable models and no straightforward ways of incorporating
logical background knowledge — drawbacks that we seek to address in this thesis.
Another benefit of neural link prediction models over ILP is that inferring whether
a fact is true or not often amounts to efficient algebraic operations (feed-forward
passes in shallow neural networks), which makes test-time inference very scalable.
In addition, representations of symbols can be compositional. For instance, we can
compose a representation of a natural language predicate from a sequence of word

representations [Verga et al., 2016a].

In recent years, many models for automated KB completion have been proposed.
In the next sections, we discuss prominent approaches. On a high level, these methods
can be categorized into (i) neural link prediction models which define a local scoring
function for the truth of a fact based on estimated symbol representations, and (i1)
models that use paths between two entities in a KB for predicting new relations

between them.

2.3.1 Matrix Factorization

In this section, we describe the matrix factorization relation extraction model by
Riedel et al. [2013], which is an instance of a simple neural link prediction model.
We discuss this model in detail, as it the basis on which we develop rule injection
methods in Chapter 3 and 4.

Assume a set of observed entity pair symbols C and a set of predicate sym-
bols P, which can either represent structured binary relations from Freebase, a
large collaborative knowledge base [Bollacker et al., 2008], or unstructured Open
Information Extraction (OpenlE) [Etzioni et al., 2008] textual surface patterns col-
lected from news articles. Examples for structured and unstructured relations
are company/founders and #2-co-founder—-of-#1, respectively. Here,
#2-co-founder—-of—#1 is a textual pattern where #1 and #2 are placehold-
ers for entities. For instance, the relationship between Elon Musk and Tesla
in the sentence “Elon Musk, the co-founder of Tesla and the CEO of SpaceX,
cites The Foundation Trilogy by Isaac Asimov as a major influence on his think-
ing”® could be expressed by the ground atom #2-co-founder—of-#1(TESLA,
ELON MUSK). In this example, ELON MUSK appeared first in the textual pattern,
but #2 indicates that this constant will be used as the second argument in the

predicate corresponding to the pattern. That way we can later introduce a rule

http://www.dailymail.co.uk/news/article-4045816
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VX,Y : company/founders(X,Y) - #2-co-founder-of-#1(X,Y) with-

out changing the order of the variables in the body of the rule.

Let O = {rs(e;, e;))} be the set of observed ground atoms. Model F by Riedel
et al. [2013] maps all symbols in a knowledge base to subsymbolic representations,
i.e., it learns a dense k-dimensional vector representation for every relation and
entity pair. Thus, a training fact 74(e;, ¢;) is represented by two vectors, v, € R¥
and v;; € R*, respectively. We will refer to these as embeddings, subsymbolic
representations, vector representations, neural representations, or simply (symbol)
representations when it is clear from the context. The truth estimate of a fact is

modeled via the sigmoid of the dot product of the two symbol representations:
psij = o(v] ;). (2.6)

In fact, this expression corresponds to the computation graph shown in Fig. 2.1a
with ¢ = v, and y = v;;. The score p,;; is measuring the compatibility between the
relation and entity pair representation and can be interpreted as the probability of
the fact being true conditioned on parameters of the model. We would like to train
symbol representations such that true ground atoms get a score close to one and false
ground atoms a score close to zero. This results in a low-rank matrix factorization
corresponding to Generalized Principal Component Analysis (GPCA) [Collins et al.,
2001]

K ~o(PC") e RIPIxC] 2.7)

where P € RIP** and C € RII** are matrices of all relation and entity pair
representations, respectively. This factorization is depicted in Fig. 2.6 where known
facts are shown in green and the task is to complete this matrix for cells with a
question mark. Equation 2.7 leads to generalization with respect to unseen facts as
every relation and entity pair is represented in a low-dimensional space, and this
information bottleneck will lead to similar entity pairs being represented close in

distance in the vector space (likewise for similar predicates).

The distributional hypothesis states that “one shall know a word by the company
it keeps” [Firth, 1957]. It has been used for learning word meaning from large
collections of text [Lowe and McDonald, 2000, Padé and Lapata, 2007]. Applied to
automated KB completion, one could say that the meaning of a relation or entity pair

can be estimated from the entity pairs and relations that respectively appear together
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Figure 2.6: Knowledge base inference as matrix completion with true training facts (green),
unobserved facts (question mark), relation representations (red), and entity pair
representations (orange).

in facts in a KB. That is, if for many entity pairs we observe that both fatherOf

and dadOf is true, we can assume that both relations are similar.

2.3.1.1 Bayesian Personalized Ranking

A common problem in automated KB completion is that we do not observe any
negative facts. In the recommendation literature, this problem is called implicit
feedback [Rendle et al., 2009]. Applied to KB completion, we would like to infer (or
recommend) for a target relation some (unobserved) facts that we do not know from
facts that we do know. Facts that we do not know can be unknown either because
they are not true or because they are true but missing in the KB.

One method to address this issue is to formulate the problem in terms of a
ranking loss, and sample unobserved facts as negative facts during training. Given
a known fact r(e;, €j> € O, Bayesian Personalized Ranking (BPR) [Rendle et al.,
2009] samples another entity pair (e,,, €,,) € C such that r(e,,, e,) ¢ O and adds
the soft-constraint

T T
UV, Vij = Vg Uy (2.8)

This follows a relaxation of the local Closed World Assumption (CWA) [Galarraga
et al., 2013, Dong et al., 2014]. In the CWA, the knowledge about true facts
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Figure 2.7: A complete computation graph of a single training example for Bayesian per-
sonalized ranking with /3-regularization.

for relation r, is assumed to be complete and any sampled unobserved fact can
consequently be assumed to be negative. In BPR, the assumption is that unseen facts
are not necessarily false but their probability of being true should be less than for
known facts. Thus, sampled unobserved facts should have a lower score than known
facts. Instead of working with a fixed set of samples, we resample negative facts for
every known fact in every epoch, where an epoch is a full iteration through all known
facts in a KB. We denote a sample from the set of constant pairs as (e,,, ¢,,) ~ C.1°

This leads to the overall approximate loss

€= Y —wlogo(v] v — v ) + Allvill3 + Aol + 1vmall3)

rs(ei,ej) € O,
(em,en) ~ C’
rs(em,en) € O
(2.9)

!0Note that C is the set of constant-pairs.
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where A\, and ). are the strength of the ¢, regularization of the relation and entity pair
representations, respectively. Furthermore, wy is a relation-dependent implicit weight
accounting for how often (e,,, €,,) is sampled during training time. As we resample
an unobserved fact every time we visit an observed fact during training, unobserved
facts for relations with many observed facts are more likely to be sampled as negative
facts than for relations with few observed facts. A complete computation graph of a
single training example for matrix factorization using BPR with /5 regularization is

shown in Fig. 2.7.

2.3.2 Other Neural Link Prediction Models

An example for a simple neural link prediction model is the matrix factorization
approach from the previous section. Alternative methods define the score ps;; in
Eq. 2.6 in different ways, use different loss functions, and parameterize relation and
entity (or entity pair) representations differently. For instance, Bordes et al. [2011]
train two projection matrices per relation, one for the left and one for the right-hand
argument position, respectively. Subsequently, the score of a fact is defined as the ¢;

norm of the difference of the two projected entity argument embeddings
Dsij = HM;eﬁUi - MsrightUjHL (2.10)

Note that compared to the matrix factorization model by Riedel et al. [2013] which
embeds entity-pairs, here we learn individual entity embeddings. Similarly, TransE
[Bordes et al., 2013] models the score as the ¢; or ¢, norm of the difference between
the right entity embedding and a translation of the left entity embedding via the
relation embedding

psij = [[vi + vs —vllx 2.11)

where v; and v; are constrained to be unit-length. The computation graph for this

model is shown in Fig. 2.2 in Section 2.1.2.

RESCAL [Nickel et al., 2012] represents relations as matrices and defines the
score of a fact as
Dsij = ,UZ‘TMsvj' (2.12)

In contrast to the other models mentioned in this section, RESCAL is not optimized
with SGD but using alternating least squares [Nickel et al., 2011]. TRESCAL [Chang
et al., 2014] extends RESCAL with entity type constraints for Freebase relations.
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Neural Tensor Networks [Socher et al., 2013] add a relation-dependent compatibility
score to RESCAL

left

psij = v; Myvj + v v + v vl (2.13)

and are optimized with L-BFGS [Byrd et al., 1995]. DistMult by Yang et al. [2015]

1s modeling the score as the trilinear dot product

DPsij = ’U vz © U] Z UskVikUjik (214)

where © is the element-wise multiplication. This model is a special case of RESCAL
where M is constrained to be diagonal. ComplEx by Trouillon et al. [2016] uses
complex vectors v, v;, v; € C* for representing relations and entities. Let real(v)
denote the real part and imag(v) the imaginary part of a complex vector v. The

scoring function defined by ComplEX is

psij = real(vy) " (real(v;) © real(v;))
(i

T

+ real(vy) ' (imag(v;) ® imag(v;))

T

+ jmag<'vs) real('vz-) ® imag(vj))

(
— imag(v,) " (imag(v;) © real(v;)). (2.15)

The benefit of ComplEx over RESCAL and DistMult is that by using complex

vectors it can capture symmetric as well as asymmetric relations.

Building upon Riedel et al. [2013], Verga et al. [2016a] developed a column-less
factorization approach by encoding surface form patterns using Long Short-Term
Memories (LSTMs) [Hochreiter and Schmidhuber, 1997] instead of learning a non-
compositional representation. Similarly, Toutanova et al. [2015] uses Convolutional
Neural Networks (CNNs) to encode surface form patterns. In a follow-up study,
Verga et al. [2016b] propose a row-less method where entity pair representations are
not learned but instead computed from observed relations, thereby generalizing to

new entity pairs at test time.

2.3.3 Path-based Models

While all methods presented in the previous section model the truth of a fact as a
local scoring function of the representations of the relation and entities (or entity
pairs), path-based models score facts based either on random walks over the KBs

(path ranking) or by encoding entire paths in a vector space (path encoding).
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2.3.3.1 Path Ranking
The Path Ranking Algorithm (PRA) [Lao and Cohen, 2010, Lao et al., 2011] learns

to predict a relation between two entities based on logistic regression over features
collected from random walks between these entities in the KB up to some predefined
length. Lao et al. [2012] extend PRA inference to OpenlE surface patterns in addition
to structured relations contained in KBs.

A related approach to PRA is Programming with Personalized PageRank
(ProPPR) [Wang et al., 2013], which is a first-order probabilistic logic program-
ming language. It uses Prolog’s Selective Linear Definite clause resolution (SLD)
[Kowalski and Kuehner, 1971], a depth-first search strategy for theorem proving,
to construct a graph of proofs. Instead of returning deterministic proofs for a given
query, ProPPR defines a stochastic process on the graph of proofs using PageRank
[Page et al., 1999]. Furthermore, in ProPPR one can use features on the head of
rules whose weights are learned from data to guide stochastic proofs. Experiments
with ProPPR were conducted on comparably small KBs and contrary to neural link
prediction models and the extensions to PRA below, it has not yet been scaled to
large real-world KBs [Gardner et al., 2014].

A shortcoming of PRA and ProPPR is that they are operating on symbols
instead of vector representations of symbols. This limits generalization as it results
in an explosion in the number of paths to consider when increasing the path length.
To overcome this limitation, Gardner et al. [2013] extend PRA to include vector
representations of verbs. These verb representations are obtained from pre-training
via PCA on a matrix of co-occurrences of verbs and subject-object tuples collected
from a large dependency-parsing corpus. Subsequently, these representations are
used for clustering relations, thus avoiding an explosion of path features in prior PRA
work while improving generalization. Gardner et al. [2014] take this approach further
by introducing vector space similarity into random walk inference, thus dealing with
paths containing unseen surface forms by measuring the similarity to surface forms

seen during training, and following relations proportionally to this similarity.

2.3.3.2 Path Encoding

While Gardner et al. introduced vector representations into PRA, these representa-
tions are not trained end-to-end from task data but instead pretrained on an external
corpus. This means that relation representations cannot be adapted during training
on a KB.

Neelakantan et al. [2015] propose RNNs for learning embeddings of entire

paths. The input to these RNNs are trainable relation representations. Given a known



46 Chapter 2. Background

relation between two entities and a path connecting the two entities in the KB, an
RNN for the target relation is trained to output an encoding of the path such that the
dot product of that encoding and the relation representation is maximal.

Das et al. [2017] note three limitations of the work by Neelakantan et al. [2015].
First, there is no parameter sharing of RNNs that encode different paths for different
target relations. Second, there is no aggregation of information from multiple path
encodings. Lastly, there is no use of entity information along the path as only relation
representations are fed to the RNN. Das et al. address the first issue by using a single
RNN whose parameters are shared across all paths. To address the second issue, Das
et al. train an aggregation function over the encodings of multiple paths connecting
two entities. Finally, to obtain entity representations that are fed into the RNN
alongside relation representations they sum learned vector representations of the

entity’s annotated Freebase types.



Chapter 3

Regularizing Representations by

First-order Logic Rules

In this chapter, we introduce a paradigm for combining neural link prediction models
for automated Knowledge Base (KB) completion (Section 2.3.2) with background
knowledge in the form of first-order logic rules. We investigate simple baselines that
enforce rules through symbolic inference before and after matrix factorization. Our
main contribution is a novel joint model that learns vector representations of relations
and entity pairs using both distant supervision and first-order logic rules, such that
these rules are captured directly in the vector space of symbol representations. To
this end, we map symbolic rules to differentiable computation graphs representing
real-valued losses that can be added to the training objective of existing neural link
prediction models. At test time, inference is still efficient as only a local scoring
function over symbol representations is used and no logical inference is needed. We
present an empirical evaluation where we incorporate automatically mined rules into
a matrix factorization neural link prediction model. Our experiments demonstrate
the benefits of incorporating logical knowledge for Freebase relation extraction.
Specifically, we find that joint factorization of distant and logic supervision is
efficient, accurate, and robust to noise (Section 3.5). By incorporating logical rules,
we were able to train relation extractors for which no or only few training facts are

observed.

3.1 Matrix Factorization Embeds Ground Literals

In Section 2.3.1, we introduced matrix factorization as a method for learning rep-
resentations of predicates and constant pairs for automated KB completion. In this

section, we elaborate on how matrix factorization indeed embeds ground atoms
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in a vector space and lay out the foundation for developing a method that embeds

first-order logic rules.

Let F € F denote a rule in a KB. For instance, F could be a ground rule without
a body (i.e. a fact) like parentOf (HOMER, BART). Furthermore, let [F]] denote
the probability of this rule being true conditioned on the parameters of the model.
For now, we restrict F to ground atoms and discuss ground literals, propositional
rules, and first-order rules later. With slight abuse of notation, let [-] also denote
the mapping of predicate or constant symbols (or a pair of constant symbols) to
their subsymbolic representation as assigned by the model. Note that this mapping
depends on the neural link prediction model. For matrix factorization, [-] is a
function S — R* from symbols (constant pairs and predicates) to k-dimensional
dense vector representations. For RESCAL (see Section 2.3.2), [+] maps constants
to R¥ and predicates to R¥**, Using this notation, matrix factorization decomposes

the probability of a fact r4(e;, e;) as

[rs(ei, )] = o([rs] " [es,e5]) = (v vyy). (3.1

Training Objective Riedel et al. [2013] used Bayesian Personalized Ranking (BPR)
[Rendle et al., 2009] as training objective, i.e., they encouraged the score of known
true facts to be higher than unknown facts (Section 2.3.1.1). However, as we will
later model the probability of a rule from the probability of ground atoms scored by a
neural link prediction model, we need to ensure that all scores are in the interval [0, 1].
Instead of BPR, we thus use the negative log-likelihood loss to directly maximize the
probability of all rules, including ground atoms, in a KB (we omit ¢, regularization
for brevity):

£=> —log([F]). (3.2)

FeF
Therefore, instead of learning to rank facts, we optimize representations to assign
a score close to 1.0 to rules (including facts). Our model can thus be seen as

generalization of a neural link prediction model to rules beyond ground atoms.

For matrix factorization as neural link prediction model, we are embedding
ground atoms in a vector space of predicate and constant pair representations. Next,
we will extend this to ground literals and afterwards to propositional and then

first-order logic rules.
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Negation Let F = — G be the negation of a ground atom G. We can model the

probability of F as follows:

[F] = [-~c] =1—-[q]. (3.3)

By using ground literals in the training objective in Eq. 3.2, we can say that matrix
factorization is embedding ground literals via learning predicate and constant pair
representations. In other words, given known ground literals (negated and non-
negated facts), matrix factorization embeds symbols in a low-dimensional vector
space such that a scoring function assigns a high probability to these ground literals.
As symbols are embedded in a low-dimensional vector space, this method can
generalize to unknown facts and predict a probability for these at test time by placing

similar symbols close in distance in the embedding space.

Note that so far we have not gained anything over matrix factorization as
explained in Section 2.3.1. Equations 3.2 and 3.3 are only introducing notation that
will make it easier to embed more complex rules later. Now that we can embed
negated and non-negated facts, we can ask the question whether we can also embed

propositional and first-order logic rules.

3.2 Embedding Propositional Logic

We know from propositional logic that with the negation and conjunction opera-
tors we can model any other Boolean operator and propositional rule. In Eq. 3.3,
we effectively turned a symbolic logical operation (negation) into a differentiable
operation that can be used to learn subsymbolic representations for automated KB
completion. If we can find such a differentiable operation for conjunction, then we
could backpropagate through any propositional logical expression, and learn vector
representations of symbols that encode given background knowledge in propositional

logic.

Conjunction In Product Fuzzy Logic, conjunction is modeled using a Product t-
Norm [Lukasiewicz, 1920]. Let F = A A B be the conjunction of two propositional

expressions A and B. The probability of H is then defined as follows:

[F] = [a A B] = [A] [B] - (3.4)

In other words, we replaced conjunction, a symbolic logical operation, with multipli-

cation, a differentiable operation. Note that alternatives for modeling conjunction
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exist. For instance, one could take the min of [A] and [B] (Godel t-Norm [Godel,
1932]).

Given the probability of ground atoms, we can use Product Fuzzy Logic to
calculate the probability of the conjunction of these atoms. However, we will go a
step further and assume that we know the ground truth probability of the conjunction
of two atoms. We can then use the negative log-likelihood loss to measure the
discrepancy between the predicted probability of the conjunction and the ground
truth. Our contribution is backpropagating this discrepancy through the propositional
rule and a neural link prediction model that scores ground atoms to calculate a
gradient with respect to vector representations of symbols. Subsequently, we update
these representations using gradient descent, thereby encoding the ground truth of
a propositional rule directly in the vector representations of symbols. At test time,
predicting a score for any unobserved ground atom r;(e;, ;) is done efficiently by

calculating [r,(e;, €;)].

Disjunction Let F = A V B be the disjunction of two propositional expressions A
and B. Using De Morgan’s law and Eqs. 3.3 and 3.4, we can model the probability

of F as follows:

[F] = [a V8]
=[~(=(avB))]
=[~(=an-B)]
=1-(1—[aD)( -]
= [al + [B] — [al [B]- (3.5)

Note that Eq. 3.3 not only holds for ground atoms, but any propositional logical
expression. Furthermore, any propositional logical expression can be normalized
to Conjunctive Normal Form. Thus, with Egs. 3.3 to 3.5 we now have a way to
construct a differentiable computation graph, and thus a real-valued loss term, for

any symbolic expression in propositional logic.

Implication A particular class of logical expressions that we care about in practice

are propositional implication rules of the form H :— B, where the body B is a possibly
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Loss

Rule

Atoms

dot

| [parentOf] " [HOMER, BART] " [mother0£] | | [father0£] |

Figure 3.1: Computation graph for rule in Eq. 3.7 where - denotes a placeholder for the
output of the connected node.

empty conjunction of atoms represented as a list, and the head H is an atom. Let
F = H :— B. The probability of F is then modeled as:

[F] = [H :-B]
=[-B VH]
= [=B] + [H] — [-B] [H]
=1 —[B] + [n] = (1 —[B]) ]
=1 —[B] + [H] — 1] + [B] [H]
=1—[B]+ [B][H]

= [B] ([H] — 1) + 1. (3.6)
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Say we want to ensure that

fatherOf(HOMER, BART) —
parentOf(HOMER, BART)

—motherOf (HOMER, BART). (3.7)

We now have a way to map this rule to a differentiable expression that we can use
alongside facts in Eq. 3.2 and optimize the symbol representations using gradient
descent as we did previously for matrix factorization. The computation graph that
allows us to calculate the gradient of this rule with respect to symbol representa-
tions is shown in Fig. 3.1. While the structure of the bottom part (Atoms) of this
computation graph is determined by the neural link prediction model, the middle
part (Rule) is determined by the propositional rule. Note that we can use any neural
link predictor (see Section 2.3.2) instead of matrix factorization for obtaining a
probability of ground atoms. The only requirement is that ground atom scores need
to lie in the interval [0, 1]. However, for models where this is not the case, we can
always apply a transformation such as the sigmoid.

Independence Assumption Equation 3.4 underlies a strong assumption, namely that
the probability of the arguments of the conjunction are conditionally independent
given symbol embeddings. We already get a violation of this assumption for the
simple case [[F A F]] with 0 < [F] < 1, which results in [F A F] = [F] [F] < [F].
However, for dependent arguments we get an approximation to the probability of the
conjunction that can still be used for gradient updates of the symbol representations,
and we demonstrate empirically that conjunction as modeled in Eq. 3.4 is useful for
improving automated KB completion. In Chapter 4, we will present a way to avoid

this independence assumption for implications.

3.3 Embedding First-order Logic via Grounding

Now that we can backpropagate through propositional Boolean expressions, we turn
to embedding first-order logic rules in the vector space of symbol representations.
Note that in this process, we do not chain rules, i.e., we do not perform logical
inference at training or test time. Instead, a provided rule is used to construct a loss
term for optimizing vector representations of symbols. When training the model
using gradient descent, we attempt to find a minimum of the global loss Eq. 3.2 such
that the probability of all rules (including facts) is high. This minimum might be
attained where the prediction of the neural link prediction model for scoring ground

atoms not only agrees with a single but all rules, thereby predicting ground atoms as
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Evidence Sparse Training Matrix Regularized Embeddings Completed Matrix
|P| P

Facts 1P| ' c|
— ) Aj

company/founders(X,Y) :— #2-co-founder-of-#1(X,Y).

author/works_written(X,Y) :— #2-review-by-#1(X,Y).
» person/parents(X,Y) :— #2-daughter-of-#1(X,Y).

Figure 3.2: Given a set of training ground atoms, matrix factorization learns k-dimensional
predicate and constant pair representations. Here, we also consider additional
first-order logic rules (red) and seek to learn symbol representations such that
the predictions (completed matrix) comply with these given rules.

if we chained rules. A high-level overview of this process for matrix factorization as
neural link prediction model of ground atoms is shown in Fig. 3.2.

Assuming a finite set of constants, we can ground any first-order rule by replac-
ing free variables with constants in the domain. Let F(X,Y) denote a universally

quantified rule with two free variables X and Y, then

VX, Y B(X, V)] = || [\ Fleie;) (3.8)

(ei.e5)€C

where C is the set of all entity pairs. With Egs. 3.2 and 3.4 we obtain the following

ground loss for F:

—log N\ Elenep)|| | =—log | [ [Flene)] | == D log[r(ei ;).

(ei,ej)ec (ei,ej)GC (ei,(ij)EC
3.9

3.3.1 Stochastic Grounding

For large domains of constants, Eq. 3.9 becomes very costly to optimize as it would
result in many expressions that are added to the training objective of the underlying
neural link prediction model. For rules over pairs of constants, we can reduce the
number of terms drastically by only considering pairs of constants C™" that appeared
together in training facts. Still, C'™" might be a prohibitively large set of constant
pairs. Thus, we resort to a heuristic similar to BPR for sampling constant pairs.
Given a rule, we obtain a ground propositional rule for every constant pair for which
at least one atom in the rule is a known training fact when substituting free variables

with these constants. In addition, we sample as many constant pairs that appeared
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together in training facts but for which all atoms in the rule are unknown when

substituting free variables with the sampled constant pairs.

3.3.2 Baseline

Background knowledge in form of first-order rules can be seen as hints that can be
used to generate additional training data [Abu-Mostafa, 1990]. For pre-factorization
inference we first perform symbolic logical inference on the training data using
provided rules and add inferred facts as additional training data. For example, for
arule r(X,Y) :—ry(X,Y), we add an additional observed training facts 7;(e;, e;)
for any pair of constants (e;, e;) for which rs(e;, e;) is a true fact in the training
data. This is repeated until no further facts can be inferred. Subsequently, we
run matrix factorization on the extended set of observed facts. The intuition is
that the additional training data generated by rules provide evidence of the logical
dependencies between relations to the matrix factorization model, while at the same
time allowing the factorization to generalize to unobserved facts and to deal with
ambiguity and noise in the data. No further logical inference is performed during or
after training of the factorization model as we expect that the learned embeddings

encode the provided rules.

One drawback of pre-factorization inference is that the rules are enforced only
on observed atoms, i.e., first-order dependencies on predicted facts are ignored. In
contrast, with the loss in Eq. 3.9 we add terms for the rule directly to the matrix
factorization objective, thus jointly optimizing embeddings to reconstruct known
facts, as well as to obey to provided first-order logical background knowledge.
However, as we stochastically ground first-order rules, we have no guarantee that
a given rule will indeed hold for all possible entity pairs at test time. While we
next demonstrate that this approach is still useful for KB completion despite this
limitation, in Chapter 4 we will introduce a method that overcomes this limitation

for simple first-order implication rules.

3.4 Experiments

There are two orthogonal questions when evaluating the method above. First, does
regularizing symbol embeddings by first-order logic rules indeed capture such logical
knowledge in a vector space and can it be used to improve KB completion? Second,
where can we obtain background knowledge in form of rules that is useful for a
particular KB completion task? The latter is a well-studied problem [Hipp et al.,
2000, Schoenmackers et al., 2010a, Volker and Niepert, 2011]. Thus, we focus the
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evaluation on the ability of various approaches to benefit from rules that we directly

extract from the training data using a simple method.

Distant Supervision Evaluation We follow the procedure of Riedel et al. [2013]
for evaluating knowledge base completion of Freebase [Bollacker et al., 2008] with
textual data from the NYT corpus [Sandhaus, 2008]. The training matrix consists
of 4111 columns, representing 151 Freebase relations and 3 960 textual patterns,
41913 rows (constant pairs) and 118 781 training facts of which 7293 belong to
Freebase relations. The constant pairs are divided into train and test, and we remove
all Freebase facts for these test pairs from the training data. Our primary evaluation
measure is (weighted) Mean Average Precision (MAP) [Manning et al., 2008, Riedel
et al., 2013]. Let R be the set of test relations and let { f1;, ..., fi,;} be the set of
test facts for relation r; € R. Furthermore, let ?;; be the ranked list of facts for

relation r; scored by a model up until fact f;; is reached. MAP is then defined as

IR|

MAP(R Z Z precision(Ry;) (3.10)

’R’ =1 " =

where precision calculates the fraction of correctly predicted test facts of all predicted
facts. For weighted MAP, the average precision for every relation is weighted by
the number of true facts for the respective relation [Riedel et al., 2013]. Note that
the MAP metric operates only on the ranking of facts as predicted by the model and
does not take the absolute predicted score into account.

Rule Extraction and Annotation We use a simple technique for extracting rules
from a matrix factorization model based on Sanchez et al. [2015]. We first run matrix
factorization over the complete training data to learn symbol representations. After
training, we iterate over all pairs of relations (7, ;) where r; is a Freebase relation.
For every relation pair we iterate over all training atoms 7 (e;, €;), evaluate the score
[ri(ei, ;) = rs(es, €5)] using Eq. 3.6, and calculate the average to arrive at a score as
the proxy for the coverage of the rule. Finally, we rank all rules by their score and
manually inspect and filter the top 100, which resulted in 36 annotated high-quality
rules (see Table 3.1 for the top rules for five different Freebase target relations and
Appendix A for the list of all annotated rules). Note that our rule extraction approach
does not observe the relations for test constant pairs and that all extracted rules are
simple first-order logic expressions. All models in our experiments have access to

these rules, except for the matrix factorization baseline.

Methods Our proposed methods for injecting logic into symbol embeddings are pre-

factorization inference (Pre; Section 3.3.2) which is a baseline method that performs
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Rule Score
org/parent/child(X,Y) :—#2-unit-of-#1(X,Y). 0.97
location/containedby(X,Y) :—#2-city-of-#1(X,Y). 0.97
person/nationality(X,Y) :—#2-minister-#1(X,Y). 0.97
person/company(X,Y) (- #2-executive-#1(X,Y). 0.96

company/founders(X,Y) :— #2-co-founder-of-#1(X,Y). 0.96

Table 3.1: Top rules for five different Freebase target relations. These implications were
extracted from the matrix factorization model and manually annotated. The
premises of these implications are shortest paths between entity arguments in
dependency tree, but we present a simplified version to make these patterns more
readable. See Appendix A for the list of all annotated rules.

regular matrix factorization after propagating the logic rules in a deterministic
manner, and joint optimization (Joint; Section 3.3) which maximizes an objective
that combines terms from facts and first-order logic rules. Additionally, we evaluate
three baselines. The matrix factorization (MF; Section 2.3.1) model uses only
ground atoms to learn relation and constant representations (i.e. it has no access to
any rules). Furthermore, we consider pure symbolic logical inference (Inf). Since we
restrict ourselves to a set of consistent, simple rules, this inference can be performed
efficiently. Our final approach, post-factorization inference (Post), first runs matrix
factorization and then performs logical inference on the known and predicted facts.
Post-inference is computationally expensive since for all premises of rules we have
to iterate over all rows (constant pairs) in the matrix to assess whether the premise is

predicted to be true or not.

3.4.1 Training Details

Since we have no negative training facts, we follow Riedel et al. [2013] by sampling
unobserved ground atoms that we assume to be false. For rules, we use stochastic
grounding as described in Section 3.3.1. Thus, in addition to a loss over the score of
training facts, we have a loss over sampled unobserved ground atoms that we assume
to be negative, as well as loss terms for ground rules. In other words, we learn
symbol embeddings by minimizing Eq. 3.2 where F includes known and unobserved
atoms, as well as ground propositional rules sampled using stochastic grounding. In
addition, we use /5-regularization on all symbol representations. For minimizing the

training loss we use AdaGrad [Duchi et al., 2011].

Remember that at test time, predicting a score for any unobserved ground

atom 74(e;, ;) is done efficiently by calculating [r;(e;, e;)]. Note that this does not
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involve any explicit logical inference. Instead, we expect the vector space of symbol

embeddings to incorporate all given rules.

Hyperparameters Based on Riedel et al. [2013], we use £ = 100 as the dimension
for symbol representations in all models, A = 0.01 as parameter for /5-regularization,

and o = 0.1 as the initial learning rate for AdaGrad, which we run for 200 epochs.

Runtime Each AdaGrad update is defined over a single cell of the matrix, and thus
training data can be provided one ground atom at a time. For matrix factorization,
each AdaGrad epoch touches all the observed ground atoms once per epoch, and as
many sampled negative ground atoms. With provided rules, it additionally revisits
all the observed ground atoms that appear as an atom in the rules (and as many
sampled negative ground atoms), and thus more general rules will be more expensive.
However, the updates on ground atoms are performed independently and thus not
all the data needs to be stored in memory. All presented models take less than 15

minutes to train on a 2.8 GHz Intel Core 17 machine.

3.5 Results and Discussion

To asses the utility of injecting logic rules into symbol representations, we present
a comparison on a variety of benchmarks. First, we study the scenario of learning
extractors for relations for which we do not have any Freebase alignments, i.e., the
number of entity pairs that appear both in textual patterns and structured Freebase
relations is zero. This measures how well the different models are able to generalize
only from logic rules and textual patterns (Section 3.5.1). In Section 3.5.2, we then
describe an experiment where the number of Freebase alignments is varied in order
to assess the effect of combining distant supervision and background knowledge on
the accuracy of predictions. Although the methods presented here target relations
with insufficient alignments, we also provide a comparison on the complete distant

supervision dataset in Section 3.5.3.

3.5.1 Zero-shot Relation Learning

We start with the scenario of learning extractors for relations that do not appear in
the KB, i.e., those that do not have any textual alignments. Such a scenario occurs
in practice when a new relation is added to a KB for which there are no facts that
connect the new relation to existing relations or textual surface forms. For accurate
extraction of such relations, we can only rely on background domain knowledge,
e.g., in form of rules, to identify relevant textual alignments. However, at the same
time, there are correlations between textual patterns that can be utilized for improved

generalization. To simulate this setup, we remove all alignments between all entity
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Figure 3.3: Weighted MAP scores for zero-shot relation learning.
Relation # MF Inf Post Pre Joint
person/company 102 | 0.07 0.03 0.15 0.31 0.35
location/containedby 72 10.03 0.06 0.14 022 031
author/works written 27 1002 0.05 0.18 031 0.27
person/nationality 25 1001 0.19 0.09 0.15 0.19
parent/child 19 10.01 0.01 048 0.66 0.75
person/place_of birth 18 | 0.01 043 040 0.56 0.59
person/place_of _death 18 [0.01 024 023 027 023
neighborhood/neighborhood_of 11 | 0.00 0.00 0.60 0.63 0.65
person/parents 6 0.00 0.17 0.19 0.37 0.65
company/founders 4 0.00 0.25 0.13 037 0.77
film/directed. by 2 0.00 0.50 0.50 0.36 0.51
film/produced_by 1 0.00 1.00 1.00 1.00 1.00
MAP 0.01 0.23 034 043 0.52
Weighted MAP 0.03 0.10 0.21 0.33 0.38

Table 3.2: (Weighted) MAP with relations that do not appear in any of the annotated rules
omitted from the evaluation. The difference between Pre and Joint is significant
according to the sign-test (p < 0.05).

pairs and Freebase relations from the distant supervision data, use the extracted logic
rules (Section 3.4) as background knowledge, and assess the ability of the different
methods to recover the lost alignments.

Figure 3.3 provides detailed results. Unsurprisingly, matrix factorization (MF)

performs poorly since predicate representations cannot be learned for the Freebase
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Figure 3.4: Weighted MAP of the various models as the fraction of Freebase training facts
is varied. For 0% Freebase training facts we get the zero-shot relation learning
results presented in Table 3.2.

relations without any observed facts. The fact that we see a non-zero MAP score
for matrix factorization is due to random predictions. Symbolic logical inference
(Inf) is limited by the number of known facts that appear as a premise in one of the
implications, and thus performs poorly too. Although post-factorization inference
(Post) is able to achieve a large improvement over logical inference, explicitly
injecting logic rules into symbol representations using pre-factorization inference
(Pre) or joint optimization (Joint) gives superior results. Finally, we observe that
jointly optimizing the probability of facts and rules is able to best combine logic

rules and textual patterns for accurate, zero-shot learning of relation extractors.

Table 3.2 shows detailed results for each of the Freebase test relations. Except
for author/works_written and person/place_of_death, jointly opti-

mizing the probability of facts and rules yields superior results.
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3.5.2 Relations with Few Distant Labels

In this section, we study the scenario of learning relations that have only a few distant
supervision alignments, i.e., structured Freebase relations where only few textual
patterns are observed for entity-pairs. In particular, we observe the behavior of the
various methods as the amount of distant supervision is varied. We run all methods
on training data that contains different fractions of Freebase training facts (and
therefore different degrees of relation/text pattern alignment), but keep all textual

patterns in addition to the set of annotated rules.

Figure 3.4 summarizes the results. The performance of symbolic logical infer-
ence does not depend on the amount of distant supervision data since it does not
take advantage of the correlations in this data. Matrix factorization does not make
use of logical rules, and thus is the baseline performance when only using distant
supervision. For the factorization based methods, only a small fraction (15%) of the
training data is needed to achieve around 0.50 weighted MAP performance, thus
demonstrating that they are efficiently exploiting correlations between predicates,

and generalizing to unobserved facts.

Pre-factorization inference, however, does not outperform post-factorization
inference and is on par with matrix factorization for most of the curve. This sug-
gests that it is not an effective way of injecting logic into symbol representations
when ground atoms are also available. In contrast, the joint model learns symbol
representations that outperform all other methods in the 0 to 30% Freebase training
data interval. Beyond 30%, there seem to be sufficient Freebase facts for matrix

factorization to encode these rules, thus yielding diminishing returns.

3.5.3 Comparison on Complete Data

Although the focus of our work is on injecting logical rules for relations without
sufficient alignments to the knowledge base, we also present an evaluation on the
complete distant supervision data by Riedel et al. [2013]. Compared to Riedel
et al.’s matrix factorization model Riedel13-F, our reimplementation (MF) achieves
a lower WMAP (64% vs 68%) and a higher MAP (66% vs 64%). We attribute this
difference to the different loss function (BPR vs. negative log-likelihood). We show
the precision-recall curve in Fig. 3.5, demonstrating that joint optimization provides
benefits over the existing factorization and distant supervision techniques even on
the complete dataset, and obtains 66% weighted MAP and 69% MAP, respectively.
This improvement over the matrix factorization model can be explained by noting

that the joint model reinforces high-quality annotated rules.
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Figure 3.5: Precision-recall curve demonstrating that the Joint method, which incorpo-
rates annotated rules derived from the data, outperforms existing factorization
approaches (MF and Riedel13-F).

3.6 Related Work

Embeddings for Knowledge Base Completion Many methods for embedding pred-
icates and constants (or pairs of constants) based on training facts for knowledge
base completion have been proposed in the past (see Section 2.3.2). Our work goes
further in that we learn embeddings that follow not only factual but also first-order
logic knowledge. Note that the method of regularizing symbol embeddings by rules
described in this chapter are generally compatible with any existing neural link
prediction model that provides per-atom scores between 0.0 and 1.0. In our experi-
ments we only worked with matrix factorization as neural link prediction model but
based on our work Guo et al. [2016] were able to incorporate transitivity rules into
TransE [Bordes et al., 2013] which models entities separately instead of learning a

representation for every entity pair.

Logical Inference A common alternative, where adding first-order logic knowledge
is trivial, is to perform symbolic logical inference [Bos and Markert, 2005, Baader
et al., 2007, Bos, 2008]. However, such purely symbolic approaches cannot deal

with the uncertainty inherent to natural language and generalize poorly.
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Probabilistic Inference To ameliorate some of the drawbacks of symbolic logical
inference, probabilistic logic based approaches have been proposed [Schoenmackers
et al., 2008, Garrette et al., 2011, Beltagy et al., 2013, 2014]. Since logical connec-
tions between relations are modeled explicitly, such approaches are generally hard
to scale to large KBs. Specifically, approaches based on Markov Logic Networks
(MLNSs) [Richardson and Domingos, 2006] encode logical knowledge in dense, loopy
graphical models, making structure learning, parameter estimation, and inference
hard for the scale of our data. In contrast, in our model the logical knowledge is
captured directly in symbol representations, leading to efficient inference at test
time as we only have to calculate the forward pass of a neural link prediction model.
Furthermore, as symbols are embedded in a low-dimensional vector space, we have
a natural way of dealing with linguistic ambiguities and label errors that appear once
OpenlE textual patterns are included as predicates for automated KB completion
[Riedel et al., 2013].

Stochastic grounding is related to locally grounding a query in Programming
with Personalized PageRank (ProPPR) [Wang et al., 2013]. One difference is that we
use stochastically grounded rules as differentiable terms in a representation learning
training objective, whereas in ProPPR such grounded rules are used for stochastic

inference without learning symbol representations.

Weakly Supervised Learning Our work is also inspired by weakly supervised
approaches [Ganchev et al., 2010] that use structural constraints as a source of
indirect supervision. These methods have been used for several NLP tasks [Chang
et al., 2007, Mann and McCallum, 2008, Druck et al., 2009, Singh et al., 2010].
The semi-supervised information extraction work by Carlson et al. [2010] is in
spirit similar to our goal as they are using commonsense constraints to jointly
train multiple information extractors. A main difference is that we are learning
symbol representations and allow for arbitrarily complex logical rules to be used as

regularizers for these representations.

Combining Symbolic and Distributed Representations There have been a num-
ber of recent approaches that combine trainable subsymbolic representations with
symbolic knowledge. Grefenstette [2013] describes an isomorphism between first-
order logic and tensor calculus, using full-rank matrices to exactly memorize facts.
Based on this isomorphism, Rocktédschel et al. [2014] combine logic with matrix
factorization for learning low-dimensional symbol embeddings that approximately
satisfy given rules and generalize to unobserved facts on toy data. Our work extends

this workshop paper by proposing a simpler formalism without tensor-based logical
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connectives, presenting results on a large real-world task, and demonstrating the
utility of this approach for learning relations with no or few textual alignments.

Chang et al. [2014] use Freebase entity types as hard constraints in a tensor
factorization objective for universal schema relation extraction. In contrast, our
approach is imposing soft constraints that are formulated as universally quantified
first-order rules.

de Lacalle and Lapata [2013] combine first-order logic knowledge with a topic
model to improve surface pattern clustering for relation extraction. Since these rules
only specify which relations can be clustered and which cannot, they do not capture
the variety of dependencies embeddings can model, such as asymmetry. Lewis
and Steedman [2013] use distributed representations to cluster predicates before
logical inference. Again, this approach is not as expressive as learning subsymbolic
representations for predicates, as clustering does not deal with asymmetric logical
relationships between predicates.

Several studies have investigated the use of symbolic representations (such
as dependency trees) to guide the composition of symbol representations [Clark
and Pulman, 2007, Mitchell and Lapata, 2008, Coecke et al., 2010, Hermann and
Blunsom, 2013]. Instead of guiding composition, we are using first-order logic rules
as prior domain knowledge in form of regularizers to directly learn better symbol
representations.

Combining symbolic information with neural networks has a long tradition.
Towell and Shavlik [1994] introduce Knowledge-Based Artificial Neural Networks
whose topology is isomorphic to a KB of facts and inference rules. There, facts are
input units, intermediate conclusions hidden units, and final conclusions (inferred
facts) output units. Unlike in our work, there are no learned symbol representations.
Holldobler et al. [1999] and Hitzler et al. [2004] prove that for every logic program
there exists a recurrent neural network that approximates the semantics of that
program. This is a theoretical insight that unfortunately does not provide a way of
constructing such a neural network. Recently, Bowman [2013] demonstrated that
Neural Tensor Networks (NTNs) [Socher et al., 2013] can accurately learn natural
logic reasoning.

The method presented in this chapter is also related to the recently introduced
Neural Equivalence Networks (EqNets) [Allamanis et al., 2017]. EqNets recursively
construct neural representations of symbolic expressions to learn about equivalence
classes. In our approach, we recursively construct neural networks for evaluating
Boolean expressions and use them as regularizers to learn better symbol representa-

tions for automated KB completion.
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3.7 Summary

In this chapter, we introduced a method for mapping symbolic first-order logic rules
to differentiable terms that can be used to regularize symbol representations learned
by neural link prediction models for automated KB completion. Specifically, we pro-
posed a joint training objective that maximizes the probability of known training facts
as well as propositional rules that we made continuous by replacing logical operators
with differentiable functions. While this is inspired by Fuzzy Logic, our contribu-
tion is backpropagating a gradient from a negative log-likelihood loss through the
propositional rule and a neural link prediction model that scores ground atoms to
calculate a gradient with respect to vector representations of symbols. Subsequently,
we update these representations using gradient descent, thereby encoding the ground
truth of a propositional rule directly in the vector representations of symbols. This
leads to efficient predictions at test time as we only have to calculate the forward pass
of the neural link prediction model. We described a stochastic grounding process for
incorporating first-order logic rules. Our experiments for automated KB completion
show that the proposed method can be used to learn extractors for relations with
little to no observed textual alignments, while at the same time benefiting from

correlations between textual surface form patterns.



Chapter 4

Lifted Regularization of Predicate

Representations by Implications

The method for incorporating first-order logic rules into symbol representations
introduced in the previous chapter relies on stochastic grounding. Moreover, not only
vector representations of predicates but also representations of pairs of constants are
optimized to maximize the probability of provided rules. This is problematic for the

following reasons.

Scalability Even with stochastic grounding, incorporating first-order logic rules with
the method described so far is dependent on the size of the domain of constants. As
an example take the simple rule i sMortal(X) :— isHuman(X) and assume we
observe isHuman for seven billion constants. Only for this single rule, we would

already add seven billion loss terms to the training objective in Eq. 3.2.

Generalizability Since we backpropagate upstream gradients of a rule not only into
predicate representations but also into representations of pairs of constants, there is
no theoretical guarantee that the rule will indeed hold for constant pairs not observed
during training.

Flexibility of Training Loss The previous method is not compatible with rank-based
losses such as Bayesian Personalized Ranking (BPR). Instead, we had to use the
negative log-likelihood loss, which results in lower performance compared to BPR

for automated Knowledge Base (KB) completion.

Independence Assumption As explained in Section 3.2, we had to assume that the
probability of ground atoms is conditionally independent given symbol representa-
tions. This assumption is already violated for the simple Boolean expression [[F A F]
with 0 < [F] < 1, which results in [F A F] = [F] [F] < [F].

Ideally, we would like to have a way to incorporate first-order logic rules into

symbol representations in a way that (i) is independent of the size of the domain of
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constants, (ii) generalizes to unseen constant pairs, (iii) can be used with a broader
class of training objectives, and (iv) does not assume that the probability of ground

atoms is conditionally independent given symbol representations.

In this chapter, we present a method that satisfies these desiderata, but only for
simple implication rules instead of general function-free first-order logic rules, and
for matrix factorization as neural link prediction model. However, we note that such
simple implications are commonly used and can improve automated KB completion.
The method we propose incorporates implications into vector representations of
predicates while maintaining the computational efficiency of only modeling training
facts. This is achieved by enforcing a partial order of predicate representations in
the vector space, which is entirely independent of the number of constants in the
domain. It only involves representations of the predicates that are mentioned in
rules, as well as a general rule-independent constraint on the embedding space of
constant pairs. In the example given above, if we require that every component
of the vector representation [1i sHuman] is smaller or equal to the corresponding
component of the predicate representation [isMortal], then we can show that
the implication holds for any non-negative representation of a constant. Hence, our
method avoids the need for separate loss terms for every ground atom resulting
from grounding rules. In statistical relational learning, this type of approach is
often referred to as liffed inference or learning [Poole, 2003, Braz, 2007] because
it deals with groups of random variables at a first-order level. In this sense, our
approach is a lifted form of rule injection. This allows us to impose a large number
of rules while learning distributed representations of predicates and constant pairs.
Furthermore, once these constraints are satisfied, the injected rules always hold, even
for unseen but inferred ground atoms. In addition, it does not rely on the assumption

of conditional independence of ground atoms.

4.1 Method

We want to incorporate implications of the form VX, Y : h(X,Y) := b(X,Y) and
we consider matrix factorization as the neural link prediction model for scoring
atoms, i.e., [r(e;, ;)] = o([r]" [ei,e;]) (Section 2.3.1). A necessary condition
for the implication to hold is that for every possible assignment of constants e; to
X and e; to Y, the score of [h(e;, ;)] needs to be as least as large as [b(e;, e;)].
In the discrete case this means that if [b(e;, ;)] is 1.0 (True) within some small

epsilon, [h(e;, e;)] needs to be 1.0 too, but not vice versa. As sigmoid is a monotonic
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Figure 4.1: Example for implications that are directly captured in a vector space.

function, we can rewrite VX, Y : h(X,Y) :—=b(X,Y) in terms of grounded rules as

the following condition:
Y(eie;) € C:[n]" [ei,e;] > [o] " [ese;] - (4.1)

Ordering symbol representations in a vector space such that implications are di-
rectly captured is inspired by Order Embeddings [Vendrov et al., 2016]. An
example where Eq. 4.1 holds is illustrated in Fig. 4.1. Here, fatherOf and
motherOf both imply parentOf, since every component of [parentOf] is
larger than the corresponding component in [fatherOf] or [motherOf]. Predi-
cate representations in the blue, red and purple area are implied by fatherOf,
motherOf and parentOf, respectively. Both constant pair representations,
[HOMER, BART] and [MARGE, BART], are non-negative. Thus, for any score of
[fatherOf(HOMER, BART)], the score of [parentOf(HOMER, BART)] is larger,
but not vice versa. Note that this holds for any representation of constant pairs

[ei, e;] as long as it is non-negative (i.e. placed in the upper-right quadrant).

The main insight is that we can make this condition independent of ¢;, e; if
we make sure that [e;, e;] € Ri, i.e., all constant representations are non-negative.

Thus, Eq. 4.1 becomes
[n] > [o], V(ei,e;) €C: e e;] € RY (4.2)

where > is the component-wise comparison. In other words, for ensuring that b

implies h for any pair of constants, we only need one relation-specific loss term that
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makes sure all components in [h] are at least as large as in [b], and one general

restriction on the representations of constant pairs.

Non-negative Representation of Constant Pairs There are many choices for en-
suring all constant pair representations are positive. One option is to initialize
constant pair representations to non-negative vectors and projecting gradient updates
to make sure they stay non-negative. Another option is to apply a transforma-
tion f : R* — R* before constant pair representations are used in a neural link
prediction model for scoring atoms. For instance, we could use exp(z) = e” or
ReLU(x) = max(0, z) for f. However, we choose to restrict constant representa-
tions even more than required, and decided to use a transformation to approximately
Boolean embeddings [Kruszewski et al., 2015]. For every constant pair represen-
tation [e;, ¢;] € R”, we obtain a non-negative representation [e;, ¢;], € [0, 1]* by
applying the element-wise sigmoid function. Thus, the matrix factorization objective

with BPR for facts in Eq. 2.9 becomes the following approximate loss

£ = E —w, log U(vv—ﬂra(vij)_'U:(T('Umn))"{')‘puvs”g"i‘)‘C(Hvij"g+‘|vmn||g)
rs(eq,e;) € O,
(emyen) ~ C,
rs(em,en) & O
4.3)

where we sample constant pairs as in Section 2.3.1.1. We denote the extension with
sigmoidal constant pair representations of the matrix factorization model (F) by
[Riedel et al., 2013] as FS (S = sigmoidal).

Implication Loss There are various ways for modeling [2] > [b] to incorporate the

implication h :— b. Here, we propose to use a hinge-like loss

L([h:-Db]) = Zmax((), [o], — [n], +¢) (4.4)

where ¢ is a small positive margin to ensure that the gradient does not disappear
before the inequality is actually satisfied. A nice property of this loss compared
to the method presented in the previous chapter is that once the implication holds
(i.e. [h] is larger than [b]), the gradient is zero and both predicate representations
are not further updated for this rule. For every given implication rule, we add the
corresponding loss term to the fact loss in Eq. 4.3. The global approximate loss over

facts and rules in a set R is thus

=2+ ) L([n:=-D) (4.5)
h-ber



4.2. Experiments 69

and we denote the resulting model as FSL (L = logic). Furthermore, we use a margin
of € = 0.01 in all experiments. As in Chapter 3, we predict the probability of an
atom 74(e;, e;) at test time via [[r;(e;, e;)], which is efficient as there is no logical

inference.

4.2 Experiments

We follow the experimental setup from the previous chapter (Section 3.4) and
evaluate on the NYT corpus [Riedel et al., 2013]. Again, we test how well the
presented models can incorporate rules when there is no alignment between textual
surface forms and Freebase relations (Zero-shot Relation Learning), and when the
number of Freebase training facts is increased (Relations with Few Distant Labels).
In addition, we experiment with rules automatically extracted from WordNet [Miller,

1995] to improve automated KB completion on the full dataset.

Incorporating Background Knowledge from WordNet We use WordNet hy-
pernyms to generate rules for the NYT dataset. To this end, we iterate over
all surface form patterns in the dataset and attempt to replace words in the
pattern by their hypernyms. If the resulting surface form is contained in the
dataset, we generate the corresponding rule. For instance, we generate a rule
#1l-official-#2(X,Y) :— #1-diplomat—-#2(X,Y) since both patterns are
contained in the dataset and we know from WordNet that of ficial is a hypernym
of diplomat. This resulted in 427 generated rules that we subsequently annotated
manually, yielding 36 high-quality rules listed in Appendix B. Note that all of these
rules are between surface form patterns. Thus, none of these rules has a Freebase
relation as the head predicate. Although the test relations all originate from Freebase,
we still hope to see improvements by transitive effects, such as better surface form

representations that in turn help to predict Freebase facts.

4.2.1 Training Details

All models were implemented in TensorFlow [Abadi et al., 2016]. We use the hyper-
parameters of Riedel et al. [2013], with k£ = 100 as the size of symbol representations
and a weight of 0.01 for the ¢, regularization (Eq. 4.3). We use ADAM [Kingma
and Ba, 2015] for optimization with an initial learning rate of 0.005 and a batch
size of 8192. The embeddings are initialized by sampling & values uniformly from
[—0.1,0.1].
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Test relation # | Riedell3-F F FS FSL
person/company 106 0.75 0.73 0.74 0.77
location/containedby 73 0.69 0.62 0.70 0.71
person/nationality 28 0.19 020 020 0.21
author/works_written 27 0.65 0.71 0.69 0.65
person/place_of birth 21 0.72 0.69 0.72 0.70
parent/child 19 0.76 0.77 0.81 0.85
person/place_of death 19 0.83 0.85 0.83 0.85
neighborhood/neighborhood_of 11 0.70 0.67 0.63 0.62
person/parents 6 0.61 0.53 0.66 0.66
company/founders 4 0.77 0.73 0.64 0.67
sports_team/league 4 0.59 044 043 0.56
team_owner/teams_owned 2 0.38 0.64 0.64 0.61
team/arena_stadium 2 0.13 0.13 0.13 0.12
film/directed by 2 0.50 0.18 0.17 0.13
broadcast/area_served 2 0.58 0.83 0.83 1.00
structure/architect 2 1.00 1.00 1.00 1.00
composer/compositions 2 0.67 0.64 0.51 0.50
person/religion 1 1.00 1.00 1.00 1.00
film/produced by 1 0.50 1.00 1.00 0.33
Weighted MAP 0.67 0.65 0.67 0.69

Table 4.1: Weighted MAP for our reimplementation of the matrix factorization model (F),
compared to restricting the constant embedding space (FS) and to injecting
WordNet rules (FSL). The orginial matrix factorization model by Riedel et al.
[2013] is denoted as Riedell3-F.

4.3 Results and Discussion

Before turning to the injection of rules, we compare model F with model FS, and
show that restricting the constant embedding space has a regularization effect rather
than limiting the expressiveness of the model (Section 4.3.1). We then demonstrate
that model FSL is capable of zero-shot learning (Section 4.3.2), that it can take
advantage of alignments between textual surface forms and Freebase relations along-
side rules (Section 4.3.3), and we show that injecting high-quality WordNet rules
leads to improved predictions on the full dataset (Section 4.3.4). Lastly, we provide
details on the computational efficiency of the lifted rule injection method (Sec-
tion 4.3.5) and demonstrate that it correctly captures the asymmetry of implication
rules (Section 4.3.6).

4.3.1 Restricted Embedding Space for Constants

Before incorporating external commonsense knowledge into relation representations,

we were curious about how much we lose by restricting the embedding space of
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constant symbols to approximately Boolean embeddings. Surprisingly, we find
that the expressiveness of the model does not suffer from this strong restriction.
From Table 4.1 we see that restricting the constant embedding space (FS) yields a 2
percentage points higher weighted Mean Average Precision (MAP) compared to a
real-valued constant embedding space (F). This result suggests that the restriction
has a regularization effect that improves generalization. We also provide the original
results for the matrix factorization model by Riedel et al. [2013] denoted as Riedel13-
F for comparison. Due to a different implementation and optimization procedure,
the results for our model F compared to Riedell13-F are slightly worse (65% vs 67%
wMAP).

4.3.2 Zero-shot Relation Learning

In Section 3.5.1, we observed that by injecting implications where the head is a
Freebase relation for which no training facts are available, we can infer Freebase facts
based on rules and correlations between textual surface patterns. Here, we repeat
this experiment. The lifted rule injection model (FSL) reaches a weighted MAP of
35%, comparable to the 38% of the method presented in the last chapter. For this
experiment, we initialized the predicate representations of Freebase relations implied
by the rules with negative random vectors sampled uniformly from [—7.9, —8.1].
The reason is that without any negative training facts for these relations, their
components can only go up due to the lifted implication loss. Consequently, starting
with high values before optimization would impede the freedom with which these
representations can be ordered in the embedding space. This demonstrates that while
FSL performs a bit worse than the Joint model in Chapter 3, it can still be used for

zero-shot relation learning.

4.3.3 Relations with Few Distant Labels

Figure 4.2 shows how the relation extraction performance improves when more
Freebase facts are added. As in the last chapter, it measures how well the proposed
models, matrix factorization (F), propositionalized rule injection (Joint), and our
lifted rule injection model (FSL), can make use of provided implication rules, as
well as correlations between textual surface form patterns and increasing numbers
of Freebase facts. Although FSL starts at a lower performance than Joint when
no Freebase training facts are present, it outperforms Joint and a plain matrix
factorization model by a substantial margin when provided with more than 7.5%
of Freebase facts. This indicates that, in addition to being much faster than Joint,

it can make better use of provided rules and few training facts. We attribute this
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Figure 4.2: Weighted MAP for injecting rules as a function of the fraction of Freebase facts.

to being able to use BPR as loss for ground atoms and the regularization effect of
restricting the embedding space of constants pairs. The former is compatible with
our rule-injection method, but not with the approach of maximizing the expectation

of propositional rules presented in the previous chapter.

4.3.4 Incorporating Background Knowledge from WordNet

In column FSL in Table 4.1, we show results obtained by injecting WordNet rules.
Compared to FS, we obtain an increase of weighted MAP by 2%, as well as 4%
compared to our reimplementation of the matrix factorization model F. This demon-
strates that imposing a partial order based on implication rules can be used to
incorporate logical commonsense knowledge and increase the quality of information
extraction and automated KB completion systems. Note that our evaluation setting
guarantees that only indirect effects of the rules are measured, i.e., we do not use
any rules directly implying Freebase test relations. Consequently, our increase of
prediction performance is due to an improved predicate embedding space beyond

those predicates that are explicitly stated in provided rules. For example, injecting
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Rule FS FSL
head - body [head(e;, e;)] [body(é;,é;)] | [nead(e;,e;)] [body(és;,é;)]
#l-organization-#2 —  #l-party-#2 0.70 0.86 0.99 0.22
#l-parent-#2 — #l-father-#2 0.72 0.89 0.96 0.00
#l-lawyer—#2 — #l-prosecutor—#2 0.87 0.80 0.99 0.01
#l-newspaper—#2 —  #l-daily-#2 0.90 0.86 0.98 0.79
#1-diplomat-#2 — #l-ambassador-#2 0.93 0.84 0.31 0.05
Average over all rules ‘ 0.74 0.70 ‘ 0.95 0.28

Table 4.2: Average score of facts with constants that appear in the body of facts (e;, e;) or
in the head (é;, €;) of a rule.

the rule #1-parent-#2(X,Y) i— #1-father—#2(X,Y) can contribute to im-
proved predictions for the Freebase test relation parent /child via co-occurring

entity pairs between #1-parent—#2(X,Y) and parent/child.

4.3.5 Computational Efficiency of Lifted Rule Injection

In order to assess the computational efficiency of the proposed method, we measure
the time needed per training epoch when using a single 2.4GHz CPU core. We
measure on average 6.33s per epoch when not using rules (model FS), against 6.76s
and 6.97s when using 36 filtered and 427 unfiltered rules (model FSL), respectively.
Increasing the number of rules from 36 to 427 leads to an increase of only 3% in
computation time. Furthermore, using 427 rules only adds an overhead of 10% to
the computation time needed for learning ground atoms. This demonstrates that

lifted rule injection scales well with the number of rules.

4.3.6 Asymmetry

One concern with incorporating implications into a vector space is that the vector
representation of the predicates in the head and body are simply moving closer
together. This would violate the asymmetry of implications. In the experiments
above we might not observe that this is a problem as we are only testing how well
the model predicts facts for Freebase relations and not how well we can predict
textual surface form patterns. Thus, we perform the following experiment. After
incorporating WordNet rules of the form head :— body, we select all constant pairs
(e, e;) for which we observe body (e;, €;) in the training set. If the implication holds,
[head(e;, e;)] should yield a high score. If we conversely select (¢;, ¢;) based on
known facts head(é;, ¢;) and assume that head and body are not equivalent, then
we expect a lower score for [body/(€é;, ;)] than for [head(é;, é;)] as body(é;, é;)
might not be true.

Table 4.2 lists these scores for five sampled WordNet rules, and the average
over all WordNet rules when injecting these rules (model FSL) or not (model FS).

From this table, we can see that the score of the head atom is on average much higher
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than the score for the body atom once we incorporate the rule in the vector space
(FSL). In contrast, if we only run matrix factorization with the restricted constant
embedding space, we often see high predictions for both, the body and head atom.
This suggests that matrix factorization merely captures similarity between predicates.
In contrast, by injecting implications we trained predicate representations that indeed
yield asymmetric predictions. Given a high score for a body ground atom, the
model predicts a high score for the head, but not vice versa. The reason that we
also get a high score for body ground atoms in the fourth rule is that newspaper

and daily are synonymously used in training texts.

4.4 Related Work

Recent research on combining rules with learned vector representations has been
important for new developments in the field of automated KB completion. Wang
et al. [2015] demonstrated how different types of rules can be incorporated using an
Integer Linear Programming approach. Wang and Cohen [2016] learned embeddings
for facts and first-order logic rules using matrix factorization. Yet, all of these
approaches, and the method presented in the previous chapter, ground first-order
rules with constants in the domain. This limits their scalability towards large rule
sets and KBs with large domains of constants. It formed an important motivation
for our lifted rule injection model, which by construction does not suffer from that
limitation. Wei et al. [2015] proposed an alternative strategy to tackle the scalability
problem by reasoning on a filtered subset of ground atoms.

Wu et al. [2015] proposed to use the Path Ranking Algorithm (PRA) (Sec-
tion 2.3.3) for capturing long-range interactions between entities in conjunction with
modeling pairwise relations. Our model differs substantially from their approach, in
that we consider pairs of constants instead of separate constants, and that we inject a
provided set of rules. Yet, by creating a partial order in the relation embeddings as a
result of injecting implication rules, model FSL can also capture interactions beyond
the predicates directly mentioned in these rules, which we demonstrated in Sec-
tion 4.3.4 by injecting rules between surface patterns and measuring an improvement
on predictions for structured Freebase relations.

Combining logic and distributed representations is also an active field of re-
search outside of automated KB completion. Recent advances include the work
by Faruqui et al. [2015], who injected ontological knowledge from WordNet into
word embeddings to improve performance on downstream NLP tasks. Furthermore,
Vendrov et al. [2016] proposed to enforce a partial order in an embeddings space

of images and phrases. Our method is related to such Order Embeddings since we
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define a partial order on relation embeddings. We extend this work to automated KB
completion where we ensure that implications hold for all pairs of constants by intro-
ducing a restriction on the embedding space of constant pairs. Another important
contribution is the recent work by Hu et al. [2016], who proposed a framework for
injecting rules into general neural network architectures by jointly training on target
outputs and on rule-regularized predictions provided by a so-called teacher network.
Although quite different at first sight, their work could offer a way to use our model
in various neural network architectures by integrating the proposed lifted loss into

the teacher network.

4.5 Summary

We presented a fast approach for incorporating first-order implication rules into
distributed representations of predicates for automated KB completion. We termed
our approach lifted rule injection, as the main contribution over the previous chapter
is the fact that it avoids the costly grounding of first-order implication rules and
is thus independent of the size of the domain of constants. By construction, these
rules are satisfied for any observed or unobserved ground atom. The presented
approach requires a restriction on the embedding space of constant pairs. However,
experiments on a large-scale real-world KB show that this does not impair the
expressiveness of the learned representations. On the contrary, it appears to have a
beneficial regularization effect.

By incorporating rules generated from WordNet hypernyms, our model im-
proved over a matrix factorization baseline for KB completion. Especially for
domains where annotation is costly and only small amounts of training facts are
available, our approach provides a way to leverage external knowledge sources
efficiently for inferring facts.

On the downside, the lifted rule injection method presented here is only ap-
plicable for implication rules and when using matrix factorization as the neural
link prediction model. Furthermore, it is unclear how far regularizing predicate
representations can be pushed without constraining the embedding space too much.
Specifically, it is unclear how more complex rules such as transitivity can be in-
corporated in a lifted way. Hence, we are exploring a more direct synthesis of

representation learning and first-order logic inference in the next chapter.






Chapter 5

End-to-End Differentiable Proving

Current state-of-the-art methods for automated Knowledge Base (KB) completion
use neural link prediction models to learn distributed vector representations of
symbols (i.e. subsymbolic representations) for scoring atoms [Nickel et al., 2012,
Riedel et al., 2013, Socher et al., 2013, Chang et al., 2014, Yang et al., 2015,
Toutanova et al., 2015, Trouillon et al., 2016]. Such subsymbolic representations
enable these models to generalize to unseen facts by encoding similarities: If the
vector of the predicate symbol grandfatherOf is similar to the vector of the
symbol grandpaOf, both predicates likely express a similar relation. Likewise, if
the vector of the constant symbol LISA is similar to MAGGIE, similar relations likely

hold for both constants (e.g. they live in the same city, have the same parents etc.).

This simple form of reasoning based on similarities is remarkably effective for
automatically completing large KBs. However, in practice it is often important to
capture more complex reasoning patterns that involve several inference steps. For
example, if ABE is the father of HOMER and HOMER is a parent of BART, we would
like to infer that ABE is a grandfather of BART. Such transitive reasoning is inherently
hard for neural link prediction models as they only learn to score facts locally. In
contrast, symbolic theorem provers like Prolog [Gallaire and Minker, 1978] enable
exactly this type of multi-hop reasoning. Furthermore, Inductive Logic Programming
(ILP) [Muggleton, 1991] builds upon such provers to learn interpretable rules from
data and to exploit them for reasoning in KBs. However, symbolic provers lack the
ability to learn subsymbolic representations and similarities between them from large
KBs, which limits their ability to generalize to queries with similar but not identical

symbols.

While the connection between logic and machine learning has been addressed
by statistical relational learning approaches, these models traditionally do not support

reasoning with subsymbolic representations (e.g. Kok and Domingos [2007]), and
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when using subsymbolic representations they are not trained end-to-end from training
data (e.g. Gardner et al. [2013, 2014], Beltagy et al. [2017]). Neural multi-hop
reasoning models [Neelakantan et al., 2015, Peng et al., 2015, Das et al., 2017,
Weissenborn, 2016, Shen et al., 2016] address the aforementioned limitations to
some extent by encoding reasoning chains in a vector space or by iteratively refining
subsymbolic representations of a question before comparison with answers. In many
ways, these models operate like basic theorem provers, but they lack two of their
most crucial ingredients: interpretability and straightforward ways of incorporating
domain-specific knowledge in form of rules.

Our approach to this problem is inspired by recent neural network ar-
chitectures like Neural Turing Machines [Graves et al., 2014], Memory Net-
works [Weston et al., 2014], Neural Stacks/Queues [Grefenstette et al., 2015,
Joulin and Mikolov, 2015], Neural Programmer [Neelakantan et al., 2016], Neural
Programmer-Interpreters [Reed and de Freitas, 2016], Hierarchical Attentive Mem-
ory [Andrychowicz et al., 2016] and the Differentiable Forth Interpreter [Bosnjak
et al., 2017]. These architectures replace discrete algorithms and data structures by
end-to-end differentiable counterparts that operate on real-valued vectors. At the
heart of our approach is the idea to translate this concept to basic symbolic theorem
provers, and hence combine their advantages (multi-hop reasoning, interpretabil-
ity, easy integration of domain knowledge) with the ability to reason with vector
representations of predicates and constants. Specifically, we keep variable binding
symbolic but compare symbols using their subsymbolic vector representations.

In this chapter we introduce Neural Theorem Provers (NTPs): End-to-end differ-
entiable provers for basic theorems formulated as queries to a KB. We use Prolog’s
backward chaining algorithm as a recipe for recursively constructing neural networks
that are capable of proving queries to a KB using subsymbolic representations. The
success score of such proofs is differentiable with respect to vector representations of
symbols, which enables us to learn such representations for predicates and constants
in ground atoms, as well as parameters of function-free first-order logic rules of
predefined structure. By doing so, NTPs learn to place representations of similar sym-
bols in close proximity in a vector space and to induce rules given prior assumptions
about the structure of logical relationships in a KB such as transitivity. Furthermore,
NTPs can seamlessly reason with provided domain-specific rules. As NTPs operate
on distributed representations of symbols, a single hand-crafted rule can be leveraged
for many proofs of queries with symbols that have a similar representation. Finally,
NTPs demonstrate a high degree of interpretability as they induce latent rules that

we can decode to human-readable symbolic rules.
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Figure 5.1: A module is mapping an upstream proof state (left) to a list of new proof
states (right), thereby extending the substitution set Sy and adding nodes to the
computation graph of the neural network S representing the proof success.

Our contributions are threefold: (i) We present the construction of NTPs in-
spired by Prolog’s backward chaining algorithm and a differentiable unification
operation using subsymbolic representations, (ii) we propose optimizations to this
architecture by joint training with a neural link prediction model, batch proving, and
approximate gradient calculation, and (iii) we experimentally show that NTPs can
learn representations of symbols and function-free first-order rules of predefined
structure, enabling them to learn to perform multi-hop reasoning on benchmark KBs
and to outperform ComplEx [Trouillon et al., 2016], a state-of-the-art neural link

prediction model, on three out of four KBs.

5.1 Differentiable Prover

In the following, we describe the recursive construction of NTPs — neural networks
for end-to-end differentiable proving that allow us to calculate the gradient of proof
successes with respect to vector representations of symbols. We define the con-
struction of NTPs in terms of modules similar to dynamic neural module networks
[Andreas et al., 2016]. Each module takes as inputs discrete objects (atoms and
rules) and a proof state, and returns a list of new proof states (see Figure 5.1 for a
graphical representation).

A proof state S = (¥, 7) is a tuple consisting of the substitution set ¥ con-
structed in the proof so far and a neural network 7 that outputs a real-valued success
score of a (partial) proof. While discrete objects and the substitution set are only
used during construction of the neural network, once the network is constructed a
continuous proof success score can be calculated for many different goals at training
and test time. To summarize, modules are instantiated by discrete objects and the
substitution set. They construct a neural network representing the (partial) proof
success score and recursively instantiate submodules to continue the proof.

The shared signature of modules is D x S — SY where D is a domain that
controls the construction of the network, & is the domain of proof states, and [V is the

number of output proof states. Furthermore, let Sy denote the substitution set of the
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proof state S and let .S denote the neural network for calculating the proof success.
Akin to the pseudocode of backward chaining in Chapter 2, we use pseudocode in
style of a functional programming language to define the behavior of modules and

auxiliary functions.

5.1.1 Unification Module

Unification of two atoms, e.g., a goal that we want to prove and a rule head, is a
central operation in backward chaining. Two non-variable symbols (predicates or
constants) are checked for equality and the proof can be aborted if this check fails.
However, we want to be able to apply rules even if symbols in the goal and head are
not equal but similar in meaning (e.g. grandfatherOf and grandpaOf) and
thus replace symbolic comparison with a computation that measures the similarity
of both symbols in a vector space.

The module unify updates a substitution set and creates a neural network for
comparing the vector representations of non-variable symbols in two sequences of
terms. The signature of this module is £ x £ x § — S where L is the domain
of lists of terms. unify takes two atoms represented as lists of terms and an
upstream proof state, and maps these to a new proof state (substitution set and proof
success). To this end, unify iterates through the list of terms of two atoms and
compares their symbols. If one of the symbols is a variable, a substitution is added
to the substitution set. Otherwise, the vector representations of the two non-variable
symbols are compared using a Radial Basis Function (RBF) kernel [Broomhead and
Lowe, 1988] where p is a hyperparameter that we set to \/ié in our experiments. The

9 99

following pseudocode implements unify. Note that ”_” matches every argument

and that the order matters, i.e., if arguments match a hne, subsequent lines are not

evaluated.

L unifye([],[],5) =

2. unifyy([],-,-) = FAIL

3. unifyg(.,[],-) = FAIL

4. unifyg(h:H,g9:G,S) =unifye(H,G,S") = (Sy,S.) where

Sy U{h/g} ifheV
=14 SyU{g/h} ifgeV,hgV
So otherwise

—[10r:—0g: |2 .
- <S{ exp (125012 igh g ¢V })
1

otherwise
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Here, S’ refers to the new proof state, V refers to the set of variable symbols, h/g
is a substitution from the variable symbol / to the symbol ¢, and 6,. denotes the
embedding lookup of the non-variable symbol with index ¢g. unify is parameterized
by an embedding matrix 6 € RIZ/** where Z is the set of non-variables symbols
and k is the dimension of vector representations of symbols. Furthermore, FATL
represents a unification failure due to mismatching arity of two atoms. Once a failure
is reached, we abort the creation of the neural network for this branch of proving.
In addition, we constrain proofs to be cycle-free by checking whether a variable is
already bound. Note that this is a simple heuristic that prohibits applying the same
non-ground rule twice. There are more sophisticated ways for finding and avoiding
cycles in a proof graph such that the same rule can still be applied multiple times
(e.g. Gelder [1987]), but we leave this for future work.

Example Assume that we are unifying two atoms [grandpaOf, ABE, BART| and
[s, Q, 4] given an upstream proof state S = (&, 7) where the latter input atom has
placeholders for a predicate s and a constant 7, and the neural network 7 would output
0.7 when evaluated. Furthermore, assume grandpaOf, ABE and BART represent
the indices of the respective symbols in a global symbol vocabulary. Then, the new

proof state constructed by unify is:

uni fy,([grandpact, ABE, BART], [5, Q, ], (2, 7)) = (S}, 51) =
({Q/ABE}7 min (7_7 exp(_HegrandpaOf: - 05:”2)7 eXp(_HGBART: - 01”2)))

Thus, the output score of the neural network S will be high if the subsymbolic
representation of the input s is close to grandpaOf and the input 7 is close to BART.
However, the score cannot be higher than 0.7 due to the upstream proof success
score in the forward pass of the neural network 7. Note that in addition to extending
the neural network 7 to S”, this module also outputs a substitution set {Q/ABE} at

graph creation time that will be used to instantiate submodules.

Furthermore, note that unification is applied multiple times for a proof that
involves more than one step, resulting in chained application of the RBF kernel and
min operations. The choice of min stems from the property that for a successful
proof, all unifications should be successful (conjunction). This could also be realized
with a multiplication of unification scores along the proof, but it would likely result

in unstable optimization for longer proofs due to exploding gradients.
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5.1.2 OR Module

Based on unify, we now define the or module which attempts to apply rules in a
KB. The signature of or is £ x N x § — S¥ where L is the domain of goal atoms
and N is the domain of integers used for specifying the maximum proof depth of the
neural network. Furthermore, N is the number of possible output proof states for a

goal of a given structure and a provided KB.! We implement or as
1. ory(G,d,S) =[5 | S € andj(B,d, unifyy(H,G,S)) for H :— B € ]

where H :— B denotes a rule in a given KB K with a head atom H and a list of body
atoms B. In contrast to the symbolic OR method, the or module is able to use the
grandfatherOf rule above for a query involving grandpaOf provided that the
subsymbolic representations of both predicates are similar as measured by the RBF

kernel in the uni fy module.

Example For a goal [s, Q,i], or would instantiate an and submodule based on
the rule [grandfatherOf, X, Y] :- [[fatherOf, X,Z], [parentOf,Z, Y]] as
follows

org([s,Q,i],d,S) =
[S"| S" € andj([[fatherOf, X, Z], [parentOf,Z, Y]], d, ({X/Q,Y/i}, S;)), .. ]

resultof unify

5.1.3 AND Module

For implementing and we first define an auxiliary function called substitute which

applies substitutions to variables in an atom if possible. This is realized via

1. substitute([], ) =[]

x ifg/r eV

2. substitute(g : G, V) = { )
g otherwise

} : substitute(G, V)

For example, substitute([fatherOf, X, Z],{X/Q,Y/i}) = [fatherOf, Q,Z].

I'The creation of the neural network is dependent on the KB but also the structure of the goal. For
instance, the goal s(Q,¢) would result in a different neural network, and hence a different number of
output proof states, than s(3, 7).
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The signature of and is £ x N x S — SV where L is the domain of lists of
atoms and NN is the number of possible output proof states for a list of atoms with a

known structure and a provided KB. This module is implemented as

1. andj(,, ,FATIL) = FATL
2. andg(_,0,_) = FAIL

3. andj([],,9) =S

4. andy(G:G,d,S) =

[S”|S” € andy(G,d, ") for S’ € ory(substitute(G, Sy),d — 1, 5)]

where the first two lines define the failure of a proof, either because of an upstream
unification failure that has been passed from the or module (line 1), or because the
maximum proof depth has been reached (line 2). Line 3 specifies a proof success,
i.e., the list of subgoals is empty before the maximum proof depth has been reached.
Lastly, line 4 defines the recursion: The first subgoal G is proven by instantiating an
or module after substitutions are applied, and every resulting proof state S’ is used

for proving the remaining subgoals G by again instantiating and modules.

Example Continuing the example from Section 5.1.2, the and module would instan-
tiate submodules as follows:

andﬁ(“fatherOf,X;ZL[parentOf,Z{YH¢L({X/Q,Y/ﬂ35}))=

result of urﬁ fyinor
[S”] 5" € and}([[parentOf,Z,Y]],d,S")
for S’ € orf§([fatherof,Q,Z],d — 1, ({X/Q,Y/i},S;))]

result of substitute result of UNifyinor

5.1.4 Proof Aggregation

Finally, we define the overall success score of proving a goal G using a KB & with

parameters 0 as

ntpy(G,d) =  argmax S,
S € 0rg(Gd,(e,1))
S#FATL
where d is a predefined maximum proof depth and the initial proof state is set to an

empty substitution set and a proof success score of 1. Hence, the success of proving
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org([s,i,4],2,(2,1)) 5

lo T

unifygy([grandfather0f, X, Y], [s.4, 5], (2,1))

1.

unifygy([father0f, ABE, HOMER], [s, i, j], (&,1))

Y L
S1=(2,m) Se = (2,m2) S3 = ({X/i,Y/j},73) 'Example Knowledge Base:
'1. fatherOf(ABE, HOMER). 1

andj ([[fatherOf, X, Z], [parent0f, Z, Y]], 2, S3) 12. parent0f (HOMER, BART). 1

o 13. grandfather0f(X,Y) -
Ysubstitute ! father0f(X,Z),

L ory([father0f, i, Z], 1, S3) ' parent0£(Z,Y).
3. T e aTm e
unifyy([fatherOf, ABE, HOMER], [father0f, 4, Z], S3) ... unify,([parentOf, HOMER, BART], [fatherOf, i, Z], S3)
I
Ss1 = ({X/i,Y/j, Z/HOMER}, 731) S35 = FAIL Sso = ({X/i,Y/j, Z/BART}, T3)
and’g([parentﬂf, 7,Y],2,851) andg([parentﬂf, 7,Y],2,55)
Ysubstitute Ysubstitute
or§ ([parent0f, HOMER, j], 1, S31) org([parent0f, BART, j], 1, S52)
- ~ - N~
RN 2. 3 -3 2. 1
Sa11 = ({X/i,Y /j, Z/HOMER}, T311) * S313 = FAIL Sz = FAIL * Sso1 = ({X/i,Y/j, Z/BART}, T301)
Sa12 = ({X/i, Y /j, Z/HOMER}, T312) Saao = ({X/i,Y/j, Z/BART}, T392)

Figure 5.2: Exemplary construction of an NTP computation graph for a toy knowledge
base. Indices on arrows correspond to application of the respective KB rule.
Proof states (blue) are subscripted with the sequence of indices of the rules that
were applied. Underlined proof states are aggregated to obtain the final proof
success. Boxes visualize instantiations of modules (omitted for unify). The
proofs S33, S313 and S303 fail due to cycle-detection (the same rule cannot be
applied twice).

a goal is a max-pooling operation over the output of neural networks representing all

possible proofs up to some depth.

Example Figure 5.2 illustrates an examplary NTP computation graph constructed
for a toy KB. Note that such an NTP is constructed once before training, and can
then be used for proving goals of the structure [s, 7, j] at training and test time where
s 1s the index of an input predicate, and ¢ and j are indices of input constants. Final

proof states which are used in proof aggregation are underlined.

5.1.5 Neural Inductive Logic Programming

We can use NTPs for ILP by gradient descent instead of a combinatorial search over
the space of rules as, for example, done by the First Order Inductive Learner (FOIL)
[Quinlan, 1990]. Specifically, we are using the concept of learning from entailment
[Muggleton, 1991] to induce rules that let us prove known ground atoms, but that do
not give high proof success scores to sampled unknown ground atoms.

Let 0,.,0,.,0,. € R* be representations of some unknown predicates with in-
dices 7, s and t respectively. The prior knowledge of a transitivity between three
unknown predicates can be specified via 7(X,Y) := s(X,Z),t(Z,Y). We call this
a parameterized rule as the corresponding predicates are unknown and their repre-

sentations are learned from data. Such a rule can be used for proofs at training and



5.2. Optimization 85

test time in the same way as any other given rule. During training, the predicate
representations of parameterized rules are optimized jointly with all other subsym-
bolic representations. Thus, the model can adapt parameterized rules such that
proofs for known facts succeed while proofs for sampled unknown ground atoms fail,
thereby inducing rules of predefined structures like the one above. Inspired by Wang
and Cohen [2015], we use rule templates for conveniently defining the structure of
multiple parameterized rules by specifying the number of parameterized rules that

should be instantiated for a given rule structure (see Section 5.3.1 for examples).

5.1.5.1 Rule Decoding and Implicit Rule Confidence

For inspection after training, we decode a parameterized rule by searching for
the closest representations of known predicates. Given an induced rule such as
0..(X,Y) := 0,.(X,Z),0,.(Z,Y) where 6. and 0. have been trained, we find the
closest representation of a known predicate for every parameterized predicate rep-
resentation in the rule (e.g., 61. = Ograndparentof:s 02 = Oparentor.)- For-
mally, we decode ;. to a predicate symbol from the set of all predicates P using

decode(8;.) = arg ma%(exp(—HHi; —0,..|2)- 5.1
Ts€

In addition, we provide users with a rule confidence by taking the minimum sim-
ilarity between unknown and decoded predicate representations using the RBF kernel
inunify. Let © = [0;] be the list of predicate representations of a parameterized

rule. The confidence of that rule is then calculated as

2). (5.2)

= min maxexp(—||6;. — 0,..
7T Gice rep p(=[16: = 6r..
This confidence score is an upper bound on the proof success score that can be

achieved when the induced rule is used in proofs.

5.2 Optimization

In this section, we present the basic training loss that we use for NTPs, a training loss
where a neural link prediction models is used as auxiliary task, as well as various

computational optimizations.

5.2.1 Training Objective

Let K be the set of known facts in a given KB. Usually, we do not observe nega-
tive facts and thus resort to sampling corrupted ground atoms as done in previous
work [Bordes et al., 2013]. Specifically, for every [s, 7, j| € K we obtain corrupted
ground atoms [s, 7, j1, [s,4, j], [s, 4, j] & K by sampling 7, 7, and j from the set of
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constants. These corrupted ground atoms are resampled in every iteration of training,
and we denote the set of known and corrupted ground atoms together with their
target score (1.0 for known ground atoms and 0.0 for corrupted ones) as 7. We use
the negative log-likelihood of the proof success score as loss function for an NTP
with parameters € and a given KB K

Lorps= Y —ylog(ntpg([s,i,jl,d)r) — (1 —y)log(1 — ntpg([s,i, jl, d)r)
(ls:3w) € T

where [s, 7, j| is a training ground atom and y its target proof success score. Note
that since in our application all training facts are ground atoms, we only make
use of the proof success score 7 and not the substitution list of the resulting proof
state. We can prove known facts trivially by a unification with themselves, resulting
in no parameter updates during training and hence no generalization. Therefore,
during training we are masking the calculation of the unification success of a known
ground atom that we want to prove. Specifically, we set the unification score to O to
temporarily hide that training fact and assume it can be proven from other facts and
rules in the KB.

5.2.2 Neural Link Prediction as Auxiliary Loss

At the beginning of training all subsymbolic representations are initialized randomly.
When unifying a goal with all facts in a KB we consequently get very noisy success
scores in early stages of training. Moreover, as only the maximum success score
will result in gradient updates for the respective subsymbolic representations along
the maximum proof path, it can take a long time until NTPs learn to place similar

symbols close to each other in the vector space and to make effective use of rules.

To speed up learning subsymbolic representations, we train NTPs jointly with
ComplEx [Trouillon et al., 2016] (Eq. 2.15 in Chapter 2). ComplEx and the NTP
share the same subsymbolic representations, which is feasible as the RBF kernel
in unify is also defined for complex vectors. While the NTP is responsible for
multi-hop reasoning, the neural link prediction model learns to score ground atoms
locally. At test time, only the NTP is used for predictions. Thus, the training loss for

ComplEx can be seen as an auxiliary loss for the subsymbolic representations learned
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by the NTP. We term the resulting model NTPA. Based on the loss in Section 5.2.1,

the joint training loss is defined as

£ntpA§ = ‘Cntpg + Z ( - ylog(complexe(s,z',j))
([s;i.dly) € T

— (1 —y)log(l— complexe(S,iJ)))

where [s, 7, j] is a training atom, y is its ground truth target, and complex(s,i,j) =

Dsij as defined in Eq. 2.15.

5.2.3 Computational Optimizations

NTPs as described above suffer from severe computational limitations since the
neural network is representing all possible proofs up to some predefined depth.
In contrast to symbolic backward chaining where a proof can be aborted as soon
as unification fails, in differentiable proving we only get a unification failure for
atoms whose arity does not match or when we detect cyclic rule application. We
propose two optimizations to speed up NTPs. First, we make use of modern GPUs
by batch processing many proofs in parallel (Section 5.2.3.1). Second, we exploit the
sparseness of gradients caused by the min and max operations used in the unification
and proof aggregation respectively to derive a heuristic for a truncated forward
and backward pass that drastically reduces the number of proofs that have to be

considered for calculating gradients (Section 5.2.3.2).

5.2.3.1 Batch Proving

Let A € RY** be a matrix of N subsymbolic representations that are to be unified
with M other representations B € R**, We can adapt the unification module to
calculate the unification success in a batched way using

-
k k

Zi:l A%Z Zi:l B%Z
exp | — : 1, |+ |1n : —2ABT | e RV*M

k 2 k 2
Zi:l ANi Zi:l BMz‘

where 1y and 1,; are vectors of N and M ones respectively, and the square root is
taken element-wise. In practice, we partition the KB into rules that have the same
structure and batch-unify goals with all rule heads per partition at the same time on
a Graphics Processing Unit (GPU). Furthermore, substitution sets bind variables
to vectors of symbol indices instead of single symbol indices, and min and max

operations are taken per goal.
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5.2.3.2 K max Gradient Approximation

NTPs allow us to calculate the gradient of proof success scores with respect to
subsymbolic representations and rule parameters. While backpropagating through
this large computation graph will give us the exact gradient, it is computation-
ally infeasible for any reasonably-sized KB. Consider the parameterized rule
0,.(X,Y) := 05.(X,Z),03.(Z,Y) and let us assume the given KB contains 1 000
facts with binary predicates. While X and Y will be bound to the respective represen-
tations in the goal, Z we will be substituted with every possible second argument of
the 1 000 facts in the KB when proving the first atom in the body. Moreover, for each
of these 1 000 substitutions, we will again need to compare with all facts in the KB
when proving the second atom in the body of the rule, resulting in 1 000 000 proof
success scores. However, note that since we use the max operator for aggregating the
success of different proofs, only subsymbolic representations in one out of 1 000 000
proofs will receive gradients.

To overcome this computational limitation, we propose the following heuristic.
We assume that when unifying the first atom with facts in the KB, it is unlikely
for any unification successes below the top K successes to attain the maximum
proof success when unifying the remaining atoms in the body of a rule with facts
in the KB. That is, after the unification of the first atom, we only keep the top K
substitutions and their success scores, and continue proving only with these. This
means that all other partial proofs will not contribute to the forward pass at this stage,
and consequently not receive any gradients on the backward pass of backpropagation.
We term this the K max heuristic. Note that we cannot guarantee anymore that the
gradient of the proof success is the exact gradient, but for a large enough K we get a

close approximation to the true gradient.

5.3 Experiments

Consistent with previous work, we carry out experiments on four benchmark KBs
and compare ComplEx with the NTP and NTP in terms of area under the Precision-
Recall-curve (AUC-PR) on the Countries KB, and Mean Reciprocal Rank (MRR)
and HITS@m [Bordes et al., 2013] on the other KBs described below. Training

details, including hyperparameters and rule templates, can be found in Section 5.3.1.

Countries The Countries KB is a dataset introduced by Bouchard et al. [2015]
for testing reasoning capabilities of neural link prediction models. It consists of
244 countries, 5 regions (e.g. EUROPE), 23 subregions (e.g. WESTERN EUROPE,
NORTHERN AMERICA), and 1158 facts about the neighborhood of countries, and
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Figure 5.3: Overview of different tasks in the Contries dataset as visualized by Nickel et al.
[2016]. The left part (a) shows which atoms are removed for each task (dotted
lines), and the right part (b) illustrates the rules that can be used to infer the
location of test countries. For task S1, only facts corresponding to the blue
dotted line are removed from the training set. For task S2, additionally facts
corresponding to the green dashed line are removed. Finally, for task S3 also
facts for the red dash-dotted line are removed.

the location of countries and subregions. We follow Nickel et al. [2016] and split
countries randomly into a training set of 204 countries (train), a development set of
20 countries (dev), and a test set of 20 countries (test), such that every dev and test
country has at least one neighbor in the training set. Subsequently, three different
task datasets are created. For all tasks, the goal is to predict locatedIn(c,r) for
every test country c and all five regions r, but the access to training atoms in the KB
varies (see Fig. 5.3).

S1: All ground atoms locatedIn(c,r) where ¢ is a test country and 7 is a region
are removed from the KB. Since information about the subregion of test countries is

still contained in the KB, this task can be solved by using the transitivity rule

locatedIn(X, Y) - locatedIn(X7 Z), locatedIn(Z, Y).

S2: In addition to S1, all ground atoms locatedIn(c,s) are removed where ¢ is a
test country and s is a subregion. The location of test countries needs to be inferred

from the location of its neighboring countries:

locatedIn(X, Y) - neighborOf(X, Z), locatedIn(Z, Y).

This task is more difficult than S1, as neighboring countries might not be in the same
region, so the rule above will not always hold.

S3: In addition to S2, all ground atoms locatedIn(c,r) where 7 is a region and ¢
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is a training country that has a test or dev country as a neighbor are also removed.

The location of test countries can for instance be inferred using the three-hop rule

locatedIn(X, Y) - neighborOf(X, Z), neighborOf(Z, W), locatedIn(W, Y).

Kinship, Nations & UMLS We use the Nations, Alyawarra kinship (Kinship) and
Unified Medical Language System (UMLS) KBs from Kok and Domingos [2007].
We left out the Animals dataset as it only contains unary predicates and can thus
not be used for evaluating multi-hop reasoning. Nations contains 56 binary predi-
cates, 111 unary predicates, 14 constants and 2565 true facts, Kinship contains 26
predicates, 104 constants and 10686 true facts, and UMLS contains 49 predicates,
135 constants and 6529 true facts. Since our baseline ComplEx cannot deal with
unary predicates, we remove unary atoms from Nations. We split every KB into 80%
training facts, 10% development facts and 10% test facts. For evaluation, we take a
test fact and corrupt its first and second argument in all possible ways such that the
corrupted fact is not in the original KB. Subsequently, we predict a ranking of every
test fact and its corruptions to calculate MRR and HITS@m.

5.3.1 Training Details

We use ADAM [Kingma and Ba, 2015] with an initial learning rate of 0.001 and
a mini-batch size of 50 (10 known and 40 corrupted atoms) for optimization. We
apply an ¢, regularization of 0.01 to all model parameters, and clip gradient values
at [—1.0, 1.0]. All subsymbolic representations and rule parameters are initialized
using Xavier initialization [Glorot and Bengio, 2010]. We train all models for 100
epochs and repeat every experiment on the Countries corpus ten times. Statistical
significance is tested using the independent ¢-test. All models are implemented in
TensorFlow [Abadi et al., 2016]. We use a maximum proof depth of d = 2 and add
the following rule templates where the number in front of the rule template indicates
how often a parameterized rule of the given structure will be instantiated. Note
that a rule template such as #1(X,Y) :— #2(X, Z), #2(Z, Y) specifies that the two

predicate representations in the body are shared.

Countries S1
3H#HLUX,Y) — #1(Y, X).

Countries S2
3HUX,Y) = #1(Y, X).
3HIUX)Y) —#2(X,2), #2(Z,Y).
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Table 5.1: AUC-PR results on Countries and MRR and HITS @m on Kinship, Nations, and

UMLS.
Corpus ‘ Metric Model ‘ Examples of induced rules and their confidence
| ComplEx NTP NTPA |
S1 | AUC-PR  99.37+0.4 90.83+15.4 100.00+ 0.0 | 0.90 locatedIn(X,Y) :— locatedIn(X,Z), locatedIn(Z,Y).
Countries S2 | AUC-PR  87.95+2.8 87.40+11.7 93.04=+ 0.4 |0.63 locatedIn(X,Y) :—neighbor0Of(X,Z), locatedIn(Z,Y).
S3 | AUC-PR 4844 +6.3 56.68+17.6  77.26 £17.0 | 0.32 locatedIn(X)Y) -
neighbor0f(X,Z), neighbor0Of(Z,W), locatedIn(W,Y).
MRR 0.81 0.60 0.80 | 0.98 term15(X,Y) :—term5(Y,X)
Kinshi HITS@1 0.70 0.48 0.76 | 0.97 term18(X,Y) :— term18(Y,X)
P HITS@3 0.89 0.70 0.82 | 0.86 term4(X,Y) :-term4(Y,X)
HITS@10 0.98 0.78 0.89 | 0.73 term12(X,Y) - terml0(X, Z), term12(Z, Y).
MRR 0.75 0.75 0.74 | 0.68 blockpositionindex(X,Y) :-blockpositionindex(Y,X).
Nations HITS@1 0.62 0.62 0.59 | 0.46 expeldiplomats(X,Y) :—negativebehavior(X,Y).
; HITS@3 0.84 0.86 0.89 | 0.38 negativecomm(X,Y) :— commonbloc0(X,Y).
HITS@10 0.99 0.99 0.99 | 0.38 intergovorgs3(X,Y) - intergovorgs(Y,X).
MRR 0.89 0.88 0.93 | 0.88 interacts_with(X,Y) -
UMLS HITS@1 0.82 0.82 0.87 interacts_with(X,Z), interacts_with(Z,Y).
HITS@3 0.96 0.92 0.98 | 0.77 isa(X,Y) - isa(X,Z), isa(Z,Y).
HITS@10 1.00 0.97 1.00 | 0.71 derivative of(X,Y) -
derivative_ of(X,Z),derivative_ of(Z,Y).

3H#1(X,Y) = #2(X, Z), #3(Z,Y).

Countries S3

3H#1(X,Y) = #1(Y, X).

3H1(X,Y) = #2(X,Z), #2(Z,Y)

3H1(X,Y) - #2(X,Z), #3(Z,Y)

341X, Y) = #2(X, Z), #3(Z, W), #4(W,Y).

Kinship, Nations & UMLS

20 #1(X,Y) = #2(X,Y).

20 #1(X,Y) = #2(Y, X).

20 #1(X,Y) = #2(X, Z), #3(Z,Y).

5.4 Results and Discussion

Results for the different model variants on the benchmark KBs are shown in Ta-
ble 6.1. Another method for inducing rules in a differentiable way for automated KB
completion has been introduced recently by Yang et al. [2017] and our evaluation
setup is equivalent to their Protocol II. However, our neural link prediction baseline,
ComplEXx, already achieves much higher HITS@10 results (1.00 vs. 0.70 on UMLS
and 0.98 vs. 0.73 on Kinship). We thus focus on the comparison of NTPs with
ComplEx.

First, we note that vanilla NTPs alone do not work particularly well compared
to ComplEx. They only outperform ComplEx on Countries S3 and Nations, but
not on Kinship or UMLS. This demonstrates the difficulty of learning subsymbolic
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representations in a differentiable prover from unification alone, and the need for
auxiliary losses. The NTPA with ComplEx as auxiliary loss outperforms the other
models in the majority of tasks. The difference in AUC-PR between ComplEx and
NTPA is significant for all Countries tasks (p < 0.0001).

A major advantage of NTPs is that we can inspect induced rules which provide
us with an interpretable representation of what the model has learned. The right
column in Table 6.1 shows examples of induced rules by NTPA (note that predicates
on Kinship are anonymized). For Countries, the NTP recovered those rules that are
needed for solving the three different tasks. On UMLS, the NTP induced transitivity
rules. Those relationships are particularly hard to encode by neural link prediction

models like ComplEX, as they are optimized to locally predict the score of a fact.

5.5 Related Work

Combining neural and symbolic approaches to relational learning and reasoning
has a long tradition and let to various proposed architectures over the past decades
(see d’Avila Garcez et al. [2012] for a review). Early proposals for neural-symbolic
networks are limited to propositional rules (e.g., EBL-ANN [Shavlik and Towell,
1989], KBANN [Towell and Shavlik, 1994] and C-IL?P [d’ Avila Garcez and Za-
verucha, 1999]). Other neural-symbolic approaches focus on first-order inference,
but do not learn subsymbolic vector representations from training facts in a KB (e.g.,
SHRUTI [Shastri, 1992], Neural Prolog [Ding, 1995], CLIP++ [Franca et al., 2014],
Lifted Relational Neural Networks [Sourek et al., 2015], and TensorLog [Cohen,
2016]). Logic Tensor Networks [Serafini and d’Avila Garcez, 2016] are in spirit
similar to NTPs, but need to fully ground first-order logic rules. However, they
support function terms, whereas NTPs currently only support function-free terms.
Recent question-answering architectures such as [Peng et al., 2015, Weis-
senborn, 2016, Shen et al., 2016] translate query representations implicitly in a
vector space without explicit rule representations and can thus not easily incorporate
domain-specific knowledge. In addition, NTPs are related to random walk [Lao et al.,
2011, 2012, Gardner et al., 2013, 2014] and path encoding models [Neelakantan
et al., 2015, Das et al., 2017]. However, instead of aggregating paths from random
walks or encoding paths to predict a target predicate, reasoning steps in NTPs are
explicit and only unification uses subsymbolic representations. This allows us to
induce interpretable rules, as well as to incorporate prior knowledge either in the
form of rules or in the form of rule templates which define the structure of logical
relationships that we expect to hold in a KB. Another line of work [Rocktischel et al.,
2014, Rocktischel et al., 2015, Vendrov et al., 2016, Hu et al., 2016, Demeester et al.,
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2016] regularizes distributed representations via domain-specific rules, but these
approaches do not learn such rules from data and only support a restricted subset
of first-order logic. NTPs are constructed from Prolog’s backward chaining and are
thus related to Unification Neural Networks [Komendantskaya, 2011, Holldobler,
1990]. However, NTPs operate on vector representations of symbols instead of scalar
values, which are more expressive.

As NTPs can learn rules from data, they are related to ILP systems such as
FOIL [Quinlan, 1990], Sherlock [Schoenmackers et al., 2010b] and meta-interpretive
learning of higher-order dyadic Datalog (Metagol) [Muggleton et al., 2015]. While
these ILP systems operate on symbols and search over the discrete space of logical
rules, NTPs work with subsymbolic representations and induce rules using gradient
descent. Recently, Yang et al. [2017] introduced a differentiable rule learning
system based on TensorLog and a neural network controller similar to LSTMs
[Hochreiter and Schmidhuber, 1997]. Their method is more scalable than the NTPs
introduced here. However, on UMLS and Kinship our baseline already achieved
stronger generalization by learning subsymbolic representations. Still, scaling NTPs
to larger KBs for competing with more scalable relational learning methods is an

open problem that we seek to address in future work.

5.6 Summary

We proposed an end-to-end differentiable prover for automated KB completion that
operates on subsymbolic representations. To this end, we used Prolog’s backward
chaining algorithm as a recipe for recursively constructing neural networks that
can be used to prove queries to a KB. Specifically, our contribution is the use of a
differentiable unification operation between vector representations of symbols to
construct such neural networks. This allowed us to compute the gradient of proof
successes with respect to vector representations of symbols, and thus enabled us
to train subsymbolic representations end-to-end from facts in a KB, and to induce
function-free first-order logic rules using gradient descent. On benchmark KBs, our
model outperformed ComplEXx, a state-of-the-art neural link prediction model, on

three out of four KBs while at the same time inducing interpretable rules.






Chapter 6

Recognizing Textual Entailment with

Recurrent Neural Networks

“You can’t cram the meaning of a whole %&!$# sentence into a single $&!#* vector!”
— Raymond J. Mooney

The ability to determine the logical relationship between two natural language
sentences is an integral part for machines that are supposed to understand and reason
with language. In previous chapters, we have discussed ways of combining symbolic
logical knowledge with subsymbolic representations trained via neural networks.
As first steps towards models that reason with natural language, we have used
textual surface form patterns as predicates for automated Knowledge Base (KB)
completion. However, for automated KB completion, we assumed surface patterns to
be atomic, which does not generalize to unseen patterns as there is no compositional
representation. In this chapter, we are using Recurrent Neural Networks (RNNs) for
learning compositional representations of natural language sentences. Specifically,
we are tackling the task of Recognizing Textual Entailment (RTE), i.e., determining
(1) whether two natural language sentences are contradicting each other, (i1) whether
they are unrelated, or (iii) whether the first sentence (called the premise) entails
the second sentence (called the hypothesis). For instance, the sentence “Two girls
and a guy are involved in a pie eating contest” entails “Three people are stuffing
their faces”, but contradicts “Three people are drinking beer on a boat”. This task is
important since many Natural Language Processing (NLP) tasks, such as information
extraction, relation extraction, text summarization or machine translation, rely on it
explicitly or implicitly and could benefit from more accurate RTE systems [Dagan
et al., 2005].

State-of-the-art systems for RTE so far relied heavily on engineered NLP

pipelines, extensive manual creation of features, as well as various external resources
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and specialized subcomponents such as negation detection [e.g. Lai and Hockenmaier,
2014, Jiménez et al., 2014, Zhao et al., 2014, Beltagy et al., 2015]. Despite the
success of neural networks for paraphrase detection [e.g. Socher et al., 2011, Hu et al.,
2014, Yin and Schiitze, 2015], end-to-end differentiable neural architectures so far
failed to reach acceptable performance for RTE due to the lack of large high-quality
datasets. An end-to-end differentiable solution to RTE is desirable since it avoids
specific assumptions about the underlying language. In particular, there is no need
for language features like part-of-speech tags or dependency parses. Furthermore, a
generic sequence-to-sequence solution allows us to extend the concept of capturing

entailment across any sequential data, not only natural language.

Recently, Bowman et al. [2015] published the Stanford Natural Language Infer-
ence (SNLI) corpus accompanied by a long short-term memory (LSTM) baseline
[Hochreiter and Schmidhuber, 1997] which achieves an accuracy of 77.6% for RTE
on this dataset. It is the first instance of a generic neural model without hand-crafted
features that got close to the accuracy of a simple lexicalized classifier with engi-
neered features for RTE. This can be explained by the high quality and size of SNLI
compared to the two orders of magnitude smaller and partly synthetic datasets used
so far to evaluate RTE systems. Bowman et al.’s LSTM encodes the premise and
hypothesis independently as dense fixed-length vectors whose concatenation is sub-
sequently used in a Multi-layer Perceptron (MLP) for classification (Section 6.1.2).
In contrast, we are proposing a neural network that is capable of fine-grained com-
parison of pairs of words and phrases by processing the hypothesis conditioned on

the premise and using a neural attention mechanism.

Our contributions are threefold: (1) we present a neural model based on two
LSTMs that read two sentences in one go to determine entailment as opposed to
mapping each sentence independently into a vector space (Section 6.2.1), (ii) we
extend this model with a neural word-by-word attention mechanism to encourage
more fine-grained comparison of pairs of words and phrases (Section 6.2.3), and (iii)
we provide a detailed qualitative analysis of neural attention for RTE (Section 6.4.1).
Our benchmark LSTM achieves an accuracy of 80.9% on SNLI, outperforming a
simple lexicalized classifier tailored to RTE by 2.7 percentage points. An extension
with word-by-word neural attention surpasses this strong benchmark LSTM result
by 2.6 percentage points, achieving an accuracy of 83.5% for recognizing entailment
on SNLIL
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Figure 6.1: Computation graph for the fully-connected RNN cell.

6.1 Background

In this section, we describe RNNs and LSTMs for sequence modeling, before
explaining how LSTMs are used in the independent sentence encoding model for
RTE by Bowman et al. [2015].

6.1.1 Recurrent Neural Networks

An RNN is parameterized by a differentiable cell function f, : RF x R® — R° x R*
that maps an input vector x; € R* and previous state s,_; € R® to an output vector
h; € R? and next state s; € R®. For simplicity, we assume that the input size and
output size are the same, i.e., x;, h, € R¥. By applying the cell function at time-step

t, we obtain an output vector h; and the next state s;:

htast = f@(wtastfl)' (61)

Given a sequence of input representations X = [y, ..., 7| and a start state s, the
output of the RNN over the entire input sequence is then obtained by recursively

applying the cell function:

RNN(f@, X, 80) = [fg(CL‘l, So), R ,fg(wT, ST_1)]. (62)
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Usually, this output is separated into a list of output vectors H = [h, ..., hy| and
states S = [sy, .. ., s7|. Note that RNN can be applied to input sequences of varying

length, such as sequences of word representations.

6.1.1.1 Fully-connected Recurrent Neural Network

The most basic RNN is parameterized by the following cell function

z = [ :t ] (6.3)
t—1
h; = tanh(Wz;, + b) (6.4)
St = h,t (65)
RNz, s, 1) = (hy, 5) (6.6)

where W € R%*F ig a trainable transition matrix, b € R* a trainable bias, and
tanh the element-wise application of the hyperbolic function. We call this a fully-
connected RNN, as the cell function is modeled by a dense layer. We illustrate
the computation graph for a single application of the fully-connected RNN cell in
Fig. 6.1. Note that for recurrent application of this cell function to a sequence of

inputs, all parameters (transition matrix and bias) are shared between all time steps.

6.1.1.2 Long Short-Term Memory

RNNs with LSTM units [Hochreiter and Schmidhuber, 1997] have been successfully
applied to a wide range of NLP tasks, such as machine translation [Sutskever et al.,
2014], constituency parsing [Vinyals et al., 2015b], language modeling [Zaremba
et al., 2014] and recently RTE [Bowman et al., 2015]. LSTMs encompass memory
cells that can store information for a long period of time, as well as three types of
gates that control the flow of information into and out of these cells: input gates

(Eq. 6.8), forget gates (Eq. 6.9) and output gates (Eq. 6.10). Given an input vector



: matmul + )
@ @ Output Gates

| |

.

= |

.

| |

| |

u Y

| |

. )
concat

u A

@

| PO ()

. matmul + Chyy

f i Input Gates
matmul + tanh

6.1. Background

+ 51gm B +

matmul

Forget Gates

(S

"sigm

Figure 6.2: Computation graph for the LSTM cell.

99

X; at time step t, the previous output h; ; and cell state ¢;_;, an LSTM with hidden

size k computes the next output h, and cell state c; as

LSTM
0"

C; = .ft ® Ci_1 + 'l:t ® tanh(Wczt + bc)
h; = o, ® tanh(¢;)

[ t ]
St
C;

Ty, Stfl) = (hta St)

(6.7)

(6.8)
(6.9
(6.10)
(6.11)
(6.12)

(6.13)

(6.14)
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Figure 6.3: Independent encoding of the premise and hypothesis using the same LSTM.
Note that both sentences are compressed as dense vectors as indicated by the
red mapping.

where Wi W/ W° W¢ ¢ R?*F are trained matrices and b, b/, b°, b° € R*
trained biases that parameterize the gates and transformations of the input. As in
previous chapters, o denotes the element-wise application of the sigmoid function and
©® the element-wise multiplication of two vectors. The corresponding computation

graph is illustrated in Fig. 6.2.

6.1.2 Independent Sentence Encoding
LSTMs can readily be used for RTE by independently encoding the premise and

hypothesis as dense vectors and taking their concatenation as input to an MLP
classifier [Bowman et al., 2015].

Let X = [xf",... xL] be a sequence of words representing the premise
and let X7 = [x!T ... ] represent the hypothesis. Both, the premise and the
hypothesis, can be encoded as fixed-dimensional vectors by taking the last output
vector when applying the RNN function (Eq. 6.2) with an LSTM cell function
feLSTM. Subsequently, the prediction for the three RTE classes is obtained by an
MLP (Egs. 6.17 and 6.18) followed by a softmax (Eq. 6.19):

u” s” = rRaN(fFST™ P sp) (6.15)
u s = ruN(fEST™M X sp) (6.16)
P
h =tanh | Waytanh (W, |~ | b, | + b, (6.17)
hi
et
y; = softmax(h*); = (6.19)
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where W1, W, € R?**?k W, ¢ R?*3 b, b, € R* and bs € R>. Furthermore, s,
is a trainable start state and h%; denotes the last element from the list of premise
output vectors (similarly for k). The independent sentence encoding (Egs. 6.15
and 6.16) is visualized in Fig. 6.3.

Given the predicted output distribution over the three RTE classes y
(ENTAILMENT, NEUTRAL or CONTRADICTION) and a target one-hot vector

9 encoding the correct class, a cross-entropy loss is commonly used:

L(y,9) ==Y §ilog(ys)- (6.20)

Independent sentence encoding is a straightforward model for RTE. However,
it is questionable how efficiently an entire sentence can be represented in a single
fixed-dimensional vector. Hence, in the next section, we investigate various neural
architectures that are tailored towards more fine-grained comparison of the premise
and hypothesis and thus do not require to represent entire sentences as fixed-sized

vectors in an embedding space.

6.2 Methods

First, we propose to encode the hypothesis conditioned on a representation of the
premise (Section 6.2.1). Subsequently, we introduce an extension of an LSTM for
RTE with neural attention (Section 6.2.2) and word-by-word attention (Section 6.2.3).
Finally, we show how such attentive models can easily be used for attending both
ways: over the premise conditioned on the hypothesis and over the hypothesis
conditioned on the premise (Section 6.2.4). All these models are trained using the
loss in Eq. 6.20, and predict the probability of the RTE class using Eq. 6.19, but they
differ in the way h* (Eq. 6.18) is calculated.

6.2.1 Conditional Encoding

In contrast to learning sentence representations, we are interested in neural models
that read both sentences to determine entailment, thereby comparing pairs of words
and phrases. Figure 6.4 shows the high-level structure of this model. The premise
(left) is read by an LSTM. A second LSTM with different parameters is reading a
delimiter and the hypothesis (right), but its memory state is initialized with the last

state of the previous LSTM (s5 in the example). That is, it processes the hypothesis
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Figure 6.4: Conditional encoding with two LSTMs. The first LSTM encodes the premise,
and then the second LSTM processes the hypothesis conditioned on the repre-
sentation of the premise (s5).

conditioned on the representation that the first LSTM built for the premise. Formally,
we replace Egs. 6.15 to 6.17 with

u” s = ran( ST xP s) (6.21)
ull st = run( £S5 X7 sh) (6.22)
h = h' (6.23)

where s% denotes the last state of the LSTM that encoded the premise and hf;

denotes the last element from the list of hypothesis output vectors.

This model is illustrated for an RTE example in Fig. 6.4. Note that while
the premise still has to be encoded in a fixed-dimensional vector, the LSTM that
processes the hypothesis has to only keep track of whether incoming words contradict
the premise, whether they are entailed by it, or whether they are unrelated. This is
inspired by finite-state automata proposed for natural logic inference [Angeli and
Manning, 2014].

6.2.2 Attention

Attentive neural networks have recently demonstrated success in a wide range of
tasks ranging from handwriting synthesis [Graves, 2013], digit classification [Mnih
et al., 2014], machine translation [Bahdanau et al., 2014], image captioning [Xu
et al., 2015], speech recognition [Chorowski et al., 2015], sentence summarization
[Rush et al., 2015], and code summarization [Allamanis et al., 2016] to geometric
reasoning [Vinyals et al., 2015a]. The idea is to allow the model to attend over past

output vectors. For LSTMs this mitigates the cell state bottleneck, i.e., the fact that
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Figure 6.5: Attention model for RTE. Compared to Fig. 6.4, this model does not have to
represent the entire premise in its cell state, but can instead output context
representations (informally visualized by the red mapping) that are later queried
by the attention mechanism (blue). Also note that now h; to hy are used.

a standard LSTM has to store all relevant information for future time steps in its
internal memory ¢; (see ¢; in Fig. 6.2 and compare Fig. 6.4 with Fig. 6.5).

An LSTM with attention for RTE does not have to capture the entire content of
the premise in its cell state. Instead, it is sufficient to output vectors while reading the
premise (i.e. populating a differentiable memory of the premise) and accumulating a
representation in the cell state that informs the second LSTM which of the output
vectors of the premise it needs to attend over to determine the RTE class.

Formally, let Y € R¥¥ be a matrix consisting of output vectors [h; - - - hy]
that the first LSTM produced when reading the NV words of the premise. Furthermore,
let 1 € RY be a vector of ones and hf, be the last output vector after the premise
and hypothesis were processed by the two LSTMs. The attention mechanism will
produce a vector a € RY of attention weights and a weighted representation r of

the premise via

M = tanh (WYY + (W"hj})1") M € RPN (6.24)
a = softmax(w’ M) o € RV (6.25)
r=Ya' r € R (6.26)

where WY, W' € R¥* are trainable projection matrices, and w € R* is a trainable

parameter vector. Note that the outer product (W"h!1)17 is repeating the linearly
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transformed h]\H4 as many times as there are words in the premise (i.e. N times).
Hence, the intermediate attention representation 1m; (ith column vector in M) of the
1th word 1n the premise is obtained from a non-linear combination of the premise’s
output vector h; (ith column vector in Y') and the transformed h?/,. The attention
weight for the ith word in the premise is the result of a weighted combination

(parameterized by w) of values in m;.

The final sentence pair representation is obtained from a non-linear combination
of the attention-weighted representation r of the premise and the last output vector
hi’, thus replacing Eq. 6.23 by

h = tanh(W?r + W*h1]) (6.27)

where WP W? ¢ R*** are trainable projection matrices.

The attention model is illustrated in Fig. 6.5. Note that this model does not
have to represent the entire premise in its cell state, but can instead output context
representations that are later queried by the attention mechanism. This is informally

illustrated by the red mapping of input phrases to output context representations. !

6.2.3 Word-by-word Attention

For determining whether one sentence entails another it is desirable to check for
entailment or contradiction of individual word and phrase pairs. To encourage
such behavior we employ neural word-by-word attention similar to Bahdanau et al.
[2014], Hermann et al. [2015] and Rush et al. [2015]. The difference is that we do
not use attention to generate words, but to obtain a sentence pair encoding from
fine-grained comparison via soft-alignment of word and phrase pairs in the premise
and hypothesis. In our case, this amounts to attending over the first LSTM’s output
vectors for the premise while the second LSTM processes the hypothesis one word
at a time. Consequently, we obtain attention weight-vectors o; over premise output

vectors for every word in the hypothesis. This can be modeled as follows:

M, = tanh (WYY + (W"h + W'r,_)1") M, e RV (6.28)
«; = softmax (wTMt) a, € RPN (6.29)
T = Yoth + tanh (Wtrt_l) r, € RF (6.30)

Note that the number of word representations that are used to output a context representation is
not known. For illustration purposes we depicted the case that information of three words contribute
to an output context representation.
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Figure 6.6: Word-by-word attention model for RTE. Compared to Fig. 6.5, querying the
memory Y multiple times allows the model to store more fine-grained informa-
tion in its output vectors when processing the premise. Also note that now also
hg to hg are used.

where W W't € R*** are trainable projection matrices. Note that r; is dependent
on the previous attention representation r;_; to inform the model about what was
attended over in previous steps (see Egs. 6.28 and 6.30).

As in the previous section, the final sentence pair representation is obtained
from a non-linear combination of the last attention-weighted representation of the
premise (here conditioned on the last word of the hypothesis) ry and the last output

vector using
h = tanh(WPry + W*h1). (6.31)

The word-by-word attention model is illustrated in Fig. 6.6. Compared to the
attention model introduced earlier, querying the memory Y multiple times allows the
model to store more fine-grained information in its output vectors when processing
the premise. We informally illustrate this by fewer words contributing to the output

context representations (red mapping).

6.2.4 Two-way Attention

Inspired by bidirectional LSTMs that read a sequence and its reverse for improved
encoding [Graves and Schmidhuber, 2005], we experiment with two-way attention

for RTE. The idea is to use the same model (i.e. same structure and weights) to
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attend over the premise conditioned on the hypothesis, as well as to attend over the
hypothesis conditioned on the premise, by simply swapping the two sequences. This

produces two sentence pair representations that we concatenate for classification.

6.3 Experiments

We conduct experiments on the Stanford Natural Language Inference corpus [SNLI,
Bowman et al., 2015]. This corpus is two orders of magnitude larger than other
existing RTE corpora such as Sentences Involving Compositional Knowledge [SICK,
Marelli et al., 2014]. Furthermore, a large part of training examples in SICK were
generated heuristically from other examples. In contrast, all sentence pairs in SNLI
stem from human annotators. The size and quality of SNLI make it a suitable

resource for training neural architectures such as the ones proposed in this chapter.

6.3.1 Training Details

We use pretrained word2vec vectors [Mikolov et al., 2013] as word representations,
which we keep fixed during training. Out-of-vocabulary words in the training set
are randomly initialized by uniformly sampling values from [—0.05, 0.05] and are
optimized during training.? Out-of-vocabulary words encountered at inference time
on the validation and test corpus are set to fixed random vectors. By not tuning
representations of words for which we have word2vec vectors, we ensure that at test
time their representation stays close to unseen similar words that are contained in
word2vec.

We use ADAM [Kingma and Ba, 2015] for optimization with a first momentum
coefficient of 0.9 and a second momentum coefficient of 0.999.% For every model
we perform a grid search over combinations of the initial learning rate [1E-4, 3E-4,
1E-3], dropout4 [0.0, 0.1, 0.2] and ¢5-regularization strength [0.0, 1E-4, 3E-4, 1E-3].
Subsequently, we take the best configuration based on performance on the validation

set, and evaluate only that configuration on the test set.

6.4 Results and Discussion

Results on the SNLI corpus are summarized in Table 6.1. The total number of
model parameters, including tunable word representations, is denoted by |0|w.m
(without word representations |6|y). To ensure a comparable number of parameters

to Bowman et al.’s model that encodes the premise and hypothesis independently

2We found 12.1k words in SNLI for which we could not obtain word2vec embeddings, resulting
in 3.65M tunable parameters.

3Standard configuration recommended by Kingma and Ba.

4As in Zaremba et al. [2014], we apply dropout only on the inputs and outputs of the network.



6.4. Results and Discussion 107

Table 6.1: Results on the SNLI corpus.

Model k |0lwsm |0l Train Dev  Test
Lexicalized classifier [Bowman et al., 2015] - - - 99.7 - 78.2
LSTM [Bowman et al., 2015] 100 ~10M 221k 844 - 77.6
Conditional encoding, shared 100 3.8M 111k 83.7 819 809
Conditional encoding, shared 159 3.9M 252k 844 83.0 814
Conditional encoding 116 3.9M 252k 835 82.1 809
Attention 100 3.9M 242k 854 832 823
Attention, two-way 100 3.9M 242k 86.5 83.0 824
Word-by-word attention 100 3.9M 252k 853 83.7 835
Word-by-word attention, two-way 100 3.9M 252k 86.6 83.6 83.2

using one LSTM, we also run experiments for conditional encoding where the
parameters between both LSTMs are shared (“Conditional encoding, shared” with
k = 100), as opposed to using two independent LSTMs. In addition, we compare
our attentive models to two benchmark LSTMs whose hidden sizes were chosen so
that they have at least as many parameters as the attentive models (k set to 159 and
116 respectively). Since we are not tuning word vectors for which we have word2vec
embeddings, the total number of parameters |6|wyv of our models is considerably
smaller. We also compare our models against the benchmark lexicalized classifier
used by Bowman et al., which uses features based on the BLEU score between
the premise and hypothesis, length difference, word overlap, uni- and bigrams,

part-of-speech tags, as well as cross uni- and bigrams.

Conditional Encoding We found that processing the hypothesis conditioned on the
premise instead of encoding both sentences independently gives an improvement of
3.3 percentage points in accuracy over Bowman et al.’s LSTM. We argue this is due to
information being able to flow from the part of the model that processes the premise
to the part that processes the hypothesis. Specifically, the model does not waste
capacity on encoding the hypothesis (in fact it does not need to encode the hypothesis
at all), but can read the hypothesis in a more focused way by checking words and
phrases for contradiction or entailment based on the semantic representation of the
premise (see Fig. 6.4). One interpretation is that the LSTM is approximating a
finite-state automaton for RTE [c.f. Angeli and Manning, 2014]. Another difference
to Bowman et al.’s model is that we are using word2vec instead of GloVe for word
representations and, more importantly, do not fine-tune these word embeddings. The
drop in accuracy from the train to the test set is less severe for our models, which

suggest that fine-tuning word embeddings could be a cause of overfitting.
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Our LSTM outperforms a simple lexicalized classifier by 2.7 percentage points.
To the best of our knowledge, at the time of publication this was the first instance of
a neural end-to-end differentiable model outperforming a hand-crafted NLP pipeline

on a textual entailment dataset.

Attention By incorporating an attention mechanism we observe a 0.9 percentage
point improvement over a single LSTM with a hidden size of 159 and a 1.4 percent-
age point increase over a benchmark model that uses two LSTMs for conditional
encoding (one for the premise and one for the hypothesis conditioned on the repre-
sentation of the premise). The attention model produces output vectors summarizing
contextual information of the premise that is useful to attend over later when reading
the hypothesis. Therefore, when reading the premise, the model does not have to
build up a semantic representation of the whole premise, but instead a representation
that helps attending over the premise’s output vectors when processing the hypothesis
(see Fig. 6.5). In contrast, the output vectors of the premise are not used by the
baseline conditional model. Thus, these models have to build up a representation of
the entire premise and carry it over through the cell state to the part that processes the

hypothesis—a bottleneck that can be overcome to some degree by using attention.

Word-by-word Attention Enabling the model to attend over output vectors of the
premise for every word in the hypothesis yields another 1.2 percentage point im-
provement compared to attending only once. We argue that this can be explained by
the model being able to check for entailment or contradiction of individual word and

phrase pairs, and we demonstrate this effect in the qualitative analysis below.

Two-way Attention Allowing the model to also attend over the hypothesis based on
the premise did not improve performance for RTE in our experiments. We suspect
that this is due to entailment being an asymmetric relation. Hence, using the same
LSTM to encode the hypothesis (in one direction) and the premise (in the other
direction) might lead to noise in the training signal. This could be addressed by

training different LSTMs at the cost of doubling the number of model parameters.

6.4.1 Qualitative Analysis

It is instructive to analyze which output representations the model is attending over
when deciding the class of an RTE example. Note that interpretations based on
attention weights have to be taken with care since the model is not forced to solely
rely on representations obtained from attention (see h%, in Egs. 6.27 and 6.31). In
the following, we visualize and discuss attention patterns of the presented attentive
models. For each attentive model, we hand-picked examples from ten sentence pairs

that were randomly drawn from the development set.
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Hypothesis: A boy is riding an animal. Hypothesis: A girl is wearing a blue jacket.
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Figure 6.7: Attention visualizations.

Attention Figure 6.7 shows to what extent the attentive model focuses on contextual
representations of the premise after both LSTMs processed the premise and hypoth-
esis, respectively. Note how the model pays attention to output vectors of words
that are semantically coherent with the premise (“riding” and “rides”, “animal” and
“camel”, 6.7a) or in contradiction, as caused by a single word (“blue” vs. “pink”,
6.7b) or multiple words (“swim” and “lake” vs. “frolicking” and “grass”, 6.7c).
Interestingly, the model shows sensitivity to context by not attending over “yellow”,
the color of the toy, but “pink”, the color of the coat. However, for more involved
examples with longer premises, we found that attention is more uniformly distributed
(6.7d). This suggests that conditioning attention only on the last output representation
has limitations when multiple words need to be considered for deciding the RTE

class.

Word-by-word Attention Visualizations of word-by-word attention are depicted in
Fig. 6.8. We found that word-by-word attention can easily detect if the hypothesis is
simply a reordering of words in the premise (6.8a). Furthermore, it is able to resolve
synonyms (“airplane” and “‘aircraft”, 6.8c) and capable of matching multi-word
expressions to single words (“garbage can” to “trashcan”, 6.8b). It is also noteworthy
that irrelevant parts of the premise, such as words capturing little meaning or whole
uninformative relative clauses, are correctly neglected for determining entailment
(“which also has a rope leading out of it”, 6.8b).

Word-by-word attention seems to also work well when words in the premise

and hypothesis are connected via deeper semantics (“snow’ can be found “outside”
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and a “mother” is an “adult”, 6.8e and 6.8g). Furthermore, the model is able to

resolve one-to-many relationships (“kids” to “boy” and “girl”, 6.8d).

Attention can fail, for example when the two sentences and their words are
entirely unrelated (6.8f). In such cases, the model seems to back off to attending over
function words, and the sentence pair representation is likely dominated by the last

output vector (h) instead of the attention-weighted representation (see Eq. 6.31).

6.5 Related Work

The methods in this chapter were published in Rocktédschel et al. [2016] and since
then many new models have been proposed. They can be roughly classified into sen-
tence encoding models which extend the independent encoding LSTM by Bowman
et al. [2015] (Section 6.1.2), and models that are related to the conditional encoding
architecture presented in Section 6.2.1. Results for these follow-up works are col-
lected in a leaderboard at http://nlp.stanford.edu/projects/snli/.
The current best result’ is held by a bidirectional LSTM with matching and aggrega-
tion layers introduced by Wang et al. [2017]. It achieves a test accuracy of 88.8%
and outperforms the best independent encoding model by 4.2 percentage points. In
fact, most independent encoding models [e.g. Vendrov et al., 2016, Mou et al., 2016,
Bowman et al., 2016, Munkhdalai and Yu, 2016a] do not reach the performance of
our conditional model with word-by-word attention. Exceptions are the recently
introduced two-stage bidirectional LSTM model by Liu et al. [2016] and the Neural
Semantic Encoder by Munkhdalai and Yu [2016b].

6.5.1 Bidirectional Conditional Encoding

As the models presented in this chapter make little assumptions about the input data,
they can be applied in other domains too. Augenstein et al. [2016] introduced a
conditional encoding model for determining the stance of a tweet (e.g. “A foetus

has rights too!”) with respect to a target (e.g. “Legalization of Abortion”). They

SChecked last on 26th of April, 2017.
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further extended the conditional encoding model with bidirectional LSTMs [Graves
and Schmidhuber, 2005], thus replacing Eqgs. 6.21 to 6.23 with

H? s = ran ( fEST™. xP ?0) (6.32)
ut RNN( fRST™ X7 hﬁ) 6.33)
" RNN( I%TM X7 5 0) (6.34)
n” RNN( ST P hE) (6.35)

— tanh (Whl + Wh?) (6.36)

<_
where 3 and ﬁ denotes the forward, and P and ﬁ the reversed sequence, W, W S
R¥** are trainable projection matrices, and ?0 and ?0 are the trainable forward and
reverse start state, respectively. This architecture is illustrated in Fig. 6.9. It achieved

the second best result on the SemEval 2016 Task 6 Twitter Stance Detection corpus
[Mohammad et al., 2016].

6.5.2 Generating Entailing Sentences

Instead of predicting the logical relationship between sentences, Kolesnyk et al.
[2016] used entailment pairs of the SNLI corpus to learn to generate an entailed
sentence given a premise. Their model is an encoder-decoder with attention, as used
in neural machine translation [Bahdanau et al., 2014]. On a manually annotated test
corpus of 100 generated sentences, their model generated correct entailed sentences
in 82% of the cases. By recursively applying this encoder-decoder to the produced
outputs, their model is able to generate natural language inference chains such as “A
wedding party looks happy on the picture = A bride and groom smiles = Couple

smiling = Some people smiling.”

6.6 Summary

In this chapter, we demonstrated that LSTMs that read pairs of sequences to produce
a final representation from which a simple classifier predicts entailment, outperform
an LSTM baseline encoding the two sequences independently, as well as a classifier
with hand-engineered features. Besides contributing this conditional model for
RTE, our main contribution is to extend this model with attention over the premise
which provides further improvements to the predictive abilities of the system. In
a qualitative analysis, we showed that a word-by-word attention model is able to

compare word and phrase pairs for deciding the logical relationship sentences. With



112 Chapter 6. Recognizing Textual Entailment with Recurrent Neural Networks

an accuracy of 84.5%, it held the state-of-the-art on a large RTE corpus at the time

of publication.
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Legalization of Abortion

foetus has rights too !

Target Tweet

Figure 6.9: Bidirectional encoding of a tweet conditioned on bidirectional encoding of a
target ([s3” si7]). The stance is predicted using the last forward and reversed
output representations ([hg” hj]).



Chapter 7

Conclusions

7.1 Summary of Contributions

In this thesis, we have presented various combinations of representation learning
models with logic.

First, we proposed a way to calculate the gradient of propositional logic rules
with respect to parameters of a neural link prediction model (Chapter 3). By stochasti-
cally grounding first-order logic rules, we were able to use these rules as regularizers
in a matrix factorization neural link prediction model for automated Knowledge
Base (KB) completion. This allowed us to embed background knowledge in form of
logical rules in the vector space of predicate and entity pair representations. Using
this method, we were able to train relation extractors for predicates with provided
rules but little or no known training facts.

In Chapter 4, we identified various shortcomings of stochastic grounding and
proposed a model in which implication rules are only used to regularize predicate
representations. This has the two advantages that the method becomes independent
of the size of the domain of entity pairs, and that we can guarantee that the provided
rules will hold for any test entity pair. By restricting the entity pair embedding
space to be non-negative, we were able to impose implications as a partial order
on the predicate representation space similar to Order Embeddings [Vendrov et al.,
2016]. We showed empirically that by restricting the entity pair embedding space,
the model generalizes better to predicting facts in the test set, which we attribute to a
regularization effect. Furthermore, we showed that incorporating implication rules
with this method scales well with the number of rules.

After investigating two ways of regularizing symbol representations based on
rules, in Chapter 5 we proposed a differentiable prover that performs KB inference
with symbol representations in a more explicit way. To this end, we used Prolog’s

backward chaining algorithm as a recipe for recursively constructing neural networks



116 Chapter 7. Conclusions

that can be used to prove facts in a KB. Specifically, we proposed a differentiable
unification operation between symbol representations. The constructed neural net-
work allows us to compute the gradient of a proof success with respect to symbol
representations, and thus train symbol representation end-to-end from the proof
outcome. Furthermore, given templates for unknown rules of predefined structure,
we can induce first-order logic rules using gradient descent. We proposed three
optimizations for this model: (i) we implemented unification of multiple symbol
representations as batch-operation which allows us to make use of modern Graphics
Processing Units (GPUs) for efficient proving, (ii) we proposed an approximation of
the gradient by only following /K max proofs, and (iii) we used neural link prediction
models as regularizers for the prover to learn better symbol representations more
quickly. On three out of four benchmark knowledge bases, our method outperforms
ComplEX, a state-of-the-art neural link prediction model, while at the same time
inducing interpretable rules.

Lastly, we developed neural models for Recognizing Textual Entailment (RTE),
i.e., for determining the logical relationship between two natural language sentences
(Chapter 6). We used one long short-term memory (LSTM) to encode the first
sentence, and then conditioned on that representation encoded the second sentence
using a second LSTM for deciding the label of the sentence pair. Furthermore, we
extended this model with a neural word-by-word attention mechanism that enables
more fine-grained comparison of word and phrase pairs. On a large RTE corpus,
these models outperform a classifier with hand-engineered features and a strong
LSTM baseline. In addition, we qualitatively analyzed the attention the model
pays to words in the first sentence, and we were able to confirm the presence of

fine-grained reasoning patterns.

7.2 Limitations and Future Work

The integration of neural representations with symbolic logic and reasoning remains
an exciting and open research area, and we except to see much more systems
improving representation learning models by taking inspiration from formal logic in
the future. While we demonstrated the benefit of regularizing symbol representations
by logical rules for automated KB completion, we were only able to do this efficiently
for simple implication rules. For future work, it would be interesting to use more
general first-order logic rules as regularizers on predicate representations in a lifted
way, for instance, by a more informed grounding of first-order rules. However,
it is likely that the approach of regularizing predicate representations using rules

has theoretical limitations that need to be investigated further. Thus, we believe
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an interesting alternative direction is synthesizing symbolic reasoning and neural
representations in more explicit ways.

The end-to-end differentiable Neural Theorem Prover (NTP) introduced in
this thesis is only a first proposal towards a tight integration of symbolic reason-
ing systems with trainable rules and symbol representations. The major obstacle
that we encountered has to do with the computational complexity of making the
proof success differentiable so that we can calculate the gradient with respect to
symbol representations. While it is possible to approximate the gradient by only
maintaining the K max proofs for a given a query, at some point a unification of a
query with all facts in a KB is necessary. As real-world KBs can contain millions of
facts, this grounding becomes impossible to do efficiently without applying further
heuristics even when using modern GPUs. A possible future direction could be
the use of hierarchical attention [Andrychowicz et al., 2016], or recent methods
for reinforcement learning such as Monte Carlo tree search [Coulom, 2006, Kocsis
and Szepesvari, 2006] as used, for instance, for learning to play Go [Silver et al.,
2016] or chemical synthesis planning [Segler et al., 2017]. Specifically, the idea
would be to train a model that learns to select promising rules instead of trying all
rules for proving a goal. Orthogonal to that, more flexible individual components
of end-to-end differentiable provers are conceivable. For instance, unification, rule
selection, and rule application could be modeled as parameterized functions, and
thus could be used to learn a more optimal behavior from data in a KB than the
behavior that we specified by closely following the backward chaining algorithm.
Furthermore, while the NTP is constructed from Prolog’s backward chaining, we
currently only support Datalog logic programs, i.e., function-free first-order logic.
An open question is how we can enable support for function terms in end-to-end
differentiable provers.

Another open research direction is the extension of automated provers to handle
natural language sentences, questions, and perform multi-hop reasoning with natural
language sentences. A starting point could be the combination of models that we
proposed for determining the logical relationship between two natural language
sentences, and the differentiable prover. As the end-to-end differentiable prover
introduced in this thesis can be used to calculate the gradient of proof success
with respect to symbol representations, these symbol representations can itself be
composed by an RNN encoder that is trained jointly with the prover. The vision
is a prover that directly operates on natural language statements and explanations,
avoiding the need for semantic parsing [Zettlemoyer and Collins, 2005], i.e., parsing

text into logical form. As NTPs decompose inference in a more explicit way, it would
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be worthwhile to investigate whether we can obtain interpretable natural language
proofs. Furthermore, it would be interesting to scale the methods presented here to
larger units of text such as entire documents. Again, this needs model extensions such
as hierarchical attention to ensure computational efficiency. In addition, it would
be worthwhile exploring how other, more structured forms of attention [e.g. Graves
et al., 2014, Sukhbaatar et al., 2015], or other forms of differentiable memory [e.g.
Grefenstette et al., 2015, Joulin and Mikolov, 2015] could help improve performance
of neural networks for RTE and differentiable proving. Lastly, we are interested in
applying NTPs to automated proving of mathematical theorems, either in logical or
natural language form, similar to the recent work by Kaliszyk et al. [2017] and Loos
et al. [2017].



Appendix A

Annotated Rules

Manually filtered rules and their score for experiments in Chapter 3.

0.97 organization/parent/child(X,Y) :—
#2-nn<-unit->prep->of->pobj—-#1(X,Y).

0.97 organization/parent/child(X,Y) -
#2->appos->subsidiary->prep->of->pobi-#1(X,Y).

0.97 organization/parent/child(X,Y) -
#2->rcmod->own->prep->by->pobj-#1(X,Y).

0.97 location/location/containedby(X,Y) -
#2-nn<-city->prep->of->pobi-#1(X,Y).

0.97 organization/parent/child(X,Y) -
#2->appos—>subsidiary->nn-#1(X,Y).

0.97 people/person/nationality(X,Y) —
#2-poss<-minister—->appos—-#1(X,Y).

0.97 organization/parent/child(X,Y) —
#2->appos—>unit->prep->of->pobi-#1(X,Y).

0.96 organization/parent/child(X,Y) -
#2->appos—->division->prep->of->pobi-#1(X,Y).

0.96 business/person/company(X,Y) -
#2-poss<—-executive->appos—-#1(X,Y).

0.96 business/company/founders(X,Y) —
#2->appos—->co-founder—->prep->of->pobj-#1(X,Y).

0.96 book/author/works_written(X,Y) :-
#2-dobj<-review->prep—->by->pobj-#1(X,Y).

0.95 business/company/founders(X,Y) —
#2->appos—>founder—>prep—>of->pobj-#1(X,Y).

0.95 location/location/containedby(X,Y) -
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#2-nn<-town->prep—->of->pobi-#1(X,Y).

0.95 location/neighborhood/neighborhood_of(X,Y) :-
#2-nn<-neighborhood->prep->of->pobj-#1(X,Y).

095 film/film/directed by(X,Y) -
#2->appos—->director->dep-#1(X,Y).

0.95 location/location/containedby(X,Y) -
#2-poss<-region->nn-#1(X,Y).

094 film/film/produced by(X,Y) -
#2->appos->producer—>dep-#1(X,Y).

094 film/film/directed by(X,Y) -
#2-poss<-film->dep-#1(X,Y).

0.94 1ocation/location/containedby(X,Y) -
#2-nsubj<-professor—->prep—->at—->pobj-#1(X,Y).

094 film/film/directed by(X,Y) :—
#2-poss<-movie->dep—-#1(X,Y).

0.93 people/person/nationality(X,Y) -
#2-poss<-leader—->appos—#1(X,Y).

093 film/film/directed by(X,Y) -
#2-nn<-film->dep-#1(X,Y).

093 location/location/containedby(X,Y) -
#2-nn<-suburb->prep->of->pobj-#1(X,Y).

0.93 people/person/parents(X,Y) —
#1->appos->daughter—->prep->of->pobj-#2(X,Y).

0.93 business/person/company(X,Y) -
#2-poss<-chairman—->appos—-#1(X,Y).

0.93 location/location/containedby(X,Y) -
#2-nn<-side->prep->of->pobi-#1(X,Y).

0.93 people/deceased_person/place_of_death(X,Y) -
#l-nsubj<-die->prep->in->pobj-#2(X,Y).

0.93 location/neighborhood/neighborhood of(X,Y) -
#2-poss<-neighborhood->nn-#1(X,Y).

091 location/location/containedby(X,Y) -
#2-nsubj<-professor->appos—-#1(X,Y).

0.91 people/deceased _person/place_of_death(X,Y) -
#1l-nsubj<-die->prep->at->pobj->hospital->prep->in->pobj-#2(X,Y).

0.91 book/author/works_written(X,Y) :-
#1l-poss<-book->dep-#2(X,Y).
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0.90 business/person/company(X,Y) —
#2-nsubj<-name->dobj-#1(X,Y).

0.90 people/person/place_of birth(X,Y) -
#l-nsubjpass<-bear->prep->in->pobj-#2(X,Y).

0.90 people/person/nationality(X,Y) —
#l->appos—->minister->poss—-#2(X,Y).

0.88 location/location/containedby(X,Y) :—
#1->appos->capital->prep—->of->pobj-#2(X,Y).

0.87 location/location/containedby(X,Y) :-
#l-nsubj<-city->prep->in->pobj—-#2(X,Y).






Appendix B

Annotated WordNet Rules

Manually filtered rules derived from WordNet for experiments in Chapter 4.
#l->appos—>organization—->amod-#2(X,Y) :—
#1->appos—>party->amod-#2(X,Y).
#1l-nsubj<-push->dobj-#2(X,Y) -
#1l-nsubj<-press—->dobj-#2(X,Y).
#1->appos—>artist-—>amod-#2(X,)Y) -
#1->appos—>painter->amod-#2(X,Y).
#l->appos—>artist->nn-#2(X,Y) :—
#l->appos—->painter->nn-#2(X,Y).
#l->appos—>writer—->amod-#2(X,Y) -
#1->appos—>journalist->amod-#2(X,Y).
#l->appos->writer—->amod-#2(X.,Y) —
#1->appos—>poet—>amod-#2(X,Y).
#l-poss<-parent->appos—#2(X,Y) -
#1l-poss<—father—->appos—#2(X,Y).
#l->appos—>lawyer—>nn-#2(X,Y) -
#l->appos—>prosecutor->nn—-#2(X,Y).
#1l->appos—>expert-—>nn-#2(X,Y) :—
#l->appos—->specialist->nn-#2(X,Y).
#1l->appos—>newspaper—>amod—-#2(X,Y) -
#1->appos->daily—>amod-#2(X,Y).
#l->appos->leader->nn-#2(X,Y) :—
#1->appos—->boss->nn—-#2(X,Y).
#1->appos->firm->nn-#2(X,Y) :—
#l->appos—>publisher->nn-#2(X,Y).
#l->appos—>journalist->nn-#2(X,Y) :—
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#l->appos—>correspondent->nn—-#2(X,Y).
#1l->appos—>company—->amod—-#2(X,Y) —
#1l->appos—->subsidiary->amod-#2(X,Y).
#1-nsubj<-purchase->dobj-#2(X,Y) -
#1l-nsubj<-buy->dobj-#2(X,Y).
#l->appos->leader->nn-#2(X,Y) -
#1->appos—>chief->nn-#2(X,Y).
#1->appos—->player—->poss—-#2(X,Y) —
#1->appos—>scorer—>poss—#2(X,Y).
#1->appos—->organization->nn-#2(X,Y) :-
#l1->appos->institution->nn-#2(X,Y).
#1l->appos—>center—>amod-#2(X,Y) —
#1l->appos—->capital->amod-#2(X,Y).
#1->appos—>center—->poss—-#2(X,Y) -
#l->appos—>capital->poss—#2(X,Y).
#l->appos—->representative->poss—-#2(X,Y) -
#l->appos—>envoy—->poss—#2(X,Y).
#1->appos—->expert->amod-#2(X,Y) —
#1->appos—->specialist—>amod—-#2(X,Y).
#1->appos—->center->nn-#2(X,Y) :—
#1->appos->capital->nn-#2(X,Y).
#l->appos->writer—>amod-#2(X,Y) -
#1l->appos—->novelist—->amod-#2(X,Y).
#1->appos—>diplomat->amod-#2(X,Y) :—
#l->appos—>ambassador->amod-#2(X,Y).
#1l->appos—>expert—>amod-#2(X,Y) -
#l->appos—>analyst—>amod-#2(X,Y).
#1->appos—->scholar->nn-#2(X,Y) -
#1->appos->historian—->nn—-#2(X,Y).
#1->appos—->maker—>amod-#2(X,Y) -
#1->appos—->producer->amod-#2(X,Y).
#1->appos—>maker—>amod-#2(X,Y) :—
#1l->appos—->manufacturer—>amod-#2(X,Y).
#l->appos->official->amod-#2(X,Y) :—
#l->appos—>diplomat—>amod-#2(X,Y).
#1l->appos—>trainer->poss—-#2(X,Y) -
#1->appos->coach->poss—#2(X,Y).
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#l->appos—->member->amod-#2(X,Y) -
#l->appos—>commissioner—>amod—#2(X,Y).
#l->appos—>institution->nn-#2(X,Y) -
#1->appos—>company->nn-#2(X,Y).
#l->appos—>representative->amod-#2(X,Y) -
#1->appos—->envoy—>amod-#2(X,Y).
#l->appos—->scientist->nn—-#2(X,Y) -
#1->appos—->physicist->nn-#2(X,Y).
#1->appos—>representative->nn-#2(X,Y) :-

#1->appos—>envoy—>nn-#2(X,Y).
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