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I, Jure Sokolić, confirm that the work presented in this thesis is my own. Where

information has been derived from other sources, I confirm that this has been indicated

in the work.





Abstract

In recent years Deep Neural Networks (DNNs) have achieved state-of-the-art results

in many fields such as speech recognition, computer vision and others. Despite their

success in practice, many theoretical fundamentals of DNNs are still not clear. One of

them is the generalization error of DNNs, which is the topic of this thesis.

The thesis first reviews the theory and practice of DNNs focusing specifically on

theoretical results that provide generalization error bounds. We argue that the current

state-of-the-art theoretical results, which rely on the width and depth of deep neural

networks, do not apply in many practical scenarios where the networks are very wide

or very deep.

A novel approach to the theoretical analysis of the generalization error of DNNs is

proposed next. The proposed approach relies on the classification margin of the DNN

and on the complexity of the data. As this result does not rely on the width or the

depth of the network it provides a rationale behind the practical success of learning

with very wide and deep neural networks. These results are then extended to learning

problems where symmetries are present in the data. The analysis shows that if a DNN

is invariant to such symmetries its generalization error may be much smaller than the

generalization error of a non-invariant DNN.

Finally, two novel regularization methods for DNNs motivated by the theoretical

analysis are presented and their performance is evaluated on various datasets such as

MNIST, CIFAR-10, ImageNet and LaRED. The thesis is concluded by a summary of

contributions and discussion of possible extensions of the current work.





Impact

This thesis studies the fundamentals of learning with deep neural networks. It proposes

to view deep neural networks as large margin classifiers and explains how invariance

of deep neural networks to symmetries in the data leads to a lower generalization error.

The insights from the analysis in this thesis were used to help develop two regulariz-

ers that improve the classification margin and increase the invariance of deep neural

networks.

Our results will have impact on both theory and practice of deep neural networks.

In particular, the theoretical results offer novel insights into success of deep neural

networks and open various promising research directions. For example, our approach

emphasizes the role of data complexity and classification margin, which is different

from many other established approaches in the field of deep neural networks and will

promote discussion and possibly other advances in the field. Moreover, our approach

naturally explains the role of invariance in the generalization of deep neural networks

and the insights which might be used by practitioners to develop better deep neural

network architectures.

On the practical side, our proposed regularizers, which improve performance of

deep neural networks when the training set is small, are important in scenarios when

obtaining large training datasets is impossible or too expensive, as for example in med-

ical imaging. Our proposed techniques will lead to wider adoption of deep neural

networks even in such cases.
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Chapter 1

Introduction

We live in the age of data. For example, smart-phones are very powerful data collection

devices with various sensors such as camera, GPS and acceleration sensor. The data

is also collected on the internet, where online companies keep records of users’ trans-

actions and behaviour. In medicine, electronic healthcare records are being used as a

standardized tool for collection and storage of patient data. Factories use various sen-

sors to monitor their manifacturing equipment, and autonomous vehicles collect data

about their surroundings with multiple cameras and LIDAR sensors [1].

However, the data is not exciting because of the data itself, but rather because we

may leverage it to obtain novel scientific discoveries, or introduce novel products or

services. For example, online shops use recommendation engines that leverage users’

shopping history to offer product recommendations to new users. Online advertising

is also using users’ data to serve them more relevant advertisements. Electronic health

records might be used in large scale medical studies or they can be used to build data-

powered tools that help doctors to better diagnose their patients. The manufacturing

equipment data can be used to offer predictive maintenance – a service where the issues

with the equipment are identified before they actually occur. Finally, autonomous cars,

which require full understanding of their environment, leverage data to build better

models of the environment [1].

One of the dominant disciplines dealing with the design of algorithms that leverage

data is machine learning, which also intersects with statistics, learning theory, informa-

tion theory, signal processing and computer science [2]. The goal of machine learning

is to build computational models that leverage data to learn and make predictions. This

goal is broad and includes everything from unsupervised learning, where one usually
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looks for a simpler representation of the original data, to supervised learning, where

the goal is to learn predictive models that, given as input a set of features, can reliably

predict the quantity of interest.

The conventional approach to machine learning usually includes the so-called fea-

ture extraction [3]. For example, raw data, such as text, speech audio or an image, is

not fed directly to a machine learning model, but features extracted from this data are.

The goal of feature extraction is to reduce the dimensions of the data while preserving

the information content. These features are usually hand designed and leverage domain

expertise.

However, in the recent years, a paradigm shift has occurred in the community

with a great success of Deep Learning (DL) and Deep Neural Networks (DNNs) [3].

In contrast to conventional methods, in DL feature extraction is replaced by a DNN

module, which can be interpreted as a hierarchical feature extractor and it is trained

simultaneously with a classifier or a regressor at the output of the network. This ap-

proach has delivered significant gains in performance of speech recognition systems,

it offers state-of-the-art performance on many computer vision tasks and has also been

successfully applied in computational chemistry, physics and many other fields [3].

A DNN is a machine learning model inspired by the neurons in the human brain

[2]. A single layer of a DNN computes features of the input via a non-linear transforma-

tions. A neural networks is deep when several such layers are stacked one after another.

The rationale here is that features computed at higher layers give a more abstract de-

scription of the underlying signal [4]. The parameters of each layer are estimated from

the training data. For example, in case of image classification, training of a DNN works

as follows: images are passed through a network and a prediction is produced at the

network output. Then the error between the predicted and the correct labels is com-

puted. The training algorithm adopts the parameters of all the layers in such a way that

the average error of all the examples in the training set is minimized [5].

The DL approach is very successful in practice, but at the same time also chal-

lenges our current understanding of machine learning fundamentals. DNNs usually

have a very large number of parameters and their objective function is non-convex

[3, 6]. There are many unanswered questions, for example:

• Why can DNNs be trained successfully in practice given that their optimization
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is a non-convex problem?

• Why do DNNs not over-fit when in practice the number of training samples is

often smaller than the number of network parameters?

• Can we train DNNs with very small training sets?

This thesis aims to provide some answers to these questions.

1.1 Aim and Motivation
Our motivation to study DNNs comes from their great success in practice and from

many open questions about their fundamentals [3, 6]. We are now going discuss the

motivations and aims for this thesis more specifically.

One of the most important properties of a learning algorithm is its ability to gen-

eralize to new data. In particular, models are usually trained by minimization of the

average error on the training set. However, what we really want is to have a small error

(on average) on all the samples that we will see in the future. The difference between

the two is called the Generalization Error (GE). The GE is large when the trained model

relies too much on features of the data specific to particular training examples that are

in fact not relevant for the task that we are trying to solve. We also say that the model

suffers from over-fitting to the training data [7].

Clearly, the success of DNNs in practice indicates that they do generalize well.

However, large training sets are often needed to achieve such good performance. And

in many domains, such as medical research, obtaining large datasets may not be pos-

sible due to various ethical or cost constraints. Therefore, it would be beneficial to

understand the mechanism behind successful generalization of DNNs, and improve

their training methods so that training with smaller training sets will also lead to DNNs

with good generalization.

Moreover, as it will be further discussed in this thesis, DNNs seem to contra-

dict many established theoretical justifications for good generalization of learning al-

gorithms. For example, one may establish a link between the ability of the machine

learning model to fit noise and its generalization properties. In particular, a more con-

strained model that has a lesser ability of fitting noise is more likely to generalize well

[6]. However, DNNs in practice are very powerful and are able to fit noise, yet they also
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generalize well. Therefore, the fundamental question of why DNNs generalize well is

also interesting from theoretical perspective, which we partially address in this thesis.

1.2 Main Contributions
The main contributions of the thesis can be summarized as follows: i) New GE bounds

for DNN classifiers are derived. In contrast to other GE bounds in the literature that

are dominated by either DNN width or depth, the proposed bounds are dominated by

the complexity of the data and hold for DNNs of any size or depth; ii) A novel frame-

work for bounding the GE of DNNs is presented that allows to quantify how the data

symmetries and invariance of DNNs to such symmetries in the data may reduce the

GE; iii) The theoretical insights are extended to practice by introducing novel network

regularization methods for DNNs that lead to a better GE.

A detailed list of contributions is provided below.

• We propose novel GE bounds for DNN classifiers that are based on their clas-

sification margin, i.e. the distance between the training sample and a non-linear

decision boundary induced by a DNN classifier in the sample space, and on the

complexity of the data, which is measured via the covering number.

• The network’s Jacobian Matrix (JM) is used to bound the classification margin.

The consequence of this is that the derived bounds apply to any DNN for which

a JM is defined. Informally, the method applies to all DNNs that can be trained

by a gradient descent optimization method (as their gradients, and consequently

the JM, is defined).

• In contrast to other works on the GE of DNNs, our analysis shows that the GE

of a DNN can be bounded independently of its depth or width provided that the

spectral norm of the JM in the neighbourhood of the training samples is bounded.

We argue that this result gives a justification for a low GE of very deep or wide

DNNs in practice. Moreover, recently proposed DNN re-parametrization tech-

niques such as weight normalization and batch normalization that are used in the

state-of-the-art DNNs may be analysed within our framework.

• The analysis also leads to a novel Jacobian regularizer. We provide a series of
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experiments on the MNIST, CIFAR-10, LaRED and ImageNet datasets that val-

idate our analysis and demonstrate the effectiveness of the Jacobian regularizer.

• We extend the GE bounds framework to include the notion of data symmetries

and DNN invariance. In particular, we show that if data has certain symmetries,

then a DNN classifier that is invariant to these symmetries has a much smaller

GE than its non-invariant counterpart. The theoretical results are supported by

experiments on the MNIST dataset.

• Based on the developed theory we also propose the invariance regularizer that

enforces invariance of a DNN and consequently leads to a lower GE. The effec-

tiveness of the invariance regularizer is demonstrated on the CIFAR-10 datasets.

1.3 Publications and Talks
The work presented in this thesis has been published in a journal and in various confer-

ences proceedings. It has also been presented at various conferences, as listed below.

We also include a list of other publications produced during the PhD program.

1.3.1 Publications and Talks Related to this Thesis

Publications

1. Jure Sokolić, Raja Giryes, Guillermo Sapiro, and Miguel R D Rodrigues. Robust

large margin deep neural networks. IEEE Transactions on Signal Processing,

65(16):4265–4280, 2017.

2. Jure Sokolić, Raja Giryes, Guillermo Sapiro, and Miguel R D Rodrigues. Gener-

alization error of invariant classifiers. Conference on Artificial Intelligence and

Statistics (AISTATS), 1094–1103, 2017.

3. Jure Sokolić, Raja Giryes, Guillermo Sapiro, and Miguel R D Rodrigues. Gen-

eralization error of deep neural networks: Role of classification margin and

data structure. International Conference on Sampling Theory and Applications

(SampTA) (to appear), 2017.
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Talks

• Margin preservation of deep neural networks. Theory of Deep Learning work-

shop, International Conference on Machine Learning (ICML), June 2016, New

York, USA.

• Generalization error of deep neural networks: classification margin and invari-

ance. Deep Neural Networks: Theory and Applications mini-symposia, Applied

Inverse Problems (AIP) conference, May 2017, Hangzhou, China.

1.3.2 Other Publications

4. Jure Sokolić, Majid Zamani, Andreas Demosthenous, and Miguel R D Ro-

drigues. A feature design framework for hardware efficient neural spike sort-
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1.4 Thesis Organization
We now describe the thesis structure.

In Chapter 2 we provide an overview of the statistical learning theory and tech-

niques used to bound the GE, and an overview of DNNs and their properties. A par-

ticular focus of Chapter 2 are the existing GE bounds for DNNs, which do not ap-

ply to modern very deep or wide DNNs. The first contribution that establishes new

GE bounds based on the classification margin of DNNs and the covering number of

the sample space are presented in Chapter 3. The GE bounds presented in Chapter 3

are then extended in Chapter 4 to a scenario where data possesses certain symmetries

and a DNN is invariant to these symmetries. Chapter 5 presents two regularizers: the

Jacobian regularizer and the invariance regularizer, that are motivated by the theory

developed in Chapters 3 and 4. The two regularizers are evaluated on various image

classification datasets. Chapter 6 includes summary of the contributions, conclusions

and discussion of possible future work. Proofs related to Chapter 3 are provided in

Appendix A and proofs related to Chapter 4 are provided in Appendix B.





Chapter 2

Statistical Learning and Deep Neural

Networks

In this chapter we first formally define the Generalization Error (GE) in the framework

of statistical learning and also review various tools for bounding the GE of machine

learning algorithms. We then present the Deep Neural Network (DNN) model used

in this thesis and review the relevant literature. We conclude the chapter by a careful

examination of the literature that studies the GE in the context of DNNs and expose

some open problems.

2.1 Statistical Learning and Generalization Error
Consider a classification problem where we want to learn a classifier that will associate

a signal, e.g., an image of a digit, with a label, e.g., the value of the digit in the image.

The classifier is trained on a training set that consists of signal and label pairs. Note

that the statistical learning theory considers a much wider set of problems, including

problems and unsupervised or semi-supervised learning [2, 15]. However, since we fo-

cus on DNNs applied to classification problems, we will only discuss the classification

problem in detail.

Formally, we observe a vector x ∈ X ⊆ RN that has a corresponding class label

y ∈ Y. The set X is called the input space and it is a subset of RN . The set Y =

{1;2; : : : ;NY} is called the label space and NY denotes the number of classes. For

example, x may represent an image and y may represent the label of the object in

the image that we want to recognize. The product of the input space and the label

space is called the sample space and it is denoted by S = X ×Y. An element of S
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is denoted by s = (x; y). We assume that samples from S are drawn according to a

probability distribution P , which is defined on S. A training set of m samples, which

are Independent and Identically Distributed (IID) and drawn from P , is denoted by

Sm = {si}mi=1 = {(xi ; yi )}mi=1 : (2.1)

The goal of learning is to leverage the training set Sm to find a classifier g(x) that

provides a label estimate ŷ given the input x:

ŷ = g(x) : (2.2)

The success of the classifier is measured by a loss function

‘(g(x); y) ∈ R ; (2.3)

which measures the discrepancy between the true label y and the estimated label ŷ =

g(x) provided by the classifier. In general, the larger the loss ‘(g(x); y), the larger the

discrepancy between the classifier output and the true label. The most appropriate loss

for classification problems is the 0-1 loss:

‘0-1(g(x); y) = 1(g(x) 6= y) ; (2.4)

where 1 is the indicator function, i.e., 1(g(x) 6= y) outputs 1 if the prediction is correct,

and 0 if the prediction is incorrect. We also assume that in this case the output of the

classifier is a discrete label in Y, i.e., g(x) ∈ {1;2; : : : ;NY}. In practice, we may use

losses that are differentiable and are more suitable for optimization via gradient descent

algorithms, such as the hinge loss, which in the case of a binary classification problem

is defined as

‘H(g(x); y) = max(0;1− yg(x)) ; (2.5)

where y ∈ {−1;1} and g(x) ∈ R, or the Categorical Cross Entropy (CCE) loss, which
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in the case of binary classification problem is defined as

‘CCE(g(x); y) = y log(g(x)) + (1− y) log(1−g(x)) ; (2.6)

where g(x) ∈ [0;1] denotes the probability of y = 1 and y ∈ {0;1}.

The empirical loss of the classifier g associated with the training set Sm is defined

as

‘emp(g) = 1=m
X

si=(xi ;yi )∈Sm
‘(g(xi ); yi ) : (2.7)

We will use the empirical loss to train the classifier. However, we are actually interested

in the expected loss of the classifier g , which is defined as

‘exp(g) = Es=(x;y)∼P [‘(g(x); y)] ; (2.8)

where Es=(x;y)∼P denotes expected value with respect to the samples s = (x; y) drawn

from the distribution P . Note that the distribution P is not known and we only access

the training set Sm sampled from P . By the Empirical Risk Minimizer (ERM) principle

[16] we use a classifier ĝ that minimizes the empirical loss:

ĝ = arg min
g

‘emp(g) : (2.9)

Since we can not estimate the expected loss directly, we may only hope that the empir-

ical loss provides a good estimate for the expected loss. The measure that determines

the discrepancy between the empirical loss and the expected loss of a classifier g is

called the GE:

GE(g) = |‘exp(g)− ‘emp(g)| : (2.10)

In general, there are no guarantees that the GE will be small. If there are no restrictions

on the class of functions that represent our classifier we may find a classifier that fits

the training set perfectly – the empirical loss is small, but at the same time does not

perform well on the new data – the expected loss is large. This phenomena is also
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called over-fitting to training data [7]. Since the GE decreases with the size of the

training set, we may also pose the problem in terms of sample complexity. Specifically,

the sample complexity corresponds to the size of a training set for which the GE is

smaller than a given threshold. Therefore, the notion of GE is analogue to the notion

of sample complexity. We review various tools used to bound the GE next.

2.1.1 Generalization Error Bounds

There are two main approaches to bounding the GE: (i) approaches based on a con-

strained function class of classifiers; and (ii) approaches based on the properties of a

learning algorithm:

(i) We may limit the set of possible classifiers to a set G. We can think of G as

a collection of all possible classifiers that we consider when solving the ERM

problem in (2.9). To be more precise, we pose the optimization problem as

ĝ = arg min
g∈G

‘emp(g) ; (2.11)

where compared to (2.9) we have added a constrain g ∈ G. The GE bounds

are then established by measuring the complexity of the hypothesis class G,

which may be achieved using the Vapnik-Cervonenkis (VC)-dimension or the

Rademacher Complexity (RC). Both the VC-dimension and the RC will be de-

fined and further discussed in Sections 2.1.1.1 and 2.1.1.2.

(ii) On the other hand, approaches based on algorithmic stability or algorithmic ro-

bustness do not necessarily measure the complexity of the hypothesis class G,

but rather bound the GE based on the behaviour of the learning algorithm. In

particular, we can view a learned classifier ĝ as an output of a learning algorithm

A(Sm), which is a function of the training set Sm:

ĝ = A(Sm) : (2.12)

We will briefly review the notions of the VC-dimension, RC, algorithmic stabil-

ity and algorithmic robustness next. We will then see in Section 2.2.3 how different

approaches to bounding the GE lead to different conclusions about the sample com-
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plexity of DNNs and we will also discuss how well the theoretical results are aligned

with practice.

2.1.1.1 Rademacher Complexity

We start by the definition of the RC [17].

Definition 2.1 (Rademacher Complexity). Let F be a class of functions f :X →R that

map from the space X to real numbers, suppose PX is a probability distribution on X

and x1; : : : ;xm are IID samples drawn from PX . The empirical RC of the class F is

RCm(F ;x1;x2; : : : ;xm) = E

24sup
f ∈F

mX
i=1

ffi f (xi )

35 ; (2.13)

where ffi , i = 1; : : : ;m, are IID and drawn from the uniform distribution over {−1;1},

supf ∈F denotes the supremum over functions f ∈ F , and the expectation E is taken

over the random variables ffi , i = 1; : : : ;m. The RC is then defined as

RCm(F) = E
h
RCm(F ;x1;x2; : : : ;xm)

i
; (2.14)

where the expectation is taken over samples x1; : : : ;xm.

Intuitively, if a function f represents a binary classifier for inputs xi , i = 1; : : : ;m

and ffi , i = 1; : : : ;m, represent random labels, the RC measures how well the best func-

tion in F can fit these random labels. Clearly, as the labels ffi , i = 1; : : : ;m are random,

we can also interpret this as an ability of the function class F to fit noise. The following

theorem that bounds the GE based on the RC was proposed in [17]:

Theorem 2.1. Consider a loss function ‘, such that ‘(g(x); y) ∈ [0;1] and a loss class

L= {(x; y) 7→ ‘(g(x); y) : g ∈ G}, which is a composition of the loss function with the

classifiers in G. Then for every g ∈ G with probability at least 1− ‹

‘exp(g)− ‘emp(g)≤ RCm(L) +

s
8 log(2=‹)

m
: (2.15)

Clearly, as we increase the number of training samples m, the GE will approach

zero if the RC approaches zero. Therefore, if we interpret the RC of a function class

as the ability of the functions in this class to fit noise, we require that as the number
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of training samples grows the ability to fit random labels vanishes. A related quan-

tity where the variables ffi , i = 1; : : : ;m, have a Gaussian distribution rather than a

Rademacher distribution is called Gaussian complexity and has very similar properties

to the RC [17].

2.1.1.2 Vapnik-Cervonenkis Dimension

The VC-dimension [16, 18, 19] measures the capacity of a class of functions in a similar

way to the RC. Historically, the VC-dimension was used to estabish a principled theory

of generalization for Support Vector Machine (SVM) classifiers [20, 21].

The VC-dimension is defined as follows.

Definition 2.2 (VC-dimension). Take a class of functions F and assume f ∈F : RN 7→

{0;1}. Take m points x1; : : : ;xm, where xi ∈ RN , i = 1; : : : ;m, take [f (x1); : : : ; f (xm)]

to be a vector in {0;1}m, and take |{[f (x1); : : : ; f (xm)] : f ∈ F}| to be the cardinality

of the set of vectors [f (x1); : : : ; f (xm)] induced by the class F . Then the shattering

coefficient of the class F is defined as

sh(F ;m) = max
xi∈RN ;i=1:::;m

|{[f (x1); : : : ; f (xm)] : f ∈ F}| : (2.16)

The VC-dimension of the class F is then defined as

VC(F) = sup{m : sh(F ;m) = 2m} : (2.17)

Intuitively, the VC-dimension of a function class G is the maximum number of

samples for which some g ∈ G can perfectly memorize the labels. We can see that

intuition behind the VC-dimension is similar to the intuition behind the RC.

The GE bounds of the following format can be obtained via the VC-dimension [19]:

Theorem 2.2. Take a binary classification problem, take G to be a class of binary

classifiers and consider ‘ to be the 0-1 loss. Then, there is an absolute constant C

such that for any integer m, where m corresponds to the size of the training set, with

probability at least 1− ‹, for every g ∈ G:

‘exp(g)− ‘emp(g)≤ C
s
V C(G)

m
: (2.18)
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Clearly, the VC-dimension of G has to be bounded in order for the classifier in G to

have GE guarantees. In particular, as the number of training samples m grows, at some

point the classifiers in G must not be able to memorize all 2m possible combinations of

binary labels associated with the training samples.

2.1.1.3 Algorithmic Stability

The approaches based on the RC complexity or the VC-dimension bound the GE by

constraining the hypothesis class. They do not take into account the role of a particular

learning algorithm that is used to obtain a classifier g . The notion of algorithmic sta-

bility, proposed by the authors in [22], relates the algorithm A, which is used to obtain

the classifier g as in (2.12), to the GE of a classifier g obtained by this algorithm. It is

defined as follows.

Definition 2.3 (Algorithmic stability). Take a training set Sm = {s1; : : : ; sm} and a

modified training set

Sim = {s1; : : : ; si−1; s ′i ; si+1; : : : ; sm} ; (2.19)

where s ′i is drawn from P and is independent of Sm. An algorithm A has uniformly

stability ˛ with respect to the loss function ‘ if for any training set Sm drawn IID from

P and for any index i ∈ {1;2; : : : ;m}

‖‘(gA(Sm)(x); y)− ‘(gA(Sim)(x); y)‖∞ ≤ ˛ ∀s = (x; y) ∈ S = X ×Y ; (2.20)

where

gA(Sm) = A(Sm) and gA(Sim) = A(Sim) : (2.21)

The GE bounds of the following form can be established for stable learning

algorithms [22]:
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Theorem 2.3. Let A be a learning algorithm with uniform stability ˛ with respect to a

loss function ‘, which is bounded as 0 ≤ ‘(g(x); y) ≤M. Then for any m, where m is

the size of the training set, with probability at least 1− ‹

‘exp(g)− ‘emp(g)≤ ˛+ (˛m+M)

s
2 log(1=‹)

m
; (2.22)

where g = A(Sm).

Intuitively, the uniform stability requires that a learning algorithm A behaves sim-

ilarly for training sets that only differ in a single training example. In other words, the

learning algorithm should not rely too much on a particular training example. More-

over, the term ˛m in (2.22) implies that stability ˛ should scale as 1=m. Therefore,

as the training set grows, the dependence of the learning algorithm A on a particular

training example should diminish.

2.1.1.4 Algorithmic Robustness

Similar to the algorithmic stability framework, the algorithmic robustness framework

[23] bounds the GE based on the properties of the algorithm A that is used to obtain

the classifier as in (2.12). In contrast to the algorithmic stability, where the algorithm

output must be similar for similar training sets, the algorithm is robust if the classifier

that it outputs has a similar performance for a testing sample and a training sample that

are “close”.

First, we provide a definition of a robust learning algorithm [23].

Definition 2.4 (Algorithmic robustness). Let Sm = {si}mi=1 = {(xi ; yi )}mi=1 be a training

set and S =X ×Y the sample space with samples s = (x; y)∈ S. A learning algorithm

A is (K;›(Sm))-robust, where K ∈N, ›(Sm) ∈R and ›(Sm)> 0, if the sample space S

can be partitioned into K disjoint sets denoted by Kk , k = 1; : : : ;K,

Kk ⊆ S; k = 1; : : : ;K; (2.23)

S = ∪Kk=1Kk ; (2.24)

Kk ∩Kk ′ = ∅; ∀k 6= k ′; (2.25)

such that for all si ∈ Sm and all s ∈ S
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si = (xi ; yi ) ∈ Kk and s = (x; y) ∈ Kk =⇒

|‘(g(xi ); yi )− ‘(g(x); y)| ≤ ›(Sm) ; (2.26)

where g = A(Sm).

Note that si is an element of the training set Sm and s is an arbitrary element of

the sample space S. Therefore, a robust learning algorithm chooses a classifier g for

which the losses of any s and si in the same partition Kk are close. The main theorem

that establishes a relationship between the robustness and the GE is provided next [23].

Theorem 2.4. If a learning algorithm A is (K;›(Sm))-robust and ‘(g(x); y) ≤M for

all s = (x; y) ∈ S, then for any ‹ > 0, with probability at least 1− ‹,

GE(g)≤ ›(Sm) +M

s
2K log(2) + 2log(1=‹)

m
; (2.27)

where g = A(Sm).

The first term in the GE bound in (2.27) depends on the training set Sm but does

not decrease with the number of training samples m, in general. The second term

approaches zero as the number of training samples m grows when other quantities are

fixed. M = 1 in the case of 0-1 loss, and K corresponds to the number of partitions of

the samples space S.

There are several relevant extension of Theorem 2.4 in [23]. In particular, the

notion of pseudo-robustness is defined, which requires (2.26) to hold only for a subset

of training samples, with the GE bounds based on it. Moreover, the authors show that

pseudo-robustness of a learning algorithm is necessary for the resulting classifiers to

generalize.

Covering Number

The bounds based on the algorithmic robustness rely on partitioning of the sample

space S into K disjoint partitions. This partitioning can be constructed by covering the

samples space by (pseudo-)metric balls of certain radius. The smallest number of balls

needed to cover the space is called the covering number [24]:
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Definition 2.5 (Covering Number). TakeM to be a metric space with metric d and let

S ⊂M. S′ ⊂M is an -cover of S, if ∀s ∈ S;∃s ′ ∈ S ′ such that d(s; s ′) ≤ . The

-covering number of S is

N (S;d;) = min{|S′| : S ′ is an -cover of S} ; (2.28)

where |S ′| is the cardinality of S′.

We will leverage the notion of covering number throughout this thesis.

2.2 Deep Neural Networks
The term neural network is inspired by the early approaches to mathematical modelling

of the information processing in the brain [2, 25, 26]. It encompasses a wide range of

mathematical models which are applied in various applications of machine learning

and information processing such as speech recognition, computer vision and others.

The term deep neural network denotes neural network architectures that have

many layers and are, therefore, deep. Specifically, a single layer of a neural network is

a relatively simple module that computes a non-linear input-output mapping. By stack-

ing multiple such layers we obtain a deep neural network, which leads to a much more

powerful model [3, 4, 5].

DNNs are usually trained using the gradient descent optimization and the gradi-

ents are computed efficiently by the backpropagation algorithm [3, 25]. For example,

given a training objective, the gradient of the objective with respect to the parameters of

a particular layer are computed. The parameters are then iteratively updated by taking

steps in the negative direction of the gradient. As the network is deep, the computa-

tion of the gradient of the objective with respect to the parameters of a particular layer

corresponds to “backpropagation” of the objective from the top of the network to the

appropriate layer. This general approach of using a DNN and the backpropagation al-

gorithm for training has lead to the state-of-the-art results in image recognition, speech

recognition and many other applications [3, 27, 28, 29].

Next, we will review various DNN architectures, with an emphasis on the feed-

forward DNNs. We will also review various theoretical works related to DNNs. We

will not cover the topics related to the GE of DNNs as this is the topic of Section 2.2.3.
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A general overview of DNNs is provided in [30].

2.2.1 Architectures and Learning

We now define the feed-forward DNN, the Convolutional Neural Network (CNN) and

review various related architectures. We also discuss training and regularization of

DNNs.

2.2.1.1 Feed-Forward Deep Neural Network

In this work we consider a feed-forward DNN architecture, where a DNN, which is

denoted by f , maps from an input space X to a feature space Z:

f : X →Z : (2.29)

We will assume that the input space is a subset of the real N dimensional space RN :

X ⊆ RN . In the case of a classification problem with NY classes we will assume that

the feature space is the real NY dimensional space: Z = RNY . In particular, a L layer

DNN is obtained as

f (x) = ffiL(ffiL−1(· · ·ffi1(x; „1); · · ·„L−1); „L) ; (2.30)

where ffil(·; „l) represents the output of the l-th layer of a DNN with parameters „l :

zl = ffil(z
l−1; „l) ; (2.31)

and zl ∈ RMl is the output of the l-th layer and zl−1 ∈ RMl−1 is the input of the l-th

layer, l = 1; : : : ;L. The input of the first layer is denoted by z0 and corresponds to x, i.e.,

z0 = x. The output of the last layer is denoted by z = f (x). Such a DNN is visualized

in Figure 2.1.

A typical network layer is a combination of an affine transformation and an

element-wise non-linearity:

zl = [ẑl ]ff = [Wlz
l−1 +bl ]ff ; (2.32)

where [ẑl ]ff represents the element-wise non-linearity ff applied to each element of ẑl ∈
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RMl , and ẑl represents the affine transformation of the input zl−1: ẑl = Wlz
l−1 +bl .

The layer parameters „l = {Wl ;bl} are the weight matrix Wl ∈RMl×Ml−1 and the bias

vector bl ∈ RMl . Ml corresponds to the number of rows of Wl and is often called the

layer width. The typical non-linearities ff are:

• the ReLU [31]: ReLU(x) = max(x;0),

• the sigmoid: sigm(x) = 1
1+e−x , and

• the hyperbolic tangent: tanh(x) = ex−e−x
ex+e−x .

x ffi1(x; „1) ffi2(z1; „2) ffiL(zL−1; „L) z
z1

Figure 2.1: DNN transforms the input vector x to the feature vector z by a series of (non-linear)
transforms.

We may obtain a DNN classifier from a DNN as

g(x) = arg max
i

(f (x))i ; (2.33)

where (f (x))i corresponds to the i-th entry of the vector f (x). Note that a loss function

‘ is often applied to the DNN output, i.e. ‘(f (x); y). This is due to the fact that the DNN

classifier in (2.33) may not be optimized effectively by a gradient descent algorithm due

to the arg max.

We will denote byW the set of all weight matrices of a DNN f :

W = {W1;W2; : : : ;WL} : (2.34)

This set will be relevant for the study of various DNN properties.

2.2.1.2 Convolutional Neural Network

A specialized version of a feed-forward DNN is the CNN, which is particularly impor-

tant in practical applications, especially in computer vision. A CNN uses convolutional

layers and pooling layers, which we describe next.
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Convolutional Layer

Convolutional layer has the form of a typical DNN layer in (2.32) where that the weight

matrices are block cyclic. In addition, each layer zl of a CNN contains many channels

or feature maps, i.e.,

zl = [zl1;z
l
2; : : : ;z

l
Cl

]T ; (2.35)

where zlc ∈ RFl , c = 1; : : : ;Cl are the feature maps of dimension Fl , Cl is the number

of feature maps and Ml = Cl ×Fl is the dimension of the layer. Note that zl is obtained

by applying an element-wise non-linearity to a vector of feature maps

ẑl = [ẑl1; ẑ
l
2; : : : ; ẑ

l
Cl

]T (2.36)

as in (2.32).

Take
“
ẑlc ′
”
i

to be the i-th element of the feature map ẑlc ′ , take (zl−1c )i :i+kl to be the

sub-vector of the feature map zl−1c between the indices i and i+kl , and take klc ′c ∈Rkl

to be a filter at layer l , where c ′ = 1; : : : ;Cl , c = 1; : : : ;Cl−1 and i = 1; : : : ;Fl−1− kl .

Then the affine transformation ẑl =Wlz
l−1+bl in (2.32) can be represented as follows:

“
ẑlc ′
”
i

=
Cl−1X
c=1

(klc ′c)T (zl−1c )i :i+kl ; i = 1; : : : ;Fl −kl ; c ′ = 1; : : : ;Cl : (2.37)

Note that filters kl are applied locally and convolutionaly, i.e., if index i is interpreted

as a time index then (2.37) represents a linear combination of convolutions between

filters kcc ′ and feature maps zl−1c , c = 1; : : : ;Cl−1.

Pooling Layer

Pooling layers act as (non-linear) down-sampling operators and may also provide in-

variance to various input transformations such as translation [32, 33]. In particular, a

pooling layer reduces the dimension of a feature map as

zlc = Pl(zl−1c )zl−1c ; c = 1; : : : ;Cl−1; (2.38)

where Pl(zl−1c ) ∈RFl×Fl−1 is the pooling matrix. Note that the pooling layer preserves

the number of channels, i.e., Cl = Cl−1.
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The usual choices of pooling are down-sampling, max-pooling and average pool-

ing. We denote by pli (z
l−1
c ) the i-th row of Pl(zl−1c ) and assume that there are Fl

pooling regions Pi , i = 1; : : : ;Fl , where each pooling region Pi is a subset of indices

1;2; : : : ;Fl−1. Various pooling operators can be represented as follows:

• Down-sampling: pli (z
l−1
c ) = ePi (1), i = 1; : : : ;Fl , where Pi (1) is the first ele-

ment of the pooling region Pi ;

• Max-pooling: pli (z
l−1) = eTj? , i = 1; : : : ;Fl , where j? = arg maxj ′∈Pi |(z

l−1)j ′|,

and ei is the i-th basis vector of the standard basis in RFl−1;

• Average pooling: pli (z
l−1) = 1

|Pi |
P
j∈Pi e

T
j , i = 1; : : : ;Fl , where ei is the i-th

basis vector of the standard basis in RFl−1 .

Note that Fl is usually much smaller than Fl−1. We will say that pooling regions are

non-overlapping if Pi ∩Pj = ∅ ∀i 6= j ∈ {1; : : : ;Fl}.

The CNN structure is motivated by the research on cat’s visual cortex [34], where

the notion of local receptive fields was introduced. The local receptive field of a filter

means that the filter is applied locally as in (2.37). The modern CNN architecture was

proposed in [35]. Other authors have also proposed related architectures, such as the

Neocognitron [36] and HMAX [37].

2.2.1.3 Other Deep Neural Network Architectures

In addition to feed-forward DNNs and CNNs there exist many other network architec-

tures. As there are many variations of DNN architectures we are only going discuss the

ones most relevant to this thesis.

Residual Network

In a Residual network [29, 38] the output of the l-th layer is a sum of a non-linear

transformation applied to the output of the l − 1-th layer and the output of the l − 1-th

layer:

zl = ffil(z
l−1; „l) +zl−1 ; (2.39)

where ffil(zl−1; „l) may be a series of typical DNN layer (2.32). It has been shown

in [29, 38] that the Residual networks with convolutional layers achieve better perfor-

mance than standard CNNs on various computer vision tasks.
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Extensions of CNN

Inspired by the translation invariance of CNNs, various extensions to CNN architec-

tures have been proposed. For example, the authors in [39] view the convolutional layer

of a conventional CNN as a specific case of convolution over a translation group. They

show that the convolutional layer can be extended to implement a convolution over an

arbitrary discrete group such as rotations and reflections. By employing an appropriate

form of pooling one can then achieve invariance to corresponding group transforma-

tions. Similar ideas applied to rotation invariance have been explored in [40, 41].

Various authors have also explored layers that allow invariance to affine transfor-

mations [42, 43, 44]. For example, an affine transformation layer at a CNN input is

introduced in [42, 43]. Such a layer allows a CNN to be invariant to affine transforma-

tions of the image plane.

Scattering Transform

The Scattering transform is a CNN like transform, which is based on the wavelet trans-

form and and does not involve learning. Although the Scattering transform does not

involve learning of the filters, it gives important theoretical and practical insights. For

example, the authors in [45, 46] have shown that the Scattering transform achieves

translation invariance and stability to deformations. These insights can be used to bet-

ter understand properties of CNNs. The Scattering transform may also be extended to

more general shift-invariant frames [47] and specialized to the discrete domain [48]. A

rotationaly invariant scatering transform has also been proposed in [49].

Recurrent Neural Network and Long-Short Term Memory Network

Many problems in machine learning also involve time domain or sequential data. In

such cases an architecture such as Recurrent Neural Network (RNN) [50] or Long-

Short Term Memory (LSTM) network [51] might be used. In particular, layers are

now indexed by a time index i , i = 1; : : : ; imax. A non-linear layer of a RNN has the

following form:

zli =
h
Wl [z

l−1
i ;zl−1i−1]T +bl

i
ff
; (2.40)

where zl−1i ∈RMl−1 , zli ∈RMl , t = 1; : : : ; imax and Wl ∈RMl×2·Ml−1 , bl ∈RMl . There-

fore, output of the l-th layer is a function of the output of the l −1-th layer at the time
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step i and the output of the l −1-th layer at the time step i −1. Note that due to recur-

rence in (2.40) the output of a RNN at time i is a function of all input vectors up to time

i : x1; : : : ;xi .

2.2.1.4 Learning and Optimization of Deep Neural Networks

A DNN is trained by minimizing the objective function L(Θ;Sm) with respect to the

DNN’s parameters Θ = {„1; „2; : : : ; „L}, where „l represents the parameters of layer l ,

l = 1; : : : ;L, and evaluated on the training set Sm. The objective L(Θ;Sm) function is

usually obtained as a sum of the empirical loss ‘emp(Θ;Sm) and a regularizier function,

which is denoted by R(Θ;Sm):

L(Θ;Sm) = ‘emp(Θ;Sm) +–R(Θ;Sm) : (2.41)

In general both, the empirical loss ‘emp(Θ;Sm) and the regularizer R(Θ;Sm) are func-

tions of the DNN’s parameters Θ and the training set Sm. – balances the contributions

of the loss and the regularizer in the objective function. We cover regularizers in more

detail in the next section.

As mentioned at the beginning of this section, DNNs are usually trained by a

gradient descent algorithm or its stochastic version. In particular, the gradient of the

objective functionL(Θ;Sm) with respect to the parameters „l in the l-th layer is denoted

by

∇„lL(Θ;Sm) : (2.42)

The learning problem is then solved by applying a gradient descent step for imax itera-

tions:

„
(i)
l = „

(i−1)
l − ‹∇„lL(Θ;Sm) ; i = 1; : : : ; imax ; (2.43)

where ‹ is the learning rate and the superscript (i) denotes the gradient descent iteration.

In practice, especially when the number of training samples is large, we often use

the Stochastic Gradient Descent (SGD) where at each step the objective is evaluated on

a small sample from the training set [5]. In particular, take S̄m′ to be a subset of the
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training set Sm with m′ samples, which are picked at random from Sm. S̄m′ is called a

batch, m′ is called the batch size and m′�m, usually. The objective function at each

optimization step i is then a function of the batch S̄m′:

L′(Θ; S̄m′) = ‘emp(Θ; S̄m′) +–R(Θ; S̄m′) : (2.44)

Iterating the SGD step approximately m=m′ times, so that the batches cover the entire

training set, is usually referred to as running one epoch of training. The number of

iterations used to train a DNN is then expressed in the number of epochs.

Momentum, Adagrad and Adam

There exist many improvements to the vanilla gradient descent or SGD that are used

in practice. For example, gradient descent with momentum employs an exponentially

decaying average of previous gradient steps to compute an update step in order to pre-

vent oscillation of the parameters during optimization [52]. Other methods may also

adopt the learning rate ‹. Adagrad method adapts the learning step for every parameter

by dividing it by the norm of the gradient [53]. Similarly to momentum and Adagrad

method, Adam uses exponentially decaying average of previous gradients to compute

an update step and also normalizes the learning rate of each parameter by an exponen-

tially decaying variance of its gradients [54].

Global and Local Optima

Optimization of DNNs is a non-convex problem and the rationale behind the consistent

success in optimization of these networks is still unclear. The authors in [55] model the

objective function used to train DNNs with a spin-glass model and show that for large

DNNs the local optima of the objective function are close to the global optima. This

leads to an explanation that even local optima achieve sufficiently good performance

in practice. A different line of work [56] leverages tensor factorization framework to

study the optimization of DNNs and it shows that if the DNNs width is large enough

it is possible to find the global minima from any initialization with a local descent

algorithm.

Convergence Speed and Re-parametrization Methods

Another aspect of DNN optimization is its convergence speed. Optimization dynamics

of a deep linear network are studied in [57], where it is shown that the learning speed
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of deep networks may be independent of their depth if the weight matrices are roughly

orthonormal. Orthonormal weight matrices ensure that gradients do not vanish as it

might happen if the weight matrices have singular values close to 0.

A very successful approach for improving convergence speed of DNN optimiza-

tion is re-parametrization of DNNs. Compared to the gradient step in (2.43), a re-

parametrized gradient step is of the form

„
(i)
l = „

(i−1)
l − ‹A(i−1)

l ∇„lL(Θ;Sm) ; (2.45)

where A
(i−1)
l is a re-parametrization matrix associated with the parameters „l of the

l-th layer and evaluated at iteration index i −1. In particular, the idea is to pick an A
(i)
l

that is better adopted to the geometry of the optimization landscape and which will lead

to a faster convergence [58]. Due to a high dimensionality of the parameter space, Al is

often constrained to be a diagonal matrix. For example, the authors in [59] propose to

set A(i)
l to the diagonal of the inverse of the Fisher Information matrix. Other methods,

such as in Path-SGD [60] or weight normalization [61], set the diagonal elements of

A
(i)
l to the inverse of the norms of the corresponding weight matrix rows. In particular,

weight normalization leads to weight matrices with normalized rows, i.e.,

Wl = diag(ŴT
l Ŵl)

−1Ŵl ; (2.46)

where diag(·) denotes the diagonal part of the matrix and Ŵl ∈ RMl×Ml−1 .

The widely adopted batch normalization, where the output of each layer is nor-

malized by the standard deviation of its outputs and centered to have a zero mean, may

also be interpreted as a re-parametrization technique [62]. A batch normalized version

of a non-linear layer zl+1 = [Wlz
l +bl ]ff in (2.32), where Wl is the weight matrix of

the l-th layer and bl is the bias vector of the l-th layer, has the following form:

zl+1 =
h
N
“
{zli}mi=1;Wl ;bl

”
Wlz

l +bl +n
“
{zli}mi=1;Wl ;bl

”i
ff
; (2.47)
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where

N({zi}mi=1;Wl ;bl) = diag

0@ mX
i=1

(Wlzi +bl)(bTl +zTi W
T
l )

1A−
1
2

(2.48)

is the normalization matrix and

n
“
{zli}mi=1;Wl ;bl

”
=−1=m

mX
i=1

(Wlzi +bl) (2.49)

is the mean vector. A wide range of general re-parameterication methods is also studied

in depth in [58].

2.2.1.5 Regularization of Deep Neural Networks

The role of the regularizer R(Θ;Sm) in (2.41) is to constrain the parameter space of

a DNN with the aim of finding a solution that has a smaller GE than the solution of

a non-regularized problem. There are many different approaches to regularization of

DNNs. In some cases regularization is not achieved explicitly by a regularizer as in

(2.41), but it is implicitly incorporated in the structure of the DNN or in the training

procedure. We review various regularization methods next.

Weight Decay

A very well known method for DNN regularization includes weight decay [63], which

penalizes the norm of the weight matrices. For example, ‘2-norm weight decay has the

form

R(Θ;Sm) = R(Θ) =
X

W∈W
‖W‖2F ; (2.50)

where ‖ · ‖F is the Frobenius norm andW is the set of all weight matrices of a DNN.

The weight decay has been studied extensively from theoretical perspective and will be

further discussed in Section 2.2.3.1.

Dropout and Effects of Re-parametrization

Another very popular regularization method is dropout [64]. The dropout method ran-

domly sets some of the weight matrix rows to zero during training. This can be in-

terpreted as randomly sampling smaller DNNs from a given larger DNN, and leads to

a regularization effect. Although proposed as a heuristic, there are works that inter-
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pret dropout as an approximation to Bayesian inference of a deep Gaussian process

[65]. Note that dropout was critical for the state-of-the-art image classification results

in 2012 [27]; however, the Residual networks, which achieve state-of-the-art results in

2017, do not use dropout [29] since it is not as effective when novel re-parametrization

methods such as batch normalization are used [62]. Moreover, the effects of DNN re-

normalization leading to a smaller GE has been observed in the case of path-SGD [60],

weight normalization [61] and batch normalization [62].

Large Classification Margin

Various works attempt to promote a large classification margin in order to reduce the

GE. The authors in [66, 67] focus on increasing the classification margin at the DNN

output by leveraging the hinge loss. For example, the authors in [67] use the following

regularization function:

R(Θ;Sm) =
mX
i=1

 
1− ((f (xi ))yi −max

k 6=yi
(f (xi ))k)

!2

; (2.51)

to promote a larger classification margin at the network output. Theoretical analysis of

this approach is provided in [67] and will be further discussed in Section 2.2.3.1.

The authors in [68] constrain the spectral norms of the weight matrices to promote

a large classification margin at the DNN input and evaluate the method on various

datasets. In particular, they train DNNs with the following constraints on the weight

matrices Wl , l = 1; : : : ;L:

(2.52)

WlW
T
l ≤ I ; l = 1; : : : ;L ; (2.53)

which ensures that all singular values of Wl are upper bounded by 1. Their results

are limited to DNNs with ReLU non-linearities, do not apply to CNNs. Moreover, the

authors do not provide any theoretical analysis of the GE.

Stability and Robustness

Many works regularize DNNs by trying to improve their stability or robustness. For ex-

ample, the authors in [69] regularize auto-encoders by constraining the Frobenius norm

of the encoder’s Jacobian matrix to improve the robustness of the obtained features. A
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regularization method that enforces a DNN map to be a local isometry has been pro-

posed in [70] and it has been shown that such a DNN is robust and generalizes better. In

particular, they first construct a nearest neighbour graph of the training samples, which

connects training samples with the same labels and an Euclidean distance smaller than

¸ > 0:

NB¸ = {(i ; j) : yi = yj ;‖xi −xj‖2 ≤ ¸;si = (xi ; yi ); sj = (xj ; yj) ∈ Sm} : (2.54)

Then, the regularizer is defined as

R(Θ;Sm) =
X

(i ;j)∈NB¸
|‖f (xi )− f (xj)‖2−‖xi −xj‖2| : (2.55)

The stability training proposed in [71] aims at reducing the sensitivity of DNNs

to various image distortion and artefacts, which appear as a consequence of image

compression, cropping or rescaling. The stability regularization penalizes the ‘2-norm

of the difference of a DNN outputs for the same image with different crops, scales or

compression methods. The authors show empirically that such training improves the

generalization of DNNs to such artefacts.

Data Augmentation

DNNs are very often trained with augmented training data, where in additional

to the original training samples, the training set also contains transformed training

samples [84]. For example, in image recognition training images are usually augmented

by their translated, scaled and flipped versions. These transformations do not change

the semantic meaning of the image, i.e., its class label. Data augmentation is used in

all state-of-the-art DNNs [27, 29, 38, 110].

In addition, state-of-the-art results are usually reported by averaging DNN’s pre-

dictions over augmented testing samples [27, 29, 38, 110]. In particular, the transfor-

mations used to create the augmented training set are also used to create transformed

versions of each testing sample. For each of the transformed samples the network in-

dependently predicts its class label and the predictions of all the transformed samples

are then averaged. This improves robustness of classification as the averaging reduces

sensitivity of the network to a particular transformation of a testing sample.
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2.2.2 Properties

We now review various properties of DNNs such as their approximation power, invari-

ance and information preservation.

2.2.2.1 Approximation Power of Deep Neural Networks

An important topic in theoretical analysis of DNNs is their approximation power. For

example, the works in [72, 73] showed that neural networks with a single hidden layer

– shallow networks – can approximate any Borel measurable function.

However, many authors argue that although shallow networks may approximate

any function, they are inefficient in doing so [4, 74], i.e., the number of parameters

needed to approximate some functions is prohibitive. The authors in [74] model the

expressive power of DNNs by the number of locally linear regions in the input space

that a particular DNN can realize. They show that a number of input regions where the

behaviour of a DNN is locally linear is of order

(M=N)(L−1)N×MN ; (2.56)

whereM represents the row dimension of the DNN weight matrices, N represents input

dimension and L represents the number of layers. It is clear that the number of these

regions is exponential in the network depth.

The authors in [75, 76] employ tensor factorization methods and conclude that

functions implemented by DNNs are exponentially more expressive than functions im-

plemented by shallow networks, meaning that number of parameters in a shallow net-

work must grows exponentialy with the depth of a DNN in order to approximate the

same class of functions. The work in [77] shows that for a given number of parameters

and a given depth, there always exists a DNN that can be approximated by a shallower

network only if the number of parameters in the shallow network is exponential in the

number of layers of the deep network.

2.2.2.2 Invariance of Deep Neural Networks

Invariance properties of DNNs tell us how sensitive the DNNs are to certain “nui-

sances” present in the data. These “nuisances” are domain and task specific [78, 79].

For example, many image classification tasks are invariant to translation, i.e., object
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has the same label no matter where in the image plane it appears. On the other hand,

object localization, where the goal is to find a location of the object in the image plane,

is not translation invariant.

Take a set of transformations

T = {t0; t1; : : : ; tT−1} ; (2.57)

where T represent the number of transformations and transformation t ∈ T is a map:

t : X →X (2.58)

that acts on x ∈ X as x′ = t(x). We say that a (classification) task is invariant to trans-

formations in T if the target, e.g., class label is the same for all t(x), t ∈ T .1 And we

will say that a DNN is invariant if

f (t(x)) = f (t ′(x)), ∀t ′; t ∈ T : (2.59)

Clearly, this does not hold for a general DNN. Note also that the equality in (2.59) may

be relaxed to an approximate equality and such a DNN is then approximately invariant.

In many theoretical works it is often assumed that the set of transformations T

is a group [79, 80, 81, 82] as this simplifies the analysis. In particular, an invariant

representation of x can be obtained by either averaging over a group [79]:

xinv =
1

T

T−1X
i=0

ti (x) ; (2.60)

or by maximization over a group [79]:

xinv = max
t∈T

t(x) ; (2.61)

where the maximum is applied element-wise. Note that partial invariance is achieved

by averaging or maximization over a subset of T .

These ideas are a basis for translation invariance of CNNs. In particular, the con-

1We consider a discrete set of transformation for simplicity. The ideas also apply to continuous sets.
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volutional layer is covariant with translations [39], where the layer ffi(x; „l) is covariant

with image plane translations, which are denoted by T , when:

ffi(t(x); „l) = t(ffi(x; „l)) ; t ∈ T : (2.62)

The convolutional layer is then followed by a pooling layer that either employs averag-

ing over T or its subset, as in (2.60), or maximization over T or its subset, as in (2.61).

The authors in [39] generalize the convolutional layers to be covariant with arbitrary

discrete groups, which leads to architectures that can be invariant to various other trans-

formations such as rotations and reflections. Similar ideas are applied in [40] to achieve

rotation invariance.

As an alternative to encoding the invariances in the network architecture we can

train a DNN or a CNN to become invariant. This is particularly helpful when we do

not know how to explicitly construct a network with desired invariance properties [83].

Such an “approximate invariance” is achieved by training DNNs with data augmenta-

tion, which involves training the network with the transformed samples of the training

examples [84]. Scattering transform is also translation invariant, and can be extended

to rotation and scaling invariance [45, 46, 47, 48, 85].

2.2.2.3 Information Preservation of Deep Neural Networks

Another relevant question related to DNNs is what information is preserved at each

layer. This question can be studied empirically, where insights are obtained by in-

verting a DNN representation at various DNN layers. For example, in case of CNNs an

approximate inverse network called deconvolutional neural network was constructed by

[86] and it is used to visualize particular layer representataions by re-projecting them

onto the image domain. The authors show that deeper layers are more discriminative

as well as more invariant. The authors in [87] propose to invert a DNN by solving the

following optimization problem:

x′ = arg min
x

‘(ffil(x0);ffil(x)) +–R(x) ; (2.63)

where ffil(·) represents the output of the l-th layer of a DNN and ffil(x0) represents the

output of the l-th layer given a target image x0, which we want to reconstruct, as the
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input. The loss ‘ compares the two representations and is usually set to the squared

Euclidean norm. The term R(x) is a regularizer, such as total variation, that promotes

optimization within the space of natural images, and – determines the trade-off between

the loss function and the regularizer. It is observed in [87] that an image can be almost

perfectly reconstructed from a shallower layers of a DNN and that the deeper layers

preserve more abstract features of the image. Similar ideas are used in [88] to achieve

“style transfer” between two images.

From theoretical perspective, the authors in [89] establish lower Lipschitz bounds

of pooling layers and non-linear layers with ReLU non-linearities, where the Lipschitz

bounds of an operator f (x) are defined as constants A;B ≥ 0 such that

∀x;x′ ; A‖x−x′‖2 ≤ ‖f (x)− f (x′)‖2 ≤ B‖x−x′‖2 ; (2.64)

and A is called the lower Lipschitz bound and B is called the upper Lipschitz bound.

Positive lower Lipschitz bounds of all operators implies that a DNN is invertible. How-

ever, these bounds are hard to estimate in practice and authors rely on empirical exper-

iments to show that in practice DNNs with random or trained weight are invertible. A

related line of work studies DNNs with random weight where it is shown that if weight

matrices are sufficiently large such DNNs perform distance preserving embedding of

low-dimensional data manifolds [90], where the distance preservation is established by

obtaining bounds on the upper and lower Lipschitz bounds A and B, which indicates

that the network representation is invertible.

Information preservation is also studied in the context of the Scattering transform.

For example, the authors in [91] establish energy decay bounds of layers that form

the Scattering transform. In particular, they establish bounds on how many layers are

needed to preserve a particular percentage of the input signal’s energy.

2.2.3 Generalization Error Bounds for Deep Neural Networks

Of particular interest in this thesis are the works that study the GE of DNNs. DNNs

differ from many other established methods such as SVMs because they usually have a

much larger number of parameters, i.e., the number of parameters of DNNs in practice

is often greater than the number of training samples [6]. We will review the existing

work on the GE bounds of DNNs next.
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2.2.3.1 Existing Generalization Error Bounds and Their Limitations

The GE of DNNs has been studied using the VC-dimension [7, 16, 92], the Rademacher

or Gaussian complexities [17] and algorithmic robustness [23]. We review various

approaches and report the GE bounds.

VC-dimension

The VC-dimension of DNNs with hard threshold non-linearities is bounded in the fol-

lowing theorem.

Theorem 2.5 ([7]). TakeF to be a class of DNNs with p parameters and hard threshold

non-linearities: ff(x) = sign(x). The VC-dimension of F is

V C(F) =O(p log(p)) ; (2.65)

whereO denotes asymptotic behaviour in the sense h(x) =O(h′(x)) if limx→∞
h(x)
h′(x) =

c and c > 0.

Theorem 2.2 then predicts that the GE of a DNN f in F is upper bounded by

GE(f )≤O
0@sp log(p)

m

1A : (2.66)

Note that in the case of modern DNNs, where the number of parameters p if often

greater than the number of training samples m [6], such bounds are clearly very loose

and do not give a sufficient explanation for why the DNNs generalize well.

Rademacher Complexity

The GE of a DNN can also be bounded independently of the number of parameters,

provided that the norms of the weight matrices are constrained appropriately. This can

be acheived by the weight decay (2.50). For example, the work [93] studies the GE

of DNNs with ReLU non-linearities and with constraints on the norms of the weight

matrices.

Theorem 2.6. Take a class of feed-forward DNNs F , where f ∈ F has ReLU non-

linearities and L layers. Assume that the weight matrices of f ∈ F satisfy:

LY
i=1

‖Wl‖F ≤W ; (2.67)



2.2. Deep Neural Networks 61

and the bias vectors bl , l = 1; : : : ;L, are set to zero. Then the RC of the class F is upper

bounded by

RCm(F)≤O
 

2LW√
m

!
: (2.68)

The GE of a DNN f in F defined in Theorem 2.6 can be upper bounded by (via

Theorem 2.1)

GE(f )≤O
 

2LW√
m

!
: (2.69)

In the provided bound, the norm constraint on the weight matrices indicates that the

number of parameters is not crucial for successful generalization. However, the bound

also contains the 2L term, which causes the bound to scale exponentially with the net-

work depth. The GE bounds exponential in the number of DNN layers are also obtained

in [67, 94]. Again, in practice DNNs with hundreds or even thousand layers generalize

well [38], and these bounds do not explain their generalization ability.

Algorithmic Robustness

In the case of algorithmic robustness framework the authors in [23] provide the follow-

ing theorem about robustness of DNNs:

Theorem 2.7 ([23]). Take f to be a feed-forward DNN with L layers and ReLU non-

linearities, and take the biases bl , l = 1; : : : ;L, to be zero. Assume that the last layer of

f is one dimensional, i.e., f (x) ∈RN , and take the loss ‘(f (x); y) = |y− f (x)|. Finally,

assume that there exists ¸ such that

max
l ;i

MlX
j=1

|(Wl)i j | ≤ ¸; (2.70)

where Wl is the weight matrix at layer l , l = 1; : : : ;L, and
PMl
j=1 |(Wl)i j | is the ‘1-norm

of the i-th row of the matrix Wl . Then the DNN f is (N (S;‖ · ‖∞;‚=2);¸L‚)-robust

for all ‚ > 0, where N (S;‖ · ‖∞;‚=2) is the ‚=2-covering number of the sample space

S.



62 Chapter 2. Statistical Learning and Deep Neural Networks

Following Theorem 2.4, the GE of such a robust DNN is bounded by

GE(f )≤ ¸L‚+O
0@sN (S;‖ · ‖∞;‚=2)

m

1A : (2.71)

The second term in (2.71) depends only on the covering number N (S;‖ · ‖∞;‚=2) of

the sample space S. However, the first term depends exponentially on the DNN depth

via ¸L. This term vanishes with depth if ¸ < 1 and grows exponentially with depth if

¸ > 1. Note that many successful re-parametrization approaches such as weight nor-

malization [61] and batch normalization [62] lead to ‘2-normalized rows of the weight

matrices. This implies that ¸ ≥ 1 in practice, which is the main disadvantage of this

bound as it indicates that the GE is always greater than zero independently of the num-

ber of samples for any ‚ > 0. Note that a smaller ‚ leads to a smaller first term in

(2.71), however, this also leads to a larger covering number N (S;‖ · ‖∞;‚=2).

Limitations of the VC-dimension and the RC

Other authors have also observed that the existing GE bounds are not aligned well with

practice. In particular, the authors in [6] provide the following result.

Theorem 2.8. There exists a two-layer neural network with ReLU non-linearities and

2m+N parameters that can represent any function on a training set of size m, where N

is the dimension of the network input.

Such a relationship between the number of parameters and the signal dimension is

often observed in practice [6]. The authors have also shown experimentally that DNNs

in practice have ability to fit random labels. As per discussion in Section 2.1.1, the

VC-dimension and the RC are measures of the ability of a function class to fit random

labels. Based on this observations, the authors in [6] conclude that the VC-dimension

and the RC are not appropriate for obtaining meaningful GE bounds for DNNs.

2.2.3.2 Data Symmetries and Generalization Error

As discussed in Section 2.2.2.2, DNNs are often designed to be invariant to certain

symmetries present in the data. There are not many works that provide GE bounds

for such scenarios. The authors in [81] discuss the intuition that DNN invariance re-

duces the sample complexity and the authors in [95] claim that pooling adopted to the



2.3. Summary 63

input signal geometry leads to better generalization, however, they do not offer any

mathematical justification.

The GE of classifiers with invariance properties has been studied via the VC-

dimension in [96], where the invariances are incorporated into the learning problem via

additional constraints on the function class. It is shown that the subset of an hypothesis

class that is invariant to certain transformations is smaller than the general hypothesis

class. Therefore, it has a smaller VC-dimension. Yet, the authors do not provide any

characterization of how much smaller the VC-dimension of an invariant method might

be. This approach also does not take into account the symmetries of the data. Group

symmetry in data was also explored in the problem of covariance estimation, where it

is shown that leveraging group symmetry leads to gains in sample complexity of the

covariance matrix estimation [97, 98].

2.3 Summary
In this chapter we have introduced a classification problem and reviewed various frame-

works that provide GE bounds. We have then presented DNNs and overviewed their

properties. In particular, we have explored existing GE bounds applied to DNNs and

noticed that the existing GE bounds do not apply to modern DNNs that are very deep

or wide, as shown empirically and theoretically in [6].

In the rest of the thesis we will focus on novel GE bounds for DNNs. In Chapter 3

we will leverage the notion of classification margin to show that GE of a DNN does

not scale with its depth or width. In Chapter 4 we extend our proposed GE bounds

to naturally incorporate data symmetries and DNN invariance. We directly relate the

ratio of the GE bounds of an invariant and a non-invariant DNN to the size of the set

of symmetries that a DNN is invariant to. Finally, we propose two regularizers that are

derived directly from the theoretical results: the Jacobian regularizer and the invariance

regularizer, that are presented in Chapter 5.





Chapter 3

Robustness and Generalization of

Deep Neural Networks

In this chapter we present Generalization Error (GE) bounds for Deep Neural Net-

works (DNNs) based on the classification margin and the data covering number. We

start by discussing a general large margin classifier and then show how DNNs can be

understood as large margin classifiers. We verify the theoretical findings by experi-

ments on real data.

3.1 Setup

We are interested in the GE of DNN classifiers. In particular, we will consider a DNN

f that maps an input space X to an output space Z:

f : X →Z ; (3.1)

where the input space is a subset of the real N dimensional space RN : X ⊆RN and the

output space Z is the real NY dimensional space: Z = RNY , where NY represents the

number of classes. A L layer DNN is obtained as

f (x) = ffiL(ffiL−1(· · ·ffi1(x; „1); · · ·„L−1); „L) ; (3.2)

where

zl = ffil(z
l−1; „l) (3.3)
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represents the l-th layer with parameters „l , output zl ∈ RMl and input zl−1 ∈ RMl−1 ,

l = 1; : : : ;L. The input corresponds to z0 = x and the output of the last layer is denoted

by z = f (x). A DNN classifier is defined as

g(x) = arg max
i

(f (x))i ; (3.4)

where (f (x))i corresponds to the i-th entry of the vector f (x).

We will assume that the DNN is trained on a training set

Sm = {si}mi=1 = {(xi ; yi )}mi=1 ; (3.5)

where xi ∈ X , i = 1; : : : ;m, yi ∈ {1;2; : : : ;NY}, i = 1; : : : ;m, and m is the number of

training samples. The GE is defined as

GE(g) = |‘exp(g)− ‘emp(g)| ; (3.6)

where ‘exp(g) is the expected loss defined in (2.8), and ‘emp(g) is the empirical loss

defined in (2.7). The classification performance will be measured by the 0-1 loss:

‘0-1(g(x); y) = 1(g(x) 6= y), where 1(·) is the indicator function.1

3.1.1 Sample Space Covering Number and Data Complexity

Recall Theorem 2.4 that establishes GE bounds for robust learning algorithms. It is

based on the division of the sample space S = X ×Y, which is a product of the input

spaceX and the label spaceY, intoK partitions. A natural way to achieve a partitioning

of the sample space is by covering it with metric balls of certain radius, as discussed in

Section 2.1.1.4.2 The number of partitions K is then equal to the covering number of

the sample space.

In particular, the -covering number of S corresponds to the smallest number of

(pseudo-)metric balls of radius  needed to cover S, and it is denoted by N (S;d;),

where d denotes the (pseudo-)metric (see Definition 2.5). The space S is the Cartesian

product of a continuous input space X and a discrete label space Y, and we can write

1Note that the 0-1 loss is not continuous and it is used only to measure the classification performance,
and not to train DNNs.

2In general, the partitions do not have to be of the same size. However, for the purpose of the analysis
the partitions of the same size are the most convenient.
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[23]

N (S;d;)≤ NY ·N (X ;d;) ; (3.7)

where NY corresponds to the number of classes. The choice of metric d determines

how efficiently one may cover X . A common choice is the Euclidean metric

d(x;x′) = ‖x−x′‖2; ; x;x′ ∈ RN ; (3.8)

which will be the default metric in this chapter.

The covering number of many structured low-dimensional data models can be

bounded in terms of their “intrinsic” properties. For example, assuming that X = RN :

• a Gaussian mixture model with L Gaussians and covariance matrices of rank at

most k leads to a covering number N (X ;d;) = L(1 + 2=)k [99];

• k-sparse signals in a dictionary with L elements have a covering number

N (X ;d;) =
“
L
k

”
(1 + 2=)k [90];

• a CM regular k-dimensional manifold, where CM is a constant that captures its

“intrinsic” properties, has a covering number N (X ;d;) =
“
CM


”k
[100].

Moreover, we will say that the covering number is a measure of the data complexity.

As shown above, the covering number grows with the rank of the covariances matrices

in the case of Gaussian mixture models, or with the signal sparsity in the case of sparse

models, or with the manifold dimension in the case of manifolds. The notion of data

complexity will play an important role in the interpretation of our results.

3.2 Generalization Error Bounds for Large Margin

Classifiers
We now discuss the GE bounds for large margin classifiers. We will leverage the results

in later sections where we will provide the GE bounds for DNN classifiers.

3.2.1 Large Margin Classifier

A particular example of a robust learning algorithm is a large margin classifier. As it

will be shown below, its GE is a function of the sample space covering number and the
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classification margin. Formally, we define the classification margin as follows:

Definition 3.1 (Classification margin). The classification margin of a classifier g(x)

and a training sample si = (xi ; yi ) measured by a metric d is defined as

‚d(si ) = sup{a ∈ R : d(xi ;x)≤ a =⇒ g(x) = yi ∀x} : (3.9)

The classification margin of a training sample si is the radius of the largest metric

ball (induced by d) in X centered at xi that is fully contained in the decision region

associated with class label yi induced by the classifier g(x).3 The robustness of a large

margin classifier g(x) is given by the following Theorem.

Theorem 3.1 (Adapted from Example 9 in [23]). If there exists ‚ such that

‚d(si )> ‚ > 0 ∀si ∈ Sm ; (3.10)

then the classifier g(x) is (NY ·N (X ;d;‚=2);0)-robust.

3.2.2 Generalization Error Bounds

The GE bound for a large margin classifier now follows directly from Theorems 2.4

and 3.1.

Corollary 3.1. Assume that classifier g(x) has a classification margin ‚, i.e.,

‚d(si )> ‚ > 0 ∀si ∈ Sm ; (3.11)

and take ‘(g(xi ); yi ) to be the 0-1 loss. Then for any ‹ > 0, with probability at least

1− ‹,

GE(g)≤
s

2 log(2) ·NY ·N (X ;d;‚=2)

m
+

s
2 log(1=‹)

m
:

(3.12)

Proof: The proof follows directly from Theorems 2.4 and 3.1.

3Note that the metric ball may not have spherical shape. For example, it may have square or elliptical
shape. The shape of the metric ball is determined by the choice of the metric.
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The GE bound in (3.12) approaches zero at the rate
√
m, wherem is the number of

training samples. The GE bound also increases sub-linearly with the number of classes

NY . Finally, the GE bound depends on the complexity of the input space X and the

classification margin ‚ via the covering number N (X ;d;‚=2). Next, we specialize

Corollary 3.1 to the case where X is a CM-regular k-dimensional manifold.

Corollary 3.2. Assume that X is a (subset of) a CM-regular k-dimensional manifold,

where N (X ;d;) ≤
“
CM


”k
. Assume also that a classifier g(x) has a classification

margin ‚, i.e.,

‚d(si )> ‚ > 0 ∀si ∈ Sm ; (3.13)

and take ‘(g(xi ); yi ) to be the 0-1 loss. Then for any ‹ > 0, with probability at least

1− ‹,

GE(g)≤

vuut log(2) ·NY ·2k+1 · (CM)k

‚km
+

s
2 log(1=‹)

m
:

(3.14)

Proof: The proof follows directly from Theorems 2.4 and 3.1.

The GE bound in (3.14) now clearly exposes the role of the classifier, which is

captured via the achieved classification margin ‚, and the role of the data model, which

is captured by the constant CM and the manifold dimension k that act as a proxy to data

complexity. In particular, for a given classification margin ‚, the GE bound increases

with the manifold constant CM and the manifold dimension k . In other words, given

a classification margin ‚, the sample complexity of learning increases with the data

complexity. Similarly, for a given constant CM and the manifold dimension k a larger

classification margin ‚ leads to a smaller GE (bound).

3.3 Generalization Error Bounds for Large Margin

Deep Neural Network Classifiers
We have discussed in Chapter 2 that there is a need for GE bounds for DNNs that do not

depend on the DNN depth or width. In the previous section we have explored the GE of



70 Chapter 3. Robustness and Generalization of Deep Neural Networks

a large margin classifier. In the remainder of this chapter we will focus on showing how

a DNN can be interpreted as a large margin classifier and will also present arguments

that show that its GE does not scale with the network depth or width.

3.3.1 The Geometrical Properties of Deep Neural Networks

Recall, that a DNN f is a map

f : X →Z ; (3.15)

where we will refer to X as the input space and to Z as the output space. The classi-

fication margin introduced in Definition 3.1 is a function of the decision boundary in

the input space. This is visualized in Figure 3.1 (a). However, DNN training aims at

separation of the training samples in the output space (Figure 3.1 (b)), which does not

necessarily imply a large classification margin and, hence, good generalization. In this

section we introduce a general approach that allows us to bound the distance between

two vectors at the network output by the distance between the vectors at the network

input. We then use this results to establish bounds of the classification margin and the

GE bounds that are independent of the network depth or width.

We start by defining the Jacobian Matrix (JM) of the DNN f 4:

J(x) =
df (x)

dx
=

LY
l=0

dffil(z
l−1)

dzl−1
=

LY
l=1

dffil(z
l−1)

dzl−1
· dffi1(x)

dx
; (3.16)

where we recall that z0 = x and corresponds to the DNN input, and J(x) ∈RML×N , Ml

is the dimension of the output space Z and N is the dimension of the input space X .

Note that by the properties of the chain rule, the JM is computed as the product of the

JMs of the individual network layers, evaluated at the appropriate values of the layer

inputs x;z1; : : : ;zL−1. We use the JM to establish a relation between a pair of vectors

in the input space and the output space.

4The df (x)
dx , where f (x) is a vector function and x is a vector, will denote the JM of f (x) throughout

this thesis.
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Figure 3.1: Decision boundaries in the input space and in the output space. Plot (a) shows
samples of class 1 and 2 and the decision regions produced by a two-layer network
projected into the input space. Plot (b) shows the samples transformed by the
network and the corresponding decision boundary at the network output.

Theorem 3.2 (Jacobian property). For any x;x′ ∈ X and a DNN f , we have

f (x′)− f (x) =
Z 1

0
J(x+u(x′−x))du (x′−x) (3.17)

= Jx;x′(x
′−x); (3.18)
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where

Jx;x′ =
Z 1

0
J(x+u(x′−x))du (3.19)

is the average Jacobian on the line segment between x and x′.

Proof: The proof appears in Appendix A.1.

As a direct consequence of Theorem 3.2, we can bound the distance

‖f (x′)− f (x)‖2, where f is the DNN and x;x′ are two input vectors, by the distance

‖x′−x‖2 and the DNN’s JM:

Corollary 3.3 (Distance expansion bound). For any x;x′ ∈ X and a DNN f , we have

‖f (x′)− f (x)‖2 = ‖Jx;x′(x′−x)‖2

≤ sup
x′′∈conv(X )

‖J(x′′)‖2‖x′−x‖2 ; (3.20)

where conv(X ) is the convex hull of X .

Proof: The proof appears in Appendix A.2.

We have established that Jx;x′ is the effective linear operator that relates the dis-

tance between x and x′ to the distance between f (x) and f (x′). This implies that the

maximum distance between any f (x) and f (x′) for any x and x′ is bounded by the

maximum spectral norm of the network’s JM, as suggested by (3.20).

3.3.2 Network Layers and their Jacobian Matrices

Since the JM of f corresponds to the product of JMs of all the layers of f , as shown in

(3.16), we now look into various layers used in modern DNNs and evaluate their JMs.

3.3.2.1 Linear and Softmax Layers

Linear and softmax layers are usually the last layers in a DNN and in case of classifi-

cation have dimension RNY , where NY corresponds to the number of classes.5 A linear

layer has the following form:

z = ẑ; ẑ = WLz
L−1 +bL; (3.21)

5Assuming that there are NY one-vs.-all classifiers.
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where WL ∈RNY×ML−1 is the weight matrix associated with the last layer and b∈RNY

is the bias vector associated with the last layer.

A more common choice for the last layer is the softmax layer:

z = “(ẑ) = e ẑ=
“
1T e ẑ

”
; ẑ = WLz

L−1 +bL ; (3.22)

where “(·) is the softmax function and WL and bL are the same as in (3.21). Note that

the exponential is applied element-wise. The elements of z are in range (0;1) and are

often interpreted as “probabilites” associated with the corresponding class labels.

For the remainder of this work we will take the softmax layer as the last layer of

DNN, but note that all results still apply if the linear layer is used.

Jacobian Matrix

The JM of the linear layer defined in (3.21) is equal to the weight matrix

dz

dzL−1
= WL : (3.23)

Similarly, in the case of softmax layer defined in (3.22) the JM is

dz

dzL−1
=
dz

d ẑ
· d ẑ

dzL−1

=
“
−“(ẑ)“(ẑ)T + diag(“(ẑ)

”
·WL : (3.24)

Note that
“
−“(ẑ)“(ẑ)T + diag(“(ẑ)

”
corresponds to the JM of the softmax function

“(ẑ), due to the fact that

d(“(ẑ))i
d(ẑ)i

=
d

d(ẑ)i

e(ẑ)i“
1T e ẑ

” =
1“

1T e ẑ
”2 “e(ẑ)i “1T e ẑ”− e(ẑ)i e(ẑ)i”

=
e(ẑ)i“
1T e ẑ

”
0@1− e(ẑ)i“

1T e ẑ
”
1A=−(“(ẑ))i (“(ẑ))i + (“(ẑ))i : (3.25)

and

d(“(ẑ))i
d(ẑ)j

=
d

d(ẑ)j

e(ẑ)i“
1T e ẑ

” =
1“

1T e ẑ
”2 “0− e(ẑ)i e(ẑ)i

”

=− e(ẑ)i“
1T e ẑ

” e(ẑ)j“
1T e ẑ

” =−(“(ẑ))i (“(ẑ))j : (3.26)
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Table 3.1: Point-wise non-linearities.

Name Function: ff(x) Derivative: d
dxff(x) Bound: supx

˛̨̨
d
dxff(x)

˛̨̨
ReLU max(x;0) {1 if x > 0;0 if x ≤ 0} ≤ 1

Sigmoid 1
1+e−x

e−x

(1+e−x )2 ≤ 1
4

Hyperbolic
tangent tanh(x) = ex−e−x

ex+e−x 1− (tanh(x))2 ≤ 1

3.3.2.2 Pooling layers

A pooling layer reduces the dimension of the intermediate representation and is defined

as

zl = Pl(zl−1)zl−1 ; (3.27)

where Pl(zl−1) is the pooling matrix. The usual choices of pooling are down-sampling,

max-pooling and average pooling and are described in detail in Section 2.2.1.2.

Jacobian Matrix

The pooling operator defined in (3.27) is a linear or a piece-wise linear operator. The

corresponding JM is, therefore, also a linear or a piece-wise linear and is equal to:

dz

dzL−1
= Pl(zl−1) : (3.28)

3.3.2.3 Non-linear layers

A non-linear layer is defined as

zl = [ẑl ]ff = [Wlz
l−1 +bl ]ff ; (3.29)

where [ẑl ]ff represents the element-wise non-linearity applied to each element of ẑl ∈

RMl , and ẑl represents the linear transformation of the layer input: ẑl = Wlz
l−1 +bl .

Wl ∈ RMl×Ml−1 is the weight matrix and bl ∈ RMl is the bias vector. The typical non-

linearities are the ReLU, the sigmoid and the hyperbolic tangent. They are listed in

Table 3.1. The choice of non-linearity ff is usually the same for all the layers in the

network.

Jacobian Matrix
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The JM of the non-linear layer (3.29) can be derived in the same way as the JM of

the softmax layer. We first define the JM of the point-wise non-linearity, which is a

diagonal matrix6

 
dzl

d ẑl

!
i i

=
dff

“
(ẑl)i

”
d(ẑl)i

; i = 1; : : : ;Ml : (3.30)

The derivatives associated with various non-linearities are provided in Table 3.1. The

JM of the non-linear layer can be expressed as

dzl

dzl−1
=
dzl

d ẑl
·Wl : (3.31)

3.3.2.4 Properties of the Jacobain Matrices

The most important properties of the JMs of the layers presented above are collected in

the following Lemma.

Lemma 3.1 (Jacobian matrix spectral norm bounds). The following statements hold:

1. The spectral norm of the JMs of the linear layer in (3.21), the softmax layer

in (3.22) and non-linear layer in (3.29) with the ReLU, Sigmoid or Hyperbolic

tangent non-linearities is upper bounded by

‚‚‚‚‚ dzl

dzl−1

‚‚‚‚‚
2

≤ ‖Wl‖2 ≤ ‖Wl‖F : (3.32)

2. Assume that the pooling regions of the down-sampling, max-pooling and aver-

age pooling operators are non-overlapping (as per definition in Section 2.2.1.2).

Then the spectral norm of their JMs can be upper bounded by

‚‚‚‚‚ dzl

dzl−1

‚‚‚‚‚
2

≤ 1 : (3.33)

Proof: The proof appears in Appendix A.3.

6Note that in case of ReLU the derivative of max(x;0) is not defined for x = 0, and we need to use
subderivatives (or subgradients) to define the JM. We avoid this technical complication and simply take
the derivative of max(x;0) to be 0 when x = 0. Note that this does not change the results in any way
because the subset of X for which the derivatives are not defined has zero measure.
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Lemma 3.1 shows that the spectral norms of all layers can be bounded in terms

of their weight matrices. As a consequence, the spectral norm of the network’s JM is

bounded by the product of the spectral norms of the weight matrices. We leverage these

facts in the next section where we provide new GE bounds.

3.3.3 Generalization Error Bounds

In this section we provide the classification margin bounds for a DNN classifier that

allow us to bound its GE. We follow the common practice and assume that the networks

are trained by a loss that promotes separation of different classes at the network output,

e.g. Categorical Cross Entropy (CCE) loss or the hinge loss. In other words, the training

aims at maximizing the score of each training sample, where the score is defined as

follows:

Definition 3.2 (Score). The score of a training sample si = (xi ; yi ) is given by

o(si ) = min
j 6=yi

√
2(‹yi −‹ j)

T f (xi ) ; (3.34)

where ‹ i ∈ RNY is the Kronecker delta vector with (‹ i )i = 1 and other elements equal

to zero.

Recall the definition of the DNN classifier g(x) in (3.4) and note that the decision

boundary between class i and class j in the output space Z is given by the hyperplane

{z : (z)i = (z)j}, where (z)i is the i-th element of z = f (x). Therefore, the score of

a training sample (x; y) corresponds to the distance between the f (x) and the decision

boundary between classes y and i 6= y that is closest to f (x) (assuming that the score

is positive). However, a large score o(si ) does not necessarily imply a large classifi-

cation margin ‚d(si ), which is important for robustness and generalization. Theorem

3.3 provides classification margin bounds expressed as a function of the score and the

properties of the network.
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Theorem 3.3 (Classification margin bounds). Assume that a DNN classifier g(x), as

defined in (3.4), classifies a training sample si = (xi ; yi ) with the score o(si )> 0. Then

the classification margin for this sample can be bounded as

‚d(si )≥
o(si )

supx:‖x−xi‖2≤‚d (si ) ‖J(x)‖2
, ‚d1 (si ) (3.35)

≥ o(si )

supx∈conv(X ) ‖J(x)‖2
, ‚d2 (si ) (3.36)

≥ o(si )Q
Wl∈W ‖Wl‖2

, ‚d3 (si ) (3.37)

≥ o(si )Q
Wl∈W ‖Wl‖F

, ‚d4 (si ) ; (3.38)

whereW = {W1; : : : ;WL} is the set of all weight matrices of f .

Proof: The proof appears in Appendix A.4.

Note that the classification margin bound in (3.35) is a function of the classifica-

tion margin ‚d(si ). Although this means that the bound in (3.35) can not be evaluated

without knowing the actual classification margin ‚d(si ), the bound still provides im-

portant insight that will be discussed in Section 3.3.3.1. Given the classification margin

bounds (3.35)-(3.38), we can specialize Corollary 3.2 to DNN classifiers.

Corollary 3.4. Assume that X is a (subset of) CM regular k-dimensional manifold,

whereN (X ;d;)≤
“
CM


”k
. Assume also that a DNN classifier g(x) has a lower bound

to the classification margin ‚b, i.e.,

‚db (si )> ‚b > 0 ∀si ∈ Sm ; (3.39)

for some b ∈ {1;2;3;4}, and take ‘(g(xi ); yi ) to be the 0-1 loss. Then for any ‹ > 0,

with probability at least 1− ‹,

GE(g)≤

vuut log(2) ·NY ·2k+1 · (CM)k

‚kbm
+

s
2 log(1=‹)

m
:

(3.40)

Proof: The proof follows from Theorems 2.4, 3.1 and 3.3.

Interpretation of Corollary 3.4 follows the interpretation of Corollary 3.2, which
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hold for general large margin classifiers. Next, we study in more detail how we can

guarantee a large classification margin when training DNNs.

3.3.3.1 Classification Margin and Regularization

We now leverage the classification margin bounds in Theorem 3.3 to construct sets of

weight matrices that ensure a bounded classification margin and, therefore, a bounded

GE.

Recall thatW = {W1; : : : ;WL} is the set of weight matrices of a DNN. The set

of all possible weight matrix sets is denoted by

W = {W : Wl ∈ RMl×Ml−1 ∀Wl ∈W} : (3.41)

Next, we consider weight matrix sets that constrain the weight matrices inW in such a

way that the classification margin (or its lower bound) is greater than some ‚ > 0:

Wb = {W : ‚db (si )> ‚ ∀si = (xi ; yi ) ∈ Sm} ; b ∈ {1;2;3;4} ; (3.42)

where ‚db (si ), b = 1;2;3;4, correspond to the classification margin bounds (3.35)-

(3.38). Note also that ‚db (si ), b= 1;2;3;4, are functions of the DNN weight matrices in

W. Finally, according to Corollary 3.4,W ∈Wb for some b ∈ {1;2;3;4} ensures that

the GE is bounded by C 1√
m
‚−k=2, where C =

q
log(2) ·NY2k+1(CM)k and we have

neglected the term
q

2 log(1=‹)
m .

We now express the setsWb, b = 1;2;3;4, explicitly:

W1=
n
W : ‚ · sup

x:‖x−xi‖2≤‚d (si )
‖J(x)‖2 < o(si ) ∀si = (xi ; yi ) ∈ Sm

o
; (3.43)

W2=
n
W : ‚ · sup

x∈conv(X )
‖J(x)‖2 < o(si ) ∀si = (xi ; yi ) ∈ Sm

o
; (3.44)

W3=
n
W : ‚ ·

Y
Wl∈W

‖Wl‖2 < o(si ) ∀si = (xi ; yi ) ∈ Sm
o
; (3.45)

W4=
n
W : ‚ ·

Y
Wl∈W

‖Wl‖F < o(si ) ∀si = (xi ; yi ) ∈ Sm
o
: (3.46)
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Note that while we want to maximize the score o(si ), we also need to constrain

the network’s Jacobian matrix J(x) (following W1 and W2) or the weight matrices

in W (following W3 and W4) in order to have the GE bounded by C 1√
m
‚−k=2, as

discussed above. This stands in line with the common rationale of training DNNs in

which we do not only aim at maximizing the score of the training samples to ensure a

correct classification of the training set, but also have a regularization that constrains the

network parameters. This combination eventually leads to a lower GE. The constraint

sets in (3.43)-(3.46) impose different regularization techniques:

• The term ‚ · supx:‖x−xi‖2≤‚d (si ) ‖J(x)‖2 < o(si ) in (3.43) considers only the

supremum of the spectral norm of the JM evaluated at the points within Ni =

{x : ‖x−xi‖2 ≤ ‚d(si )}, where ‚d(si ) is the classification margin of the training

sample si = (xi ; yi ) (see Definition 3.1). We can not compute the margin ‚d(si ),

but can still obtain a rationale for regularization: as long as the spectral norm of

the JM in the neighbourhood of the training sample xi given by Ni is bounded,

we will have good GE guarantees.

• The constraint on the JM ‚ · supx∈conv(X ) ‖J(x)‖2 < o(si ) in (3.44) is more re-

strictive as it requires bounded spectral norm for all samples x in the convex hull

of the input space X .

• The constraints in (3.45) and (3.46) have a similar form, i.e.,

‚ ·
Y

Wl∈W
‖Wl‖2 < o(si )

and

‚ ·
Y

Wl∈W
‖Wl‖F < o(si ) ;

respectively. Note that the weight decay (see (2.50)), which aims at bounding

the Frobenius norms of the weight matrices is linked to the constraint in (3.46).

However, note also that the classification margin bound based on the spectral

norm in (3.45) is tighter than one based on the Frobenius norm in (3.46). For

example, take Wl ∈W to have orthonormal rows and be of dimension M×M.
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Then the constraint in (3.45), which is based on the spectral norm, is of the form

‚ < o(si ) and the constraint in (3.46), which is based on the Frobenius norm,

is of the form ‚ ·ML=2 < o(si ). In the former case we have a constraint on the

score, which is independent of the network width or depth. In the latter case

the constraint on the output score is exponential in network depth and polyno-

mial in network width. The difference is that the Frobenius norm does not take

into account the correlation (angles) between the rows of the weight matrix Wl ,

while the spectral norm does. Therefore, the bound based on the Frobenius norm

corresponds to the worst case when all the rows of Wl are aligned. In that case

‖Wl‖F = ‖Wl‖2 =
√
M. On the other hand, if the rows of Wl are orthonormal

‖Wl‖F =
√
M, but ‖Wl‖2 = 1.

3.3.3.2 Illustration

The gist of our approach is now illustrated by a simple example. The input space X is

a two dimensional real space, i.e., X = R2 and x = [x1; x2]T ∈ X . We consider a two

class classification problem where both class 1 (red) and class 2 (blue) are formed from

points sampled from a circle as shown in Figures 3.2(a) and 3.2(b). Both red and blue

points can be represented by the circle equation

xTx = x21 + x22 = q2 ; (3.47)

where q represents the radius of a circle. In the case of the red class the radius is

denoted by qr and is equal to qr = 0:5 and in the case of the blue class the radius is

denoted by qb and is equal to qb = 1:5.

To solve the classification problem we decide to map the points into one dimen-

sional real output space, i.e., Z = R by using the following function

z = f (x) = w1

“
xTx

”p=2
+w2 ; (3.48)

where w1;w2;p ∈ R, p > 0, are parameters of the non-linear transform f (x). Note that

f (x) in (3.48) maps all points that lie on a circle in the input space X into a single point

in the output space Z as demonstrated in Figure 3.2(c).

Next, we design a learning rule. In particular, we will denote the red class point
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in the output space by zr and the blue class point in the output space by zb. We set the

decision boundary in the output space Z to z = 0 so that z < 0 is classified as red and

z > 0 is classified as blue. We also require the red and blue points to have a distance 1

from the decision boundary, i.e.,

zr =−1; zb = 1 ; (3.49)

which leads to the setup in Figure 3.2(c). By solving (3.48) for the conditions in (3.49)

we obtain the parameter values

w1 =
2

|rpr − rpb |
; (3.50)

w2 =−w1 (min(rr ; rb))p−1 ; (3.51)

and p > 0 is arbitrary. We discuss how to set p next.

Recalling the discussion of this section, we want to design a classifier with the

largest classification margin. Note that due to the form of f (x) in (3.48), the decision

boundary in the input space X is always a circle as shown in Figures 3.2(a) and 3.2(b).

We will denote the radius of the decision boundary circle in the input space by qm. It

is now easy to confirm that the classification margin is equal to

‚ = min((qb−qm);(qm−qr )) : (3.52)

Since the geometry of the points in the output space Z (see Figure 3.2(c)) is the same

for all p > 0 we can not choose p based on the geometry of the points in the output

space Z. Therefore, we will use the rationale developed in this chapter and choose p

for which the norm of the JM is the smallest and which also corresponds to the solution

with the largest margin.

In particular, take a point on the red circle and denote it by xr and take the closest

point on the decision boundary and denote it by xm. Note that f (xr ) =−1 and f (xm) =

0 due to our learning rule. By Theorem 3.2 we can write

f (xm)− f (xr ) = 1 = Jxm;xr (xm−xr ) ; (3.53)
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Figure 3.2: Illustration of how the norm of the Jacobian matrix affects the classification margin.

where Jxm;xr is the average JM of f (x) in (3.48) evaluated between xm and xr and the

JM of f (x) in (3.48) is

J(x) = w1p(xTx)p=2−1x : (3.54)

Similarly, we take a point on the blue circle and denote it by xb and take the closest line

on the decision boundary and denote it by xm. Note that f (xb) = 1 and f (xm) = 0 due
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to our learning rule. Again, by Theorem 3.2 we can write

f (xb)− f (xm) = 1 = Jxb;xm(xb−xm) ; (3.55)

where Jxb;xm is the average JM of f (x) in (3.48) evaluated between xb and xm. We now

note that (3.53) and (3.55) lead to inequalities

1=‖Jxm;xr‖2 ≤ ‖xm−xr‖2 (3.56)

and

1=‖Jxb;xm‖2 ≤ ‖xb−xm‖2 ; (3.57)

respectively. By recalling that ‖xm−xr‖2 = qm−qr and ‖xb−xm‖2 = qm−qr and by

substituting (3.56) and (3.57) into (3.52) we obtain

‚ ≥min(1=‖Jxm;xr‖2;1=‖Jxb;xm‖2) = 1=max(‖Jxm;xr‖2;‖Jxb;xm‖2) : (3.58)

Therefore, to maximize the classification margin ‚ we have to choose p such that

the norms ‖Jxm;xr‖2 and ‖Jxb;xm‖2 will be as small as possible. The value of

max(‖Jxm;xr‖2;‖Jxb;xm‖2;) for different values of p is plotted in Figure 3.2(d). We

can see that for p = 1 we obtain the smallest value of max(‖Jxm;xr‖2;‖Jxb;xm‖2;). The

classification margin is also plotted in the same plot in Figure 3.2(d). We can see that

the classification margin is maximized at p = 1, as expected. The decision boundary at

p = 1 is plotted at Figure 3.2(a) and we can see that it corresponds to the best possi-

ble classification margin. A suboptimal example of a decision boundary with p = 3 is

plotted in Figure 3.2(b).

This simple example represents well the situation of DNNs where there are many

parameters choices that achieve a correct classification of the training set. However, as

we have shown here, choosing a solution with the smallest norm of the JM leads to a

solution with the largest classification margin, which increases robustness and improves

generalization.



84 Chapter 3. Robustness and Generalization of Deep Neural Networks

3.3.3.3 Comparison to Other GE Bounds

We now compare our GE bounds to other bounds in the literature. We have also dis-

cussed these existing bounds in Section 2.2.3.

Rademacher Complexity and VC-dimension

First, we compare our GE bounds to the GE bounds based on the Rademacher Com-

plexity (RC) in [93], which hold for DNNs with ReLU non-linearities. The work in [93]

shows that if the product of the Frobenius norms of the weight matrices is bounded as

Y
W∈W

‖W‖F <W ; (3.59)

and the energy of training samples is bounded, then the GE of a DNN classifier g is

bounded by:

GE(g)≤O
 

1√
m

2L−1W

!
: (3.60)

Although the bounds (3.40) and (3.60) are not directly comparable, since the bounds

based on the robustness framework rely on an underlying assumption on the data (cov-

ering number), there is still a remarkable difference between them. The behaviour in

(3.60) suggests that the GE grows exponentially with the network depth even if the

product of the Frobenius norms of all the weight matrices is fixed, which is due to the

term 2L. The bound in Corollary 3.4 and the constraint sets in (3.43)-(3.46), on the

other hand, imply that the GE does not increase with the number of layers provided

that the spectral/Frobenius norms of the weight matrices are bounded. Moreover, if we

take the DNN to have weight matrices with orthonormal rows then the GE behaves as
1√
m

(CM)k=2 (assuming o(si )≥ 1; i = 1; : : : ;m), and, therefore, relies only on the com-

plexity of the underlying data manifold and not on the network depth. This provides a

possible answer to the open question of [93] that depth independent capacity control is

possible in DNNs with ReLU non-linearities.

Second, we compare our results to the bounds based on the Vapnik-Cervonenkis

(VC)-dimension. In particular, results in [7] suggest that the GE of a DNN classifier g
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with p parameters is bounded by

GE(g)≤O
0@sp log(p)

m

1A : (3.61)

Clearly, increasing the dimension of the weight matrices or adding layers will increase

the number of parameters and consequently increase the GE. In contrast, the bound in

Corollary 3.4 and the constraint sets in (3.43)-(3.46) imply that the GE of DNNs is not

sensitive to the number of parameters.7

Algorithmic Robustness

Finally, we compare to the GE bound based on the algorithmic robustness framework

[23] in (2.71):

GE(g)≤ ¸L!+O
0@sN (S;‖ · ‖∞;!=2)

m

1A ; (3.62)

where ! > 0. Note that the bound (3.62) is not directly comparable to the bound in

Corollary 3.4 as in (3.62) the ‘1-norm loss is assumed and in Corollary 3.4 the 0-1 loss

is assumed. Nevertheless, the bound in (3.62) includes the term !¸L, where ¸ is the

constraint on the ‘1-norm of the rows of the weight matrices, and is exponential in the

number of layers L. Due to our choice of the 0-1 loss, and the use of the classification

margin, our bounds do not have such a term and the GE bound will approach zero as

the number of training samples grows.

3.3.3.4 Comparison to Other Large Margin Approaches

Other works have considered the notion of a large classification margin applied to

DNNs. In particular, the works in [66, 67] focus on increasing the classification margin

at the DNN output. In this chapter we have shown that the classification margin at the

DNN input, and not at the DNN output, determines the GE. As a results, our approach

provides meaningful GE bounds.

The authors in [68] constrain the spectral norms of the weight matrices to promote

a large classification margin at the DNN input. However, they do not provide any GE

bounds. Moreover, their results are limited to DNNs with ReLU non-linearities and do

7Note that the (3.43)-(3.46) do not depend on the number of parameters, i.e., the size of the weight
matrices, as long as the spectral or Frobenius norm of the weight matrices is bounded.
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not apply to Convolutional Neural Networks (CNNs). Their results can be viewed as a

special case of (3.37) applied to feed-forward DNN with ReLU non-linearities.

3.3.3.5 Analysis of the Weight Normalization and the Batch Normal-

ization

As discussed in Section 2.2.1.5, many existing GE bounds for DNNs are a function of

the norm of the weight matrices as in the case of RC [93] or algorithmic robustness

[23]. On the other hand, the recent very successful re-parametrization methods such as

the weight normalization [61] and the batch normalization [62], which improve opti-

mization of DNNs as well as reduce the GE of the DNNs, lead to weight matrices with

normalized rows. This implies that the norm of the weight matrix rows does not have

a crucial effect on the GE. Note that our bounds in (3.43)-(3.45) do not depend on the

norm of the weight matrix rows and do apply successfully to DNNs that have weight

matrices with normalized rows.

An important value of our bounds is that they provide a possible explanation for

the success of these state-of-the-art DNN re-parametrization techniques. In particular,

weight normalized DNNs have weight matrices with normalized rows, i.e.,

Wl = diag(ŴT
l Ŵl)

−1Ŵl ; (3.63)

where diag(·) denotes the diagonal part of the matrix and Ŵl ∈ RMl×Ml−1 . The Fron-

benious norm of the row-normalized weight matrix Wl is equal to ‖Wl‖F =
√
Ml .

Therefore, the GE bounds based on the Frobenius norm can not explain the good gen-

eralization of such networks as adding layers to a DNN or adding rows to the weight

matrices will lead to a larger GE bound. This remark also applies to (3.46). However,

(3.43)-(3.45) do not have this issue. A supporting experiment is presented in Sec-

tion 3.5. We also note that the batch normalization [62] also leads to row-normalized

weight matrices in DNNs with ReLUs:8

8To simplify the derivation we omit the bias vectors and, therefore, also the centering applied by the
batch normalization. This does not affect the generality of the result.
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Theorem 3.4 (Batch normalization property). Assume that the non-linear layers of a

DNN with ReLUs are batch normalized as:

zl+1 =
h
N
“
{zli}mi=1;Wl

”
ẑl
i
ff
; ẑl = Wlz

l ; (3.64)

where ff denotes the ReLU non-linearity and

N({zi}mi=1;W) = diag

0@ mX
i=1

Wziz
T
i W

T

1A−
1
2

(3.65)

is the normalization matrix. Then all the weight matrices are row normal-

ized. The exception is the weight matrix of the last layer, which is of the form

N({zL−1i }mi=1;WL)WL.

Proof: The proof appears in Appendix A.5.

3.4 Extensions
We have analysed the standard feed-forward DNNs and their classification margin in

the preceding sections. We now briefly discuss how our results extend to the case where

the training set is not perfectly separable by a DNN and how the results extend to other

DNN architectures and to different margin metrics.

3.4.1 Beyond Feed-Forward DNNs

There are various DNN architectures such as Residual Networks [29, 38], Recurrent

Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks [51] that

are used frequently in practice. It turns out that our analysis – which is based on the

network’s JM – can also be easily extended to such DNN architectures. In fact, the

proposed framework encompasses all DNN architectures for which the JM can be com-

puted. For example, we can compute the JM of a Residual Network.

Recall that the Residual Networks introduce short-cut connections between layers.

In particular, the l-th layer of a Residual Network is given as

zl = zl−1 +ffi(zl−1; „l) ; (3.66)

where ffi(zl−1; „l) is a non-linear transform. We denote by Jl(z
l−1) the JM of
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ffi(zl−1; „l). Then the JM of the l-th layer is

dzl

dzl−1
= I+Jl(z

l−1) ; (3.67)

and the JM of a Residual Network is of the form

JSM(zL−1) ·
0@I+

LX
l=1

Jl(z
l−1)

0@l−1Y
i=1

(I+Jl−i (z
l−2))

1A1A ;
(3.68)

where JSM(zL−1) denotes the JM of the soft-max layer. In particular, the right element

of the product in (3.68) can be expanded as

I+J1(x)

+J2(z1) +J2(z1)J1(x)

+J3(z2) +J3(z2)J2(z1)J1(x) +J3(z2)J2(x) +J3(x)J1(x)

+ : : :

This is a sum of JMs of all the possible sub-networks of a Residual Network. In par-

ticular, there are L elements of the sum consiting of only one 1-layer sub-networks

and there is only one element of the sum consisting of a L-layer sub-network. This

observation is consistent with the claims in [102], which states that Residual Networks

resemble an ensemble of relatively shallow networks.

3.4.2 Non-separable Training Sets

All GE bounds established in this chapter rely on the assumption that for every training

sample si there exists a positive margin: ‚d(si ) > ‚. However, this may not always

be the case in practice. If a DNN is not able to achieve a margin ‚ > 0 for every

training sample we say that the training set is non-separable by the DNN. The GE

bounds presented here can be easily extended to such cases by leveraging the notion

of pseudo-robustness [23]. In particular, the notion of pseudo-robustness requires that

a classification margin is positive only for a subset of training samples. One can then

obtain the GE bounds of the same form with an additional penalty term that is a con-

sequence of the fact that some of the training samples are not classified with a positive
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margin.

3.4.3 Beyond the Euclidean Metric

The choice of the metric throughout this chapter was the Euclidean distance. However,

we can also consider the geodesic distance on a manifold as a measure for margin

instead of the Euclidean distance. The geodesic distance can be more appropriate than

the Euclidean distance since it is a natural metric on the manifold. Moreover, the

covering number of the manifold X may be smaller if we use the covering based on the

geodesic metric balls, which will lead to tighter GE bounds. We outline the approach

below.

Assume that X is a Riemannian manifold and x;x′ ∈X . Take a continuous, piece-

wise continuously differentiable curve c(u), u = [0;1] such that c(0) = x, c(1) = x′ and

c(u)∈X ∀u ∈ [0;1]. The set of all such curves c(·) is denoted by C. Then the geodesic

distance between x and x′ is defined as

dG(x;x′) = inf
c(u)∈C

Z 1

0

‚‚‚‚‚dc(u)

du

‚‚‚‚‚
2

du : (3.69)

Similarly as in Section 3.3.1, we can show that the JM of DNN is central to bounding

the distance expansion between the signals at the DNN input and the signals at the

DNN output.

Theorem 3.5 (Manifold distance expansion property). Take x;x′ ∈ X , where X is a

Riemannian manifold and take c?(u), u = [0;1] to be a continuous, piecewise continu-

ously differentiable curve connecting x and x′ such that

dG(x;x′) =
Z 1

0

‚‚‚‚‚dc?(u)

du

‚‚‚‚‚
2

du : (3.70)

Then

‖f (x′)− f (x)‖2 ≤ sup
u∈[0;1]

‖J(c?(u))‖2dG(x′;x) (3.71)

Proof: The proof appears in Appendix A.6.

Note that we have established a relationship between the Euclidean distance of

two points in the output space and the corresponding geodesic distance in the input
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space. This is important because it implies that promoting a large Euclidean distance

between points can lead to a large geodesic distance between the points in the input

space. Moreover, the ratio between ‖f (x′)− f (x)‖2 and dG(x;x′) is upper bounded

by the maximum value of the spectral norm of the network’s JM evaluated on the line

c?(u). This result is analogous to the results of Theorem 3.2 and Corollary 3.3. It

also implies that regularizing the network’s JM is beneficial also in the case when the

classification margin is not measured in the Euclidean metric.

3.5 Experiments
Next, we analyse the GE and the JM properties of a weight normalized DNN on the

MNIST dataset [103] and relate the results to the theory presented in this chapter.

Setup

We train DNNs with a different number of fully connected layers (L = 2;3;4;5) and

different sizes of weight matrices (Ml = {784× i}; i = 1; : : : ;6, l = 1; : : : ;L−1). ReLU

non-linearities are used in all layers, the last layer is always the softmax layer, and the

objective is the CCE loss. The networks were trained using the Stochastic Gradient

Descent (SGD) with momentum, which was set to 0.9. Batch size was set to 128

and learning rate was set to 0.1 and reduced by factor 10 after every 40 epochs. The

networks were trained for 120 epochs in total. Note that we train all networks for a

fixed number of epochs and do not employ any form of early stopping [2] following

many recent state-of-the-art works [29, 38, 61, 110]. All experiments are repeated

5 times with different random draws of a training set and different random weight

initializations. We did not employ any additional regularization as our goal here is to

explore the effects of the weight normalization on the DNN behaviour. We always use

5000 training samples.

Results

The classification accuracies on the test set are shown in Figure 3.3 (a) and the smallest

classification score obtained on the training set is shown in Figure 3.3 (b). We have

observed for all configurations that the training set accuracies were 100% (only excep-

tion is the case L = 2, Ml = 784 where the training accuracy was 99.6%). Therefore,

the classification accuracies on the test set correspond directly to the GE. Note that

the classification accuracy on the test set is increasing with the network depth and the
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(a) Classification accuracy (test set).
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(b) Smallest o(si ) (training set).
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(c) Largest ‖J(xi )‖2 (training set).
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(d) Largest ‖J(xi )‖2 (test set).

Figure 3.3: Weight normalized DNN with L = 2;3;4;5 layers and different sizes of weight
matrices (layer width). Plot (a) shows classification accuracy, plot (b) shows the
smallest score of training samples, plot (c) shows the largest spectral norm of the
network’s JM evaluated on the training set and plot (d) shows the largest spectral
norm of the network’s JM evaluated on the testing set.

weight matrix size directly, which implies that the GE is smaller for deeper and wider

DNNs. Note also that the score increases with the network depth and width. This is

most obvious for the 2 and 3 layer DNNs, whereas for the 3 and 4 layer DNNs the score

is close to
√

2 for all network widths.

Since the DNNs are weight normalized, the Frobenius norms of the weight ma-

trices are equal to the square root of the weight matrix dimension, and the product of

Frobenius norms of the weight matrices grows with the network depth and the weight

matrix size. The increase of the minimum score with the network depth and network

width does not offset the product of Frobenius norms, and clearly, the bound in (3.40)

based on the margin bound in (3.38) and the bound based on the RC in (3.60), which

leverage the Frobenius norms of the weight matrices, predict that the GE will increase
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with the network depth and weight matrix size in this scenario. Therefore, the experi-

ment indicates that these bounds are too pessimistic.
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Figure 3.4: Maximum spectral norm of the weight matrices of a weight normalized DNN with
L= 1;2;3;4 layers and different sizes of weight matrices (layer width).

We have also inspected the spectral norms of the weight matrices of the trained

networks, which are shown in Figure 3.4. In all cases the spectral norms were greater

than one. We can argue that the bound in (3.40) based on the margin bound in (3.37)

predicts that the GE will increase with network depth, as the product of the spectral

norms grows with the network depth. We note however, that the spectral norms of the

weight matrices are much smaller than the Frobenius norms of the weight matrices.

Finally, we look for a possible explanation for the success of the weight normaliza-

tion in the bounds in (3.40) based on the margin bounds in (3.35) and (3.36), which are

a function on the JM. The largest value of the spectral norm of the network’s JM eval-

uated on the training set is shown in Figure 3.3 (c) and the largest value of the spectral

norm of the network’s JM evaluated on the testing set is shown in Figure 3.3 (d).

We can observe an interesting phenomena. The maximum value of the JM’s spec-

tral norm on the training set decreases with the network depth and width. On the other

hand, the maximum value of the JM’s spectral norm on the testing set increases with

network depth (and slightly with network width). From the perspective of the con-

straint sets in (3.43) and (3.44) we note that in the case of the latter we have to take into

account the worst case spectral norm of the JM for inputs in conv(X ). The maximum

value of the spectral norm on the testing set indicates that this value increases with the

network depth and implies that the bound based on (3.36) is still loose. On the other

hand, the bound in (3.35) implies that we have to consider the JM in the neighbour-
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hood of the training samples. As an approximation, we can take the spectral norms

of the JMs evaluated at the training set. As it is shown in Figure 3.3 (c) this values

decrease with the network depth and width. This implies that deeper and wider weight

normalized DNNs achieve a larger classification margin and therefore generalize better.

3.6 Summary
We have presented a general framework for bounding the GE of DNNs based on their

classification margin and the covering number of the input space. Moreover, we bound

the classification margin in terms of the achieved separation between the training sam-

ples at the network output and the network’s JM.

One of the hallmarks of our bounds relates to the fact that our characterization of

the behaviour of the GE better follows the behaviour of the GE in practice than in the

case of other bounds in the literature. Our bounds predict that the GE of DNNs can

be independent of their depth and size whereas many other bounds say that the GE is

exponential in the network width or depth.

The next chapter concentrates on further exploring how the data complexity and

structure play a role in the GE of DNNs. In particular, we focus on data with symme-

tries and on DNNs that are invariant to such symmetries.





Chapter 4

Invariance and Generalization of Deep

Neural Networks

We have shown in the previous chapter that the ability of Deep Neural Networks

(DNNs) to generalize is a function of the classification margin that they achieve on the

training examples and the complexity of the data, which is measured via its covering

number. This implies that if a DNN is adapted to the data in such way that the “ef-

fective” complexity of the data is smaller, the generalization properties of the network

should be improved. In fact, Deep Learning (DL) practitioners have been leveraging

the knowledge about data structure in DNN design for a long time [35]. For example,

Convolutional Neural Networks (CNNs), which use convolutional and pooling layers,

are designed with the goal of being invariant to image plane translation.

In this chapter we extend the results of the previous section on the Generalization

Error (GE) of DNNs to a particular scenario where the data possesses certain symme-

tries and a DNN is constructed in such a way that it is invariant to these symmetries.

We show that in such scenarios the GE may be significantly smaller than in a general

case.

4.1 Setup

Similarly as in Chapter 3, we are interested in the GE of DNN classifiers. We will

consider a DNN f that maps an input space X to an output space Z:

f : X →Z ; (4.1)
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where the input space is a subset of the real N dimensional space RN : X ⊆RN and the

output space Z is the real NY dimensional space: Z = RNY , where NY represents the

number of classes. A DNN classifier is defined as

g(x) = arg max
i

(f (x))i ; (4.2)

where (f (x))i corresponds to the i-th entry of the vector f (x).

We will assume that the DNN is trained on a training set

Sm = {si}mi=1 = {(xi ; yi )}mi=1 ; (4.3)

where xi ∈ X , i = 1; : : : ;m, yi ∈ {1;2; : : : ;NY}, i = 1; : : : ;m and m is the number of

training samples. The GE is defined as

GE(g) = |‘exp(g)− ‘emp(g)| (4.4)

where ‘exp(g) is the expected loss defined in (2.8), and ‘emp(g) is the empirical loss

defined in (2.7). The classification performance will be measured by the 0-1 loss:

‘0-1(g(x); y) = 1(g(x) 6= y), where 1(·) is the indicator function.

4.1.1 Sample Space Covering Number and Data Complexity

Recall that the covering number of the samples space S = X ×Y, which is a product

of the input space X and the label space Y, can be interpreted as a measure of the data

complexity, as discussed in more detail in Section 3.1.1. In particular, the -covering

number of S corresponds to the smallest number of (pseudo-)metric balls of radius 

needed to cover S, and it is denoted byN (S;d;), where d denotes the (pseudo-)metric

(see Definition 2.5). The space S is the Cartesian product of a continuous input space

X and a discrete label space Y, and we can write [23]

N (S;d;)≤ NY ·N (X ;d;) ; (4.5)



4.1. Setup 97

whereNY corresponds to the number of classes. The metric d is assumed in this chapter

is the Euclidean metric

d(x;x′) = ‖x−x′‖2; ; x;x′ ∈ RN : (4.6)

4.1.2 Data Symmetries and Robust and Invariant DNNs

In addition to the setup presented above, which follows the setup in Chapter 3, we as-

sume that there are certain symmetries in the data that do not change the underlying

class label. See for example Figure 4.1. We model these symmetries with a set of

transformations and say that the classification task is invariant to such transformations.

Similarly, we say that a DNN is invariant if its output is identical for all possible trans-

formations – belonging to the set of transformations – of the input signal. We formalize

these notions below.

(a) Original image. (b) 90◦ rotation. (c) 180◦ rotation. (d) 270◦ rotation.

Figure 4.1: In a classification task all the above images have the same label – bird – irrespective
of the rotation.

4.1.2.1 Structured Input Space

The input space is denoted by X . As noted in the previous paragraph, X often exhibits

symmetries that may reduce its “effective” complexity and, therefore, also reduce the

GE. We formalize this intuition in this section.

To capture the additional structure present in the data, we model the input space

X as a product of a base space X0 and a set of transformations T :

X = T ×X0 := {t(x) : t ∈ T ;x ∈ X0} ; (4.7)

where X0 ⊆ RN , T = {t0; t2; : : : tT−1}, and T corresponds to the size of T and trans-
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formation t ∈ T is a map1:

t : RN → RN : (4.8)

We take t0 to be the identity, i.e., t0(x) = x throughout this chapter. For example, if X0
is a set of images and T is a set of translations, then X will be the set of all possible

translations of the images in X0. These concepts are also illustrated in Figure 4.2.

In addition, we assume that the classification task is invariant to the set of trans-

formations T , i.e., the label of t(x) is the same for all t ∈ T . Intuitively, given the set

of transformations T , the complexity of the classification task is a function of the base

space X0 and not the input space X .

X X = T ⇥ X0

X0 t1 ⇥ X0

t2 ⇥ X0t3 ⇥ X0

(a) Input space.

X X = T ⇥ X0

X0 t1 ⇥ X0

t2 ⇥ X0t3 ⇥ X0

(b) Input space decomposition.

Figure 4.2: Theorem 4.1 shows that the size of the input space X determines the GE of a robust
DNN. The input space can often be constructed as a product of a simpler base
space X0 and a set of transformations T , where the transformations in T preserve
the class labels. Theorem 4.2 shows that the GE of an invariant and robust DNN is
determined by the size of the base space X0. The size of the base space X0 can be
much smaller than the size of the input space X .

We will measure the complexity of the base space X0 via its covering number in

the same way that we measure the complexity of the input space X .

1Note that the discrete representation of this set is not limiting in practice. Also note that if T is a
group we may talk about about action of group T on X , however, our formulation is more general.
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4.1.2.2 Robust DNN and its Generalization Error

As we have seen in Chapter 3, the DNN’s Jacobian Matrix (JM):

J(x) =
df (x)

dx
; (4.9)

plays an important role in bounding the classification margin and the GE of the DNN.

In particular, a bounded spectral norm of the JM ensures that separation at the output of

the DNN translates into a large classification margin at the network input. To simplify

the discussion in this chapter we will assume that

max
x∈RN

‖J(x)‖2 ≤ 1 : (4.10)

This assumption allows us to focus on the role of invariance in the GE of DNNs while

assuming that the DNN is robust.

Recall that the score of the training sample si = (xi ; yi ) is defined as

o(si ) = min
j 6=yi

√
2(‹yi −‹ j)

T f (xi ) ; (4.11)

where ‹ i ∈ RNY is the Kronecker delta vector with (‹ i )i = 1 and other elements equal

to zero (see Definition 3.2). A general GE bound for a robust DNN is given below.

Corollary 4.1. Assume that a DNN classifier g(x) satisfies (4.10) and that there exists

a constant ! such that the score of each training samples is bounded as

o(si )≥ ! ∀si ∈ Sm ; (4.12)

and consider the 0-1 loss. Then, for any ‹ > 0, with probability at least 1− ‹,

GE(g)≤
s

2 log(2) ·NY ·N (X ;d;!=2)

m
+

s
2 log(1=‹)

m
: (4.13)

Proof: Proof follows directly from Theorems 3.1 and 3.3.

The role of the data complexity in (4.13) appears via the covering number

N (X ;d;!=2). Note that the covering number is the function of the input space X

and the achieved output score !.
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4.1.2.3 Invariant DNN

Given the set of transformations T it is reasonable to use an invariant DNN.2

Definition 4.1 (Invariant DNN). A DNN f is invariant to the set of transformations T

if:

f (ti (x)) = f (tj(x)) ∀x ∈ X0;∀ti ; tj ∈ T : (4.14)

We will denote such an invariant DNN by fT and the corresponding DNN classifier by

gT .

Next, we consider the GE of a robust and invariant DNN.

4.2 Generalization Error Bounds for Robust and In-

variant Deep Neural Network Classifiers
In this section we provide bounds to the GE of invariant DNNs. The invariance of

the DNN leads to mapping of different subsets of data space X into the same point and

consequently leads to a more “efficient” covering of the input spaceX , which translates

into a lower GE.

The GE of a robust and invariant DNN can be bounded as follows:

Theorem 4.1 (GE of an invariant DNN). Assume that an invariant DNN classifier gT

satisfies (4.10) and that there exists a constant ! such that the score of each training

sample is bounded as

o(si )≥ ! ∀si ∈ Sm ; (4.15)

and consider the 0-1 loss. Then, for any ‹ > 0, with probability at least 1− ‹,

GE(gT )≤
s

2 log(2) ·NY ·N (X0;d;!=2)

m
+

s
2 log(1=‹)

m
: (4.16)

Proof: The proof appears in Appendix B.1.

2Here we define a notion of absolute invariance. It is easy to extend it to approximate invariance,
where in X we have transformed versions of X0 plus small/bounded noise; and also to extend the GE
bounds in a similar manner for approximately invariant learning algorithms.
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Note that the GE bound in Theorem 4.1 is of the same form as the GE bound in

Corollary 4.1 and the main difference is in the employed covering number. In particular,

the ratio between the bounds is (neglecting the term
q

2 log(1=‹)
m )

r(X0;X ;d;›) =

 
N (X0;d;›)

N (X ;d;›)

!1=2

; (4.17)

where ›= !=2.

We are especially interested in the scenario where the GE bound of an invariant

DNN may be much smaller than the GE bound of a non-invariant DNN. This happens

when r(X0;X ;d;›)� 1. We now establish a set of sufficient conditions on X0, X , T ,

d and › such that r(X0;X ;d;›)� 1.

Theorem 4.2 (Covering number ratio bounds). Assume that X = T ×X0 and choose

an › < 1. Then

d(t(x); t ′(x′))> 2› ∀x;x′ ∈ X0; t 6= t ′ ∈ T (4.18)

and

d(t(x); t(x′))≥ d(x;x′) ∀x;x′ ∈ X0; t ∈ T (4.19)

=⇒ r(X0;X ;d;›)≤ 1=
√
T ; (4.20)

where T is the number of elements in T . On the other hand,

d(t(x); t ′(x)) = 0 ∀x ∈ X0; t 6= t ′ ∈ T (4.21)

=⇒ r(X0;X ;d;›) = 1: (4.22)

Proof. The proof appears in Appendix B.2.

Theorem 4.2 establishes, via conditions on the geometry of the base space X0, and

the effect of transformations in T on it, that the ratio r(X0;X ;d;›) can be smaller or

equal to 1=
√
T . We now discuss the conditions (4.18), (4.19) and (4.21) in more detail:

• The condition in (4.18) can be stated as follows. Take any pair of vectors x;x′ in

the base space X0 and transform them by two transformations t; t ′ in T that are

not equal. Then the distance between the pair of transformed vectors t(x); t ′(x′)
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must be at least 2›. In other words, any two distinct transformations in T must

transform any two vectors x;x′ in the base space X0 into sufficiently distinct

vectors (distance at least 2›). Intuitively, satisfying (4.18) means that each trans-

formations in T transforms vectors from base space X0 in such a way that the

transformed versions are not similar to transformed versions obtained by a dif-

ferent transformation.

• The condition in (4.19) ensures that the transformations in T do not contract the

distances between the vectors in X0. This way the transformations in T do not

reduce the complexity (measured by the covering number) of the base space X0.

For example, a transformation that maps any x∈X0 into itself violates (4.19) and

leads to X = X0, as formalized by (4.21).

The results of this section can be summarized by the following remarks:

• Given an input space X , which can be factored as X = T ×X0 according to

(4.7) and the size of transformation set T , we have established that the GE of an

invariant and robust DNN may be up to a factor
√
T smaller than the GE of a

non-invariant robust DNN.

• Note that both in the case of a non-invariant DNN in Corollary 4.1 and in the case

of an invariant DNN in Theorem 4.1 we require the output score of the training

examples to be at least !, i.e., we require a DNN to be able to separate the training

examples by a score of at least !. A trivial invariant DNN that maps all points in

X to the same point, will not be able to separate the training set and clearly, the

results of Theorem 4.1 do not apply. In fact, we require from an invariant DNN

to still be able to discriminate between different signals from different classes.

4.2.1 Illustration

To provide additional intuition related to Theorem 4.2, we present the following toy

example. We consider four images of dimension N×N, with N = 16, which are shown

in Figure 4.3(a) and take d to be the Euclidean metric. The sets of transformations that

we consider are:

• Translation set: The set of pixel-wise cyclic translations in any direction. The

size of the set is N2.
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cross circle

corner curve

(a) Atoms.

cross circle

corner curve

(b) Transformed atoms.

Figure 4.3: Examples of atoms and their transformations. (a) A set of atoms (cross, circle,
corner, curve) used to construct the base space. (b) Examples of transformed atoms
with a transformation from the trans-rotation set.

• Rotation set: The set of image rotations by 90◦. The size of this set is 4.

• Trans-rotation set: A product of the translation and the rotation sets, where the

rotation is applied first followed by a translation. The size of this set is 4×N2.

Note that all the transformations above can be implemented by permutation matrices

which are orthonormal. This is important as it implies that all the considered sets satisfy

the condition in (4.19). Examples of transformed atoms are shown in Figure 4.3(b).

We now provide an example of a base space X0 and a transformation set T for

which r(X0;X ;d;›) ≤ 1=
√
T ; and then provide an example of a base space X0 and a

transformation set T for which r(X0;X ;d;›) = 1.

Example for r(X0;X ;d;›)≤ 1=
√
T

Consider X0 = {cross;circle;corner;curve} and T to be the translation set. The set

X = T ×X0 then contains all possible translations of shapes in X0. We have verified

by numerical computations that the condition in (4.18) is satisfied for all › < 0:375.

Therefore, R(X0;X ;d;›)≤ 1=
√
T for › < 0:375, where

√
T =N = 16 is the dimension

of the images. Therefore, as suggested by Theorem 4.1, a translation invariant DNN

can attain a GE with a factor N smaller than the GE of a non-invariant DNN. Similarly,

if we take X0 = {corner;curve} and T to be the trans-rotation set, we can establish

r(X0;X ;d;›)≤ 1=(2N) for › < 0:26.



104 Chapter 4. Invariance and Generalization of Deep Neural Networks

Example for r(X0;X ;d;›) = 1

Now consider X0 = {cross;circle} and T to be the rotation set. Therefore, X =

T ×X0 contains all possible 90◦ rotations of circle and cross in Figure 4.3(a). It is clear

that the circle and cross are already invariant to such rotation, i.e., they corresponds to

exactly the same shape. Therefore, the condition in (4.21) holds and r(X0;X ;d;›) = 1.

Clearly, in such cases, an invariant DNN is not expected to have a smaller GE than a

non-invariant DNN.

4.3 Experiments
We now demonstrate the theoretical results with experiments on the MNIST dataset

[103]. We compare a rotation invariant CNN and a conventional CNN on the rotated

MNIST datasets.

Rotated MNIST dataset

The rotated MNIST-D dataset is constructed by rotating the digits by an angle r ·D◦,

r ∈ {0;1;2; : : : ;360=D− 1}, where the index r is chosen randomly for each image in

the dataset. We use D = 180;90;45. Examples of digits from the original MNIST

dataset are shown in Figure 4.4(a) and example of digits rotated by a random multiple

of 90◦ are shown in Figure 4.4(b).

Setup

We use a 7 layer CNN architecture: (32;5;5)-conv, (2;2)-max-pool, (64;5;5)-conv,

(2;2)-max-pool, (128;5;5)-conv followed by a global average pooling layer and a soft-

max layer, where (k;u;v)-conv denotes the convolutional layer with k filters of size

u×v , and (p;p)-max-pool denotes the max-pooling layer with pooling regions of size

p×p. The rotation invariant CNN is the same as the conventional CNN, but it includes

a cyclic slice layer before the first convolutional layer and a cyclic pool layer before the

softmax layer. Both, the cyclic slice layer and the cyclic pool layer were proposed in

[40] and together they ensure that the CNN is invariant to rotations. In particular, the

cyclic slice layer takes input image x and creates copies of x, each rotated for r ·D◦,

r = 0;1;2; : : : ;360=D−1, where D is the same as in the dataset MNIST-D. The copies

are then passed through the CNN independently. At the end of the CNN, before the

softmax layer, the outputs of the copies are averaged by a cyclic pool layer to obtain a

rotation invariant representation.
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(a) Original. (b) Rotated. (c) Invariant.

Figure 4.4: Examples of digits from the MNIST dataset (a), rotated digits by a random mul-
tiple of 90◦ (b), and the invariant dataset created by averaging of all 4 rotations
({0◦;90◦;180◦;270◦}) of a single digit (c).
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(a) Test set classification accuracy
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(b) Generalization error.

Figure 4.5: Classification accuracy (a) and the GE (b) of the rotation invariant CNN and the
conventional CNN on the rotated MNIST dataset.

The networks are trained using the Stochastic Gradient Descent (SGD) with mo-

mentum, which was set to 0:9. The training objective is the standard Categorical Cross

Entropy (CCE) loss. Batch size was set to 32 and learning rate was set to 0:01 and

reduced by 10 after 100 epochs. The networks were trained for 150 epochs in total. We

used training sets of sizes 103, 104, 2 ·104, 5 ·104.



106 Chapter 4. Invariance and Generalization of Deep Neural Networks

0.1 1.0 2.0 3.0 4.0 5.0
# of training samples (104 )

1.0

1.5

2.0

2.5

3.0

3.5

G
en

. e
rr

or
 ra

tio

√
|T| =

√
2√

|T| =
√

4√
|T| =

√
8

MNIST-180 ◦

MNIST-90 ◦

MNIST-45 ◦

Figure 4.6: The ratio of the GEs of the rotation invariant CNN and the conventional CNN on
the rotated MNIST datasets.

Results

The classification accuracies are reported in Figure 4.5(a) and the GE is reported in

Figure 4.5(b). We may note that the (explicitly) rotation invariant CNN always has

a higher classification accuracy than the conventional CNN. Moreover, the GE of the

rotation invariant CNN is much smaller than the GE of the conventional CNN. The

difference is most significant when the training set is small, which demonstrates the

importance of invariance for the generalization of DNNs.

Note also that the GE of the rotation invariant CNNs on different datasets MNIST-

D, D = 180;90;45, is roughly the same, whereas the conventional CNNs have a higher

GE on the datasets with a smaller D. This can be explained by the fact that the ro-

tated MNIST dataset with a smaller D is more complex due to the larger number of

rotations. The sizes of the transformation sets for D = 180;90;45 are 2;4 and 8, re-

spectively. Given the theoretical analysis in this chapter, we expect that the ratio of the

GEs of an invariant and a non-invariant CNNs will be approximately equal to
q
|T |.

The actual GE ratios are shown in Figure 4.6. We can observe that the GE ratios ob-

tained empirically roughly follow our predictions. However, when the training set is

small, the conventional CNN generalizes worse than predicted by our theory and when

the training set is large, the conventional CNN generalizes better than predicted by

our theory. We conjecture that the conventional CNNs learn to be “partially” invariant

when the number of training samples is large. Moreover, the current theory might not

capture the relationship between invariant and non-invariant CNNs entirely.

Finally, we have also consider the rotation invariant MNIST dataset, where each
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image x in the dataset is rotated by r ·D◦, r ∈ {0;1;2; : : : ;360=D− 1} and the 360=D

copies are averaged to obtain a sample (see Figure 4.4(c)). As our theory suggests,

the rotation invariant CNNs in this case do not have a lower GE than a conventional

CNN because the dataset itself is rotation invariant. In fact, given the rotation invariant

MNIST dataset, the rotation invariant CNN and the conventional CNN are equivalent.

This can be easily established by observing that the cyclic slicing layer produces copies

of the input that are identical. We have verified empirically that the rotation invariant

and the non-invariant CNNs perform the same on the rotation invariant MNIST dataset.

4.4 Summary
In this chapter we have formally demonstrated that the GE of an invariant DNN can be

much smaller than the GE of a non-invariant DNN, provided that the input space can be

factorized into a product of a transformation set and a base space, where the covering

number of the base space is much smaller than the covering number of the input space.

The next chapter will capitalize on the insights of this chapter and Chapter 3 to

explore how to regularize DNNs in order to improve their robustness and invariance

with the goal of achieving a lower GE.





Chapter 5

Jacobian and Invariance Regularizers

for Deep Neural Networks

In Chapter 3 we have established novel theoretical foundations for the Generalization

Error (GE) of Deep Neural Networks (DNNs) based on their classification margin. We

have extended this theory to also take into account the symmetries in the data and the

possible invariance of the DNN in Chapter 4. In this chapter we use these results to

motivate two methods for DNN regularization that reduce the GE in practical applica-

tions.

First, we introduce the Jacobian regularizer, which is motivated by the classifi-

cation margin bounds in Chapter 3. Second, we introduce the Invariance regularizer,

which is motivated by the DNN invariance assumption in Chapter 4.

5.1 Jacobian Regularizer
Recall that according to Theorem 3.3 the classification margin ‚d(si ) of a training

sample si = (xi ; yi ) can be lower bounded by

‚d(si )≥
o(si )

supx:‖x−xi‖2≤‚d (si ) ‖J(x)‖2
; (5.1)

where o(si ) is the score of the training sample si and J(x) is the Jacobian Matrix (JM)

of the DNN.

The goal of training is to maximize the score o(si ) of all training samples, while

ensuring that the DNN will generalize well. Based on the classification margin bound

in (5.1), we suggest to regularize a DNN by bounding the norm of the network’s JM
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for the inputs close to xi . The intuition here is that while the loss function promotes

the separation of the training samples at the network output, the regularization of the

network’s JM ensures that this separation at the output of the network will to a large

classification margin, which is important for robustness and generalization.

We propose to penalize the norm of the network’s JM evaluated at each training

sample xi by using the regularizer:

RJ(Θ;Sm) =
1

m

mX
i=1

‖J(xi )‖22 ; (5.2)

where Θ is the set of DNN parameters and Sm = {si}mi=1 = {(xi ; yi )}mi=1 is the train-

ing set. The implementation of such regularizer requires computation of its gradients

or subgradients. In this case the computation of the subgradient of the spectral norm

requires the calculation of a SVD [104], which makes the proposed regularizer compu-

tationally inefficient. To circumvent this, we propose a surrogate regularizer based on

the Frobenius norm of the Jacobian matrix:

RJF (Θ;Sm) =
1

m

mX
i=1

‖J(xi )‖2F : (5.3)

Note that the Frobenius norm and the spectral norm can be bounded as follows:

1=rank(J(xi ))‖J(xi )‖2F ≤ ‖J(xi )‖22 ≤ ‖J(xi )‖2F : (5.4)

The choice of the Frobenius norm instead of the spectral norm is justified by the fact

that the Frobenius norm upper bounds the spectral norm. We will refer to RJF (Θ;Sm)

as the Jacobian regularizer.

5.1.1 Computation of Gradients and Efficient Implementation

Recall that a DNN f that maps an input space X to an output space Z: f : X → Z ,

where the input space is a subset of the real N dimensional space RN : X ⊆RN and the

output space Z is the real NY dimensional space: Z = RNY , where NY represents the

number of classes. A L layer DNN is obtained as

f (x) = ffiL(ffiL−1(· · ·ffi1(x; „1); · · ·„L−1); „L) ; (5.5)
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where

zl = ffil(z
l−1; „l) (5.6)

represents the l-th layer with parameters „l , output zl ∈ RMl and input zl−1 ∈ RMl−1 ,

l = 1; : : : ;L. The input layer corresponds to z0 = x and the output of the last layer is

denoted by z = f (x). A typical network layer has the form

zl = [ẑl ]ff = [Wlz
l−1 +bl ]ff ; (5.7)

where [ẑl ]ff represents the element-wise non-linearity ff applied to each element of ẑl ∈

RMl , and ẑl represents the affine transformation of the layer input: ẑl = Wlz
l−1 +bl .

The layer parameters „l = {Wl ;bl} are the weight matrix Wl ∈RMl×Ml−1 and the bias

vector bl ∈ RMl .

The JM of a DNN f is defined as

J(x) =
df (x)

dx
=

LY
l=0

dffil(z
l−1)

dzl−1
=

LY
l=1

dffil(z
l−1)

dzl−1
· dffi1(x)

dx
; (5.8)

where we recall that z0 = x and corresponds to the DNN input. The k-th row of J(xi )

corresponds to the gradient of the k-th element of f (x), i.e., (f (x))k , k = 1; : : : ;NY ,

with respect to the input x evaluated at xi and it is denoted by gk(xi ) = d(f (x))k
dx |x=xi .

Now we can write

RJF (Θ;Sm) =
1

m

mX
i=1

NYX
k=1

gk(xi )gk(xi )
T : (5.9)

As the regularizer will be minimized by a gradient descent algorithm we need to com-

pute its gradient with respect to the DNN parameters. First, we express gk(xi ) as

gk(xi ) = glk(xi )WlJ
l−1(xi ) (5.10)

where glk(xi ) = d(f (x))k
d ẑl

|x=xi is the gradient of (f (x))k with respect to ẑl evaluated at

the input xi and Jl−1(xi ) = dzl−1

dx |x=xi is the JM of l −1-th layer output zl−1 evaluated
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at the input xi . The gradient of gk(xi )gk(xi )
T with respect to Wl is then given by [105]

∇Wl

“
gk(xi )gk(xi )

T
”

= 2glk(xi )
Tglk(xi )WlJ

l−1(xi ):

The gradient of gk(xi )gk(xi )
T with respect to bl is zero. The computation of the

gradient of the regularizer at layer l requires the computation of gradients glk(xi ),

k = 1; : : : ;NY , i = 1; : : : ;m, and the computation of the Jacobian matrices Jl−1(xi ),

i = 1; : : : ;m. The computation of the gradient of a typical loss used for training DNN

usually involves a computation of m gradients with computational complexity similar

to the computational complexity of glk(xi ). Therefore, the computation of gradients

required for an implementation of the Jacobian regularizer can be very expensive.

5.1.1.1 Per-layer Jacobian Regularizer

To avoid excessive computational complexity we propose a simplified version of the

regularizer (5.3), which we name per-layer Jacobian regularizer. The per-layer Jacobian

regularizer is defined as

RlJF (Θ;Sm) =
1

m

LX
l=1

mX
i=1

g̃l−1ı(i)(xi )(g̃l−1ı(i)(xi ))T ; (5.11)

where g̃l−1ı(i)(xi ) =
d(f (x))ı(i)
dzl−1

|x=xi , and ı(i) ∈ {1; : : : ;NY} is a random index and L is

the number of layers. Compared to (5.3) we have made two simplifications. First, we

assumed that input of layer l is fixed. This way we do not need to compute the JM

Jl−1(xi ) between the output of the layer l −1 and the input. Second, by choosing only

one index ı(i) per training sample we have to compute only one additional gradient per

training sample. This significantly reduces the computational complexity. The gradient

of g̃l−1ı(i)(xi )(g̃l−1ı(i)(xi ))T with respect to Wl is simply

∇Wl

“
g̃l−1ı(i)(xi )(g̃l−1ı(i)(xi ))T

”
= 2glı(i)(xi )

Tglı(i)(xi )Wl :

The gradient of g̃l−1ı(i)(xi )(g̃l−1ı(i)(xi ))T with respect to bl is zero. We demonstrate the

effectiveness of these regularizers next.
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5.2 Experimental Evaluation of the Jacobian Regular-

izer
We now demonstrate the effectievness of the Jacobian regularizer in (5.3) and the per-

layer Jacobian regularizer in (5.11) with a series of experiments on the MNIST [103],

CIFAR-10 [106], LaRED [107] and ImageNet (ILSVRC2012) [108] datasets. The Ja-

cobian regularizer is applied to various DNN architectures such as feed-forward DNN,

Convolutional Neural Network (CNN) and Residual Network [29]. We use the ReLU

non-linearity in all considered DNNs as this is currently the most commonly used non-

linearity.

The objective function in all experiments is of the form:

L(Θ;Sm) = ‘emp(Θ;Sm) +–R(Θ;Sm) ; (5.12)

where Θ is the set of DNN parameters, Sm is the training set, ‘emp(Θ;Sm) is the em-

pirical loss and R(Θ;Sm) is one of the regularizers: the weight decay in (2.50), the

Jacobian regularizer in (5.3) or the per-layer Jacobian regularizer in (5.11). The reg-

ularization factor – balances the contributions of the loss and the regularizer in the

objective function.

5.2.1 Feed-forward Deep Neural Networks

First, we compare standard feed-forward DNNs trained with the weight decay and with

the Jacobian regularizer (5.3) on the MNIST and CIFAR-10 datasets.

Setup

Different number of training samples are used (5000, 20000, 50000). We consider

DNNs with 2, 3 and 4 fully connected layers where all layers, except the last one, have

dimension equal to the input signal dimension, which is 784 in case of MNIST and

3072 in case of CIFAR-10. The last layer is always the softmax layer and the objective

is the Categorical Cross Entropy (CCE) loss. The networks were trained using the

Stochastic Gradient Descent (SGD) with momentum, which was set to 0.9. Batch size

was set to 128 and learning rate was set to 0.01 and reduced by a factor 10 after every

40 epochs. The networks were trained for 120 epochs in total. The weight decay and

the Jacobian regularization factors – were chosen on a separate validation set. The
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experiments were repeated with the same regularization parameters on 5 random draws

of training sets and weight matrix initializations.

Results

Classification accuracies averaged over different experimental runs are shown in Fig-

ure 5.1. We observe that the proposed Jacobian regularizer always outperforms the
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Figure 5.1: Classification accuracy of DNNs trained with the Jacobian regularizer (solid lines)
and the weight decay (dashed lines). Different numbers of training samples are
used: 5000 (red), 20000 (blue) and 50000 (black).

weight decay. This is also in-line with the theoretical results in Section 3.3.3, which

predict that the JM is crucial for the control of (the bound to) the GE. Interestingly,

in the case of MNIST, a 4 layer DNN trained with the Jacobian regularizer and us-

ing 20000 training samples (solid blue line if Figure 5.1 (a)) performs on par with the

DNN trained with the weight decay and using 50000 training samples (dashed black

line Figure 5.1 (a)), which means that using the Jacobian regularizer can lead to the

same performance with significantly less training samples.

5.2.2 Convolutional Neural Networks

In this section we compare the performance of CNNs regularized with the Jacobian

regularizer or the weight decay. We also show that the Jacobian regularizer can be

applied to batch normalized DNNs. We will use the standard MNIST and CIFAR-10

dataset and the LaRED dataset which is briefly described below.

The LaRED dataset contains depth images of 81 distinct hand gestures performed

by 10 subjects with approximately 300 images of each gesture per subject. We extracted

the depth images of the hands using the masks provided in [107] and resized the images
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to 32×32. Examples of depth images are shown in Figure 5.2. The images of the first

6 subjects were used to create non-overlapping training and testing sets. In addition

we also constructed a testing set composed from the images of the last 4 subjects in the

dataset in order to test generalization across different subjects. The goal is classification

of gestures based on the depth image.

(a) (b)

(c) (d)

Figure 5.2: Example of depth images of different gestures in the LaRED dataset.

5.2.2.1 Comparison of the Jacobian Regularizer and the Weight Decay

Setup

We use a 4 layer CNN with the following architecture: (32;5;5)-conv, (2;2)-max-

pool, (32;5;5)-conv, (2;2)-max-pool followed by a softmax layer, where (k;u;v)-conv

denotes the convolutional layer with k filters of size u×v and (p;p)-max-pool denotes

max-pooling with pooling regions of size p×p. The training procedure follows the one

described in the previous paragraphs.

Results

The results are reported in Table 5.1 and Figure 5.3 for MNIST and in Tables 5.2 and

5.3, and in Figure 5.4 for LaRED. We observe that training with the Jacobian regularizer

outperforms the weight decay in all cases. This is most obvious at smaller training

set sizes. For example, on the MNIST dataset, the CNN trained using 1000 training

samples and regularized with the weight decay achieves classification accuracy of 94%
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and the CNN trained with the Jacobian regularizer achieves classification accuracy of

96.3%.

Table 5.1: Classification accuracy [%] of CNN on MINST dataset.

# train samples weight decay Jacobian reg. Per-layer Jacobian reg.

1000 94.00 96.03 94.81
5000 97.59 98.20 97.74

20000 98.60 99.00 98.77
50000 99.10 99.35 99.12
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Figure 5.3: Classification accuracy of CNN on MNIST dataset. Different regularizers are used:
weight decay (WD), Jacobian regularizer (JR) and per-layer Jacobian regularizer
(JR-PL).

Table 5.2: Classification accuracy [%] of CNN on LaRED dataset using the same test subjects.

# train samples weight decay Jacobian reg.

2000 61.40 63.56
5000 76.59 79.14

10000 87.01 88.24
50000 97.18 97.54

Table 5.3: Classification accuracy [%] of CNN on LaRED dataset using different test subjects.

# train samples weight decay Jacobian reg.

2000 31.53 32.62
5000 38.11 39.62

10000 41.18 42.85
50000 45.12 46.78
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Figure 5.4: Classification accuracy of CNN on LaRED dataset. Different regularizers are used:
weight decay (WD) and Jacobian regularization (JR).

Similarly, on the LaRED dataset, the Jacobian regularizer outperforms the weight

decay with the difference most obvious at the smallest number of training samples.

Note also that the generalization of the network to the subjects outside the training set

is not very good; i.e., using 50000 training samples the classification accuracy on the

testing set containing the same subjects is higher than 97% whereas the classification

accuracy on the testing set containing different subjects is only 46%. The reason for

this is that the samples from the training set do not reflect well the samples in the testing

set as they are coming from different subjects. Nevertheless, the Jacobian regularizer

outperforms the weight decay also on this testing set by a small margin.

Comparison of Jacobian and Per-layer Jacobian regularizers

Finally, we also compare the performance of the Jacobian regularizer (see (5.3)) and

the per-layer Jacobian regularizer (see (5.11)) on the MNIST dataset. The results are

reported in Table 5.1 and in Figure 5.3. We can observe that the Per-layer Jacobian

regularizer still outperforms weight decay. However, it does not perform as well as

the Jacobian regularizer. This is expected and can be explained by the fact that the

Per-layer Jacobian regularizer only approximates the Jacobian regularizer.

5.2.2.2 Batch Normalization and the Jacobian Regularizer

Now we show that the Jacobian regularization (5.3) can also be applied to a batch nor-

malized DNN. Note that we have shown in Section 3.3.3 that the batch normalization

has an effect of normalizing the rows of the weight matrices.
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Table 5.4: Classification accuracy [%] of CNN on CIFAR-10 dataset.

# train samples batch norm. batch norm. + Jacobian reg.

2500 60.86 66.15
10000 76.35 80.57
50000 87.44 88.95

Setup

We use the CIFAR-10 dataset and the All-convolutional-DNN proposed in [109] (All-

CNN-C) with 9 convolutional layers, an average pooling layer and a softmax layer. All

the convolutional layers are batch normalized and the softmax layer is weight normal-

ized. The networks were trained using the SGD with momentum, which was set to 0.9.

Batch size was set to 64 and the learning rate was set to 0.1 and reduced by a factor

10 after every 25 epochs. The networks were trained for 75 epochs in total, which is

sufficient for convergence as shown in Figure 5.5.
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Figure 5.5: Training set and testing set accuracies during training of All-convolutional-DNN
on CIFAR-10 dataset with 2500 (black), 10000 (blue) and 50000 (red) training
samples.

Results

The classification accuracy results are presented in Table 5.4 for different sizes of train-

ing sets (2500, 10000, 50000). We can observe that the Jacobian regularization also

leads to a smaller GE in this case. Note that in the case of normalized weight matrix

rows the weight decay is not meaningful.



5.2. Experimental Evaluation of the Jacobian Regularizer 119

Table 5.5: Classification accuracy [%] of Residual Network on CIFAR-10 dataset.

# train samples Residual Network Residual Network + Jacobian reg.

2500 55.69 62.79
10000 71.79 78.70

50000 + aug. 93.34 94.32

5.2.3 Residual Networks

Now we demonstrate that the Jacobian regularizer is also effective when applied to

Residual Networks. All Residual Networks in this section use the batch normalization

[62]. We use the CIFAR-10 and ImageNet datasets. We use the per-layer Jacobian

regularizer (5.11) for experiments in this section, due to its computational efficiency.

5.2.3.1 CIFAR-10

Setup

The Wide Residual Network architecture proposed in [110], which follows [38], but

proposes wider and shallower networks which leads to the same or better performance

than deeper and thinner networks, is used here. In particular, we use the Residual

Network with 22 layers of width 5.

We follow the data normalization process of [110]. We also follow the training

procedure of [110] except for the learning rate and use the learning rate sequence:

(0.01, 5), (0.05, 20), (0.005, 40), (0.0005, 40), (0.00005, 20), where the first number

in parenthesis corresponds to the learning rate and the second number corresponds to

the number of epochs. We train Residual Network on small training sets (2500 and

10000 training samples) without augmentation and on the full training set with the

data augmentation as in [110]. The regularization factor – was set to 1 and 0:1 for the

smaller training sets (2500 and 10000) and the full augmented training set, respectively.

Results

The results are presented in Table 5.5. In all cases the Residual Network trained with

the Jacobian regularizer outperforms the baseline Residual Network. The effect of

regularization is the strongest with the smaller number of training samples, as expected.

5.2.3.2 ImageNet

Setup

We use the 18 layer Residual Network [29] with identity connection [38]. The training
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procedure follows [29] with the learning rate sequence: (0.1, 30), (0.01, 30), (0.001,

30). The Jacobian regularization factor – was set to 1.

The images in the dataset are resized to 128×128. We run an experiment without

data augmentation and with data augmentation following [27], which includes random

cropping of images of size 112×112 from the original image and colour augmentation.

Results

The classification accuracies during training are shown in Figure 5.6 and the final re-

sults are reported in Table 5.6. We first focus on training without data augmentation.

The Residual Network trained with the Jacobian regularizer has a much smaller GE

(23.83%) compared to the baseline Residual Network (61.53%). This again demon-

strates that the Jacobian regularizer decreases the GE, and is in-line with the theory

developed in Chapter 3. Note that the smaller GE of the Residual Network trained

with the Jacobian regularizer partially transfers to a higher classification accuracy on

the testing set. However, in practice DNNs are often trained with data augmentation,

as discussed in Section 2.2.1.5. In this case the GE of a baseline Residual Network is

much lower (13.14%) and is very close to the GE of the Residual Network trained with

the Jacobian regularizer (12.03%). It is clear that data augmentation reduces the need

for strong regularization. Nevertheless, note that the Residual Network trained with the

Jacobian regularizer achieves a slightly higher testing set accuracy (47.51%) compared

to the baseline Residual Network (46.75%).

Table 5.6: Classification accuracy [%] and GE [%] of Residual Network on ImageNet dataset.

Setup Train Test GE

Baseline 89.82 28.29 61.53
Baseline + Jac. reg. 59.52 35.69 23.83

Baseline + aug. 59.89 46.75 13.14
Baseline + aug + Jac. reg. 59.54 47.51 12.03

5.2.4 Computational Time

Finally, we measure how the use of the Jacobian regularizer or the per-layer Jacobian

regularizer affects training time of DNNs. We have implemented DNNs in Theano

[111], which includes automatic differentiation and computation graph optimization,

and is designed to run efficiently on Graphical Processing Units (GPUs). The experi-
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(a) Top-1 accuracy. No data augmentation.
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(b) Top-5 accuracy. No data augmentation.
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(c) Top-1 accuracy. Data augmentation.
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(d) Top-5 accuracy. Data augmentation.

Figure 5.6: Training set (dashed) and testing set (solid) classification accuracies during train-
ing. Blue curves correspond to the Residual Network trained with the Jacobian
regularizer and red curves correspond to the baseline Residual Network. Top-1 and
top-5 classification accuracies are reported for training without data augmentation
(a,b) and for training with data augmentation (c,d).

ments are run on the Titan X GPU.

First, we compare the average computational time per batch for the CNN on the

MNIST dataset in Section 5.2.2.1, where we have used the weight decay regularizer,

the Jacobian regularizer and the per-layer Jacobian regularizer. The measurements are

reported in Table 5.7. We can observe that using the Jacobian regularizer significantly

increases the computational time (825%). This may not be critical if the number of

training samples is small. On the other hand, the per-layer Jacobian regularizer has

a much smaller cost (computational time increase of 75%). Due to its efficiency the

per-layer Jacobian regularizer is more appropriate for large scale experiments where

computational time is critical.

We also report the average batch processing time of the Residual Network on the
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Table 5.7: Average batch processing time of a CNN on the MNIST dataset.

Batch processing time [ms] Increase w.r.t. weight decay

Weight decay 2.74 /
Jacobian reg. 25.35 825%

Per-layer Jacobian reg. 4.82 75%

ImageNet dataset in Section 5.2.3.2, where the per-layer Jacobian regularizer was used.

Since the ImageNet dataset is much larger than the MNIST dataset the computational

time of training is more critical. This is the reason the per-layer Jacobian regularizer

was used in this experiments. The computational time measurements are reported in

Table 5.8. We can observe that the per-layer Jacobian regularizer leads to only 58%

increase in computation time on the ImageNet dataset compared to the baseline.

Table 5.8: Average batch processing time of a ResNet on ImageNet dataset.

Batch processing time [s] Increase w.r.t. baseline

Baseline 0.120 /
Per-layer Jacobian reg. 0.190 58%

5.3 Invariance Regularizer
In Chapter 4 we have focused on a scenario where there exists a set of transformations

T = {ti}T−1i=0 that applied to an input x, i.e., t(x), t ∈ T , do not change the class label.

We have also defined the invariant DNN for which it holds:

f (ti (x)) = f (tj(x)) ∀x ∈ X0;∀ti ; tj ∈ T : (5.13)

The theory in Chapter 4 suggests that invariance of a DNN improves its generalization

when there are symmetries present in the data. Invariance may be achieved in some

cases by an appropriately designed DNN. However, it may be the case that we do not

know how to design a DNN that is invariant or want to use an existing (non-invariant)

DNN architecture. To achieve approximate invariance of such DNNs we propose the

following invariance regularizer

RI(Θ;Sm) =
mX
i=1

X
t∈T
‖f (xi )− f (t(xi ))‖22 ; (5.14)
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where Θ is the set of DNN parameters and Sm is the training set. The invariance

regularizer promotes approximate invariance of a DNN by enforcing a similar repre-

sentations at the DNN output (measured by the ‘2-norm) for a sample transformed by

different transformations in T . Note also that data augmentation, which is often used

when training DNNs, does not apply explicit invariance regularization in (5.14).

5.4 Experimental Evaluation of the Invariance Regu-

larizer
We now evaluate the invariance regularizer of the CIFAR-10 dataset [106].

The objective function in all experiments is of the form:

L(Θ;Sm) = ‘emp(Θ;Sm) +–JR
l
JF (Θ;Sm) +–IRI(Θ;Sm) ; (5.15)

where Θ is the set of DNN parameters, Sm is the training set, ‘emp(Θ;Sm) is the empir-

ical loss, RlJF (Θ;Sm) is the per-layer Jacobian regularizer (5.11) and RI(Θ;Sm) is the

invariance regularizer (5.14). The regularization factors –J and –I balance the contribu-

tions of the per-layer Jacobian regularizer and the invariance regularizer, respectively.

Setup

The CIFAR-10 dataset is normalized following [110], and the Wide Residual Network

[110] with 13 layers of width 5 is used. The networks are trained using SGD and the

learning rate is set to 0.01 for the first epoch and then to 0:05, 0:005 and 0:0005, each

for 30 epochs. We use 103, 104, 2 · 104 and 5 · 104 training samples. The regulariza-

tion factors –J is set to 0:1 with smaller training sets (2500, 5000, 10000) and 0:05

otherwise. Batch size is set to 128.

SGD batches are constructed as follows: the first half of the batch contains images

from the training set and the other half of the batch contains transformed versions of

the images in the first half of the batch where the transformations are chosen at random.

The set of transformations contains shifts of ±{1;2;3;4} pixels and horizontal flips, as

in [110]. For the Invariance regularizer we chose to regularize the output of the last

global pooling layer instead of the softmax output. Moreover, we do not sum over all

transformations in T as in (5.14), but only over the original sample in the first half of the

batch and a random transformation in the second half of the batch. The regularization
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factor –I in all experiments is set to 10−4.

Results

Table 5.9 reports the standard test accuracy and the accuracy of the predictions aver-

aged over the augmented test set (denoted by + avg.), which are obtained as follows: for

each test image we average the softmax outputs for the original image, shifted images

(9×9 shifts) and horizontally flipped images. Note that this method requires approxi-

mately 160 forward passes through a network to obtain a prediction and is often used

in practice to improve the robustness of classification, as discussed in Section 2.2.1.5.

Results are reported for the case when the invariance regularizer is not used, i.e. –I = 0,

and for the case when the Invariance regularizer is used. The results are also plotted in

Figure 5.7.

The training set accuracies were 100% or very close to 100% in all cases. First,

we observe that invariance regularization leads to a lower GE (a higher accuracy) in

all cases. Moreover, testing with predictions averaged over the augmented test set

is even more robust and leads to a lower GE for both, the regularized and the non-

regularized DNNs. However, DNNs trained with explicit invariance regularization

(except when 2500 training samples are used) perform better or on par with a non-

regularized network even when the predictions are averaged over the augmented test

set (see Figure 5.7(b)). Moreover, averaging over the augmented test set is approxi-

mately 160 times more expensive than conventional testing, which requires to evaluate

the DNN only once. This experiment verifies the hypothesis that enforcing the network

invariance explicitly improves the robustness and leads to a smaller GE.

Table 5.9: Classification accuracy [%] on CIFAR-10 dataset.

number of training samples
2500 5000 10000 20000 50000

No reg. (–I = 0) 68.71 76.74 85.17 87.15 93.65
Inv. Reg. 69.32 79.08 86.69 88.14 94.50

No reg. (–I = 0) + avg. 70.59 78.40 86.05 88.13 94.26
Inv. Reg. + avg. 70.71 79.65 86.96 88.98 94.78
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(a) Comparison of performance with and with-
out Invariance regularizer.
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(b) Comparison of Invariance regularizer and
averaging predictions over augmented testing
set.

Figure 5.7: Classification accuracies of Wide Residual Network on CIFAR-10 dataset with and
without Invariance regularizer and with and without prediction averaging.

5.5 Summary
In this chapter we have proposed and experimentally evaluated the Jacobian regularizer

and the invariance regularizer. Both are motivated by the data structure based theory of

generalization for DNNs presented in Chapters 3 and 4.

We have shown that the regularization of the network’s JM, which in contrast to

the weight decay may be combined with the weight normalization or the batch nor-

malization, is an effective regularization method, especially in the limited training data

regime, with moderate increase in computational complexity. Similarly, the invariance

regularizer reduces the sensitivity of a DNN to input transformations, which conse-

quently leads to a better generalization.





Chapter 6

Conclusions

In this thesis we have focused on the Generalization Error (GE) of Deep Neural Net-

works (DNNs). In spite of the great success of DNNs in practical applications, the

GE of DNNs is one of the many theoretical aspects that are not well understood. We

have proposed a novel theoretical approach for bounding the GE that leads to novel in-

sights and regularization methods, and also offers interesting opportunities for further

research.

6.1 Summary and Conclusions
We now briefly summarize the thesis.

• We have started the thesis by overviewing the most important work in the lit-

erature associated with DNNs in Chapter 2. We have focused on the work that

studies the GE of DNNs and noted that many existing bounds do not apply to

DNNs, since these GE bounds either scale exponentially with the DNN depth

or grow with the number of DNN parameters. Both cases contradict practice

where very deep or very wide DNNs have been demonstrated to generalize well

[29, 38]. Since the existing bounds use tools that link the GE to the ability of a

DNN to fit noise, and very deep or wide DNNs are very powerful approximators,

these techniques unsurprisingly provide loose bounds.

• The literature review in Chapter 2 motivated us to seek novel GE bounds that are

better aligned with practice. Our proposed GE bounds, which are based on the

classification margin and the covering number of the data, are the topic of Chap-

ter 3. The main result can be stated as follows: provided that a DNN achieves
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some classification margin on a training set, the GE of the DNN will be propor-

tional to the square root of the ratio of the covering number, where the radius of

metric balls is given by the classification margin, and the number of the train-

ing samples. Therefore, given a finite covering number of the data, which as we

discuss often scales not with the ambient dimension, but rather with the intrinsic

dimension of the data, our generalization bounds imply that DNNs of arbitrary

depth or width will generalize well. As discussed in Chapter 2, the fact that very

deep or wide DNNs generalize well also holds in practice.

• In Chapter 3 we have also provided an analysis of geometrical properties of

DNNs. In particular, we have shown that the network’s Jacobian Matrix (JM)

controls the expansion of the distance between signals at the DNN input and dis-

tance between signals at the DNN output. This provides a rationale for training

DNNs by promoting separation of training samples at the DNN output while en-

forcing constraints on the JM in order to ensure that the separation at the DNN

output is translated into a large classification margin at the DNN output. A large

classification margin leads to a more robust DNN with a lower GE.

• Our proposed GE bounds in Chapter 3 relate the GE to the properties of the data

via its covering number. This motivates us to further explore how symmetries in

the data affect the GE bounds. This is the topic of Chapter 4, where we model

symmetries in the data as a product of a discrete set of transformations and a

base set of signals. We also assume that the classification task is invariant to

these transformations, i.e., the class label of the input is the same for all transfor-

mations, and we define an invariant DNN for which the output for a given input

is the same for all possible transformations of this input. We then show, using

the tools from Chapter 3, that the GE bound of an invariant DNN does not scale

with the covering number of the data, but rather with the covering number of the

base set. We also provide a set of conditions on the geometry of the base set and

the set of transformations that show that the ratio between the covering number

of the data and the covering number of the base space is greater than or equal to

the size of the set of transformations. In this case the ratio of GE bounds of a

non-invariant DNN and an invariant DNN corresponds to the square root of the
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size of the set of transformations. The conclusion is that an invariant DNN may

have a much smaller GE than a non-invariant DNN.

• Finally, in Chapter 5 we propose two regularization schemes that are motivated

by the theory developed in Chapters 3 and 4. First, we propose the Jacobian regu-

larizer, where we constrain the norm of the JM during training. The intuition that

follows from the classification margin bounds in Chapter 3 is the following: the

training objective will increase the separation of different classes at the network

output, while a bounded norm of the JM ensures that this separation at the out-

put of the network leads to a large classification margin. The experiments show

that the proposed method is effective and outperforms the standard weight decay,

especially when the number of training samples is small.

We also propose the invariance regularizer, which is motivated by the definition

of the invariant DNN in Chapter 4. The invariance regularizer promotes a similar

representation (measured in the Euclidean distance) of the same training sample

transformed by different transformations in the set of transformations. We show

experimentally that this reduces the sensitivity of the network to transformations

of the input and leads to a lower GE.

6.2 Future Work
The work in this thesis also provides many potential future research directions.

• Extension to regression and unsupervised learning. The focus of this thesis

are DNNs applied to classification problems. We believe that the current results

may be extended to regression problems. However, even more interesting would

be extension of this theory to generative models. For example, DNNs are used as

generative models in Generative Adversarial Networks (GANs) and are trained

in unsupervised fashion [112]. Clearly, there is a question of how many train-

ing samples are needed for a generative DNN to generalize well. Moreover, in

Chapter 4 we have explored the role of data symmetries in the generalization of

DNNs. We believe that the same principles should hold in generative DNNs. In

particular, if some of the possible symmetries are encoded in a generative DNN

it should be more straight forward to generate samples.
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• Better data models and covering numbers. In Chapter 3 we have shown that

GE of a DNN scales with the covering number of the data, provided that the DNN

achieves a positive classification margin. We have shown examples of sparse

models and manifold models where the covering number grow exponentially

with the intrinsic dimension of the data and not with the ambient dimension.

Although these models are quite general there is a possibility to explore other

models and their covering numbers that would allow us to provide tighter GE

bounds for particular classes of signals. For example, cartoon functions [113]

may be used as a model for natural images and have been used to study the prop-

erties of the discrete Scattering transform [48]. Similarly, the multi-layer con-

volutional sparse coding model [114], which have been shown to closely model

the behaviour of Convolutional Neural Networks (CNNs), may provide a better

model for the data.

• Extension to learned invariance. There are many symmetries that are present

in real world data, however, they can not be modelled explicitly. For example,

a good face recognition DNN will be invariant to facial expressions. It seems to

be the case in practice that DNNs learn to be at least approximately invariant (or

less sensitive) to such transformations [115]. The current results in Chapter 4 are

not able to capture the role of such invariances and it would be interesting to see

if we can obtain similar bounds even for the case when the data symmetries are

not predefined but are learned.

• Relationship between the DNN optimization, the JM and the GE. We have

shown in Chapter 3 that a bounded JM of a DNN ensures that separation of

training samples at the network output is transferred to its input. We also know

from the works that study optimization of DNNs that a well behaved JM (sin-

gular values close to 1) are beneficial for optimization of DNNs. Therefore, the

possible further direction is to explore if the methods that improve the optimiza-

tion properties of DNNs also implicitly lead to a better classification margin and,

therefore, to a smaller GE.

• Transfer learning, multi-modal learning and the GE. It has been observed in

practice that a DNN trained on a large image classification training set can also
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be used on other related, but different tasks. Usually, all the layers of the DNN

except the last one are fixed, and the last one is adopted to the new task [116].

This is especially relevant when there is only a small training set available for the

task at hand, and a pre-trained DNN significantly improves performance. This is

an example of transfer learning.

Intuition behind the results in this thesis says that what is achieved by pre-training

of a DNN is a reduction of the data complexity perceived by the new task, which

leads to a much better generalization. A possible future work could, therefore,

try to provide a principled theory of generalization for transfer learning by con-

sidering the similarity of data structure between the datasets.

Similar question may be asked in the case of multi-modal learning where we may

observe two modalities of the same phenomena. Intuitively, if the modalities

share some common structure, learning a DNN with one modality should reduce

the sample complexity of learning the second modality.





Appendix A

Proofs of Chapter 3

A.1 Proof of the Jacobian Property (Theorem 3.2)

We first note that the line between x and x′ is given by x+u(x′−x), u ∈ [0;1] . We de-

fine the function F (t) = f (x+u(x′−x)), and observe that dF (u)du = J(x+u(x′−x))(x′−

x). By the generalized fundamental theorem of calculus or the Lebesgue differentiation

theorem we write

f (x′)− f (x) = F (1)−F (0)

=
Z 1

0

dF (u)

du
du

=
Z 1

0
J(x+u(x′−x))du (x′−x) : (A.1)

This concludes the proof.

A.2 Proof of the Distance Expansion Bound

(Corollary 3.3)

First note that ‖Jx;x′(x′ − x)‖2 ≤ ‖Jx;x′‖2‖x′ − x‖2 and that Jx;x′ is an integral of

J(x+u(x′−x)). In addition, notice that we may always apply the following upper

bound:

‖Jx;x′‖2 ≤ sup
x;x′∈X ;u∈[0;1]

‖J(x+u(x′−x))‖2 : (A.2)

Since x+u(x′−x) ∈ conv(X ) ∀u ∈ [0;1], we get (3.20).
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A.3 Proof of the Jacobian Matrix Spectral Norm

Bounds (Lemma 3.1)

In all proofs we leverage the fact that for any two matrices A, B of appropriate dimen-

sions it holds ‖AB‖2 ≤ ‖A‖2‖B‖2, where ‖A‖2 is the spectral norm of A [105]. We

also leverage the bound ‖A‖2≤‖A‖F , where ‖A‖F is the Frobenious norm of A [105].

We start with the proof of statement 1). For the non-linear layer (3.29), we note

that the Jacobian Matrix (JM) is a product of a diagonal matrix (3.30) and the weight

matrix Wl . Note that for all the considered non-linearities the diagonal elements of

(3.30) are bounded by 1 (see derivatives in Table 3.1), which implies that the spec-

tral norm of this matrix is bounded by 1. Therefore, the spectral norm of the JM is

upper bounded by ‖Wl‖2. The proof for the linear layer is trivial. In the case of

the softmax layer (3.22) we have to show that the spectral norm of the softmax func-

tion
“
−“(ẑ)“(ẑ)T + diag(“(ẑ)

”
is bounded by 1. We use the Gershgorin disc theorem,

which states that the eigenvalues of
“
−“(ẑ)“(ẑ)T + diag(“(ẑ)

”
are bounded by

max
i

(“(ẑ))i (1− (“(ẑ))i ) + (“(ẑ))i
X
j 6=i

(“(ẑ))j ; (A.3)

where “(·) is the softmax function and (“(ẑ))i is the i-th element of “(ẑ).

Noticing that
P
j 6=i (“(ẑ))j ≤ 1 leads to the upper bound

max
i

(“(ẑ))i (2− (“(ẑ))i ) : (A.4)

Since (“(ẑ))i ∈ [0;1] it is trivial to show that (A.4) is upper bounded by 1.

The proof of statement 2) is straightforward. Because the pooling regions are

non-overlapping it is straightforward to verify that the rows of all the defined pooling

operators Pl(zl−1) are orthonormal. Therefore, the spectral norm of the JM is equal

to 1.
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A.4 Proof of the Classification Margin Bounds

(Theorem 3.3)

Throughout the proof we will use the notation o(si ) = o(xi ; yi ) and vi j =
√

2(‹ i −‹ j).

We start by proving the inequality in (3.35). Assume that the classification mar-

gin ‚d(si ) of training sample (xi ; yi ) is given and take j? = arg minj 6=yi v
T
yi j
f (xi ).

We then take a point x? that lies on the decision boundary between yi and j?

such that o(x?; yi ) = 0. Then

o(xi ; yi ) = o(x; yi )−o(x?; yi )

= vTyi j?(f (xi )− f (x?))

= vTyi j?Jxi ;x?(xi −x?)≤ ‖Jxi ;x?‖2‖xi −x?‖2: (A.5)

Note that by the choice of x?, ‖xi − x?‖2 = ‚d(si ) and similarly ‖Jxi ;x?‖2 ≤

supx:‖x−xi‖2≤‚d (si ) ‖J(x)‖2. Therefore, we can write

o(si )≤ sup
x:‖x−xi‖2≤‚d (si )

‖J(x)‖2 ‚
d(si ); (A.6)

which leads to (3.35). Next, we prove (3.36). Recall the definition of the classification

margin in (3.9):

‚d(si ) = sup{a : ‖xi −x‖2 ≤ a =⇒ g(x) = yi ∀x}

= sup{a : ‖xi −x‖2 ≤ a =⇒ o(x; yi )> 0∀x} ;

where we leverage the definition in (3.34). We observe o(x; yi ) > 0 ⇐⇒

minj 6=yi v
T
yi j
f (x)> 0 and

min
j 6=yi

vTyi j f (x) = min
j 6=yi

“
vTyi j f (xi ) +vTyi j(f (x)− f (xi ))

”
:

Note that

min
j 6=yi

“
vTyi j f (xi ) +vTyi j(f (x)− f (xi ))

”
≥min
j 6=yi

vTyi j f (xi ) + min
j 6=yi

vTyi j(f (x)− f (xi ))

= o(xi ; yi ) + min
j 6=yi

vTyi j(f (x)− f (xi )) : (A.7)
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Therefore,

o(xi ; yi ) + min
j 6=yi

vTyi j(f (x)− f (xi ))> 0 =⇒ o(x; yi )> 0 :

This leads to the bound of the classification margin

‚d(si )≥ sup{a : ‖xi −x‖2 ≤ a =⇒

o(xi ; yi ) + min
j 6=yi

vTyi j(f (x)− f (xi ))> 0∀x} :

Note now that

o(xi ; yi ) + min
j 6=yi

vTyi j(f (x)− f (xi ))> 0 (A.8)

⇐⇒

o(xi ; yi )−max
j 6=yi

vTyi j(f (xi )− f (x))> 0 (A.9)

⇐⇒

o(xi ; yi )>max
j 6=yi

vTyi j(f (xi )− f (x)) : (A.10)

Moreover,

max
j 6=yi

vTyi j(f (xi )− f (x))≤ sup
x∈conv(X )

‖J(x)‖2‖xi −x‖2 ;

where we have leveraged the fact that ‖vi j‖2 = 1 and the inequality (3.20) in Corollary

3.3. We may write

‚d(si )≥ sup{a :‖xi −x‖2 ≤ a =⇒

o(xi ; yi )> sup
x∈conv(X )

‖J(x)‖2‖xi −x‖2∀x}:

a that attains the supremum can be obtain easily and we get:

‚d(si )≥
o(xi ; yi )

supx∈conv(X ) ‖J(x)‖2
; (A.11)

which proves (3.36). The bounds in (3.37) and (3.38) follow from the bounds provided

in Lemma 3.1 and the fact that the spectral norm of a matrix product is upper bounded
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by the product of the spectral norms. This concludes the proof.

A.5 Proof of the Batch Normalization Property

(Theorem 3.4)

We denote by WN
l the row normalized matrix obtained from Wl (in the same way as

(3.63)). By noting that the ReLU and diagonal non-negative matrices commute, it is

straight forward to verify that

[N
“
{zli}mi=1;Wl

”
Wlz

l ]ff = N
“
{zli}mi=1;W

N
l

”
[WN

l z
l ]ff :

Note now that we can consider N({zli}mi=1;W
N
l ) as the part of the weight matrix Wl+1.

Therefore, we can conclude that layer l has row normalized weight matrix. When the

batch normalization is applied to layers, all the weight matrices will be row normal-

ized. The exception is the weight matrix of the last layer, which will be of the form

N({zL−1i }mi=1;WL)WL.

A.6 Proof of the Manifold Distance Expansion

Property (Theorem 3.5)

We begin by noting that

f (x′)− f (x) = f (c(1))− f (c(0))

=
Z 1

0

df (c(u))

du
du

=
Z 1

0

df (c(u))

dc(u)

dc(u)

du
du ; (A.12)

where the first equality follows from the generalized fundamental theorem of calculus,

following the idea presented in the proof of Theorem 3.2. The second equality follows

from the chain rule of differentiation. Finally, we note that df (c(u))c(u) = J(c(u)) and that
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the norm of the integral is always smaller or equal to the integral of the norm and obtain

‖f (x′)− f (x)‖2 =

‚‚‚‚‚
Z 1

0
J(c(u))

dc(u)

du
du

‚‚‚‚‚
2

≤
Z 1

0
‖J(c(u))‖2

‚‚‚‚‚dc(u)

du

‚‚‚‚‚
2

du

≤ sup
u∈[0;1]

‖J(c(u))‖2
Z 1

0

‚‚‚‚‚dc(u)

du

‚‚‚‚‚
2

du

= sup
u∈[0;1]

‖J(c(u))‖2dG(x;x′) ; (A.13)

where we have noted that
R 1
0

‚‚‚dc(u)du

‚‚‚
2

= dG(x;x′).
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Proofs of Chapter 4

B.1 Proof of Generalization Error (GE) of an Invariant

Deep Neural Network (DNN) (Theorem 4.1)
We show that under the assumptions of this theorem the DNN is (N (X0;d;!=2);0)-

robust (see Definition 2.4). The GE bound then follows from theorems 3.1 and 3.3.

We construct a covering as follows. Take the covering that leads to the covering

number N (X0;d;!=2) and denote the subsets of X0 by Ki , i = 1; : : : ;N (X0;d;!=2).

By the definition of X in (4.7) we can cover X by N (X0;d;!=2) sets of the form

T ×Ki , i = 1; : : : ;N (X0;d;!=2).

Now take xi in the training set and x ∈ X such that xi ;x ∈ T ×Kj . Due to the in-

variance of f we have ‖f (xi )− f (x)‖2 < ‚ and all x will lie in the same decision region

as xi . This implies that stable and invariant learning algorithm is (N (X0;d;!=2);0)-

robust. The GE bound follows from Theorem 3.1.

B.2 Proof of Covering number Ratio Bounds

(Theorem 4.2)
Consider any covering of X0 that leads to the covering number N (X0;d;›). Denote

the metric balls of radius › that cover X0 by Ci , i = 1; : : : ;N (X0;d;›). Denote the

elements of T as tj , j = 1; : : : ;T and the transformed sets by tj(X0) = {tj(x) : x ∈ X0},

j = 1; : : : ;T .

First, we show that (4.18) implies that any possible metric ball of radius › can only

have non-empty intersection with one of the “copies” of X0. Denote by B an arbitrary
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metric ball of radius ›. Then

B∩ tj(X0) 6= ∅ =⇒ B∩ tk(X0) = ∅ ∀k 6= j: (B.1)

To see this, observe that the definition of B implies that d(x;x′)≤ 2›, ∀x;x′ ∈ B. Now

take a point x∈B∩tj(X0) and a point x′ ∈ tk(X0), k 6= j . Note that by (4.18) d(x;x′)>

2›, which implies that x′ 6∈ B and, therefore, B ∩ tk(X0) = ∅. This implies that the

covering number of X with metric ball of radius › is

N (X ;d;›) =
TX
j=1

N (tj(X0);d;›) : (B.2)

Finally, it remains to be proven that N (tj(X0);d;›) ≥ N (X0;d;›) ∀tj ∈ T , which is

straightforward to establish given the condition (4.19). This proves (4.20). Proof of

(4.22) is trivial as X0 = X when (4.21) holds.
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