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Abstract—This paper presents a method of using wearable
accelerometers and microphones to detect instances of ad-hoc
physical collaborations between members of a group. 4 people
are instructed to construct a large video wall and must cooperate
to complete the task. The task is loosely structured with minimal
outside assistance to better reflect the ad-hoc nature of many real
world construction scenarios. Audio data, recorded from chest-
worn microphones, is used to reveal information on collocation,
i.e. whether or not participants are near one another. Movement
data, recorded using 3-axis accelerometers worn on each person’s
head and wrists, is used to provide information on correlated
movements, such as when participants help one another to lift a
heavy object. Collocation and correlated movement information
is then combined to determine who is working together at any
given time. The work shows how data from commonly available
sensors can be combined across multiple people using a simple,
low power algorithm to detect a range of physical collaborations.

I. INTRODUCTION

Activity modelling and recognition is traditionally con-
cerned with recognising what an individual does and how he
or she interacts with their environment. The definition of what
is meant by ’activity’ can vary in all of these approaches,
from low-level ‘actions’ such as a single movement of the
wrist, to higher level situations such as ’dinner’. The long-
held goal of many working in this field is to be able to draw
together multiple strains of contextual information, including
activity, to help develop new context-aware applications. Many
ways of handling this information for high-level modelling
and decision making have been explored, for example see
overviews by Ye et al. [1] or Bettini et al. [2]).

A question that often arises is how do we sense, and model,
activities that are carried out by more than one person? Effects
from the presence of multiple users were often seen as a
“disturbance” (e.g. the “multiple occupancy” problem within
the smart home activity recognition domain [3]). The idea
of recognising group activities using wearable sensors was
recently explored in the doctoral thesis of Dawud Gordon
[4]. Gordon showed that by sensing the physical movements
of multiple individuals, the emergent behaviour of a group
could be predicted (e.g. certain team sports like football, or
volleyball) [5].

The iGroups project at DFKI aims to explore group ac-
tivities, structures, and dynamics with a focus on sensing
and recognising collaborative activities within groups. This
paper describes an initial approach to that work. The main
contributions of the paper are (1) to describe a 4 person, 45

minute long, dataset of an ad-hoc group construction task, and
(2) to show how physical collaborations can be detected using
a relatively simple heuristic based on correlations of features
from a small number of body-worn sensors 1.

A. Related Work

a) Vision: Many overviews on activity recognition have
been published in recent years, with specific orientation around
the particular sensing approach taken. Turaga et al. survey the
most widely used sense, vision [7]. Vision-based analysis of
group-level activities have been studied by several researchers
(e.g. Chang [8], and Lan [9]). However problems with oc-
clusion and changes in lighting can inhibit this modality,
particularly in a wearable context.

b) Inertial Sensing: Body-worn, inertial sensing is in-
creasingly used as an alternative to vision and is primarily
used to detect individual activities like walking, running, and
various hand gestures (Bulling et al. provide a good tutorial
on the topic [10]). But beyond the work of Gordon, inertial
sensing has not been well studied for group activies [4].

c) Sound interactions: The PhD thesis of Sumit Basu
explored individual speaker detection in groups. The work
showed that it was possible to detect conversations using mu-
tual information (MI) between different speakers [11]. Others,
like Lian and Hsu [12], tackled the challenge of detecting
conversation dynamics using probabilistic modelling.

d) Sound collocation: Eagle and Pentland used multiple
streams of wearable audio to identify various social interac-
tions [13]. Although infra-red beacons were used to detect
collocation, they suggested using relative audio signal energy
to detect whether speakers were in earshot of one another.

A microphone-only based approach to detecting collocation
has the advantage that it can provide fine-grained location
information without the need for external infrastructure. Our
earlier work on wearable activity recognition demonstrated
sound-based activity localisation by using the sound intensity
differences between pairs of microphones worn at different
arm positions to detect whenever a noise was made close to
(or by) the hand [14].

e) Combining sound and acceleration: In that same work
we also introduced the idea of fusing sound and acceleration

1An initial version of this dataset was described in an earlier short paper
by the authors, however only a preliminary analysis was carried out [6].



Fig. 1. (Left) sensors include (1) head-worn IMU, eye-tracker, camera, (2)
chest-worn microphone, and (3) wrist-worn IMUs. (Right) two people lift a
screen into position on the tv wall

information to improve the classification accuracy of recognis-
ing tool-use activities (such as sawing, hammering,etc.). This
idea – of fusing information from sound and movement – is
brought forward to the current work, but this time sound is
used to collocate participants, and correlations of acceleration
features are used to detect collaboration.

II. DATA COLLECTION

The overall task was for 4 people (3 male, 1 female) to
collaborate in assembling, and then dismantling, a large, 2.5
m high, 6 screen, video wall.

A short description and guide to the task was given to the
subjects, beyond this the group had to organise and execute
the work themselves. At least two people were needed to carry
each (8kg) screen from a storage room, which is 25m away
from the assembly area. Other components, such as spacers
and tools, could be carried by one person. Once enough
components were at the destination area, the group could start
to build the wall by lifting and mounting the screens onto the
base panels. Lifting required cooperation of at least two people
(as shown in Figure 1), whereas tasks such as tightening the
screws could be done by one person. The activities also varied
in length, from nearly a minute for two people to carry a screen
along a corridor, to a few seconds for one person to place a
spacer in its track on the video wall. After 15 minutes of set-
up and synchronisation, it took 45 minutes for the subjects to
complete the task.

A. Sensor Setup

Each participant wore inertial measurement units (IMUs) on
their wrists and head, as shown in Figure 1. The IMU devices
record 3-axis acceleration, gyro, and magnetic field – however
only acceleration, recorded at approximately 40 Hz, is used in
this work. Audio was recorded using a chest-worn microphone
connected to an iPhone5 (running the Voice Memos app) in

each person’s pocket. To aid with synchronisation, a series of
clapping and jumping gestures were performed by participants
both at the beginning and half-way through the task.

Eye-movement and egocentric video was also captured for
each participant. Analysis of this data is outside the scope of
the current work but will be explored at length in a future
study.

Fixed cameras were mounted in each of the two rooms and
in the connecting corridor to assist annotation. In this initial
study only two broad classes were considered for annotation:
‘collaboration’, if two or more people were lifting, carrying,
or putting down a screen; or ‘no collaboration’ to record
everything else. An additional annotation on location was
made to record which room the participants are in at any given
time. This is used to help assess collocation.

Due to sensor failure some of the data had to be discounted.
Notably the right-wrist IMU for P2 failed and could not be
used. The audio recording for the same subject also failed, but
thankfully only the final 5 minutes were lost. The following
work is based on the intact 40 minute subset of remaining data
(using chest mic, head IMU and left-wrist IMU).

III. DETECTING COLLOCATION USING SOUND

Environmental sounds recorded from two nearby micro-
phones will show a high correlation both in frequency and,
assuming a similar distance between source and microphones,
intensity. This section describes a method of detecting whether
two sound sources are collocated or not by applying a
correlation-based classifier on selected frequency and energy
features calculated from the sound sources. The method is then
evaluated over sound data from all the pairwise combinations
of participants in the dataset.

A. Collocation Dataset

A collocation ground truth is annotated for each possible
combination and number of participants, indicating whenever
people are near one another. In total everyone is together 44%
of the time, with participants spending between 9–16% of time
alone. The most frequent pairings are P1 & P4 and P2 & P3
(in separate pairs 30% of the time).

B. Sound Features

Many daily sounds can be regarded as stationary at small
time frames (e.g. 10-30 ms is typically used in speech recog-
nition). Two features are calculated over moving short-time
frames: the zero-crossing count, ZC (the number of times the
locally standardized signal crosses zero); and the short-time
energy, E, defined by log10(

∑w
n s(n)

2), for sample s(n) in
short-time frame w. The choice of ZC and E was inspired by
their use in Bachu et al. as a simple way of characterising
speech signals [15].

C. Collocation Algorithm

Pearson’s correlation (ρ) gives a measure of the linear
dependence between two variables, giving an output of 0
if uncorrelated, 1 if highly correlated, and -1 if negatively



correlated. For pairwise feature frames X and Y , it is defined
as ρsndX,Y = cov(X,Y )

σX ,σY
, where cov is the covariance and σ is the

standard deviation of the features.
Correlations are calculated pairwise between participant’s

data for both ZC and E features. To better capture longer-term
temporal information in the signals, and to help avoid short
disturbances in the signal, these correlations are calculated
over a large moving window of W snd frames.

The correlation streams for each feature, ZC and E, are
combined by weighted summing: ρsndX,Y = αZC ∗ρZCX,Y +αE ∗
ρEX,Y , for weights αZC , αE (both weights are fixed at 0.5 in
this work).

Finally, a binary decision (collocation or not) is made by
thresholding the output of ρsndX,Y . To smooth over any noise in
the output the final classification is determined by a hysteresis
with upper (τsndu ) and lower(τsndl ) thresholds.

D. Collocation Evaluation

By exploring different windowing parameters, a short-time
feature frame of w = 300 ms was found to allow sufficient
signal information while reducing the need for high-bandwidth
communications between participants. A large correlation win-
dow of W snd 20 frames (6 seconds) was chosen to capture
the longer-term dynamics, while still being short enough to
detect location shifts in a timely way.

Evaluation of the collocation algorithm is first carried
out across a sweep of classifier thresholds, with each out-
put compared and evaluated against the ground truth. The
ground truth in this instance records whether or not two
people are collocated at any one time. Frame-based precision
( true positives
returned positives ) measures how relevant the returned result

is, and recall ( true positives
actual positives ) measures the fraction of the

collocations correctly detected.
For each of the participant combinations (P3&P2, P4&P2,

etc.), a precision-recall (PR) curve was plotted. The area
under curve (AUC) metric, which gives an overall parameter-
independent measure of classifier performance, is also calcu-
lated. The results are shown in Figure 2. Overall the sound
based collocation classifier performs well with an AUC of
0.907. Fixing the parameters with thresholds τusnd =0.7
(large correlation needed to trigger start of collocation) and
τsndl ==0.1 (low correlation to trigger end of collocation)
results in an overall algorithm performance of precision 86.5%,
recall 92.4%, and F1-score (balanced mean of precision and
recall) 89.3%.

E. Analysis of Collocation Results

Results in the 90% region are good, but there are several
issues with the way in which the data is annotated that might
impact this result. For example, when participants are walking
along the corridor they are labelled as being collocated, even
if they are at opposite ends of the (long) corridor. There are
instances in the results where this distance is detected by the
algorithm (which is arguably correct), but is treated as an error
leading to lower recall. Equally there are a handful of instances
where very similar sounds occur in separate rooms around the

Fig. 2. Precision-recall (PR) curves for audio-based collocation between
different couples, and for all combined. Area Under Curve (AUC) is a high
.9 for the combined case. Perfect results would be AUC 1 (i.e. at the top right
corner).

TABLE I
% OF TIME PARTICIPANTS SPEND IN COLLABORATION

P1P2 P1P3 P1P4 P2P3 P2P4 P3P4 any 3 all 4
12 6 29 18 3 5 1 2

same time, thus giving a false impression of collocation (lower
precision).

IV. DETECTING PHYSICAL COLLABORATION

When two people move a heavy object together, their move-
ments are necessarily correlated in some way. Similarly when
walking alongside one another, there will be similarities in
their movements. This section describes a method for detecting
physical collaborations by classifying on the correlation of
acceleration-derived features across multiple participants. The
approach is evaluated, (1) across 4 different features and
combinations, (2) 3 sensor locations, and (3) in combination
with collocation.

A. Collaboration Dataset

The dataset annotations are reduced down to a single class
of interest: ‘collaborate’ representing all instances of large
physical activities involving two or more people helping each
other, like ‘walking together’,‘carry tv’,‘put down tv’,‘lift tv’.
All other activities, such as ‘using screwdriver’, ‘finding tools’,
‘cleaning room’ are labelled Null.

The percentage of time participants spend in collaboration
is shown in Table I.

B. Collaboration Algorithm

In a similar fashion to the sound based collocation, Pear-
son’s correlation (ρ) is applied across a large rolling window
(Wacc) between feature data from different participants. Corre-
lation combination is applied as follows: ρaccX,Y =

∑F
i αiρ

i
X,Y ,



for weight αi, and F the number of correlations to be com-
bined. (All α weights here are equal.) A decision (collabora-
tion or not) is made by thresholding the output of ρacc, with
final classification using a hysteresis with upper (τaccu ) and
lower(τaccl ) thresholds.

C. Acceleration Features

3-axis accelerometers were located on the head and wrists of
each participant. Due to the failure of P2’s right wrist sensor,
the analysis that follows is based on the combined correlations
from the head and left wrist data.

For each sensor the 3-axis acceleration signals, x,y,z are
combined as S =

√
x2 + y2 + z2. This helps improve robust-

ness by making the sensors essentially rotation invariant (as
demonstrated by Kunze et al. [16]). Four commonly used2

features – mean, standard deviation (σ), zero crossing count
(ZC), and window energy (E) – are then calculated over a
range of short-time rolling feature windows, wacc.

D. Evaluation of Features

A short frame of length wacc =300 ms was found to
prove the best results in combination with a large correlation
window of Wacc = 20 (6 seconds). These window settings
are also convenient because they correspond to those of the
sound analysis, and that they have a similarly low computation
overhead.

The PR curves for the 4 features are shown on the top
graph of Figure 3. Clearly the ZC (AUC 0.522) outperforms
the others, closely followed by short-time energy E (0.447).
Correlations based on changing mean perform very poorly
(0.26). Even when all features are combined, as shown in
the bottom graph of Figure 3, the effects of mean drag
down performance. The best PR performance is achieved by
combining ZC & E (AUC 0.569). These two features are
therefore used for the remainder of the work.

E. Evaluation of Sensor Location

Figure 4 confirms that the strongest performing sensor
combination is between head + left wrist. The combined
results reflect the intuition that where correlation between
single sensors on different people still leaves the possibility
of false positives (e.g. chance correlations in hand movement),
correlation between two or more sensors on different people
is incredibly unlikely (unless the two people are moving
together.)

F. Combining Collocation and Physical Correlation

The sound-based collocation output from III-D is com-
bined with the accelerometer correlations, ρacc. Rather than
combining correlation values, ρacc is multiplied by the best
performing ‘hard’ result of the collocation algorithm (i.e. 1 or
0). The combination is analysed across a threshold sweep in
Figure 5.

The final output of the combined collaboration classifier was
calculated with correlation hysteresis thresholds, τaccu =0.45

2See Bulling et al. for an overview of common features [10]

Fig. 3. PR curves comparing collaboration detection using features from head
+ left wrist accelerometer data; the top graph shows zero-crossing count (zc)
and energy outperform standard deviation and mean, while the bottom graph
shows a combined zc + energy outperform a combination of all features.

TABLE II
BEST RESULTS (WITH τaccu =0.45 AND τaccl =0.3)

Precision Recall F1
acceleration only 49.6 74.5 59.6

acceleration with collocation 53.4 70.7 60.1

and τaccl =0.3 (picked to capture a range of the best PR values)
and is summarised in Table II

Finally, Figure 6 shows the timeline output of this algorithm
for each of the participants, P1 to P4, over the experiment
duration.

V. DISCUSSION

A. Final results

Overall the results look promising. Figure 6 shows visually
how well the majority of collaborations are detected. There
are only a handful of false positive events, or insertion errors.



Fig. 4. PR curves comparing collaboration detection using different sensor
combinations. Head + left wrist combined outperform individual sensors; the
right sensor performs poorly, largely due to a faulty right sensor on one of
the participants (P2).

Fig. 5. PR curves showing the slight improvement (from AUC 0.569 to 0.582)
in adding collocation to head + left wrist based collaboration.

In fact the largest of these errors, at 00:40 between P1&P2, is
actually not an error at all. The video at that time shows P2
moving across the room and then helping P1 from behind the
wall. Both of their actions and locations are well correlated,
but there was no clear way of annotating the activity, so the
ground truth was left blank. However it is clear that this is a
physical collaboration.

In addition to this, most of the false positives (accounting
for low precision in, for example, Table II) are largely due to
inaccuracies in the way ‘collaborative activity’ is annotated in
the ground truth.

B. Missing Data

Simultaneously recording multiple streams of sensor data
from 4 people over the course of an hour is non-trivial,
particularly when it is not always possible to stop participants
in the course of their activities to check the equipment. The
loss of data from P2’s right wrist, the participant’s dominant
hand, meant that overall recall rates (relying on left and head
data only) are not as high as would be expected – and is
likely the reason for the failure to detect some of the P2
collaborations from 00:25 to 00:40. However the results are
still good, and it reveals a robustness of the overall approach
to real world sensor failure.

C. Future Work

The next stage in this project is to explore more complex
collaborations and interactions, for instance activities like one
person holding an object while another drives a screw into it,
or one person instructing another how to perform a task. This
involves a wider range of sensors such as eye-trackers and
cameras, and will require more complex recognition methods.

A crucial part of this is in the time-consuming and expensive
process of producing accurate annotation. Many components
of activity that might be useful in inferring collaboration,
such as walking, specific arm movements, or even conversa-
tion, need themselves to be recognised. To apply supervised
machine learning algorithms to these sub-problems requires
annotation at this level too, at least for part of the data.

Annotating activities for multiple, interacting people is a
challenging problem. Even with linear, person-specific la-
belling, as used here, there are many fine-grained issues to be
resolved, particularly for overlapping and concurrent tasks. For
example, how should annotation be handled if the participants
begin on the activity at different times? Or what if one person
leaves a collaboration to go help out with another, and then
returns again?

VI. CONCLUSION

The correlation algorithms used to detect collocation and
collaboration have the main benefit that they require only a
handful of (global) threshold parameters to be set. Because
there is no attempt to model activity classes, no expensive
training step is needed. They can also be applied cumulatively
as a way of fusing different correlation information.

The zero-crossing count (ZC) and short-time energy (E)
proved versatile features for characterizing both environmental
sound, and physical movements. They have the additional
advantage of being quick and simple to compute on a low
power device.

Detection of collocation was shown to be very effective
(with F1-measure 89.3%) using only inter-person correlations
based on ZC and E from chest-worn microphone signals.

Combining data from head-worn and left-wrist accelerom-
eters enhanced detection of physical collaborations beyond
what either sensor alone could achieve. By combining sound-
based collocation with the physical collaboration, recognition
of collaborations achieved an F1-measure of 60.1%.



Fig. 6. Physical collaboration detection from the perspective of each participant (P1 to P4) using head + left arm acceleration data combined. Ground indicates
when two (or more) participants are collaborating – e.g. at time 00:15 everyone is moving together (walking), while at 00:30 only P4 and P1 are helping one
another (lifting and carrying tv screens). Note that around 00:33 P2&P3 help one another, but this is not detected because of the predominant use of P2’s
right arm in this instance (which had a broken sensor). Visually it can be seen that most collaborative events are captured within an approximate timeframe
and there are very few falsely detected or missed events.
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