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Abstract—The study presented in this paper is in the context of 

providing a telepresence platform for people with tetraplegia, who 

may be confined to their room or bed. The eventual aim is to provide 

these people with a system that allows them to remotely control a 

robot, which can act as a medium for him/her in their everyday life, 

e.g. by enabling interactions with friends and relatives who may be 

located in other rooms or even remote places and exploring different 

environments. In this paper, we deal with the specific challenge of 

cooperation between a robot and a human, who is only able to 

control the device using thoughts alone. The system is therefore 

composed of a brain computer interface (BCI) and a visual interface 

to implement an “emulated haptic shared control” of the robot. The 

aim is to share motion control between the human and the robot 

according to the difficulty of the situation. The control schema that 

exploits this “emulated haptic feedback” has been designed and 

evaluated using human-machine cooperation (HMC) and has been 

compared with more standard controls. We report on an initial 

experiment that has been conducted to test the feasibility of the 

approach. Preliminary results highlight the interest of the approach 

but also the challenges that remain to be overcome.   

Keywords—disability; brain-computer interface; human-

machine cooperation; adaptive level of automation  

I.  INTRODUCTION  

Our ultimate aim is to improve quality of life for people 
with severe tetraplegia, who are perhaps confined to bed and 
are unable to use conventional interfaces. We intend to 
empower them to interact with their relatives, friends and 
environment through the use of a brain-controlled telepresence 
system. In this work, we are specifically concerned with how 
the human will be able to operate the device effective, so we 
apply the principles of human-machine cooperation (HMC) to 
design such a system.  

The principles of HMC have been used in many different 
domains [1][2] and especially in robotics [3]. The main purpose 
is to propose a generic approach that helps and assists designers 
in identifying how the human interacts with a machine, and in 
implementing the suitable adaptive levels of automation [5], 
whilst guaranteeing their performance, safety and security [4]. 

In this paper, we first discuss key concepts in the fields of 
HMC and brain-computer interfaces, before considering the 
specific challenges of our cooperative system. We then present 
our implementation and feasibility tests, before discussing the 
results, considering metrics of both task performance and 
human factors. Finally we conclude that the approach is 
feasible, but needs further refinement and, in particular, 
in-depth user acceptance testing. 

II. RELATED WORK   

In this section we review the state-of-the-art and discuss 
the key concepts in: cooperative agent models; brain-computer 
interfaces (BCI); and cooperative design.  

A. Cooperative agent model  

Human-machine cooperation studies lead to define a model 
of a cooperative agent with two main dimensions: the agent’s 
ability to control the process, called the know-how (KH); and 
the agent’s ability to cooperate with other agents involved in 
the process control, called the know-how-to-cooperate (KHC) 
(cf. Fig. 1). 

 

Fig. 1. The model of cooperative agent that we use [8].  

The Know-How of an agent only concerns the control of 
the process, i.e. the achievement of individual tasks without 
taking into account potential interaction with other agents. The 
KH is split up into two parts, one is called the internal KH, the 
other the external KH. The internal KH relates agents’ 
competences (abilities) and capacity (workload or attention for 
example) to control the process. The competence of a human 
agent is mainly composed of knowledge, rules and skills to 
control the process [6]. It is linked to expertise, experience and 
practices of agents. Internal KH deals with the analysis of 
information getting from the process in order to identify its 
state (diagnosis/prognostic) and to make decision regarding its 
control. Whereas external KH deals with information gathering 
and action execution. It deals with the ability to get information 
from the process and the ability to act on the process. It relates 
ergonomics aspects, regarding data visibility, readability and 
comprehensibility. Agents have to be aware of their abilities to 
have information from the process and to act on the process in 
order to feel in control of the situation. 

� Know-How (KH)

� Internal ability to solve problems (regarding the process)

� capabilities: knowledge, rules, skills / experience, expertise

� processing abilities: inferences, workload, fatigue…

� External ability to:

� get information (from the process and the environment)

� act (on the process)

� Know-How-to-Cooperate (KHC)

� Internal ability to:

� build up a model of other agents (KH and KHC)

� deduce the other agents’ intentions

� analyze the task and identify the cooperative organization

� produce a common plan regarding tasks and coordination

� External ability to communicate:

� understanding other agents

� providing information to other agents



To sum up, the internal KH allows agents to build up a 
representation of the current and future situation of the process 
using their competences and capacities to analyze the situation 
and to make decisions. Agents are able to conduct those 
functions because they have an interaction with the process 
through their external KH, to gather information and to 
implement actions. But other agents take part in the process as 
well and interact with others with their KHC. 

The Know-How-to-Cooperate is also split into two parts. 
The external KHC is the ability of an agent to have information 
about other agents and to provide information to other agents. 
Three main ways are identified in order to reach those goals: 
they make direct observations of others (movements, mimics, 
emotions…); they have verbal exchanges or communicate with 
mediated supports; they analyze the activity of others through 
the effect of their actions on the process. The support of the 
external KHC is called the Common Work Space [7]. It 
supports the situation awareness dedicated to process state and 
environment, but it is enriched by the team situation awareness 
dealing with past, current and future activity of other agents 
[8]. The internal KHC allows agents to build up a model of 
others in order to make cooperation with them easier. It is built 
up and updated by learning, training and exchanging with other 
agents. Agents gather and analyze information about others in 
order to infer their KH and KHC.  

 

Fig. 2. The model of cooperative activities that we use [9]. 

KH and KHC can be considered as two parallel functions, 
each one described by four sub-functions. Fig. 2 uses the 
cooperative agent model to highlight interaction between a 
human and a machine. KH functions of agents interact within 
the Common Work Space, represented by the blue rectangle. 
KHC functions of agents use information provided by the 
Common Work Space in order to build up a model of the other 
agent and to evaluate this agent’s involvement in the process 
control. The results of the evaluation compared to their own 
involvement and model of oneself (interference detection and 
management) have to lead to the adjustment of the position of 
the four sliders that describe the functions allocation (scales 
represented in the Common Work Space). The scales 
associated with each KH function, (Fig. 2) have the same 
objectives as the scale proposed by Flemisch et al. [11]. The 
position of the slider on the scale defines the degree or the 
percentage of sharing between human and machine activity. 
Some functions can be completely allocated to machine or to 

human regarding their competency and capacity, but also 
regarding how they can take into account the activity of the 
other. The function allocation can be predefined or updated 
according to the information on the current situation. 

The model of cooperative agents’ interactions is useful to 
analyze the interaction between human and machine inside 
one level of activity, but it would be also useful to analyze 
interactions between levels of activity. Goals, decisions and 
orders evolve from high decisional levels to lower levels 
closer to the command/control of process. By contrast, events 
and information update stem from lower levels and are 
propagated to upper levels. These levels of activity, also called 
layers [12], are most of the time described as operational, 
tactical and strategic levels. Machines at tactical and strategic 
levels are usually decision assistance systems, but at the 
operational level machines can act on the process and the 
environment.  

All these definitions and concepts have been used to 
identify and design cooperation between a robot and a human 
through the Brain-Computer Interface system that is now 
presented. 

B. Brain-Computer Interface (BCI) 

Our Brain-Computer Interface (BCI) is built upon the 
Motor Imagery platform developed by CNBI, EPFL [13]. In 
this paradigm, we are able to detect when the user is imagining 
moving either their left or right hand, or neither, which yields 
two explicit classes that can be used for control. When the user 
does not imagine moving either hand, a third implicit control 
class exists, whereby the control authority is passed to the robot 
itself. This type of BCI has been demonstrated to be a 
potentially viable control input in many different application 
areas, ranging from wheelchairs [14] to exoskeletons [15].  

Taking the same approach as EPFL, we record the electrical 
activity of the brain, in a non-invasive manner, using a process 
called electroencephalogram (EEG). To achieve this, we placed 
16 electrodes  (g.GAMMA by g.Tec GmbH) on the scalp, over 
the Motor Cortex and connect them to a laptop via the 
g.USBamp biosignal amplifier. The EEG was recorded at 
512Hz and Laplacian filtered to improve the signal-to-noise 
ratio. The power spectral density (PSD) was then estimated 
over the last second, in the 4–48Hz band with a 2Hz resolution 
[16]. These PSD features were calculated every 62.5 ms (i.e. 16 
times per second) using the Welch method with 5 overlapped 
(25%) Hanning windows of 500 ms. We were then able to 
select the features that best reflect the motor–imagery task for 
each individual participant using canonical variate analysis 
(CVA), which maximizes the separability between the different 
tasks and that are most stable [17]. We then trained a Gaussian 
classifier using these features, which typically fell in the mu-
band (~8-13Hz), in line with the motor control literature. 
Finally, to improve the individual command accuracy and 
prevent accidentally command delivery, the instantaneous 
classifier outputs were accumulated using an exponential 
smoothing probability integration framework [18]. Once this 
value surpassed a subject-specific threshold, a command was 
delivered; e.g. if left hand imagery was detected, a turn left 
command was issued. 
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C.   HMC vs Human- BCI-robot cooperation design 

The human-machine cooperation approach has been used to 
identify human and machines abilities regarding their 
individual and cooperative tasks. The KH and the KHC have 
been defined for the human and for the combined entity of the 
robot and the BCI. We consider that KH and KHC are two 
parallel functions, each one identified by four sub-functions. 
Moreover, KH and KHC are different according to the level of 
activity on which they are used. This study implements two 
levels: the tactical and the operational level. The operational 
level focuses on the obstacle avoidance. The tactical level 
manages the update of the mission plan: i.e. how to modify the 
trajectory to reach the target, after the avoidance of an 
unexpected obstacle.  

In this study dealing with telepresence, we consider that the 
target does not impose the design of a precise plan, because it 
could be changed as and when different opportunities arise for 
the human (other information to search, other people to 
meet...). Moreover, it could be difficult for the human to 
provide precise details of the target to the robot, due to the 
relatively low resolution and throughput of the BCI as an 
interface. In this case, the robot is not able to know the target 
explicitly and to modify the trajectory itself to reach it. 
Therefore the robot/BCI system has so no KH and KHC at the 
tactical level. 

On the other hand, at the operational level, both human and 
robot have the abilities to control obstacle avoidance. The 
human can detect obstacles thanks to a live video stream of the 
environment from the robot’s perspective; and the robot can 
detect obstacle thanks to its actuated ultrasonic sensor. Both 
can make decision but only the robot can apply the decision by 
modifying its trajectory (cf. Fig. 3: Know-How).  

 

Fig. 3. Use of the cooperative agent model to specify Human-BCI-robot 
cooperative system. Some sub-functions are not available for Human. 
Therefore, shared control is on the obstacle detection and avoidance 
command.    

Both human and robot have information about each other. 
They detect and manage interference about obstacle detection 
and command through the Common Work Space (cf. Fig. 3: 
Know-How-to-Cooperate). But the last decision concerning 
command (right or left) is made by the robot, due to the 
human’s limited capacity to react quickly to a situation (which 
is an inherent constraint of the current state-of-the art in this 
type of BCI).   

The “emulated shared control” is based on the control of 
interference detection and management of the KHC. This new 
concept has been defined with the same idea as the haptic 
control used in robotics and aeronautics (force feedback in the 
joystick) and in car driving (force feedback in the steering) 
[19]. In the case of a command sent via a BCI, there is no real 
haptic feedback because no muscles are involved in the control 
to oppose or follow the direction provided by the system. But 
the idea is to emulate this haptic behavior with a visual 
display. Depending on where obstacles are detected, the 
robot/BCI system makes it easier or more difficult—in terms 
of (mental) effort—for the human to deliver a command (cf. 
Fig. 4). 

 

Fig. 4. The user moves the grey bar to the left and right by performing 
motor imagery. When the bar hits one of the arrows, it delivers the 
corresponding turn left or right command. Dynamically changing the 
thresholds to deliver BCI commands is illustrated by changing the size 
of the arrow and essentially makes it (mentally) easier or more difficult 
to turn in one or both directions. This gives the illusion of a “haptic” 
feedback, although no real contact forces or muscle activation are 
involved. 

This new concept has been implemented and evaluated 
with experiments now presented. 

III. IMPLEMENTATION AND TESTS 

The experiment is a pilot study that aims to verify the 
technical feasibility and human acceptance. The complete 
experimental protocol is explained in the following parts. 

A. Use case study 

Our use case is: “The user (human) wants to move the robot 
in a room in order to see something or meet someone and has 
to come back to the start point.” 

 

Fig. 5. Experiment room: the goal of the mission is to control the robot in 
order to follow a trajectory similar to the red track. 

The experimental room consisted of two obstacles. The 
optimal trajectory should be the red trajectory (cf. Fig. 5). 
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B. Experimental platform 

1) Mobile robots  

The mobile robot is built using Lego Mindstorms NXT (cf. 
Fig. 6). It is a low cost and useful small robot, enabling rapid 
prototyping of human-robot interactions. The embedded 
computational capabilities are provided by a 32-Bit ARM CPU 
clocked at 48Mhz assisted by a co-processor ATmega clocked 
at 8Mhz. It has 3 sensors (ultrasonic, gyroscope and touch) and 
a fourth input is used for XBee communication. It is equipped 
with 3 motors: two for wheels and one to actuate the ulrasonic 
sensor in a planar, lateral sweeping motion. The robot is 
programmed in order to avoid collisions with obstacles, but the 
user can provide new sub-goal directions at any point. 

 

Fig. 6. Lego Mindstorms NXT robot 

The robot sends information and receives commands 
through an XBee module and the obstacle detection is 
performed by the ultrasonic sensor. When the robot perceives 
an obstacle less than 40cm away, it notifies the human. But 
when the distance is less than 25cm, it has the authority to 
avoid the obstacle automatically and no longer takes into 
account the human’s commands. If the distance becomes less 
than 10cm, the robot stops. When the user sends a command 
the robot performs a 45° turn. When the robot avoids an 
obstacle it performs a 20° turn. We assume that it is not a 
problem for the robot to repeat 20° turn to have a more 
adjusted trajectory, but it is difficult for the user to repeatedly 
issue turning commands via the BCI without becoming 
overloaded. 

2) Control interface 

Figure 7 presents the visual interface used by the user in 
order to have a video feedback provided by the robot about the 
environment, and the emulated haptic feedback to send the 
command (right or left) to the robot. 

 

Fig. 7. BCI/Emulated haptic control interface. Visual feedback is provided 
about the state of the BCI system as well as the environment in which 
the robot is operating. 

The user relaxes his hands loosely on his lap and only has 
to imagine the kinaesthetic movement of his left or the right 
hand. A grey rectangular “bar” is rendered on the screen and it 
moves in the direction corresponding to the imagined hand 
movement. The bar’s motion represents the intention of the 
user if the model used by the BCI is well-trained and is 
correctly calibrated to the user. The use of such a device asks 
the user to be very focused on a single task, whilst attempting 
to avoid contracting any other muscles (including the position 
of the eyes) in order to avoid disturbance in the signal 
detection and analysis. For people with tetraplegia, the chance 
of such accidental disturbance is lower, since they tend not to 
have volitional control of large muscle groups. 

C. Experimental protocol 

This first experiment has been conducted to verify the 
ability to use the emulated haptic feedback to improve 
user-BCI-robot cooperation. Only one user participates in this 
experiment. He was a well-trained user, who knew the 
capabilities (and limitations) of both the BCI and the robot. 

Four experimental conditions have been defined combining 
the possibility of shared control with the possibility of 
emulated haptic feedback. 

Table 1.  Experimental conditions: each part of the array presents for each 
agent (Human and robot) their KH (respectively violet and blue rectangle) and 
their KHC (light grey rectangles). If the agent has the ability to perform a sub-
function, “1” is written in the rectangle. The common work space focuses here 
on the visual feedback of the BCI, but the other part of this workspace 
comprises a live video stream of the environment from the robot’s perspective.  

 

The four conditions are extracted using the cooperative 
system model (cf. Table 1/Fig. 3). The Table 1 underlines the 
increase of the level of automation on the KH (vertical 
increase) and on the KHC (horizontal increase) [10]. 

 Two consecutive attempts were performed for each 
experimental condition (conditions were randomized). The 
results are presented in the next part. 
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IV.  RESULTS AND DISCUSSION 

The results describe both the objective and subjective data 
recorded during the experiments. First, the main result 
concerns the inability of the user to complete the experimental 
condition with the lower levels of automation (OA and EHF of 
Table 1). Several attempts were made, but it was simply too 
difficult to directly teleoperate the robot without any 
assistance. Therefore, all results focus on three experimental 
conditions in which the task was actually completed: OA-
EHF, OA-EHF, OA-EHF. 

1) Results 

a)  Objective data  

 

Fig. 8. Number of BCI commands according to the three experimental 
conditions. Left bar in each pair is the first attempt, right bar is the 
second attempt 

Whilst it was not possible to complete the task in 
teleoperation, adding obstacle avoidance (OA) made it 
possible. When using emulated haptic feedback (EHF) instead 
of OA the performance was even better. However combining 
the two (OA+EHF) did not yield an improved performance. 

 

Fig. 9. Task completion time according to the three experimental 
conditions. 

The task completion time followed a similar, though less 
pronounced, trend to the number of commands. Again, 
emulated haptic feedback yielded the fastest overall task 
performance. 

b) Results stemming from subjective data records 

Questionnaires  

The questionnaire has been built using the cooperative 
agent model. Questions relate to how the user perceives the 
robot’s KH, how the user perceives the robot/BCI’s KHC, how 
the robot/BCI perceives the user’s KH and how the robot/BCI 
perceives the user’s KHC, each time on the four sub-functions. 
The participant had to answer by selecting a value between 1 
and 7 (cf. Fig. 10).   

 

Fig. 10. Example of a question related to the robot’s KH about information 
gathering. 

Questionnaire results underline that the remote control 
experimental condition score is always higher than other 
experimental conditions (Average: OA-EHF: 5.07; OA-EHF: 
4.27; OA-EHF: 3.93). The questions about the perception by 
the user of the Robot/BCI KHC highlight the greater 
differences between conditions (Average of standard deviation 
by type of question: Robot’s KH evaluated by user: 0.67; 
Robot’s KHC evaluated by user: 1.4; User’s KH evaluated by 
Robot:  0.0; User’s KHC evaluated by Robot: 0.8). In the non 
emulated haptic feedback condition (EHF), answers underline 
the inability for the user to have information about his 
cooperation with the robot; it is only possible with action but it 
is not sufficient and often too late to adapt his behavior 
(Average: OA-EHF: 5.75; OA-EHF: 3.0; OA-EHF: 4.25). 
Finally, the feeling of “being in control” is better in the remote 
control condition than in the other conditions (OA-EHF: 6.0; 
OA-EHF: 3.0; OA-EHF: 3.0).  

Video records 

We have also analyzed a combination of objective data 
(logs of the robot’s obstacle detection and decision making; 
user’s decision making), and subjective data (video with the 
user behavior; visual feedback; and verbal comments).  

The videos and comments highlight very interesting 
situations. The first one deals with the nice cooperation when 
the user sends a command (45° right or left) to adjust the 
trajectory to reach the target, and when the robot further 
adjusts this trajectory (20° right or left) to avoid obstacle. The 
second one deals with the robot’s obstacle avoidance when the 
user sends a “bad” command (that would result in a collision), 
especially without emulated haptic feedback. The shared 
control condition always allowed the robot to avoid stopping 
when the obstacle is too close, and instead corrects the user’s 
mistake. Nevertheless, the robot does not know the final 
target, and this lack of explicit knowledge means that it can 
select the wrong direction when it avoids an obstacle. In this 
case, the user has to correct the robot, by asking it to pass on 
the opposite side by sending several corrective commands. 
This increased workload and frustration. However, under the 
EHF mode, the user’s mistake could be directly caused by an 
instantaneous update of the arrow lengths on the visual 
feedback (the length depends on the distance to the obstacle). 
When the grey rectangle of the EHF is at the certain position 
and the arrows length change, the rectangle could be very 



close to an arrow and the user may not have sufficient time to 
react, causing a command to  be sent even if the user did not 
want it.  

2) Discussion 

The user was unable to complete the task using pure 
teleoperation, i.e. without shared control and/or emulated 
haptic feedback. Consequently, the best performance was 
attained using emulated haptic feedback, but without shared 
control. Indeed, in the shared control condition the robot 
proactively avoids obstacles in the direction opposite to the 
obstacle position; but this direction could appear to be 
unsuitable for the final goal, which is only explicitly known by 
the user. So the user had to send several corrective commands 
to modify the direction (e.g. 180 degrees to go back and pass 
the obstacle on the other side). The robot is only able to avoid 
obstacles according to its current trajectory, because it is 
unaware of potential future commands from the user. A further 
complicating matter is that the BCI may send a command that 
the user did not intend to send.  

The emulated haptic feedback is driven by the same sensor 
data as the shared control, however rather than taking 
authority away from the user and automatically avoiding 
obstacles, it modulates the effort required to deliver a 
command. In this way, the user retains the final control 
authority and is able to either follow the robot current 
direction or actively ignore it. 

By proving the user with the robot’s perceived distance to 
an obstacle, the human can infer the robot’s “intention” to 
avoid the obstacle or not. However, the user does not know 
when or exactly how this will occur, especially if the obstacle 
is directly in front of the robot. Nevertheless, it is complicated 
for the user to have such additional information on the display, 
because the user should watch information by moving eyes, 
which could in turn degrade the EEG signal quality.  

V. CONCLUSIONS AND PERSPECTIVES  

These experiments underline the abilities to emulate the 
haptic concept to control a robot with a brain computer 
interface. However, the validation has been more technical 
than regarding acceptance and performance. More participants 
are required to evaluate the combined BCI/robot system. 
Nevertheless, positive and negative points have already been 
underlined. The remote control condition combined with the 
emulated haptic feedback initially seems to be the best 
condition. But it is perhaps due to a lack in the robot’s KH 
about the tactical level, or a lack in robot’s KHC in its 
interaction with human. Some improvements will be 
implemented in the behavior of the robot in order to 
compensate the selection of “wrong” directions regarding 
target position. An intermediate level of activity could be 
found between the tactical and operational one to identify the 
main direction the user intends to follow.  

Another perspective could be the update of the level of 
automation of the Robot/BCI system, regarding the difficulty 
of task (number of obstacles) and the fatigue of the user. It 
could be represented by the size of the grey rectangular bar: 
the larger the bar, the lower the level of automation and the 
authority of the robot. Nevertheless, the update of the level 

could be proposed by the system and validated by the user but 
this would require an additional BCI command. 
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