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ABSTRACT 
The paper proposes a simulation-based approach to multi-step probabilistic forecasting, 
applied for predicting the probability and duration of negative inflation. The essence of 
this approach is in counting runs simulated from a multivariate distribution representing 
the probabilistic forecasts, which enters the negative inflation regime. The marginal 
distributions of forecasts are estimated using the series of past forecast errors, and the 
joint distribution is obtained by a multivariate copula approach. This technique is applied 
for estimating the probability of negative inflation in China and its expected duration, 
with the marginal distributions computed by fitting weighted skew-normal and two-piece 
normal distributions to ARMA ex-post forecast errors and using the multivariate Student-t 
copula. 
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1. INTRODUCTION 
The paper proposes a simple, albeit computationally intensive, way of analysing the joint 
distributions of multi-horizon probabilistic forecasts. The focus is on evaluating the out-of-
sample duration forecast. The concept is illustrated by estimating the duration of negative 
inflation in China.  
There is already a huge body of literature on forecasting the duration of events. In 
economics, the most popular approaches are grounded within extreme value theory (e.g. 
Gilli and Këllezi, 2006) and proportional hazard duration modelling. The latter is a 
development from survival modelling, and is often used for analysing the duration of 
unemployment (e.g. Lancaster, 1979; Bover et al. 2002). For discussion on other 
approaches see Men et al. (2015).  
However, these methods do not seem to be fully appropriate for forecasting the duration of 
short-term deflation episodes, defined by negative inflation. In this paper, we regard 
deflation in a purely statistical sense, as a decline in the average (weighted) level of 
consumers’ prices in prices, without addressing its possible relation to aggregate demand 
(see e.g. Atkeson and Kehoe, 2004; Benhabib and Spigel, 2009; for another approach to 
estimation of the probability of deflation, based on data from inflation surveys and 
inflation swap rates, see Fleckenstein et al., 2017). 

Firstly, historical episodes of negative inflation are infrequent or even non-existent for 
most countries, which makes estimating from its historical appearance inefficient or 
actually impossible. Secondly, most of the proportional hazard methods rely implicitly or 
explicitly on the assumption of normality of the forecast distribution. With inflation, this is 
evidently not a realistic assumption (for the most recent evidence see Chaudhuri et al., 
2016). The extreme value models are free of the assumption of normality, but they usually 
rely on tight and not easily testable assumptions (see e.g. Kotz and Nadarajah, 2000). 
The approach we propose allows the probability and duration of events (negative inflation 
in our case) to be estimated, even if the events did not occur in the past. It is grounded 
within multi-horizon probability density forecasting, where the marginal distributions of 
forecasts made for each horizon are estimated from data, and the dependencies between 
forecasts for different horizons are described by a multidimensional copula. As an 
illustration, the methodology has been applied to China. 
Section 2 of the paper describes the methodology for computing the marginal and joint 
distributions and evaluating the probability of negative inflation and its expected duration. 
Section 3 presents the results for China, which indicates that for the period from April 
2014 to March 2015, the maximum probability of negative inflation occurring in a given 
month was about 20%. Further, the expected duration of negative inflation would be about 
three months if it occurred in the 5th-period forecast, and 1-2 months if it occurred later. 
Section 4 gives the results of robustness checks that show the results to be reasonably 
robust to changes in the marginal distributions and copula specifications. Section 5 
concludes.  

2. METHODOLOGY  
To evaluate the joint multi-period distribution of inflation, we consider the density forecast 
of inflation for the periods 1,2,...,h H  made at time 0 as being described by an H-
dimensional random variable 1 2[ , ,..., ] H

HX X X X   , where hX  is a random variable 
that represents inflation at time h. Let h h hY X   , where ( )h hE X  ; 

hYf  denotes the 
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pdf of hY . The unconditional probability of inflation being below zero, for the forecast 
horizon h is defined as:  

  Pr( 0) ( )
h

hh YX f s ds




   .                   (1) 

The density function 
hYf  is usually not known. It is often estimated using either past 

forecast errors or data from surveys of professional forecasters (for a comparison of these 
two approaches see Clements, 2014) or, in some instances, by calibration (e.g. Wallis, 
2004). In virtually all the cases analysed in the literature it has been found that the 
distribution is not normal, or even symmetric.  

If there is no model uncertainty, it is usually assumed that there is one point forecast for 
the horizon h, which is the estimate of h , denoted as ˆ h . It is, however, more realistic to 
assume that there is some model uncertainty about h . Specifically, there may be K 
different, competing, models, each producing its own point forecast ,ˆk h , where 

1, 2,...,k K . We assume that the forecasts from these competing models are not 
necessarily observed and are normally distributed around ˆ h  with variance h . Under this 
assumption, the following algorithm for estimating the probability in (1) is proposed: 

1. Assuming a particular family of distributions, estimate the density function 
hYf  using 

data on a sequence of past h-step-ahead forecast errors around ˆ h , or data from 
surveys of forecasters if they are available and reliable. It might be necessary to choose 
from some competing families of distributions (see Section 3). Earlier results (see 
Charemza et al., 2015a) show that the density functions best-fitted to inflation forecast 
errors are usually either the weighted skew-normal (WSN) or two-piece normal (TPN) 
distributions; see Appendix A for the pdf’s of these distributions and their 
characteristics.  

2. To account for model uncertainty, generate K realisations of a random variate 
, ~ (0, )k h hN  , and for each 1,2,...,k K , estimate the probability of negative 

inflation for the forecast horizon h as: 
,ˆ( )

,
ˆPr( 0) ( ) ( )

h k h

hk h YX f s d s
  



   ,  1, 2,...,k K ,           (2) 

where ˆ
hYf  is the estimated density function 

hYf . The estimated probability of negative 
inflation is the arithmetic average of (2) across k, and its standard deviation reflects the 
effect of model uncertainty on the estimate assuming that densities ˆ

hYf  are the same 
for all competing models. 

To calculate the expected duration of negative inflation, it is necessary to consider the joint 
distribution of 1 2[ , ,..., ] H

HY Y Y Y   . Let Yf  be the joint pdf of Y . As the marginal 
distributions are usually not normal and the dimension H, the maximum forecast horizon, 
is relatively large, direct inference on such a pdf is usually not feasible. It is, however, 
possible to exploit the Sklar (1959) theorem, where YF , the multivariate cumulative 
distribution function, cdf, of Y , is given as: 

 11 1( , ..., ) ( ), ..., ( )
HY H Y Y HF y y C F y F y ,            (3) 



 3

where :[0,1] [0,1]HC   is the H-dimensional copula function. Under the assumptions of 
stationarity and ergodicity, the parameters of the copula function can be estimated from 
data on past forecast errors. The pdf of Y can be then expressed by the marginal 
distributions and the copula function as 

  1
1 1

1

( , ..., ) , ..., ( ( ))
h

H

Y H H Y h h
h

f y y c u u f F u



  ,          (4) 

where  1 1 1, ( ,... ... ) / ...H
H H Hc u C u u uu u     and 1( )h h hy F u , 1,...,h H . 

In theory, the expected duration of negative inflation and other characteristics of the H-
dimensional distribution of Y  can be obtained directly from (4). In practice, however, it 
might not be feasible to compute the H-dimensional integration of (4), as the marginal 
density functions 

hYf  are usually non-normal and might even belong to different families 
of distributions. A relatively simple, albeit computationally intensive, alternative is to 
simulate samples of the random variable 1[ ,..., ]HU u u  on [0,1]H  with a given copula 
function C  as in (3), and then recover the corresponding sample of 1[ ,..., ]Hy y y  as 

1( )h h hy F u . This yields the realisations of the Ys (and hence the Xs, as X Y   , 

1 2[ , ,..., ]'H    ) while maintaining the dependence structure. To evaluate the expected 
duration of negative inflation within the forecast span that starts at period d 
( 1,...,d H ), it is convenient to consider the following discrete univariate random 
variable:  

0

d iH d

d j
i j d

Z I


 

 ,                     (5)  

where 0hh XI    and 0hX   is the indicator function, which is equal to 1 if 0hX   and to 0 

otherwise. Clearly, {0,1,..., 1}dZ H d    and its expected value is the duration of 
negative inflation between periods d and H. For 1d  , the expected length of an episode 
of deflation that starts at time d, meaning that inflation at time 1d   was non-negative, can 
be computed as the expected value of the random variable dZ  defined as: 

1(1 )d d dZ I Z   .                    (6)  

In (6), dZ  represents the expected duration of negative inflation in the ‘constrained’ 
scenario, that is when negative inflation cannot go beyond the maximum forecast horizon, 
which leads to 1dZ H d   . The actual duration of negative inflation might in fact be 
greater than dZ , if it goes beyond the maximum forecast horizon. In consequence it might 
be useful to compute additionally the joint probability of negative inflation appearing in 
periods d and H. If this probability is negligible, it means that dZ  approximates well the 
duration of negative inflation unconstrained by the maximum forecast horizon. 
The computational algorithm is: 

1. For each forecast horizon, use data on forecast errors or information from surveys 
to select the type of marginal density function and estimate its parameters, which 
are the parameters of the marginal distributions of 1 2, ,..., HY Y Y .  
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2. Select the type of H-dimensional copula function in (3), estimate its parameters and 
then simulate NRepl  realisations of 1[ ,..., ]HU u u  from this copula ( NRepl  is the 
number of replications).  

3. By applying the inverse transformation 1( )h h hy F u  where 1,2,...,h H , generate 
an NRepl H  matrix of realisations of Y  and then one of X by adding 

1 2ˆ ˆ ˆ ˆ[ , ,..., ] 'H     which represents a vector of point forecasts.  

4. Using this NRepl H  matrix, compute the corresponding matrix of realisations of

hI . Next, for each row, count the runs of consecutive negative inflation episodes, 
meaning cases where the consecutive simulated realisations are negative, and use 
the arithmetic mean of these runs as the estimates of the expected duration of 
negative inflation, as defined by (5) and (6). 

In the algorithm above it is important to choose the appropriate multi-dimensional copula 
function. One of the most commonly used approaches is to apply D-vine copulas (see 
Kurowicka and Joe, 2010; for applications in forecasting see Smith, 2015). For two 
reasons, we have, however, decided to use a simpler approach of applying the elliptical 
Student-t copula (see e.g. Demarta and McNeil, 2005). Firstly, the heavy computational 
burden of the technique proposed is accounted for as the elliptical Student-t copula is 
easier to simulate than a D-vine copula. Secondly, as negative inflation is such an 
infrequent event, its probability is relatively low and imposing any asymmetry in the 
dependence (which is typical for most of the D-vine copulas) might distort the estimated 
duration of negative inflation in a somewhat arbitrary way. In the absence of any a priori 
information about the type of dependence, it seems rational to assume strong, albeit 
symmetric, tail dependence, as given by the Student-t copula.  
In the technique described above there is no dependency of the higher moments of 
distribution of inflation on time and the observed inflation. If the forecast errors used for 
estimation are collected over a long period, where inflation goes through different phases, 
this lack of dependency might not be the case. During high inflation uncertainty might also 
be high, and it might be low during low inflation (see e.g. Ball, 1992). Consequently, a 
modification might be needed if the sample includes high and low inflation intervals. Such 
modification may consist of estimating the parameters of the marginal and joint 
distributions separately for different regimes. This, however, requires long data series. 

3. EMPIRICAL RESULTS FOR CHINA 
China’s long-term economic strategy of export-stimulating growth led to the Chinese 
currency being seen as undervalued for relatively long periods of time (see e.g. Rodrick, 
2010). One side effect of this policy was weak domestic demand. Although the policy of 
undervaluation effectively ended in 2014, domestic demand remained weak in 2015 due to 
low commodity prices and the high real costs of borrowing. It is reduced further by 
deflationary expectations, which delay spending by consumers.  

 

Figure 1 ABOUT HERE 
 

Figure 1 shows the dynamics of annual CPI inflation in China measured monthly from 
January 2005 to April 2015 (data are from the official website of the National Bureau of 
Statistics of China, and are also available from the website of e.g. the Federal Reserve 
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Bank of St Louis https://research.stlouisfed.org/fred2/series/CPALTT01CNM659N#). 
Although the period of recorded negative CPI inflation was relatively brief, from February 
to October 2009, inflation nevertheless remained low from February 2012 until the end of 
the period analysed in April 2015. This created the danger that negative inflation could 
return as some prices might fall even as the total inflation index remains positive, creating 
expectations of a further fall and depressing domestic demand even further. This is one 
reason why it is important to assess the probability of negative inflation in times of low 
positive inflation. 

Table 1 reports the non-stationarity test statistics for the inflation series depicted in Figure 
1. These are the Elliot, Rothenberg and Stock test (ERS), the Ng and Perron feasible point 
optimal test (MPT), the Ng and Perron generalised least squares test (MZα), efficient 
modified Phillips-Perron tests (MSB and MZt), and the generalised least squares augmented 
Dickey-Fuller test (ADF). All these tests are computed in the presence and absence of 
structural breaks; see Ng and Perron (2001) and Carrion-i-Silvestre et al. (2009). The 
results show that 15 out of the 24 tests reject the null hypothesis of a unit root.  

 

Table 1 ABOUT HERE 

 
We have also computed the Robinson (1994) test for fractional integration for all 
combinations of the fractional levels of integration equal to 0.1, .., 0.2 …, 0.9 and first-
order autocorrelations equal to 0, 0.1, …, 0.9 .1  For all cases the null hypothesis of 
fractional integration has been strongly rejected. Consequently, we have decided to treat 
annual inflation in China as a stationary series. However, as this conclusion is not very 
strong, as the test results are sometimes contradictory, we have conducted additional 
forecast comparison analysis for the ARMA and ARIMA models, described in Section 4.  

Data on ARMA forecast errors resulting from pseudo out of sample forecasting are used to 
estimate the distribution of hY  and then hX . It is assumed that the mean of the competing 
forecasts is approximated by the ARMA forecast. This seems to be a reasonable 
assumption, as the forecasts from univariate ARMA models often outperform forecasts 
from more complex models for sample sizes smaller than 500 (see Constantini and Kunst, 
2011; Herwatrz, 2013, Mitchell et al. 2014). The pseudo out of sample forecasting was 
conducted as follows. The univariate ARMA model of inflation was first estimated using 
the sub-sample from January 2005 to October 2008 and was used for predicting the 
inflation rate up to 12 steps ahead. Then the entire sample rolls forward by one observation 
and the model is re-estimated using data from February 2005 to November 2008; 
predictions are then made for the next 12 months, and so the process continues. Lag 
lengths have been obtained in the estimation of the ARMA model by minimising the 
Akaike information criteria in each sub-sample. Finally, the ex-post forecast errors are 
computed as the differences between the realisations and the forecasts.  
For the entire time span from January 2005 to April 2015 the highest inflation was equal to 
8.7%. In the period covering all forecasts, that is from November 2008 until April 2015, 
the maximum inflation was 6.5%. As this does not cover instances of high inflation, 

                                                
1 Programmed in Gauss using the specification by Gil-Alana (2005). 

https://research.stlouisfed.org/fred2/series/CPALTT01CNM659N#).
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usually defined as at least 7% (see e.g. Charemza et al. 2015b), we can assume that, except 
for the brief deflation episode, the Chinese economy was not in a high inflation regime. 

Next, different types of distribution were fitted to the forecast errors. Table 2 gives the 
measures of goodness of fit (twice-squared Hellinger distance, HD, and the Pearson 2  
measure) obtained by the simulated minimum distance method for the normal, alpha-
stable, weighted skew-normal (WSN) and two-piece normal (TPN) distributions. The 
simulated minimum distance estimation method is described in Charemza et al. (2012). In 
this method, the empirical data grouped in a histogram are approximated by simulated data 
and the choice of parameters for the best-fitting distribution is made by minimising the 
twice squared Hellinger distance criterion. The technique is similar to that of Dominicy 
and Veredas (2013). 
 

Table 2 ABOUT HERE 
 

Table 2 shows that for all forecast horizons, the WSN and TPN distributions fit the data 
markedly better than the normal and alpha-stable distributions and the TPN outperforms 
the WSN in 10 cases out of 12. For the subsequent computations presented here, the 
following main settings have been applied:2 

a) Marginal distributions have been decided by the best Hellinger fit, so the TPN was 
used for all forecast horizons except 2 and 4. Selection based on the best 2  fit would 
be the same in all cases. 

b) The 12-dimensional elliptical copula applied here is the Student-t copula with 4 
degrees of freedom. The choice of the copula is somewhat arbitrary. However, using 
the Student-t copula with 4 degrees of freedom gives reasonably strong tail dependence 
and is partially justified by the results of the robustness check (see Section 4). 

c) Simulation of the multidimensional Student-t copula requires knowledge of the scatter 
(dispersion) matrix (see Embrechts et al., 2003). This matrix has been estimated by the 
method of moments, meaning it is recovered from the Kendall tau correlation 
coefficients computed for all pairs of forecast errors for different horizons (see 
Demarta and McNeil, 2005), using the empirical data on the ARMA forecast errors for 
the forecast horizons from 1 to 12. The values of the scatter matrix are in fact quite 
close to the ordinary Pearson coefficients (see Figures 2a and 2b for more 
information).  

d) Under the assumption of model uncertainty and competing forecasts introduced in 
Section 2, the number of competing forecasts is set at 1,000. It is assumed that the 
model uncertainty increases with the increase in the forecast horizon, which is the 
standard deviation of model uncertainty with h  increasing linearly from 10% to 21% 
relative to the corresponding point forecast. 

e) Numerical integration in (2), with 
hYf  given by either the WSN or the TPN 

distribution, turned out to be awkward and imprecise, as both the density functions 
have a rather tangled analytical form (see Appendix A); this usually causes numerical 

                                                
2  Computations were made using Aptech GAUSS on the ALICE High Performance Computer of the 
University of Leicester. 
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problems in integration. Consequently, integrals for the marginal probabilities have 
been computed by simulation, with a simple rejection algorithm with 100,000 
replications applied for each 

hYf . In this case the simulation error affects the accuracy 
of the estimation. The n out of n bootstrap is performed to evaluate the magnitude of 
this error, where re-draws are made n times with replacement from the simulated 
realisations of hY , where n stands for the number of replications and (2) is computed 
for each re-draw; see e.g. Halt and Martin (1988), and Cheung and Lee (2005).  

f) The practical problem in the simulation of the realisations of the 12-dimensional 
random variable using (3) is in computing the inverse transformation for the WSN and 
TPN distributions. Unlike for some other distributions, the analytical forms of their 
inverse transformations are not known. For this reason, a sequential search algorithm 
has been applied (see Devroye, 1986) to find an approximation. This was the most 
computer-intensive part of the computations and was set at 100,000. Although it 
resulted in quite poor approximation for low probabilities of negative inflation below 
5%, such low probabilities did not have important practical relevance and turned out 
not to have a marked effect on the accuracy of the evaluation of the expected duration 
of negative inflation. 

Figures 2a-2b illustrate the dependencies between the distributions of forecast errors for 
different horizons by showing selected results for two-dimensional cases. In both figures, 
the upper diagram panels show scatter diagrams of forecast errors made for the horizons 1 
and 2, and 1 and 3 (Figure 2a), and 2 and 4, and 6 and 10 (Figure 2b). The types of 
distributions that have been fitted to the forecast errors are indicated in brackets, with TPN 
for forecast horizon 1, WSN for forecast horizon 2, etc. Above these panels are the 
characteristics describing the dependence between these distributions: Kendall   and 
Pearson   correlation coefficients, and the corresponding elements of the 12×12 scatter 
matrix of the multivariate Student-t copula (the elements [1,2] and [1,3] on Figure 2a and 
[2,4] and [6,1] on Figure 2b). The bootstrapped p-values are shown for Kendall   in 
parentheses. The middle panels give the two-dimensional pdfs of the Student-t copulas 
with 4 degrees of freedom fitted to the data. For better visualisation, the bottom panels 
present the contour plots of the corresponding pdfs from the middle panels. 

Note that the marginal distributions for the forecast horizons 1-3 and 6-10 are both TPN 
with different parameters; both are WSN for the forecast horizons 2-4, and for 1-2 one of 
the marginal distributions is TPN and the other is WSN (for the estimates of their 
parameters see Appendix B). As expected, the figures indicate clear and strong 
dependence between the forecast errors for the different forecast horizons. They also show 
that such dependence is markedly different for each pair of forecast horizons. The pdfs and 
their contours indicate skewness of the distributions and, generally, stronger dependence 
for the upper tail than for the lower tail. In other words, large positive forecast errors 
where inflation was underestimated tend to be more strongly dependent than the large 
negative errors which resulted from an overestimation of inflation. It is evident that all the 
distributions in Figures 2a and 2b are negatively skewed. 

 

Figure 2a ABOUT HERE 
 

Figure 2b ABOUT HERE 
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Table 3 gives the probabilities of negative inflation with their standard errors, computed 
with estimated marginal distributions for the period from April 2014 to March 2015. In 
order to focus on the probabilistic aspect of forecasting and avoid additional errors caused 
by the imperfectness of a single point forecast for this period, it is assumed that the April 
2014-March 2015 point forecasts were perfect, so ˆh h  . In other words, it is assumed 
that forecasts were perfect for each month and equal to the inflation actually realised. This 
essentially corresponds to the pseudo out of sample forecast error approach that is applied 
here. It may be noted that the bootstrapped standard deviations are quite similar to the 
standard deviation obtained in an ordinary way. They are all relatively small, so the 
evaluation of particular probabilities can be regarded as reasonably precise. 

 

Table 3 ABOUT HERE 

 
Table 4 presents the basic results for the evaluation of the expected duration of negative 
inflation for the period from April 2014 to March 2015, as defined by (5) and (6), and 
under the settings given by (a)-(f) above. Note that according to Table 3, the probabilities 
of negative inflation for the forecast horizons from 1 to 5 are smaller than 5%. Hence for 
these forecast horizons, the accuracy of the computation of the inverse probability 
transformation for the joint distribution based on simulated data is relatively low. In 
consequence, we present aggregated results for the forecast horizons from 1 to 5. 

If negative inflation occurs in horizons 1 to 5, the cumulative probability of which is 
3.28%, its expected duration is 2.81 months, with a standard deviation of 1.86, so that it is 
unlikely that it would last until the end of the forecast period. This is confirmed by the 
probabilities close to zero of negative inflation appearing in periods 1 to 5 or 12 (see the 
last two columns of Table 4). If negative inflation occurs over a longer horizon, its 
expected duration (up to horizon 12) gradually declines from 2.48 months in horizon 6 to 
1.35 months for horizon 11. In this case, the corresponding probability of negative 
inflation appearing in periods h < 12 and h = 12 is substantial. This indicates that, if the 
maximum forecast horizon was longer than 12, the expected duration of negative inflation 
would have been longer than that given in Table 4.  

The difference between the ‘probability of negative inflation at horizon h’ and ‘starting at 
forecast horizon h’ is such that the former includes possible cases of negative inflation 
which covers horizon h, and the latter is computed under the assumption that at horizon 
h-1, inflation was non-negative. For instance, for h=6, that is for September 2014, the 
probability that inflation would be negative is 0.22. If negative inflation covers September 
2014, its overall expected length is 2-3 months, as the expected value is 2.48. The 
probability that negative inflation begins in September 2014 is 0.04 and its expected 
duration is 1.9 months. 
 

Table 4 ABOUT HERE 
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4. ROBUSTNESS CHECK 
We can identify two main potential reasons for lack of robustness of the results given in 
Section 3. Firstly, there might be model uncertainty, meaning that the type of forecasting 
model might be incorrect or, even if it is correct, it may be estimated imprecisely. 
Considering model uncertainty, natural alternatives to the ARMA model applied here are 
the ARIMA and ARFIMA models. ARIMA models in particular seem to be admissible 
alternatives to ARMA models, as the results of unit root testing are favourable to the 
ARMA model but are not fully conclusive (see Table 1). In order to check the robustness 
in this respect, computations have been repeated for the ARIMA models with the order of 
integration equals to unity. However, for all forecast horizons the forecast RMSEs for 
ARIMA turned out to be higher than those for ARMA. The differences, however, are not 
significant according to the Diebold-Mariano (1995) and the modified Diebold-Mariano 
(Harvey et. al, 1997) tests. As the results given in Section 3 ruled out the possibility of 
fractional integration for inflation in China, we have decided not to consider ARFIMA 
models here. 
Another approach for evaluating the robustness of the results to model uncertainty is to 
check whether the uncertainty about the point forecasts causes distortions in the estimated 
probabilities. In this case, we do not assume anything about the type of forecasting model. 
Instead, we assume that there might be a large number of competing forecasting models, 
without any certainty about which one is better. The differences between their forecast can 
be expressed by a random variable. The standard errors in Table 3 above have been 
obtained under the assumption that this uncertainty is expressed by a normally distributed 
random variable, while Table 5 also shows the probabilities of negative inflation and their 
standard deviations for two other distributions: the uniform and the gamma, where the 
shape and scale parameters are both equal to unity for the gamma distribution. These 
account for possible distributional misspecification, as the competing models produce 
forecasts that are symmetrically distributed with equal probability (the uniform 
distribution), and highly asymmetric with the mass to the left of the mean (gamma 
distribution). The distributions have been centred around the true values of inflation and 
scaled by standard deviation, so that the differences in the negative inflation probabilities 
and their standard deviations can be attributed solely to the differences in the shape of the 
distributions. For each case, 1,000 forecasts have been generated and evaluated.  

 

Table 5 ABOUT HERE 
 
The results given in Table 5 indicate that the differences in the estimated probabilities are 
not large for cases where the probability of negative inflation is relatively substantial and 
exceeds 15%. However, for such probabilities the standard deviations for the uniform and 
gamma distributions are markedly higher than that for the normal distribution. Although 
the uniform and highly asymmetric gamma distributions can be regarded as quite extreme 
cases of misspecification, this result shows that a possible deviation of the distribution of 
forecast uncertainty from normality may well result in an increase in the standard errors of 
the estimated probabilities. However, its effect on the probabilities themselves is 
negligible. 

The second potential reason for the lack of robustness might be misspecification of the 
functional form of the copula model used for the approximation of forecast errors. More 
precisely, the results might depend on setting types of marginal distributions, type of 
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copula and strength of the copula dependence. It is important to find out how far these 
settings might affect the outcomes. 

Consequently, the following robustness check has been performed. The computations were 
repeated for three different sets of marginals: (1) decided by the minimum of the Hellinger 
distance for each forecast horizon, which is TPN for all horizons but 2 and 4, for which it 
is WSN; (2) using WSN for all forecast horizons; and (3) using TPN for all forecast 
horizons. Next, three different types of copula were used: two Student-t copulas, one with 
the number of degrees of freedom equal to 4 and one with it at 10, and the normal copula. 
Finally, three different types of scatter matrix were used: (1) computed from the data on 
forecast errors for different horizons as a Pearson   coefficient; (2) estimated by the 
method of moments; and (3) with all elements arbitrarily set at 0.9. Combining these 
settings gives 27 different models for which the computations described in Section 3 were 
made.  
As a concise indicator of robustness, we use the standard deviations across the 27 models 
of the expected duration of the episodes of negative inflation. These are presented in Table 
6, together with the minimum and maximum expected duration for all periods from 2 to 
11. Table 6 shows that for most forecast horizons, the results are relatively robust to 
changes in the specification of the marginal distributions and the copula. The standard 
deviations of the expected durations are smaller than one except for the forecast horizons 
2, 4 and 5. 

To find out which model has the biggest impact on robustness, we evaluated the average 
standard deviation of the duration of negative inflation for all the models, and then for all 
the models excluding one (see Table 7). The ratio of the latter to the former gives an 
indication of how much the exclusion of a particular model affects the overall variability 
of the results.  
 

Table 6 ABOUT HERE 
 

The results in Table 7 indicate robustness in the sense that there was no model 
specification which could affect the dispersion of the duration of negative inflation by 
more than 2%. We can, therefore, conclude that the technique proposed here is reasonably 
robust to changes in the specification of the marginal distributions and the copula. 

 

Table 7 ABOUT HERE 
 
5. CONCLUSIONS 

The proposed methodology of inference on the joint distribution of forecast errors is 
conceptually straightforward. For non-trivial marginal distributions of forecasts the 
technique is quite demanding in computer power, as precise computation of the inverse 
transformations might be tedious. Nevertheless, it allows for quite simple analysis of the 
marginal and joint forecast distributions in the relatively complex cases where the 
marginal distributions might belong to different families. Our results appear to be 
relatively robust to model uncertainty, choice of the copula, and the type of marginal 
distributions. However, the out of sample predictive performance has not been evaluated 
and should be a topic of further research. 
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An application presented here is the evaluation of the probabilities of negative inflation 
and its expected duration for China. The results show that in 2014-2015, the ex-ante 
probability of negative inflation was indeed not negligible, touching 20% for the 12-
months-ahead forecast horizon. However, if negative inflation really did happen, it would 
most probably not last longer than three consecutive months before the end of the forecast 
horizon. Another possible application of the technique proposed can be for evaluating the 
length of time for which inflation can be within or outside a specific interval, for instance, 
the target zone set by monetary authorities.  

Apart from the heavy computational burden, the practical disadvantage of the proposed 
technique is that the expected duration of events can be evaluated only within the forecast 
span, meaning it cannot exceed the maximum forecast horizon. This can be overcome if 
the forecasts can be made for relatively long periods, and the interest is in horizons 
markedly shorter than the maximum. In this case, it is likely that the probabilities of events 
appearing at the period of interest and also the maximal forecast horizon would be small, 
so that the evaluated expected length of duration can be regarded as practically 
unconstrained by the limited forecast span. 

Another further development would be in applying a wider definition of deflation, 
allowing for its relationship with aggregate demand. This would imply that a joint 
distribution of inflation and growth is used, which allows for conducting a conditional 
inference, hopefully contributing to the continuing discussion on the relationship between 
deflation and real sphere. 
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Appendix A: the WSN and TPN distributions 

The random variable Z with WSN (weighted skew-normal) distribution, as defined by 
Charemza, et. al (2015a), has six parameters, , , , , ,low up      , and is given by: 

up lowY YZ X Y I Y I             , 

where:  I   is indicator function of a set   , low up  ; ,   ; 2  ; and 1  , and  

2 2

2 2

0
( , ) ,

0
X Y N

 
 

   
        

 . 

 For 1  , its probability density function (pdf) is given by:  

 
1WSN 2 2

2 2

1 1
(1 ) (1 )

( ) ,
1 1

B t kAB t mAt tf t
A A A AA A

m t k tt

  

    

 
 

 


 

                             
            

         

 

where  and  denote respectively the density and cumulative distribution functions of the 
standard normal distribution, and 2( ) 1 2A A       ,  ( )B B       . 

The random variable with TPN distribution is defined by its pdf: 

 
 

2 2
1

1 2 2 2
2

exp ( ) / 2 if
( ; , , )

exp ( ) / 2 if
TPN

A t t
f t

A t t

  
  

  

    
  

   ,  t    , 

where 1
1 22/ ( )A       . The parameters are 1 2,    and . 

The two-piece normal, TPN, distribution was originally proposed by John (1982) and was 
developed further by Kimber (1985). It has often been used for approximating distributions 
of forecast errors in constructing probabilistic forecasts of inflation and output (see e.g. the 
seminal paper by Wallis, 2004). 
The parameters of the WSN and TPN density functions were estimated by the simulated 
minimum distance method (SMDE, see Charemza et al., 2012). In order to achieve 
identification of the WSN, it has been assumed that 1m k   and 0.75  , reducing the 
number of parameters estimated to three, these being   ,   and  .  
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Appendix B: estimates of the parameters of marginal distributions 
 

 
 

for. hor. 

 
 

type of 
distribution  

if WSN: 

̂   ̂   ̂   
if TPN: 

2
1̂   2

2̂  ̂   

1 TPN 0.6955 
(0.0068) 

 

0.0185 
(0.0256) 

 

0.4625 
(0.0361) 

2 WSN -1.280 
(0.2258) 

-0.454 
(0.0965) 

0.6429 
(0.0208) 

3 TPN 0.9148 
(0.4199) 

0.5127 
(0.2130) 

0.2014 
(0.3700) 

4 WSN -1.465 
(0.2563) 

-0.7817 
(0.0050) 

1.0370 
(0.1505) 

5 TPN 0.0191 
(0.2670) 

2.344 
(0.0119) 

-1.7680 
(0.0863) 

6 TPN 2.1640 
(0.0337) 

0.0131 
(0.3161) 

1.1340 
(0.4311) 

7 TPN 2.1100 
(0.1701) 

0.0696 
(0.1700) 

1.0990 
(0.2668) 

8 TPN 2.2200 
(0.1552) 

0.0124 
(0.0075) 

1.1100 
(0.2951) 

9 TPN 2.3420 
(0.6821) 

0.0400 
(0.0951) 

1.2310 
(0.1749) 

10 TPN 2.5130 
(0.8324) 

0.0428 
(0.1037) 

1.2240 
(0.3808) 

11 TPN 2.8700 
(0.4871) 

0.3530 
(0.5239) 

1.2150 
(0.7365) 

12 TPN 3.0780 
(0.1803) 

0.1013 
(0.2926) 

1.4650 
(0.0503) 

Legend: standard errors of the estimates are given in brackets. 
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Table 1: Unit root tests for inflation 
 ERS MPT MZα MSB MZt ADF 

no break 2.10** 2.04** -12.03** 0.20** -2.45** -2.34 
1 break 5.70 5.61 -29.40*** 0.13*** -3.83*** -3.04** 
2 breaks 14.71 13.53 -15.79** 0.18** -2.78*** -2.40 
3 breaks 15.93 14.22 -13.71** 0.19** -2.61*** -2.39 
Legend: (1) *, **, *** indicate the test statistics are significant at the 10%, 5% and 1% 
significance levels. 
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Table 2: Goodness of fit measures for inflation forecast errors 

f.hor 
Normal alpha-stable WSN TPN 

HD ߯ଶ HD ߯ଶ HD ߯ଶ HD ߯ଶ 

1 14.992 17.522 51.444 76.905 4.370 4.167 3.105 3.185 
2 8.601 9.715 40.933 52.456 5.792 5.691 6.270    6.166 
3 0.964 0.964 26.126 26.530 0.748 0.757 0.330 0.300 
4 1.422 1.463 16.180 16.663 1.200 1.249 1.238 1.347 
5 17.876 21.315 20.384 24.933 15.050 17.490 3.446 10.100 
6 6.945 7.475 6.047 6.132 5.436 5.989 2.648 2.732 
7 5.815 5.741 7.531 7.234 4.365 4.341 2.242 2.271 
8 7.681 9.462 9.068 9.677 6.144 7.259 1.244 1.310 
9 3.304 3.674 1.929 1.965 2.288 2.457 0.645 0.654 

10 7.421 8.469 5.488 5.572 5.730 6.592 2.726 3.058 
11 2.429 2.498 1.395 1.537 1.509 1.523 0.471 0.492 
12 4.414 5.757 8.456 9.157 3.394 4.216 1.013 1.016 

Legend: Boldfaced entries indicate minimum HD and 2  statistics for the given forecast horizon across the 
distributions. 
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Table 3: Estimated probabilities of short episodes of deflation, April 2014-March 
2015 

Date f.hor infl.% prob.defl. st.dev. boot.st.dev. 
Apr 2014 1 2.0 0.0003 0.0000 0.0002 
May 2014 2 2.5 0.0000 0.0000 0.0000 
June 2014 3 2.0 0.0097 0.0006 0.0011 
July 2014 4 1.9 0.0221 0.0010 0.0014 
Aug 2014 5 1.8 0.0007 0.0036 0.0002 
Sep 2014 6 1.5 0.2225 0.0049 0.0041 
Oct 2014 7 1.4 0.2290 0.0059 0.0042 
Nov 2014 8 1.7 0.2034 0.0047 0.0041 
Dec 2014 9 1.8 0.1941 0.0045 0.0039 
Jan 2015 10 2.1 0.1838 0.0032 0.0039 
Feb 2015 11 2.3 0.1981 0.0026 0.0039 
Mar 2015 12 2.3 0.2154 0.0025 0.0041 

Legend: f.hor is the forecast horizon; infl% is observed headline annual inflation recorded monthly; 
prob.defl is the probability of negative inflation for the month indicated, computed according to (2); st.dev. 
is its standard deviation computed across the simulated competing forecasts; boot.st.dev. is standard 
deviation computed by the n out of n bootstrap. The standard deviations are functions of the imposed forecast 
uncertainty and hence are, to an extent, arbitrary. 
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Table 4: Expected duration of the episodes of negative inflation 

f.hor (h) 
 

prob.defl. 
 

prob.defl. 
starting 

exp.length 
 

exp.length 
starting 

 
prob.defl at 

f.hor 
h and 12 

 
cond.prob. 
defl at f.hor 
h and 12 

5 0.0328 0.0328 2.81 
(1.86) 

2.82 
(1.86) 

0.0000 0.0000 

6 0.2225 0.0421 2.48 
(1.59) 

1.90 
(1.40) 

0.0985 0.4784 

7 0.2290 0.0645 2.25 
(1.35) 

2.06 
(1.29) 

0.0934 0.4984 

8 0.2034 0.0454 1.97 
(1.12) 

1.75 
(1.05) 

0.1345 0.5390 

9 0.1941 0.0592 1.69 
(0.88) 

1.56 
(0.83) 

0.1141 0.4955 

10 0.1838 0.0605 1.47 
(0.72) 

1.38 
(0.72) 

0.2030 0.4782 

11 0.1981 0.1462 1.35 
(0.48) 

1.10 
(0.47) 

0.1651 0.5118 

12 0.2154 0.1429 1.00 
(0.00) 

1.00 
(0.00) 

0.3379 1.000 

Legend: prob.defl is as in Table 3, with probabilities for forecast horizons 1 to 5 cumulated; 
prob.defl.starting is the probability of negative inflation starting at a given forecast horizon; exp.length is 
the expected duration of negative inflation observed at the given horizon, see (5); exp.length.starting is the 
expected duration of negative inflation within the forecast span which starts at the given horizon, see (6); 
prob.defl at h and 12 is the probability of negative inflation at period h and 12, and cond.prob. defl at h 
and 12 is the probability of negative inflation in periods h and 12, if negative inflation happens in period h. 
In columns 4 and 5 figures in brackets denote standard deviation of the random variable defined by (5). 
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Table 5: Effects of model uncertainty on the estimated probabilities of negative 
inflation 

  

 normal Uniform Gamma 
f.hor prob.defl. st.dev prob.defl. st.dev prob.defl. st.dev 

1 0.0003 0.0000 0.0008 0.0000 0.0003 0.0000 
2 0.0000 0.0000 0.0000 0.0000 0.0008 0.0000 
3 0.0097 0.0006 0.0061 0.0005 0.0096 0.0007 
4 0.0221 0.0010 0.0231 0.0049 0.0225 0.0012 
5 0.0007 0.0036 0.0832 0.0003 0.0007 0.0000 
6 0.2225 0.0049 0.2144 0.1701 0.2222 0.0412 
7 0.2290 0.0059 0.1958 0.1913 0.2257 0.0461 
8 0.2034 0.0047 0.1783 0.4547 0.2062 0.1161 
9 0.1941 0.0045 0.1921 0.3364 0.1948 0.0890 

10 0.1838 0.0032 0.2083 0.3031 0.1771 0.9462 
11 0.1981 0.0026 0.1942 0.7973 0.1964 0.2009 
12 0.2154 0.0025 0.2230 0.9786 0.2133 0.2503 
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Table 6: Robustness measures of the expected duration of negative inflation 
f.hor st.dev minimum maximum 

2 1.221 0.000 4.147 
3 0.882 0.000 2.389 
4 1.210 1.000 5.367 
5 2.319 1.238 7.625 
6 0.787 1.236 3.275 
7 0.669 1.210 2.960 
8 0.565 1.202 2.656 
9 0.443 1.153 2.348 

10 0.329 1.136 1.994 
11 0.157 1.105 1.520 
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Table 7: Contribution of particular models to the robustness check 
Model 

excluded: Marginal distr. Type Scatt. mat. Copula type St dev ratio 
1 All WSN Pearson Student-t, 4 dof’s 0.9833 
2 All WSN Pearson Student-t, 10 dof’s 0.9848 
3 All WSN Pearson normal 0.9865 
4 All TPN 0.9 Student-t, 4 dof’s 0.9873 
5 Mixed TPN/WSN Pearson Student-t, 4 dof’s 0.9876 
6 Mixed TPN/WSN MM normal 0.9878 
7 All TPN 0.9 Student-t, 10 dof’s 0.9882 
8 All TPN 0.9 normal 0.9884 
9 Mixed TPN/WSN MM Student-t, 10 dof’s 0.9846 

10 Mixed TPN/WSN MM Student-t, 4 dof’s 0.9902 
11 Mixed TPN/WSN Pearson Student-t, 10 dof’s 0.9915 
12 All WSN MM Student-t, 4 dof’s 0.9929 
13 All TPN MM normal 0.9934 
14 All TPN MM Student-t, 10 dof’s 0.9934 
15 Mixed TPN/WSN 0.9 normal 0.9942 
16 All WSN MM Student-t, 10 dof’s 0.9942 
17 All TPN MM Student-t, 4 dof’s 0.9945 
18 All WSN MM normal 0.9947 
19 Mixed TPN/WSN 0.9 Student-t, 10 dof’s 0.9954 
20 Mixed TPN/WSN Pearson normal 0.9957 
21 Mixed TPN/WSN 0.9 Student-t, 4 dof’s 0.9971 
22 All WSN 0.9 Student-t, 4 dof’s 0.9996 
23 All WSN 0.9 normal 1.0000 
24 All WSN 0.9 Student-t, 10 dof’s 1.0000 
25 All TPN Pearson Student-t, 4 dof’s 1.0660 
26 All TPN Pearson Student-t, 10 dof’s 1.0730 
27 All TPN Pearson normal 1.0770 

Legend: Mixed TPN/WSN denotes the models where the marginal distributions for the forecast horizons 2 
and 4 are those of WSN, and the remaining cases are those of TPN. In the column labelled Scatt. mat., 
Pearson, Pearson correlation coefficients have been used as the estimates of the elements of the scatter 
matrix; MM means that these elements have been obtained by the methods of moments as in Demarta and 
McNeil (2005), and 0.9 means that they all have been pre-assigned and are equal to 0.9. Entries for the 
model discussed in detail in Section 3 are boldfaced.  
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Figure 1: Inflation in China, January 2015-April 2015 
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Figure 2a: Characteristics of two-dimensional distributions of forecast errors 
forecast hors 1 and 2 (TPN & WSN) forecast hors 1 and 3 (TPN & TPN) 
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Figure 2b: Characteristics of two-dimensional distributions of forecast errors 

forecast hors 2 and 4 (WSN & WSN) forecast hors 6 and 10 (TPN & TPN) 
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