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Failure of neural tube closure in the early embryo causes neural tube defects including spina bifida. Spina bifida
lesions predominate in the distal spine, particularly after exposure to the anticonvulsant valproic acid (VPA).
How VPA specifically disturbs late stages of neural tube closure is unclear, as neurulation is usually viewed as a
uniform ‘zippering’ process along the spine. We recently identified a novel closure site (“Closure 5”) which
forms at the caudal extremity of themouse posterior neuropore (PNP) when completion of closure is imminent.
Here we investigated whether distal spina bifida in VPA-exposed embryos involves disruption of Closure 5. Ex-
posure of E8.5 mouse embryos to VPA in whole embryo culture had marked embryotoxic effects, whereas
toxic effects were less pronounced in more developmentally advanced (E9) embryos. Only 33% of embryos ex-
posed to VPA from E9 to E10.5 achieved PNP closure (control = 90%). Short-term (8 h) VPA treatment dimin-
ished supra-cellular F-actin cables which normally run along the lateral neural folds, and prevented caudal
PNP narrowing normally characteristic of Closure 5 formation. Laser ablation of Closure 5 caused rapid neuropore
widening. Equivalent ablations of the caudal PNP in VPA treated embryos resulted in significantly less widening,
suggesting VPA prevents formation of Closure 5 as a biomechanically active structure. Thus, VPA exposure pre-
vents morphological and biomechanical conversion of the caudal extreme of the PNP during late spinal closure.
Closure 5 facilitates neural fold apposition when completion of closure is imminent, such that its disruption in
VPA-exposed embryos may lead to distal spina bifida.
© 2017 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
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1. Introduction

Mammalianprimary neurulation is amorphogenetic processwhere-
by the flat neural plate bends to form paired neural folds which become
medially apposed and fuse at the dorsalmidline, forming a closed neural
tube (NT) (Nikolopoulou et al., 2017). Fusion begins at specific initiation
points, and is then propagated through a zippering process whereby
cellular protrusions at the tips of the neural folds reach across the mid-
line to contact the contralateral side (Rolo et al., 2016). Spinal closure
initiates at the hindbrain-cervical boundary (Closure 1) and zippers
bi-directionally: rostrally to form the cephalic NT and caudally to form
the future spine (Nikolopoulou et al., 2017). The open region of spinal
NT, referred to as the posterior neuropore (PNP), transitions from a
“spade-like” structure at mid-spinal stages to an elliptical shape with a
narrowed caudal extreme when completion of closure is imminent
(Galea et al., 2017). This shape change is associated with encircling of
the PNP by a supra-cellular F-actin ring. We identified cellular protru-
sions characteristic of active zippering not only at the main site of
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closure (Rolo et al., 2016) but also at the PNP's caudal canthus in embry-
os at the final stage of PNP closure. This suggested active caudal-to-
rostral as well as rostro-to-caudal closure when spinal neurulation is
completed in the low spine. In support of this finding, laser ablation of
the caudal canthus resulted in rapid lateral recoil (i.e. widening) of the
neural folds (Galea et al., 2017). Hence, a new biomechanically active
closure point arises at the caudal extremity of the late-stage closing spi-
nal neural tube, whichwe have denoted “Closure 5” (Galea et al., 2017).

Although Closure 5 has not yet been directly documented in
humans, its existence has been inferred from the clustering of spina
bifida lesion in the distal lumbo-sacral spine (Van Allen et al., 1993),
at which point zippering has progressed unperturbed along most of
the embryonic axis. Evidence for this includes the distal spina bifida
caused by in utero exposure to the anti-epileptic medication valproic
acid (VPA) (Robert and Guibaud, 1982; Van Allen et al., 1993). In
mice, exposure to VPA during neurulation also impairs NT closure, but
the resulting defects primarily affect the cranial region causing
exencephaly (the developmental forerunner of anencephaly) (Nau,
1985; Nau and Loscher, 1986). These teratogenic effects are distinct
from VPA's anti-epileptic properties as not all of its anti-epileptic me-
tabolites and analogues cause exencephaly when injected into mice
(Nau and Loscher, 1986). Caudal spina bifida similar to that seen in
e under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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humans can be induced in mice by repeated exposure to VPA during
mid to late spinal neurulation (three injections on E9) (Ehlers et al.,
1992). In cultured rodent embryos, exposure to ~1 mM VPA, which is
comparable to concentrations measured in the blood of human pa-
tients (Suzuki et al., 2011; Vasudev et al., 2001), causes cranial and/
or spinal NT defects depending on the treatment regime (Lampen
et al., 1999; Seegmiller et al., 1991). However, embryos from certain
mouse strains have been reported to be more sensitive to the terato-
genic effects of VPA both in vivo (Lundberg et al., 2004) and in culture
(Naruse et al., 1988). Here we set out to identify a VPA treatment re-
gime which disrupts PNP closure in cultured CD1 mouse embryos
and to use this model to determine whether VPA diminishes Closure
5 formation, as a possible explanation for the distal spina bifida in ex-
posed individuals.
2. Materials and methods

2.1. Embryo culture and treatments

VPA was purchased from Sigma (Cat. No. V0033000) and dissolved
with vigorous agitation in neat rat serum. Studies were performed
under project license numbers 70/7469 and P8B3095F0 under the UK
Animals (Scientific Procedures) Act 1986 and the Medical Research
Council's Responsibility in the Use of Animals for Medical Research
(1993). Outbred CD1 mice were bred in-house. Embryo culture was
performed essentially as previously described by our group (Copp
et al., 2000).

For experiments starting at E8.5,miceweremated overnight and the
morning a plug was found was considered E0.5. Pregnant females were
sacrificed in themorning of E8.5 (~8 somites at the start of culture) and
their embryos cultured for 24 h.

For experiments starting at E9, miceweremated during the day, and
noon of the day a plug was found was considered E0. Pregnant females
were sacrificed in themorning of E9 (~15 somites at the start of culture)
and their embryos cultured for 8 h or 24–36 h as indicated.

At the end of culture, embryos were imaged in their yolk sac using a
Leica DFC490 mounted on a Zeiss Stemi SV-11 stereomicroscope, dis-
sected out of their extraembryonic membranes and fixed in 4% PFA.
PNP imageswere then captured using the same setup to analyse PNP di-
mensions and embryo lateral images were captured to measure dorsal
length as a curved line from the otic vesicles to the caudal tip, using
Fiji (Schindelin et al., 2012).
2.2. Wholemount staining and confocal microscopy

Embryo whole-mount staining with Alexa Fluor™-568 conjugated
phalloidin, DAPI and far red CellMask™ was as previously described
(Galea et al., 2017). Images were captured on a Zeiss Examiner
LSM880 confocal using a 20×/NA1.0 Plan Apochromat dipping objec-
tive. Embryos were typically imaged with X/Y pixel sizes of 0.59 μm
and Z-step of 1.0 μm (speed = 8, bidirectional imaging, 1024
× 1024 pixels). Images were processed with Zen2.3 software and
visualised as maximum projections in Fiji.
2.3. Laser ablation

Closure 5 laser ablations were performed as previously described
using a MaiTai laser (SpectraPhysics Mai Tai eHP DeepSee multiphoton
laser, 800 nm wavelength, 100% laser power, 65.94 μs pixel dwell time,
1 iteration). Reflection images of live embryo PNPs were obtained using
a 10×/NA0.5 Plan Apochromat dipping objective (633 nm laser wave-
length). PNPs were imaged before and immediately after ablation, tak-
ing approximately 3 min to capture each Z-stack.
2.4. Statistical analysis

Comparisons between two groups were by Student's unpaired t-test
accounting for homogeneity of variance in Excel or in SPSS (IBM Statis-
tics 22). Comparison of multiple groups was by one-way ANOVA with
post-hoc Bonferroni in SPSS. Linear regression F-test was in OriginPro
2016 (Origin Labs). Multivariate analysis for serial PNP width or change
in width measurements were by linear mixed models in SPSS account-
ing for the fixed effects of treatment and percentage of PNP length in re-
peated measures from each, with a post-hoc Bonferroni. Graphs were
made in OriginPro 2016 (Origin Labs) and are represented as box
plots or as the mean ± SEM when several groups are shown per mea-
surement level. p b 0.05 was considered statistically significant.

3. Results

3.1. Closure 5 forms when completion of PNP closure is imminent

The PNP ofmouse embryos transitions from a “spade-like”morphol-
ogy at mid-spinal levels to an elliptical shape when completion of clo-
sure is imminent and Closure 5 has formed (Fig. 1A). An F-actin cable
is visible running along the neural folds at early stages, and this encircles
the PNP at late somite stages (Fig. 1A) (Galea et al., 2017). Consequently,
at early stages the F-actin cable does not reach the caudal limit of the
PNP, but from the ~21 somite stage the cable forms a purse string-like
structure around the PNP (Fig. 1B,C and data previously reported
(Galea et al., 2017)). The F-actin cable reached the caudal limit of the
PNP in 90% (10/11) of embryos with ≥21 somites, but only 10% (1/14)
of embryos with ≤20 somites analysed in the present study.

3.2. VPA exposure retards embryonic development and disrupts PNP closure

The neuro-teratogenic and embryotoxic effects of VPA vary in differ-
ent mouse strains (Naruse et al., 1988) and gestation ages (Kao et al.,
1981), but culture in ~1 mM VPA has previously been reported to
cause NTDs in cultured embryos (Kao et al., 1981; Naruse et al., 1988;
Seegmiller et al., 1991). In pilot studies, culture of E8.5 CD1 embryos
in 1 mMVPA caused clear evidence of embryo toxicity, namely absence
of active yolk sac circulation in 7/8 embryos comparedwith 1/9 vehicle-
treated embryos (X2: p=0.002). All embryos treated with 0.5 mMVPA
had visible yolk sac circulation at the end of culture, but treatment de-
layed embryo development as evidenced by a smaller somite number
after 24 h of treatment (Fig. 2A,B) and reduced embryo dorsal length
at similar somite stages (Fig. 2C). Despite these clear toxic effects,
0.5 mM VPA did not significantly alter PNP dimensions in embryos
which achieved similar somite stages (Fig. 2D,E). Hence, VPAdiminishes
embryo development during early neurulation, but has no detectable
effects on spinal neural tube closure.

Embryos were next cultured for 24 h from a later gestational age
(E9), andwere found to be less sensitive to the effects of VPA: all embry-
os cultured in 1mMVPA (whichwas toxic for E8.5 embryos) had visible
yolk sac circulation at the end of culture (Fig. 3A). This treatment de-
layed somite number increase (Fig. 3A,B), but did not significantly
change embryo dorsal length relative to somite stage matched control
embryos (Fig. 3C). PNP length and width could not be compared be-
tween groups as most control embryos achieved developmental stages
N25 somites and consequently completed PNP closure. A significantly
smaller proportion of 1mMVPA-treated embryos achieved PNP closure
within the same time frame (Fig. 3D). However, this comparison is con-
founded by treated embryos being less developmentally advanced than
controls.

In order to compare VPA-treated and untreated embryos at similar
developmental stages, cultureswere extended to 36 h such that thema-
jority of embryos in both treatment groups achieved ≥25 somites. Of
these, 90% of control embryos achieved PNP closure whereas only 33%
of 1 mM VPA treated embryos completed PNP closure (Fig. 4A,B).



Fig. 1. Closure 5 formswhen completion of PNP closure is imminent in CD1mouse embryos.
A) Representative dorso-ventral views ofwholemount phalloidin-stained PNPs atmid (top)
and late (bottom) spinal neurulation stages. The white box in the embryo inset image
indicates the location of the PNP. White arrows indicate the F-actin cable along the neural
folds. The magenta arrow indicates the position of Closure 5. PNP length (cyan line) and
F-actin cable linear length (magenta line) were calculated. Scale bar = 100 μm. B) PNP
length decreases with advancing somite stage, with completion of closure occurring ~25
somites in CD1 embryos used in this study. C) The proportion of the PNP not encompassed
by the F-actin cable decreases until the cable encircles the PNP at ~21 somites in CD1
embryos. Vertical blue lines = 21 somites. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Valproic acid exposure in early neurulation diminishes embryo growth.
A) Representative images of CD1 embryos cultured for 24 h from E8.5 to E9.5 in 0 mM
or 0.5 mM VPA (1 mM VPA decreased viability at this early developmental stage). The
outline of the embryos (white dashed lines) and yolk sac vessels (red arrows) are
indicated. Scale bar = 1 mm. B) Somite number was quantified in all cultured embryos
at the end of culture and was significantly diminished by 0.5 mM VPA treatment, n = 8
per group. C–E) Comparing embryos which reached 19–22 somite stage at the end of
culture (n = 5–6), 0.5 mM VPA treatment significantly diminished dorsal length
(C) without altering PNP length (D) or width (E). *p b 0.05, **p b 0.01. (For
interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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Hence, VPA disrupts completion of spinal neural tube closure in cul-
tured mouse embryos.

3.3. VPA treatment prevents caudal PNP narrowing and Closure 5 formation

In order to quantify in greater detail the VPA-associated PNP mor-
phological perturbations, embryos were cultured for 8 h (sufficient
time for 4 additional somites to form (Forsberg et al., 1998)) from E9
in 0 mM, 0.5 mM or 1 mM VPA. VPA dose-dependently increased PNP
width (Fig. 5A), but not length (Fig. 5B), over this time period. We pre-
viously reported that neural fold apposition required for PNP narrowing
involves an F-actin cable that biomechanically couples the zippering
point to the constricting caudo-ventral PNP (Galea et al., 2017). Al-
though present in all embryos, the F-actin cable lengthwas significantly
diminished as a proportion of total PNP length in 1 mM VPA-treated
embryos compared with 0 mM controls (Fig. 5C–E). Encircling of the
PNP by this F-actin cable is associated with the transition from a

Image of Fig. 1
Image of Fig. 2


Fig. 3. Valproic acid exposure frommid-neurulation diminishes embryo development and chronologically delays posterior neuropore closure. A) Representative images of CD1 embryos
cultured for 24 h from E9 to E10 in 0 mM or 1 mMVPA. Embryos are shown in their yolk sacs at the end of culture (highly vascular) and post dissection and fixation. Scale bars= 1 mm.
B) Somite number was quantified in all cultured embryos at the end of culture and was significantly diminished by 1 mM VPA treatment, n = 10 per group. C) Dorsal length of 22–26
somite embryos was not significantly different between 0 mM (n = 5) and 1 mM (n = 8) treated embryos. D) A significantly smaller proportion of embryos treated with 1 mM VPA
achieved PNP closure by the end of culture period than the more developmentally advanced 0 mM-treated embryos, n = 10 per group. ***p b 0.001.
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spade-like to elliptical morphology with narrowing of the caudal PNP.
The width between the neural folds at the caudal margin of the PNP
was significantly greater in 1 mM VPA treated embryos than controls
(Fig. 5D,F).

A wider, more spade-like caudal PNPmorphologywas also visible in
live-imaged embryos following 8 h of treatment with VPA, compared
with somite stage-matched controls (Fig. 6A). As previously reported
in uncultured embryos (Galea et al., 2017), Closure 5 laser ablation re-
sulted in rapid separation of the caudal PNP neural folds in control cul-
tured embryos (Fig. 6B). The equivalent laser ablation of somite stage
matched embryos cultured for 8 h in 1mMVPA resulted in significantly
less neural fold separation (Fig. 6B), demonstrating that VPA is respon-
sible for abolishing the biomechanically active closure point at the cau-
dal extremity of the PNP.

4. Discussion

The finding of mainly distal spina bifida lesions in human patients
exposed to VPA in utero led to the suggestion that a terminal PNP clo-
sure point, Closure 5, forms at late stages of NT closure (Van Allen
et al., 1993). A similar de novo caudal closure initiation point (then
called the ‘fourth fusion’) was described earlier in the mouse embryo
Fig. 4.Valproic acid exposure frommid-neurulation disrupts completion of posterior neuropore
DAPI (blue) stained caudal regions of 27 somite stage embryos cultured for 24–36 h in 0mMor 1
B)Whereas the majority of cultured control (n = 11) embryos at somite stages ≥25 achieved P
≥25 somites achieved PNP closure. ***p b 0.001. (For interpretation of the references to colour
(Sakai, 1989). We recently confirmed in mice that the caudal-most
PNP forms a morphologically distinct closure point that is indicated by
caudal PNP narrowing into an elliptical shape and encircling of the
PNP by an F-actin ring (Galea et al., 2017). Functionally, Closure 5
shows cellular protrusions suggestive of caudal-to-rostral zippering
and biomechanically facilitates neural fold apposition (Galea et al.,
2017; Sakai, 1989). In the present study we identify an experimental
protocol whereby VPA exposure disrupts completion of PNP closure in
cultured CD1 mouse embryos and suppresses morphological and bio-
mechanical features of Closure 5 formation.

The growth retarding effects of VPA are well established, as is its
ability to cause exencephaly in mice despite primarily predisposing to
spina bifida in humans (Kao et al., 1981; Naruse et al., 1988;
Seegmiller et al., 1991). As previously reported (Kao et al., 1981),
mouse embryos at early stages of neurulation were more sensitive to
the toxic effects of 1 mM VPA than more developmentally advanced
embryos. This concentration of VPA is clinically relevant given maxi-
mum plasma concentrations in human patients can exceed 2 mM
(Vasudev et al., 2001), although unlike the human situation cultured
embryos are exposed to the same concentration of VPA throughout
the culture period without peaks and troughs between dosing intervals.
Despite this, VPA exposure at a concentration which effectively
closure. A) Representative images of wholemount phalloidin (green), cell mask (red) and
mMVPA. Arrows indicate the open PNP in the 1mMtreated embryo. Scale bar=100 μm.
NP closure, a significantly smaller proportion of 1 mM VPA treated embryos (n= 9) with
in this figure legend, the reader is referred to the web version of this article.)

Image of Fig. 3
Image of Fig. 4


Fig. 5. Short-term valproic acid exposure prevents PNP narrowing associated with Closure 5 formation. A–C) 8 h culture in 1 mM VPA significantly increased PNP width (A). This was
quantified at every 1% of the PNP's length in a caudal direction from the zippering point at X = 0; red lines indicate significant difference between 1 and 0 mM groups at p b 0.05
following Bonferroni correction. PNP length (B) shows a trend towards reduction in the 1 mM group, although this was not significant. C) The proportion of the PNP not occupied by
the F-actin cable (quantified as in E) was significantly greater in 1 mM than in control 18–20 somite stage embryos. *p b 0.05; 0 mM, n = 6; 0.5 mM, n = 7; 1 mM, n = 8.
D) Representative phalloidin stained whole mount confocal images of embryos treated for 8 h with 0 mM or 1 mM VPA indicating PNP width (red line) and the distance between the
neural folds at the caudal margin of the PNP (red arrows). E) Enlarged views of the top neural fold of each embryo in (D). PNP length (magenta line) and linear F-actin cable length
(green line) are approximately indicated. The cyan arrows indicate the F-actin cable as it runs along the neural folds. Scale bars = 100 um. F) The distance between the neural folds at
the caudal margin of the PNP of 21–24 somite stage embryos cultured for 8 h in 1 mM VPA was significantly greater than those cultured in 0 mM. n = 9 per group, ***p b 0.001. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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diminished development at early to mid-spinal neurulation stages had
minimal effects on PNPdimensions, indicating zippering progressed un-
perturbed from the initiation of culture. Given the spinal level of spina
bifida lesions reflects the embryological level at which zippering halts,
this is consistent with VPA exposure causing distal but not more proxi-
mal spina bifida in humans (Robert and Guibaud, 1982; Van Allen et al.,
1993). Similarly, in mice in vivo, repeated injection of VPA from E9 also
causes distal spina bifida (Ehlers et al., 1992).

The cellular and biomechanical mechanisms required for early/mid
and late spinal neurulation are distinct. For example, fusion of the neural
folds at early neurulation stages involves Cdc42-dependent filopodial-
type zippering protrusions, whereas late stages are typified by broader
Rac-dependent membrane ruffles (Rolo et al., 2016). Neural fold bend-
ing also changes as the ventral median hinge point, which is present at
early and mid-spinal neurulation stages, is absent at late neurulation
stages (Shum and Copp, 1996). Another difference is the biomechanical
function of the caudal-most PNP,which facilitates neural fold apposition
only at late stages when Closure 5 has formed (Galea et al., 2017). Here
we provide three lines of evidence that exposure to 1 mMVPA disrupts
Closure 5 formation: in treated embryos i) the F-actin cablewhich encir-
cles the PNP when Closure 5 has formed is significantly diminished, ii)
the caudal PNP does not narrow to form an elliptical shape to the
same extent as in control embryos, and iii) the caudal PNPminimally in-
fluences neural fold apposition as demonstrated by laser ablation, com-
pared with somite stage-matched controls. These effects, as well as
increased PNP width, are all evident in embryos treated for 8 h.

Numerous mechanisms have been proposed bywhich VPAmay dis-
rupt NT closure. These include epigenetic dysregulation (Tung and
Winn, 2010), inhibition of folate metabolism (Fathe et al., 2014; Roy
et al., 2008; Semmler et al., 2017), suppression of nitric oxide signalling
(Tiboni et al., 2013; Tiboni and Ponzano, 2015) and increased reactive
oxygen species production (Akimova et al., 2017; Tung and Winn,
2011). In addition, VPA's anti-acetylation effects may disrupt post-
translational modifications of other effector proteins including those in-
volved in actin regulation. For example, acetylation of the guanine ex-
changer RhoGDIα diminishes Rho signalling (Kuhlmann et al., 2016)

Image of Fig. 5


Fig. 6. Short-term valproic acid exposure prevents formation of Closure 5 as a biomechanically active structure. A) Representative reflection-mode images of live-imaged 22 somite stage
embryos cultured for 8 h in 0 mM or 1 mM VPA. The borders of the neural folds are outlined by the dashed white lines, indicating a more elliptical caudal PNP morphology in the 0 mM
embryo. Red dashed lines indicate the Closure 5 laser ablation region. B) The change in PNP width (After–Before) due to Closure 5 laser ablation was quantified at each 1% of the PNP's
length as a measure of lateral neural fold recoil. Caudal PNP width increased significantly more in 21–24 somite stage embryos cultured for 8 h in 0 mM (n = 6) than in 1 mM VPA (n
= 7). The green line indicates the region of significant difference, p b 0.05 following Bonferroni post-hoc. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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and myosin heavy chain acetylation increases contractility in cardiac
muscle (Samant et al., 2015). VPA treatment in vivo is associated with
increased neuronal actin phosphorylation (Corena-McLeod et al.,
2013) and in vitro it has been shown to alter actin dynamics leading to
increased spreading of mouse fibroblastic cells (Walmod et al., 1999).
In the present study, VPA diminished the F-actin cable which normally
biomechanically couples the rostral zippering point to the caudal PNP
and, eventually, to Closure 5. A potentialmechanismunderlying this ob-
servation is primary disruption of actin turnover, although actin stain-
ing appeared minimally affected overall and a truncated cable was
visible in VPA-treated embryos. Alternativemechanisms include chang-
es in the function of caudal PNP cells which normally form Closure 5,
and changes in the tissue-level biomechanics of the caudal PNP to
which the F-actin cable is a contributor.

PNP biomechanical differences between control and VPA-treated
embryos are documented here through caudal PNP laser ablation. We
had previously used laser ablation to compare biomechanical contribu-
tions of the caudal-most PNP to neural fold apposition between mid-
spinal neurulation stages, when the PNP is long and Closure 5 has not
formed, versus late neurulation stages, when the PNP is shorter and Clo-
sure 5 has formed (Galea et al., 2017). The laser ablation experiments in
the present studywere performed in PNPs of similar lengthswith versus
withoutmorphology suggestive of Closure 5, showing that the presence
of Closure 5 is required for biomechanical facilitation of neural fold ap-
position. The lack of PNP widening in VPA-treated embryos following
caudal PNP ablation may reflect the absence of medially-apposing
force generation, increased stresseswithin laterally tethering structures
precluding caudal neural fold apposition, and/or changes in thematerial
properties of the tissues.

The finding that disruption of Closure 5 is associated with failure
of PNP closure in this model, together with its formation of zippering
protrusions and biomechanical facilitation of neural fold apposition
(Galea et al., 2017), strongly suggest that the caudal closure initia-
tion site is not a “passive player” in the completion of primary neuru-
lation. This is not to say it is invariably critical for closure. For
example, Closure 2 in the cephalic region is dispensable for cranial
neural fold closure in mice, but its absence greatly increases the
risk of exencephaly (Macdonald et al., 1989). Nonetheless, if Closure
5 failure predisposes to spina bifida in humans, delineating the cellu-
lar and genetic determinants of its formation may lead to novel ap-
proaches to prevent these defects.

Thus, short-term exposure of mouse embryos to VPA from mid-
spinal neurulation diminishes Closure 5 as a morphologically distinct
and biomechanically active structure. This delays or prevents comple-
tion of PNP closure. Identification of the specific mechanisms or devel-
opmental windows during which VPA exposure disrupts completion
of PNP closure may lead to treatment strategies which decrease the
risk of causing spina bifida in human patients.
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