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Abstract—Impedance loading of antennas has been of 

interest for more than half a century due to its ability to 
fundamentally change an antenna’s operating characteristics.  

Variable reactive loading can be employed for configurability 
of the frequency response, polarization and far-field properties 
of an antenna.  Closed-form expressions for the current and 

input impedance of a thin-wire loop antenna with loads in the 
periphery were derived in the RF and optical regimes in 1965 
and 2017, respectively.  Meanwhile, closed-form far-field 

radiation properties of circular loop antennas in the RF and 
optical regimes were derived in 1996 and 2017.  This paper 
extends this theory to provide closed-form analytical 

expressions for the far-field radiation properties of impedance-
loaded loop antennas valid from the RF to the optical regimes.  
The expressions are validated by comparison with commercial 

simulation tools.  In addition, a beam steering example is 
presented as a potential application of the theory. 

Index Terms—antennas, nano-antennas, adaptive and 

reconfigurable antennas, metamaterials. 

I.  INTRODUCTION 

As one of the fundamental and enabling components of 

wireless communications, antennas in the RF and optical 

regimes have a wide variety of applications, including  

biological sensing, solar energy harvesting and radar systems 

[1-2].  By loading an antenna with a resistive or reactive 

load, the fundamental operating characteristics such as the 

frequency response, polarization, radiation patterns and 

scattering properties can be dramatically altered [3].  

Furthermore, tunable reactive loads are one of the most 

popular methods of achieving reconfigurable antennas, 

allowing the antenna to adapt based on system requirements 

or the environment [4].  Closed-form analytical expressions 

for the properties of impedance-loaded antennas enable rapid 

simulation and optimization, along with insight into the 

underlying physics governing the behavior of structures.  In 

particular, loop antennas are one of the most fundamental 

and popular antennas due to their simplicity and wide range 

of practical applications [5]. 

Closed-form expressions for the current and input 

impedance of thin-wire perfectly conducting (PEC) loops 

were derived by Storer [6] and Wu [7].  Iizuka [8] extended 

the theory to include loads around the periphery of the 

antenna.  Exact expressions for the near- and far-fields of 

circular (non-loaded) loops were derived by Werner [9].  The 

analytical theory for the current and input impedance of 

closed and impedance-loaded loops were later extended by 

McKinley et al. [10-11] to the optical regime by including 

the surface impedance effects of imperfect conductors.  

Finally, Lu et al. [12] extended the expressions for the far-

field radiation properties of circular loops to the optical 

regime.  This paper builds on these works by deriving 

closed-form expressions for the far-field radiation properties 

of impedance-loaded loops valid from the RF to optical 

regimes. 

II. THEORETICAL FORMULATION 

Fig. 1 shows the geometry of a circular loop with loop 

radius � and wire radius � which satisfies the thin-wire 

(�� ≪ ��� assumption.  In this paper, the so-called 

“thickness measure” Ω � 2 ln�2��/�� will be used to 

characterize the wire thickness.  Loop antennas with Ω � 10 

satisfy the thin-wire assumption [11], where an infinitesimal 

voltage source with voltage �� is placed at � � 0. 

 
The current can be expressed as a Fourier series [6-7]: 
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where the input admittances for each mode are given by: 
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Fig. 1.  Geometry of the thin-wire circular loop with loop 

radius � and wire radius �. A voltage source with constant 

voltage �� is placed at φ = 0. 



and where η� is the impedance of free space.  The primed 

notation used here is to differentiate these modal 

admittances from those of Storer and Wu.  Expressions for 

the coefficients �� and the surface impedance %& are given 

explicitly in [10].  Following the notation of [11], the 

derivation for impedance-loaded loops starts by placing 

voltage sources �)*��� evenly spaced around the loop 

separated by an angle Δ� � 2�/, where , is the number 

of impedances as shown in Fig. 2. 

 

 
 

The total current is a superposition of the currents due to 

each voltage source: 
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The admittance at a source 4 is given by 
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These equations can concisely be written using matrix 

notation and the Einstein summation rule, where repeated 

indices are summed over.  In addition, a horizontal vector 

will be denoted with an upper index, a vertical vector with a 

lower index and a matrix will contain both indices.  For 

example, the term �5)  is a square , by , matrix of 

admittances as given in (4) and �)  is a vertical vector of 

voltages.   Using this notation, (3) can be expressed as: 

 ���� � �)����) (5) 
 

To include impedances in the analytical theory, series 

impedances are added to the voltage sources: 

 �) → �) 7 %)8�8 (6) 
 

where �8 is the current at �8 and %)8 is a square , by , 

matrix in which the diagonal terms are the impedances and 

the off-diagonal terms are zero.  Defining �58 as the identity 

matrix and 

 958 ≡ �58 $ �5)%)8 (7) 
 

the current at any angle on the loop is given by [11]: 

 ����� � ������� 7 �)���%)8!9�('85�5��� (8) 
 

where the primed notation indicates an impedance-loaded 

loop.  Since this current is periodic (though not necessarily 

symmetric), it can be expressed as a Fourier series similar to 

(1): 
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The current coefficients can be derived explicitly as: 
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Given the coefficients �� in the Fourier expansion, the far-

zone electric field can be expressed in spherical coordinates �>, ?� for the case of a symmetric current where @ �AB sin > as [9]: 
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in which O� is a Bessel function of the first kind and  O��  is 

the derivative w.r.t. to the argument. When the loop is 

loaded with an impedance the current may no longer be 

symmetric and the far-zone fields become: 
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(12) 

 

The radiated power can be derived by integrating the fields 

given in (12).  The simplified expression can be written as: 

 

 

 
Fig. 2.  Geometry of a loop with multiple sources (in this case, , � 6).  Each voltage source �) is placed at � � �) . 
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where \�=�5��a� are the Q-type integrals defined in [13].  The 

radiation intensity at �>, ?� is given in terms of normalized 

far-zone electric fields EF� � M�"A0ME>, E�� � M�"A0ME�, as: 
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where, from (12): 
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The directivity is given by: 
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The loss resistance is expressed as: 
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Substituting (9) into (18) yields: 
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The input radiation resistance is given by:  

 

kIrs,o=� � 2WI��AB�|�o=� |� � 2WI��AB�|%o=� |�
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Substituting (13) into (20) results in: 

 

kIrs,o=� � A�2�G0 t%ug′ t2 YwA�x (21) 

 

Finally, the gain may be obtained from: 
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III. VALIDATION 

In order to validate the derived expressions, the closed-

form solutions of (9)-(22) were implemented in MATLAB 

[14] and compared to the commercial full-wave method of 

moments solver FEKO [15].  The unit-less parameters M, z}, 

and z~ for the resistance, capacitance and inductance will be 

used to describe a general load: 

 

%� ≡ G� [M $ " -ABz~ 7 1ABz}0` (23) 

 

As a validation test case, a resistive �M � 4�, inductive �z� � 0.5�  and capacitive load �zS � 0.5� will be placed at � � 180 for a PEC loop with Ω � 12 at AB � 1.06 and the 

results from the analytical theory and FEKO will be 

compared.  Fig. 3 shows a comparison of the real and 

imaginary current versus � for a closed (unloaded) loop and 

a loop with the three different types of  loads.  As can be 

seen, there is excellent agreement in all cases. 

 

 
 

Fig. 4 shows a comparison of the magnitude of the far-

zone electric field for all four cases; again, there is very good 

agreement between the theory and the numerical simulation. 

 

 
Fig. 3.  Comparison between the analytical theory and FEKO 
for the real and imaginary components of the current for the (a) 

unloaded loop and the impedance-loaded loop with (b) M � 4, 

(c) z~ � 0.5 and (d) z} � 0.5. 



 

IV. BEAM STEERING EXAMPLE 

Next, an example application of an impedance-loaded 

PEC loop will be discussed.  At the first high-Q resonance AB � 0.3437 a capacitive load with z} � 1 can be placed 

around the periphery of the loop to steer the beam in the 

plane of the loop.  Fig. 5 shows the directivity in dB when �) is varied from 0 to � with increments of �/6.  Fig. 6 

shows the 3D radiation patterns, where the beam steering 

effect can clearly be seen. 

 

 

V. CONCLUSION 

This paper presented closed-form analytical expressions 

for the far-field radiation properties of impedance-loaded 

loops valid from the RF to optical regimes.  The analytical 

theory was validated by comparison with the commercial 

full-wave method of moments solver FEKO.  A potential 

application of the theory was presented through an example 

in which the far-field beam could be steered in the plane of 

the loop through the strategic placement of a capacitive load 

on the periphery of the loop.  Further work includes 

validation of the proposed theory for a gold nanoloop, along 

with more examples demonstrating potential applications of 

the theoretical analysis. 
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