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ABSTRACT 

Familial myelodysplastic syndromes arise from haploinsufficiency of genes involved in 

hematopoiesis and are primarily associated with early-onset disease. Here we describe a 

familial syndrome in 7 patients from 4 unrelated pedigrees presenting with myelodisplastic 

syndrome and loss of chromosome 7/7q. Median age at diagnosis was 2.1 (1-42) years, all 

patients presented with thrombocytopenia with or without additional cytopenias and a 

hypocellular marrow without increase of blasts. Genomic studies identified constitutional 

mutations (p.H880Q, p.R986H, p.R986C and p.V1512M) in SAMD9L gene on 7q21, with 

decreased allele frequency in hematopoiesis. The nonrandom loss of mutated SAMD9L alleles 

was attained via monosomy 7, deletion 7q, UPD7q, or acquired truncating SAMD9L variants 

p.R1188X and p.S1317RfsX21. Incomplete penetrance was noted in 30% (3/10) of mutation 

carriers. Long-term observation revealed divergent outcomes with either leukemic progression 

and/or accumulation of driver mutations (n=2), persistent monosomy 7 (n=4), and transient 

monosomy 7 followed by spontaneous recovery with SAMD9L-wildtype UPD7q (n=2). 

Dysmorphic features or neurological symptoms were absent in our patients, pointing to the 

notion that myelodisplasia with monosomy 7 can be a sole manifestation of SAMD9L disease. 

Collectively, our results define a new subtype of familial myelodisplastic syndrome and provide 

an explanation for the phenomenon of transient monosomy 7. www.clinicaltrials.gov; 

#NCT00047268 
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INTRODUCTION 

Germline predisposition has been recognized as an underlying cause for the development of 

myelodysplastic syndromes (MDS) in children. Recently, it has also been gaining importance in 

the etiology of adult myeloid neoplasia (MN), particularly in cases with a positive family history. 

In addition to inherited bone marrow failure syndromes (IBMFS), a number of genes are known 

to be associated with heritable forms of MDS and acute myeloid leukemia (AML)(1, 2), i.e. 

GATA2(3), CEBPA(4), RUNX1(5), ANKRD26(6), ETV6(7) and DDX41(8). Germline mutations in 

DDX41 can result in adult onset MN, while aberrations in RUNX1 and GATA2 are associated with 

MN in younger individuals. We recently reported that GATA2 deficiency is the most common 

genetic cause of primary childhood MDS, accounting for 15% of all advanced MDS cases, and 

37% of MDS with monosomy 7 (MDS/-7)(9). However, in the majority of pediatric MDS, and 

also in a considerable number of familial MN cases, the presumed germline cause has not yet 

been discovered(10) (11).  

Monosomy 7 is the most frequent cytogenetic lesion in children with MDS and, unlike in adults, 

it often occurs as the sole cytogenetic abnormality(12). Due to the rapid and progressive 

disease course it is considered an urgent indication for hematopoietic stem cell transplantation 

(HSCT)(13). However, transient monosomy 7 has been occasionally documented in childhood 

MDS(14-16). Considering that complete (-7) and partial (del(7q)) deletion of chromosome 7 are 

common aberrations in MDS, extensive efforts have been undertaken to discern causative 

tumor suppressor genes located on chromosome 7.  Asou and colleagues identified SAMD9 

(Sterile Alpha Motif Domain-containing 9), its paralogue SAMD9L (SAMD9-like), and 

Miki/HEPACAM2 as commonly deleted genes within a 7q21 cluster in patients with MN(17). 
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Notably Samd9l-haploinsufficient mice were shown to develop myeloid malignancies 

characterized by different cytopenias and mimicking human disease with monosomy 7(18).  

In line with these findings, germline heterozygous gain-of-function (GoF) SAMD9L mutations 

p.H880Q, p.I891T, p.R986C, and p.C1196S were recently discovered in 4 pedigrees with variable 

degrees of neurological (ataxia, balance impairment, nystagmus, hyperreflexia, dysmetria, 

dysarthria) and hematological (single to tri-lineage cytopenias, MDS/-7) symptoms. For most 

carriers, the clinical presentation was compatible with the diagnosis of ataxia-pancytopenia 

(AT) syndrome(19, 20). Similarly, in two recent studies, we and others reported de novo GoF 

mutations in SAMD9 in a total of 18 patients with MIRAGE syndrome (myelodysplasia, infection, 

restriction of growth, adrenal hypoplasia, genital phenotypes, and enteropathy), of whom 4 

notably also developed MDS/-7(21, 22), however not all patients develop the full MIRAGE 

disease spectrum, as documented in one family with SAMD9-related MDS(23).  SAMD9 and 

SAMD9L genes share 62% sequence identity and apart from their putative role as myeloid 

tumor suppressors, the general function and their specific effect pertaining to hematopoiesis 

are not well-understood(18).  

In this study we aimed to identify the genetic cause in pedigrees with nonsyndromic familial 

MDS. We discovered constitutional SAMD9L mutations associated with nonrandom patterns of 

clonal escape leading to loss of the mutant allele. We further demonstrate in two cases that 

SAMD9L–related disease can be associated with transient -7, occurring as a one-time clonal 

event followed by somatic correction of hematopoiesis achieved by UPD7q with double wild 

type SAMD9L.  
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METHODS 

Patients 

Diagnosis of MDS was established according to the WHO criteria(24, 25). Patients 1 (P1), 2 (P2), 

5 (P5), and 7 (P7) were enrolled in the prospective study 98 of the European Working Group of 

MDS in Childhood (EWOG-MDS) (www.clinicaltrials.gov; #NCT00047268). Patient 6 (P6) was the 

father of P5 (family III). Family II (P3 and P4) was referred for evaluation of familial MDS from 

the Phoenix Children´s Hospital, USA. The study had been approved by the institutional ethics 

committee (University of Freiburg, CPMP/ICH/135/95 and 430/16). Written informed consent 

had been obtained from patients and parents. 

 

Genomic studies and bioinformatics 

Exploratory whole exome sequencing (WES) was performed in bone marrow granulocytes (BM-

GR) in P1 and P2, as outlined in the supplement. Targeted deep sequencing (DS) for 

SAMD9/SAMD9L and MDS/IBMFS-related genes was performed in other patients, except for P3 

and P6 due to unavailability of material. All relevant variants were validated using Sanger 

sequencing. For germline confirmation, DNA was extracted from skin fibroblast and/or hair 

follicles, and targets were amplified and sequenced as previously described(9). The degree of 

deleteriousness was calculated using the combined annotation-dependent depletion scoring 

system (CADD-score)(26). The variants with CADD-scores higher than 20 were further evaluated 

towards their role in hematological disease or cancer, thereby focusing on the top 1% most 

deleterious variants in the human genome. In addition, the pathogenicity calculations were 

achieved using standard prediction tools. The evolutionary conservation across species and the 



Pastor et al., 2017           SAMD9L-related familial MDS 

6 

 

physicochemical difference between amino acids was estimated by PhyloP, PhastCons and 

Grantham score respectively(27). Mutant clonal size was inferred from allelic frequencies and 

the total number of NGS reads normalized to the ploidy level. Further details are provided in 

supplementary methods.  

 

Evaluation of variant allelic configuration 

Genomic DNA of P1 collected at the time point of progress to chronic myelomonocytic 

leukemia (CMML) was amplified to obtain a 1333 bp region encompassing both SAMD9L 

mutations p.V1512M (germline) and p.R1188X (acquired). PCR products were TA-cloned and 

sequenced as previously reported(28). Sequences of 170 colonies were evaluated for the 

presence of SAMD9L mutations.  

 

Cellular and functional studies 

Metaphase karyotyping and interphase fluorescence in situ hybridization (FISH) were 

performed using bone marrow (BM) specimens according to standard procedures(12). Human 

colony forming cell (CFC) assays were performed in P1 (at CMML disease stage) and in P7 (at 

diagnosis) as previously described(29). Further, to evaluate the effect of the patient-derived 

SAMD9L p.V1512M and p.R986C mutations on cellular proliferation, 293FT cells were dye-

labeled and consequently transfected with wild type or mutant teal fluorescent protein (TFP)-

SAMD9L as previously described(20). The transfected cells were tracked by flow cytometry for 

TFP-SAMD9L expression and dye dilution as an indicator of cell division. SAMD9L variant 

p.T233N recently reported as “disease-protective” (20) was used as control.   
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RESULTS 

Clinical phenotype of patients 

Patients P1-P6 (4 males and 2 females) belong to 3 unrelated families of German descent and 

were diagnosed with bona fide familial MDS after the exclusion of known IBMFS achieved by 

targeted sequencing and functional tests (Figure 1, Table 1). Index patient P7 is the only child of 

a non-consanguineous Swedish family.  Detailed clinical description of all patients is outlined in 

the supplement. All affected individuals had normal measurements without dysmorphic 

stigmata at birth and at last follow-up (Table 1). Psychomotor development and neurocognitive 

function were normal, in particular no ataxia or movement disorder were diagnosed in the 10 

mutation carriers (7 patients and 3 silent carriers with SAMD9L mutations). Previous family 

histories were unremarkable for cytopenias, neurological disease, malignancies, or stillbirths, 

with the exception of father of P7 who at the last follow-up presented with unclear ataxia. Prior 

non-invasive recurrent respiratory tract infections were noted in 3/7 patients (P1, P2, and P4) 

and endogenous eczema in 2 (P1 and P3). Moreover, P1 developed transient pancytopenia 

during infancy and suffered from self-limiting seizures during infancy with no structural brain 

abnormalities or neurological deficits identified. Peripheral blood findings at diagnosis included 

isolated thrombocytopenia in one (P2), thrombocytopenia with neutropenia in two (P1, P3) and 

pancytopenia in 4 patients (P4-7). MCV was elevated in 5/7 patients at diagnosis, and HbF in 2 

out of 3 tested patients. MDS manifested at the median age of 2.1 (1.0-42) years as 

hypocellular RCC or in the adult (P6) refractory cytopenia with multilineage dysplasia (RCMD, 

Table 1). Severe dysplasia with vacuolization was observed in 2 patients (P1-2). A common 

cytogenetic feature in all patients was the complete or partial loss of chromosome 7 (Table 1).  
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The clinical course was remarkable for several patients. P1 developed 3 years after the initial 

diagnosis of RCC severe infections and hepatosplenomegaly, and for the first time required 

platelet transfusions, while his blood smear depicted 21% blasts  compatible with the diagnosis 

of CMML (with no in vitro GM-CSF hypersensitivity), (Figure 2). Following HSCT, he developed 

late-onset acute GVHD and died from cerebral hemorrhage. At the same time, his younger 

sister (P2) was diagnosed with RCC/-7, however the parents decided against follow-up in 

hematology clinic. Unexpectedly, her complete blood count (CBC) normalized 3.7 years later 

and remained stable until last follow-up 20 years after the initial diagnosis. She achieved a 

spontaneous remission as supported by normalization of BM morphology/cellularity and 

cytogenetics (Figure 2, Table 1). A similar clinical picture was seen in P7 who was diagnosed 

with RCC with a -7 clone at the age of 2.1 years, and experienced rapid cytogenetic remission 

with normal marrow and blood counts until the last follow-up, 16 years after diagnosis (Table 

1). In P4, shortly after initial manifestation, hematology normalized, however FISH revealed 

chromosome 7 loss in BM, which gradually increased and after 3.5 months culminated in the 

emergence of two independent clones with -7 and del(7q) (Table 1).  

Due to high-risk cytogenetics and disease progression, 5/7 patients (P1, P3-6) underwent HSCT 

after myeloablative conditioning. At last follow-up, 6 out of 7 patients were alive, 4 after HSCT, 

and 2 without therapy. 

 

Constitutional and acquired SAMD9L mutations 

Exploratory WES performed in family I identified two shared candidate variants in P1 and P2 

evaluated as highly conserved and deleterious by in silico prediction: SAMD9L (p.V1512M) and 



Pastor et al., 2017           SAMD9L-related familial MDS 

9 

 

PTEN (p.Y188C), (Table 2, Figure S1). Sequencing of DNA from hair follicles confirmed the 

constitutional nature of both novel mutations. SAMD9L p.V1512M variant was inherited from 

the mother (Figure 1A) whereas PTEN p.Y188C was of paternal origin; both parents were 

asymptomatic and had normal CBC at the time of testing. Finally, truncating acquired SAMD9L 

mutation p.R1188X (VAF 5.9%) was identified in P1 in hematopoiesis (Table 2). 

In pedigree II, targeted NGS in P4 revealed SAMD9L p.R986H as the most plausible candidate 

constitutional mutation predicted to be highly conserved and deleterious (Table 2, Figure 1A-B). 

This mutation was found in 4 individuals in ExAC (out of 120976 alleles). Additional missense 

variants in JAK3 p.A877V (ExAC: 11 individuals, 121372 alleles), and FANCM p.L57F (ExAC: 195 

individuals, 121190 alleles) had lower and  moderate pathogenicity scores, respectively (Table 

2). Chromosomal breakage studies on P4 were negative thus arguing against a pathogenic role 

of the heterozygous FANCM variant.  Germline analysis revealed SAMD9L and JAK3 variants in 

P3, P4, and their father, while the FANCM variant was transmitted from the mother only to P4. 

Both parents were asymptomatic.  

In pedigree III, the SAMD9L p.R986C mutation was identified in P5 and the affected father, P6 

(Figure 1A). This mutation has been reported in a family with ataxia-pancytopenia phenotype, 

with 1 of 3 carriers developing MDS/-7 at the age of 18 months(20). The HLA-identical brother 

of P5 was thoroughly evaluated as a potential BM donor. He was clinically healthy and had 

normal CBC,  but he did not qualify as a donor because of hypocellular BM with mild dysplastic 

features. He was also carrier of the p.R986C mutation. 
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In P7 of pedigree IV, targeted NGS identified two SAMD9L mutations (Table 2): missense 

p.H880Q with VAF of 27% out of 8139 reads (likely constitutional; this mutation was reported in 

multiple individuals within a family with ataxia pancytopenia but no MDS phenotype) and 

nonsense p.S1317RfsX21 likely acquired in a subclone as inferred from the much lower VAF of 

10% (5934 reads). In summary, inherited SAMD9L mutations p.V1512M, p.R986H, p.R986C 

were identified in 3 families (each with 2 individuals diagnosed with MDS/-7 and 1 healthy 

carrier, Figure 1A-B), and p.H880Q in P7 who presented with transient  monosomy 7. 

 

Acquired mutations in known oncogenes 

All patients with exception of P3 and P6 were evaluated for the presence of somatic mutations 

in leukemia-associated genes using WES or targeted NGS. In P1 previously reported leukemia 

driver mutations SETBP1 p.D868N, EZH2 p.V582M, KRAS p.Q61P were identified as somatic 

(Table 2, Figure S2). Similarly, in P5 a somatic RUNX1 mutation c.413_427+5dup20bp was 

detected (Table 2). This is a novel splice-donor site mutation with no occurrence in databases. 

No additional mutations in leukemia driver genes were observed in other affected cases. 

 

Clonal escape mechanisms from SAMD9L mutations are not random 

In comparison with other constitutional variants, SAMD9L missense mutations showed 

significantly lower median allelic frequencies across all patients (53% vs. 20%, p<0.05, Table 2). 

This finding was corroborated by the consistent partial or complete loss of chromosome 7 

(Figure 3, Table 1). In P1, -7 progressively expanded from 60% at time of RCC diagnosis to 95% 

at CMML progression. In addition, P1 and P7 harbored subclones with acquired stop-gain 
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SAMD9L mutations located upstream of the constitutional missense substitutions (Figure 3). TA 

cloning confirmed cis orientation of both mutations on the same chromosome in P1 (Figure 1C). 

Western blot of 293T cells transiently transfected with double-mutated (p.V1512M/p.R1188X) 

SAMD9L plasmid revealed stable expression of truncated protein (not shown).  In P2 and P7, 

the initial -7 disappeared and was replaced by a large somatic clone with uniparental disomy 

(UPD) 7q that duplicated the paternal wildtype SAMD9L allele (Figure 3-4).  

  

Natural history of SAMD9L-related MDS reveals divergent clinical outcomes 

We next studied in detail the disease course in patients who were left untreated for longer 

periods of time. In P4, the evolution from normal karyotype to independent clones with -7 and 

del(7q) was rapid and occurred within a few months (Table 1). Cytogenetic progress was 

associated with partial recovery of CBC and normalization of BM cellularity, pointing to the 

possibility of HSC niche repopulation by -7/del(7q) retaining only the wildtype SAMD9L allele. 

P1 developed CMML 3.6 years after initial diagnosis of MDS/-7. This patient carried somatic 

driver mutations representing major subclones co-existing within -7 background (Table 2). 

Additional somatic SAMD9L mutation p.R1188X (co-occuring in cis- with p.V1512M) was found 

in a minor clonal fraction of ~6%.  

In contrast, P2 and P7 showed an unexpected clinical course with spontaneous hematologic 

recovery, disappearing monosomy 7 and the presence of large double wildtype UPD7q clone in 

BM (Figure 4-5). Both patients remained healthy, had normal follow-up BM examinations with 

no signs of dysplasia (Table 1), and normal CBC until last FUP, 20 (P1) and 16 (P7) years after 

initial diagnosis.  



Pastor et al., 2017           SAMD9L-related familial MDS 

12 

 

 

SAMD9L mutations inhibit cell proliferation  

Inhibitory effect on cell proliferation reported for SAMD9L mutants overexpressed in 293FT 

cells in vitro was termed as gain-of-function (GoF). In contrary, ectopic expression of p.T233N 

was shown to mitigate cell proliferation to a smaller extent in comparison to WT SAMD9L, and 

was categorized as a disease-protective or loss-of-function (LoF) variant(20). SAMD9L p.R986H 

was previously functionally studied and shown to be GoF (20), while p.H880Q was shown to 

induce LOH by -7/del(7q) or UPD7q in an EBV-transformed cell line in vitro(19).  To determine 

the effect of the SAMD9L MT identified in families I and III, we transiently transfected 293FT 

cells with vectors containing disease-associated mutations p.V1512M and p.R986C respectively, 

along with the LoF variant p.T233N. Cell proliferation was assessed in dye dilution assays. Both 

SAMD9L p.V1512M and p.R986C decreased dye dilution in comparison to SAMD9L WT and 

p.T233N (Figure 6A-B), pointing to an amplified growth restrictive effect of the disease-

associated variants (Figure 6B).   
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DISCUSSION 

In this study, we describe a familial MDS syndrome caused by heterozygous missense mutations 

in SAMD9L gene located on chromosome 7q21. We present 7 individuals from 4 unrelated 

pedigrees who developed MDS/-7 from the age of 1 to 42 years without any neurological 

involvement. Compared to the reported SAMD9L mutation carriers (19, 20), hematology was 

the sole clinical manifestation in our cases. Other novel findings outlined here are the 

description of the somatic mutational landscape likely contributing to MDS progression, the 

observation of transient monosomy 7, and finally the occurrence of nonrandom revertant 

mosaicism leading to complete hematological recovery.  

The SAMD9L mutations p.R986H, p.R986C, p.V1512M identified in this cohort affect 

evolutionary highly conserved amino acid residues, are assessed as pathogenic by in silico 

prediction. The mutation p.H880Q (P7) shows a weak conservation score, however, this 

mutation had already been reported as causative for the ataxia pancytopenia phenotype (19). 

We were not able to test SAMD9L genetics in P7, however the unclear ataxia this patient had 

been evaluated for at last visit points to a carrier status and indicates that there must be an 

overlap between sole hematological and ataxia phenotype in SAMD9L disease. Summarizing all 

SAMD9L mutations recently reported or identified in our cohort, a total of 6 germline mutations 

can be discerned (p.H880Q, p.I981T, p.R986H, p.R986C, p.C1196S, and p.V1512M). Of note, all 

these mutations cluster exclusively to the C-terminal half of the protein. Further, upon 

comparing reported mutations in the paralogue gene SAMD9 (p.R982H/C)(22) with that of the 

present study in SAMD9L (p.R986H/C), we identified a potential mutational hotspot affecting 
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highly conserved regions in both SAMD9L (p.984-989: GVRIIH) and SAMD9 (p980-985: GVRIIH) 

proteins.  

The reported constitutional variants in both SAMD9/SAMD9L were classified as GoF based on 

the observation of decreased cell proliferation in a 293T cell line(20-22). Similarly, we observed 

growth deficiency in 293T cells harboring SAMD9L p.V1512M and p.R986C. Based on these 

findings, one cautious speculation hints at a GoF effect that is cell toxic. This can be supported 

by the discovery of an acquired stopgain SAMD9L mutations in P1 and P7 that likely “eliminate” 

germline missense mutations. In the cases studied here, complete or partial deletion of 

chromosome 7 and also UPD7q was nonrandom and each time resulted in loss of the germline-

mutated SAMD9L gene copy. Additional studies are essential to further define the effect of 

SAMD9L variants, might be challenging due to the growth inhibitory effect of the alterations.  It 

also remains to be answered if SAMD9L missense mutations lead to an increased protein 

stability, alter the protein structure, enhance an unknown functional domain, or exert a 

completely neomorphic effect.  

We describe 3 silent mutation carriers from separate families demonstrating no previous 

medical history. Despite normal CBC and MCV, the brother of P5 exhibited a hypocellular 

marrow with mild dysplasia, evidently attributed to the identical pathogenic SAMD9L mutation. 

This finding emphasizes the necessity of thorough hematological workup including marrow 

studies in potential sibling donors especially when they lack a genetic marker for familial 

disease. The intrafamiliar heterogeneity regarding the hematologic presentation remains 
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elusive; one can speculate that other yet unknown genetic or epigenetic mechanisms might act 

as modifiers.  

Thus far only limited knowledge exists about the regulation and cellular functions of SAMD9L. It 

has been postulated that both SAMD9L and the adjacent paralogous SAMD9 gene share 

functional  redundancy, shaped by a long term, possibly virus-induced selective pressure(30). 

Both genes can be upregulated by type I and II interferons(20, 31-33) and by this might 

suppress inflammatory pathways and exert anti-viral properties(31, 34). Although there was no 

evidence for a defined immunodeficiency in our cohort, 3/7 patients experienced recurrent 

respiratory infections with or without cytopenias before they developed RCC/-7.  

Further evidence supports that SAMD9/SAMD9L genes act as tumor suppressors as their 

inactivation is associated with increased cellular proliferation, i.e. in normophosphatemic 

familiar tumoral calcinosis (SAMD9), in hepatitis B virus-associated hepatocellular carcinoma 

(SAMD9L), in MDS/AML with microdeletion in 7q21 (both genes), and in SAMD9L-

haploinsufficient mice. Based on the observations in this murine model, the cytokine-receptor 

complexes cannot be properly degraded due to impaired endosomal function in SAMD9L-

haploinsufficient cells, which results in constitutive intracellular signaling with prolonged cell 

survival(18). Moreover, SAMD9L
+/-

 and SAMD9L
-/- 

mice develop MDS with normo/hypercellular 

BM, drawing an a parallel to human SAMD9L-related MDS where the initial marrow 

hypocellularity associated with “toxic” mutation is restored upon the loss of mutant SAMD9L 

allele. This loss is accomplished through -7, del(7q) or UPD7q, and leads to proliferative 

advantage with clonal expansion. In our cohort, although initially all patients presented with 
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hypocellular marrow, longer observation periods in P1, P2, P4, and P7 revealed successive 

normalization of marrow cell content associated with increasing -7/del(7q) clone or appearance 

of UPD7q. In P1, the leukemic progression was further aggravated with the accumulation of 

typical MDS driver mutations in SETBP1, KRAS and EZH2 within the -7 clone. P5 also 

demonstrated an acquired splice site mutation in RUNX1, a known leukemic driver gene. 

Notably, typical adult MDS driver mutations  (i.e. TET2, DNMT3A, IDH1/2) were not 

encountered in our cohort. This is in line with previously published findings discussing rather 

SETBP1, RAS pathway mutations and RUNX1 (identified in our SAMD9L-mutated patients) as 

recurrent drivers of pediatric MDS (10). Building on our observations we propose the following 

mechanism of MDS evolution in SAMD9L disease: BM attempts to circumvent the toxicity of 

constitutional SAMD9L mutation and selects for fitter, yet premalignant -7/del(7q) clones (with 

only one wildtype SAMD9L copy), or benign clones with truncated SAMD9L (Figure 3). Over 

time the resulting haploinsufficiency of tumor supressor genes on 7q (e.g. EZH2 or CUX1) in all 

patients likely provide the first step towards progression. Finally, additional driver somatic 

mutations might be encountered in some but not all patients.  

Somatic revertant mosaicism has been reported in IBMFS with hypocellular BM, including 

telomeropathy with germline mutations in TERT(35), and Fanconi anemia where mosaicism in 

blood occurs at rates of up to 140x higher than in general population(36, 37). However, in 

general, revertant mosaicism is a rare facet to clonal hematopoiesis because spontaneous 

correction of the pathogenic allele is a random event. In our study, we report two patients (P2 

and P7) who presented with RCC/-7 at young age and demonstrated complete hematopoietic 

remission with normal cytogenetics throughout an observation period ranging from 16 to 20 
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years. The clinical picture of these patients fits the previously described transient monosomy 7 

syndrome; to our knowledge 8 patients with primary MDS with transient -7 or del(7q) were 

reported in the literature (14-16, 38-40). Their age at diagnosis ranged from 8 months to 3 

years, and spontaneous remission was achieved within 1-20 months from diagnosis. It seems 

that the -7 clones in our patients either spontaneously vanished or were outcompeted by 

“fitter” UPD7q-corrected clones with diploid copy of wild type SAMD9L allele.  Based on these 

observations, a watch-and-wait strategy might be proposed for younger patients with RCC/-7 

who have no additional somatic driver mutations and are clinically stable. However, prolonged 

“watchful waiting” poses the risk of progression as witnessed in P1, who advanced to CMML 

and acquired oncogenic mutations 3.6 years after he was diagnosed of RCC.  

In conclusion, our observations establish the molecular basis of a distinct subtype of familial 

MDS and point to the notion that MDS with chromosome 7 loss can be the sole and common 

manifestation of SAMD9L-related disease. The negative mutational effect leads to escape and 

outgrowth of clones carrying -7/del(7q) with only wildtype SAMD9L allele, which might 

spontaneously dissapear or persist and provide the first step towards disease progression. 

Finally, this is the first description of long-term revertant mosaicism due to nonrandom UPD7q 

in SAMD9L disease, and a plausible explanation for transient monosomy 7 syndrome.  
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Table 1. Clinical data of SAMD9L-mutated patients. 

UPN, unique patient number; syndr., syndromic; w, gestational week; RTI, respiratory tract infection (including otitis, bronchitis, pneumonia); yrs.; years of age; mo, months of age; Dx, diagnosis; RCC, 

refractory cytopenia of childhood; CMML, chronic myelomonocytic leukemia; BM, bone marrow; E, erythropoiesis, M, myelopoiesis; n.p., not performed; PB, peripheral blood; Plt, platelets; MCV, mean 

corpuscular volume (according to age); WBC, white blood count; ANC, absolute neutrophil count; Dysplasia: +, mild; ++, moderate; +++, severe. N, normal;  

*with occasional small dysplastic megakaryocytes. ‡ 51% of metaphases with monosomy 7, of those 17% additionally showed hypoploid metaphases with involvement of chromosome 9, 14, 19, 21. 

 

 

 

 

 

Patient # 

(UPN); 

sex 

Gestational age; 

measurements 

Dysmorphic 

feat., neurol. 

symptoms 

Prior medical problems 
Timepoint; 

MDS subtype 

PB findings              

(Plt, WBC, ANC: x10
9
/L; 

Hb: g/dL) 

BM findings Cytogenetics 

      
Cellularity Dysplasia 

Blasts 

(%) 
Metaphases 

FISH chr. 

7 

P1 (D084); 

male 

39w: 3550g (P>50-

75), 50cm (P20) 
none 

recurrent RTI and endogenous 

eczema since infancy,  transient 

pancytopenia at 6 mo, Plt↓, 

ANC↓ at 2 yrs; self-limiting 

seizures at 3 yrs 

3.4yrs; RCC 
Plt↓ (41), WBC↓/ANC↓ 

(4.3/0.34), MCV↑ 
↓ 

+++ 

vacuolization 

in E+M 

<5 45,XY,-7 [6] / 46,XY [10] 60% 

7yrs; progress: CMML 

Plt↓, WBC↑ (mono: 21%, 

blasts: 10%, erythro-

blasts: 26%) 

N +++ 5 45,XY,-7 [5] 95% 

P2 (D154); 

female 

34w: 2670g (P75-

90), 49cm (P90) 
none recurrent RTI since age 1.5 yrs 

2.0yrs; RCC Plt↓ (96), MCV↑ ↓ 

+++  

vacuolization 

in M 

<5 45,XX,-7
‡
 77% 

5.7yrs normal, MCV↑ n.p. n.p. n.p. n.p n.p 

12yrs normal, MCV↑ N + <5 46,XX n.p 

13yrs normal, MCV↑ N N <5 n.p. normal 

14, 15, 17, 18yrs normal, MCV↑ N N <5 46,XX normal 

22yrs normal, MCV↑ n.p. n.p. n.p. n.p. n.p. 

P3 (US1); 

female 

40w: 4080g (P90-

97), 53cm (P50) 
none endogenous eczema 20mo; RCC 

Plt↓ (88), ANC↓ (0.54), 

MCV↑ 
↓ + <5 45,XX,-7 [3] / 46,XX [18] 16% 

P4 (US2); 

male 

41w: 3540g (P25-

50), 52cm (P40) 
none 

recurrent RTI and endogenous 

eczema since infancy 

12mo; RCC 
Plt↓ (5), ANC↓ (0.43), 

Hb↓ (8.3), HbF↑ (5.2%) 
↓ ++ <5 46,XY [20] normal 

13mo ANC↓ (0.88), Hb↓ (9.8) N N 7 46,XY [20] normal 

15mo normal N N <5 46,XY [20] 5.5% 

17mo normal, HbF↑ (11.3%) N N <5 n.p. 15% 

18.5mo ANC↓ (0.6) N N <5 

45,XY,-7 [6] / 

46,XY,del(7)(q11.2q36) [4] / 

46,XY [10] 

19% 

P5 (D637);       

male 

40w: 3875g (P75), 

54cm (P75) 
none none 7.7yrs; RCC 

Plt↓ (64), WBC↓/ANC↓ 

(1.7/0.08), Hb↓ (9.8), 

MCV↑, HbF↑ (5.7%) 

↓ ++ <5 
45,XY,-7, der(18;21) 

(q10;q10),+21 [20/20] 
n.p. 

P6 (D637f);     

male 
term: normal none none 42yrs; RCMD 

Plt↓ (72), WBC↓/ANC↓ 

(2.0/1.4), Hb↓ (5.8), 

MCV↑ 

↓ ++ <5 
45,XY,der(1;7)(q10;p10)[11]/ 

46,XY[5] 
n.p. 

P7 (SC054); 

female 
term: normal none 

pancytopenia and hypocellular 

marrow at 1.7yrs 

2.1yrs; RCC 
Plt↓ (74), WBC↓/ANC↓ 

(4.0/0.8), Hb↓ (10.2) 
N + <5 45,XX,-7 [4] / 46,XX [17] 

-7 

confirmed 

2.3yrs Plt↓ (90), Hb↓ (10.5) ↑ + <5 46,XX [25] normal 

5, 6, 7.5, 11, 12, 18yrs normal, HbF↑ (1.2-2.8%) N N <5 normal normal 
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Table 2. Overview of germline and somatic mutations. 

Mut    

type 
  

Patient # 

(UPN) 

Time 

point, age 

-7% (FISH / 

Metaphases) 

 

Genotype 

 

Myeloid 

Sample 
VAF% (depth)  

Germline 

source 

Conservation

/ PhysChem 

diff. 

Effect (SIFT / 

MutTaster / 

Polyphen 2 / 

PredictSNP) 

CADD-

Score 

ExAC 

browser 

n°./ % in 

population 

G
E
R
M
L
IN
E
 

Family I 

P1 (D084)        
7yrs 

(CMML) 
60% / [6/16] 

SAMD9L
m

 c.4534G>A p.V1512M BM-GR 
WES

8.3% (277), 
DS

13.3%(2755) 
- High / Small D/P/D/D(65%) 25.2 none 

PTEN
p
 c.563A>G p.Y188C BM-GR 

WES
57.5% (80) - High / Large D/-/D/D(61%) 25.8 none 

P2 (D154)        17yrs 0% / - 
SAMD9L

m
 c.4534G>A p.V1512M BM-GR 

WES
21.5% (424), 

DS
19.3% (1261) 

HR (Sanger) High / Small D/P/D/D(65%) 25.2 none 

PTEN
p
 c.563A>G p.Y188C BM-GR 

WES
59.7% (62) HR (Sanger) High / Large D/-/D/D(61%) 25.8 none 

Father   - PTEN c.563A>G p.Y188C PB Sanger HR (Sanger) High / Large D/-/D/D(61%) 25.8 none 

Mother   - SAMD9L c.4534G>A p.V1512M PB 
DS

49.0% (13116) HR (Sanger) High / Small D/P/D/D(65%) 25.2 none 

Family II 

P3 (US1)    20mo 16% / [3/21] 
SAMD9L

p
 c.2957G>A p.R986H PB Sanger HR (Sanger) High / Small D/D/D/D(87%) 26.5 4/0.003% 

JAK3
p
 c.2630C>T p.A877V PB Sanger HR (Sanger) Weak / Small T/N/B/N(74%) 23.3 11/0.01% 

P4 (US2)      15mo 5.5% / [0/20] 

SAMD9L
p
 c.2957G>A p.R986H PB 

DS
43.0% (252) HR (Sanger) High / Small D/D/D/D(87%) 26.5 4/0.003% 

JAK3
p
 c.2630C>T p.A877V PB 

DS
48.1% (n.a.) HR (Sanger) Weak / Small T/N/B/N(74%) 23.3 11/0.01% 

FANCM
m

 c.171G>C p.L57F PB 
DS

49.0% (401) HR (Sanger) Weak / Small D/D/B/D(52%) 17.9 195/0.32% 

Father   - 
SAMD9L c.2957G>A p.R986H PB Sanger HR (Sanger) High / Small D/D/D/D(87%) 26.5 4/0.003% 

JAK3 c.2630C>T p.A877V PB Sanger HR (Sanger) Weak / Small T/N/B/N(74%) 23.3 11/0.01% 

Mother   - FANCM c.171G>C p.L57F PB Sanger HR (Sanger) Weak / Small D/D/B/D(52%) 17.9 195/0.32% 

Family III 

P5 (D637) 7.7yrs  - / [20/20] SAMD9L
p
 c.2956C>T p.R986C BM-GR 

DS
7.5% (3422) FB (Sanger) High / Large D/N/B/D(87%) 21.7 none 

P6 (father) 42yrs  - / [11/16] SAMD9L c.2956C>T p.R986C PB Sanger - High / Large D/N/B/D(87%) 21.7 none 

Brother   - SAMD9L
p
 c.2956C>T p.R986C PB Sanger - High / Large D/N/B/D(87%) 21.7 none 

Family IV P7 (SC054) 2.3yrs  - / [0/25] SAMD9L c.2640C>A p.H880Q BM-GR 
DS

27% (8139) - Weak / Small T/-/D/-(-) 23.7 none 

A
C
Q
U
IR
E
D
 

 

 

P1 (D084)        
7yrs 

(CMML) 
60% / [6/16] 

SAMD9L c.3562C>T p.R1188X BM-GR 
WES

5.9% (202) 
DS

8.0% (884) 
-   novel, stop-gain 35 - 

 

 

KRAS c.182A>C p.Q61P BM-GR 
WES

37.7% (106) -   known driver mut. 28.2 - 

 

 

SETBP1 c.2602G>A p.D868N BM-GR 
WES

47.8% (355) -   known driver mut. 26.7 - 

 

 

EZH2 c.1744G>A p.V582M BM-GR 
WES

69.2% (130) -   known driver mut. 34 - 
 

 P5 (D637) 7.7yrs  - / [20/20] RUNX1 c.413_427+5dup20bp   BM-GR Sanger FB (Sanger)   novel, splice donor n.a. - 
 

 P7 (SC054) 2.3yrs  - / [0/25] SAMD9L c.3951_3955delTAAAG* p.S1317RfsX21 BM-GR 
DS

10% (5934) -   novel, stop-gain 28.8 - 

Abbreviations: Mut, mutation; UPN, unique patient number; BM, bone marrow; PB, peripheral blood; GR, granulocytes; HR, hair follicles; FB, skin fibroblast; m., maternal origin; p., paternal origin; VAF, 

variant allelic frequency; WES, whole exome sequencing; DS, targeted deep sequencing; Sanger, identified by Sanger sequencing; n.a., not available; +yrs/mo, years/months after diagnosis. Evolutionary 

conservation scores, Phylop and PhastCons; PhysChem diff., physicochemical difference between amino acids. In-silico prediction: SIFT: T-tolerated, D-deleterious; Mutation Taster: D-disease causing, N-

polymorphism, P-polymorphism automatic; PolyPhen2: D-probably damaging, B- benign; PredictSNP consensus classifier: D-deleterious, N-neutral (% accuracy). Combined annotation-dependent 

depletion (CADD-score) of 20 means that a variant is amongst the top 1% of deleterious variants in the human genome; CADD-20=1%, CADD-30=0.1%, CADD-40=0.01%, CADD-50=0.001%. * mutation 

classified as acquired based on low allelic frequency 

Gene annotations: SAMD9L (NM_001303500.1), EHZ2 (NM_152998), SETBP1 (NM_015559), KRAS (NM_004985.4), FANCM (NM_001308134), JAK3 (NM_000215), PTEN (NM_000314.4), RUNX1 

(001001890). 
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FIGURE LEGENDS 

Figure 1. Germline SAMD9L mutations in pedigrees with familial MDS.  

(A) Identification of 4 pedigrees with MDS and monosomy 7 harboring germline heterozygous 

SAMD9L mutations: p.V1512M (pedigree I), p.R986H (pedigree II) and p.R986C (pedigree III), p. 

p.H880Q (pedigree IV), and somatic mutations: p.R1188X (P1) and p.S1317RfsX21 (P7). Dotted 

symbols indicate healthy mutation carriers. Sanger sequencing on DNA extracted from hair 

follicles (HR) confirmed germline status of mutations as visualized in electropherograms. 

Sequencing in P1 was performed on peripheral blood granulocytes (GR) revealing a minor 

mutational peak, corresponding to a variant allelic frequency of 8.3% by WES. In pedigree III, 

the mutation in P5 was confirmed in fibroblast (FB) DNA, while for P6 and remaining family 

members whole blood (WB) was analyzed. In pedigree IV other family members were not 

tested (n.t.). (B) SAMD9L and SAMD9 gene orientation on 7q22 in reverse strand direction (3‘-

5‘). SAMD9L protein is coded by one exon and contains two known functional sites: N-terminal 

sterile alpha motif (SAM) and nuclear localization sequence (NLS). Four germline and two 

somatic (*) mutations were identified in SAMD9L. Germline missense mutations are 

evolutionarily highly conserved. (C) TA cloning of double mutated SAMD9L region of P1 

revealed cis-configuration of mutations p.V1512M (germline) and p.R1188X (somatic) in 10 out 

of 172 clones tested. 

 

Figure 2. Bone marrow findings in P1, P2 at different timepoint of disease course.  

H&E staining of bone marrow (BM) at diagnosis of RCC in P1 showing dysplastic  granulopoiesis 

with hypergranulation and a pseudo Pelger cell (top left), myeloblast and dysplastic eosinophil 

(top right). BM at diagnosis in P2 (synchronous with monosomy 7) showing hypergranulation 

and vacuolization in myelocytes, and dysplastic erythropoiesis with double nuclei (bottom left).  

Normal BM morphology in P2, 15 years after initial BM confirming spontaneous phenotype 

reversion (bottom right). 

 

Figure 3. Mechanisms of clonal escape from SAMD9L germline mutations.  

Multiple mechanisms of clonal escape from damaging germline missense SAMD9L mutations 

are observed and lead to complete (monosomy 7) or partial (deletion 7q) loss of chromosome 7 

with decreasing mutant SAMD9L allele (red circles), both situations can lead to MDS 

development; UPD7q and truncating somatic SAMD9L mutations (green circles), which show 

benign outcome and contribute to normal hematopoiesis. Multiple clonal outcomes can occur 

in single patient. 

 

Figure 4. Loss of mutated SAMD9L allele due to genomic deletion or mitotic recombination.  
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Variant allelic frequency (VAF) scores for chromosome 7 in P1 and P2. SNPs and Indels detected 

using whole exome sequencing (~4000 variants with a VAF score > 5% and < 95%), depict a 

complete loss of chromosome 7 in P1, as the VAF scores are either low or high. P2, unlike P1 

demonstrates a partial loss of the Chr 7 after position 7q11.22 towards the q terminal site. The 

read depth of the SNPs for P2 was maintained throughout for Chr7 with no loss thus confirming 

the LOH is due to UPD and not -7q. Whole exome sequencing VAF values are marked by a star 

within the graph. Abbreviations: VAF, variant allelic frequency; UPD, uniparental isodisomy. 

Blue line: centromere; red line: SAMD9L gene position; yellow dotted line: start of UPD. 

For P7, targeted NGS identified 14 informative (heterozygous) polymorphisms located on 

chromosome 7q with an average depth of 1036 reads (supplementary table 1). SNPs are 

represented in a VAF graph depicting the skewing of heterozytosity towards one allelle ocurring 

after position g.66098482 (rs3764903). 

 

Figure 5. Clonal evolution and spontaneous reversion due to UPD7q. 

Clonal evolution model in P2 (D154) depicting disease history during an observation period of 

20 years. At diagnosis, initial bone marrow harbored monosomy 7 (77% by FISH and 51% by 

metaphase karyotyping). Blood counts normalized 3.7 years later and since then P2 maintained 

normal CBC until last follow-up at age of 22 years. From age of 12 years, repetitive yearly BM 

examinations revealed normocellular hematopoiesis with no dysplasia and normal 

cytogenetics. BM collected at age of 17 years (*) was subjected to whole exome and targeted 

deep sequencing. Germline heterozygous SAMD9L mutation p.V1512M was detected at a 

variant allelic frequency (VAF) of ~20%, corresponding to a clonal size of ~40% in a diploid 

chromosome 7 background. Concurrently, a spontaneous genetic correction of the SAMD9L 

locus occurred resulting from uniparental isodisomy (UPD)7q of paternal origin. This self-

corrected clone occurred either initially (dotted line) or after termination of monosomy 7 and 

contributed to normal hematopoiesis. Abbreviations: Dx, diagnosis; pat, paternal origin; mat, 

maternal origin; UPD; uniparental isodisomy, LFU; last follow-up.  

 

Figure 6. Functional evaluation of SAMD9L mutations. 

(A-B) The effect of SAMD9L mutations on cell proliferation was assessed by dye dilution assays. 

293FT cells were transiently transfected with TFP-SAMD9L wild type (WT), the disease-

associated mutations p.R986C and p.V1512M, and the protective variant p.T233N previously 

reported by Tesi et al(20). (A) Histograms depict the dye levels in transfected cells. Dye levels 

were monitored in TFP-transfected cells (filled grey histograms) and compared to cells 

expressing uniformly intermediate levels of TFP-SAMD9L wild type (blue histograms) or variants 

(red/orange lines), as indicated. A single representative experiment is shown. (B) Cumulative 

summary of three independent experiments on inhibition of cell proliferation associated with 

indicated TFP-SAMD9L mutations. Values (mean +/- SD) are calculated based on a scale defined 

by 0 (dye levels in TFP-transfected cells) and -1 (dye levels in cells transfected with TFP-SAMD9L 

wild type). Unpaired t-test, two tailed: * p<0.05; ** p<0.005; *** p<0.001. 
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Figure S1. Shared variants found by WES in P1 and P2  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Legend: The Y axis corresponds to the average VAF % of all detected shared mutations in both siblings and the X axis the calculated CADD-scores. The vast majority 

of mutations show a low degree of deleteriousness with a CADD-score lower than 20. Framed in red, 50 highly deleterios variants of which 48 were exonic. Among 

them, germline mutations in SAMD9L (p.V1512M) and PTEN (p.Y188C) were observed. 
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Figure S2. Individual mutations found in P1 by WES  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Legend: Indivudial exonic variants in P1 and P2. Highly deleterios (CADD>20) variants were 58 and 45 variant in P1 and P2 respectively. Known leukemic driver genes 

were affected uniquely in P1 in addtion to a novel non-sense variant in the SAMD9L gene. In contrast, no significant mutations involved in blood disease or cancer 

were found in P2. 
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Table S1. Allelic frequencies of informative chromosome 7q polymorphisms in P7       
         

Gene Isoform Genomic Position SNP cDNA  VAF (allele 1) VAF (allele 2) dbSNP:MAF 
           

KCTD7 NM_001167961 66098482 rs3764903 c.314+51G>A Het. G 52% A 48% 46% 

GTPBP10 NM_033107 89984409 rs42664 c.329A>G Het. A 28% G 72% 49% 

DYNC1I1 NM_004411 95709602 rs42083 c.1702-73C>T Het. C 24% T 76% 44% 

DYNC1I1 NM_004411 95709666 rs42082 c.1702-9C>A Het. C 24% A 76% 44% 

CUX1 NM_001202544 102000000 rs11540899 c.1089G>A Het. G 75% A 25% 46% 

TAS2R4 NM_016944 141478574 rs2234001 c.286G>C Het. G 74% C 26% 47% 

CLCN1 NM_000083 143042837 rs2272251 c.2154C>T Het. C 68% T 32% 48% 

TMEM176B NM_014020 150491084 rs3173833 c.280A>C Het. A 73% C 27% 46% 

SLC4A2 NM_001199694 150768786 rs2303937 c.2160G>A Het. G 25% A 75% 45% 

PRKAG2 NM_016203 151504499 rs10257529 c.115-20872C>T Het. C 73% T 27% 42% 

DPP6 NM_001936 154667643 rs2230064 c.1725G>A Het. G 77% A 23% 18% 

UBE3C NM_014671 156971581 rs870745 c.616+40T>C Het. T 71% C 29% 37% 

DNAJB6 NM_005494 157162068 rs9692250 c.346+1891T>C Het. T 24% C 76% 34% 

DNAJB6 NM_005494 157162103 rs12672981 c.346+1926A>G Het. A 25% G 75% 45% 
 
 
Average read depth obtained for all 14 polymorphisms: 1036x. 
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CASE DESCRIPTIONS 

 

In family I, the older brother P1 suffered from recurrent respiratory tract infections (RTI) and 

endogenous eczema manifesting in infancy. The first documented complete blood count (CBC) during an 

infectious episode at the age of 6 months showed pancytopenia (platelets 39x10
9
/L neutrophils 

0.67x10
9
/L Hb 7.7g/dL). Anemia spontaneously improved but platelet and neutrophil counts remained 

low normal. The first bone marrow (BM) aspirate performed at the age of 2 years showed a reduced cell 

content and dysplasia with vacuolization in the myeloid and erythroid lineages and BM eosinophilia. 

Hemoglobin F, Vitamin B12, folate and immunoglobulin levels as well as lymphocyte subpopulations 

were within normal range and there were no signs of autoimmunity. The patient remained stable 

without transfusions. A second BM aspirate performed at the age of 3.4 years confirmed myelodysplasia 

(Figure 2); chromosomal studies showed monosomy 7 in 6 of 16 metaphases. P1 was diagnosed with 

refractory cytopenia of childhood (RCC). He suffered transient cerebral seizures without the need of 

anticonvulsant therapy, while a cranial CT scan was normal. At the age of 6.5 years, he presented with 

hemorrhagic varicella with secondary pneumonia and required platelet transfusions for a first time. At 

the age of 7 years, he had developed hepatosplenomegaly and showed 21% blasts on peripheral blood 

smear. There was no spontaneous growth in in vitro GM-CSF hypersensitivity assay AML induction 

chemotherapy was complicated by bacterial sepsis and respiratory failure. Following recovery, 

thioguanine maintenance therapy was administered. He received an HSCT from a matched unrelated 

donor (MUD). Hematological reconstitution was slightly delayed (WBC day +19, platelets day +63, RBC 

day +49) with stable complete chimerism. At day +138 late, grade III acute GvHD (gut stage 3, liver stage 

2, liver stage 2) manifested, and he died 10 days later from acute CNS hemorrhage. 
 
P2 is the younger sister of P1 and presented with recurrent respiratory tract infections at the age of 18 

months. The first documented CBC at the age of 2 years revealed thrombocytopenia (Table 1). BM was 

hypocellular with severe dysplasia, vacuolization similar to what had been observed in P1 (Figure 2). 

Monosomy 7 was detected in 77% FISH-interphases and 51% metaphases with hypoploid metaphases in 

one subclone (Table 1). After the death of her brother, P2 did not visit the hematology clinic until two 

years later for tonsillectomy due to recurrent RTI. Her CBC revealed only mild thrombocytopenia 

(85x10
9
/L) and leukopenia (4.4x10

9
/L) without neutropenia. When she was 5.7 years old her CBC 

normalized and remained within the normal range since. A second BM examination at the age of 12 

years revealed normal cellularity with slight dysplastic changes and normal cytogenetics. All subsequent 

marrow analyses in nearly yearly intervals were normal without any signs of MDS or monosomy 7 (Table 

1, Figure 2). P2 did not suffer from infectious episodes and at last follow-up (FUP) at the age of 22 years 

she was in good general condition. 

 

In family II the older sister (P3) had unremarkable postnatal development with the exception of chronic 

endogenous eczema, and petechial rash manifesting at the age of 1 year. No recurrent infections were 

observed. Her CBC performed during routine 18 months evaluation revealed thrombocytopenia, 

neutropenia and elevated MCV. Initial BM was hypocellular with mild erythroid dysplasia, and without 

increase of blasts. Cytogenetics uncovered monosomy 7 in 3/21 metaphases and 16% FISH-interphases. 

Six months later she was successfully transplanted from a MUD after myeloablative conditioning. At last 

FUP she was 6 years 4 months old and in good general condition. 
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P4 is the younger brother of P3. He suffered from recurrent RTI since infancy. His initial hematologic 

presentation during an episode of acute otitis media at the age of 12 months was pancytopenia with 

severely hypocellular BM and dysgranulopoiesis (Table 1). Evolving MDS-RCC or toxic stromal damage 

secondary to a viral insult was suspected. Viral workup was unremarkable. His CBC recovered and 

subsequent BM examinations demonstrated normocellular BM without significant dysplasia. However, 3 

months after initial presentation, a small monosomy 7 clone was detected by FISH in 11/200 interphase-

cells but was absent in metaphase cytogenetics. Finally, 3 months later, two independent clones 

emerged, with -7 and del7q in 6/20 and 4/20 metaphases, respectively (Table 1). At last FUP, P4 was 21 

months old and undergoing MUD-HSCT. 

 

In family III, the affected son (P5) and his father (P6) did not have any infectious or hematologic 

problems until they presented with pancytopenia and were diagnosed with hypocellular MDS at the age 

of 7.7 and 42 years, respectively. Complete or partial loss of chromosome 7 in addition to other 

concomitant lesions (Table 1) were found in BM. Both P5 and P6 were transplanted from an unrelated 

donor, or HLA-identical brother at the age of 8 and 43 years, respectively. They were alive at last FUP 

when they were 17.4 and 54 years old. 
 

 

In family IV, P7 was the affected child of non-consanguineous parents with negative family history for 

hematooncologic or neurologic diseases. At the last FUP, P7´father had been evaluated by neurologists 

for unclear ataxia symptoms (his SAMD9L status is unknown). The girl presented at the age of 1 year and 

8 months with pancytopenia and petechial rash on the trunk. Initial bone marrow showed a cellularity of 

15%. Marrow analysis performed 5 months later revealed normal cellularity and dysplasias compatible 

with the diagnosis of MDS-RCC, while cytogenetics showed complete monosomy 7 in 4 out of 21 

metaphases as confirmed by interphase FISH. Unexpectedly, cytogenetics normalized 3 months later, 

cellularity gradually increased, and there were only slight dysplastic traits observed in the myeloid 

lineage. At that time point NGS analysis in BM specimen identified a large UPD7q clone (double wildtype 

for SAMD9L). Subsequent marrow examinations and CBC analyses were normal and the patient 

remained healthy until last follow-up at the age of 18 years. 
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SUPPLEMENTARY METHODS 

 

Genomic studies 
 
Genomic DNA from P1 and P2 was subjected to exploratory whole exome sequencing (WES). After exon 

region capture using Agilent SureSelect v5.0 (Agilent, Santa Clara, CA) and library construction by 

Illumina TruSeq (Illumina, San Diego, CA), 100bp paired-end sequencing was performed on Illumina 

HiSeq2000 instrument. Following dynamic trimming, the resulting reads were aligned to the hg19 

reference genome with BWA20 followed by base quality score recalibration, indel realignment, duplicate 

removal, SNP and INDEL discovery using standard filtering parameters, and variant quality score 

recalibration according to GATK
1, 2

. Confirmatory deep sequencing was performed for SAMD9L in P1 and 

P2 and P4 for respective mutations (Table 2). P1, P2, P5 and P7 were subjected to an in house 28-gene 

pediatric MDS panel (University of Freiburg, Germany). P4 was analyzed using a “57-genes myeloid 

malignancies” NGS panel (ARUP laboratories, Salt Lake City, USA) and a “86-genes bone marrow failure” 

NGS panel (Claritas Genomics, Cambridge, USA). 
 
All mutations identified by NGS were validated using Sanger sequencing. For germline confirmation, DNA 

from skin fibroblast and/or hair follicles was extracted using automated extraction system (AS 1290 kit, 

MaxWell 16 System, Promega). The targets were amplified using Amplitaq Gold Polymerase 

(Lifetechnologies, USA) and sequenced as previously described
4
. 

 
Bioinformatics  
The variant annotation was compiled using ANNOVAR

5
 from the 1000 Genomes Project requiring a 

minimum of 8 reads and a variant allele frequency > 0.05%. SNPs reported at a minor allele frequency 

<0.1% in the ExAc Browser were considered rare. We applied a minimum quality score of 30 (Q30, 99.9% 

base call accuracy) to minimize the incorrect base calls (Q30=1/1000 incorrect base calls). A minimum 

coverage of 150X was employed for genetic variants with a variant allelic frequency (VAF) ≥ 5%. Those 

quality thresholds were recommended by the Illumina Technical Notes: 1) Quality Scores for Next-

Generation Sequencing, 2011, 2) Somatic Variant Caller, 2012. 
 
The analysis of identified variants was performed using Alamut Visual 2.9 (Interactive Biosoftware, 

Rouen, France) and evaluated with open source genomic databases i.e. catalogue of somatic mutations 

in cancer (COSMIC v77)
6
, ExAC Browser (Version 0.3)

7
, UniProtKB/Swiss-Prot database, Ensembl genome 

browser 85 and dbSNP - NCBI - National Institutes of Health. The degree of deleteriousness was 

calculated using a PHRED-like scoring system “Combined Annotation Dependent Depletion” (CADD) - 

score. Using this meta-annotation tool, CADD-scores are assigned to genetic variants using an algorithm 

that creates a consensus based on 60 functional prediction tools. A CADD score of 10 refers to the top 

10% of deleterious variants detected in the human genome. CADD score above 20 represents the top 1% 

of deleterious variants.
8
 Finally, the pathogenicity was evaluated using standard in-silico predictors: 

PolyPhen2
9
, SIFT

10
, Mutation Taster

11
 and PredictSNP

12
. The evolutionary conservation of 

nucleotides/amino acids across species and the physicochemical difference between amino acids was 

estimated by PhyloP, PhastCons and Grantham score respectively
13

. Sanger sequencing was performed 

using a Sanger ABI sequencer. Sanger sequences were visualized in Sequence Pilot (SeqPilot v 3.5.2) and 

CodonCode Aligner v6.0.2. 
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