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Abstract

At the outset, this thesis sets out to address limitations in conventional population

data for the representation of stocks and flows of human populations. Until now,

many of the data available for studying population behaviour have been static in

nature, often collected on an infrequent basis or in an inconsistent manner. However,

rapid expansion in the use of online technologies has led to the generation of a huge

volume of data as a byproduct of individuals’ online activities. This thesis sets out to

exploit just one of these new data channels: raw geographically referenced messages

collected by the Twitter Online Social Network.

The thesis develops a framework for the creation of functional population in-

ventories from Twitter. Through the application of various data mining and heuristic

techniques, individual Twitter users are attributed with key demographic markers

including age, gender, ethnicity and place of residence. However, while these in-

ventories possess the required data structure for analysis, little is understood about

whom they represent and for what purposes they may be reliably employed. Thus a

primary focus of this thesis is the assessment of Twitter-based population invento-

ries at a range of spatial scales from the local to the global. More specifically, the

assessment considers issues of age, gender, ethnicity, geographic distribution and

surname composition.

The value of such rich data is demonstrated in the final chapter in which a de-

tailed analysis of the stocks and flows of peoples within the four largest London air-

ports is undertaken. The analysis demonstrates both the extraction of conventional

insight, such as passenger statistics and new insights such as footfall and sentiment.

The thesis concludes with recommendations for the ways in which social media anal-
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ysis may be used in demographics to supplement the analysis of populations using

conventional sources of data.
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Chapter 1

Introduction

Throughout human history, governments and rulers have sought to measure and

record their populations. Motivations have varied, although in many cases, the driv-

ing force has been military conscription and the administration and collection of

taxes (Dewdney, 1981). More recently, records of population, or Censuses, have be-

come commonplace and are now employed in a broad range of applications ranging

from the provision of education to the planning of major infrastructure. The first

example of a modern Census was completed in 1790 in the United States and was

shortly followed by the UK and France in 1801. Since then, a Census has been com-

pleted in the UK on a decennial basis with the only exception being 1941 during

which time the UK was at war. While the recording period has remained consistent,

the questions asked have been expanded upon to better reflect the changing needs

and interests of society. Beyond the questions, the general mechanics of the Cen-

sus have remained largely consistent. At set intervals, a survey is conducted of the

nation, and the results of this are aggregated and presented for general consump-

tion. In effect, a Census is a static depiction of the population at a specific point in

time. It is the static nature and extended period between surveys which form their

main sources of criticism. However, across the globe, various alternative means of

population recording are now being employed. One example being the use of rolling

surveys in the United States. Of the alternatives, there has been increasing interest in

the potential applications of new forms of data. New forms of data are a range of data

that may be employed beyond their original purpose for the benefit of research, and
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commercial gain. Examples include smart meter data, bulk communication data and

from data collected through social media. These data, which may be considered as

digital exhaust, are providing a new and exciting means to understand the behaviour

of populations’ at a greater spatiotemporal resolution that has ever previously been

possible.

In this thesis, the aim is to make a contribution in regards to how new forms of

data may be employed in the study of stocks and flows of populations. The avail-

ability of data which are rich in both space and time is unprecedented and provides

an entirely new means by which population insight may be generated. Rather than

being constrained to static analysis, there is now the potential to investigate the pop-

ulation in a dynamic and evolving manner. This work builds upon existing literature

which seeks to extract demographic insight from geotagged Twitter data based on the

application of a range of data-mining techniques. Seeking to establish social media

data as a valid alternative to conventional population data, this thesis will explore the

potential of Twitter at a range of spatial scales from the local to the global. It should

be noted that the integration of such new forms of data into conventional analysis is

not without its challenges. Many of the qualities of conventional population data,

such as detailed attribution and publicised methodologies are not readily available.

Consequently, social media based analyses have often been depicted in a negative

light, with major questions being raised around for whom and for what, the data are

representative. Thus, a key aim of this thesis is to establish how representative Twit-

ter data are of the observable population, and thus, to provide a framework upon

which future researchers may analyse and interpret such data. The analysis employs

a global database of 1.4 billion geotagged Tweets collected between December 2012

and January 2014.

It should be noted at the outset, that it is not simply the aim of this thesis to

be a collection of novel applications based on the analysis of social media data. In

reality, such work forms the majority of literature written in regards to social media.

Too often, the focus of such analyses is the creation of unique visualisations or the

extraction of particular insight within a constrained environment. Such analyses
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are often written retrospectively, and thus, are liable to a publication bias in which

positive outcomes are published, and negative outcomes are not. Rather, it is to

take a step back and critically examine the way in which social media data could be

analysed. Thus, this thesis seeks to set out a systematic approach upon which social

media analysis, where possible, should be performed.

1.1 Aims
As indicated in the above, themain objective of this thesis is to develop a comprehen-

sive understanding of for whom and for what social media data are representative.

Various anecdotal evidence exists in this regard. However, such analyses are either

based on survey data, are constrained in their scope, or are beset with other limita-

tions which may adversely impact upon their outcomes. Thus, this thesis has four

key aims.

1. To review the current state of geodemographics and identify potential oppor-

tunities for progression within the context of New Forms of Data.

2. To develop a methodology for the construction of functional population in-

ventories based on the analysis of geotagged Twitter data.

3. To assess the representativeness of social media population inventories.

4. To deliver recommendations upon which Twitter, and social media more

broadly, should be analysed, building upon what is delivered in aims 2 and 3.

The substantive aspects of this thesis are reported in Chapters 4 through 7.

These chapters are concerned with the analysis and processing required to trans-

form the raw data collected via Twitter into functional population records and sub-

sequently, on their validation at a range of spatial scales. For reference, the analy-

sis will draw on a range of additional datasets including the Worldnames Database

which has been compiled by the UCL Department of Geography and also the UK

Consumer Register provided by CACI Ltd. A general analysis at the global scale is

conducted in Chapter 5 and a more in-depth analysis is performed at the UK scale

in Chapter 6.
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1.2 Thesis Structure

1.2.1 Chapter 2: Geodemographics, Identity and Personal

names
Chapter 2 is concerned with establishing the foundation upon which this thesis is

constructed with a critical evaluation of current practices in geodemographics and

population data. Having identified a series of limitations in the use of such data, it

is suggested that New Forms of Data, specifically those that are collected via Online

Social Media may provide a plausible alternative. The chapter goes on to establish

the link between conventional population data and social media data based on the

novel analysis of personal names.

1.2.2 Chapter 3: Social Media and Geodemographics Applica-

tions
Having established a linkage between geodemographics and social network data,

Chapter 3 is concerned with establishing a research context within social media from

which this thesis can draw information and further build upon. Here, the focus is

two-fold. First, concerning the various ways in which social media are employed.

Second, regarding the limitations observed in the various analyses. The chapter goes

on to introduce Twitter, the social media platform employed in the completion of this

thesis.

1.2.3 Chapter 4: Database Creation, Linkage and Validation
Chapter 4 is concerned with establishing and implementing a framework by which

the raw Twitter data collected via the Streaming API can be transformed into func-

tional population inventories. Using a collection of 1.4 billion geotagged Tweets,

the aim was to assign each person to a single location at a range of spatial scales.

Subsequently, heuristics are applied to individuals’ display names with the purpose

of extracting their probable forenames and surnames. These, as will be discussed,

provide the means by which key identities may be inferred. These analyses were

conducted in two countries, the UK and Spain. These countries were chosen given
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that each represents a different major language group and because comprehensive

names data were available via the UCL Worldnames Database for reference.

1.2.4 Chapter 5: Creation of a Seamless Worldnames Database
Chapter 5 is concerned with applying the inventory creation framework at the global

scale. The aim of the chapter is two-fold. First, it provides an opportunity to sup-

plement the UCL Worldnames Database with data for countries where no existing

data are held. Second, it provides a means by which the global geography of Twitter

may be examined. Seeking to model the probable representativeness of the Twitter

inventories on a global scale, a series of analyses are performed seeking to identify

what factors were associated with the Twitter inventory performance. Applying this

model, it was possible to gain an improved understanding of the global geography of

Twitter. The analysis is useful for three main reasons: it may be used to inform the

research regarding where analysis of Twitter is likely to be effective; when investi-

gating data related to nationality it provides a means for standardisation, and lastly,

it provides a means to identify those individuals who are not resident in the country

or area of study.

1.2.5 Chapter 6 : Twitter in the UK: A Basis for Analysis
Chapter 6 is a UK specific assessment of to what degree Twitter data are represen-

tative of the observable population in regards to a series of key demographic at-

tributes: age, gender, ethnicity and geographic distribution. These attributes are in-

ferred through the use of a series of heuristics based on individuals’ personal names

and their long-term tweeting behaviour. The aim of the chapter is to ascertain what

proportion of the observable population the Twitter-derived inventories are repre-

sentative. The results confirm many anecdotal beliefs regarding age and gender bias

within the Twitter cohort. The chapter concludes with a discussion regarding how

knowledge of the Twitter users’ demographic structure may be incorporated into the

analysis of population stocks and flows. This is supported by examples in which

knowledge of the demographic outcome may have been advantageous.
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1.2.6 Chapter 7 : Social Media Demographics
Chapter 7 is an applied chapter in which the potential of demographically attributed

Twitter data is showcased through an analysis of London’s four largest airports. The

analysis is delivered in two parts. In the first, conventional forms of analysis in-

cluding demographic profiling and airport catchment analysis are performed. In the

second, various novel insights are generated drawing on the Twitter data. These in-

clude footfall modelling and textual data mining. The significance of the analysis is

that it is completed in the absence of direct observation and that the methods em-

ployed are easily transferable. The chapter concludes with a discussion of potential

strengths, weaknesses and opportunities for the methods demonstrated.

1.2.7 Chapter 8: Contributions and Future Work
Chapter 8 consolidates the main finding from the preceding chapters with the aim

of highlighting the key methodological contributions in regards to the application

of new forms of data to demographics. In particular, the chapter reiterates the var-

ious recommendations that have been put forward in regards to the effective use of

social media in academia and industry. The chapter concludes with a discussion of

potential future work building on what has been achieved over the course of this

thesis.

1.3 Notes on Population Data
Throughout the course of this thesis numerous reference is made to the use of pop-

ulation data. It should be noted that this definition encapsulates two distinct forms

which the data may take. In the first, to be referred to as ‘individual level population

inventories’, each individual is represented as a single entity. This entity may contain

multiple additional attributes such as age, gender, ethnicity or place of residence. In

the second, referred to as ‘aggregate population inventories’ individuals are grouped

based on a common value, such as family name and one or more spatial parameters.

Where not explicitly mentioned, the unit of aggregation is the country for which the

individual is believed to be resident.

Figure 1.1 provides a useful reference by which the two forms of population
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Figure 1.1: Framework by which geodemographics and social media data may be linked via
the novel analysis of personal names.

should be understood. At the base level, all population data are constructed using

individual level population data. Traditionally such data may be collected via sur-

veys or through national censuses of population. In effect these may be considered

the raw form of population data. For the purpose of application, such data are typi-

cally aggregated to show the typical characteristics of specific groups of individuals.

Typically the grouping of individual level population data is informed by a specific

geographic boundary such as national boundaries. A key feature of this thesis is the

construction of proxy individual level population data based on the systematic analy-

sis of data harvested from the Twitter online social network. More detail is provided

on this process in Chapters 4 and 5. It should be reiterated that the goal is to not to

replace the existing Worldnames Database population inventories. Rather, it is the

goal to assesses the performance of the Twitter Inventories for these countries and

potentially employ the Twitter inventories to fill gaps in the database at the national

scale.
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1.4 Notes on Software and Data
In this thesis, a range of software and data have been utilised. In regards to soft-

ware, the majority of analysis has been performed using R, an open-source, cross-

platform statistical programming language. The majority of data storage and ma-

jor handling operations were achieved using PostgreSQL, an open-source relational

databasemanagement system. Regarding data, themain datasets have been: a corpus

of 1.4 billion geotagged Tweets and the UCL Worldnames Database, both collected

as part of the Uncertainty of Identity project; The GADM 2.0 global administra-

tive dataset; and a selection of administrative geographies published by the Office

for National Statistics. In the case of both software and data, more information is

provided as is deemed appropriate.



Chapter 2

Geodemographics, Identity and

Personal Names

2.1 Introduction
In developing applications for new forms of data to geodemographics, there is first

a need to establish a means by which they may be linked. Thus, this chapter initi-

ates with an introduction to geodemographics, before exploring the means by which

the two may be connected based on the novel analysis of personal names. It will be

demonstrated how personal names, mined from online social media, may be used in

the inference of the key demographic identifiers. Having established this relation-

ship, Chapter 3 will be concerned more broadly with the analysis of online social

media and the exploration of potential applications.

2.2 Geodemographics

2.2.1 Introduction
The ability to analyse data within the context of space has facilitated the extraction

of new insight from aggregate and individual level population data, enabling the

discovery of previously hidden geographic phenomenon (Singleton and Longley,

2009). Such a capability has supported the emergence of geodemographics. An

extension of demographics and sociology, geodemographics is concerned with the

characterisation of small areas through the classification of regions based on social,
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economic and demographic data (Singleton and Longley, 2009).

Figure 2.1: Extract of Charles Booth’s poverty map showing the region in the immediate
vicinity of University College London (source: https://booth.lse.ac.uk/map/).

One of the earliest examples of geodemographics is attributed to Charles Booth,

a social reformer who assembled a detailed map of poverty in London in 1889. Mo-

tivated by a desire to disprove statistics alleging that more than 25% of Londoners

lived in poverty, his final assessment was, in fact, 30.7% (Harris et al., 2005). Il-

lustrated in Figure 2.1, Booth’s map of poverty clearly delimits the streets around

Camden, highlighting areas of wealth and poverty. Over a period of years, Booth

compiled surveys across the city designed to assess the ‘general condition of its in-

habitants.’ These surveys were subsequently employed in the authorship of the map

which classified streets on an ordinal scale of poverty. Aside from Booth, much of

the early work in geodemographics may be attributed to the Chicago School of So-

ciology. The Chicago School was one of the first to place the impetus on the use

of empirical analysis to study urban and spatial phenomena (Poston Jr and Micklin,

2006).

Moving forwards in time, the general approach to area classification has shifted

towards identifying areas based on their general characteristics. The approach em-

https://booth.lse.ac.uk/map/
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ployed in their creation is largely consistent (Harris et al., 2005): First, a series of

variables, which in combination are considered to fulfil the mandate of the clas-

sification, are identified. Second, the variables are clustered such that distinct

groups/partitions are identified. And, finally, through quantitative and qualitative

analysis of the identified groups, names are assigned to each group designed to en-

capsulate each group’s character. Examples of such names, drawn from the 2011

Output Area Classification (OAC) include ‘English and Welsh Countryside’, ‘Lon-

don Cosmopolitan’ and ‘Mining Heritage and Manufacturing’ (Gale, 2014). The

objective of the clustering is to partition areas such that homogeneity within groups

and heterogeneity between groups is optimised (Singleton and Longley, 2009).

A fundamental factor in the development of new geodemographics has been

the rise of Geographical Information Systems (GIS). GIS being: “An integrated col-

lection of computer software and data used to view and manage information about

geographic places, analyse spatial relationships, and model spatial processes. A

GIS provides a framework for gathering and organising spatial data and related in-

formation so that it can be displayed and analysed” (Wade and Sommer, 2006). It is

important to differentiate between GIS which is concerned with the application of

methods and GIScience which is the development of newmethods and technologies.

From an academic perspective, GIS have several definitions for which Maguire

(1991) presents an overview. He suggests three interrelated concepts: the map, the

database and the spatial analysis. The map component is a reference to the creation

of cartographic products based on existing geographic data. The database compo-

nent concerns the efficient storage and querying of geographic data. The spatial

analysis component is centred on the analysis and modelling of geographic data and

is referred to as a spatial information science rather than technology. Maguire (1991)

highlights that in many cases, these three components are used in parallel to achieve

a specific goal and that the differences in definitions are a consequence of their origin

or application.
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2.2.2 Applications
When considering the strengths and weaknesses of geodemographics, it is important

to consider both their construction and subsequent application. Through an under-

standing of how these data may be used and by whom the data are employed we can

more easily identify potential opportunities for developing new applications. In the

subsequent text we investigate the use of geodemographics across a range of appli-

cations including customer segmentation, crime analysis and health.

Retail and customer segmentation represent the lions share of geodemographics use.

The ability to understand buying behaviour of consumers based on the linkage of

customer data and geodemographics offers an effective means by which their buying

behaviour may be profiled and understood (O’Malley et al., 1997). Such informa-

tion may be used for a range of purposes including the optimisation of store place-

ment to the delivery of bespoke marketing. In exploiting the potential of geode-

mographics for retail one of the most valuable data assets are store loyalty cards.

Loyalty cards provide a tangible link between individuals’ places of residence and

their store choices providing a potential wealth of insight into the geography of pur-

chasing behaviour. While much of the existing research has centred on traditional

retail, increasing interest has emerged on the use of geodemographics for the analy-

sis of online behaviour. For example, the Internet Users Classification which uses a

range of Census and other survey data to understand individuals’ online behaviours.

In terms of crime, Williamson (2008) highlight three key themes in the use of geode-

mographics including the profiling of specific Wards and police beats, the profiling

of operational crime data and the attribution of crime survey data. It is highlighted

how awareness of trends based on specific geodemographic types can be used to bet-

ter understand crime and deliver more effective policing. Bowers (1999) explores

the use of GIS and geodemographics in conjunction with crime analysis software to

examine patterns of crime within specific segments of the population. Being able to

cross-reference both victim and offender locations with specific demographic char-

acteristics enables a greater level of insight than simply knowing the location of the

offence. Further, through the application of such techniques to large collections of
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crime data, a greater understanding may be obtained of the association with specific

crime types and geodemographic types and geography. Consequently, such knowl-

edge may be employed to better target policing resources such that the expenditure

of time, money and resources is optimised. The use of geodemographics may thus

be considered as a key tool in terms of Intelligence-Led-Policing. However, it should

be recognised that these classifications may be misleading due to their depiction of

the population at its place of residence. The availability of real-time and more tem-

porally frequent data could prove transformative in such applications.

Health trends and the provision of services is a key area in terms of geodemographic

applications and is built on the principle that individuals health is at some level a

function of the place and situation within which they exist. Though the linkage

of patient records and geodemographic classifications it is possible to examine and

identify the prevalence of specific health concerns, at-risk groups and health in-

equalities (Abbas et al., 2009). Further, through identification of specific groups, it

become possible to deliver better preventative care to those groups found to be at the

greatest risk.

As may be observed in the preceding text, geodemographics provide an effective

means bywhich the populationmay be aggregated into distinct homogeneous groups

reducing the complexity of populations to such an extent that actionable insight may

easily be generated. In each of the three example, geodemographic provide a means

to supplement existing data to better understand general behaviours and subsequently

to extrapolate the findings based on a broader knowledge of where specific popula-

tion groups are resident. From this, it is clear that geodemographics are a highly

transferable tool. However, as may be increasingly evident, the use of such data for

the attribution of individuals and events has a number of potential limitations. These

pitfalls and potential remedies are discussed in the subsequent section.

2.2.3 Limitations
While the mass and continued adoption of geodemographics is a testament to their

success, some significant limitations persist. Common critiques include: the regular

use of a ‘one size fits all’ methodology; the dependence upon residential night-time
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data; the reliance on infrequently published data; and the ‘black box’ nature of many

geodemographic classifications in terms of the data used and methods employed

(Singleton and Longley, 2009).

The issue of ‘one size fits all’ is exemplified in the case of the 2001 and 2011

UK Output Area Classifications. In both cases, a fixed set of variables, drawn from

the corresponding Census of Population are incorporated into national scale general-

purpose classifications. As a consequence, many nuanced aspects of the population

are hidden (Singleton and Longley, 2015). In the case of the 2011 OAC, the issue

necessitated the creation of a London-specific classification known as LOAC (Lon-

don OAC) which was better able to capture the diversity within the city (Longley

and Singleton, 2014).

It may be argued that the greatest progress has been made in the commercial

sector. CACI Ltd (see: http://www.caci.co.uk) for example, maximises the inclu-

sion of data and location specificity in their ACORN classification through the use

of location-specific algorithms. Also, the ACORN classification, unlike the OACs,

is purported to be readily customisable to users’ needs and requirements. However,

where commercial classifications lead in customisability and data inclusion, they

trail in transparency. An obvious explanation for this is the need to maintain a com-

mercial advantage versus their competitors. This behaviour is in direct contrast to

the UK OACs which are entirely open.

Further, dependence on infrequently published data is one of the most common

criticisms levelled at Census based geodemographic classifications (Gale and Lon-

gley, 2013). A prime example of this is the OACs, which are restricted to decennial

publication due to their dependence on Census data. Such is the uncertainty, in-

troduced as a consequence of using legacy Census data that many practitioners opt

for alternative commercial classifications that tout more timely publication. That

said, Gale and Longley (2013) note that the degree of uncertainty in the OACs is

not uniform and rather varies in terms of degree, distribution and geodemographic

type. Thus, in certain circumstances, the OAC may be valid across its full period of

currency.

http://www.caci.co.uk
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Furthermore, the majority of geodemographic classifications represent the pop-

ulation solely at their place of residence. This issue is most profound in the case of

the OACs, which, as has been noted previously, are based on Census data. The main

barrier to addressing this issue is the availability of daytime or workplace data. In

the United Kingdom, efforts have been made to address this. In the 2011 Census of

Population through the inclusion of a specific question (Q.40 for England andWales

Census 2011) regarding the place of work. The availability of workplace attribution

has facilitated the creation of a new Census geography, known as Workplace zones,

which were created through the splitting and merging of existing Output Areas. The

availability of representative workplace data has facilitated the creation of a new

open-source classification named COWZ-EW (Classification of Workplace Zones –

England and Wales) (see: Cockings et al., 2015).

A final concern of geodemographic classifications is that of bias in terms of

application and interpretation. Vickers and Rees (2006) note that judgement regard-

ing classifications is frequently made based on the name assigned to the groups or

subgroups rather than the pen-portraits or summary statistics provided. In a similar

vein, it is a common misconception that all those individuals within the group will

exhibit the characteristics of the group for which they are assigned; a statistical bias

known as the ecological fallacy.

The appropriate categorisation of demographic variables provides a further

challenge in the creation and application of geodemographics. Mateos et al. (2009)

refer to this issue, in the context of ethnicity, as the Multiple Ethnic Unit Problem.

In the case of ethnic origin, individuals completing the UK Census of Population

questionnaire are constrained to a limited set of categories or else must record their

ethnicity as ‘other.’ Such specificity does not necessarily align with individuals’

self-perception of their identities resulting in them being forced to identify based on

the categories imposed (Aspinall, 2012).

2.2.4 New Forms of Data and Population Representations
While new data products, such asWorkplace zones, are starting to address the previ-

ously discussed limitations, significant work remains necessary. An emerging theme
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is the use of so-called ‘New Forms of Data’. Examples of such data include those

collected via social media, published as Open Data and consumer data collected via

businesses (see OECD ‘New Data for Understanding the Human Condition’ Report)

(OECD, 2013). The OECD (2013) report, identifies several challenges in the adop-

tion of new forms of data and identifies a series of potential limitations concerning

access, provenance, permanence, comparability, legality, ethics, linkage and struc-

ture.

Alongside new forms of data, there is a requirement for novel means to view

and interact with demographic data. There have been increased calls for the develop-

ment of bespoke geodemographic classifications with a focus on mass-participation

portals such as the Internet. However, only recently, has such functionality become

available through developments in web-mapping technologies and domain specific

software libraries such as OpenLayers.js and the Google Maps API (O’Brien and

Cheshire, 2015). In addition to incorporating new forms of data, there are further

opportunities in terms of enhancing existing technologies. Two specific instances

are DataShine, produced at UCL and Smart Steps produced by Telefonica.

Figure 2.2: Screenshot of the UCL Datashine 2011 OAC web mapping platform
(source: http://oac.datashine.org.uk/).



2.2. Geodemographics 49

DataShine (see http://www.datashine.org.uk) is an online application for view-

ing and interacting with various geodemographic and population datasets (O’Brien

and Cheshire, 2015). Illustrated in Figure 2.2, DataShine, unlike conventional web

mapping platforms, renders geographic datasets in real-time facilitating previously

unseen levels of personalisation and interaction. While not addressing all of the cri-

tiques of geodemographic, DataShine makes a sizeable step forwards and may in

time provide a platform for the creation and analysis of customised geodemographic

classifications. A feature of note is ‘local area rescaling’, which, allows users of the

service to recalculate the symbology breaks, such that national trends do not mask

local patterns, a common criticism in the visualisation of aggregate population data.

Figure 2.3: Screenshot of the Telefonica’s Smart Steps application being employed in the
analysis of crime (source: Bogomolov et al., 2014).

Smart Steps (see: http://dynamicinsights.telefonica.com/blog/488/smart-steps-

2) which describes itself as a ‘Big Data Insight Application’ is developed by Tele-

fonica’s Dynamic Insight team. Illustrated in Figure 2.3, the application aggregates

anonymised data from the O2 mobile phone network using cell-tower locations and

identity attribution drawn from customer records. The application facilitates the

geo-temporal representation of populations, however, is constrained regarding iden-

tity attribution to age, gender and ethnicity. In many respects, Smart Steps may be

considered as a new paradigm in geodemographics. Where conventional products

http://www.datashine.org.uk
http://dynamicinsights.telefonica.com/blog/488/smart-steps-2
http://dynamicinsights.telefonica.com/blog/488/smart-steps-2
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have been rich in attribution but very limited in terms of spatio-temporal resolution,

Smart Steps presents a limited pool of variables with rich spatio-temporal resolu-

tion. In the case of some applications, the benefits from the richness of the data may

outweigh the limitations assumed through a lack of attribution. Limitation aside,

Telefonica showcases several successful implementations of the application in the

generation of insight. One, in particular, demonstrates the identification of poten-

tial customers by the Morrison’s supermarket chain. In the Morrison’s case study,

the objective was to optimise investment in marketing through an enhanced under-

standing of their current and potential customer base. While not explicitly stated,

it is understood that weighted origin and destination data, available through Smart

Steps, provide unique insight into store catchments, indicating potential postcodes

to be targeted. As part of a trial in the South West, the use of Smart Steps, versus

the previously employed mathematical model, resulted in a 150% increase in new

and reactivated customers while offering major savings versus a conventional loyalty

card scheme or customer relationship management system.

Software solutions such as DataShine and Smart Steps provide new and excit-

ing portals to aggregate and individual level population data, setting new standards

in data availability and interaction. The use of such tools is not without challenge,

however, often requiring dedicated computer architecture and accessed to privileged

data. Further, there are increasing ethical considerations in the use of new and ex-

isting data that are being re-purposed beyond their original mandate.

2.2.5 Geodemographics and Population Data
Having discussed the creation and application of geodemographics classifications,

it is important to remain mindful of the data employed in their construction. While

classifications have increased their diversity in terms of data, there remains an un-

derlying dependency on national statistical datasets such as the UK Census of Pop-

ulation. The data presented in the Census are summaries of individual level popu-

lation data, aggregated to a pre-specified series of administrative geographies. The

approach used in the collection of such data varies between countries, ranging from

questionnaires distributed at fixed intervals as in the UK to ongoing Population Reg-
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isters in India.

In the UK, the 2011 Census of Population was distributed based on a register

of addresses rather than individuals. The register is used first in the distribution of

questionnaires and second for the verification of questionnaire completion. Each

household is required by law to complete the form for all residents of the household

on the night of the census including guests. Once collected, the census forms are

processed such that detailed individual-level data are generated. In effect, the re-

sult is an inventory of the population that contains specific attribution for the vast

majority of the population.

The United Nations define a population register as a mechanism for the contin-

uous recording of statistics for all members of a population (United Nations, 2001).

In the United Kingdom, a specialised population register of all those individuals

eligible to vote is maintained referred to as the electoral register. Historically, the

full register was available for purchase, however, following a change in legislation

in 2001 this is no longer the case. Rather, individuals have the opportunity to opt-

out of inclusion in an edited version, known as the ‘open register’, which is made

available for general sale. The rate at which individuals opt-out of inclusion in the

open electoral register varies significantly across the UK. According to Call Credit,

the national opt-out rate in 2013 was 40% down from a high of 46% in 2010. The

highest opt-out rate was 80.25% in Blackpool in 2013. Before the introduction of the

edited register, third parties could purchase the full register for any purposes such as

advertising, address validation and consumer targeting. Following the withdrawal of

the full register, various commercial entities, such as CACI Ltd, have sought to cre-

ate alternatives consumer registers that combine the open registers with alternative

sources of data such as from surveys.

A key motivation in the identification of new data is the uncertain long-term

future of the Census. As part of cost-cutting measures, the 2021 census will be

administered as an online questionnaire for all households with more regular sur-

veys designed to improve annual reporting. Further details on the 2021 Census are

available from https://www.ons.gov.uk/census.

https://www.ons.gov.uk/census
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Figure 2.4: World map showing the coverage of the UCLWorldnames Database. Countries
shaded in green are included.

Within academia, a growing interest in personal names and their as-

sociation with demographics has led to various independent efforts to com-

pile large population inventories that span multiple countries. One such

example, and central to this thesis, is the UCL Worldnames Database

(http://www.worldnames.publicprofiler.org); a composite population inventory for

26 countries, illustrated in Figure 2.4, drawn from the publicly available telephone

directory and electoral roll datasets. Based on the summed populations of these

countries, the database is representative of approximately 2 billion of the Earth’s

population. However, as may be evident from Figure 2.4, the coverage of the dataset

is limited, failing to account for large regions including the African continent, Cen-

tral America and large parts Central and Eastern Asia. Such omissions have the

potential to cause significant bias in the completion of any global analyses.

2.2.6 Summary
In this section, the concept of geodemographics has been introduced along with a

discussion of its strength, weaknesses and opportunities. The relationship between

geodemographics, aggregate population data, and in turn individual-level population

data has been established. In summary, geodemographics provides a useful means

to describe and understand human populations, though is limited by the data used in

http://www.worldnames.publicprofiler.org
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their construction. While efforts have been made to enhance the utility of conven-

tional data, such as the introduction of Workplace zones, there remains an increased

demand for new data that exhibit a higher degree of timeliness and specificity. That

said, developing new forms of data is not without challenge. Often, due to concerns

about privacy and disclosure, the level of key demographic attribution is poor. Thus,

in seeking to establish a link between conventional and new forms of data, there is

a need for a common point of reference. For this, it is proposed that the use of indi-

viduals’ personal names, which, due to the association between naming conventions

and key identity characteristics, may act as a means of linkage.

2.3 Identity

2.3.1 Introduction
Having discussed geodemographics, the focus of this review is shifted to identity.

Identity may be considered as the unique combination of attributes of an individ-

ual that facilitate their distinction from others. Identity plays a fundamental role in

the creation of geodemographic classifications due to its role in social categorisa-

tion which in turn forms the basis of individual level population data. Goss (1995)

highlights three assumptions of linking identity and geodemographics. First, that

individuals personal identities may be aggregated in such a manner as to facilitate

the partitioning of the the population into stable homogeneous groups. Second, that

individuals’ social identities play an important role in their behaviour, and finally,

that their location is a key factor in their social identity.

The two main perspectives on identity are Identity Theory from Sociology and

Social Identity Theory from Psychology (Hogg et al., 1995). While the concepts

have emerged in different disciplines, Hogg et al. (1995) note that the two theories

are largely similar with Identity Theory being better suited to “dealing with chronic

identities and with interpersonal social interactions” and Social Identity Theory be-

ing better suited to “exploring inter-group dimensions and in specifying the socio-

cognitive generative details of identity dynamics.”

Social identity theory is based on self-perception through their affiliation with
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particular groups such as families, teams or ethnic groups (Tajfel and Turner, 1979).

Fundamental to this is the concept of in-group and out-group; a reference to indi-

viduals who possess the same affiliations and those who do not. Tajfel and Turner

(1979) suggest three phases in the definition of group affiliation of which the first two

are most pertinent to this thesis. Social Categorisation is simply a stage of grouping

in which we identify individuals who exhibit similar behaviours or characteristics

to ourselves. Social Identification is the process by which individuals often assim-

ilate the behaviour of the groups with which they are associated. For example, an

individual born into a practising christian family may be more likely to adopt the

religious beliefs of their family rather than an alternative belief system. Finally, So-

cial Comparison is the process of comparing one’s group association that of others

and is associated with self-esteem, prejudice and rivalry. Tajfel and Turner (1979)

highlights the importance of ‘in group’ and ‘out group’ in how we perceive others.

Grotevant (1992) considers identity as the structure out of which individuals in-

teract with the world. This identity is a dynamic representation of an individual that

is updated as the individual gains new experience and knowledge. Notably, the situ-

ation into which a child is born has a major impact on their social identification. The

degree of control an individual has over the specific categories, or identities that they

possess varies significantly. Grotevant (1992) proposes the division of these identi-

ties into those that are assigned and those that are chosen. Assigned Identities are

those that an individual is born with such as age, gender and ethnicity. Chosen Iden-

tities are those for which an individual has some degree of control such as personal

interests and political view. By its nature, Social Categorisation leads to a hierarchy

of nested identities. For instance, while two individuals may both be considered as

Christians, they may associate themselves with either being Catholic, Protestant or

any of the other religious or cultural denominations. Hence, identity may be con-

sidered as a hierarchical structure in which the unique identities enable association

with specific groups, while an individual’s unique combination of identities makes

them unique. This concept is concordant with that of Goss (1995) who noted that

geodemographics assumes that individuals’ identities may be aggregated to such a
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point where they may be considered as stable groups.

An alternative perspective, proposed by Chandra (2012), splits identities into

those that are nominal and those that are activated. Nominal Identities are those

which an individual holds the appropriate characteristics, however, has not yet self-

identified or been identified as possessing. Activated Identities are those which an

individual has self-assigned or been assigned to. Chandra (2012) differentiates Acti-

vated identities into those that are chosen and those that are assigned. This definition

should not be confused with the terms as defined by Grotevant (1992). Rather, in this

instance, chosen identities are those that individuals’ use for themselves and assigned

identities are those used by others. It is noted that a person’s chosen and assigned

identities will often be independent of one another. Chandra (2012) states that for

an individual to hold a particular identity, they must first possess the appropriate

characteristics for inclusion. This view is concordant with that of Stone (1990) who

considers the formation of each identity in two phases; identity announcement and

identity placement. Identity Announcement occurs where the particular identity is

created and Identity Placement where the identity is endorsed by others.

2.3.2 Online Identity
Moving from the observable to the virtual world, many of the typical cues associated

with identity perception are no longer present. Not only may an individual’s virtual

identity differ from their true identity, but also they may hold multiple disjoint vir-

tual identities entirely disassociated from their true self. However, while traditional

identity cues are lost, Smith and Kollock (1999) identify new cues such as email

addresses and signatures that may aid in Social Perception.

The literature surrounding online identity suggests that individuals either self-

idealise (Manago et al., 2008) or extend their real identity (Zhao et al., 2008). Back

et al. (2010) suggest two theories regarding such identity extension, the extended real

life hypothesis and the idealised self hypothesis. In the extended real life hypothe-

sis, it is assumed that individuals’ online identities are an accurate representation of

their true selves. This similarity may be due to anchors between the identities such

as common connections or interests. Conversely, the idealised self hypothesis sug-
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gests that individuals present only what is best about themselves. In a similar vein, a

phenomenon associated with the online identity is the online disinhibition effect; a

behavioural change in which some individuals’ personalities shift, such as express-

ing a greater degree of emotion or sharing a greater volume of personal information

(Suler, 2004).

On the whole, there is an apparent shift towards the extension of real identity.

It might be argued that this shift is due to the increasingly intertwined nature of

peoples’ offline and online lives. For instance, users of Facebook and Twitter may

act to moderate self-idealisation through the acceptance or rejection of other users’

announced identities as noted by Stone (1990) who discussed the concept of identity

formation.

2.3.3 Summary
In summary, identity may be considered as the fundamental structure upon which

geodemographics analysis and data products are constructed. As a discipline, geode-

mographics attempts to segment individuals into distinct homogeneous groups based

on the presence of one or more unifying social, cultural or physical characteristics.

These groups are typically identified based on the analysis of aggregate population

data which, as has been elaborated in the above, are simply summaries of the social

identities held by a number of individuals. This is particularly pertinent given that

the majority of individual-level population data are self-reported.

When considered from the perspective of social media, many of the conven-

tional cues associated with identity perception are no longer present necessitating

the inference of key identities based upon the limited data that are available. Con-

sequently, it has been identified that individuals’ personal names, which are often

available, may be used to provide insight into individuals’ identities due to their

association with culture, ethnicity and language.
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2.4 Personal Names

2.4.1 Introduction
Personal names are a fundamental component of individuals’ identities providing

a range of distinct functions. The name serves as an indicator of a person’s place

in socio-cultural space, position within a family, lineage, social status and often,

regional or ethnic origin (Shagrir, 2003). The cultural, ethnic and linguistic con-

ventions associated with the ascription of personal names means that the name may

often act as an indicator of individuals’ social identities (Jenkins, 2014). However,

for such association to be exploited, a detailed understanding of the nuances of nam-

ing conventions and their relationship to identity must be held. Significant effort has

been expended in the investigation of personal names and the inference of specific

categories of identity. For instance, in terms of gender (McConnell-Ginet, 2003);

ethnicity (Mateos et al., 2011); and the identification of regions (Longley et al.,

2011).

In seeking to understand personal naming conventions, there is first a require-

ment to understand their structure and form. Rather than being fixed, the form of

names is often contingent on cultural or legal conventions. Specific aspects of names

structure include the unique name parts, the order in which the parts are recorded;

the effects of gender; the inheritance of paternal and maternal family names; and

the effect of marriage. Within the bounds of this thesis, the primary concern is indi-

viduals’ given names and family names. However, it is valuable to understand their

place within the name as a whole. From now on, family names will be referred to as

surnames and given names as forenames.

Forenames act as a means to differentiate between individuals within commu-

nities and familial groups. Commonly assigned at birth, forenames are often based

on either situation of birth, location, religious teachings or popular culture. For ex-

ample, the most common forename in the UK, John, was one of Jesus’ disciples in

Christian teachings. Likewise, the name Mohammad, one of the most popular fore-

names in the world, originates with the Islamic Prophet. In the majority, forenames

are associated with specific genders and thus may be considered a cue in social per-
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ception. Beyond gender, forenames are often indicative of age due to the long-term

trends in forename popularity. The association between forenames and social class

is contentious and less well grounded. Willis et al. (1982) identify various literature

supporting the concept that individuals with uncommon forenames are less success-

ful, however, provide limited justification for this behaviour. One hypothesis was

that individuals’ names, and the connotations that the names hold, may impact upon

individuals’ self-perception and thus, their behaviours. The principle, in a less aca-

demic setting, is demonstrated by The Guardian newspaper which published a Venn

diagram of the 30 most common forenames for Guardian staff, FTSE100 directors

and prisoners. Illustrated in Figure 2.5, the Venn diagram coincides with some anec-

dotal stereotypes.

Figure 2.5: Venn diagram showing the 30 most common forenames for FTSE100
directors, The Guardian newspaper staff and prisoners (source:
https://www.theguardian.com/news/datablog/gallery/2013/feb/11/whats-
in-a-name).

Unlike forenames, surnames are a relatively recent phenomenon. Adopted in

Europe during the medieval period, the time of adoption ranges from the 1940s in

Turkey to almost 5,000 years ago in parts of China (Jobling, 2001). While sur-

names have emerged independently, in the majority, they may be categorised using

https://www.theguardian.com/news/datablog/gallery/2013/feb/11/whats-in-a-name
https://www.theguardian.com/news/datablog/gallery/2013/feb/11/whats-in-a-name


2.4. Personal Names 59

a straight-forward typology. Surnames typically fall into one of the following cat-

egories: toponyms, matronyms, patronyms, nicknames or occupations. Toponyms

are names based on some form of location such as the surnames Cheshire and Lon-

gley or buildings such as in the case of Church. Nicknames are often based on a

characteristic of an individual at the time the name was first coined such as Short or

Loud. Occupational names are based on the occupation of the person at the time the

name was adopted such as Smith or Fisher. Patronyms and matronyms are names

inherited from the father or mother respectively. Patronymic surnames are evident in

many cultures, notably the Arabic-speaking countries and Iceland. Arabic surnames

are often affixed with bin- or bint translating as ‘son of’ or ‘daughter of’.

In the majority of cultures, individuals’ surnames are taken directly from the

father. However, in others, such as Slavic and Hispanic, the nuances of inheritance

are more complex. In the case of the Slavic countries, surnames are regularly ap-

pended with a gender specific identifiers. For instance, the son of Alexander Yor-

danov would have the same surname while the daughter would have the surname

Yordanova. The gender specific affixes are ‘ov’ and ‘ova’ respectively. In the case

of Hispanic surnames, individuals inherit both their mother’s and father’s surname

with the father’s surname preceding the mother’s. For example, Cristina Borda For-

tuny is the daughter of David Borda Garcia and Laura Fortuny Perez. In some sit-

uations, both surnames may be inherited from both parents resulting in a four-part

surname. The inclusion of both maternal and paternal surnames provides the poten-

tial to better understand the genealogy of an individual as well as providing a means

to identify those of mixed ethnicity.

In addition to forenames and surnames, many cultures use additional name parts

before, between or after the forename and surname. For example, in Slavic countries,

the middle name is patronymic based on the father’s forename. Veronika Kamenova

Yordanova from Bulgaria is the daughter of Kamen Hristov Yordanov. The order in

which the above name parts are structured may be divided into those that conform

to the western order where forename precedes the family name or eastern-order in

which the surname precedes the forename. In the majority of cases, individuals
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are referred to using the western convention though names are often recorded using

the eastern convention such that family name may be used as a point of reference.

Exceptions to this include China and Hungary in which the surname precedes the

forename.

Lastly, it is important to bear in mind the significance of personal titles. For

instance, Mr, Mrs and Miss. Where such titles are available they offer an addi-

tional level of insight into their bearer identities, beyond gender, titles may provide

an indicator of academic or professional accomplishment (Doctor or Professor) or

relationship status (Miss, Ms and Mrs).

2.4.2 The Analysis of Personal Names
As should now be clear, personal names offer a unique window into their bearers’

social identities, offering the potential for insight into individuals’ identities. Ac-

cordingly, the analysis of names may offer significant opportunities for investigating

the construct and dynamic of social media data in which personal names are of-

ten available; a concept successfully demonstrated by (Longley et al., 2015) in the

analysis of Twitter demographics in London.

2.4.2.1 Inferring age and gender from personal names
While surnames are commonly inherited, forenames tend to be reflective of popular

culture (Suler, 2004). As such, individuals’ forenames are often indicative of both

age and gender. In the majority, forenames are associated with a single gender. How-

ever, an increasing number of names are now gender-neutral. Often, gender-neutral

forenames are encountered where individuals have adopted abbreviations of tradi-

tional names, such as in the case of Alex or Sam. However, while the association

between specific forenames and genders is well documented, the relationship to age

is less well understood. In the case of both age and gender, one of the key challenges

is the availability of suitably attributed and representative inventories of personal

names. Illustrated in Figure 2.6, the FiveThirtyEight Blog provide an analysis of

the association between specific forename and age distributions in the United States,

based on data from the US Social Services Administration. The authors note that a
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more pronounced distribution, such as in the case of Joshua, is far more informative

than a flatter distribution such as in the case of Joseph. The FiveThirtyEight example

uses inter-quartile range as a means to assign confidence to the age estimates.

Figure 2.6: Graph from the FiveThirtyEight blog showing the inter-quartile range and me-
dian ages for the 25 most common forenames in the United States (Source: Sil-
ver and McCann, 2014).

Where such comprehensive data are not obtainable, alternative data may be

sourced as a proxy. For instance, Monica, a data product produced by CACI Ltd,
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uses frequencies of names by age and gender based on debit card holder records.

An enhanced version of the Monica classification by Lansley and Longley (2016a)

incorporates birth registration data such that individuals too young to possess debit

cards are represented. Finally, the data are standardised such that the data correctly

account for the known population. When using such classifications, it is important

to remain aware of the inherent limitations assumed through the data choice. First

and foremost, the classification is restricted to use within the same sampling frame

as the data that were used in its creation. For instance, The FiveThirtyEight classi-

fication uses US Social Security Administration data and is thus only applicable to

the United States of America. Similarly, the Monica classification is limited to ap-

plication within the UK. Further, the enhancedMonica classification only provides a

single gender option for each forename and thus, must be applied with caution where

a name is considered unisex.

Gallagher and Chen (2008) use forenames as a means to improve the quality

of facial recognition algorithms when differentiating between two named individu-

als. The application goes on to provide age and gender estimates that combine both

image-based-estimates and the age and gender distribution sourced from the U.S.

baby names database. In this analysis, the inclusion of forenames as a prior in the

analysis was found to improve the quality of the classification significantly.

2.4.2.2 Surnames and genetics
One of the first proponents of name-based research was George Darwin, son of nat-

uralist Charles Darwin, who employed surnames in investigating the link between

marriage between first-cousins and physiological differences in offspring (Darwin,

1875). It was this early work by Darwin that was antecedent to various coeffi-

cients of relationship and studies of isonomy. Also, academic interest in surnames

has emerged due to the association between specific surnames and distinct genetic

markers. This association is due to the hereditary nature of both surnames and the

Y-chromosome in the male line of the population (Jobling, 2001). During meio-

sis, particular portions the Y-chromosome do not recombine and thus are passed

from father to son, consequently serving as distinct markers of co-ancestry (Jobling
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and Tyler-Smith, 2003). In an investigation by Sykes and Irven (2000) it was found

that of 48 individuals bearing the surname ’Skyes’, 43.8% bore a specific haplo-

type suggesting a common ancestor. King and Jobling (2009) suggest some reasons

why individuals bearing the same surname may not be genetically related. These

include multiple originators of names; non-paternity events; adoption of male chil-

dren; deliberate name changes; and genetic drift. In the context of identity inference,

it should be noted that while two individuals bearing the same surname may not be

genetically related, the high rates of endogamy - marriage to individuals within the

same cultural group - means that surnames often remain associated with the same

cultural groups (Mateos, 2007). However, Model and Fisher (2002) note that en-

dogamy rates are not consistent across ethnic groups.

In the analysis of surnames, the frequency distribution of surnames is such that

the majority of surnamesmay be considered uncommon (Sykes and Irven, 2000) and

geographically localised (or regionalised). In practice, the less frequent a surname

is, the more likely it is that those bearing the name will be genetically related. For

instance, in the case of the surname Smith, is highly likely that there were multiple

originators of the name. For instance, the most common UK surname, Smith, is an

occupational name adopted initially by metal workers.

Before the work of Jobling and Tyler-Smith (2003), various research was con-

ducted on the use of surnames as indicators of co-ancestry. Building on the original

work of Darwin, Lasker proposed a measure of Isonomy – inbreeding – based on the

co-occurrence of surname referred to as the ‘Lasker kinship coefficient’. A criticism

of the Lasker coefficient is its assumption that individuals bearing a surname are

descendants of a common ancestor. However, in practice this assumption is flawed

as it fails to account for differences in common naming practices. Case in point

being the surname ‘Smith’ which is based on an individual’s occupation and ther-

fore had multiple distinct originators. The issue may be observed in the work of

Sykes and Irven (2000) who showed just 43.8% of the individuals bearing the sur-

names Sykes shared a common ancestor. While not discussed in the literature, it

may be possible to address this criticism through the filtering of surnames such that



64 Chapter 2. Geodemographics, Identity and Personal Names

only toponyms – names based on locations – are analysed. Such a process may re-

move the bias created through common surnames which are known to have multiple

originators.

2.4.2.3 Inferring cultural, ethnic and linguistic groups from personal

names
A key descriptor of any population is the structure and distribution of cultural, eth-

nic and linguistic (CEL) groups. This information is valuable in the provision of ser-

vices, the study of segregation, and general observation of population. Such data are

not, however, readily available to analysts at the individual-level due to their personal

nature. Rather, the data are published in aggregate form as part of national publica-

tions such as the UK Census of Population. Seeking to address this absence, some

studies have attempted to distinguish between specific ethnic and cultural groups

based on individuals’ surnames; for instance, in the identification of individuals of

Chinese descent by Quan et al. (2006).

Mateos et al. (2011) sought to extend the specificity and reach of such classifi-

cation techniques through the development of a Java-based classifier that processed

forename-surname pairs against a dictionary of names and associated CEL groups.

To create the classification, a bipartite naming network, in which forenames and sur-

names were represented as nodes and edges was weighted based on the frequency

of specific forename-surname pairs was created. The network was then transformed

such that the impact of common forenames and surnames in uncommon combi-

nations (e.g. ’John Patel’) would not inhibit community detection. Finally, trans-

formed into two single-mode networks, communities were identified using the fast-

community algorithm and labelled based on a dictionary of known name-ethnicity

associations. Subsequently, the labelled clusters formed the base of the Onomap

CEL classification tool. Based on the strongest result, the user is assigned a series

of attributes about their individual CEL profile.

When using this method, and name-based inference techniques more generally,

it is important to remain conscious of issues relating to acquired identity’, the eco-

logical fallacy and the potential for the introduction of other uncertainty. That is to
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say that in most cultures, at the point of marriage, the female takes the surname of

their partner. In this case, the methodology may assign an incorrect classification.

Further, regarding the ecological fallacy, it should be recognised that all individu-

als of a specific name will not always possess the same CEL characteristics. The

issue of uncertainty propagation must also be considered. Given the requirement

to model key identities it is quite probable that a proportion of individuals will be

incorrectly classified. Subsequently, where inference is made, there is a risk that

conclusions are made based on incorrectly attributed data. To minimise the risk it

is important that any derived analysis clearly states the limitations of the data and

that these incorporated into any interpretation. One approach to reducing the effect

of uncertainty is the use of aggregation. While not all individual will be accurately

classified, when considered in aggregate form, it is likely that greater accuracy will

be achieved. Given that direct validation is not feasible, it is also necessary that a

common sense approach is used to help ascertain the validity of any outputs derived

from individuals’ personal names.

2.4.3 The Geography of Personal Names
By their origin, surnames often exhibit unique spatial patterns. The assumption is

that the decedents of those with whom each surname was coined would have resided

within a relatively limited geographic region. One of the earliest efforts to record

the geographic origin of surnames was the compilation of a dictionary of surnames

from the British Isles by Guppy (1890). Guppy recorded details for thousands of

common surnames and recorded notes as to their probable origins.

An extension of the isonomy research discussed previously has been on the use

of surnames in the identification of natural regions. Devoid of typical geographic

constraints, surnames may be indicative of historical regions and migrations. Not

only can such a method identify national regions, but also historical regions that may

no longer be evident. The approaches broadly involve the creation of a distance ma-

trix based on isonomy and then the subsequent partitioning of this data using cluster-

ing techniques. Holloway and Sofaer (1989) calculated the coefficient of isonomy

between 12 regions of Scotland producing a regional similarity matrix. Histori-
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cally, such studies have been constrained to limited samples of populations drawn

from local parish records or telephone directories. However, through increases in

the availability of comprehensive population records, and developments in compu-

tational power, it is now possible to perform similar analysis at a far greater spatial

extent (Adnan et al., 2010). Expanding on existing work into region based surname

analysis, Cheshire et al. (2011) were able to create a regional geography through the

applications various clustering techniques to the regional distance matrix calculated

from the inter-regional Lasker distance matrix. The success of the approach has

been demonstrated across a range of countries and regions including Great Britain

(Cheshire et al., 2010), Western Europe (Cheshire et al., 2011) and Japan (Cheshire

et al., 2014).

2.4.4 Challenges in the Use of Personal Names
When making inference about an individual’s identity based on their names, it is

important to be aware that a namemay have been changed due to marriage or outside

circumstance. In the case of marriage, manywomen take the surname of their spouse

(Goldin and Shim, 2004). Beyond marriage, some other circumstances may result

in a change of name. For instance, the British Royal Family changed their surnames

from Battenberg to Mountbatten due to negative German sentiment during the First

World War. Failure to account for such changes has the potential to introduce error

when making inference about an individual based on their name.

The conversion of text between scripts has the potential to introduce discontinu-

ity. Such conversions are often in the form of translation, transliteration or transcrip-

tion. Translation is the conversion of terms in terms of meaning. For instance, the

Polish surname Kowal, the Italian surname Ferrari and the British surname Smith

are all equivalent referring to a metalworker or blacksmith. Transcription is con-

cerned with the conversion of the sound while transliteration is the literal character

by character conversion. The approach used in the conversion of names between

formats poses some challenges. For example, the German surname Müller may be

represented as Müller, Mueller or Muller dependent on the approach used. The in-

consistency in conversion approaches poses significant challenges regarding name
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matching when collating names data from multiple sources.

2.5 Conclusions
While traditional forms of data, such as those collected via the Census, retain an

important role, there is significant potential for new data in the description of popu-

lations. However, rather than replacing traditional forms of data, new forms of data

offer the ability to add value through increases in specificity, improved representa-

tion of mobility and increased availability and timeliness.

In seeking to develop applications of social media to geodemographics, this

chapter has sought to establish a relationship between the two concepts which is illus-

trated in Figure 1.1. A common theme to geodemographics and social media is the

base unit of the individual. In geodemographics, it is the aggregation of individual-

level data that are used in the construction of geodemographic classifications, while

for social network data, the individual is the natural unit of reference. However,

while a common point of reference has been identified, the data from social media

often have limited demographic attribution. Thus, it is proposed that such variables

may bemodelled based on the novel analysis of personal names; the process of which

has been outlined previously. Beyond social media, the ability to enrich new forms

of data, such as those collected via social media offers the potential to address a

range of the current critiques of geodemographics.





Chapter 3

Social Media and Geodemographics

Applications

3.1 Introduction
In the previous chapter, the discussion centred on establishing a framework by which

social media could be incorporated into the study of geodemographics. The moti-

vation for this was a desire to address limitations in conventional geodemographics

assumed through the use of traditional aggregate population data. Subsequently, it

was found that New Forms of Data, such as those collected via online social media,

could potentially be employed in the form of population data given the application

of suitable identity inference techniques. In seeking to exploit said new data, the

association between individuals’ online identities and conventional individual level

population data was established via the novel application of personal names. In

turn, it was discussed how this could, through aggregation, be used in the creation

of conventional aggregate population data. Thus, building on the previous material,

the objective of this chapter is to compile a body of knowledge concerning social

media, upon which potential applications to geodemographics and security may be

drawn. The chapter will begin with an introduction to social media in its various

forms and provide an overview of the key research themes.
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3.2 Social Media
In seeking to identify potential applications of social media, it is first necessary to

answer the question, ‘what is social media?’ In the literature, social media is con-

sidered a collective term employed to describe a range of web-based applications.

These applications typically enable multiple individuals to interact in an online net-

worked environment. When we consider this in the context of social medias’ origins,

the earliest incarnation of social media were Bulletin Board Systems. Such systems

enabled users to log in, post statuses and send messages to other users. The ser-

vices, commonly hosted on private servers, saw rapid decline following the launch

of the World Wide Web in 1989 (Kaplan and Haenlein, 2010). More recently, the

major innovations in social media have come as a consequence of increased access

to high-speed Internet and the introduction of Web 2.0; a paradigm shift concerning

how people understood and interacted with the Internet. Key features of Web 2.0

were a change from thick to thin client architectures and a greater emphasis on the

user rather than publisher generated content (O’Reilly, 2007). This transition fis re-

flected in the definition of Kaplan and Haenlein (2010) who define social media as “a

group of Internet-based applications that build on the ideological and technological

foundations of Web 2.0, and that allow the creation and exchange of user-generated

content.”

Since their inception, the number of social media platforms has grown rapidly

with a diverse range of specialised and general-purpose platforms now readily avail-

able. These platforms range from the inherently social Facebook to the more pro-

fessionally aligned LinkedIn and video orientated YouTube. Such are the niche of-

ferings of each platform that many individuals choose to adopt a plethora of compli-

mentary, and often interlinked services. The GlobalWebIndex reports that the aver-

age Internet user has 5.54 social media accounts of which 2.82 are considered to be

active1 (GlobalWebIndex, 2015). Figure 3.1, provides a breakdown of the Global-

WebIndex data highlighting some distinct features of individuals’ network adoption

behaviour. First, it is evident that the number of social media accounts is a function
1An active user is one who has accessed the service at least once in the preceding month.
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of age with older people having few accounts on average. Second, the number of

active accounts per user is highest in the 25-34 age bracket. Interestingly, it is this

cohort who would have been most technologically active during the time in which

the major social networks came into popular use.

Figure 3.1: Bar graph showing the average number of social media accounts per Internet
user broken down by age and active status (GlobalWebIndex, 2015).

In seeking to differentiate between the various social media platforms, Kaplan

and Haenlein (2010) proposed a six group classification: Collaborative Projects,

Blogs, Social Networking Sites, Content Communities, Virtual Social Worlds and

Virtual Gaming Worlds.

• Collaborative projects, such a Wikipedia and OpenStreetMap, facilitate the

creation and maintenance of various content by communities. In the case of

the platforms mentioned above, individuals can create, edit and curate con-

tent in line with each project’s objectives. Using the example of Wikipedia,

as users add new content, changes are logged and reported such that the com-

munity may make further additions, retractions or alterations. Key research

themes include individuals’ motivations to contribute and the verification and
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validation of user-generated content.

• Blogs are one of the earliest examples of social media and are primarily con-

cerned with the publication of short time-stamped articles that are presented

in reverse chronological order. Blogs range in content from those express-

ing a general opinion on a range of subjects to those that provide more niche

material.

• Social Networking Sites, such as Facebook, Twitter and Linkedin, are web-

based platforms that enable the creation of public profiles, the curation of

contacts and communication via messaging.

The world’s largest social network, Facebook, launched in 2004 as a private

network and rapidly grew in popularity following its global launch in 2006.

As of September 2015, Facebook has an estimated 1.55 billion active users

(Facebook, 2015). Arguably a ‘Jack of all trades and master of none’, Face-

book offers a significant range of capabilities ranging from group organisation

to event management and photo sharing. A large proportion of Facebook’s

growth, as is the case with many large social networks, may be attributed to

the acquisition of other platforms. For example, Facebook’s purchases of In-

stagram and WhatsApp.

In contrast to Facebook, LinkedIn targets professional users who are seek-

ing to build professional as opposed to social networks (Papacharissi, 2009).

LinkedIn claims 400 million registers users, however, only 24% of these are

understood to be active. In much the same way that Facebook identifies po-

tential contacts based on shared interests and mutual connections, LinkedIn

suggests connections based on 2nd and 3rd degree relationships and shared

skills. Further, the impetus is placed on the individuals’ job titles, education

and employment as opposed to friends, relationships or photos; in essence

creating an alternative professionally aligned virtual identity.

Twitter, a minimalistic social network, is a micro-blogging platform facilitat-

ing the publication of short 140 character messages (Kwak et al., 2010). The

Twitter ecosystem revolves around users following those that are of interest
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to themselves and vice versa. With over 320 million active users, submitting

more than 500 million messages per day, Twitter is one of the largest social

networks in the world (Twitter, 2016). A key feature of Twitter is the ability to

follow geographically bounded trending topics. Using the location informa-

tion provided by client devices, Twitter presents the topics, or Trends, which

are most frequently discussed. A unique characteristic of Twitter is the non-

directional network structure between users. Where the majority of OSNs

require bilateral approval for connections to be formed, a Twitter user may

follow whomever and whatever they want.

• Content Communities, such as YouTube and Flickr, are concerned with shar-

ing individuals’ generated content in a community environment. Unlike online

social networks, the onus is on the content, though it is often the user that is

employed as the point of reference. Increasingly social networking platforms

are seeking to absorb such services as is the case with Facebook’s video shar-

ing endeavour.

• Virtual Gaming Worlds and Virtual Social Worlds may be considered as ab-

stractions of reality in which individuals can develop comprehensive online

identities. Depending on the platform, the degree of similarity to the observ-

able world varies widely. Of the virtual worlds, Second Life by Linden Labs

is arguably the most well known and studied. Second life is a highly com-

plex virtual world in which users create and interact via avatars. Second Life

is highly immersive with complex communities, economy and social interac-

tions (Boulos et al., 2007).

From the above categorisation, it is evident that the direction of this thesis is

most closely aligned with that of Online Social Networking. Unlike the alternatives,

social networks are primarily concerned with the extension of individuals identi-

ties into the virtual world and thus, are most likely to be illustrative of individuals’

behaviours. In some senses, the data that are generated by online social networks

may be considered as the digital exhaust from individuals’ routine online activities
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(Lupton, 2013). This digital exhaust, when suitably attributed, offers a means to

reconstruct the behaviours of individuals and groups in a previously unprecedented

manner, not feasible with conventional aggregate population data. It is worth not-

ing that while the collection and analysis of social media data is a relatively recent

phenomenon, the analysis of so-called digital exhaust has been a feature throughout

the history of computing. A simple example being the collection of system logs to

monitor and understand systems’ performance. The system log records all events

and specific attributes such as date, time and process descriptions. Such logs are

not overly dissimilar to social media data where individual activities are recorded

alongside date, time, location and user information.

A relatively recent development in online social media has been the incorpora-

tion of location. Considered under the umbrella of Location Based Services (LBS),

these are “any service that takes into account the geographic location of an entity”

(Junglas and Watson, 2008). The degree to which location plays a role in each so-

cial media platform varies considerably. For example, Foursquare, one of the earliest

platforms to integrate location permits users to ‘Check-In’ to locations in return for

points and badges. Alternatively, Twitter uses location as a means to geographically

reference Trending Topics and personalise searches. Likewise, Flickr, a platform for

storing and sharing photos, employs location as a tool to add value to its content by

allowing users to record the location of their pictures and also to conduct searches

based on location. In each case, location is a fundamental component of the products

in their present forms.

Unsurprisingly, the growth of LBS has coincided with an increase in smart-

phone ownership which has allowed a greater proportion of the population to deter-

mine their locations accurately and access mobile data services. In 2015, Ofcom,

the UK regulator for communications, reported that 66% of all UK adults possessed

a smartphone with this figure at 90% in the 16-24 age bracket (Ofcom, 2015). An

additional factor influencing the uptake of LBS has been the open development na-

ture of the major mobile phone operations systems: Apple’s IOS and Google’s An-

droid. Such openness has allowed developers to exploit devices inbuilt capabilities
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resulting in a plethora of location aware applications and social media (Li and Chen,

2009).

However, while the growth of LBS and geosocial media is a testament to their

success, the ease in which individuals may inadvertently disclose their precise lo-

cation has led to a growing discourse on the topic of location-based privacy. For

example, compromising oneself or others through the inadvertent disclosure of lo-

cation. Seeking to understand this issue better, Vicente et al. (2011) identify four

key aspects of privacy associated with location sharing:

• Location Privacy relates to sharing the location of others without their explicit

consent. Users may inadvertently share their location at a time that is undesir-

able. An example of such behaviour is the tagging2 of individuals at a location

or event.

• Absence Privacy occurs where sharing an individual’s location highlights their

absence from a specific location. For example, being tagged at a theme-park

when you are supposedly working from home.

• Co-location Privacy refers to the ability to establish whether two or more in-

dividuals are present at the same place based on shared location information.

Again, such an action may be a consequence of being tagged.

• Identity Privacy is concerned with the protection and disclosure of identity

through information sharing. For example, sharing details such as an address

or telephone number.

3.3 Social Network Analysis
Almost ironically, it is the same set of factors considered as privacy issues byVicente

et al. (2011) that make Social Network data so attractive to researchers. Within

academia, there has been significant engagement with social media due to the ease

in which such insightful data may be gathered. Applications have been pursued in

a range of fields ranging from geography (Jurdak et al., 2015) and health (Hawn,
2Tagging is the process of linking an individual’s virtual identity to a particular event or location.
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2009) to security (Briggs and Baker, 2012) and crime (Procter et al., 2013). In the

majority of cases, these analyses have been performed on large collections of data

harvested via Application Programming Interfaces (API) or ‘scraped’ from the web.

Ellison et al. (2007) attribute this rise in popularity to the “affordance and reach” of

the data that are now available. A key advantage of social media data over alternative

new forms of data is its ongoing accessibility; a quality often lacking with new data,

which prevents replication, extension and the implementation of research outputs. It

is these features in particular which push social media data to the forefront in regards

to the analysis of new forms of data for demographic research.

In seeking to differentiate between the various aspects of social media analysis

Kietzmann et al. (2011) identify seven guiding themes. Illustrated in Figure 3.2,

these themes are conversations, groups, identity, presence, relationships, reputation

and sharing.

Figure 3.2: Illustration of social media analysis themes highlighting the function and im-
plications of each (source: Kietzmann et al., 2011).

• Conversations are focused on the verbal interaction between users.

• Groups are focused on the formation and behaviour of groups.
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• Identity is concernedwith the extension of individuals’ identities onto the web.

• Presence is concerned with how users infer the status of others.

• Relationships are concerned with how individuals and groups are connected.

• Reputation is concerned with the degree of influence individuals possess.

• Sharing: is concerned with the spread of information and misinformation.

3.3.1 Data
Increasingly, online services are capitalising on the commercial value of their digital

assets through the provision of their data and tools to third-parties. Such functional-

ity is delivered through the use of APIs which provide a structuredmeans to integrate

and utilise the services’ data and tools. In the case of Twitter, the API provides ac-

cess to a range of functions such as user searches, content streaming and message

submission. Each function is referred to as an endpoint. Within the bounds of this

thesis, we are primarily concerned with the Public Streaming API, which provides

access to a portion of the total throughput of Twitter at any given time. The streaming

APIs include the ‘POST statuses/sample’, the ‘POST statuses/filter’ and the ‘POST

statuses/firehose’ endpoints. The following list provides a brief overview of each.

• The POST statuses/sample is a random sample of all public Tweets being sub-

mitted. The sample stream is ‘Rate limited’ to 1% of all Tweets.

(see: dev.twitter.com/streaming/reference/get/statuses/sample)

• The POST statuses/filter allows third-parties to stream a sample of all public

Tweets based on some content-based parameters. The filtered stream is also

‘Rate Limited’ such that the maximum number of Tweets available are equiv-

alent to 1% of all Tweets.

(see: dev.twitter.com/streaming/reference/post/statuses/filter)

• The POST statuses/firehose returns all public Tweets. Twitter notes that few

applications will require such a volume of data.

(see: dev.twitter.com/streaming/firehose)

https://dev.twitter.com/streaming/reference/get/statuses/sample
https://dev.twitter.com/streaming/reference/post/statuses/filter
https://dev.twitter.com/streaming/firehose
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The Public APIs are provided in a prescribed format in which rate-limiting is

imposed to prevent excessive queries. For example, the GET users/lookup endpoint

is limited to 180 requests per 15 minutes window. Where a user requires enhanced

access to Twitter’s data, such as in the case of the firehose or historical data, this may

be achieved via a third-party distributor. In the case of Twitter, the data are made

available via Gnip (see: http://www.gnip.com), a data warehouse that provides a

bespoke API. Alongside Twitter, Gnip provides access to Foursquare and number of

other major social platforms. It should be noted that Gnip was acquired by Twitter

in April 2014.

3.3.2 Applications and Methods
While the applications of social media are broad, many of the commonly applied

analytical techniques are applicable across the board. As such, and in line with

this thesis’ direction, the following discussion will focus predominately on Twitter

though drawing parallels with other services where appropriate. Unlike the majority

of social networks, Twitter provides quick and comprehensive access to their data.

The ease in which large collections of data may be gathered has led many academic

studies to opt for Twitter resulting in a large body of literature across a broad range

of topics.

Figure 3.3: World map of Facebook friend connections based on a sample of 10
million friend pairs. (source: https://www.facebook.com/notes/facebook-
engineering/visualizing-friendships/469716398919)

http://www.gnip.com
https://www.facebook.com/notes/facebook-engineering/visualizing-friendships/469716398919
https://www.facebook.com/notes/facebook-engineering/visualizing-friendships/469716398919
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Regarding demographics and security, various social media data have been em-

ployed in the observation and modelling of human behaviour. One such example is

the Facebook friends graph illustrated in Figure 3.3. Constructed based on a sam-

ple of Facebook users, the graph is composed of nodes representing individuals and

edges representing connections. Analysis of the graph provides information on so-

cial structure, influence and the potential paths by which information may be shared.

3.3.2.1 Migration and mobility
The ubiquitous nature of social media and the ease with which such data may be

collected has facilitated various studies investigating human migration and mobil-

ity. Using collections of social media data that contain both temporal and spatial

attribution, it is possible to infer the activity patterns of specific individuals. Such

analysis is often described as trajectory analysis. At the local scale, Adnan et al.

(2014) investigated the use of temporal profiles derived from tweeting activity to

enquire into the daily and annual rhythm of the major world cities. Interestingly,

these analyses were able to identify the impact of the main religious events such as

Ramadan. Not only are the data an effective representation of city-wide activity pat-

terns, but they are also unconstrained by conventional geographic boundaries that

are restrictive to traditional analysis. An issue which is particularly important in the

case of borderless phenomena such as migration.

At a global scale, Hawelka et al. (2014) investigated the use of Tweets in the

inferences of global mobility patterns. Using a collection of circa 1 billion Tweets,

they identified users’ probable countries of origin and subsequently inferred global

mobility based on individuals users’ tweeting histories. Country of residence was

determined based on where each user had tweeted most frequently within the pre-

ceding year. A further contribution made in the paper was the identification of func-

tional regions using a network-based community detection algorithms. Hawelka

et al. (2014) make reference to differences in how representative Twitter data are

through the removal of data for those countries with fewer than 500 resident users.

This approach constrains the analysis to just thirty countries.
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3.3.2.2 Health
Various studies have explored the use of social media in the analysis of global health

patterns. In 2008, Google sought to monitor the spread of influenza in real-time

based on the analysis of specific search term frequencies (Ginsberg et al., 2009).

Specific queries, which corresponded with historical influenza data were identified

and subsequently employed in monitoring activities. Numerous criticisms of the

method have emerged since publication. However, this has not deterred others from

attempting to implement the approach using social media data such as from Twitter.

Achrekar et al. (2011) demonstrated a high degree of correlation between Flu-related

Tweets and reported Flu-data. Achrekar et al. (2011) subsequently used the volume

of Tweets to improve upon existing models rather than use Twitter data in isolation.

Of note, and relevant to the above, Paul and Dredze (2011) note that while

Twitter may be suitable for monitoring some aspects of public health, it will not

always provide a valid conclusion. In their analysis, it was found that there were

insufficient Tweets for analysis to be significant, and in the case of more localised

conditions, conversations by non-affected individuals had the potential to introduce

significant bias.

3.3.2.3 Crime and security
In June 2014, it was reported that over half of calls passed to frontline police in

the UK were related to online social networks (BBC, 2014a). However, due to the

categorisation employed in the recording of crime data, accurate statistics were not

available as social media crimes are recorded under the same categorisation as tradi-

tional crimes. Ellison et al. (2007) identify some specific risks to social media users

related to the sharing of personal information including identity theft, stalking and

bullying.

In real terms, social media has formed the centre of several high-profile crimes.

Notably, the case of the Robin Hood Airport ‘Twitter joke trial’ in 2010 and the

McAlpine Libel case in 2012. In January 2010, Paul Chambers, a passenger due to

fly from Robin Hood International Airport, sent a ‘joke’ tweet threatening to blow

up the airport if his flight was cancelled. Chambers was subsequently arrested and
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charged with sending a menacing communication under the Communications Act

2003. While the conviction was overturned following its second High Court ap-

peal, the trial provided a tangible demonstration of the link between actions by the

real and virtual self (Kelsey and Bennett, 2014). The McAlpine Twitter libel case

followed allegations by the BBC that a senior Conservative Party Member of Parlia-

ment had been involved in historical sex abuse. At the time, a large number of social

media users falsely implicated Lord McAlpine with notable individuals including

Sally Bercow, wife of the then House of Commons speaker. While the majority of

minor users were let off with a request to donate £25 to the Children in Need char-

ity, the prosecution successfully pursued the libel case against Bercow receiving an

undisclosed settlement within the courts. In both cases, it was highlighted that the

general public had a limited understanding as to what constituted a crime on social

media; a problem which is ongoing.

In contrast to the use of social media as a facilitator of crime, police in the UK

and other nations are increasingly integrating social media as a means for research,

communication and outreach (Crump, 2011). While the use of social media by UK

Police initiated in 2008, the use of such services only came to prominence during the

2011 London riots. Following the events, significant research was conducted using

the social media data generated in an attempt to reconstruct the events. Meanwhile,

social media was highlighted as a critical weapon in the rioters’ arsenal, facilitating

coordination and orchestration between disparate rioting groups. The role of social

media in such high-profile events has raised questions in government regarding the

suppression of certain online media during times of civic unrest (Casilli and Tubaro,

2011).

Social media is also playing an increasingly prominent role in security. In this

context, security may be considered as “the state of being free from danger or threat”

(Oxford University Press, 2010). SOCMINT or Social Media Intelligence was first

mentioned following the 2011 London Riots (Omand et al., 2012). Following the

shooting of Mark Duggan in August 2011, social media activity rapidly increased

and retrospective analysis has suggested aspects of the riots could have been better
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tackled using such data. However, at the time, the Police acknowledged that they

did not have the physical, or personal capacity to gather intelligence through social

media (Omand et al., 2012).

At a more extreme level, several nations have temporarily blocked access to

online social media as a means to suppress activism. One of the most recent example

being Turkey (Genç, 2014). Online social media is permanently blocked or heavily

restricted in some nations, e.g., North Korea. Ironically, bans on social media often

lead to users finding alternative means to circumvent the blocking technologies.

During the 2010 Egyptian uprising, the following Tweet by the ‘rebels’ was

widely circulated.

“We use Facebook to schedule the protests, Twitter to coordinate and

YouTube to tell the world” (Khondker, 2011).

While the author remains anonymous, the statement echoes the behaviour of

many of the countries involved in the Arab Spring uprisings. In this instance, social

media enabled the ‘rebels’ to broadcast their messages to theworld; in effect, increas-

ing global awareness. Significant discourse in the media surrounds the use of OSNs

by terrorist organisations such as the Taliban and Islamic State. Previously, many

of these organisations have used Facebook, Twitter and YouTube to share videos

and news regarding their activities. In some case, this has resulted in the individual

sites blacklisting users sharing such content. However, this approach has led to dis-

placement rather than reduction; a phenomenon also witnessed in crime prevention

(Cornish and Clarke, 1987). Case in point is the shift of Islamic State to social net-

works such as Diaspora (see: https://www.diasporafoundation.org); an online social

network with a decentralised control structure. This feature allowed Islamic State

to shift their online presence to the platform without the censorship applied by the

mainstream social networks (Diaspora, 2016). In a separate incident, a Taliban com-

mander believed to be in Afghanistan sent a geotagged Tweet from within Pakistan

(BBC, 2014b). While the addition of location was dismissed as an “enemy plot”,

the fact that the event occurred highlighted the potential for social network analysis

in monitoring security concerns.

https://www.diasporafoundation.org
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3.3.3 Challenges and Limitations
While infrequently discussed, social network analysis is susceptible to various chal-

lenges and limitations. First and foremost, that the individuals who use social net-

works are not necessarily representative of the population. Rather, they are a self-

selecting group which have opted to register and utilise the platform being studied.

Consequently, any conclusions from the data are limited in applicability to the pop-

ulation from which the samples were drawn. The issue is compounded by the fact

that limited information is publicly available regarding the demographic breakdown

of each social platform. For instance, the geographic data that are available via the

Twitter API are from a self-selecting subset of an already self-selected group of the

population. In other words, the data are that are available are from those individuals

who have chosen to use Twitter and, in turn, decided to share their location. Conse-

quently, the results may not be generalised to the population as a whole. Seeking to

understand this issue better, (Longley et al., 2015) attempted to quantify how rep-

resentative the Twitter users were versus the underlying population. The analysis

was conducted across the Greater London area and employed personal names as a

means to infer Twitter users’ ages, genders and ethnicities. In turn, theses data were

examined against data from the 2011 Census of Population.

Further challenges encountered in the analysis of social media are the impact

of fake accounts and the tourist/constrained study area effect. Fake users, or bots,

are present in most forms of social media. On Twitter, bots are often employed to

deliver marketing and will regularly follow users and send Tweets. That said, such

accounts are not necessarily malicious. For example, the @DearAssistant Twitter

account uses Wolfram Alpha to answer questions such as “How many days until

Christmas?” Nonetheless, when analysing social media, it is advisable that such ac-

counts are omitted to limit the potential for bias. The omission may be accomplished

through the use of blacklisting or filtering based on some form of a textual or spatial

parameter.

The second issue, referred to here as the tourist effect, is associated with how

social media data are assembled. When streaming Twitter data, it is normal practice

https://twitter.com/DearAssistant
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to constrain the sampling frame to a limited geographic extent. Themotivation being

to minimise the volume of data collected and increase ease of data handling and

manipulation. While this is advantageous in some senses, it can result in analysis

failing to capture the true behaviour of the study participants. For example, when

analysing data recorded in London, a proportion of the users identified will not be

resident in the study area, let alone the country.

A third issue is that of multiple locations associated with each user. Lacking a

single point of references impacts how easily the data may be referenced against con-

ventional aggregate and individual level population data in which each observation

is linked to a single location. For example, comparison against traditional popula-

tion data is challenging as users are liable to have multiple locations associated with

their accounts. Of these data points, there are limited means to identify which, if

any, of the locations, coincide with the user’s actual place of residence.

3.4 Ethics
While the potential of social media data is clearly evident, limited consideration of

these factors appears obvious. In a review of 380 studies citing Twitter, Zimmer and

Proferes (2014) found that only 4% considered the ethical implications of the data

being analysed and how it was collected. Of the sixteen papers to acknowledge eth-

ical issues, six mentioned ethical approval; five acknowledged the ethical questions,

and five stated that no ethical issues were present. The justification typically used to

is that the data are in the public domain and also that users have consented to their

data being used as part of the registration process. For example, the Twitter Terms

of Service (TOS) state that the ‘data may be used for many purposes beyond users’

direct experiences’. In many cases, this results in users being unaware that their data

are being used in research or marketing.

In the case of the major social media platforms, data remains the property of

the submitter. In the case of Twitter, the TOS state that ‘You retain your rights to

any content you submit, post or display on or through the Service’. However, by

agreeing to the TOS you are giving the right to Twitter to ‘use, copy, reproduce,
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process, adapt, modify, publish, transmit, display and distribute such content in any

and all media or distribution methods (now known or later developed).’ In essence,

while the user retains ownership of their data, Twitter has full rights to its use and

distribution. In effect, the collections of data held by academics are being used un-

der licence and may no way be considered property. To administrate this, Twitter

required developers to possess authentication tokens for access to the API. Avail-

able to developers, the tokens provides a means to manage rate-limits and monitor

requests. In certain scenarios, such limits have proven restrictive leading to indi-

viduals circumventing the conventional techniques and scraping the desired content.

Not only does this approach breach most platforms TOS, but it may also amount to

theft as the data, as has been previously established, remains the users’ property.

One of the main challenges in the analysis of Twitter is the restrictions placed

on the collection of data. As has been noted, the free API limits the user to real-

time collection making the compilation of historical data potentially expensive and

time-consuming. Further, Twitter prohibits developers from sharing data which has

been collected via the API. It is likely that such a restriction is designed to prevent

competition and maintain the value of the companies data assets. Twitter’s 2014 Q4

financial statement recorded data licensing income as $70 million, roughly 10% of

its $710 million quarterly revenue.

A further issue in the analysis and collection of social media data is that of con-

sent. The term consent is used in reference to the participants of a study giving their

permission for their data to be used in the analysis. The issue of consent received sig-

nificant public scrutiny following the revelation that Facebook, in partnership with

Cornell University, conducted a massive psychological experiment without gaining

informed consent. The study altered the volume of positive or negative posts for

689,003 individuals to determine if emotional contagion occurred online (Kramer

et al., 2014).

Consent is considered as either being informed or assumed. Informed consent

regards the process of gaining full permissions from study participants having pro-

vided appropriate and accessible information about how and for what their data will
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be used (Crow et al., 2006). Assumed consent makes the assumption that individ-

uals have consented to the use of their data based on having agreed to the original,

TOS. Assumed consent is generally used in the analysis of social media data where

it would be challenging or impossible to gain the consent of all study participants.

One source of guidance on the ethical use of OSN data is published by ESOMAR,

the ‘World association for market, social and opinion research.’ ESOMAR provide

guidelines that state where meaningful consent is not available, or may cause incon-

venience to the user, that the research may progress, however, should report only

depersonalised information (ESOMAR, 2011). Depersonalised information being

data in which it is impossible to identify the individual from the data that are pub-

lished. This approach is further encouraged where data are either not depersonalised

at the point of collection or where minors may inadvertently be included in the col-

lected data; a feature which is relevant to Twitter which has an unenforced lower age

limit of thirteen.

A further concern in the analysis of social network data is that of individuals’

privacy. In particular, the disclosure of Personally Identifiable Information (PII).

PII are attributes that pertain to individuals’ identities such as age, name, gender

and ethnicity. While the ESOMAR guidelines make some recommendations for the

removal of PII they do not address the spatial data content. With the accuracy of

GPS-enabled devices regularly +/- 10 metres, it is entirely possible to determine the

specific locations and activity patterns of individual users.

One area in which the issue of privacy has been explored is the reporting and

publication of crime data by the UK Police. The UK Police Data Service (see:

http://www.data.police.uk), which provides monthly records of crime, use a series

of steps to anonymise the individual, event type, and location. In particular, the

service aggregates all location information to an area, which includes six or more

postcode units. The final data are assigned a point location over either a road or

public building. While thorough, aspects of the approach have been criticised for

introducing the potential for interpretation bias with a large number of crime events

appearing to emanate from a single point (Chainey and Tompson, 2012). Alternative

http://www.data.police.uk
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methods of spatial anonymisation may be seen in the publication of the UK Census.

In this case, individual data are aggregated to output area level: the smallest cen-

sus unit. The average output area population being 309 individuals as of the 2011

Census. The use of statistical geographies enables the linkage of aggregate data to

high-quality national statistics for assessment and comparison.

3.5 Conclusions
The aim in writing this chapter was to establish a body of knowledge regarding social

media from which potential applications to geodemographics could be drawn. On

investigation, it was found that the form of social media most relevant to geodemo-

graphics was Online Social Networks. As was discussed, there exist a broad range of

online social network, each which possess unique and potentially valuable charac-

teristics for the observation of human populations. Facebook was recognised for the

wealth of semi-structured personal data, however, due to limitations in the ability to

harvest large volume of data was deemed unfit. Twitter, was chosen on the basis that

it offered the best balance between accessibility and expression of identity. Further,

various investigations have sought to model human behaviour using Twitter data

with varying degrees of success. However, beyond token reference, have failed to

acknowledge the limitations of such analysis. In particular, the self-selecting nature

of the Twitter sample versus the underlying population.

While the derivatives of Social Media analysis will never share the provenance

of conventional studies, the opportunities which the data present are undeniable.

Being able to establish individuals’ identities has significant implications for the

exploitation of social network data as, identified by (Kietzmann et al., 2011), identity

is central to the analysis of social networks. Further, we are no longer constrained

to single countries or regions as is the case with traditional aggregate population

data. Thus, given proper consideration, the analysis of Twitter data offers a means

by which we may empirically examine stocks and flows of population. Not only

concerning static representations but also at a dynamic scale in both time and space.

Being a global platform, Twitter has the potential to enable analysis of a range
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of spatial scales from the local to the global. Further, as the users of Twitter often

use their personal names, there is the potential to model, and by effect differentiate

by demographic types. Thus, based on the above, there is clear evidence to support

the incorporation of Social Media into the study of geodemographics and security.



Chapter 4

Database Creation, Linkage and

Validation

4.1 Introduction
Having identified Twitter as a potential resource for the production of individual level

population inventories there remains the issue of transforming the data from their raw

unprocessed form into functional invidual level population inventories. Regarding

the structure of this analysis the framework of Mitchell (2005), recommended by

De Smith et al. (2011), is employed. The framework is composed of seven stages:

framing the question; understanding the data; choosing a method; calculating the

statistics; interpreting the statistics; testing the significance of the statistic; and ex-

amining the results. Thus, seeking to frame the question, the first requirement is

to understand the form and function of a population register entirely. Concerning

answering this question, the United Nations provide a useful definition which is as

follows:

“. . . a mechanism for the continuous recording of selected information

pertaining to each member of the resident population of a country or

area, making it possible to determine up-to-date information about the

size and characteristics of the population at selected points in time. Be-

cause of the nature of a population register, its organisation, as well

as its operation, should have a legal basis. Population registers start



90 Chapter 4. Database Creation, Linkage and Validation

with a base consisting of an inventory of the inhabitants of an area and

their characteristics, such as date of birth, sex, marital status, place of

birth, place of residence, citizenship and language. To assist in locat-

ing a record for a particular person, household or family in a population

register, an identification number is provided for each entity”. (United

Nations, 2001)

Based on the United Nations’ definition we may draw several key criteria in re-

gards to the desirable form of the proposed inventories. First and foremost, a baseline

of all inhabitants should be established. These data should, in turn, be supplemented

with essential identity characteristics including as age, gender and place of residence.

In addition, these data should be assigned some form of identification number such

that it may be possible to differentiate between individuals.

Considering the above criteria in the context of creating the Twitter-derived

population registers several potential challenges are evident. First, the UN definition

considers a population register as being inclusive of the entire resident population

of a country or area. Such coverage will not be achievable with the Twitter data.

Thus, to address this issue, and mitigate potential confusion, the Twitter registers

will henceforth be referred to as inventories. Second, while some identifying char-

acteristics may be inferred based on individual user’s accounts, such identifying data

are rarely explicitly stated by the user or the organisation responsible for collecting

them. Therefore, it is important that such data, when inferred about individual users

is acknowledged and correctly interpreted.

Bearing the above in mind, the objective of this chapter is to create a series of

population inventories that take raw Twitter data and through a series of heuristic

and data-mining techniques, create individual level population inventories that take

a form that is broadly consistent with the UN definition. The chapter will initiate

with as a section concerned with the data that are to be employed in the construction

and validation of the Twitter inventories. The subsequent sections will be concerned

with a) the methods used in the creation of the Twitter inventories and b) with the

validation and verification of the new inventories. The chapter will conclude with a
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discussion of the results and series of initial conclusions.

4.2 Data
Having framed the problem, the next phase in the analysis is concerned with devel-

oping an understanding of the data. Seeking to assemble the population inventories

several distinct datasets are required. First is the corpus of geotagged Tweets. Second

is an administrative boundary dataset suitable to serve as the geographic reference

for the new inventories. Finally, is a suitable form of reference data against which

the Twitter-derived inventories may be assessed. In the case of each data source,

efforts are made to describe and where necessary validate the quality of the data.

4.2.1 Twitter Data
The Twitter dataset used within this chapter, and the thesis as a whole, is a cor-

pus of 1.4 billion Tweets submitted by 24.4 million users. Obtained via the Twitter

Streaming API, the data represent a full year spanning the period between Decem-

ber 2012 and the January 2014 inclusive. The full temporal coverage of the data

is indicated in Figure 4.2 and the spatial coverage in Figure 4.1. The data were

obtained via the Twitter API and stored in a PostgreSQL relational database (see:

http://www.postgresql.org). The ‘POST statuses/filter’ API was used to harvest the

data from Twitter in real-time. The ‘POST statuses/filter’ endpoint is a specific ver-

sion of the sample stream API in which a series of parameters are specified such

that only specific data are returned (Twitter, 2015). These parameters include, but

are not limited to, keywords, user ids and locations.

An important point of clarification is on what data are accessible through the

Twitter Streaming API. A common misconception in the use of the sample and as-

sociated filtered stream is that only 1% of the total throughput of Twitter are ever

accessible. Rather, the data that are available are described as up to the equivalent of

1%. As such, rather than receiving just the 1% geotagged Tweets from the already

reduced 1% sample stream, the API will return the majority of geotagged Tweets

from the Twitter feed; assuming that they never exceed the 1% of the total threshold.

Further, with most estimates of the proportion of Tweets to contain geographic at-

http://www.postgresql.org
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tribution centring on 1% it may be presumed that the majority of geotagged Tweets

are available for collection. Morstatter et al. (2013) recorded the filtered streaming

API returning 90.10% of all geotagged Tweets versus the full stream.
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Unfortunately, as is apparent in Figure 4.2, the data collection application failed

on several occasions during the recording period. The application for harvesting

Tweets was implemented on a Windows Server using the Java Programming Lan-

guage. Due to unforeseen circumstances the server was reset at various periods

resulting in the application failing. In hindsight, it would have been beneficial to

implement redundant systems such that the risk of data loss was reduced. The miss-

ing data are evident where a cell is not filled or records a low frequency of Tweets.

While it may have been possible to recover the data that were missed, the costs of

such an exercise would have proven prohibitive. Though Twitter does provide an

API for the collection of historical data the use of rate limiting would have been a

significant barrier; in practice, a query for each unique user would have been neces-

sary.

Figure 4.2: Heat-map calendar showing the temporal coverage and completeness of the
Twitter dataset. Empty cells indicate that no data were collected on these days.

Also, it is worth noting that the volume of data harvested from Twitter was such

that commonly used desktop approaches to data storage and manipulation were not

possible. Beyond simply storing the data, use of the PostgreSQL database offered

multiple advantages. First, the database facilitated the creation of optimised data

structures, through indexes, which significantly reduced data access times. Second,

through the addition of the PostGIS extension, it was possible to perform a significant

proportion of the required GIS functionality introducing significant time-saving in
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the spatial analysis workflows. The attributes recorded in the Twitter dataset are

detailed in Table 4.1.

Table 4.1: Descriptions of variables collected through the Twitter API.

Variable Description

Userid A unique identifier assigned to each user
Language The language which the user has set for the service
Location The value the user has entered into the optional location field
Name The user’s username e.g. ‘Alistair_Leak’
Screen name The public facing name the user has chosen eg ‘Alistair Leak’
Time zone Time zone in which the user tweeted
Latitude The latitude at which the Tweet was submitted
Longitude The longitude at which the Tweet was submitted
Timestamp The date and time at which the Tweet was submitted
Tweet text The 140 character Tweet text
Status id A unique identifier assigned to each Tweet

4.2.2 Administrative Boundary Data
Selection of a suitable administrative geography for use in the construction of the

proxy population inventories appears quite trivial on the surface. However, in prac-

tice, such an exercise is potentially complex and time-consuming. In seeking to

identify suitable administrative boundary data for all countries, foreseeable chal-

lenges include limited access to data, incompatible data formats and projections and

also inconsistent nomenclature. With this in mind, it was deemed most appropriate

to find a pre-existing database of global administrative areas.

Thus, the administrative boundary dataset employed within this analysis was

the GADM 2.0 global administrative boundary dataset version 2.0 (available from

http://www.gadm.org). The GADM dataset, illustrated in Figure 4.3, is a seamless

global database of administrative areas. A key feature of the GADM dataset is the

use of a standardised naming structure that lends itself to automated processing. At

its coarsest, GADM level 0 represents the outline of countries and as the level is

increased so is the granularity. The degree of granularity varies between countries

and appears to be dependent on the availability of data. However, taking the example

of the UK, the highest granularity, level 2, is consistent with ‘districts and boroughs’.

That being said, in the context of the analysis to be performed, the benefits of the

consistent data structure far outweigh the drawbacks.



96 Chapter 4. Database Creation, Linkage and Validation

Figure 4.3: Map of the GADM 2.0 administrative boundary dataset. The GADM data pro-
vide a standardised global geography based on known administrative regions
(source: GADM, 2012).

4.2.3 The Worldnames Database
The UCL Worldnames Database was chosen as the most suitable reference for the

validation of the inventory creation framework due in part to the ease with which it

could be obtained. Besides, the Worldnames Database was compiled by the UCL

Department of Geography and is arguably the most complete inventory of individ-

ual names ever constructed. The Worldnames Database is a compilation of publicly

available electoral roll and telephone directory datasets representative of approxi-

mately two billion of the Earth’s population. However, being that the data used in

the database have been compiled over a period of years and drawn from a multitude

of sources invariably resulting in variations regarding completeness, coverage and

quality both within and between countries. With this in mind, an audit of the World-

names Database was performed, the aim of which was to assess the quality of the

component datasets systematically. Specific objectives included the clarification of

the date of publication; the format of the data; and the representativeness of the data

regarding the underlying population.

An audit of the data was performed on a country-by-country basis. In each case,

the most common surnames as recorded in the database were compared against alter-

native sources of names data. Early in the completion of the audit, it was found that
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Figure 4.4: Coverage of theUCLWorldnamesDatabase. The countries highlighted in green
are those which are included.

only limited official records of surnames within countries were publicly available.

In the majority of cases only the top 10, 20, 50 or 100 names could be obtained;

limiting the potential options for statistical comparison. Such was the constraint

regarding reference data that a method, which worked with limited data, was nec-

essary. Consequently, three validation metrics were employed: 1) the proportion of

overlap between the reference andWorldnames registers, 2) the Pearson’s correlation

coefficient between the top sets of names and 3) the Spearmans’s rank correlation

between top sets of names.

In the case of both the proportion of overlap and rank correlation, the com-

parisons were performed on the top 10, 20, 50 and 100 most common surnames.

The proportion of overlap was considered as the number of names shared between

the two sets of data irrespective of rank while the rank correlation between the two

datasets was calculated using the Spearman’s Rank correlation coefficient. The rank

correlation was performed on pairs of observations within the top n values. The full

data audit is reported in Appendix B and a summary of results of the data audit are

summarised in Table 4.2.

In the case of both comparison techniques, the approaches are based on the

frequency distribution of surnames. Figure 4.5 is a plot of the frequency of unique
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Table 4.2: Summary of the Worldnames Database data audit
p-value < 0.05 *, < 0.005 **, < 0.0005***.

ISO-3
Overlap (%) Correlation rho Quality
Top10 Top20 Top50 Top100 Top10 Top20 Top 50 Top100

ARG 100 80 84 96 0.64* 0.90*** 0.92*** 0.90*** Good
AUS 90 100 98 98 0.98*** 0.97*** 1.00*** 1.00*** V. Good
AUT 1 100 100 - - 0.90** 0.98*** - - Good
AUT 2 90 95 88 88 0.67 0.90*** 0.96*** 0.88*** V. Good
BEL 90 90 92 90 0.97*** 1.00*** 0.97*** 0.98*** V. Good
BGR 1 70 50 58 50 0.57 0.82* 0.92*** 0.80*** Poor
BGR 2 50 55 52 55 0.9 0.96*** 0.85*** 0.58*** Poor
BRA 60 60 68 72 0.89* 0.55 0.56** 0.55*** Poor
CAN 1 10 20 - - - -0.22 - - Poor
CAN 2 20 50 46 55 1 0.08 0.202 0.31* Poor
CHE 60 50 60 58 0.71 0.6 0.41* 0.41** Poor
DEU 100 95 98 97 1.00*** 1.00*** 1.00*** 1.00*** V. Good
DNK 100 95 98 95 1.00*** 1.00*** 0.99*** 0.99*** V. Good
ESP 90 95 86 80 0.93*** 0.99*** 0.99*** 0.98*** V. Good
FRA 90 95 94 93 0.53 0.91*** 0.92*** 0.94*** Good
GBR 100 100 90 94 0.98*** 0.98*** 0.96*** 0.96*** V. Good
HUN 90 70 78 71 0.43 0.78** 0.74*** 0.81*** Good
IND 1 10 35 26 29 - 0.14 0.57** 0.56** Poor
IND 2 10 15 20 23 - 1 0.35 0.4 Poor
IRL 100 95 98 97 1.00*** 1.00*** 1.00*** 1.00*** V. Good
ITA 80 100 88 93 0.93** 0.93*** 0.97*** 0.96*** V. Good
JPN 90 95 92 95 0.90** 0.81*** 0.93*** 0.86*** V. Good
LUX 70 75 72 68 1.00*** 1.00*** 0.84*** 0.90*** Good
MLT 90 100 98 93 0.98*** 0.98*** 0.97*** 0.99*** V. Good
NLD 80 90 82 86 0.76* 0.94*** 0.95*** 0.94*** V. Good
NOR 100 95 94 97 0.98*** 0.99*** 1.00*** 0.98*** V. Good
NZL 70 65 - - 0.96** 0.99*** - - Poor
POL 50 60 68 62 0.2 0.38** 0.54** 0.62*** Poor
SER1 90 75 84 89 0.77* 0.88*** 0.75*** 0.89*** Good
SVN 90 80 80 85 0.97*** 0.95*** 0.96*** 0.87*** V. Good
SER 80 75 74 82 Good
SWE 100 85 86 74 0.99*** 1.00*** 0.95*** 0.96*** V. Good
USA 70 75 80 82 0.96** ?????? 0.51** 0.86*** Good
MNE 70 75 70 74 Good
UNK - - - - - - - - -

Figure 4.5: Plot of the frequency of surname frequencies in the UK.
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surname counts based on data from the 2013 Consumer Register. The distribution of

surnames is known to conform to a power law in which there are very few common

surnames and many uncommon surnames. A feature of this distribution is that the

most common names are usually very distinct in terms of their order; a feature that is

evident in Figure 4.5. Thus, it may be thought that agreement of the most common

names is a good early indicator as to the representativeness registers as a whole.

The audit of the Worldnames Database registers covered 28 countries and revealed

a number of issues in the data.

Countries for which the population registers were deemed good included: Ar-

gentina, Australia, Austria, Belgium, Denmark, France, Germany, Hungary, Ireland,

Italy, Japan, Luxembourg, Malta, Netherlands, Norway, Montenegro, Serbia, Spain,

Slovenia, Sweden, the United Kingdom, and the United States of America.

Countries for which the population registers were deemed less than good in-

cluded: Bulgaria, Brazil, Canada, India, New Zealand, Poland and Switzerland.

In the case of the data for Brazil and India, it was found that only a limited

number of cities were represented introducing a regional bias. In the case of the

New Zealand data, it was found that the data were compiled over a series of years

between 1897 and 1992. In the case of Switzerland and Canada there appeared to

be a cultural bias in the data that may have been a consequence of irregular regional

recording. The Canada data appeared to omit several common ethnic names, and

the Swiss data appeared to be biased towards the German-speaking portion of the

population. No specific explanations for the Polish and Bulgarian data could be

found.

Completion of the Worldnames Database audit proved to be highly informa-

tive in terms of understanding the data quality and completeness. In several cases,

it was found that the data were only representative of specific regions potentially

leading to an ecological fallacy where those individuals recorded were considered

representative of the whole population.
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4.3 Inventory Creation and Validation
Having introduced the problem and available data, the next phase of the analysis

was the development of an appropriate framework for creation and validation of

the Twitter-derived inventories. In Section 4.3.1 the framework for the creation of

the inventories is detailed and the methods used in the subsequent validation form

section 4.3.2.

4.3.1 Inventory Creation

4.3.1.1 Identification of users’ places of residence
Unlike the Worldnames Database, in which each person is recorded at a single lo-

cation, users of Twitter are often associated with multiple locations. Thus, there is

a requirement to be able to identify which, if any, of a user’s location information,

truly relates to their place of residence. Potential sources of user location include

their declared locations, information embedded within their Tweets and locations

that are recorded within the meta-data of individual Tweets.

If we first consider users’ declared locations, these attributes are provided by the

user at the time of registration and are not constrained to actual locations or naming

conventions. Consequently, the locations are often ambiguous, imprecise or aspatial

(Graham et al., 2014). Examples of users’ declared locations include ‘England’,

‘Global’ and ‘Liverpool’. Asmay be evident, these locations are valid yet ambiguous

and imprecise limiting their usefulness in terms of compiling population inventories.

An alternative to users’ declared locations are the location details that are embedded

within individual Tweet’s meta-data. Where a user chooses to ‘Share their location’,

Twitter records the location as it is provided by the device being used to access the

service; in the case of smart phones, this may be via GPS, cell location, or WiFi.

Where location data are available, the attribution is embedded within the Tweet’s

meta-data. Unlike users’ declared locations, these data are less open to ambiguity

or manipulation.

In seeking to assign individuals to single unique locations based on the spatial

information embedded within their Tweets it must be recognised that a typical user’s



4.3. Inventory Creation and Validation 101

recorded activities will not be constrained to a single location. Rather, an individual

will travel within and between multiple localities as part of their routine activities.

Thus, there is a requirement to be able to identify which, if any, locations associated

with a specific user are at their normal place of residence.

It may be argued that knowledge of each user’s precise place of residence is not

necessary. In many cases, knowledge of users’ locality, region, or country may be

sufficient. For example, in the case of the Onomap CEL classifier, the clustering is

entirely aspatial and is solely concerned with individuals’ forename-surname pairs.

Similarly, much of the existing data in theWorldnames Database is recorded at a very

aggregate level. A further and critical consideration is the data that are available for

the analysis. Due to the constraints of data availability, and the lack of precision

regarding users declared locations, it was decided to pursue the use of the spatial

attribution embedded within individual user’s Tweets.

The intuition in the following analyses is that a person will tweet most fre-

quently within the area in which they are resident. Seeking to implement this in-

tuition the first consideration is what is meant by the term ‘area’ and how can the

data be formatted to suit this. Geotagged Tweets report a high degree of precision

(often within a matter of metres) that does not lend itself to simple aggregation. One

approach to addressing the issue of aggregation may be the use of geographic bin-

ning in which Tweets are spatially joined to some form of administrative geography.

i.e. rather than using the longitude and latitude data provided in their raw form, the

Tweets are spatially joined to an administrative geography such as Output Areas in

the UK. Through a reduction in the precision of the location information for each

Tweet, the degree of accuracy and ease of aggregation may be increased.

The methodology employed in the identification is illustrated in Figure 4.6 and

implemented as follows:

1. All users within the Twitter dataset are identified and a subset created based

with a minimum threshold of five Tweets within the dataset.

2. All Tweets by the previously subset users are spatially joined to the relevant

administrative geography.
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3. For each user:

(a) Once spatially referenced, Tweets for each user are aggregated based on

the region in which they emanated.

(b) A user is assigned a location assuming that they have five or more and

greater than 50% of their total Tweets in the same administrative unit.

4. The process is repeated at a series of spatial resolutions such that inclusion in

the final register may be maximised.

Concerning supplementing the Worldnames Database, the administrative ge-

ography chosen for the initial analysis was the GADM administrative dataset in-

troduced in Section 4.2.2. The GADM dataset comprises a hierarchical geography

in which the finer geographies are nested into regions and countries. Such a data

structure aids in the creation of new inventories that allow for the maximisation of

inclusion of users at each spatial resolution. For instance, a user may not meet the

‘5 or more Tweets and 50% of total Tweets’ at Postcode level, however, may do so

at a less granular resolution such as at the regional or national level.

The accuracy of the location assignment algorithm was assessed in the UK us-

ing a stratified sample of users across the 192 GADM administrative regions. The

stratification was conducted in such a manner that a minimum of 1,000 users were

selected with a lower threshold of one user from each administrative region. For

each user, the declared location was manually geo-coded and compared to the user’s

estimated location as determined by the location assignment algorithm. The results

of the assessment were recorded using a contingency table such that the overall clas-

sification accuracy could be determined. The use of a contingency table offered

several advantages beyond just measuring overall accuracy. More specifically, the

contingency table facilitated the calculation of accuracy adjusted for chance and also

the identification of specific areas of miss-classification (De Smith et al., 2011).

Table 4.3 provides a summary of the confusion matrix, indicates that the overall

classification accuracy was 84% though, it should be noted that this score was cal-

culated excluding those users who had aspatial (39%) or ambiguous (12%) declared
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locations. The Kappa Index value was only marginally lower than the overall classi-

fication accuracy, suggesting that very few correct classifications occurred through

chance and vice versa. Ambiguous locations were seen most commonly in large

metropolitan areas which were subdivided into multiple districts or boroughs; most

notably in the case of London. While it may have been desirable to automate this

process, a significant number of users’ declared locations required some form of hu-

man intervention that would not have been feasible using a solely machine based

approach.

While the results are shown in Table 4.3 are calculated as a global measure

it is also possible to calculate the equivalent statistics on a case-wise basis using a

variation of the Kappa Index. However, achieving this would have required a signif-

icantly larger stratified sample to be taken, and the expected usefulness was deemed

unlikely to merit the effort required.

Table 4.3: Summary results of the confusion matrix used in the assessment of the location
assignment algorithm.

Metric Value

Sample Size 1,073
Ambiguous locations 133

Aspatial locations 416
Usable locations 524

Overall Accuracy 0.84
Kappa 0.83

4.3.1.2 Extraction of users’ personal names
Having identified the likely residential areas of users’ the next phase in the creation

of the individual level population inventories was the extraction of users’ probable

names. As indicated previously, there are two possible identifiers in the Twitter data

thatmay be used; the users’ usernames and their screen names. The users’ usernames

are a distinct identifier used to differentiate between specific accounts on the service

while the screen name is any string chosen by the user. Unlike the username, there

is uniqueness constraint imposed on users’ screen names, however. Consequently,
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in the knowledge that many individuals share the same name, users’ screen names

were deemed the most appropriate for extraction of users’ names.

The extraction of Twitter users’ real names from their screen names poses sev-

eral challenges. First, users’ screen names are provided as a single string variable

devoid of logical partitioning regarding conventional name parts. Second, the screen

name variable may contain multiple non-name components such as personal titles,

number and symbols. To compound this issue further, there is no guarantee that the

screen name is a real name or a real person.

Considering first the issue of the single string screen name, a typical namemight

be ‘Mobiles UK’, ‘Dr John Smith’, ‘Rhiannon de la Merr’ or ‘Jane Doe 1990’. In

these fictitious examples, various of the previously mentioned challenges are evi-

dent; notably, the inclusion of personal titles, dates and non-real names.

Figure 4.7: A graphical representation of the name extraction process.

Looking to address the first two concerns, personal titles and non-alpha char-

acters, a heuristic technique, based on a method by Longley et al. (2015), was used

in the extraction of the name parts. The method, illustrated in Figure 4.7, assumes

a western naming order where forename precedes surname. The method is applied

as follows:
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1. All non-alpha characters are removed from the user’s screen name.

2. Screen names are split into multiple tokens based on white spaces.

3. Tokens are compared against a list of titles and surname prefixes.

4. Surname prefixes are affixed to the family name segment.

5. Cleaned surnames are recorded against the user’s id.

Table 4.4: Examples of forenames and surnames extracted from Twitter users’ screen names
using the names extraction process.

User id Screen name Forename Surname

1 Dr James Cheshire James Cheshire
2 Rhiannon de la Merr Rhiannon De la Merr
3 Bieber Believer 99 Bieber Believer

Table 4.4 provides a sample of users’ screen names and the forenames and sur-

names that were extracted using the previously discussed heuristic. It should be

noted that this method is not able to differentiate between real and non-real users as

in the case of ‘Bieber Believer’.

4.3.1.3 Treatment of gendered names
As noted in the review of personal names, in certain cultures surnames can be af-

fixed with gender specific identifiers. For example, the Polish names Kowal(ski) and

Kowal(ska) are masculine and feminine forms, respectively, of the same name. They

are not, however, associated with the similar sounding Polish surname Kowal. Con-

cerning computerised analysis, the difference in spelling has the undesirable effect

of inferring that the names originate from two different familial groups. Thus, the

decision was made to convert all gendered names, where possible, to their mascu-

line form. This process entailed replacing the feminine affix (i.e –eva, -ova, -ska

etc) with the equivalent masculine affix (i.e –ev, -ov, -ski). The gender-standardised

names were recorded as a new variable such that the gender information inherent

within the names was not lost.
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4.3.2 Inventory Validation
Having identified the probable residential location of the Twitter users in Section

4.3.1.1 and extracted their probable personal names in Section 4.3.1.2 the final set

of inventories successfully address the requirements drawn from the United Nations’

register definition in Section 4.1. However, while the new individual level population

inventories address the requirements of a proxy regarding data structure, little is

known as to their representativeness regarding the underlying population. Thus, the

following section provides details and justifications for the methods employed in

the initial validation of the Twitter inventories. In seeking to validate the Twitter

inventories a number of key population metrics are explored. These metrics include

the overlap in the most commonly occurring surnames, geographic distribution and

surname composition.

The first validation exercise was applied to two countries, the UK and Spain,

such that the two largest naming groups (Western and Hispanic) could be included.

For reference, the equivalent individual level population inventories were drawn

from the Worldnames database. In each case, the analysis was performed at a series

of geographic resolutions based on the GADM administrative boundary dataset.

4.3.2.1 Common names
As discussed previously the most commonly occurring surnames in countries tend to

be clearly distinct regarding frequency versus the majority of the population. Such is

the distinction between these names that it is thought that a comparison of the most

common names may be a good initial indicator of inventory performance. As this is

a preliminary test, only the top 10 names were analysed.

4.3.2.2 Geographic distribution
Understanding the geographic distribution of geotagged Twitter users versus the ref-

erence population is a useful means of identifying regions of notable under and over

representation. Geographic distribution is quantified as the ratio of the observed

Twitter population versus the expected Twitter population.
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pT
i =

pR
i

PR PT (4.1)

The expected Twitter population is calculated using Equation 4.1 where pT
i

indicates the estimate Twitter population at i, pR
i is the reference population at i, PR

is the total reference population and PT is the total Twitter population. The Location

Quotient is subsequently calculated as the number of Twitter users identified divided

by the expected Twitter population as defined in Equation 4.1.

4.3.2.3 Compositional similarity
In the context of this thesis, compositional similarity is considered as the amount

of overlap of names between the Twitter-derived and reference inventories. It is

hypothesised that a Twitter inventory that is compositionally similar to the reference

is more likely to be representative of the true population than one that is not.

A number of measures are available for quantifying the degree of similarity

between two sets of population inventories. The majority of these methods are found

within the field of ecology. However, a number of similar methods exist within the

names literature. For example, Cheshire et al. (2010) made use of the Lasker kinship

coefficient as a means to measure the similarity between groups of names. In the

case of the work by Cheshire et al. (2010), the objective was the creation of an inter-

regional distance matrix used in the subsequent partitioning of geographic space.

Ri = ∑
Ns1Ns2

2N1N2
(4.2)

Equation 4.2, the Lasker Kinship coefficient is calculated as the sum of the

count of surnames in sample one multiplied by the count of surnames in sample two

divided by two times N1 and N2 which are equivalent to the size of each sample

respectively (Lasker, 1977). The Lasker Kinship coefficient is widely used within

the names analysis literature.

An alternative method drawn from ecology is the Morisita-Horn Index of over-

lap (Horn, 1966). Like the Lasker Kinship coefficient, the Morisita-Horn Index is

calculated independently for each region. A key quality of the Morisita-Horn index
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of overlap is its ability to deal with populations of significantly differing sizes and

diversities. This quality is confirmed by Wolda (1981) who conducted an in-depth

review of commonly used similarity statistics.

CH =
2∑

S
i=1 xiyi

(
∑

S
i=1 x2

i
X2 +

∑
S
i=1 y2

i
Y 2 )XY

(4.3)

Equation 4.3, the Morisita-Horn index returns a linear value between 0 and 1

where 0 indicates no overlap between the two populations and 1 indicates the iden-

tical composition of names.

• S is the number of unique surnames shared between the two populations.

• xi and yi are the number of individuals sharing a specific surname in region X

and Y.

• X and Y are the number of unique surnames in regions X and Y respectively.

Figure 4.8: A line graph plotting the Lasker Kinship coefficient and Morisita-Horn index
of overlap for a series of simulated populations.
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Seeking to understand further the difference between the Lasker Kinship coef-

ficient and Morisita Horn index of overlap a set of testing data was simulated. The

testing set was composed of fourteen scenarios, each of which contained two sets

of surnames with a known degree of overlap. The first twelve scenarios tested the

coefficient’s response to overlap and the final two scenarios tested relative popula-

tion size. In the overlap scenarios, overlap ranged from 0 to 100 percent in incre-

ments of 10. Figure 4.8 shows that in practice both the Lasker Kinship coefficient

and Morisita-Horn index of overlap exhibit a linear response, however, the Morisita

Horn index is more easily interpreted due to its limits being fixed between 0 and 1.

Figure 4.9: A graphical representation of the Lasker Kinship Coefficient verses the
Morisita-Horn Index of Overlap.

Further to the above, Figure 4.9 demonstrates that the Lasker Kinship coeffi-

cient is significantly impacted by the relative size of the populations. If we compare

test eleven for overlap and test thirteen for sample size, it is evident that both sur-

name sets are composed of the same names in the same proportions. However, the

calculated Lasker Kinship coefficient is 0.05 where the populations are the same

size and 0.10 where the populations are different sizes. Concerning interpreting

these data, the Lasker Kinship coefficient could, therefore, be challenging, as, with-

out knowledge of the population sizes, the values are meaningless. In contrast, the

Morisita-Horn Index returns a value of 1 irrespective of the number of surnames
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where the two populations exhibit identical structure.

Thus, having proven the usefulness of the Morisita Horn Index of Overlap in

the measurement of similarity between regions, the measure is be applied to the two

countries at GADM levels 0, 1, 2 and 3 (for Spain) such that an understanding of the

individual countries and effects of scale may be attained.
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4.4 Results

4.4.1 Common Names

Table 4.5: Comparison of surname ranks between the Worldnames Database reference data
and Twitter-derived individual level population inventories for the UK (top) and
Spain (bottom).

Surname Reference rank Twitter rank Difference

Smith 1 1 0
Jones 2 2 0

Williams 3 3 0
Brown 4 5 -1
Taylor 5 4 1
Davies 6 6 0
Wilson 7 7 0
Evans 8 8 0

Thomas 9 9 0
Johnson 10 11 -1

Surname Reference rank Twitter rank Difference

Garcia 1 1 0
Fernandez 2 6 -4
Gonzalez 3 5 -2
Rodrigues 4 4 0

Lopez 5 2 3
Martinez 6 7 -1

Perez 7 8 -1
Martin 8 10 -2
Gomez 9 9 0

Ruiz 10 11 -1
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4.4.2 Geographic Distribution

Figure 4.10: Maps of Location Quotient for the UK at GADM level 1 (top) and 2 (bottom).
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Figure 4.11: Maps of Location Quotient for Spain at GADM level 1 (top), 2 (middle) and
3 (bottom).
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4.4.3 Compositional Similarity

Figure 4.12: Maps of Morisita-Horn similarity analysis for the UK at GADM level 1 and 2.
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Figure 4.13: Maps of Morisita-Horn similarity analysis for Spain at GADM level 1, 2 and
3.
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Table 4.6: Table of results of Morisita-Horn analysis for the UK and Spain at GADM levels
1, 2 (and 3 for Spain). n indicated the number of distinct regions at the specified
scale.

UK

GADM Level Valid Locations Min Mean Max Null
0 (n=1) 416,819 0.983 0
1 (n=4) 413,461 0.911 0.966 0.992 0

2 (n=192) 346,900 0.096 0.665 0.968 0

Spain

GADM Level Valid Locations Min Mean Max Null
0 (n=1) 261,131 0.914 0
1 (n=18) 248,190 0.677 0.859 0.938 0
2 (n=51) 241,706 0.568 0.824 0.935 0

3 (n=368) 227,546 0 0.555 0.923 19

4.5 Discussions
Returning to the framework outlined by Mitchell (2005), the final steps in our anal-

ysis are concerned with the interpretation of results and their subsequent interroga-

tion. At the outset, it was decided that the new individual level population inventories

should take the form described by the United Nations population register definition.

The definition specified a base list of ‘each member of the resident population of a

country or area’ and subsequently the attribution of location and other identifying

characteristics. In practice, however, the nature of the Twitter data required a slightly

more nuanced approach. More specifically, there is not initially an explicit list of in-

dividuals whomay be considered as the base population. Rather, what may be drawn

from the data is a distinct list of user identifiers and screen names associated with

these identifiers. As Twitter allows its users to change their screen names, there was

an issue of identifying which, if any of the screen names were correct. Thus, in

meeting the UN definition, a two-pronged approach was required. The first prong

being the identification of those individuals believed to be the ‘resident population’

and the second being the extraction of the users’ actual names from the data that

were available. Once complete, the two outputs were combined into a functional in-

dividual level population inventory in which each user was attributed with a unique
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identifier, forename, surname and location.

The identification of users’ residential locations was performed first as it al-

lowed for the feasibility of the register creation framework to be assessed. Also, by

omitting those individuals who would not have been assigned a location, the number

of users whose names had to be extracted was reduced. As is reported in Table 4.3,

the allocation of users to an administrate geography using the proposed methodol-

ogy appeared to be successful with an overall classification accuracy of 83.9% at

GADM level 2 when users were assigned to the GADM geography in the UK.

However, the location estimation method was not without its flaws. A possi-

ble limitation of the approach used was the incorporation of all Tweets irrespective

of the time-of-day or day of the week that they were submitted. It may be argued

that inclusion of Tweets submitted during standard working hours (8 am – 6 pm,

Monday - Friday) could have introduced a bias towards individuals’ work locations

and away from their areas of residence. This issue is evident in Figure 4.11 that

shows the LQ of Twitter users’ versus the reference population in the UK. In The

City of London, the LQ is 8.77 indicating that there are 8.77 times the Twitter users

than would be expected given the reference population. This observation is unde-

sirable yet unsurprising. According to 2014 data published by the Greater London

Authority, the daytime population of the City of London (excluding weekdays in

term-time excluding tourists) was 431,384 while the residential population was just

7,947. When we compare this with the results of the LQ analysis, where the LQ

was 8.77 when comparing the Twitter inventory to the reference, the equivalent LQ

(workday versus residential population) would have been 54.3. Therefore, the degree

of over-representation was far less than might have been expected.

In many respects, the issues identified here may be attributed to the effects of

scale and the division of space into areal units. A case in point is Greater London

which is disaggregated into its 33 administrative Boroughs. With this in mind, it is

important that we remain aware of the purpose for which the inventories are being

composed. Previously there was discussion regarding the creation of the Onomap

classification of individuals’ cultural, ethnic and linguistic groups, and also of the
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UCL Worldnames Database. In the case of Onomap, the classification does not ac-

commodate geographic context; in the case of theWorldnames Database, the highest

level of geography is NUTS3 that divides the UK into 139 regions; less than the 192

in the GADM dataset.

Use of a less granular geography has some advantages. First, as the granularity

is reduced so are the numbers of journeys individuals are likely to make between re-

gions. Thus, assuming users tweet at their location of residence, a greater proportion

of their total Tweets will originate from the same area. Table 4.6 provides evidence

that the decision to assign individuals to locations at multiple spatial resolutions was

good. The alternative was to simply aggregate those users who were located at the

highest spatial resolution. Use of the tiered assignment resulted in an increase in in-

ventory inclusion of 16.8% and 7.4% for the UK and Spain respectively when going

from GADM 2 to 0.

While the focus of the discussion has focused predominantly on the UK, many

of the features discussed in the UK are also evident in the Spanish case study. How-

ever, unlike in the UK, Figure 4.11 suggests a significant spatial trend for both

GADM levels 1, 2 and 3 in Spain. Moving from the Southwest to the Northeast

the LQ shifts from notable over-representation to notable-under-representation. One

possible explanation for this, as the mapped data would suggest, is that use of Twitter

is lower in the Northeast of Spain and higher in the Southwest. An alternative possi-

bility is that there may be regional variations in the reference data coverage. Unlike

the consumer register used in the UK analysis, a national telephone directory is used

in Spain. The size of these two population inventories is 54.29 and 10.4 million

equivalent to 85% and 22% of the populations respectively for the UK and Spain.

It might be argued that while the compositional similarity analysis is performed be-

tween the existing Worldnames data and the Twitter inventories that the LQ analysis

is conducted against Census data or national population estimates.

Figure 4.13 that maps the Morisita-Horn similarity scores in Spain shows a

similar spatial pattern to that observed in Figure 4.11. Once again, it would appear

that the Twitter population are fairly representative of the population in the Southeast
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and less representative in the Northwest. As in the discussion of LQ, there is a

possibility that this pattern is a consequence of the uneven representation of the

population in the telephone directory.

4.6 Conclusion
The objective of this chapter was to develop a framework for the creation of proxy

population inventories derived from the geotagged Twitter data, the format of which

was based on the definition of population registers by the United Nations. To this

end, the objective has been achieved with the creation of feasible population inven-

tories for both the Spain and the UK. However, while successful in principle, it was

evident that the register creation framework was heavily dependent on the quality

and volume of underlying data.

Consequently, in the knowledge that Twitter usage in the UK and Spain is rel-

atively high, it is fair to presume that the inventory creation framework is unlikely

to be so successful across all countries for which new inventories are required. Re-

garding one of this thesis’ aims to supplement a seamless Worldnames Database,

this outcome is disappointing. However, while the goal of complete global coverage

may not be attainable, it would appear that there are still opportunities for inclusion

of Twitter-based population inventories to address missing data within the database.

Thus, moving forwards, the next step in for this thesis is the creation of equivalent

individual level Twitter population inventories for all countries for the purpose of

increasing the Worldnames Database coverage. Initially, the existing Worldnames

Database inventories will be used for the validation of the proxy inventories’ vali-

dation. Once the Worldnames data is exhausted as a reference, new methods, which

will form the bulk of the following chapter, will seek to infer the performance of the

Twitter inventories in their absence. The goal in this analysis will be to provide new

population inventories where country data are not presently available.



Chapter 5

Towards a Seamless Worldnames

Database

5.1 Introduction
Following the successful creation and validation of the individual level Twitter-

derived population inventories, the focus of this chapter is the application of the

method on the global scale. The aim is twofold. First, to supplement the exist-

ing Worldnames Database and second, to better understand the global geography

of Twitter providing a point of reference for the future analysis of Twitter data. As

motivation, an supplementation of the Worldnames Database offers several distinct

opportunities. First, the inclusion of additional data has the potential to improve

accuracy and precision within the database. In particular, regarding the geographic

bias introduced as a consequence of limited data coverage. In its present form, the

Worldnames Database tells us which of the Worldnames’ countries an individual

is most likely to originate from rather than the actual country from which they have

originated. Second, the availability of individual-level names data, as opposed to ag-

gregate surname counts, may prove advantageous in the development of the Onomap

CEL classification tool. Finally, the creation of a global population inventories, in-

clusive of key identity and mobility attribution may provide a new platform to in-

vestigate the stocks and flows of human populations at a range of spatiotemporal

scales.
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Regarding the goals of the chapter, the approach should be considered in two

phases. In the first the goal is to use the population inventories already present

within the Worldnames Database to validate the Twitter population inventory cre-

ation framework. The assumption here is that the existing data are the most complete

and therefore the best choice of reference data. This assumption is thoroughly tested

in section 4.2.3. The second goal of the chapter is concerned with supplementing

the Worldnames Database using the individual level population inventories derived

from Twitter. It should be noted that when we refer to supplementing the World-

names Database, this is in reference to adding data for countries where no existing

data are currently available.

In seeking to realise these opportunities, it was recognised, based on work per-

formed in the previous chapter, that the individual level Twitter-derived population

inventories were not uniformly representative, with notable variation within and be-

tween countries. In the case of the two validation countries, Spain and the United

Kingdom, it was possible to assess said variation through comparison against pre-

existing national population inventories. However, in moving forwards, the depen-

dence upon pre-existing data is unrealistic. Rather, the availability of fully inclusive

individual level national population inventories is significantly limited, necessitat-

ing an alternative means of inventory validation. Consequently, it was proposed that

a model is designed in such a manner as to inform the decision as to whether the

Twitter-derived inventories were suitable proxies for conventional individual level

population inventories, or not. In doing this, it was decided that the Morisita-Horn

Index of Overlap, previously employed in quantifying the degree of overlap between

sets of names, should be incorporated as the dependent variable in the analysis. In

doing this, it is worth reiterating that theMorisita-Horn Index of Overlap is acknowl-

edged for its ability to deal with samples of significantly differing size and diversity

and also exhibits a linear progression (Wolda, 1981).
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5.2 Methods and Materials

5.2.1 Regression Analysis
In producing the model, it was proposed that a multiple regression analysis be per-

formed with the aim of developing a parsimonious model capable of inferring the

probable representative ability of each national scale individual level population in-

ventory. The modelling process would be divided into a series of distinct phases:

variable identification; variable preparation; model selection; model diagnostics;

and model application. In each phase, background and justification is provided for

the methods and data employed.

5.2.2 Variable Identification
As intimated, the first phase of the modelling process was the identification of a col-

lection of potential independent variables. In seeking to identify said variables, ef-

forts were made to source literature that identified national level environmental and

cultural factors associated with the adoption of online social networks and where

possible, Twitter. Given the volume of literature published regarding the analysis

of online social networks, only a limited number had considered or sought to iden-

tify such factors. It is presumed that this is due to the tendency for analyses to be

focused on limited geographic extents such as major world cities or singular coun-

tries. Nonetheless, one study, completed by Jan et al. (2015), based on Malaysian

Muslims’ adoption of online social networks, proposed a conceptual framework of

national level factors which may be associated with the adoption of online social

networks. The study considered both practical factors such as access to the Internet

and cultural factors such as the use of online social networks by brands for customer

engagement. The main branches of the framework were Social, Technological, Ed-

ucational and Brand/Product communication. These factors were drawn from five

general themes: Demographics and Socioeconomic; Social Information Sharing;

Technological Advancement; Knowledge Allocation; and Product and Brand com-

munication. In seeking to incorporate the above factors, each was explored and,

where appropriate, potential variables identified.
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In the identification of the variables, it should be highlighted that the major

barrier to incorporation was the availability of data published in a consistent format

between countries. Such a constraint placed a significant limitation on possible data

providers. Given this constraint, it was decided that the World Bank DataStore (see

http://www.data.worldbank.org) provided the best possible data resource. The de-

cision was based on the large number of variables available, the global coverage of

the data, and the availability of detailed source, methodology and attribution data.

Social: Demographics and socioeconomics

In outlining their conceptual framework, Jan et al. (2015) highlighted demographic

and socioeconomic factors as the fundamental drivers of individuals’ adoption of

online social networks. They discussed how both age and gender play a major role in

how and for what purpose individuals use online social networks. For example, in the

context of users’ privacy preferences, Li and Chen (2010) note that females tend to

express a greater degree of concern regarding their online privacy and consequently,

are less inclined to share their personal information online. The regard for privacy

is also evident regarding age with older users being less willing to disclose their

personal information.

Figure 5.1: Graphical depiction of Internet usage by age in the United Kingdom (ONS,
2016)

http://data.worldbank.org
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Regarding individuals’ access to the Internet, age also plays a role. As may

be evident in Figure 5.1, a graph of Internet use by age in the UK, Internet use de-

creases notably with age. While Internet usage in the 16 to 44 and 45 to 54 age

bands is > 94.9%. this figure rapidly declines with only 38.7% of over 75s mak-

ing regular use of the Internet. Thus, assuming that such a trend extends beyond

the UK, it may be deduced that a country with a younger population will possess

a greater proportion of the population with access to the Internet. That said, this

assertion does not account for differences between economies and the more general

states of development. Consequently, it was believed that such an indicator, while

interesting, should it be included, may introduce unnecessary uncertainty which is

not appropriate given the limited number of observations available.

Considering next the quantification of socio-economic development, a com-

monly employed metric is the Gross Domestic Product (GDP). GDP, in its simplest

form, is a measure of the total economic output of a country for a given period. In the

case of theWorld Bank data, GDP is considered a measure of the sum of value gener-

ated by the population plus product taxes andminus the subsidies not associated with

the aforementioned products. In seeking to address the issue of differences in popu-

lation size, GDP is commonly reported on a per capita basis. Though standardised,

this metric is not necessarily appropriate as it fails to account for the relative purchas-

ing power per monetary unit between countries. Consequently, a more appropriate

statistic is GDP per capita standardised by purchasing power parity (PPP). With the

data normalised to account for purchasing power, this is the most appropriate tech-

nique to account for individuals’ abilities to purchase technology or access to utilities

such as the Internet. GDP per capita with PPP at current international dollars data

are available for theWorld Bank DataStore. It should be noted that while the data are

for 2013, the “current” international dollars refers to 2011.The data may be accessed

at the following URL: data.worldbank.org/indicator/NY.GDP.PCAP.PP.CD and are

credited to the World Bank, International Comparison Program Database.

Technological

The technological theme is concerned with specific developments that have enabled

http://data.worldbank.org/indicator/NY.GDP.PCAP.PP.CD
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individuals to access the Internet and by proxy, online social networks. Examples of

such factors include Internet access and cell phone ownership. Access to the Inter-

net is an obvious facilitator of social media uptake. Unsurprisingly, without some

form of access to the Internet, such as via desktop terminals or mobile phones, in-

dividuals are unable to utilise said services. Internet access data are available via

the World Bank which reports the proportion of the population per 100 with access

to the Internet via a range of Internet-capable devices which includes cell phones,

desktop terminals and games consoles. The data may be obtained at the following

URL: data.worldbank.org/indicator/IT.NET.USER.P2 and are credited to the World

Bank, International Comparison Program Database (International Telecommunica-

tion Union, 2013a).

Alongside Internet Access, mobile phone usage is a potentially valuable indi-

cator. As stated previously, a large proportion of individuals access online social

networks via their mobile devices. In 2014 Twitter reported that 80% of UK users

accessed the service via their mobile devices and 70% used mobile devices as their

primary means of engagement. The equivalent percentages for Spain were 80% and

69% respectively and 68% and 60% for France (Twitter, 2014). More recently, in

2016, Twitter reported that 83% of its traffic was via mobile devices (Twitter, 2016).

While smartphone ownership data are not explicitly available via the World Bank,

data are available on the number of cell phone contracts per 100 of the population.

The data cover both prepaid and postpaid subscriptions on devices that can trans-

mit voice. These data are unfortunately not constrained to those devices with access

to the Internet as might be desirable. The data may be accessed at the following

URL: data.worldbank.org/indicator/IT.CEL.SETS.P2 and are credited to the World

Bank, International Comparison Program Database (International Telecommunica-

tion Union, 2013b).

Educational

Regarding education, Jan et al. (2015) discuss the shift of individuals from con-

ventional news content providers towards online social networks for the purpose of

consuming and publishing news media and educational content. For example, many

http://data.worldbank.org/indicator/IT.NET.USER.P2
http://data.worldbank.org/indicator/IT.CEL.SETS.P2
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individuals use the Twitter social network to harvest news from a range of individuals

who can meet their niche requirements. Hermida et al. (2012) note that as individ-

uals become increasingly familiar with online social media, so their confidence in

crowd-based information increases. In a similar sense, this shift in the consump-

tion of online information may be observed in growing acceptance of Wikipedia,

an online crowd-sourced encyclopaedia. Unfortunately, data regarding the use of

social media for the consumption of news and education are not available via the

World Bank, and thus a variable is not proposed. That said, the influence of media

consumption is recognised and may be employed for the purpose of interpreting the

model outcomes.

Brand/Product communication

Regarding brand and product communication, Jan et al. (2015) discuss the shift of

major brands to online social networks. The premise is that as brands work to in-

crease their social profiles through marketing, they will promote the uptake of online

social networks. Such is the power of social media that brands are investing increas-

ingly large sums of money on targeted advertising seeking to exploit the availability

of demographic data as a means to explicitly market their products and brands. Re-

garding the identification of potential model variables, brand and product communi-

cation has limited potential due to the lack of a consistent national indicator of brand

expenditure or investment. Theoretically, a measure of social capital, the value of

the social media services, may be quantified but this in itself could form the basis of

an entire thesis.

At a coarse scale, data from eMarketer, an online market research company,

shown in Table 5.1, provides a useful indicator of the geographic variation in social

media investment. While the data are not standardised by population, the difference

in investment by region is stark. Case in point is the difference in spending per capita

between North America and the ‘Middle East and Africa’. With populations of 352

and 409 million in 2013 respectively, investment per capita equates to $14.03 versus

$0.17. While this calculation does not account for PPP, a clear difference is evident.

Should this data have been available at the national or sub-national level, this may
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have proven to be a valuable addition to the pool of potential variables.

Table 5.1: Spending on social media advertising by region (source: eMarketer.com, 2015)

Social network ad spending ($ billions)
2013 2014 2015

North America 4.94 7.71 10.10
Asia-Pacific 3.25 5.18 7.40
Western Europe 2.34 3.68 4.74
Latin America 0.35 0.54 0.68
Central & Eastern Europe 0.41 0.52 0.61
Middle East and Africa 0.07 0.11 0.16
Worldwide 11.36 17.74 23.68

Other factors

While the conceptual framework of Jan et al. (2015) provided some useful direction

in regards to the identification of parameters, it remains the case that they are not

unique to the Twitter social network and further, do not account for the effects of

population naming structure.

If we consider first, the lack of specificity towards the Twitter social network, the

conceptual framework of Jan et al. (2015) does not account for the unique geographic

distribution of adoption of each social network. There is, therefore, a requirement

for a variable or variables able to capture individuals’ specific propensity towards

the Twitter network. Of the publicly available data that may address this, arguably

the most relevant are social media uptake or social media penetration statistics. In

2013, PeerReach, an online market research organisation, published Twitter pene-

tration statistics for the 23 countries in which there were greater than 800,000 active

users (PeerReach, 2014). The penetration was reported as the percentage of Twit-

ter users versus the size of each countries online population. These statistics, while

interesting, are of limited use due to their limited coverage. Nonetheless, by virtue

of the data compiled in the creation of the Twitter inventories, it was possible that

a proxy statistic be produced able to provide a similar indicator of social network

penetration.

While actual counts of active users are not available, counts of users identified

within each country as part of this thesis are. Consequently, a modified penetration
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measure was proposed in which the number of users identified within each coun-

try was dived by the total population with access to the Internet. In this case, both

population and Internet usage statistics were sourced via the World Bank. A sec-

ond version of the above is also proposed in which the data are not standardised to

account for Internet usage. The purpose of this simplified measure is to avoid the

introduction of bias in those countries where a small proportion of the population

have access to the Internet. For example, in Eritrea where fewer than 1% of the

population have access to the Internet, the effect of only a few Twitter users would

be significantly magnified. In effect, the assumption is that the new statistic would

provide an indication of the proportion of the population who are users of Twitter

and that the greater the percentage of the population to use Twitter, the better their

names will represent the population.

Beyond those factors associated with social network adoption, it is also recog-

nised that certain features of the population structure might impact on how repre-

sentative the individual level Twitter-inventories are of the underlying population.

For instance, the effect of national-scale surname diversity on the number of names

required to depict the population accurately. Thus, efforts were made to identify

population factors which may impact upon inventory performance. Considering the

effect of surname diversity, the assumption is made that the lower the overall diver-

sity of names at the national level, the fewer the total number of individuals that

will be required to represent the population accurately. Case in point is China where

just 100 surnames account for approximately 85% of the total population (Liu et al.,

2012). With so few names and the consequent higher proportion of the population to

bear these names, the surnames have a higher likelihood of being correctly stratified.

To put this in perspective, based on data from the 2013 Consumer Register, 18,088

unique surnames are required to account for 85% of the population. Consequently,

it may be assumed that a greater number of individuals would be needed to depict

the population name structure accurately.

In seeking to understand this relationship better, an investigation was performed

to determine the association between the number of names, surname diversity and
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between-group surname similarity. For each country included in the analysis, ten

samples of size 10, 100, 1,000 and 10,000 were drawn, and the similarity between

each of the samples and the respective reference population calculated. In some

senses, the results generated may be considered as a theoretical maximum similarity

score based on sample size given that the samples are being drawn from the primary

population. Subsequently, through plotting the results, it was possible to examine

the relationship between the three features.

Figure 5.2, presents the outcome of the investigation as a faceted box plot split

by country and sample size. The countries are ordered by surname diversity as cal-

culated using the top 1,000 names from top to bottom with colour providing an

indication of the surname diversity value. The plot provides a valuable illustration

of the effect of both sample size and surname diversity and in turn, the effect on

between-group similarity.

If we consider first the effect of sample size, it is evident that as the size of the

sample is increased, the mean similarity score increases with the biggest difference

occurring in those countries with the lowest surname diversity. This observation

supports the hypothesis that in countries where surname diversity is low that fewer

individuals are required to depict the population accurately. The second observation

is that as the size of the sample is increased, the variation in the calculated similarity

values decreases. In effect, as the sample is increased, so the impact of chance is

reduced. Regarding the analysis, the results have a number of implications. Most

significantly, it is clear that both sample size and surname diversity have an impact

on the between-group surname similarity. For this reason, it is proposed that both

surname diversity and number of valid Twitter users be included in the set of candi-

date parameters.

Regarding the inclusion of surname diversity, it should be recognised that the

values are calculated based on the existing Worldnames Database inventories. Con-

sequently, should surname diversity prove to be a significant factor, an alterna-

tive source of data will be required. This, as has been discussed previously re-

mains a major constraint to the parameter’s inclusion. At the time of writing, the
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Figure 5.2: Faceted box-plots showing distribution of Morisita-Horn values when samples
of given size are taken from the reference dataset. Each box is coloured based
upon the proportion of the population represented by the top 1,000 most com-
mon surnames.

single globally inclusive database of common surnames and their frequencies is

http://www.forebears.io. However, while the data are published in such a manner

http://www.forebears.io
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as to promote confidence, the provenance of the data across countries remains ques-

tionable. Nonetheless, given the potential significance of the parameter, the diversity

measure, based on the proportion of the population covered by the top 100 names

will be included in the model selection process. The reason to choose 100 names is

that Forebears.io, the potential source of global names data, only publishes the top

100 or 200 most common names for each country.

Final variables

Having investigated the factors which may be relevant to predicting the Twitter in-

ventories utility, the following set of variables were identified and, where necessary,

derived. The variables are:

• X1 Proportion of users versus the national population.

• X2 Proportion of users versus the national population with access to the Inter-

net.

• X3 GDP per capita adjusted for purchasing power parity (Int. Dollars).

• X4 Number of cellular subscriptions per 100 of the population.

• X5 Surname diversity within the top 100 names. The higher the value, the

lower the surname diversity.

• X6 Number of Twitter users identified.

The dependent variable in the analysis,Y , is the calculatedMorisita-Horn Index

of Overlap employed in the previous chapter to quantify the relationship between

the individual level Twitter and reference population inventories. The observations

for Brazil, Bulgaria, Canada, India, New Zealand, Poland and Switzerland, marked

with asterisks, are omitted from the modelling due to their questionable provenance

(discussed in Section 4.2.3).

Considerations in the use of the Worldnames Database Data

Akey consideration within the subsequent analysis is the reliance on existingWorld-

names Database population inventories for the purpose of validating the Twitter-

based inventories. Of particular relevance is the calculation of the national-level
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Morisita-Horn Index values employed in this chapter. When calculating the national-

level Morisita-Horn similarity index, there is an assumption that the Worldnames

Data are an accurate representation of the population naming structure. Should this

structure be incorrect, this will introduce uncertainty into the similarity comparison

and potentially impact upon the reported similarity scores. A number of explana-

tions exists as to why the reliability of theWorldnames population inventoriesmay be

of questionable provenance. These issues include that the data have been collected

at different periods in time, the data are often compiled from different sources, the

data may be collected in an inconsistent manner, the data may possess some degree

of demographic bias, and finally that the statistics employed may be affected by dif-

ferences in population sample size and diversity. While it is not possible to make an

explicit validation of these data, various steps have been taken to ensure the prove-

nance of the data.

In the first instance a audit was performed to assess eachWorldnames Database Pop-

ulation inventory against a series of key criteria. The objective of the exercise was

to determine the source of the data, the time of collection, the number of individ-

uals reported within the data and also, the correlation between the most common

names and alternative sources of names data. Knowledge of such information is key

to making informed observations based on the data being analysed. The results of

this benchmarking exercise are reported in appendix B.

In terms of of sample size and diversity, specific consideration was given to the

choice of a suitable similarity measure. Specifically, the decision was made to use

the Morisita-Horn index of overlap. Of the various similarity measures available,

the Morisita-Horn index was recognised in the literature for being independent of

sample size and diversity (Wolda, 1981). Given that both the Twitter-derived and

Worldnames individual-level population inventories vary dramatically in terms of

size and diversity this decision was critical to the effective calculation of similarity

measures. The specific features of the Morisita-Horn Overlap Index were examined

in Chapter 4, Section 4.3.2.3. Regarding the use of the most frequently occurring

surnames as an indicator of an inventories likely provenance, it should be remem-
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bered that surnames typically conform to a power law distribution. That is to say

that the most commonly occurring names are typically well stratified and consis-

tent in order. This feature of surname distribution is highly valuable given that most

publicly available data on surname frequencies is constrained to a limited set of the

most frequent names. Typically the top 10, 100 or 500.

While various limitations have been raised, it should be remembered that the data

within the Worldnames Database are arguably the most complete and comprehen-

sive the are currently within the public domain. Further, given our prior knowledge

of the data, and the results of the benchmarking exercise, we can employ the data

with a degree of confidence.

5.2.3 Variable Preparation
Having identified a suitable pool of variables, the next phase in the analysis was

variable preparation. The objective in this phase being to develop an understanding

of the data and, if necessary, make any alterations or transformations to aid in their

application and interpretation. The raw consolidated input data for the model are

shown in Table 5.2.

Table 5.2: Table showing the raw data to be employed in the model selection process. Those
datamarkedwith an asterisk are to be omitted from themodel creation framework
having been of questionable provenance.

ISO3 morisitaHorn usersByPop usersByOnlinePop gdppcintdol cellular2013 usercount surnamDiv100

ARG 0.845 0.001587 0.002649 22,404.26 162.53 67,489 0.302
AUS 0.838 0.001502 0.001809 45,476.98 106.84 34,719 0.225
AUT 0.324 0.000324 0.000402 47,416.29 156.23 2,750 0.129
BEL 0.712 0.001197 0.001457 43,057.20 110.90 13,384 0.073
BGR* 0.521 0.000149 0.000280 16,573.47 145.19 1,081 0.462
BRA* 0.175 0.001184 0.002321 15,816.80 135.31 241,944 0.757
CAN* 0.788 0.002173 0.002533 44,281.27 80.61 76,409 0.114
CHE* 0.663 0.000542 0.000628 59,351.42 136.78 4,387 0.136
DEU 0.675 0.000219 0.000260 44,184.82 120.92 7,976 0.128
DNK 0.722 0.000795 0.000840 45,681.11 127.12 4,465 0.533
ESP 0.914 0.004626 0.006457 32,842.43 106.89 215,644 0.396
FRA 0.548 0.000636 0.000777 39,157.67 98.50 41,984 0.079
GBR 0.983 0.005514 0.006138 39,111.23 124.61 353,629 0.203
HUN 0.509 0.000252 0.000347 24,037.17 116.43 2,491 0.289
IRL 0.946 0.004911 0.006277 47,599.68 105.48 22,584 0.364
ITA 0.866 0.001040 0.001779 35,707.83 158.82 62,632 0.065
JPN 0.790 0.000144 0.000161 36,618.31 116.32 18,395 0.344
LUX 0.050 0.000431 0.000459 95,928.60 148.64 234 0.084
MLT 0.594 0.000716 0.001039 29,525.71 129.76 303 0.780
MNE 0.396 0.000472 0.000782 14,623.75 159.95 293 0.329
NLD 0.853 0.002813 0.002994 47,954.50 116.16 47,273 0.125
NOR 0.816 0.001605 0.001689 66,817.17 116.27 8,154 0.246
NZL* 0.799 0.001184 0.001431 37,096.10 105.78 5,261 0.182
POL* 0.363 0.000086 0.000137 24,493.76 149.08 3,267 0.097
SRB 0.393 0.000540 0.001048 13,668.12 119.39 3,866 0.238
SVN 0.195 0.000298 0.000409 29,097.58 110.21 613 0.117
SWE 0.878 0.002288 0.002414 45,067.44 125.53 21,967 0.359
USA 0.886 0.003869 0.004595 52,660.30 97.08 1,224,333 0.160

In seeking to understand the data and variable relationships better, a scatter plot
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matrix was created. Shown in Figure 5.3, the plot provides a range of useful insight

including variable density distributions; paired scatter plots with the OLS line of best

fit and the Loess line; and also, a naive R-squared value and indicator of significance.

It should be noted that in the case of the R-squared and significance indicators, that

the regression assumptions have not been formally verified and consequently, the

values must be considered only as guides.

Figure 5.3: Scatter plot matrix of the dependent and independent variables identified as
being related to social media uptake and surname structure. Thematrix includes
the linear and Loess fits, the kernel density of each variable and a naive R-
squared value.

If we first examine the diagonal axis, it is evident that each of the variables

exhibit some degree of positive or negative skew with notable negative skew in the
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case of Y and positive skew in the case of parameters X1 through X6. Further, in the

case of parameters X1 through X6 there appears to be some degree of bi-modality.

Considering next, the area below the diagonal, the scatter-plots provide a useful in-

dicator of the between-parameter relationships. In the case of Y and both X1 and X2,

there is clear evidence of a curvi-linear relationship suggesting a potential associa-

tion. The relationship between Y and X6 is also apparent. Lastly, in the area above

the diagonal, we can see observe an apparently strong correlation between Y and

both X1 and X2. Also, we can see there is a very strong positive relationship between

X1 and X2, not surprising as they are both derived from the same data. Furthermore,

there is evidence of a weak positive relationship between X6 and both X1 and X2.

Again, it should be noted that X1 and X2 are standardised versions of X6 and thus it

is not appropriate that both parameters be incorporated into the final model.

Having examined the input parameters, attempts were made to normalise the

data such that the linearity between the dependent and independent variables might

be improved. In support of the visual inspection of the data, the Shapiro-Wilk’s test

of normality was employed as a formal means of assessing whether the data deviated

significantly from the assumptions of normality. In this analysis, the null hypothesis

was that the samples were drawn from normally distributed populations. Given an α

of 0.05, where the p-value < 0.05 then the null hypothesis may be rejected. Where

the p-value is > 0.5, it is not possible to reject the null hypothesis that the data are

drawn from a normally distributed population.

Table 5.3: Table showing the summary statistics from the Shapiro-Wilk’s test of normality
for the potential model variables.

Variable W p-value Null Hypothesis

Y Morisita-Horn 0.89787 0.02695 Reject
X1 Users By Pop. 0.80093 0.0005175 Reject
X2 Users By Online Pop. 0.79497 0.0004178 Reject
X3 GDP pc ppp 0.89143 0.02011 Reject
X4 Mobiles per 100 0.88358 0.01415 Reject
X5 Surname Diversity 0.87229 0.008639 Reject
X5b Surname Diversity 0.85936 0.004992 Reject
X6 Raw User Count 0.40186 1.777e-08 Reject
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Table 5.3 presents the output of the Shapiro-Wilks tests including the W and

associated p-values. As may be evident, all of the variables tested have p-values <

0.05 and thus must be considered to be drawn from a non-normally distributed pop-

ulation. Consequently, seeking to normalise the data, an exponential transformation

was applied toY and natural log transformation applied to parameters X1 through X6.

The Shapiro-Wilk’s test was subsequently repeated and the outcome investigated.

Table 5.4: Table showing the summary statistics from the Shapiro-Wilk’s test of normality
for the post-transformed potential model variables.

Variable W p-value Null Hypothesis

expY Morisita-Horn 0.933 0.1417 Accept
logX1 Users By Pop 0.96366 0.5667 Accept
logX2 Users By Online Pop 0.96561 0.6102 Accept
logX3 GDP pc ppp 0.93455 0.1526 Accept
logX4 Mobiles per 100 0.91405 0.0573 Accept
logX5 Surname Diversity 0.96418 0.5782 Accept
logX5b Surname Diversity 0.96744 0.6519 Accept
logX6 Raw user count 0.9668 0.6371 Accept

Shown in Table 5.4, it is evident that the transformations have effectively nor-

malised the data. For each of the model parameters the p-value > 0.05 meaning

that the hypothesis that the data were drawn from a normally distributed population

may not be rejected. Consequently, the transformed data were re-plotted and the

relationships between the variables re-examined.

Figure, 5.4, the scatter-plot matrix of transformed variables clearly illustrates

the effect of transformation. Notably, there was an apparent improvement in the

relationship between Y and both X1 and X2 and a dramatic improvement in the re-

lationship between Y and X6. A further observation, in the case of Y and both X1

and X2, was the emergence of several outliers deviating from the main distribution.

These outliers were Japan, Luxembourg and Germany.

5.2.4 Model Selection
In possession of a suitable collection of explanatory variables, the next phase of

the analysis was the model selection. In this phase, the objective was to identify

a suitably parsimonious model in which model complexity and explanatory power
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Figure 5.4: Scatter plot matrix of the transformed variables identified as being related to
social media uptake. Thematrix includes the linear and smoothed fits, the kernel
density of each variable and the naive R-squared value.

were balanced. In seeking to obtain the optimummodel, a number ofmodel selection

techniques were considered. These methods included manual selection, step-wise

regression and all-subsets regression. In each case, the objective was to identify the

optimum model given the data available.

Manual selection, as the name implies, involves the analyst making the decision

regarding the construction of models based on their own experience. While suit-

able in certain circumstances, for example in the case of few potential parameters,

the manual selection technique is inefficient and lacks robustness. Consequently,

it is increasingly common to employ autonomous or semi-autonomous model se-
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lection techniques such as Step-wise and all-subsets regression. Step-wise regres-

sion, commonly employed in ecology, is based on either the process of the addi-

tion of less-correlated variables (forward selection), the removal of less-correlated

variables (backwards elimination) or a combination of both. The approach is very

efficient when working with large numbers of potential parameters. However, it is

noted byWhittingham et al. (2006) that there are some significant limitations to such

approaches. These include bias regarding parameter estimation, inconsistent imple-

mentations between statistical packages and an inappropriate focus and reliance on

the optimum model. In preference, Whittingham et al. (2006) suggests the use of

the all-subsets regression family for model selection.

All subsets regression involves performing a regression analysis on all possi-

ble combinations of independent variables as a means to identify the best possible

model. The best model is identified using a range of model success criterion. Whit-

tingham et al. (2006) notes that while all-subsets regression does consider all pos-

sible models, the technique should not be seen as a ‘shot-gun’ approach. Rather

the approach should be considered as a systematic means to identify the best model

based on a set of the variables that have been selected due to their known association

with the phenomenon being studied. The all-subsets method has some advantages

over the more conventional step-wise regression techniques. Notably, that the out-

come is not impacted on by the order in which the model parameters are arranged.

Nonetheless, while more thorough, the nature of the approach is far more compu-

tationally intensive than its step-wise equivalent, thus providing the motivation for

some to choose alternative model selection techniques. Using all-subsets regression

there are (2p)− 1 possible models where p is the number of parameters (excl. the

intercept), the number of possible models is exponential necessitating a simplified

means of identifying the optimum model. For the six independent variables iden-

tified, the number of possible combinations is 63. Such is the exponential growth

of parameter combinations that all-subsets regression is not necessarily suited to

modelling where a high number of parameters are present.

In the case of both approaches, various model fit parameters are available which
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enable the analyst to differentiate between models. These statistics include the R-

squared, Adjusted R-squared, Mallow’s Cp and the Bayesian Information Criterion

(BIC). The adjusted R-squared value is a modification of the traditional R-squared

and will only increase where a parameter improves a model more than may be ex-

pected by chance alone. Consequently, the adjusted R-squared is far better suited

to comparing models with differing numbers of the parameters than the standard

R-squared value. The Bayesian Information Criterion (BIC), like the adjusted R-

squared, employs a penalty term such that models with more parameters are pe-

nalised. The model with the lowest BIC is preferred. Mallow’s Cp is a model se-

lection technique proposed by Mallows (1973) designed to assess model fit where

models have differing numbers of explanatory variables. In the case of Mallow’s

Cp, the smaller the value, the more precision is exhibited. A rule-of-thumb in the

interpretation of Mallow’s Cp is that Cp will be equal to the number of model pa-

rameters.

Having considered both the potential strengths and weaknesses of the model

selection techniques, the all-subsets approach was chosen. Given the number of ob-

servations and explanatory variables in the analysis, it was felt that this approach of-

fered the most comprehensive solution. The all-subsets regression was implemented

in R using the Leaps package (Lumley, 2009).

Figure 5.5: Results from the all-subsets regression analysis. The best three models for each
subset size are shown based on each of the three model success criterion: Ad-
justed R-squared, BIC and Mallow’s Cp.

Figure 5.5 provides a graphical illustration of the all subsets regression output
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for each of the aforementioned model selection criterion. For each criterion, the

three best models for each number of model parameters is shown. Regarding in-

terpreting the plots it should be recognised that the regression assumptions are not

explicitly verified, and thus it is not possible to determine the optimum model from

the output alone. Consequently, it is necessary that each model is independently

examined before acceptance. Furthermore, bearing in mind the limited number of

observations (n=22), it is desirable that the number of parameters in the final model

is kept to a minimum. While many rules-of-thumb exist regarding the minimum

ratio of observations to independent variables, few are explicit. For example, Har-

rell (2001) suggests a minimum of ten observations per variable, while Austin and

Steyerberg (2015) suggests as few as two observations per variable may be sufficient.

In light of this, it is proposed that the final model should preferably have two or fewer

and no more than three independent variables. Consequently, considering the out-

put of the all-subsets regression in the context of the above, the following potential

models are identified:

Based on the Adjusted R-squared plot, the optimummodels appear to be (Y=X1+

X5+X6), (Y=X3+X5+X6) or (Y=X5+X6)). Based on the BIC, the optimum models appear

to be (Y=X1+X5+X6), (Y=X5+X6) and (Y=X2+X5+X6). Finally, based on Mallow’s Cp,

the optimum models appear to be (Y=X1+X5+X6), (Y=X1+X5+X6), (Y=X3+X5+X6) and

(Y=X5+X6). Across the three criterion outcome plots, the top 3-parameter model is

(Y=X1+X5+X6) and the top two-parameter model (Y=X5+X6). Consequently, these two

models are investigated in terms of their assumptions and utility.

Table 5.5 presents the regression summary for the three-parameter model (Y=

X1+X5+X6). From the summary, it is evident that the while the model has an Ad-

justed R-squared 0.803 and is, in itself, statistically significant, that the usersByPop

variable is not statistically significant. Further, the Link Function assumption is not

acceptable. Thus, omitting the usersByPop variable, we are left with the second

proposed model (Y=X5+X6).

Table 5.6 presents the regression summary for the two-parameter model (Y=

X5+X6). The summary indicates an Adjusted R-squared value of 0.78, that all of the
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Table 5.5: Regression model summary based on the optimum three-parameter model.

Dependent variable:

Y Morisita Horn

X1 Users Versus Population 0.111•
(0.058)

X6 User Count 0.140∗∗∗
(0.027)

X5 Surname Diversity (n=100) 0.206∗∗
(0.070)

X0 Constant 1.790∗∗
(0.581)

Observations 22
R2 0.831
Adjusted R2 0.803
Residual Std. Error 0.208 (df = 18)
F Statistic 29.503∗∗∗ (df = 3; 18)

Value p-value Assumption
Global Stat 9.31199 0.053757 Acceptable.
Skewness 0.08441 0.771409 Acceptable.
Kurtosis 0.64780 0.420899 Acceptable.
Link Function 7.51410 0.006122 Unacceptable.
Heteroscedasticity 1.06568 0.301922 Acceptable.

Note: •p<0.1; ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

parameters are statistically significant and that the assumptions are all met. Further-

more, the model RMSE was calculated as 0.105005 once the dependent transferable

was transformed back to its original state. In effect, the model states that the use-

fulness of each Twitter-derived population inventory in describing the ‘observable’

population is greatest where the number of Twitter users present within a country is

high and the surname diversity within the country is low.

In practice, however, having successfully demonstrated the inclusion of the sur-

name diversity parameter in the model, a key challenge is raised that the data em-

ployed are derivatives of the existing Worldnames Database population inventories.
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Table 5.6: Regression model summary based on the optimum two-parameter model.

Dependent variable:

Y Morisita Horn

X6 User Count 0.176∗∗∗
(0.021)

X5 Surname Diversity (n=100) 0.245∗∗
(0.072)

X0 Constant 0.747∗∗
(0.222)

Observations 22
R2 0.796
Adjusted R2 0.775
Residual Std. Error 0.222 (df = 19)
F Statistic 37.122∗∗∗ (df = 2; 19)

Value p-value Assumption
Global Stat 4.51871 0.34033 Acceptable.
Skewness 0.00498 0.94372 Acceptable.
Kurtosis 0.82896 0.36257 Acceptable.
Link Function 2.76265 0.09649 Acceptable.
Heteroscedasticity 0.92213 0.33692 Acceptable.

Note: •p<0.1; ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Thus, as was discussed previously, it is necessary that an alternative source of data

be sourced.

In this case, it was found that the limited data provided by the Forebears.io on-

line surname database had the potential to fulfil this requirement. Unlike the World-

names Database, the Forebears.io dataset contains limited sets of names data for all

countries. This data provides a means by which country level surname diversity may

be estimated. However, given that limited information exists regarding the prove-

nance of the Forbears.io data, it was necessary that an independent validation be

performed on the data. Consequently, a web-scraping algorithm was implemented

in R using the rvest package (Wickham, 2016). For each of the 227 countries/regions

published by Forebears.io, the table of the top 200 names was extracted and the pro-
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portion of the population represented by the top 100 names calculated based on the

summation of the provided frequency data.

Recognising that the data provided by Forebears.io are in themselves derived

from a range of sources, a one-tailed Pearson’s product-moment correlation was per-

formed to assess the relationship between the Forebears and Worldnames derived

surname diversity measures. For the test, the assumptions are that the data are ei-

ther interval or ratio; a linear relationship exists between the variables; there are no

extreme outliers; and the data are approximately normally distributed. Performed

on the log-transformed variables, the assumptions were found to have been met and

the outcome to be therefore valid. The test, the results of which are shown in Ta-

ble 5.7, returned a Pearson’s correlation of 0.96 with a p-value < 0.001 indicating

a very strong positive correlation that was statistically significant. Consequently,

it was considered that the Forebears-derived surname diversity values were a valid

proxy for their Worldnames-derived counterparts. It was thus possible that surname

diversity values may be incorporated for the majority of countries worldwide and

therefore, that the diversity variable could be included in the final model.

Table 5.7: One tailed Pearson’s product-moment correlation summary indicating a very
strong positive correlation between the two surname diversity variable sets.

Pearson’s product-moment correlation

Alternative Hypothesis (1-tailed) True
t 14.4***
Observations 22
DF 20
Correlation 0.9550
95 Percent Confidence Interval: 0.9067 - 1.0000

Note: •p<0.1; ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Having established that the surname diversity statistics calculated from the

Forebears exhibited a strong positive correlation, the model was recalculated with

the new surname diversity data. Based on the model summary, shown in Table 5.8

it was found that the surname diversity parameters remained significant based on an

α of 0.05 though the Adjusted R-squared value decreased from 0.78 to 0.73. Fur-
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thermore, all of the model assumptions remained acceptable. The RMSE for the

updated model was 0.1151 which is only marginally higher than the original model

RMSE of 0.1050. The substitution of the surname diversity variable was therefore

considered a success.

Table 5.8: Regression model summary based on the substitution of the Forebears-derived
surname diversity values.

Dependent variable:

morisitaHorn

X6 usercount 0.181∗∗∗
(0.024)

X5 SurDivForebears 0.236∗
(0.090)

X0 Constant 0.706∗∗∗
(0.243)

Observations 22
R2 0.759
Adjusted R2 0.733
Residual Std. Error 0.242 (df = 19)
F Statistic 29.898∗∗∗ (df = 2; 19)

Value p-value Assumption
Global Stat 6.4053 0.17086 Acceptable.
Skewness 0.6314 0.42682 Acceptable.
Kurtosis 0.5215 0.47019 Acceptable.
Link Function 3.1699 0.07501 Acceptable.
Heteroscedasticity 2.0824 0.14900 Acceptable.

Note: •p<0.1; ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Thus, the final model was:

exp(Y ) = β0 + log(X5)β5 + log(X6)β6 (5.1)

Where Y is the estimated similarity as represented by the Morisita-Horn Index

of Overlap, β0 is the intercept, X5 is the surname diversity and X6 is the number of

valid Twitter-users.
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5.2.5 Model Diagnostics
Having identified a suitably parsimonious model, the next concern was that of di-

agnostics. The diagnostic process was designed to critically examine the model, its

assumptions and the underlying data such that predictions and inference could be

made in the best of confidence. The process included an assessment of the model

assumptions; an examination of the model outputs; and the completion of a cross-

validation exercise to assess the model’s generalisability and mitigate the risk of

over-fitting.

Having formally assessed the model assumptions by way of the Global Val-

idation of Linear Model Assumptions test, influence plots where employed as an

efficient means to analyse the effect of observations on the model outcome. Influ-

ence plots provide a simple yet effective means to assess the impact of individual

observations on fitted regression models. The plot provides an indication of those

observations which exhibit excessive leverage via the Hat Value, outliers via the stu-

dentized residuals and influence on the model parameters is indicated by the size of

the circles are based on the Cook’s distance. Used in partnership with the model

summary it is possible to make a number of key observations. For example, obser-

vations with a studentized residual ± 2 are considered as outliers and observations

where the hat-values exceed 0.2 are considered to exhibit high leverage.

Figure 5.6 a, the plot based on the original surname diversity value, suggests

that none of the observations are outliers though observation 15 has significant lever-

age. Figure 5.6 b, the plot for the final model, suggests that beyond observation 15,

observation 19 (Serbia), with a studentized residual of -2.3, is an outlier. However,

given that there is no justification for the omission of the variable it would be inap-

propriate for the observation be omitted from the analysis.

In addition to the influence plot, it is possible to examine the difference between

the calculated and fitted values of the dependent variable. Figure 5.7 provides an il-

lustration of these differences through plotting the original similarity score, the fitted

similarity score and the difference emphasising whether the fitted value is greater

or less than expected. From the Figure, there appears to be some degree of over-
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Figure 5.6: Influence plots showing the studentized residuals, Hat Values and Cook’s Dis-
tance from the regression analysis based on the use of the original surname
diversity (a) and Forebears-derived (b) surname diversity measure.

estimation in the lower range and under-fitting in the upper range. The transition

point between the over and under estimation is approximately 0.7.

Cross-validation

Shrinkage is a term used to refer to the reduction in the coefficient of variation

when a model is applied to new data. In seeking to quantify the effect of shrinkage,

it is normal practice to perform some form of cross-validation. In its basic form,

cross-validation may be considered as an assessment of a model’s accuracy across

a range of samples drawn from the original pool of observations. In practice, a

sampling strategy is employed, either randomly or systematically, such that the initial

observations are split into a training set used to build the model and a testing set
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Figure 5.7: Plots showing the difference between the calculated and estimated Morisita-
Horn similarity values.

designed to assess themodel’s performance. The process is repeated in such a way as

to assess the model across a range of splits. Cross-validation is commonly employed

where the number of observations is limited, and the alternative hold-out approach

may be detrimental to the outcome. A further limitation of the hold-out approach is

that the validation is susceptible to the original split employed in the data.

Cross-validation techniques may be divided into those that are exhaustive and

those that and non-exhaustive. Exhaustive techniques include Leave one out cross

validation (LOOCV) and Leave p-out cross validation (LpOCV). Non-Exhaustive

methods include k-fold cross validation. The exhaustive techniques assess every

possible model based on the value of p which is specified. In K-fold cross-validation,

the data are randomly assigned intoK sets. Subsequently, for K-iterations, the model

is trained on K-1 sets and tested on the final set. The output of the analysis is the

mean across each of theK tests. It should be noted that as the partitions are generated

randomly, the output will vary between calculations and the test should be repeated

multiple times to gain an understanding of the outcome. The number of repetitions
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is generally dependent on the stability of the model, and the amount of variance

experienced between tests.

LOOCV, as the name suggests, involves testing a model for all possible com-

binations of training and testing data. In some senses, LOOCV may be considered

as a K-fold validation where K = number of observations. LOOCV is commonly

employed where the number of model observations is low, and omission of multi-

ple observations would have a significantly detrimental impact on the model. This

technique is equivalent to K-fold cross validation where k is equal to the number of

observations. Similarly, leave p out cross validation tests every possible combination

where p-observations are used for testing, and n− p observations are employed for

the model testing. As may be imagined, increasing p makes the model increasingly

pessimistic.

Given that the number of observations is limited, it was proposed that the

LOOCV and K-fold cross validation be performed.

Table 5.9: Table showing the results of the LOOCV exercise for the final regression analysis.

LOOCV
Original R-squared 0.759
Original Adjusted R-squared 0.733
LOOCV R-squared 0.677
RMSE 0.1331

LOOCV and k-fold cross validation

Table 5.9 provides a summary of the LOOCV exercise. It can be seen that the

LOOCV R-squared is 0.677 indicating a difference of 0.082. Given that some

consider LOOCV overly optimistic, a second assessment was performed using k-

fold cross validation. Given that k-fold cross-validation assigns the observations to

groups on a random basis, the outcome will vary each time the test is repeated. Con-

sequently, the test was repeated 100 times and the mean cross-validated R-squared

reported.

Table 5.10, provides an indication of the model shrinkage with the original

R-squared dropping from 0.759 to 0.673. With the difference between the origi-
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Table 5.10: Table showing the summary of the k-fold cross-validation.

k-fold cross-validated R-square

Original R-square 0.759
Original Adjusted R-squared 0.733
k 11
n (repetitions) 100
Mean Cross-Validated R-square 0.673
Change 0.086

nal and mean R-squared being 0.086, the small decrease in the model R-squared

suggests the model is fairly generalisable. In effect, the cross-validated R-squared

implies that 67.3% of the variance may be explained by the model. Importantly, the

cross-validated R-squared remained similar in the case of both validation scenarios

suggesting the model performs well in terms of generalisability.

Relative weights

Finally, the relative importance of each model parameter is calculated. In much

conventional analysis, it is necessary that the dependent variables are standardised

such that the coefficients provide an indication of the relative importance of each

parameter. While such an approach remains popular, the calculation of relative im-

portance is increasingly accepted. Relative importance was calculated based on the

methodology of Johnson (2000). The calculation takes into account both the effect

of each predictor in isolation and its effect in the combination of any other predictors.

The results indicate that of the %75.9 of variance explained by the model, 93.6% is

explained by the number of users, and 6.4% is explained by the surname diversity.

In practice, this difference in relative importance suggests that the number of Twitter

users is most significant in terms of how well the ‘true’ population naming structure

is represented by the Twitter-derived population inventories.

5.3 Model Application: Results and Discussion
At the outset, the objective was to develop a method by which the probable repre-

sentativness of the Twitter-derived population inventories could be estimated such
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that new inventories could be used to fill gaps in the Worldnames database at the

national scale and further enhance the Onomap CEL classification tool. Note, it

was not the objective to replace or supplement the existing national-level popula-

tion inventories, rather, it was to provide a suitable source of reference data where

no alternative was available. In seeking to achieve this, a model was proposed for

the purpose of identifying factors which may indicate the efficacy of Twitter in rep-

resenting the population name structure within specific countries. Consequently,

factors were identified based on two themes: Those which impact on the adoption

of online social networks and those which impact on how many names are required

to represent populations. In identifying such factors, the major challenge was the

lack of data published consistently on the global scale. Consequently, a set of can-

didate parameters were determined using data from the World Bank DataStore and

also from the raw Twitter-population inventories.

In seeking to identify the optimum model, an all-subsets regression was per-

formed such that all possible models could be assessed. The final model was iden-

tified as (Y=X5+X6) where X5 was the number of valid users and X6 was the surname

diversity. Proving to be statistically significant, the required data were compiled and,

in the case of the surname diversity values re-sourced. Subsequently, the model was

applied and both the fitted values and prediction intervals calculated.

5.3.1 Geography of Twitter
As a first step in investigating the outcome of the regression analysis, a series of

maps were constructed designed to illustrate the lower, fitted and upper CH values.

On initial inspection of the results, it was evident from the fitted CH values that

the potential utility of the Twitter-derived population inventories varied significantly

across the globe. In seeking to understand this distribution, a series of maps were

produced showing the fitted model values and also the upper and lower prediction

intervals. The maps were overlaid with the second tier UN GeoScheme boundary

data for the purpose of providing a concise reference structure.

The maps, shown in Figures 5.8 through 5.10, provide a valuable illustration of

the geographic distribution of the fitted values clearly indicating a geographic trend
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in the utility of the Twitter-derived inventories.

Furthermore, the observable patterns of the fitted CH values appeared concor-

dant with the regions defined by theUNGeoScheme. Given this apparent agreement,

and for want of a suitable structure for the explanation, the top tier UN regionalisa-

tion was subsequently employed. The top tier consists of seven regions: Antartica,

Africa, the Americas, Asia, Europe, Oceania and Other.

As an initial step in understanding the results, a box and whisker plot was cre-

ated for the fitted model values faceted based on the UN GeoScheme region classi-

fication.

Figure 5.11: Faceted box and whisker plots showing the varying distribution of similarity
estimated between each of the five main global regions. The number of coun-
tries in each group shown in blue.

Figure 5.11, the faceted box plot of fitted CH values, provides a useful illustra-

tion of the distribution of values within and between regions highlighting an apparent

skew toward the Americas, Asia and Europe. The degree of variation within each

region provides a useful indicator as to overall regional performance. It is likely that

the amount of variance observed, particularly in the case of the Oceania region is

due to the diversity within the associated countries in terms of technological provi-

sion, economies and more generally, regional trends in the adoption of online social

media.



156 Chapter 5. Towards a Seamless Worldnames Database

5.3.2 Common Names
A further opportunity to assess the national Twitter inventories is through compar-

ison against existing sources of names data. A process identical to that employed

in the audit of the UCL Worldnames Database. In completing such a validation ex-

ercise, it is necessary that the reader remains mindful of the limitations inherent in

all forms of names data. In the case of forbears.io, the majority source of the ‘of-

ficial’ top 10 names in the subsequent tables, the surname counts are clearly scaled

samples such that they appear to represent the entire population; arguably delivering

a false sense of precision and accuracy. That said, Forebears.io is the only service

to publish names data for almost every country in the world, and thus, the data are

employed. For the sake of efficiency, only the top three inventories, based on the

fitted Morisita-Horn Index of Overlap are reported.
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5.3.2.1 Africa
Countries:

AZE, ARM, BHR, BGD, MMR, BRN, KHM, LKA, CHN, AFG, BTN, CYP, GEO, IND, IRN, ISR, IRQ, JPN, JOR, KGZ, PRK, KOR, KWT, KAZ, LAO, LBN, MNG,

OMN, MDV, MYS, HKG, MAC, PSE, NPL, PAK, QAT, PHL, SAU, SGP, SYR, THA, TJK, TUR, TKM, UZB, VNM,YEM, IDN, ARE and TLS.

Table 5.11: Table showing the top 10 names in the three best performing countries in Africa.

South Africa CH = 0.7720999
Twitter Forebears

Surname Count Surname Count

KHUMALO 115 NAIDOO 300,130
NDLOVU 107 BOTHA 274,396
NKOSI 95 SMITH 233,996
DLAMINI 93 GOVENDER 212,829
SMITH 87 PILLAY 198,144
BOTHA 80 VAN DER MERWE 192,209
NAIDOO 69 NEL 188,428
WILLIAMS 68 PRETORIUS 184,903
MOKOENA 66 JACOBS 182,456
MKHIZE 62 COETZEE 178,931

Egypt CH = 0.7530496
Twitter Forebears

Surname Count Surname Count

MOHAMED 255 KHAN 416,957
AHMED 247 AHMADI 325,530
ALI 122 SAFI 238,848
HASSAN 120 NOORI 205,315
ADEL 113 AHMAD 182,854
KHALED 108 AZIZI 181,588
GAMAL 101 RAHIMI 176,843
ASHRAF 95 AHMADZAI 172,414
IBRAHIM 92 SADAT 141,095
TAREK 91 AMIRI 125,910

Nigeria CH = 0.7324573
Twitter Forebears

Surname Count Surname Count

IBRAHIM 95 LAWAL 843,038
BOY 89 AJAYI 821,489
EMMANUEL 89 ADEBAYO 765,398
SAMUEL 87 BELLO 743,696
MICHAEL 79 OJO 683,326
BELLO 67 ADEYEMI 620,816
BOI 66 BALOGUN 557,390
DANIEL 66 IBRAHIM 499,618
JOHN 62 OKAFOR 485,557
YUSUF 60 ABDULLAHI 476,998
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5.3.2.2 Americas
Countries:

ATG, ARG, BRB, BMU, BHS, BLZ, BOL, BRA, CAN, CHL, CYM, COL, CRI, CUB, DMA, DOM, ECU, SLV, GUF, FLK, GRD, GRL, GTM, GUY, HTI, HND,

JAM, MTQ, MSR, MEX, ABW, AIA, SUR, NIC, PRY, PER, PAN, PRI, KNA, LCA, TTO, USA, URY, VCT, VEN, VGB, VIR, GLP, ANT, SPM, TCA, MAF and

BLM.
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Table 5.12: Table showing the top 10 names in the three best performing countries in the
Americas.

United States CH = 1.0312202
Twitter Forebears

Surname Count Surname Count

SMITH 9,179 SMITH 2,552,459
JOHNSON 6,990 JOHNSON 1,967,023
JONES 5,542 WILLIAMS 1,609,082
WILLIAMS 5,309 BROWN 1,482,001
BROWN 5,199 JONES 1,455,165
GARCIA 4,642 MILLER 1,203,150
MILLER 4,540 DAVIS 1,172,346
RODRIGUEZ 4,448 ANDERSON 872,825
MARIE 4,135 WILSON 860,309
MARTINEZ 4,088 TAYLOR 787,071

Brazil CH = 1.0098336
Twitter Forebears

Surname Count Surname Count

OLIVEIRA 4,515 SILVA 5,073,774
SANTOS 3,321 SANTOS 3,981,191
SILVA 3,228 OLIVEIRA 3,738,469
LIMA 3,203 SOUZA 2,630,114
RODRIGUES 2,977 RODRIGUES 2,399,459
SOUZA 2,644 FERREIRA 2,365,562
ALVES 2,417 ALVES 2,264,282
FERREIRA 2,211 PEREIRA 2,251,864
MARTINS 2,110 LIMA 2,020,288
COSTA 2,056 GOMES 1,697,130

Mexico CH = 0.9878378
Twitter Forebears

Surname Count Surname Count

GARCIA 3,164 HERNANDEZ 2,534,379
GONZALEZ 2,521 GARCIA 2,416,128
HERNANDEZ 2,463 LOPEZ 2,151,072
RODRIGUEZ 2,190 MARTINEZ 2,151,046
MARTINEZ 2,171 GONZALEZ 2,093,124
LOPEZ 2,039 RODRIGUEZ 1,741,540
SANCHEZ 1,835 PEREZ 1,614,913
RAMIREZ 1,565 SANCHEZ 1,537,179
FLORES 1,332 RAMIREZ 1,294,894
PEREZ 1,239 FLORES 1,110,320
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5.3.2.3 Asia
Countries:

DZA, AGO, BEN, COG, COD, BDI, CMR, TCD, COM, CAF, CPV, DJI, EGY, GNQ, ERI, ETH, GMB, GAB, GHA, GIN, CIV, KEN, LBR, LBY, MDG, MLI, MAR,

MUS, MRT, MOZ, MWI, NER, MYT, NGA, GNB, REU, RWA, SYC, ZAF, LSO, BWA, SEN, SLE, SOM, SDN, TGO, STP, TUN, TZA, UGA, BFA, NAM, SWZ,

ZMB, ZWE, SHN, ESH.
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Table 5.13: Table showing the top 10 names in the three best performing countries in the
Asia Region.

Turkey CH = 0.9717326
Twitter Forebears

Surname Count Surname Count

YLMAZ 3,881 YILMAZ 756,629
OZTURK 2,802 KAYA 665,898
KAYA 2,773 DEMIR 583,657
DEMIR 2,180 CAN 429,235
CELIK 1,970 AYDIN 407,994
AYDN 1,919 ARSLAN 393,914
AHIN 1,899 SAHIN 388,918
OZDEMIR 1,870 YILDIZ 379,765
YLDRM 1,852 YILDIRIM 375,956
YLDZ 1,810 ÖZTÜRK 370,471

Indonesia CH = 0.9158336
Twitter Forebears

Surname Count Surname Count

PUTRI 6,800 SARI 902,933
PUTRA 4,267 SETIAWAN 630,683
SARI 4,177 LESTARI 623,178
PRATAMA 3,317 HIDAYAT 506,648
SAPUTRA 2,780 SAPUTRA 506,430
DEWI 2,680 WATI 494,134
LESTARI 2,390 RAHAYU 493,953
KURNIAWAN 2,297 SANTOSO 406,886
PRATIWI 2,278 WAHYUNI 402,339
SETIAWAN 2,176 KURNIAWAN 384,105

Malaysia CH = 0.9141692
Twitter Forebears

Surname Count Surname Count

ISMAIL 578 TAN 713,765
AHMAD 516 LIM 609,577
LEE 474 LEE 545,429
AZIZ 445 MOHAMED 487,454
TAN 423 WONG 449,385
LIM 377 NG 373,400
RAHMAN 343 CHONG 274,498
ABDULLAH 299 AHMAD 244,524
AZMI 293 ABDUL 229,195
AZMAN 275 CHAN 221,657
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5.3.2.4 Europe
Countries:

ALB, BIH, BGR, DNK, IRL, EST, AUT, CZE, FIN, FRA, DEU, GRC, HRV, HUN, ISL, ITA, LVA, BLR, LTU, SVK, LIE, MKD, MLT, BEL, FRO, AND, GIB, IMN,

LUX, MCO, MNE, ALA, NLD, NOR, POL, PRT, ROU, MDA, RUS, SVN, ESP, SWE, CHE, GBR, UKR, SMR, SRB, VAT, SJM, GGY, JEY.

Table 5.14: Table showing the top 10 names in the three best performing countries in Eu-
rope.

Spain CH = 0.9958624
Twitter Forebears

Surname Count Surname Count

GARCIA 6,261 GARCIA 1,489,445
LOPEZ 4,036 GONZALEZ 932,929
SANCHEZ 4,018 RODRIGUEZ 930,332
RODRIGUEZ 3,753 FERNANDEZ 926,719
GONZALEZ 3,684 LOPEZ 893,278
FERNANDEZ 3,593 MARTINEZ 844,540
MARTINEZ 3,535 SANCHEZ 824,073
PEREZ 3,260 PEREZ 800,021
GOMEZ 2,335 GOMEZ 504,099
MARTIN 2,246 MARTIN 496,403

United Kingdom CH = 0.9421356
Twitter 2013 Consumer Register

Surname Count Surname Count

SMITH 3,822 SMITH 532,928
JONES 3,262 JONES 417,703
WILLIAMS 2,275 WILLIAMS 303,581
TAYLOR 1,993 BROWN 281,152
BROWN 1,909 TAYLOR 268,352
DAVIES 1,751 DAVIES 224,886
WILSON 1,452 WILSON 209,168
EVANS 1,339 EVANS 184,143
THOMAS 1,247 THOMAS 172,178
JOHNSON 1,129 JOHNSON 170,887

Ireland CH = 0.8001966
Twitter Forebears

Surname Count Surname Count

MURPHY 361 MURPHY 56,815
KELLY 292 KELLY 42,550
BYRNE 258 BYRNE 39,400
WALSH 237 RYAN 35,939
RYAN 223 WALSH 35,453
OBRIEN 145 DOYLE 26,363
DOYLE 137 O’BRIEN 23,896
MURRAY 127 O’CONNOR 21,816
OCONNOR 121 LYNCH 20,800
NOLAN 117 O’SULLIVAN 20,145
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5.3.2.5 Oceania
Countries:

ASM, AUS, SLB, COK, FJI, FSM, PYF, GUM, KIR, NCL, NIU, MNP, NFK, VUT, NRU, NZL, PNG, TKL, TON, TUV, WLF, WSM, PCN, PLW and MHL.

Table 5.15: Table showing the top 10 names in the three best performing countries in Ocea-
nia.

Australia CH = 0.7696712
Twitter Forebears

Surname Count Surname Count

SMITH 253 SMITH 184,513
WILLIAMS 152 JONES 95,808
LEE 134 BROWN 89,518
JONES 128 WILLIAMS 88,727
WILSON 111 WILSON 77,239
NGUYEN 107 TAYLOR 75,521
TAYLOR 100 LEE 58,147
BROWN 97 JOHNSON 54,396
THOMAS 80 ANDERSON 54,227
RYAN 77 WHITE 51,916

New Zealand CH = 0.5700322
Twitter Forebears

Surname Count Surname Count

SMITH 49 SMITH 16,920
BROWN 30 WILLIAMS 10,002
LEE 23 JONES 9,912
WILSON 23 WILSON 9,874
TAYLOR 22 BROWN 9,533
HARRIS 15 TAYLOR 9,297
WILLIAMS 15 ANDERSON 7,704
CLARKE 14 SINGH 7,446
JONES 14 SCOTT 7,389
THOMAS 14 THOMPSON 7,337

Guam CH = 0.3903865
Twitter Forebears

Surname Count Surname Count

CRUZ 10 CRUZ 3,575
MARIE 5 SANTOS 1,776
SANTOS 5 PEREZ 1,429
GARCIA 4 SABLAN 1,287
GUERRERO 4 DUEÑAS 1,279
AGUON 3 CAMACHO 1,271
CASTRO 3 BLAS 1,223
FLORES 3 LEON 1,200
GIRL 3 AGUON 1,176
RIVERA 3 FLORES 1,152
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5.3.2.6 Other
Countries:

CCK, ATA, BVT, ATF, HMD, IOT, CXR, UMI, SGS and TWN.

Table 5.16: Table showing the top 10 names in the best performing country in Other.

Taiwan CH = 0.7156517
Twitter Forebears

Surname Count Surname Count

CHEN 157 LIN 1,549,426
LIN 125 CHANG 1,096,361
HUANG 87 HUANG 1,095,086
LEE 79 WANG 941,361
WANG 74 WU 842,855
CHANG 66 LIU 668,386
LIU 47 HSU 645,266
YANG 40 YANG 576,834
HSU 39 TSAI 547,514
TSAI 36 CHENG 415,981

Having examined the comparison tables of most common surnames, several

trends are evident. Notably, that with the exception of Africa and Asia, there was a

good degree of overlap between the Twitter-derived names and the Forebears coun-

terparts. Thus, considering the usefulness of the fitted CH values is in terms of

indicating probable inventory success, it would appear that the degree of correla-

tion among the common names decreased in an ordinal manner. This observation

acts to support the belief the model is a good indicator of national-level inventory

performance.

That said, on examination of Table 5.11, the names tables from Africa, the

agreement between the most common names is low, while the fittedCH values indi-

cate strong performance. Given the number of valid users identified in within each

country, it would suggest that the issue was manifest in either the way in which in-

dividuals report their own names or alternatively, in how individuals’ names were

extracted. In regards to the the processing of individuals’ names, the extraction

framework is based on western naming conventions in which individuals’ have a

forename and surname. In many African countries, notably those with large Mus-

lim and Arabic populations it is common to use the father’s forename in place of a
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surname. I.e., Mohamed bin Ahmed. In this case, the final string, reported as the

surname would be Ahmed. Such a feature of the algorithm, and more broadly the

cultural and regions tendencies in the ascription of names highlights the importance

of human intuition and judgement in the analysis of names data.

Considering the Americas and Europe as a singular entity, both the fitted values

and the name comparison tables provide a reason for optimism. In both cases, the

three top countries are either English-speaking or Hispanic. In the case of all six

comparison tables, there is a high degree of overlap and also agreement in name

order. It should be noted that with the exception of Ireland, the fitted CH values are

in the mid-to-high nineties.

In a similar scenario to Africa, of the three countries examined, only the com-

parison for Turkey proved effective. In interpreting this, it is important to bear in

mind the regional differences in naming conventions. In the case of Indonesia, it is

common for individuals to have no surnames and in the case of Malaysia surnames

are generally patronymic. The exception being Turkey which introduced surnames

in 1934. Previously, It was common practice, as in many Muslim countries to adopt

the father’s forename.

In the case of Oceania, it is evident from Figure 5.11 that the region exhibits

the highest degree of variation in terms of the Twitter inventories explanatory power.

That said, the data for both Australia and New Zealand do show some degree of over-

lap. Interestingly, in the case of all three countries, the number of valid Twitter users

was relatively small with just 1,500 and 1,164 users per million of the population for

Australia and New Zealand respectively versus 5,514 per million in the UK. Data for

Guam have a limited level agreement. However, the small number of Twitter users

means that the inventory lacks the definition/structure that would be desired.

Of the countries under the description ‘Other’, Taiwan is the only country to be

included in the analysis. It should be noted that Taiwan would, in ordinary circum-

stances, be considered as part of Asia. Regarding success, the overlap in names for

Taiwan was high. The case, as was so in Turkey was the common use of western

style surnames. A further advantage, given the limited number of users identified
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(n=2,466), is the low national surname diversity meaning that fewer names are re-

quired to depict the populations naming structure accurately.

5.3.3 Discussion
From the preceding analysis, it would appear evident that the Twitter-derived pop-

ulation inventories do offer an alternative source of national-scale individual level

names data. However, regarding interpretation, it is important that we remain con-

scious of the limitations inherent in the data and analysis. In the first instance, the

analyses are based on a broad range of data drawn from a multitude of official and

unofficial sources. Second, both of the independent variables are derivatives, in

the case of the raw counts of Twitter users this is based on the analysis performed

within this thesis and the surname diversity values are derived from published lists

of names data. Third, The reference data, whilst considered the most complete and

representative available, are in themselves liable to uncertainty. Finally, the set of

observations used in the construction of the model were not a stratified sample with

the notable omission of any data from Africa; a feature evident in Figure 4.4. In all

cases, efforts have been made to verify the quality of the data and the effects which

may occur as a consequence. However, in practice, there are barriers to such an ex-

ercise. The key point here is that we must recognise the limitations of such data for

the study of populations and ensure that these limitations are clearly communicated

such the any subsequent analysis is founded on the correct beliefs and assumptions.

In seeking to develop the predictive capability of the model in regards to the

expected utility of the Twitter inventories a number of potential extensions may be

possible. These include the addition of further variable and the use of alternative

modelling approaches better able to capture the variation observed within the data.

In terms of the identification of variables the primary challenge was the availability

of suitable indicators at the global scale; many of the data, such as social media pen-

etration were restricted to a limited pool of countries. This issue was exacerbated

by variables which were globally available, however, collected in an inconsistent

manner. Choice of variables was consequently limited to major data portals such

as the WorldBank Data Store. In some cases it may have been possible to include
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additional variables at a finer spatial resolution such that regional variation in effec-

tiveness could have been better understood. Given the ecological fallacy, if only a

small segment of the population are well represented, this may be disguised for the

country as a whole. Such an adjustment may have proven useful in countries which

exhibit a high degree of segregation or variation in wealth and provision of services.

It may be prudent to perform such analysis on an as and when required basis for

specific target countries.

Arguably, the most effective means of improving the Twitter inventories would be

to include data collected over a greater time period. Extension of the time window

would lead almost certainly increase the number of Twitter users within a country

increasing the pool of individuals for the inventory creation. That said, in those

countries with few Twitter users, arguable the most appropriate response is to seek

alternative forms of population data. Likewise, the overall modelling process may

be improved in the future through the addition of further reference population inven-

tories if and when these become available.

Having discussed the model outcome in the context of the six UN GeoScheme

regions, it is evident that the inventory creation framework is effective. However,

as has been seen in the case of Africa and Asia, both the number of Twitter users

and the ability to handle more complex naming structures has posed a barrier. More

specifically, it is clear that the methodology performs best in countries with large

numbers of users and which typically assign personal names in line with the west-

ern order in which the personal name precedes the surname. While this aspect of

the analysis places a constraint on the potential utility of the Twitter inventories, a

number of significant opportunities remain.

Regarding the inventory creation framework, the primary opportunity is to

develop the name extraction algorithm such that it can better account for cultural

naming conventions. For example, in the handling of double-barrelled names and

names which are patronymic. In a similar vein, there is the potential to create sub-

national/regionalised population inventories in those countries where the national

similarity is high, and also there is sufficient volume of viable Twitter users. Ex-
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amples of such countries include Brazil, Mexico and Turkey. Having created the

population inventories, it is possible to export each inventory at a range of increas-

ingly fine spatial scales. Good opportunity to do this for Brazil as this addresses the

issues with the current Worldnames dataset which is limited to just three cities. Fur-

thermore, should the three telephone directories be aligned with the relevant GADM

regions then it will be possible to calculate the similarity between these datasets and

get an idea of how well the inventories are likely to perform within the country. If

it is good, this is a useful addition to the Worldnames database and will provide a

useful illustration of how the data may be employed.

The next major opportunity is regarding applications. In possession of an en-

hanced collection of names data and an improved understanding of the global distri-

bution and representativeness of the Twitter population, there is potential for analysis

to be conducted at a range of spatial and temporal scales previously unimaginable.

The Twitter-derived population inventories, where they are deemed to be represen-

tative of the population, provide an opportunity not only to examine stocks of the

population but also to observe the population in a dynamic manner where popu-

lation stocks may be observed in both space and time. Furthermore, the analysis

offers an improved understanding of the global patterns of Twitter adoption. Such

information is significant in that it provides justification for social network data to be

exploited in a greater number of countries and situations. This, in itself, has laid the

path for further research investigating demographics and security across a plethora

of new countries and regions.

A third opportunity, beyond indicating the probable representative ability of

national level Twitter-derived inventories, is the opportunity to perform data stan-

dardisation. For instance, for the purpose of performing international mobility anal-

ysis between regions where the popularity of Twitter varies. Such an approach may

address limitations in the inference of international mobility from social media as

experienced by Hawelka et al. (2014) in their analysis of global migration using

Twitter data.
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Double-barrelled names

Double-barrelled surnames present a unique challenge in terms of working with sur-

name data. These challenges are manifest in both the extraction of names and also

their interpretation for the purposes of analysis. The impact of double-barrelled sur-

names varies significantly among countries with the percentage of double-barrelled

surnames ranging significantly.

Considering first the extraction of individuals’ names, specifically in the case

of Twitter, the ‘-’ symbol is often used for the purpose of decoration as opposed

to being an indicator of a double-barrelled surname. Consequently, the algorithm

interprets the first of the two names as being the penultimate string and the second as

being the surname. In practice, however, it may be argued that the surname is highly

likely to be indicative of either the mother or father’s ethnicity; thus minimising the

potential for bias.

Regarding analytical interpretation, double-barrelled surnames raise further

challenges. First, the majority of analytical techniques consider the surname as a

single string and match said strings on a like for like basis. In effect, the analysis is

not able to account for the separate names employed. This is a typical example of

a situation in which a human interpretation differs from that of a machine. Three

possibilities exist to address this issue. First, the approach utilised by Cheshire and

Longley (2012), is to omit uncommon names and double barrel names. Second,

various fuzzy matching techniques exist, though, in practice, such approaches may

result in unrelated or nuanced surnames being incorrectly associated. For example,

Sharples and Sharpless. Alternatively, would be to omit the double-barrelled sur-

names, or alternatively, treat each surname part in isolation. In some senses, such

an approach is analogous to the Onomap methodology in which both forename and

surname are processed individually, and then the assignment is made on the portion

with the strongest association with any CEL group.
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5.4 Conclusions
In this chapter, the objective was to develop a global database of names through

the creation of national level population inventories derived from geographically

references Twitter data. The motivation being to develop a supplement the existing

Worldnames Database. The approach was to apply the methods developed in the

previous chapter for Spain and the United Kingdom to the remainder of the world.

Proving successful, the new inventories would hold the potential to fill gaps in the

current database and further to add to the pool of forename-surname data available

for the the Onomap classification.

In practice, however, having previously observed that the Twitter-derived in-

ventories ranged dramatically in terms of their performance, it was proposed that

a model is created with the purpose of predicting probable register success based

on a series of associated cultural and environmental factors. The final model, with

an Adjusted R-squared value of 0.733, was based on the number of Twitter users

identified within a country and also the surname diversity based on the 100 most

commonly occurring surnames. In effect, the model states that the more Twitter

users are resident within the country, the better those individuals’ names will depict

the population as a whole. The exact number will be higher where surname diversity

is high and lower where surname diversity is low. For example, fewer individuals

are required to represent the population of China than are necessary to represent the

population of the United Kingdom. This concept relates back to the idea of ‘How

many names are enough?’ that was discussed in Section 5.2.2.

Based on the analysis that has been performed in this, and the preceding chap-

ters, it is evident that utility of Twitter-derived population inventories varies signifi-

cantly within and between countries. In many cases, the Twitter-derived inventories

are either poor proxies for the observable population or, in some cases, alternative

sources of names data may be sourced. That said, such a perspective is based on the

principles of conventional geodemographics and more specifically the static pop-

ulation representation. What this chapter has demonstrated is that in certain cir-

cumstances, the Twitter-derived inventories are a powerful descriptor of national
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populations and may, therefore, provide a new platform for the analysis of popu-

lation dynamics where such analysis has previously been unfeasible. Examples of

such locations include Brazil, Mexico and Turkey. Furthermore, the data generated

are, in many regions borderless facilitating the analysis of populations without the

constraints imposed by conventional forms of population data.





Chapter 6

Twitter in the UK: A Basis for

Analysis

6.1 Introduction
At the outset, the objective of this thesis was to assess the potential applications

of new forms of data to the study of geodemographics and security. In providing

justification for such an objective, a critical evaluation of current geodemographic

data and practises was completed. The key limitation identified was the ongoing

dependence of conventional demographic products on static population representa-

tions such as the UK Census of Population. In light of this, it was proposed that new

forms of data, in this case, drawn from online social networks, should be investigated

for their potential utility in the description of the stocks and flows of population.

Seeking to exploit the potential manifested within the Twitter data, a framework

was developed for the construction of static individual level population inventories

based on the analysis of a global corpus of geotagged Tweets. The proposed frame-

work was based on a series of criteria guided by the United Nations definition for

population registers (United Nations, 2001). Specifically, to create an ‘individu-

alised data system’ able to provide ‘a mechanism of continuous recording’ for the

population. In this instance, the objective was that for each Twitter user, the fol-

lowing attributes would be recorded: a unique identifier, forename, surname, age,

gender, ethnicity and probable geographic location. The product of this framework
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being a richly attributed inventory of Twitter users for each world country. Recog-

nising that the popularity and, by effect, the usefulness of Twitter varies within and

between countries, an assessment of the candidate population inventories was per-

formed. Based on the measurement of similarity between populations measured as

surname composition, the analysis provided insight into the global geography of

Twitter and delivered some initial insight as to the potential for Twitter data to be

employed in investigating specific countries. However, whilst this approach to val-

idation functioned well in the context of a global assessment, it was unsuitable for

the more nuanced aspects of population structure.

In light of the above, the objective of this chapter is to develop a framework by

which the representativeness of the Twitter inventories may be assessed against key

demographic markers. For the purpose of developing the framework, an assessment

was performed using data for the United Kingdom. The justification for this choice

included the popularity of Twitter within the UK, the author’s prior knowledge of

the UK, and also, the abundance of detailed population data already available which

may be used for reference. A further motivation for this thesis is the potential value

of this information within industry and academia. Understanding the demographic

composition of Twitter users within a country or region may help inform the validity

of future studies, or provide a means of standardisation such that any Twitter-derived

insight may be suitably evaluated. However, while this assessment is centred on the

UK, the methods, given adequate consideration, may be applied to any country in

which sufficient volume of Twitter data is available.

6.2 UK-Wide Validation and Benchmarking
In seeking to establish the Twitter-derived inventories as a viable alternative to con-

ventional aggregate population data, there is a requirement to quantify how repre-

sentative the data are of the observable population in regards to a series of important

demographic markers: age, gender, ethnicity and geographic distribution. A previ-

ous study by Longley et al. (2015) sought to achieve a similar goal, but lacked the

potential to be more widely applicable having only used data from the Greater Lon-
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don extent. Thus, in delivering this chapter, it should be recognised that this study is

not simply a reproduction of the work by Longley et al. (2015). Rather, it should be

considered as an extension, building upon both the coverage of the analysis and also

the efficacy in which various methods are applied. The focus on Greater London by

Longley et al. (2015), while valid, limited the applicability of the research. Given

the heterogeneity of the UK population, there is a risk that certain biases, unique

to London, are propagated to the rest of the UK. By constraining the study and not

accounting for the Tweets by users submitted beyond this area, there is a high likeli-

hood that individuals who are not residents, such as tourists and commuters, within

the city are included in the analysis. Consequently, when comparing the data to the

UK Census of Population, there is a risk of not comparing like for like. Conversely,

the approach employed here seeks to study only those individuals who are believed

to be resident in the study space. The second major difference is the unit of analy-

sis employed in this study. Longley et al. (2015) consider each Tweet independently,

whereas themethod demonstrated here is based on the user. Placing the focus explic-

itly on the Tweets, without taking into consideration who they are sent by, presents a

potential source of bias whereby highly active users may overwhelm the behaviours

of less active users. Such a consideration is particularly important when seeking

to assess the representativeness of such data. An individual who tweets prolifically

and who is a member of a minority group may have a significant impact on how the

group as a whole is depicted.

It should be noted that the issue of data scope raised in the above is not lim-

ited to this study and rather is endemic within social media based analyses. Possible

explanations for this behaviour include that of individual researcher’s capacity to col-

lect and manipulate the large volume of data and also the method by which Twitter

data are harvested. When using the Twitter Streaming API, it is common practice

to specify a geographic extent from which the data are to be collected. Doing so

prevents the researcher from being inundated with data and, often, can achieve their

analysis goals using standard desktop infrastructure. Researchers typically specify

this extent based on the study area assuming that this is all the data that they will
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need. The challenge then occurs when a researcher wishes to supplement or enrich

their data based on a specific pool of users or any other requirements. The nature

of the Twitter API is such that making historical queries is heavily constrained via

the implementation of rate limits. Such limits prevent Twitter serving excessive vol-

umes of data and assist in adding value to the data; historical Twitter data may be

purchased from Gnip (see: www.gnip.com); a data reseller. Such limits may be cir-

cumvented. However, this is questionable both legally and ethically. Consequently,

without significant financial outlay, it is near impossible to create a truly represen-

tative historical dataset. Given these challenges, in the majority of studies, these

issues are either not recognised, overlooked or ignored.

Having identified a range of limitations common to social media analysis, this

chapter, seeks to set a new precedent in how Twitter data are understood and conse-

quently employed. At the very minimum, key questions will be answered such as:

is the sample representative of the population I wish to study? Are the sample resi-

dents of the study area? Or, if not, where is it that they have originated? In essence,

the following analysis presents a more nuanced approach to the identification and

attribution of Twitter users building upon those methods set out by Longley et al.

(2015) and others. Furthermore, by taking into account the limitations discussed in

the above, it is believed that this analysis has a multitude of benefits. First, through

addressing the above, a more accurate understanding of the Twitter demographic

may be obtained. Second, by better understanding the Twitter demographic, an im-

proved understanding may be obtained in regards to whom it is that the Twitter users

are representative. In combination, it is believed that this will aid in establishing

Twitter’s status as a source of population insight.

6.3 Population Benchmarking
Having discussed the limitations previously, the following approach was taken to the

construction and validation of the Twitter inventories. In the first instance, all users

to be observed within the bounding box of the UK were identified. In turn, these

data enabled the issue of non-residents and tourists being included in the analysis

www.gnip.com


6.3. Population Benchmarking 177

to be addressed. In doing this, the objective is to isolate those individuals who are

residents of the UK and, equally importantly, determine those users who are not.

To understand this, the first phase of analysis was the identification of those users

who are UK nationals. To achieve this, the methodology developed in Chapter 4 was

implemented such that a dataset containing all of the Tweets submitted by UK users

could be created. The dataset comprised 98,049,142 Tweets submitted by 495,159

users. The Tweets were subsequently joined to the UK Output Area geography and

also to the GADM boundary dataset. In combination, such geographic reference

provided a means to identify both individuals’ countries of residence and also the

locality within which they are likely to reside. Regarding the above there are two

key considerations. First, the analysis of individual user’s Tweets will be indicative

of their country of residence and not necessarily their country of origin. Second, it

should be recognised that the hierarchical nature of the location allocation method

functions in such a manner as to maximise the total number of users successfully

located at each geographic scale.

In the first instance, individuals were processed to determine their probable

countries of residence. Of the 495,159 users, 373,456 (75.4%) were successfully

allocated to a country. Those users with fewer than five Tweets within a particular

country, or, less than 50% of their total Tweets account for the 24.6% decrease. It

should be noted that where an individual met the criteria for association, but where

the Tweets occurred outside any countries borders, the location was recorded as NA.

The bar graph of users’ probable countries of origin, shown in Figure 6.1, pro-

vides a useful illustration of the top 10 countries in which the identified Twitter

users are believed to be resident. It should be noted in interpreting this that the

analysis does not account for differences in popularity of Twitter between countries

(discussed in Chapter 5), or account for the likelihood of individuals having access

to data services while travelling. Consequently, it should be assumed that some

variation in the relative proportions and ranks is likely to occur. That said, several

observations can be made based on the data. First, the top five countries in order of

magnitude are Ireland, France, the USA, Spain and Italy. This behaviour is unsur-
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Figure 6.1: Percentage of Twitter population by country excluding those believed to be res-
ident within the UK. Note, ‘NA’ indicates the proportion of individuals not as-
signed to any country.

prising given the geographic proximity between these countries. More surprising,

however, is the presence of Kuwait, Brazil and Saudi Arabia in the top tier ranks.

The driver of such popularity is likely the degree of popularity of Twitter within

these countries. Thus, the relative order and magnitude of countries observed are

likely to differ with the key factor being the popularity of Twitter rather than the raw

number of travellers. Seeking to assess the validity of the above, data on the top

10 countries to visit the UK was sourced from the ONS Travel Trends report (ONS,

2013). This data, illustrated in Figure 6.2, depicts the number of visitors to the UK

in 2013 who have resided in the country for at least one night. An assessment of the

data indicates some overlap between the two datasets.

If we consider the top seven countries from Figures 6.1 and 6.2, it may be ob-

served that France, the USA, Ireland, Spain and Italy are consistent to both datasets.

Furthermore, except Ireland, the order remains consistent. It is likely, however, that

the high proportion of Irish individuals observed is a consequence of the UK bound-

ing box overlapping Ireland’s eastern coast. The most notable omission from the top

countries seen is Germany. This feature may be explained by Twitter’s lack of pop-

ularity in Germany, however. Examined in the previous chapter, the rate of users
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Figure 6.2: Visitors to the UK by country in 2013 as recorded by the ONS (2013)

per 1,000 of the population was just 0.22 in Germany versus 5.51 in the UK. Sim-

ilarly, Poland has just 0.09 users per 1,000 of the population. It might be argued

that standardisation using the country-level popularity of Twitter calculated in the

preceding chapter is possible. However, in doing this, a certain degree of risk exists.

With some 76 countries having fewer than 100 associated Twitter users and 20 hav-

ing fewer than five, a small change in the number of users could have a significant

effect on the standardisation procedure. In practice, it would seem more prudent to

consider the relative popularity of Twitter as part of the interpretation rather than as

a step in data processing.

At the conclusion of this section, we are in possession of the probable national-

ity of 75.4% of those individuals identified within the geographic extent of the UK.

Of these, 373,456 users (84.8%) are believed to be resident in the UK. For this, each

user will have a minimum of five Tweets and greater than 50% of their total Tweets

submitted within the extent of the UK. Having identified those users who are be-

lieved resident within the UK, a dataset of Tweets associated with those users was

created. Thus, we are in the best possible position to assess the representativeness

of the data against the observable UK population as recorded in the UK Consumer

Register.
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6.4 Name Extraction
Having identified those users believed to be resident in the UK, the next considera-

tion is the extraction of their personal names. Their names being the linchpin upon

which the following identity attributes are inferred. Individual users’ names were

extracted using the approach outlined in Chapter 4. Initially, this methodology was

designed in such a manner as to be globally applicable and lacked the finesse which

could be achieved given a more bespoke analysis. In the following, a discussion is

provided concerning the extraction of individual users’ personal names. In particu-

lar, challenges will be discussed in the context of the UK-specific inventory. These

challenges include individuals havingmultiple names associated with their identities

and the identification and removal of non-personal accounts.

Considering first the issue of individuals bearing multiple names. While the

name extraction algorithm processes the screen name(s) associated with each user,

limited information is available concerning which, if any of the names correspond to

the user’s true forename and surname. The challenge arises when a specific user has

utilised multiple screen names over the period of data collection. The scale of the

problem may be examined through tabulation of the number of unique screen names

associated with each user id. Table 6.1 presents a frequency table on the number of

different screen names held by the UK-based Twitter population.

Table 6.1: Frequency table reporting the number of different screen names held by UK-
based Twitter users.

Number of Screen Names n %

1 321,807 76.3
2 54377 12.9
3 19,274 4.6
4 - 5 13,693 3.2
6 – 10 7,902 1.9
11 – 109 2,942 0.7

While it is evident that the majority of users have retained a single screen name,

it is clear that having two or more different names is not uncommon. Various sce-

narios exist in which a user may alter their names including alternating between full
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and partial names, a change of relationship status resulting in a name change, or the

user using their screen name to display alternative information such as to make a

statement. Such behaviour raises several distinct challenges. Primarily, how does

one determine which, if any, of each user’s screen names, are their legitimate name?

It was found that by first processing the screen names, often the extracted forename

and surname were identical and that the previous distinction was a consequence of

additional grammar within the name. A hypothetical example being ‘James Smith

2012’ and ‘James Smith’. Once processed, both screen names would have been pro-

cessed as ‘James’ and ‘Smith’ for forename and surname attributes respectively.

Table 6.2: Frequency table reporting the total number of segments within the screen-names
of UK-based users.

Segments Frequency

0 1,135
1 218,335
2 359,467
3 59,339
4 13,596
5 2,936
6 931
7 552
8 295
9 225
10 152

Beyond consideration of the number of screen names held, another major con-

sideration is the names’ form. Unlike many other social networks, Twitter has no

requirement to report distinct forename or surname data. Rather, users are allowed

to use any string of up to 20 unique characters. In Table 6.2, the frequency ta-

ble of name tokens, provides a useful illustration of the distribution of the number

of words within those screen names of UK-based Twitter users. The Table indi-

cates that while the modal number of segments is 2 (359,467), a large number of

users (218,335) also have single word names. Thus, approximately 65.8% of screen

names may be processed. The major omissions are those names with a single seg-

ment mentioned previously. The challenge in the use of these names is to determine
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whether they are names or not. A further consideration is what techniques can be

applied to these assuming they are forenames or surnames. A more complex is-

sue, not directly addressed in this analysis, is the issue of individuals who switch

between the use of nicknames and full names. For Example, alternating between

‘Bob Jones’ and ‘Robert Jones.’ One approach to addressing this concern would be

through the use of a name lookup table such as is published by the Web Science

and Digital Libraries Research Group at Old Dominion University1. Compiled us-

ing genealogical data, the dataset provides a reference between some 1,600 names

and common alternatives. Several commercial alternatives also exist which purport

to possess significantly more names. Two companies which provide such services

are http://www.BasicTech.com and http://www.PeacockData.com. An alternative

approach would be to take the longest of the names identified. In the case of UK

names, it is common practice that nicknames are abbreviations or contractions of

full names. However, while this might work in the case of abbreviations (i.e., Rob

and Robert), it would not be suitable regarding rhyming names (i.e. Bob and Rob)

Seeking to reduce the occurrences of non-human users, a blacklist of words

was created for forename and surnames respectively. To optimise this process, the

top 1,000 forenames and surnames were isolated respectively and then manually

processed to assess their validity. Using the top 1,000 names for each name token

collectively accounted for 79.4% of forenames and 46.5% surnames. The list of

blacklisted words identified is shown in Table 6.3.

6.5 Demographic Assessment
In the previous section, a dataset was compiled composed of Tweets submitted by

individuals believed to be UK residents. This dataset contained 35,835,966 Tweets

submitted by 273,411 unique users. This section is delivered in two parts. First, the

inventory enrichment framework is implemented such that each user, where possible,

is attributed with key demographic markers. Second, the augmented inventory is

compared against the 2011 Census of Population. The comparison will focus on
1https://github.com/carltonnorthern/nickname-and-diminutive-names-

lookup/blob/master/names.csv

http://www.BasicTech.com
http://www.PeacockData.com
https://github.com/carltonnorthern/nickname-and-diminutive-names-lookup/blob/master/names.csv
https://github.com/carltonnorthern/nickname-and-diminutive-names-lookup/blob/master/names.csv
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Table 6.3: Blacklisted words found in personal names.

Forenames Surnames

THE, NA, DJ, BIG, PRINCESS, IM,
ST, IG, LOVE, LONDON, MY, BLACK,
THAT, YOUR, GAME, CAPTAIN, HI,
IN, OLD, UK, QUEEN, WEATHER and
AAP

NA, LTD, XX, FC, UK , CLUB, LON-
DON, PARK, READ, GUY, BOY, LOVE
, ME , GIRL , MAN, XXX , WEATHER,
BITCH, CO, JOBS, DESIGN, XO,
EVENTS, INN, KITCHEN, CAFE,
IRELAND, RICHMOND, SCHOOL,
ENGLAND, HOTEL, SHOP, CURRY,
JR, PT, GROUP and LIFE

the UK as a whole and the Greater London Area. The latter providing a means

to compare the data against the work of Longley et al. (2015). The comparison

will focus on three key metrics: age, gender, ethnicity and geographic distribution.

For the purpose of analysis, census data for each England & Wales, Scotland and

Northern Ireland were sourced.

In the subsequent analysis, each user is assigned an age, gender, ethnicity and

geographic location based on their personal names and historical tweeting activity.

Here it is important to remain mindful that the assignment is based on the general

characteristics of those individuals as expressed in the source data and thus biases

in the original data and heuristics will affect the assignment of demographic charac-

teristics to individuals. Consequently, it is important that the heuristics and source

data are disclosed and due diligence be completed. In the subsequent sections, an

assessment is made of each classification tool such that any manifest biases can be

identified.

6.5.1 Age and Gender
With regard to the inference of users’ genders, various approaches have been em-

ployed across the literature. Such approaches range from the analysis of language

expressed within individual Tweets to the use of specific gender identifiers such as

personal names. The use of personal names, while arguably the most accurate, is

constrained by the availability of suitable reference data. The majority of studies

which have utilised such an approach are based in the United States where name and
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gender data are made publicly available by the Social Security Administration2. In

the case of Longley et al. (2015), a bespoke classification system for age and gender,

based on CACI’s Monica dataset, was employed. The exact method is outlined by

Lansley and Longley (2016a). Constructed using data from credit card applications

and augmented with birth certificate data, the enhanced Monica classification pro-

vides a valuable indication of age and gender structure. The classification is based on

individuals’ forenames and is founded on the premise that particular forenames are

commonly associated with a single gender and further, that they tend to exhibit pat-

terns of use over time (Gallagher and Chen, 2008). Further support to name-based

approaches to age estimation is that they provide an additional means by which non-

personal individuals may be omitted. However, it should be recognised that such

an approach may ignore users whose names are not present in the reference tables.

Such a limitation may lead to the omission of human users with less common names.

Prior to the application of the Monica classification, a validation of the method

was performed. The purpose being to identify any pre-existing bias within the classi-

fication tool. To do this, the classificationwas applied to the 2013Consumer Register

provided by CACI Ltd. The objective being to ensure that the outcome accurately

depicted the true form of the population before conclusions are drawn on the age

structure of the Twitter users. In the case of both the validation against the Con-

sumer Register and the Twitter individual level population inventories, the Monica

classification was adjusted to model the correct age range. In the case of the Con-

sumer Register, the classification is limited to those aged 15 and over, and for the

Twitter classifier, the lower age limit was set as 10. The results of the classifica-

tion test using data from the UK Consumer Register are illustrated in the form of a

population pyramid below.

Figure 6.3 provides a demonstration as to the effectiveness of the enhanced

Monica classification in the modelling of populations based on individuals’ names.

While some discrepancies do exist, for example in the 15-19-year-old female group,
2The Social Security Administration name data are available from 1881 and include counts of

names by gender. The highest geographic resolution is State level. The data are available from
https://www.ssa.gov/oact/babynames/limits.html

https://www.ssa.gov/oact/babynames/limits.html
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Figure 6.3: Population pyramid based on the Consumer Register versus the equivalent data
sourced from the 2011 Census of Population. The Census data are depicted in
grey and the equivalent Consumer Register data in red and blue.

the overall agreement between the two profiles is significant. Consequently, when

applying the Monica classification, we can have confidence that the age structure

observed is an accurate representation rather than simply a manifestation of bias

inherent within the classification itself. In the knowledge that the Monica classifi-

cation is an effective means of inferring age and gender, the first assessment was to

determine if a gender bias existed within the Twitter inventory. The comparison is

performed for the UK as a whole and London.

Tables 6.4 and 6.5 and provide a useful summary of the gender bias observed

in the UK and London more specifically. In particular, it may be observed that their

exists a consistent gender bias towards males who are typically over-represented by

approximately 15%. Across the full population this appears to be fairly consistent.
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Table 6.4: Table showing the proportion of UK users by gender versus the population data
for 2013.

Twitter UK Quotient

Female 111,235 0.40 (0.45)* 32,572,781 (0.508) 0.886
Male 133,485 0.49 (0.55)* 31,532,873 (0.492) 1.118
Unknown 3,141 0.01 n/aNA 25,550 0.1
Total 273,411 1

Table 6.5: Table showing the proportion of London users by gender versus the population
data for London 2013.

Twitter London Quotient

Female 13534 0.37 (0.44) 4,251,200 (0.505) 0.87
Male 17136 0.46 (0.56) 4,165,335 (0.495) 1.13
Unknown 633 0.017 n/aNA 5591 0.15
Total 36894 1

Though, as may be observed in Figures 6.3 and 6.5, the behaviour exhibits a clear

association with age.

Having established that the gender bias at the UK scale is towards male users,

the next assessment is concerned with age structure. It is well recognised that social

network usage, specifically in regards to Twitter, is most concentrated within the

younger age cohorts. This pattern is clearly evident in Figure 6.4 in which one can

observe significantly better representation in the younger age bands. Interestingly,

the transition between over and under representation occurs at different ages based

on gender with males transitioning in the 35-44 age bracket while females transition

in the 30 – 39 age bands. Such a gender divide may be indicative of differences in

activity between genders. Beyond these transitional points, the decrease in usage is

more rapid for females with the male bias becomes increasingly dominant over the

age of 40.

Figure 6.5, the comparative gender plot, provides a clear depiction of the rela-

tionship between age and gender bias in the UK. In the youngest band, 10-14, both

genders are represented relatively equally, however, above this, there is consistent
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Figure 6.4: Population pyramid of Twitter users in the UK versus the equivalent ONS data
for 2011. The ONS data are depicted in grey.

over-representation of males. The exception is in the 85 plus group where females

become more dominant. This is unsurprising given the relatively greater life ex-

pectancy of women.

Having observed the general UK trend, the same comparative analysis was per-

formed for those individuals users believed resident within Greater London. The

purpose of this comparison being two-fold. First, as a means to validate this analy-

sis against that of the Longley et al. (2015) study and second, as an initial assessment

as to whether there is any evidence of a geography to how well Twitter depicts the

population. Considering first age-based patterns, the transition between over and

under-representation is younger in London than the UK: 25-29 for males and 20-29

for females. Regarding general population structure, it would appear that while age

and gender structure vary around the country, the demographic of Twitter users re-

mains largely consistent. Typically, one would observe a largely young population

with a general decline beginning in the late 20s. Also, around the early 30s, the
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Figure 6.5: Gender comparison population pyramid for the UK Twitter Population.

Twitter population becomes increasingly dominated by males.

Comparison of the London scale outcome against the results from the Longley

et al. (2015) study highlights various similarities and differences. While the ob-

served gender bias was practically identical, the age distribution differs. Notably,

whilst Figure 6.6 indicates the 15-19 group as being similar to the 10-14 and 20-24

age groups, the study indicates this group to be approximately 100% larger. This is

surprising given that both studies relied upon the same corpus of Tweets and also

employed similar approaches to the estimation of users’ ages. One possibility is that

average ages were used rather than the age distributions, or the analysis was based

on Tweets rather than users. This could have a significant impact due to common

names which exhibit relatively flat distributions being interpreted based on just the

most common age. Examples of such names include James and David, both which

have remained popular.

Extending the analysis, it would be interesting to understand differences in be-
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Figure 6.6: Population pyramid of Twitter users in London versus ONS data for 2011. The
ONS data are depicted in grey.

haviour between genders and the number of Tweets submitted. For example, does

gender influence the frequency of tweeting and do different age groups tweet at dif-

ferent rates. This in itself may provide a useful indicator of how Twitter may be

applied in studying population stocks and flows. For example, while considered as a

whole may appear to be representative across a broad spectrum of the population, if

one specific group, for example under 25s, tweeted at a much greater rate then this

could potentially lead to a biased sample being utilised within the study.

Importantly, the comparative analysis demonstrated that there is a geography to

the distribution of age and gender within the UK regarding the true population. This

is, however, less pronounced in the Twitter data which appears to have a consistently

younger user base. Further, there is an apparent geography to the uptake of social

media by each gender. London, for example, appears to have a greater bias towards

males than is observed in the UK. This observation highlights the importance of

understanding local social media demographics when making any decisions based
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Figure 6.7: Gender comparison population pyramid for the London Twitter population.

on the analysis of the data.

6.5.2 Ethnicity
Having established the degree to which the Twitter-derived population inventory is

representative regarding age and gender, the next concern is that of ethnicity. The

availability of data about ethnicity enables analysts to better explore patterns of be-

haviour.

A major concern in the application of the Onomap classification is the degree

to which the observed results are an accurate depiction of the population, or rather,

an illustration of preexisting bias within the Onomap classification itself. Should

this bias be the case, there is a significant risk of misinterpreting, and by effect, mis-

representing the actual ethnic composition of the Twitter population. In seeking to

determine the extent of this bias, it was proposed that the Onomap classification be

first applied to the 2013 Consumer Register. The justification for such a move, as

was the case with assessing Monica, was that the Consumer Register is arguably the
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most inclusive record of the population in the UK. Though, in utilising the Con-

sumer Register, it is recognised that the Edited Electoral Register, the mainstay of

the Consumer Register, is known to under-represent various minorities.

For the purpose of comparison, a lookup table was created between the Onomap

CEL Groups and an aggregate classification of UK-wide Census ethnicity groups.

An introduction to the Onomap classification is provided in Section 2.4.2.3. In

essence, the Onomap classification scores individuals forenames and surnames us-

ing a heuristic algorithm which assigned individuals to a specific CEL group based

on the strength of association. The aggregate classification of ethnicity was created

for the purpose of linking the three different UK Censuses. While each of the three

administrations collects data on ethnicity, the classification employed is not consis-

tent. The relative percentages of each population by ethnic group are shown in Table

6.6. To aid in comparison, the quotient for each group is reported. A quotient value

of greater than 1 indicates a higher proportion that expected and less than 1 indicated

less.

Table 6.6: Ethnicity breakdown comparison between the 2013 Consumer Register and 2011
Census of Population.

Aggregate Census Group CR2013 Onomap Census 2011 Quotient

White - All - Gypsy - Traveller - Irish Traveller 92.42 87.2 1.06
Asian - Asian British - Indian 1.97 2.30 0.86
Asian - Asian British - Pakistani 1.79 1.90 0.94
Black - African - Caribbean - Black British 0.85 3.00 0.28
Asian - Asian British - Other Asian 0.72 1.40 0.51
Asian - Asian British - Bangladeshi 0.40 0.70 0.57
Asian - Asian British - Chinese 0.32 0.70 0.46
Mixed - Multiple Ethnic Groups 0.00091 2.00 0.00
Other Ethnic Group 1.52 0.90 1.69

Inspection of Table 6.6 provides a range of insight regarding the effectiveness

of the Onomap tool in the classification of ethnicity. In general, with the excep-

tion of the ‘Mixed Multiple Ethnic Group’ category, the Onomap classification

has performed well. The explanation for the ‘Mixed Multiple Ethnic Group’ is

that Onomap tends towards discrete classification or other, rather than suggesting

‘Mixed’. This is evident from the ‘Other Ethnic Group’ category. The main group,

‘White’, is slightly over-represented in the Consumer Register which is unsurprising

given that this group is the best represented in the electoral roll. It is likely that the
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over-representation in this group is responsible for the slight under-representation in

other groups, specifically, the ‘Indian’ and ‘Pakistani’ groups. The other three Asian

groups are also under-represented in the Consumer Register with a typical quotient of

around 0.5. The consistency between the Asian groups suggests a systematic under-

representation. Lastly, the ‘Black’ group is the most significantly under-reported

with a quotient of 0.28. Given that the Consumer Register is so comprehensive, it

would appear that the differences in classification between the classified Consumer

Register are a result of the Onomap classification tool rather than an issue with the

register itself.

Table 6.7: Census response rates for England and Wales by Ethnic Group 2011 (ONS).

Ethnic Group Persons (%) Males (%) Females (%)

White: English/Welsh/Scottish/Northern Irish/British 95.1 94.4 95.9
White: Irish 94.0 92.4 95.5
White: Gypsy or Irish Traveller 90.1 88.9 91.2
White: Other White 90.3 88.0 92.4
Mixed/multiple ethnic groups: White and Black Caribbean 83.4 81.7 85.0
Mixed/multiple ethnic groups: White and Black African 82.8 80.6 85.0
Mixed/multiple ethnic groups: White and Asian 85.4 83.3 87.5
Mixed/multiple ethnic groups: Other Mixed 82.5 79.9 85.0
Asian/Asian British: Indian 94.3 92.9 95.7
Asian/Asian British: Pakistani 93.5 92.5 94.6
Asian/Asian British: Bangladeshi 92.5 91.1 94.1
Asian/Asian British: Chinese 84.6 81.2 87.6
Asian/Asian British: Other Asian 85.1 81.9 88.1
Black/African/Caribbean/Black British: African 88.2 85.8 90.5
Black/African/Caribbean/Black British: Carri bean 91.9 90.3 93.4
Black/African/Caribbean/Black British: Other Black 64.0 60.1 68.1
Other ethnic group: Arab 72.4 68.7 77.5
Other ethnic group: Any other ethnic group 74.0 69.5 79.4

Table 6.8: Estimated electoral registration rates of Census respondents by ethnic group 2011
(ONS).

Ethnicity Cases Estimated Registration Rate (%) 95% Confidence Interval (%)

White 35,158 88.8 87.8 - 89.7
Mixed 735 79.3 75.2 - 83.4
Indian 1,763 85.4 82.7 - 88.2
Pakistani 1,203 80.5 75.9 - 85.0
Bangladeshi 609 79.7 74.4 - 84.9
Other Asian 881 80.4 76.1 - 84.6
African 963 75.4 71.2 - 79.6
Caribbean 912 84.1 80.9 - 87.3
Other Black 190 75.5 68.1 - 82.9
Other 345 78.7 72.6 - 84.9
Unknown 478 73.2 67.3 - 79.0

That said, the observations in the above are, in part, supported by known under-

reporting in the Census of Population and the Electoral Register. Tables 6.7 and 6.8
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provide a valuable illustration of differences in census and electoral roll comple-

tion/registration dates from the Census collection for England and Wales. Notice-

ably, that in both cases, the ‘Black’ groups are typically the most under-represented.

Furthermore, comparison of the two tables suggests that under-reporting and under-

representation are a consistent issue in the collection of national datasets.

In 2010, the Electoral Commission published a report on the completeness and

accuracy of electoral registers in Great Britain. Whilst it is noted in the report that the

work is based on an unrepresentative sample of electoral regions, the results do pro-

vide some insight into the patterns of representation. Notably, under-representation

of the ‘Black and Minority Ethnic’ residents. Approximately 31% of those individ-

uals in the ‘Black and Minority Ethnic’ groups are unregistered versus 14% in the

‘White British’ group. Based on this observation, it might be argued that the under-

representation identified in the 2013 Consumer Register is not a consequence of

classification, and rather, that the group is notably under-represented in the register

as a whole.

If we make the assumption that the bias in the Onomap classification is system-

atic, it may be more appropriate to compare the Twitter ethnic composition against

the comparable data from the Consumer Register. In effect, both datasets have been

processed under the same bias assumption. An added advantage of such an ap-

proach is that the assessment of representativeness can be conducted on an annual

basis rather than on a decennial basis in line with the publication of the Census.

Table 6.9: Ethnicity breakdown comparison between the UK Twitter Population and 2011
Census of Population.

Twitter Onomap (%) Census 2011 (%) Quotient

White - All - Gypsy - Traveller - Irish Traveller 93.36 87.2 1.07
Asian - Asian British - Indian 1.36 2.30 0.59
Asian - Asian British - Pakistani 1.11 1.90 0.58
Black - African - Caribbean - Black British 0.75 3.00 0.25
Asian - Asian British - Other Asian 0.77 1.40 0.55
Asian - Asian British - Bangladeshi 0.23 0.70 0.33
Asian - Asian British - Chinese 0.54 0.70 0.77
Mixed - Multiple Ethnic Groups 0.0006 2.00 0.00
Other Ethnic Group 1.88 0.90 2.09

Table 6.9 presents the comparison between the Onomapped Twitter inventory

and the aggregate 2011 Census data. Here, a similar pattern of over and under-
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representation is observed with the collective ‘white’ group over-represented and

the Black and Bangladeshi Groups being most under-represented. This view again

supports the hypothesis that comparison against the classified Consumer Register is

a more appropriate means of validation.

Table 6.10: Ethnicity breakdown comparison between the UK Twitter Population and the
2013 Consumer Register.

Twitter Ono. (%) CR 2013 Ono. (%) Quotient

White - All - Gypsy - Traveller - Irish Traveller 93.36 92.42 1.01
Asian - Asian British - Indian 1.36 1.97 0.69
Asian - Asian British - Pakistani 1.11 1.79 0.62
Black - African - Caribbean - Black British 0.75 0.85 0.88
Asian - Asian British - Other Asian 0.77 0.72 1.07
Asian - Asian British - Bangladeshi 0.23 0.4 0.58
Asian - Asian British - Chinese 0.54 0.32 1.69
Mixed - Multiple Ethnic Groups 0.0006 0.0009 0.62
Other Ethnic Group 1.88 1.52 1.24

Table 6.10 provides the comparison between the individual level Twitter popu-

lation and 2013 Consumer register. Here it is evident that some of the bias previously

observed has decreased in magnitude; most noticeably in the case of the collective

‘White’ group. Consequently, the quotients suggest an improvement in how well the

Twitter population depicts the ‘observable’ population. In fact, the ‘Black’ Ethnic

Group, previously the most under-represented, appears to be closer to what would

be expected. That said, with the exception of the ‘Chinese’ and Other Asian groups,

there remains a consistent level of under-representation.

In Figure 6.8, the bar plot shows the breakdown of ethnic groups in the UK

based on the three different population representations: Twitter, the 2013 Consumer

Register and the aggregate Census data. The Consumer Register and Twitter both

having been processed with Onomap. Considering a comparison between the Cen-

sus and Consumer Register data, shown in Table 6.6, which there is consistent under-

representation in all groups except the ‘White’ group and the ‘Other’ category. That

said, the order of magnitude by which said discrepancies varies notably. To indicate

the degree of difference, the quotient is reported as the Consumer Register percent-

age divided by the Census percentage. Consequently, a positive value indicates that

the group is over-represented in the Consumer Register and vice versa.

In summary, the analysis of how representative the Twitter population are re-
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Figure 6.8: Plot showing the ethnic breakdown between the UK Census of Population in
2011, the 2013 Consumer Register and the Twitter population. Note that the
data for the White Ethnic Group are omitted. The figures for the White group
were 87.2% (UK Census), 92.42% (CR2013) and 93.36% (Twitter).

garding ethnicity in the UK has been quite inconclusive. In seeking to validate the

Onomap tool, it was observed that the outcome was significantly different fromwhat

would have been expected given the equivalent data sourced from the UK Census

of Population. Consequently, caution should be exercised when making any conclu-

sions regarding how well Twitter represents the population regarding ethnicity. This

area of ethnicity classification, in particular, would be a valuable future research

direction.

6.5.3 Geographic Distribution
Having assessed the Twitter population regarding age, gender and ethnicity, the final

consideration is that of geographic distribution. The purpose here is twofold. One,
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to gain an understanding as to the geography of Twitter users within the UK and two,

to ascertain and inform others on what is a suitable scale for analysis. In seeking to

examine this, the Twitter population inventory was processed such that it depicted

the population at a range of spatial scales. As was noted previously, the methodol-

ogy is hierarchical in nature meaning that as the resolution is decreased, the valid

population will increase in size. This analysis was performed at the following scales:

Output Area, Lower Super Output Area, Ward, Middle Super Output Areas and Lo-

cal Authority and Unitary Authority. It is important to note that as the number of

areas is reduced, not only are more users successfully assigned to a specific region,

the number of individuals within regions will rise meaning a potentially larger and

more representative population.

In many respects, the decision over what scale of analysis should be employed

is guided by the phenomenon that is being studied. However, as has been indicated

in the above, the greater the level of granularity, the lower the quality of the Twitter-

inventories. Thus, there is likely to be a requirement for compromise in any analysis

that is performed. Often, we are simply interested in determining regional views or

sentiment. In such cases, the finer geographies such as OA and LSOA are irrele-

vant and may lead to omission of useful data or false precision. Geographies such

as Unitary Authorities and Districts and Travel to Work areas then become more

appealing.

Table 6.11: Count of valid Twitter users in the UK at a range of spatial scales.

Geography Users Areas Users per Area

OA 128,974 232,033 0.6
LSOA 170,484 42,622 4.0
Ward 184,961 9,199 20.1
MSOA 190,190 8,484 22.4
LAUA 235,278 394 597.2

For reference, a study by Mislove et al. (2011), analysing age, gender and eth-

nicity in the United States based on Twitter used the geographical unit of counties.

Given that Mislove et al. (2011) identified 3,279,425 unique Twitter users, and there

are 3144 US counties, this equates to approximately 1,043 Twitter users per county.
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This number was considered sufficient to draw out national insight. Table 6.11 pro-

vides an illustration of potential samples sizes given varying scales of analysis in

the UK. From the table, it is evident that while the Twitter population is relatively

large, once split across the various administrative spaces, the data rapidly become

sparse. In this case, Local Authority and Unitary Authority districts would appear to

be the highest practical resolution for the study of population stocks. The following

two maps present the LQ across the UK for the UK as a whole and an excerpt for

London.

Figure 6.9, the LQ map provides a useful illustration as to the geography of

Twitter use in the UK. Areas marked in green indicate a greater than expected num-

ber of Twitter users while red indicates fewer. Examining the UK as a whole, it is

clear that there exist a geographic behaviour with a roughly N to South progression

from over to under-representation.

An investigation conducted by British Telecom in 2012 interviewed approx-

imately 2000 individuals regarding their use of and preference for Online Social

Media. The analysis suggested that Scotland has the highest proportion of Social

Media users in the UK with 48% making regular use of the Internet. These figures

were 43% in Wales, 20% in Wales, 33% in the North East, 39% in the South West

and 45.7% in London. While these figures cannot be substantiated, they do provide

some further context to the patterns observed.

Looking more closely at London, illustrated in Figure 6.10, it is evident that

a degree of banding exists with general under-representation. The exception to this

being Westminster and the City of London which are for this analysis considered

as a single region. It is likely that differentiating between Westminster and the City

of London would highlight more significant over-representation within the City of

London. The bias found in this area is undoubtedly associated with the high daytime

population associated with the large influx of workers.

The five areas with the highest over-representation are Cardiff, Gloucester, Liv-

erpool, Swansea and Lincoln. A feature across the five regions is that the areas have

younger than average populations. Given that Twitter is biased towards a younger
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Figure 6.9: Map showing the LQ of Twitter Users versus all usual residents as recorded in
the 2011 Census of Population.
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Figure 6.10: Inset of UK-wide map (Figure 6.9) showing the LQ of Twitter Users in London
versus all usual residents as recorded in the 2011 Census of Population.

demographic the effect is magnified. In each case, the regions have significant stu-

dent populations. The effect being to artificially inflate the size of the population.

However, the students are in effect temporary migrants leaving the place of educa-

tion on completion of their studies. The effect is to introduce a greater number of

individuals who are likely to use social media services.

The five areas with the greatest under-representation are King’s Lynn and West

Norfolk, Wandsworth, Brent, Harrow and Kensington and Chelsea. Considering

the four London regions, the key factor influencing the comparison is the degree to

which the resident population travel beyond their region of residence. In each of the

four cases, a significant portion of the population travels to the City of London for

work. Consequently, a proportion of those individuals resident within each of the

areas are likely to have been miss allocated reducing the size of the observed Twitter
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populations. Conversely, this would have led to the over-representation within the

City of London. The authority of King’s Lynn and West Norfolk was the most sig-

nificantly under-represented by Twitter. Unlike areas with similar populations, such

as Poole with 399 Twitter users, just 2 users were assigned to the region.

As has been discussed at various points over the course of this thesis, the spatial

units employed presents a distinct challenge in the application of geotagged social

media. While it is desirable that all data be considered in the identification of indi-

vidual’s probable places of residence, where individuals move between regions for

work, as in the case of the City of London, it is not uncommon for individuals to be

misallocated. This issue is arguably most evident in large metropolitan areas such

as Greater London.

The result of this analysis reinforces the idea of employing Travel toWorkAreas

for the analysis of Twitter data. As noted previously, Travel to Work areas have

several key advantages. Constructed using Census commuting data, the Travel to

Work Areas split the UK into 228 regions. In each case, 75% or more of individuals

live and work within the same area. Further, London, an area previously discussed as

being the most biased, is represented as a single region. Lastly, the classification is

constructed through the aggregation of existing census geographies which provides

a valuable means to link data.

6.6 Discussion
A common criticism of social media based analysis is that the data are not represen-

tative of the population as a whole. Significant analysis has been and continues to

be performed with little or no regard to these limitations. Too often, data collected

via online social networks are labelled under the heading of Big Data and are con-

sequently considered rich. This idea appears to resonate with the early statement

by Wired Magazine proclaiming that Big Data marked the end of theory and that in

turn, the scientific method was now obsolete (Anderson, 2008). In practice, once

the data are processed and filtered for the study, they are often sparse and provide

a much poorer descriptor than may at first have been hoped. Bollier and Firestone
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(2010) note that Big Data is driven to a greater degree by storage capability and hype

more than by the superior means by which the data may be analysed. Case in point

being the data employed in the completion of this thesis. From a pool of 1.4 Billion

Tweets, submitted by 24.4 million users, just 206,825 of those users are incorpo-

rated into the final analysis of the UK. However, had the original dataset not been

collected, a significant amount of valuable information would have been missed.

Furthermore, the observation is made that the data are a self-selecting sample

of an already self-selected group. In the case of this thesis, these data are from those

individuals who have chosen to use the Twitter social network and further, havemade

the active decision to share their location information. Such behaviour leads to bias

within the sampling frame which, unlike a random or stratified sample is not easily

quantified by the researcher. In the case of Twitter, the situation is further exacer-

bated by the lack of any explicit demographic tagging beyond names. This thesis,

along with select other studies, has sought to address this criticism through the de-

velopment and implantation of methods to infer key identity-related information.

Subsequently, these analyses provide a means by which others may make more in-

formed decisions regarding the analysis which they wish to perform. To illustrate the

significance of the above, two cases are provided. The first looking at the outcome

of the 2016 UK vote on EU membership, the second being the 2015 UK General

Election. Both examples in which Twitter-based analysis incorrectly predicted the

vote outcome.

First, given a theoretical goal to predict the outcome of the 2016 UK Vote on

EU membership, a researcher may wish to analyse sentiment on social media con-

cerning each outcome and use this as the basis of their prediction. In this situation,

it is quite probable that the researcher would make the incorrect conclusion that the

Remain Vote would be a clean win. Why is this? Survey data collected by Statista

(2016) clearly indicate an age divide in voter preference with those below 50 be-

ing largely pro Remain and over 50’s largely pro Leave. The problem then arises

that Twitter is over-representative (based on age) of the Remain campaigners and

under-representative of the Leave campaigners.
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Figure 6.11: Voting preference by age and gender in the UK EU Referendum 2016 (source:
Statista, 2016).

Had the researchers had access to this information, they would then have been

able to weight their results based on what is known about the age bias, or, select an

alternative form of data collection for their study. Such age and gender transitions

regarding voting preference are by no means unique. A similar age transition is ob-

served in voting behaviour in the UK. Typically, younger voters express a greater

preference for the left which steadily transitions towards the right as voters get older.

That is not to say that voting preference changes, rather, the behaviour may be asso-

ciated with the shift of specific generations.

Table 6.12: Voting preference by age in the 2015 UK General Election (Ipsos Mori, 2015).

Conservative (%) Labour (%) Lib. Dem. (%)

18-24 27 43 5
25-34 33 36 7
35-44 35 35 10
45-54 36 33 8
55-64 37 31 9
65+ 47 23 8
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Data from Ipsos Mori (2015), shown in Table 6.12, illustrates the percentage of

the vote for three of the main UK political parties based on age. It can be seen that

while the Liberal Democrats remain relatively consistent across years, a major tran-

sition occurs between the Conservatives and Labour. Similar to what was discussed

regarding the EU vote, the data available from Twitter over-represents the 18 – 34

age bands and is consequently more likely to represent left-leaning views.

A perfect illustration is provided in a study by Burnap et al. (2016) seeking to

predict the outcome of the 2015 UK General Election. Conducted before the elec-

tion, the study used semantic analysis of political Tweets as a means to predict the

eventual victor. Their analysis suggested a labour working majority 21 seats. In real-

ity, the Conservative won the election with a working majority of 12. Whilst this ob-

servation is made with the benefit of hindsight, had the study taken account of the de-

mographic structure of Twitter users in the UK and the association between age and

voting preferences, it is entirely possible that they would have accurately predicted

the referendum outcome. This would have been achieved by applying a weighting

in favour of the conservatives who would appear to have been under-represented in

the Twitter population. This could have been further developed through applying

weightings in a gender-specific manner.

The second consideration for much social media analysis raised and addressed

in this study is that of inclusivity. It was noted how, in much analysis, the data

employed in the study are constrained solely to the study area. Such an approach

raises various issues. First, an assumption is made that all individuals identified

within the study area are, in fact, resident. This is clearly not the case. In the case of

this analysis, it was shown that just 84.52% of those Twitter users recorded within

the bounding box were, in fact, UK residents. It is quite probable that this figure

is higher in London. This is not to say that the inclusion of individuals who reside

outside the UK is a negative feature of the data. Rather, it provides a useful means to

subset the population such that it is comparable to conventional population data. It

is important to note that such insight would not have been possible had the original

data collected been constrained to the extent of the UK.
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Figure 6.12 provides a novel illustration of the additional insight which may

be achieved given a fully inclusive dataset. The map shows the immediate area sur-

rounding Heathrow airport superimposed with Tweets coloured based on the users’

countries of residence aggregated to global regions. While this is just an illustration,

such an approach could be feasibly employed in a range of applications to monitor

international population stocks and flows and also to gain a better sense of place

and space. For example, investigating the local catchment of retail centres. Such

analysis highlights the importance of taking a holistic view when analysing social

media data. As discussed previously, the nature of the Twitter API and associated

rate-limits means that in the majority of cases, supplementing the data is not feasi-

ble. Consequently, when one is deciding to study a particular phenomenon, it is best

that the largest collection window possible is employed.

The final consideration discussed is related to the unit of analysis to be em-

ployed. The two units available are either the Tweet or the user. Both approaches

are valid. However, use of the wrong measure has the potential to introduce bias.

Using the Tweet enables the analyst to track behaviour and may be useful in tracking

the general behaviour of the population. Conversely, use of the user has the advan-

tage that you may gain a more holistic view of the user, drawing on a potentially

larger pool of data when making conclusions about the user and their behaviour.

It could be argued that a hybrid approach is most valid in which the data on each

user is employed in the assignment of general characteristics, and subsequently, that

these characteristics can be used to add value to the individual Tweets. For exam-

ple, Figure 6.12 relies on each user’s Tweets to determine their probable countries

of residence but then uses this information to augment the Tweet level analysis.

A key limitation in the analysis of Twitter data are the constraints regarding

the sharing and publication of data. While the Twitter API does provide a means by

which data may be collected, sharing of the resultant data are prohibited. Further, the

sole means to collect large volumes of data is the streaming API which is limited to

providing real-time data. Consequently, without significant financial outlay, legacy

data are not easily accessible in bulk. This issue is a major concern for academics
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who often constrain their data collection to a specific study window.

6.7 Conclusions
In this chapter the objective was two-fold. First, to assess the overall representa-

tive capability of the Twitter-derived population in the UK and second, to make

recommendations as to how social media, specifically Twitter, should be employed

in academia and more generally in industry. In regards to its representative ability,

evidence was found in support of the anecdotal beliefs that Twitter is utilised by a

younger generation with a bias towards male users. This behaviour was found to be

consistent across the whole population. The analysis of ethnic representativeness

was inconclusive with some concern raised regarding the approach used for classi-

fication. While the breakdown of groups was in the right order of magnitude, the

validation of the method using the Consumer Register did not support a belief that

the classification was sufficiently nuanced for the purpose of this study. In regards

to geographic distribution, it is clear that Twitter it not equally representative across

the UK. Rather, there are clear regions of over and under representation. Key factors

affecting this include both regional differences in the demographic structure such as

age, gender and ethnicity along with outside factors such as short-term education

migration.

Given that this information is now available, should researchers choose to

recognise it, some of the limitations which have held social media back as a demo-

graphic data source may now be addressed. The key point is that for the successful

and effective analysis of social media a systematic approach must be taken. The first

consideration of which should be, to what degree is Twitter representative of the

population to which I wish to generalise my results.



Chapter 7

Social Media Demographics

7.1 Introduction
Until now, this thesis has sought to investigate the utility of social media derived

population inventories in the depiction of stocks and flows of ill-defined and self-

selecting segments of the population. Throughout this, a somewhat negative impres-

sion of social media has been depicted regarding its ability to capture the true breadth

and diversity of the usual observable population. This view has resonated with much

anecdotal evidence regarding the representativeness of social media data (Mislove

et al., 2011; Longley et al., 2015). That said, the research has shown that in certain

circumstances, the data may still provide the capacity to generate useful insight. In

particular, there is potential to investigate general patterns of human mobility within

the population. Given sufficient recognition of the limitations and biases, the data

may provide a novel means by which human mobility patterns may be observed and

investigated. Various literature exists regarding the application of social media data

to the study of movement in space and time such as Hawelka et al. (2014) who ex-

plored the use of geotagged Tweets in modelling international travel patterns, Jurdak

et al. (2015) who explore the use of geotagged Tweets in the modelling of travel be-

haviour within and between cities, and Lloyd and Cheshire (2017) who incorporated

Tweets into the identification of retail centre locations and the subsequent derivation

of their catchments. At the finest scale, Lansley and Longley (2016b) explored the

potential for Twitter data for the detection and measurement of footfall. A key fea-



208 Chapter 7. Social Media Demographics

ture of the Lansley and Longley (2016b) analysis was the suggestion that textual data

mining could be used as a means to better understand individuals’ behaviour.

In this chapter, the objective is to demonstrate how Twitter and the methods de-

veloped during this thesis may be implemented in developing dynamic demographic

insight in a novel context. This potential is demonstrated through a case study based

on London’s four largest airports. The study demonstrates the construction of demo-

graphic profiles for each airport, delivers an overview of the passengers’ collective

spatio-temporal mobility patterns, and finally, outlines the strengths, weaknesses and

opportunities of such an approach. The chapter is arranged into three parts. First, the

focus is on replicating the types of insight which may be obtained using traditional

forms of data. In the second, the focus will shift to identifying insight not possible

through the use of such data. In the final section, the discussion will determine the

strength, weaknesses and opportunities for Twitter in the acquisition of actionable

population insight. It should be noted that the methods implemented here are easily

transferable and could potentially be incorporated into a data dashboard or analytics

toolkit.

7.2 Case Study: London Airports
For the purpose of this study, the analysis is conducted on London’s four largest

airports: Heathrow, Gatwick, Stansted and Luton. In 2013, these four airports han-

dled over 135 million passengers flying to destinations across the globe. Situated

near London, UK, the four airports cater to a range of different transport require-

ments with Heathrow processing the bulk of extra-European travel while the three

remaining airports are targeted more generally at destinations within Europe. The

location of each airport and their relative passenger numbers is shown in Figure 7.1.

Note, that due to the temporal coverage of the Twitter data employed in the study,

the analysis, where possible draws on passenger data and other statistics from 2013.

Several motivations exist for the use of airports within the case study. First and

foremost, airports are a dynamic yet relatively constrained environment for the ob-

servation of stocks and flows of populations. Given the nature of airports and the
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Figure 7.1: Map showing the locations of the six major London airports and the number of
passengers in 2013.

requirement to effectively move individuals from arrival at the airport to their de-

parture gates and the equivalent handling of arriving passengers their is significant

interest in being able to observe and model individuals’ behaviour. Within the air-

port ecosystem various stakeholders have a vested interest in this information. From

a security perspective, it is important to understand general population dynamic, the

ease at which individuals can move through the airport and where they may have

originated from or be travelling to. From a retail perspective, there is an interest

in understanding the demographic composition of airport travellers over time such

that sales and income may be maximised. Finally, from an administration and re-

porting perspective it is important for each airport to understand the geography and

demographic of its customers. Such information can be incorporated into service

provision and infrastructure planning to optimise the airports function.

Second, from the perspective of future work, many parallels may be drawn between

the airport environment and other locations in which there is a need to understand

the stocks, flows and attitudes of the population. Proving useful in the airport con-



210 Chapter 7. Social Media Demographics

text, such methods may be readily applied to locations such as retail centres, sporting

venues or alternative transport hubs. The key advantage of the airport over the alter-

native candidates is the abundance of data in the public domain concerning airport

activities. The availability of such data provides a foundation for which the results

of the subsequent analysis may be verified. Those data that are available include

aggregate passenger statistics published by the UK Civil Aviation Authority, and

a selection of marketing statistics published by the various airport groups such as

JCDecaux1. These data are typically very aggregate in both space and time pro-

viding only a generalisation of airport activity. More precise and informative data

no doubt exist internally within airports, however, are not made available within the

public domain; a further justification for social media based insight generation.

7.2.1 Data
The data employed in this case study are drawn from the same global corpus of

Tweets first introduced in Chapter 4. In the case of each of the four airports, the

bounding box was calculated, and in turn, this was used to identify those users who

have tweeted within the airport perimeter. Subsequently, all Tweets by those users

identified were obtained from the database. As has been noted at various points

throughout this thesis, use of a data-rich approach enables the identification of in-

dividuals’ nationalities, areas of residence and to some extent, their general be-

haviours. In turn, heuristics may be applied to the data in the knowledge that they

are being implemented in an appropriate manner. A key example being the Monica

age and gender classification which has been constructed using UK data and may

therefore only be applied to residents of the UK.

7.2.1.1 Tweet Maps
As a primary indicator of the extent of activity associated with each airport, a 10%

sample of the geotagged Tweets for each airport is taken and plotted on a world map.

These maps provide both an indication of density and coverage.

1JCDecaux is an international marketing organisation heavily involved in
transport marketing. An example of the passenger profiles may be viewed at
http://passengerprofiles.jcdecauxairport.co.uk/project-view/heathrow/

http://passengerprofiles.jcdecauxairport.co.uk/project-view/heathrow/
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Figure 7.2: Map showing 10% sample of Tweets submitted by those Twitter users identified
within the Heathrow Airport extent.

Figure 7.3: Map showing 10% sample of Tweets submitted by those Twitter users identified
within the Gatwick Airport extent.
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Figure 7.4: Map showing 10% sample of Tweets submitted by those Twitter users identified
within the Stansted Airport extent.

Figure 7.5: Map showing 10% sample of Tweets submitted by those Twitter users identified
within the Luton Airport extent.
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The four maps, depicted in Figures 7.2 through 7.5, provide an initial indication

as to the geography of the tweeting activity associated with each of the four airports.

It should be recognised that this viewpoint does not explicitly depict the origins and

destinations of passengers, rather, it represents locations visited by those individu-

als within each airport perimeter. These locations may be indicative of individuals’

usual places of residence, the areas which said individuals inhabit during their rou-

tine activities or random locations which they have visited. Further, analysis of the

data may provide insight into users’ other international travel behaviour providing a

means by which different airports/travel methods may be connected. Furthermore,

it should be recognised that the data may include false or misleading data where

Tweets have been submitted with fabricated or adjusted locations.

Consistent across the four datasets is a large number of Tweets within the

bounds of the UK, a feature which is unsurprising but a useful reality check. Consid-

ering first Figure 7.2, Heathrow, it is clearly evident that this is the dominant airport

with dense coverage across the populated regions of the Americas, Europe, Asia and

Australasia. Figure 7.3 and 7.5, Gatwick and Stansted, appear to be relatively global

with Stansted having the greater European focus of the two. Stansted is the home

of the largest low-cost carrier in Europe, Ryanair. Luton, depicted in Figure 7.5,

the smallest of the four airports, has some global coverage, however, appears most

strongly concentrated in the central European band of countries. Given that the Twit-

ter data span a whole year, it is unsurprising that Tweets are observed beyond each

airport’s typical regions of operation.

While it is possible to make some inference regarding individuals’ collective

behaviours based on the raw data, they are of limited value. However, their value

may be realised through the application of heuristic techniques able to infer indi-

viduals’ geographic attributes and personal identities. In this case study, the factors

considered are nationality, age, gender, ethnicity and place of residence.

7.2.2 Nationality
Inferring the nationality of social media users is not in itself novel. However, it does

play an important role in regards to the subsequent inference of individuals’ personal
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identities. Lacking this information, it is not appropriate to infer individuals’ ages

or the purpose of their travel. Further to improving how the various heuristics are

applied, knowledge of nationality facilitates differentiation between those who are

residents and those who are not. This is particularly relevant given the high propor-

tion of people travelling through the four airports who are not residents of the UK.

Heathrow passengers, for example, are composed of approximately 60% non-UK

residents. As in previous Chapters, individuals’ nationalities are inferred based on

their historic tweeting activity. The condition that five or more and greater than 50%

of an individual’s total Tweets is applied. The nationality analysis was performed

for each of the four airports and is presented below.

Figures 7.6 and 7.7 illustrates the top 20 nationalities observed within each air-

port excluding those users believed resident within the UK. The four graphs provide

further insight as to the breakdown of passengers across the four airports. Notably,

based on the Twitter data, Heathrow possesses the both the greatest frequency and

proportion of travellers of non-EU nationality. This, given the airport’s previous

recognition as an international hub, is unsurprising. In the case of the three other

airports, it is evident the top nationalities observed are more strongly concentrated in

Europe. In the interpretation of the above, it must be remembered that some factors

will influence the relative position and magnitude of each nationality. The key fac-

tor in this being the relative popularity of the Twitter social network. Where Twitter

lacks popularity within a given country, for example, Germany, the number of pas-

sengers is likely to be less well represented whereas in Kuwait, a country in which

Twitter is very popular, passengers are likely to be better represented. Theoretically,

given that we have some information regarding the popularity of Twitter, the counts

could be standardised to represent the exact composition of the population better.

Such an approach, however, is liable to introduce a significant degree of error due to

the occurrence of small numbers in the case of both the global assessment of Twitter

popularity and also, in the counts of nationalities observed at each airport.

Table 7.1 shows the breakdown of travellers at each of the four airports by UK

residency as determined from Twitter versus the same metrics recorded by the UK
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Figure 7.6: Bar plot showing the inferred nationality of individuals identified at Heathrow
(top) and Gatwick (bottom).
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Figure 7.7: Bar plot showing the inferred nationality of individuals identified at Stansted
(top) and Luton (bottom).
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Table 7.1: Comparison of UK-resident vs. non-UK-residents at each airport based on CAA
and Twitter Data.

Twitter CAA

U
K

Q
u.

Fo
re
ig
n

Q
u.UK Foreign UK Foreign

n % n % n (000) % n (000) %

Heathrow 12,261 59.75 8,258 40.25 29,523 40.35 43,642 59.65 1.48 0.67
Gatwick 11,755 84.92 2,088 15.08 27,342 72.17 10,544 27.83 1.18 0.54
Stansted 4,466 73.14 1,640 26.86 11,663 58.61 8,236 41.39 1.25 0.65
Luton 2,804 89.36 334 10.64 7,931 76.26 2,469 23.74 1.17 0.45

Civil Aviation Authority. Based on the results shown, it is evident that Twitter sys-

tematically under-represents foreign travellers. The UK Quotient indicate by what

factor Twitter over-represents UK residents, and the Foreign Quotient indicates by

what factor Twitter under-represents non-UK residents. There are several possibil-

ities as to why this behaviour may occur. First, the Twitter data are inclusive of

those individuals who are employed at each airport. Second, non-UK residents are

less likely to have access to mobile data services. A further factor influencing the

above may be individuals’ countries of origins. Given that the popularity of Twitter

varies between countries, and that the relative proportion nationalities within each

airport differ, the composition of travellers is likely to have some impact on howwell

represented foreign tourists are. It is evident from the above that there is a striking

over-representation of UK residents and under-representation of non-UK residents.

The difference between these two groups appears to be systematic.

The reason both Heathrow and Stansted may better represent tourists is likely

due to the popularity of Twitter within the main origin/destination countries: Spain,

Italy, Ireland and, in the case of Heathrow, the United States.

7.2.2.1 Age and Gender
Having established those who are UK residents and those who are not, it is possible

to apply the age and gender heuristics. As noted previously, such analysis is limited

based on the nationality of the individuals being studied. While name genders re-

main relatively consistent between countries, age profiles are distinct. Consequently,

using the Monica classification, it is possible to ascertain gender for all users but

age just for those individuals believed resident within the UK (Lansley and Longley,

2016a).
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Table 7.2: Gender balance at London airports based on Twitter users genders.

All users UK Residents
Male Female Male Female

N % N % N % N %
Heathrow 8,786 63.61 5,026 36.39 5,224 62.71 3,106 37.29
Gatwick 6,564 57.1 4,931 42.9 5,397 56.32 4,186 43.68
Stansted 2,746 56.64 2,102 43.36 2,018 56.91 1,528 43.01
Luton 1,484 59.81 997 41.29 1,271 58.92 886 41.08

Table 7.2 provides an overview of the gender divide observed in each of the

four airports. From the data, it is evident that a significant gender skew exists with

between 55% and 60% of passengers being identified as male. Limited public data

exist to verify the above.

Table 7.3: Table showing male and female divide at each of the four London airports as
recorded by the UK CAA as part of their annual passenger survey.

All Usual Passengers
Male Female

N % N %

Heathrow 26,382 55 21,578 45
Gatwick 19,071 51.43 18,014 48.57
Stansted 11,043 51.53 10,387 48.47
Luton 6,138 51.08 5,878 48.92

The most reliable data regarding passenger data sourced from the UK Civil

Aviation Authority 2015 Passenger Survey Report (CAA, 2015). The data, based

on a survey of 118,491 individuals was collected using a stratified sample designed

to account for carrier, route and quarter such that it accurately captured the full pas-

senger demographic inclusive of seasonal factors. Comparison between Tables 7.2

and 7.3 highlights a notable male bias across each of the four airports. This bias is

likely due to the existing male bias associated with the use of Twitter. The amount

of bias present is reported in Table 7.4. A value of 1.15 indicated 15% greater than

expected Males.

During the UK Wide benchmarking exercise, it was found that a gender bias

existed within the Twitter data. The male bias at the UK scale being 13%. Notably,
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Table 7.4: Gender bias observed in each of the four London airports.

Airport Male Bias

Heathrow 1.15
Gatwick 1.11
Stansted 1.09
Luton 1.17

the degree of bias reported in Table 7.4 for each airport does not differ significantly

from this. To fully understand the gender bias present within each airport, it would

be necessary to assess whether or not a bias existed for each of the nationalities

represented within the Twitter dataset.

Figure 7.8: Population pyramid for UK-based Twitter users identified at Heathrow.
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Figure 7.9: Population pyramid for UK-based Twitter users identified at Gatwick.

Figure 7.10: Population pyramid for UK-based Twitter users identified at Stansted.
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Figure 7.11: Population pyramid for UK-based Twitter users identified at Luton.

Having established gender composition of those individuals within the airport,

Figures 7.8 through 7.11 depict the age distribution of Twitter users at each of the

four London airports. The population pyramids observed are fairly consistent be-

tween airports with just a slight variation. Considering the previous benchmark of

Twitter in the UK, it would appear that the profiles are fairly consistent with what

was observed for London. However, as was discussed in the previous chapter, the

Twitter-based population pyramid for London was only marginally different to that

for the UK as a whole. Considering that the age/gender structure of London is quite

distinct from the UK as a whole, it would suggest that age standardisation may not

be possible.

A key limitation raised in this section is the constraint imposed through the use

of UK-centric identity classification tools. This is particularly pertinent in terms of

age and gender. As discussed previously, the Monica Classification is built based on

data collectedwithin theUK and is thus limited in applicability to this region. Within

the literature various alternative approaches to age and gender inference have been
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demonstrated based on the analysis of individuals’ language. This is a potentially

valuable extension to the analysis would may enable greater insight to be generated

in terms of those individuals passing through each of the four airports.

7.2.2.2 Ethnicity
Having established the age and gender of Twitter users recorded in each of the four

airports, the next consideration is ethnicity. Understanding the ethnic breakdown of

individuals’ who occupy each airport offers several unique opportunities. Knowl-

edge of individuals’ ethnic groups may be used to improve the provision of key ser-

vices, or as part of general activity profiling. The use of ethnicity/nationality-based

profiling is not uncommon as part of security. Frederickson and LaPorte (2002) sug-

gests that knowledge of an individual’s personal identities is an important aspect of

airport security and a valuable complement to existing security processes which are

increasingly automated. It should be noted that the process by which ethnicity is

inferred, based on names, means that that the method is not suitable for individual

level profiling and rather may only be used to form a general impression of a group of

individuals. Seeking to understand ethnic composition in each of the four airports,

the users identified within each airport were processed using the Onomap CEL clas-

sifier. The identified users split based on being the UK and non-UK residents. The

quotient is calculated in the case of each group such that distinction between the two

passenger groups may be made.

Table 7.5 provides a breakdown of travellers at each UK airport by Onomap

group. The data are split by those who are believed to be residents of the UK and

those that are not. In the case of each airport, a quotient is calculated between the

UK and non-UK users. Where a quotient value of 1 is observed, the proportion of

users of the Onomap group is equal. A quotient of 0.5 indicates approximately half

while 2.0 indicates double.

The first observation is that across each of the four airports, the proportion of

those individual’s codes as either Celtic or English, the two main UK groups are

consistently lower in the non-UK users. This is a valuable reality check confirming

a difference exists between the two groups. Second, across each of the four airports,
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there are consistently more individuals of the European and Hispanic Onomap CEL

groups. Third, in several circumstances, there is an apparent significant high propor-

tion of particular Onomap CEL groups. These quotients are typical of the smallest

groups where a small number of users are recorded. Lastly, in the case of several

Onomap CEL groups, Luton bucks the general trend. In the case of E. Asian and

Pacific, Jewish and Armenian and Sikh. Important to remember that of the four

airports, Luton has the smallest proportion of foreign travellers. CAA data records

that just 23.74% of passengers are not resident in the UK. This small proportion of

passengers leads to a notable issue of small numbers.

In the interpretation of the above, it should be remembered that various biases

are manifest within the Onomap classification. Such biases, however, are only re-

alised where the comparison is made against administrative data such as the UK

Census of Population. Thus, while the relative magnitude of comparison between

the groups may vary, where both groups are classified using the Onomap classifica-

tion tool, the comparison is possible.

7.2.3 Mobility
Having established the demographic profile of those individuals identified within

the four airports, the next focus is on establishing their general mobility behaviours.

As an initial step in the investigation of mobility patterns, the processed Twitter data

are employed in the identification of airport catchment areas.

7.2.3.1 Airport Catchments
Beyond simply understanding the demographic of those individuals identified within

each airport, the processed Twitter data provides various means by which broader

behavioural trends may be observed. Such analysis is only possible because indi-

vidual users have multiple locations associated with their identities over time. Most

relevant to determining catchments, individuals’ probable places of residences may

be inferred. Given this information, it is possible to make a prediction as to the

catchment of each airport. An airport’s catchment area is the area in which the ma-

jority of passengers are resident and is often directly related to an airport’s market
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share (Lieshout, 2012). Typically, catchment area analysis is performed using origin-

destination data and relies on the availability of passenger origin data. However, as

Lieshout (2012) notes, such data is largely unavailable in the public domain, limiting

the potential for such analysis to be performed. While Lieshout (2012) suggests a

model based alternative, here, we propose that the processed Twitter data may be a

suitable proxy for regular passenger travel data. Lloyd and Cheshire (2017) inves-

tigated the use of geotagged Tweets in the identification of retail centres and their

respective catchments employing a home-range estimation technique to differentiate

between primary, secondary and tertiary catchment areas.

For the purpose of this demonstration, the LQ is employed as an efficient way of

identifying whether or not there exists a geography to UK-based passengers observed

within each of the four airports. The Location Quotient is calculated as:

LQi =
pi/p
Pi/P

(7.1)

Where:

LQi = Location quotient for region i

pi = Twitter population (n users) in region i

p = Total Twitter population (n users)

Pi = Census population in region (n) i

P = Total Census population (n)

The analysis is performed at Local Authority level which divides the UK into

404 distinct regions. Data on all usual residents was sourced from inFuse, a data por-

tal published by theUKData Service (see: ). An LQvalue of 1 indicates the expected

proportion of passengers assuming the number of passengers is homogeneous. LQ

<1 indicates fewer passengers that would be expected and LQ > 1 indicates a greater

number of travellers than might be expected.

http://infuse.ukdataservice.ac.uk
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Figure 7.12: LQ map of the areas of residence for those UK-based individuals identified
within Heathrow.

Figure 7.13: LQ map of the areas of residence for those UK-based individuals identified
within Gatwick.
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Figure 7.14: LQ map of the areas of residence for those UK-based individuals identified
within Stansted.

Figure 7.15: LQ map of the areas of residence for those UK-based individuals identified
within Luton.
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For the purpose of comparison, airport catchments produced by the UK Civil

Aviation Authority are shown in Figure 7.16 (CAA, 2011). Based on data from the

2010 CAAPassenger Survey, the catchmentmaps are indicative of the areas in which

80% of UK-based passengers originate for each airport. The analysis identifies dis-

tinct clustering around the four airports emanating out from London in a direction

relative to airports position from the city centre. Also evident is the interplay be-

tween the four airports in which the various catchments overlap. Such behaviour is

typical in multi-airport regions.

Figure 7.16: CAA maps of overall historical catchment areas for Heathrow (top left),
Gatwick (top right), Stansted (bottom left) and Luton (bottom right) (CAA,
2011). For each airport, 70% of passengers are indicated by the dark green
areas, 80% in light green and 90% in white.

Comparison between the four LQ maps and the catchment maps produced by

the UK CAA indicate a high level of agreement suggesting that such an approach

may be valid. However, lacking the original data, an empirical comparison is not

feasible. That said, the significance of this analysis is that a similar outcome has been

generated without access to proprietary or commercial data typically associated with
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such an enquiry.

While the analysis does show promise, a key limitation is an inability to differ-

entiate between those individuals whose employment is associated with each airport

and those who are transient. Using the example of Gatwick, approximately 24,000

individuals are employed within the airport campus while an average of 97,000 pas-

sengers pass through the airport each day2. These individuals, who are likely to be

resident within the immediate vicinity of each airport, who are also likely to use

Twitter, are likely to inflate how many passengers are originating within the imme-

diate vicinity of each airport.

Theoretically, one may extend the above analysis by instead investigating the

spatial diffusion of those individuals not resident within the UK. Such analysis could

be disaggregated further such that nationality is considered. For example, individu-

als travelling into the UK via Stansted or Luton are likely to be predominantly Euro-

pean. Do these travellers exhibit different behaviour to those who fly into Heathrow

who is most likely to have originated within the Americas?

7.2.4 Summary
In the preceding analysis, we have explored how Twitter data may be employed in

place of conventional passenger data as a means to understand the demographic and

mobility of individuals observed within four London airports. The analysis has con-

sidered the key demographic attributes of age, gender and ethnicity, and also identi-

fied airport catchments based on individuals believed home locations. The analyses

have so far sought to replicate the types of outputs which are currently available in

the public domain. This has not, however, exploited the temporal or textual infor-

mation associated with the original data. Analysis of such data takes the potential

of social media data beyond what can be achieved by conventional passenger survey

data. This will be the focus of the subsequent analysis.
2Gatwick Airport publishes a range of general statistics which may be accessed at

the following URL. http://www.gatwickairport.com/business-community/about-gatwick/company-
information/gatwick-by-numbers/

http://www.gatwickairport.com/business-community/about-gatwick/company-information/gatwick-by-numbers/
http://www.gatwickairport.com/business-community/about-gatwick/company-information/gatwick-by-numbers/
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7.3 Opportunities: New Forms of Data
As has been discussed previously, new forms of data offer a range of new capabilities

previously not feasible with conventional datasets. Many these data are generated as

a by-product of other processes such as energy monitoring devices and public WiFi

provision. However, of the new forms of data, social media are easily the most acces-

sible and ubiquitous. In this section, a range of potential insight is generated which

would not easily be feasible with a conventional data source and more importantly,

without access to internal or proprietary data.

7.3.1 Footfall and Activity Patterns
In the first instance, the objective is to analyse activity patterns across each airport.

First, looking at the general trend of activity and subsequently across space. To

begin, the raw Tweets associated with each airport were aggregated by the day of

week and hour. Performed for each of the four airports, the results of the analysis

are visualised in the following graph.

Figure 7.17, the temporal activity plots, provide an illustration of the daily

rhythm of tweeting activity observed within each of the four UK airports. In-

spection of the data suggests a typically bimodal distribution with a morning peak

around 9 am and an afternoon peak around 7 pm. This pattern is somewhat dis-

tinct in the case of Heathrow, Gatwick and Stansted. However, is less evident in

the case of Luton. For the purpose of reference, the limited operating hours at

each airport are highlighted in red. During those times, strict quotas exist to limit

noise disturbances to local residents. The quotas are most stringent in the case of

Heathrow and least in the case of Luton. Details of the quotas and operating restric-

tions, published by the Department of Transport, can be accessed from the follow-

ing URL (https://www.gov.uk/government/publications/night-flying-restrictions-at-

heathrow-gatwick-and-stansted-airports).

In interpreting the above, the assumption is made that total Tweeting activity

will correlate with the total number of individuals who are occupying the space at

any given time. This assumption has been employed widely in the use of new forms

of data for modelling human dynamics and has been suggested in the case of both

https://www.gov.uk/government/publications/night-flying-restrictions-at-heathrow-gatwick-and-stansted-airports
https://www.gov.uk/government/publications/night-flying-restrictions-at-heathrow-gatwick-and-stansted-airports
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Figure 7.17: Time series plot showing the daily activity patterns based on Tweets for
Heathrow (top left), Gatwick (top right), Stansted (bottom left) and Luton (bot-
tom right). The typical hours of aircraft movement restrictions are shaded in
red.
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Twitter data mining and likewise in the analysis of mobile-phone data. For example,

the ‘Smart Steps’ application developed by Telefonica’s Smart Insights team predicts

footfall based on the total number of phone calls made on the O2 phone network ag-

gregated in space and time. Likewise, (Lansley and Longley, 2016b) suggest the

footfall correlates with the total number of Tweets observed in a given space. Sev-

eral key differences exist concerning the application of the two approaches to footfall

estimation. First, in regards to accuracy and richness. Given the ubiquitous nature

of mobile phones, the cell-tower data are rich in observations and ownership is rel-

atively consistent across the population. Conversely, Twitter is used by a relatively

youthful population with known gender bias. Second, Cell Tower Data, while rich

in volume lacks spatial accuracy. It is not uncommon for cell tower data to have an

accuracy in the region of 1 mile; a resolution which significantly limits fine-scale

analysis of human mobility (Becker et al., 2013). Third, the ease in which data may

be accessed. In the case of much academic research employing cell tower data, lim-

ited samples of data have been provided directly from the cell providers. Such data,

while rich, constrain the potential applications of the research being performed. In

contrast, legacy and present Twitter data are relatively accessible enabling research

outcomes to be reproduced and actioned. Such is the limitation assumed through the

use of cell-tower data that social media data pose an attractive solution to modelling

footfall and human mobility more broadly.

Given that the analysis goes beyond the data that are presently in the public

domain, there exist limited means by which the activity profiles may be validated.

One possibility, though limited are the activity profiles published by Google as part

of their Maps service. Using data collected during subsequent weeks, Google can

report near real-time activity levels in specific locations. The data are, however,

limited in that they are only accessible for a limited window of time. Thus, given

that the Twitter data were collected three years previously, an explicit comparison

cannot be made. Further, given that Google data do not provide an indicator of

magnitude, it is not possible to make a direct comparison between days or locations.

Compare profiles for Heathrow and Gatwick. Note that the profiles were ac-
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cessed on Tuesday the 21 March 2017. As yet, no means is provided by Google to

access historical activity data.

Day of Week Heathrow Gatwick

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday

Figure 7.18: Plots showing the typical activity patterns at Heathrow and Gatwick Airports
by day of week as determined by Google. The red denotes actual activity
versus the typical day at the time of recording (21/03/2017)

Comparison of Figures 7.17 and 7.18 depicts largely similar patterns of be-

haviour with activity increasing between 3am and 9am before reaching a relatively

consistent level of activity which continues until around 8pm. Activity then de-

creases to a low point around 1 am before beginning to rise gently. This pattern

of behaviour provides only limited support to the Twitter-inferred activity profiles

suggesting significant over-representation in the morning and under-representation

in the afternoon. It may, however, be the case that given sufficient consideration, a

temporal standardisation mechanism could be applied.

It may be observed that the data for the Tuesday includes a red bar at 3pm. A

feature of Google’s activity profiles is that it reports an estimate of real-time activity

versus the typical activity over the measurement period. In the case of Figure 7.18,
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the red measure indicates that on the 21/03/2017, activity within the airport was less

that is typical for this time.

In possession of a general understanding of the temporal activity patterns of

Twitter users, the next consideration is how this pattern evolves across space. Various

methods exist for monitoring footfall ranging from manually counting the number

of people to pass a particular point to the use of various technological counting solu-

tions (Kobsa, 2014). New approaches include the use of aggregated and anonymised

mobile phone data and the passive monitoring of WiFi enabled devices (Weppner

et al., 2016).

Botta et al. (2015) investigated the utility of mobile phone data and Twitter data

for inferring crowd size. Of particular relevance, Botta et al. (2015) conducted a

comparison between Twitter activity and mobile phone activity at a football stadium

(San Siro Stadium) and an airport (Linate) in Italy. In the case of the football stadium,

exact numbers of people were known while passenger numbers at the airport were

inferred based on the total number of flights. In the case of the stadium, a correlation

of strong positive correlation was observed between the number of attendees and

both the mobile phone and Twitter activity datasets. An R-squared value of 0.937

(n=10, p <0.001) was observed for the mobile phones and an R-squared value of

0.855 (n=10, p<0.001) for the Twitter data. These coefficients were lower in the

case of the airport case study, however, this is unsurprising given the crude means by

which passenger numbers were inferred. Total Twitter activity was correlated with

the total number of flights. Such an approach fails to account for aircraft capacity

and fullness. One limitation with the analysis by Botta et al. (2015) was that the

comparison was performed at the full day scale. Consequently, the differences in

daily trends identified above would not have been identified and thus not considered.

For the sake of demonstration, the subsequent analysis is performed based on

data recorded at Heathrow Airport. As before, in modelling footfall across space,

the assumption is made that an increase in tweeting activity is indicative of an in-

creased number of individuals occupying said space. In monitoring this, several data

processing steps were performed. Notably, the Tweets were filtered such that those
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containing URLs were omitted. In a large proportion of cases, the Tweets contain-

ing URLs were generated by applications linked to Twitter such as Foursquare or

Instagram. In both cases, the services employ a form of location-based generalisa-

tion leading to apparent hot spots of activity. The applications can submit spatial

coordinates through the Twitter API. For example, all Foursquare tweet checking

into Heathrow Terminal 1 would be assigned identical latitudes and longitudes, ir-

respective of whether the sender was in that location or not.

The decision to omit all Tweets containing URLs was due to the use of ‘URL

shortening’ as a means to minimise the proportion of the tweet text taken up by the

web address. Such shortening prevents the destination of the URLs being easily

determined. It may be possible that the process of URL extension can be performed

enabling a more precise form of filtering to be applied.

The process for mapping footfall at each airport was as follows:

1. The extent of each airport was sourced from OpenStreetMap.

2. A 50-metre resolution grid for each airport was created.

3. Tweets were spatially joined to the grid.

4. Counts of Tweets for each grid cell during each hour were calculated.

5. Results were overlaid onto airport map for the purpose of contextualizations.

Midnight until 6am: plots 0 through 5

During the early hours of the day, it is clear that there is limited activity taking

place. The activity which is occurring is predominantly observed in the main ter-

minal buildings with very limited activity at the gates or around the runways. The

behaviour remains consistent until around 4 am at which time activity begins to in-

crease within themain terminal buildings. Likewise, this period sees the first arrivals

from the Far East with passengers aiming to be in the UK for business. This rise in

activity corresponds with those individuals arriving 2 hours before the first major

flights are due to take off following the end of noise restrictions at 6 am. In the sub-

sequent 2 hours, it is evident that a greater number of individuals are progressing
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Figure 7.19: Maps showing Twitter activity across Heathrow Airport split by hour. The
time marker indicates the beginning of the hour being shown.

through the airport with more activity around the main terminal and moving out to

the various gates. Also, a greater amount of activity is evident on the various taxi-

ways and runways suggesting aircraft movement are beginning. Also, activity in the

baggage handling areas located to the SW of the airport begins around 5 am.

6am to 9pm: plots 6 through 20

With the airport operating with only daytime noise restrictions, activity is signifi-

cant across the full airport campus. The highest density of activity remains in the

main terminal areas and the main entrance and exit routes from the airport. Of note

is the centrally located Heathrow Station on the London Underground. Likewise,

the arrivals area or Terminal 5 indicates a large volume of activity. Activity in the

baggage handling appears to decrease around 5pm suggesting that a proportion of

those individuals employed work conventional 9am to 5pm hours.

9pm to midnight: plots 21 through 23

Between 9 pm andmidnight, the overall level of activity sees a rapid decrease. Given

that Heathrow’s night restrictions come into operation around 11 pm, it is likely

that fewer individuals are entering the airport campus resulting in the total stock of

population within the airport decreasing. Between 11pm and 12pm, it is clear that
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activity is predominantly within the main terminals and around the various airport

access points.

Summary

Overall, the patterns of activity observed within Heathrow appear plausible based

on prior knowledge regarding the structure and operation of the airport. While ques-

tions have been raised previously regarding the level of agreement between Twitter

activity and observed footfall over time, this could potentially be addressed through

undertaking a calibration exercise in much the same way as is employed in other

footfall monitoring techniques.

7.3.2 General Patterns in Time
While the above analysis provides a useful means by which activity across space

may be observed, it provides little detail regarding the demographic profile of those

individuals being observed. Consequently, much of the value inherent in the data,

specifically in regards to differentiating between users, is unrealised. In the subse-

quent analysis, the focus is placed on general patterns across each airport due to the

issue of small numbers in certain demographic groups. In seeking to understand bet-

ter the population being observed the composition of the passengers’ nationalities

is examined. The following plots illustrate said composition using an aggregation

of countries based on the UN top-tier classification of regions. UK-residents are

omitted from the Europe region and shown independently (Plot part A).
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Figure 7.20: Temporal activity plot showing activity by region of residence for Heathrow
(top) and Gatwick (bottom). Plot A depicts UK-residents only while Plots B
and C indicate all other nationalities as raw counts in Plot B and as a total
proportion in Plot C.
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Figure 7.21: Temporal activity plot showing activity by region of residence for Stansted
(top) and Luton (bottom). Plot A depicts UK-residents only while Plots B
and C indicate all other nationalities as raw counts in Plot B and as a total
proportion in Plot C.
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Figures 7.20 and 7.21 depict the breakdown of activity patterns through time

for each airport based on individuals’ believed countries of residence. The regions

are the most aggregate UN classification and are chosen as a balance between spatial

resolution and the small numbers. For each airport, three graphs are shown. Sub-

figure A depicts the activity for the users believed to be UK residents, B depicts the

activity patterns for the specified global regions (note that Europe excludes the UK)

and C depicts the same information scaled such as to be indicative of ownership of

space.

Part C of each plot provides a useful insight as to the dominant group within

each airport at any given time. In some senses, this may be considered as a way to

view ownership of space. In the case of Heathrow, can see how passengers from the

Americas are dominant during the late morning and are then replaced by those from

Asia as the dominant group during the evening. It should be highlighted that such

analysis cannot differentiate between those arriving and those departing. A similar

pattern, though less pronounced is observed for Gatwick. In the case of Stansted and

Luton, the airports are both clearly dominated by European Travellers.

7.3.3 Analysis of Textual Content
In the preceding analysis, the insight generated has been derived based solely on

the spatiotemporal component of the data along with the key personal identities ex-

tracted based on the analysis of personal names. The analysis has not yet, drawn on

the potential insight which may be buried within the associate tweet texts, however.

The analysis of text content offers an additional analysis dimension not possible us-

ing conventional sources of passenger data. Textual data mining is a broad subject

area concerned with the extraction of useful insight from large volumes of unstruc-

tured and semi-structured text (Fan et al., 2006). Examples of standard text min-

ing operations include sentiment analysis and topic modelling. Sentiment analysis

is concerned with the identification and quantification of sentiment polarity while

topic modelling is a technique for the identification of common themes within large

corpora of text (Nikolenko et al., 2015). Both techniques have been widely applied

to Twitter. One study, based on the same raw data as this thesis by Lansley and Lon-
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gley (2016b), employed topic modelling for the purpose of characterising land use

across Greater London.

As an initial step in understanding the text data within each airports’ Tweets,

the commonality cloud is constructed using the ‘wordcloud’ package in R (see: Fel-

lows, 2014). The purpose of the cloud is to visualise words common to each of the

four airports. This is both useful for understanding the data, and for providing a re-

ality check. Before constructing the cloud, several data preparation techniques were

applied. Tweets containing URLs were omitted as these are predominantly associ-

ated with other web services such as Instagram and Twitter. Further, usernames and

non-alpha characters are deleted.

Figure 7.22: Common terms across Heathrow, Gatwick, Stansted and Luton airports.

Figure 7.22, the commonality cloud provides initial insight into the terms which

are most common to the four London airports. The size of the words is indicative of

how often they occur. Note that many of the keywords identified are clearly associ-

ated with individuals’ experiences and travel. Examples of such terms include just,
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back, home and airport. A limitation of this approach, and various other text mining

techniques is the focus on single word tokens. Consequently, paired terms are often

missed. An example being the phrase ‘just back.’ In isolation, these two words pro-

vide no useful information. In combination, they provide a clear indication as to the

sender’s circumstance.

In contrast to identifying those terms common to the four airports, it can be

valuable to identify terms which are more strongly associated with each of the four.

This may be achieved through construction on a comparison cloud.

Figure 7.23: Comparison cloud contrasting word use between Heathrow, Gatwick, Stansted
and Luton.

Figure 7.23, the comparison cloud, provides an starting point for the identifi-

cation of terms and topics unique to each of the four London airports. Within each

set of words various key terms may be observed. These include reference to specific

airports and locations, various airport carriers, common terms related to air travel

and also, a range of terms in languages other than English. The clear evidence of key
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terms suggests that there may be opportunities to employ topic modelling techniques

as a means to better understand the activity within each of the four airports. Like-

wise, the presence of emotive words such as ‘yay’, ‘awesome’ and ‘tired’ suggest the

potential for the use of sentiment analysis.

7.3.4 Sentiment
Beyond knowledge of what is being discussed, it may also be useful to understand the

collective mood of individuals as they progress through each airport. It is possible

to analyse the general mood through the application of sentiment analysis. Senti-

ment analysis encompasses a broad range of techniques designed to determine and

quantify the degree of happiness or anger (Wilson et al., 2005). In this analysis,

we employ a lexicon-based approach to determining the degree of sentiment within

each Tweet.

The lexicon-based approachs may be divided into those concerned with indi-

vidual words and those which analyse words within their original context (Taboada

et al., 2011). In the case of the latter, the typical approach involves the use of a dic-

tionary or lexicon of specific words and associated polarity scores. To determine the

overall sentiment within a document, the sum of sentiment scores within the text is

calculated. Such an approach is efficient. However, it fails to account for the more

nuanced nature of language. More specifically, the effect of valence shifters, terms

which alter the effect or interpretation of specific words (Polanyi and Zaenen, 2006).

Examples include the use of specific terms which might negate or amplify the po-

larity of a term. In practice, it is important to consider the effect of valence shifters;

terms which alter or nullify the polarity of a term. Specific valence shifters include

negators, amplifiers, deamplifiers and adversative conjunctions. A negator is a term

which reverses the emphasis of a specific word. For example, by placing the word

‘not’ before the word happy, the sentiment is shifted from being positive to negative.

Amplifiers and deamplifiers either increase or decrease the magnitude of sentiment

within a phrase. Adversative conjunctions are phrases which alter the polarity of

previous phrases.

In this analysis, the ‘sentimentr’ package is developed by Rinker (2016). This
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package is written in such a way as to identify the occurrence of negators, ampli-

fiers, deamplifiers and also, the more complex adversative conjunctions. Further,

while not employed in this analysis, the package contains methods for dealing with

emoticons and various ratings methods. The approach applied is as follows:

1. Polarised terms are identified based on a pre-existing dictionary of terms.

2. Positive words initially scored 1, negative words -1, non-polar words as 0.

3. The four preceding and two super-ceding word tokens are subset and checked

for amplifiers, deamplifiers, negators and adversative conjunctions.

4. Based on the above, each Tweet is assigned an overall sentiment score.

Having applied the sentiment classification algorithm, various possible aggre-

gations of the data may be implemented for the purpose of understanding opinion

within each of the four airports.

Table 7.6: Mean sentiment by airport versus 2017 Google Review Scores.

Airport Mean Sentiment Google Review Score

Heathrow 0.037 3.9*
Stansted 0.027 3.9*
Gatwick 0.025 3.1*
Luton 0.014 2.8*

In the initial assessment, the mean sentiment within each London airport was

calculated. The results of this assessment are shown in in Table 7.6. It may be

observed that those individuals within Heathrow express the greatest overall positive

sentiment while the least positive sentiment was observed at London Luton. As

a point of reference, the Google review score of each airport was sourced. It is

interesting to observe some degree of ordinal correlation between the two scores,

though, it is acknowledged the Google Review Scores have been collected a number

of years after the Twitter data. Seeking to understand the sentiment across the four

airports better, the data were disaggregated such the sentiment by hour could be

observed.
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Figure 7.24: Plot showing the mean Tweet sentiment for each airport during each hour.

Figure 7.24 provides an illustration of the mean sentiment across a typical day

at each of the four London airports. The four plots illustrate a range of patterns of

sentiment. In the case of Heathrow, the sentiment is generally positive throughout

the day decreasing during the night hours. In the case of Gatwick, a similar pattern

of positive sentiment is observed during the day, however, during the night, the sen-

timent is varying degrees of negative. At a similar daily trend is observed, however,

the variability between hours is more significant. The issue of variability is further

evident for Luton which depicts a relatively volatile profile. Except for Luton, it

would appear that during the day individuals are generally happier and during the

night are less happy. The effect of time of day is acknowledged in the literature and
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is associated with individuals’ circadian pattern and normal activities (Csikszentmi-

halyi and Hunter, 2003). The effect of time of day is somewhat more complex in

the airport context in which the individuals present may have originated in multiple

different time zones and also, due to the variations in individuals purpose for being

at the airport: for their work or, business or leisure travel.

Figure 7.25: Box plot showing the distribution of sentiment split by airport and hour. All
data points are shown.

While Figure 7.24 provides a useful depiction of sentiment, it fails to demon-

strate the volume of activity during each hour. Consequently, while 3 am – 4 am

at Stansted appears to be negatively orientated, the amount of activity is relatively

small compared to the rest of the day. One alternative is the use of a combined dot

plot and box plot. Figure 7.25 illustrates the hourly distribution of sentiment for each

of the four London airports. The graph provides both an indication of the range of

sentiment values recorded each hour and also, by virtue of transparency, an indica-

tion as to the number of Tweets being submitted. The minimal size of the box plots

in the majority of hours’ highlights that the vast majority of Tweets contain very

limited sentiment either positive or negative.
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A potential extension to this analysis would be to map sentiment across the

same grid employed in the footfall analysis. Such an application may provide an

effective means by which stress points within each airport could be identified. In

partnership with an understanding of the internal airport layout, this may provide a

useful tool in the case of retail, security and planning. Further, greater linkage could

be made between the analysis of sentiment and personal identities. Such a link may

enable more effective provision of internal airport security as it could help target

those individuals who are expressing the greatest degree of negative sentiment.

7.4 Discussion
In the preceding analysis, the objective was to showcase the potential for richly at-

tributed social network data for the purpose of understanding human mobility and

behaviour within a constrained environment. A case study was delivered for four of

the six major London airports in two parts. In the first, the focus was on replicating

what could already be achieved using conventional forms of data generated by or

for UK airports and aviation. In the second, the focus shifted to forms of analysis

and insight which could not be achieved with data that were previously available.

Through the course of the above, a range of strengths, weaknesses and opportunities

have been raised. In many cases, these observations are either associated with the

rich spatiotemporal nature of the data or the issue relating to the representativeness

of the data given that they are sourced from a self-selecting sample of the population.

A key advantage of the Twitter-based approach is that the data are readily

available and may be collected in real-time or purchased retrospectively via data-

warehousing services such a gnip (see: http://www.gnip.com). Not only does the

availability of data facilitate analysis at custom timescales, it means that the forms

of insight generated may easily be applied to a range of other locations such as re-

tail locations, sports venues or alternative travel hubs. In effect, Twitter provides a

consistent data source across a huge range of application. This is particularly im-

portant regarding developing an analysis framework making insight generation fast

and effective. However, it is also important that limitations in the data are recog-

http://www.gnip.com


250 Chapter 7. Social Media Demographics

nised. Notably, while we often consider Twitter data as being rich in volume, once

the window of analysis has been constrained, for example in the case of an airport,

the number of individuals who are sending spatially referenced Tweets is surpris-

ingly small. This problem is exacerbated by the inclusion of automated location

reporting applications such as Foursquare and Instagram which can be challenging

to distinguish from other Tweets. The issue is of most concern in the smaller airports

in which the total number of recorded Tweets is already low.

Given the sparseness of Tweets once processed, and the reality that the number

of messages may not easily be improved upon, the most practical option available is

some form of spatial or temporal aggregation. Fortunately, given the nature of air-

ports and the routine patterns of activity, it is possible to perform various temporal

aggregations. The most useful of which, used in the above, is the day of the week.

However, unlike much traditional analysis of population data, the analyst retains a

degree of control over the modifiable areal unit problem. In practice, whatever de-

cision made would involve some form of compromise. That said, it is a common

fallacy within quantitative geography to place too great an emphasis on achieving a

high spatial/temporal resolution when a more general measure may be more appro-

priate. Examples of possible aggregations include zoning based on functional zones

or aggregation of specific activity times. The issue of spatial aggregation becomes

more complex when we consider that while it is possible to access the horizontal

position of each Tweet, no information is available on altitude. Consequently, when

faced with an environment with multiple overlapping functional zones across several

floors, it will not be possible to differentiate between them.

The issue of aggregation may be considered more broadly regarding individu-

als’ personal identities. While it may be desirable to know the specific nationalities

of individuals’, it could be argued that such precision is unnecessary. The issue is

discussed by Mateos et al. (2009) in the context of ethnicity who highlight that both

the aggregation and granulation of ethnicity classifications is inherently unstable.

This issue is compounded in the sense that the ethnicity classification associated

with each user is purely a prediction and may not necessarily represent the individ-



7.4. Discussion 251

uals’ true ethnic type. It may, therefore, be more accurate to employ a lower level of

precision.

Other concerns include the availability of data and challenges in differentiating

between those employed within the airport and those which are passengers. As has

been noted previously, the quality of analysis is dependent on the volume of data

available. Given that in practice the data observed are quite sparse, it would suggest

the techniques demonstrated are best suited to the identification of general patterns

of behaviour rather than investigating specific circumstances. In effect, pushing a

nomothetic agenda in which we seek to identify laws rather thanmodel the behaviour

of individuals’. The second challenge in such analysis is differentiating between

those individuals who are transient within the airport and those who are employed

in some regard. This specific question is not easily answered. Lacking attribution

associated with employment, it would be necessary to analyse either individuals’

spatiotemporal tweeting patterns or look at options to mine each users’ Tweets for

employment indicators.

The last major concern is the ethics associated with the use of social media

for the observation of human mobility patterns and behaviour. As with all forms of

public data collection, there are various issues relating to privacy and consent. In

the context of Twitter, such concerns are largely ignored by many using the justifi-

cation that the data are publicly available and individuals have consented by virtue

of agreeing to the stated terms and conditions (Zimmer and Proferes, 2014). In fur-

ther support, in comparison to other forms of population monitoring data, one might

argue that the use of Twitter is the least intrusive and most controlled by the user.

Where individuals make an active decision to share content on social media and are

conscious that what is being submitted may be viewed by others. Relatively few are

aware that mobile phone providers are using their data for the purpose of monitoring

population dynamics. The ethics are increasingly concerning when we consider the

use of WiFi monitoring of footfall. WiFi monitoring relies on individual’s phones

interacting with strategically placed WiFi receivers. These receivers do not broad-

cast their presence, and thus public awareness of their use is limited. While the
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output of such data collection should be anonymised and aggregated, it remains the

case that such forms of data collection are intrusive. Such is the concern associated

with the ethics of WiFi monitoring that the UK Information Commissioner Office

published guidance on the appropriate use of such technologies (ICO, 2016).

Beyond ethics, a further debate surrounds the issue of data ownership. This is a

major concern of individuals who are often unaware that data generated by-product

of their activities may be employed in a broad range of applications. Many of the so-

cial media platforms maintain the stance that any data submitted by the user remains

the property of the user. However, the platforms maintain the right to employ or

commercialise the data as and how they choose. Given the ethical concerns associ-

ated with the use of cell-tower data andWiFi monitoring, the justification for the use

of social media in the inference of general patterns of human mobility and insight

generation may be considered quite positive. With sufficient consideration given to

the biases inherent in the data, and maintaining the appropriate degree of privacy,

Twitter appears to be a valuable and useful meaning of generating high-quality in-

sight into the stocks and flows of populations.

7.5 Conclusions
In this chapter, the objective was to demonstrate the potential of Twitter as a viable

alternative to conventional forms of demographic data. To showcase this, an analy-

sis of the four largest London airports was performed. In the first instance, conven-

tional insight, such as demographic profiles and catchment analysis were performed.

Building upon this, it was demonstrated how the rich spatiotemporal attribution as-

sociated with each Tweet facilitated the generation of previously inaccessible insight.

Notably in regards to modelling footfall and tracking sentiment. In appreciating the

above, it must be recognised that the insight demonstrated has been creating using

data that are freely available. The significance of this is that the analyst maintains

full control over the data and the processes which are subsequently applied. Ver-

sus alternative crowd monitoring solutions, such as Google Places or Telefonica’s

Smart Steps, the methods employed are fully transparent and reproducible. As such,
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the framework may be readily tailored to the task at hand. Further, while the anal-

ysis is performed in the UK, it may easily be reproduced in other situations with

the only significant limitation being the popularity of Twitter within the study area.

Consequently, the benefits of employing Twitter as an alternative, or in support of

conventional population data is increasingly evident.





Chapter 8

Conclusions

8.1 Introduction
At the outset, the aim of this thesis was to explore the potential of new forms of data

to address limitations in current demographic profiling practices. Bymeans of a crit-

ical evaluation of current approaches, it was identified that the main constraint was

the data by which the various human behaviours are studied. Conventional social

survey data and secondary sources are collected on an infrequent basis, lack consis-

tency between years and regions and are inherently cross-sectional in nature. A case

in point is the three regional Censuses of Population collected across the UK. While

collected concurrently, the specific questions are inconsistent, limiting the ease with

which UK-wide analysis may be performed. Further, Scotland and Northern Ireland

employ a different recording geography to England & Wales for some data sources,

such as the Census of Population. Further, given the infrequency of their publication

(every ten years), the data are increasingly uncertain over time (Singleton and Lon-

gley, 2009). In light of this, it was proposed that new forms of data may provide an

improved means by which the stocks and flows of the population may be observed

and analysed. The concept of new forms of data is relatively recent and has arisen

alongside the development of Web 2.0 and the Internet of Things. Increasingly,

people’s offline and online identities are entwined, with vast volumes of data being

generated as a result of their activities. Such data range from energy consumption

records collected via smart meters to online communication data shared within on-
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line social networks. These data, while not collected for the purpose of observing

populations, provide a new and exciting means by which population insight may be

generated.

While new forms of data are relatively broad in scope, this thesis is focused

predominantly on data generated by the Twitter Social Network. The use of Twit-

ter data in the generation of population insight is not in itself new, however, as was

discussed in Chapter 3, such analysis has often been beset with limitations. Chief

amongst these and a recurring theme throughout this thesis is the issue of represen-

tativeness. By their very nature, Twitter users are a small self-selecting sample of

the population. However, while it is well recognised that the Twitter population is bi-

ased, little has been done to address or acknowledge the issues which this introduces.

In effect, research conclusions are being made in which the results are generalised

to the population as a whole, disregarding the true demographic of the Twitter user

base. This is well demonstrated in the literature modelling flu trends based on the

analysis of Twitter data. While it may well be possible to track general patterns in

flu, the population considered most at risk of contracting the Flu, the young and

old, are not necessarily those who are represented by the data. There is thus a risk

that lacking recognition of the bias inherent in the data that resources are incorrectly

allocated and the target population missed.

In light of the above, this thesis set out an ambitious plan to assess the repre-

sentativeness of Twitter at a range of spatial scales from the local to the global. A

key feature of this assessment, outlined in Chapter 4, was the approach employed for

the construction of functional population inventories based on the analysis of geo-

graphically referenced Tweets. Guided by the United Nations (2001) definition for

population registers, the framework transformed the raw Twitter data into a global

population inventory containing distinct ids, extracted forenames and surnames, and

also inferred the probable place of residence at a range of scales. In Chapter 5 the

analysis sought to demonstrate how representative Twitter users are of the popula-

tion at the global scale while in Chapter 6 the issue of representativeness in the UK

was explored in more detail.
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In Chapter 5, the analysis measured the compositional similarity of surnames

across 22 countries drawing on data from the UCL Worldnames Database for refer-

ence. In turn, these data were used as a basis for modelling social media penetration

across the globe providing both insights on the global geography of Twitter, and also

a valuable point of reference in regards to the interpretation of international travel

behaviour.

Following the global assessment, a UK based benchmarking exercise was per-

formed. Unlike the preceding analysis, the objective was to determine the extent

to which bias existed within the Twitter population in regards to a series of im-

puted key demographic attributes: age, gender, ethnicity and geographic distribu-

tion. Based on individual users’ personal names, the analysis employed a range of

novel data-mining and heuristic techniques to infer characteristics of those posting

Twitter messages. Not only does this attribution facilitate comparison against con-

ventional forms of data, but it also provides ameans to differentiate between different

groups within the population when performing analysis; a feature which may have a

broad and significant range of applications.

Although aspects of the analysis shine a somewhat negative light on the poten-

tial for Twitter data in the generation of population insight, Chapter 7 sought to rem-

edy this through demonstration of the potential opportunities of such an approach.

Through completion of a case study on London’s four largest airports, it was demon-

strated how the enriched Twitter data might be employed in place of conventional

data, and subsequently, the additional insight that they may provide. The ability to

differentiate between different users based on their inferred identities enables more

extensive insight than previously possible. What is more, this insight was generated

without direct observation or access to privileged data. Thus, the techniques may

readily be applied in a broad range of contexts from retail and marketing to security

and crime.
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8.2 Reflection on Methods
A key feature of this thesis has been the extraction of insight based on the novel

application of name-based heuristics and spatio-temporal data mining. Giving the

unstructured nature of the Twitter data and the lack of explicit personal attribution

it has been necessary to develop and employ novel algorithms and heuristics for the

inference of individuals’ key personal identities. Of these, the twomost fundamental

processes were the identification of individuals probable place of residence and the

extraction of their personal names.

While several possible approaches exist for the extraction of location information,

it was decided to use the geographic coordinates embedded within the geographi-

cally referenced Tweets. The full process for this is detailed in Section 5.3.3. This

approach was based on using the least-ambiguous source of geographic reference

information. The obvious alternative to this approach would have been to deter-

mine individuals nationalities and places of residence based on either their language,

reference to locations within their Tweets, or the location field associated with the

account. Potentially, such an approach would allow the incorporation of a greater

number of users at the national scale. However, while it may be possible to process

individuals in such a manner, the real barrier to this approach is associated with the

ability to access sufficient data from Twitter. Such analysis would be better suited

should the original data have been harvested from the Firehouse rather than Sample

Stream. An additional consideration is the purpose for which the data were to be em-

ployed. In terms of the creation of dynamic population data there is a requirement

for high precision observations in time and space; a feature not readily possible if

manually geo-coding individuals’ locations.

In terms of personal names extraction, Twitter unlike some alternative social net-

works, does not require individuals to report ‘real’ names and rather allows any

combination of alpha-numeric characters to be recorded. It is a fortunate feature

that individuals often use this field to report their actual name. This data is, how-

ever, unstructured in that there is no distinction as to the structure of the name. The

process employed in the extraction of individuals’ personal names is discussed in
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Section 5.3.3. As was noted, the approach employed was based on the assumption

of a western naming order in which the given name precedes the family name. Given

that the large proportion of countries where Twitter is popular employ this naming

convention, it could be considered fit for purpose. However, in future there exists the

potential to develop the algorithm such that names in both western and eastern order

may be processed. Given that individuals of different cultural, ethnic and linguistic

groups are typically co-located, it may be necessary to employ Onomap on the raw

data as a first step in determining an appropriate strategy for name processing.

Beyond location and personal names, a range of pre-existing heuristic techniques

were employed through the course of the thesis. Developed in academia, many

have seen limited application beyond their initial development. Consequently, ef-

forts were made to assess the utility of these tools prior to their application such that

a degree of confidence could be assumed in terms of their classification ability. Case

in point being the assessment of the Onomap classification against the 2013 Con-

sumer Register and Ethnicity data from the 2011 UK Census of Population. Here is

was possible to identify apparent systematic bias in the Onomap classification and

thus make informed decisions as to the validity of the Twitter-inventories in the UK.

Lastly, a key process in the assessment of each inventory was the Morisita-Horn

index of overlap. Drawn from the ecology literature, the Morisita-Horn index was

designed to measure overlap in population structure based on samples of species.

The approach was readily interpretable in the context of individuals names where

each surname is considered as a separate species. A discussion on the merits of

the Morisita-Horn index is given in Section 4.3.2.3. In their analysis, Wolda (1981)

discusses the use of various similarity measures and the effects that these may have

on the observed similarity scores. The use of the Morisita-Horn index was criti-

cal given the variation in size and diversity observed within the various population

inventories.

Given the relative infancy of social media data and name-based heuristics for

the creation of demographic insight, it is as important to focus on the application and

utility of the tools as it is to establish new knowledge. As, without confidence in the
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methods, any insight generated is of very limited value. In terms of the above, it is

important to consider replication and generalisation. Replication is concerned with

the recreation of existing research or academic findings to ascertain the reliability of

the results. Often replication is conducted by third parties and includes their own in-

terpretation of the literature, methods and outcomes. Successful replication of find-

ings serves to strengthen the outcome of both analyses and conversely, unsuccessful

replication suggests that one or both of the approaches are flawed. Generalisation

is concerned with the application of pre-existing methods beyond the context within

which they were developed. The purpose of generalisation is to ascertain the scope

of a method and consequently its broader applicability. In the case of generalisation,

new data may be required for validation.

Recognising the importance of the above, this thesis has sought to establish the

provenance of both the methods and data being employed prior to their application.

In particular, in Chapter 6, focus was placed on the use of the name-based heuris-

tics for the allocation of key personal identities. by establishing the accuracy and

precision of the methods at the correct scale of analysis, it was possible to assess

each methods efficacy and consequently, interpret the analysis outcomes appropri-

ately. This validation is exemplified in the case of the Onomap CEL classification

tool. Reported in Section 6.5.2, it was found that the classification tool was biased

toward the ‘White’ CEL group and failed to classify individuals into categories such

as ‘other’. In effect, the assessment may be considered as replication, while the ap-

plication of the method to the Twitter data may be considered as generalisation. In

both cases, these analysis enable us to have increased confidence in the methods and

observed results.

Moving forwards and looking to establish the use of social media there is clearly a

need that these methods be assessed further. In particular, it would be beneficial to

employ the location and name-based heuristics in a range of alternative countries

such that their provenance is further established. The framework for benchmarking,

employed in Chapter 6, provides an effective means by which such an assessment

could be structured. The main challenge in achieving the goal of generalisation is
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the availability of comprehensive individual level and aggregate population data to

be used for reference. A potential first candidate for assessment would be the USA

given the popularity of Twitter and the availability of detailed demographic data.

However, in the long term, it would be beneficial to target countries based on the

dominant cultural, ethnic and linguistic group such that the transferability of the

methods may be established. It is probable that collaboration with other global in-

stitutions would be required such that knowledge of local trends and conventions

may be incorporated into the analysis and interpretation of the methods.

8.3 Summary of Findings and Limitations
As a result of this thesis, a broad range of insights has been generated – not only in

terms of whom the Twitter data best represent, but also with regards to better practice

in the collection, analysis and interpretation of Twitter data. Considering the issue

of for whom the data represent, the global scale analysis delivered a unique view-

point on Twitter and its global reach. Until now, only data pertaining to a select few

countries has been analysed. The production of a global assessment provides both

a reference for practitioners wishing to explore the use of Twitter in specific regions

and also a means of standardisation when considering the activities of international

travellers. Interestingly, it was observed that Twitter was most popular in English

and Hispanic speaking countries.

Considering the analysis at the national scale, Chapter 6 delivers an assess-

ment of how representative the Twitter data are of the UK population. The analysis

confirmed various anecdotal beliefs concerning of whom the Twitter data are repre-

sentative. A first issue was the presence of gender bias. It was found that within the

sample studied, a notable male bias was present. In terms of age, Twitter users were

found to be predominantly of a younger age group than the observed population as

recorded in the Census of Population. This behaviour was consistent across the UK

with the male bias increasingly evident as age increased. In terms of ethnicity, the

results were inconclusive. While efforts were made to infer individuals’ ethnicities

based on the Onomap classification tool, when applied to the 2013 Consumer Reg-
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ister, the most comprehensive list of personal names publicly available, the level of

agreement with the Census of Population was poor.

Based on the analysis performed, a case can be made for the use of the pro-

cessed Twitter data as a population inventory. However, it should be noted that there

are clear limitations in terms of applicability. These limitations include the pro-

portion of the population for which the data are considered representative and the

degree of spatial and temporal granularity with which the data may be considered

sufficient. It may be that the data are better described as a sample population inven-

tory such that the description is not considered to be misleading. As new forms of

data continue to be incorporated into population analysis, it will be necessary that

further consideration be given to the nomenclature used in the description of individ-

uals identified and profiled within the data. In many respects, greater parallels may

be drawn between Telefonica’s SmartSteps application and the Twitter population

inventories than conventional records of population and traditional demographics.

A core feature of this thesis was the adoption of a data-rich approach to

analysing individuals’ identities. Unlike much conventional analysis using Twit-

ter data, the raw data employed in the study were collected at the global scale.

Consequently, the activities of individuals could be examined beyond the specific

study area. The merits of such an approach were demonstrated in the case of the

London airports in Chapter 7. In possession of the global data, it was possible to

infer individuals’ nationalities and effectively differentiate between residents and

non-residents and also determine airport catchments. Such an extension not only

increases the range of insight that may be generated, but it also ensures that the

various name-based heuristics and nationality-dependent analysis are only applied

where they are appropriate.

The second core feature of this analysis is its transferability. When considering

new forms of data, much excitement surrounds the use of smart sensors, consumer

data and cell phone tracking. These forms of data do provide a range of novel insight,

however, are severely limited in regards to their application beyond academia. While

it may be possible to demonstrate a correlation between crime rates and footfall based
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on cell-tower activity, it is necessary that further data be procured for any subsequent

analysis. Conversely, Twitter provides a range of methods through which data may

be harvested in real-time or purchased retrospectively. The attractiveness of Twitter

is further enhanced due to its maintenance of a consistent data format enabling the

data to be employed efficiently in a range of scenarios.

A key assumption within the analysis was that individuals’ online and offline

identities are inextricably linked as a result of physical and cultural anchors. This

feature of the analysis is critical for the inference of individuals’ personal identities

which is reliant on the analysis of individuals’ online identities. In Section 2.3.2 it

was reported how two main views exist regarding the association between individu-

als’ online and offline identities: The extended real-life hypothesis and the idealised-

self hypothesis. It was argued that the nature of modern social networks is such that

individuals are relatively constrained in the degree to which theymay embellish their

online identities, however, that this varied in degree based on the specific identity

being represented. Within the course of this thesis, the primary means of determin-

ing an individual’s identity was their personal name which is a key anchor between

an individual’s identities. In addition to personal names, the location at which indi-

viduals tweeted was fundamental to determining their identity. Unlike a users name,

a user may have greater interaction with the locations which they report and this may

provide an opportunity for embellishing personal identity. For example, including

location information where it may be deemed ‘cool’ to be seen. However, this is

likely to effect only a small proportion of users with many enabling location sharing

by default and consequently providing a more passive indication as to the locations

visited. Further, in the context of this thesis, the scale of analysis - typically at the

national or regional scale - is such that localised location reporting bias is unlikely

to have a significant impact on the conclusion drawn. The exception to this would

be in the completion of micro-scale analysis, such as in Chapter 7, when analysing

population dynamics within the London airports.

Moving forwards, it is advisable the the likelihood of self idealisation and be-

havioural biases in the use of online social media are considered in the context that
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the analysis are being performed. When using highly anchored attributes such as per-

sonal names, a certain degree of confidence may be assumed. Conversely, if seeking

to mine opinion or sentiment, it is necessary that any systemic biases in individual

observations is identified and adjusted for.

As with any analysis, this thesis has some limitations. These include data un-

certainty, availability of suitable reference data and data sparsity. In regards to un-

certainty, there are various points of this thesis whereby uncertainty is a factor. This

includes the completeness of the raw Twitter data and the attribution of essential

identity characteristics to individuals based on their personal names. Regarding data

completeness, there are various concerns which cannot easily be addressed. First,

it is not possible to determine exactly what proportion of the full Twitter stream is

being collected by the filtered streaming API. We know from the work of Morstatter

et al. (2013) that when the API is set to return only geotagged Tweets that the sample

data are largely consistent with what could have been achieved using the full stream.

Further, uncertainty is encountered in the attribution of key identities based on in-

dividuals’ personal names. As has been discussed, the attributes assigned to each

user are based on our collective understanding of people bearing the name. A case

in point being the inference of gender. For example, a user with the forename ‘Sam’

would be predicted male, however, not every user named ‘Sam’ will be of the male

gender. In much the same way as the ecological fallacy, the attributes are indicative

of all people called ‘Sam’ and are not necessarily applicable to each person within

that group. In recognition of this uncertainty, it is highlighted throughout that it is

the collective behaviour of the population which should be examined and not the

activities of individuals.

A further challenge in conducting this thesis has been the availability of con-

sistent and relevant reference data. The issue is evident both in terms of comparing

national level static populations and also local level population dynamics. Through-

out the course of this thesis, efforts have been made both to identify suitable sources

of data and also to provide insight on data quality, applicability and overall use-

fulness. In particular, a focus has been placed on the UCL Worldnames Database.
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While it may be argued that the database remains the best source of global names

data, the diversity and completeness of data range considerably. Efforts have been

made throughout to quantify and qualify these issues and factor the results into all

interpretation and suggestion of implications. In regards to the availability of na-

tional level data, the UK is something of an exception with small area demographic

data readily available. However, the ease in which UK data may be procured is not

the norm. Rather, many countries do not collect or make publicly available such

comprehensive data. Seeking to address this, this thesis explores a novel means of

comparison based upon the composition of personal names within each country’s

population. Considering next the issue of local level dynamics data, there are no

non-proprietary available sources of such information. It is for this reason that both

government, industry and academia are exploring means by which such data may be

generated. As noted in Chapter 7, current approaches are often limited to manual or

electronic counting at specific locations.

The final significant challenge is related to data sparseness. While Twitter is

often grouped under the umbrella of Big Data, when considered in a geographic

context, cleaned and split by space and time the data are in fact quite sparse. Given

that the study dataset contains the majority of geographically attributed Tweets, the

options to enrich the dataset are limited. Therefore, this thesis employs spatial and

temporal aggregation as a means to increase observation density. In doing so, it was

necessary to strike a balance between the desire to increase granularity while main-

taining sufficient data density to identify stable patterns. The challenge of sparse-

ness should also be considered regarding the proportion of the population who use

Twitter and submit data. As has been discussed, the sample of Twitter users is nei-

ther random nor stratified. Rather, as was demonstrated in Chapter 6, it is strongly

skewed towards the younger age groups with a slight male bias. Some might use

this point to the detriment of Twitter-based analysis. However, this is somewhat of

a glass-half-empty mind-set. In practice, while the data do not depict the full de-

mographic spectrum, the younger cohort are well represented. In fact, in the case of

some applications, this bias may be considered advantageous.
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8.4 Applications and Implications
While the bulk of this thesis is concernedwithwhom the data are representative, con-

sideration is also given to potential applications and implications. Considering first

the implications, this thesis provides a valuable point of reference for those wishing

to employ Twitter data in the study of population stocks and flows. The provision

of detailed demographic profiles will enable practitioners to better plan, analyse and

interpret Twitter-derived insight. This output alone is a valuable contribution to the

literature.

The potential of the demographically attributed Twitter data is showcased in

Chapter 7 in which London’s four largest airports were examined. The analysis

demonstrates both the replication of conventional insight and also, new forms of

insight not previously attainable. The significance of the above is that this insight

has been generated without direct observation or access to any proprietary or privi-

leged data. Obviously, as has been noted, there are issues of calibration which may

need to be addressed on an ad-hoc basis. However, this is a relatively trivial task in

relation to procuring data which are not available in the public domain.

There is also a case to be made that the Twitter data may be employed by practi-

tioners for the purpose of exploratory analysis. Consequently, sufficient insight may

be drawn and used as justification for the acquisition and analysis of more compre-

hensive data. Given the challenges associated with the acquisition of proprietary

data, this may prove valuable to a broad range of practitioners. This potential and

obvious extension to the work would entail development of an end-to-end toolkit

which enabled practitioners to lever the potential of Twitter data for the purpose of

observing stocks and flows of populations. Such a toolkit could be applied in a broad

range of contexts from retail and marketing to security and crime.

As is often the case with new technologies, the pace of developments exceeds

the rate at which legislation and guidance can be implemented. Discussed in detail

by Zimmer and Proferes (2014), little recognition is given to the ethical implications

of the use of new forms of data. From an ethical perspective, the use of Twitter-based

analysis is an attractive option. Given that the data collected are within the public
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domain and consent, albeit assumed, is given, the data may be employed without the

stringent controls associated with personal or proprietary data. Further, the analysis

of Twitter, unlike other forms of hyper-local monitoring is far less intrusive. This is

especially the case when we consider the alternatives such as cell-tower and WiFi

monitoring.

While the overarching focus of this thesis has been the analysis of social media

data, it should be remembered that name-based analysis has formed a critical con-

duit by which the social media and demographic data have been linked. Approaches

from the names literature have provided novel means by which the representative-

ness of the Twitter inventories could be assessed. Consequently, this thesis has made

various contributions which could further extend the names literature. Key amongst

these is the novel implementation of the Morisita-Horn Index of Overlap, a similar-

ity measure commonly employed in ecology as a means to quantify the similarity

between collections of species. Compared to other methods, theMorisita-Horn tech-

nique has several advantages. The measure is more easily interpreted using a linear

scale between 0 and 1, and also the ability to handle populations of significantly

different sample sizes. Such a feature is particularly valuable when the populations

being compared are orders of magnitude different in size. Beyond providing a means

to standardise between populations, the measure, due to its standardisation, can be

employed to draw out more nuanced aspects of population structure.

In many respects, the social sciences are only just beginning to scrape the sur-

face of social media and its potential for the study of human populations. To date,

much of the academic interest has been on the extraction of novel insight or the

application of cross-disciplinary tools. Yet, so far there been limited attention on

the establishment of fundamental principles or truths. Case in point is the ongoing

publication of analysis which fails to account for the demographic and geographic

biases inherent within the source data. This observation is evidenced by the lack of

literature on the factors effecting social media uptake and also the lack of recognition

of any biases which are manifest within the data.

Throughout the course of this thesis, numerous applications of social media data
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have been discussed in regards to their strengths, weaknesses and opportunities.

These applications have spanned a diverse range of topics drawing on techniques

and concepts from across the sciences. This observation alone is testament to the

potential of social media data to be transformative, providing a newmedium for anal-

ysis. However, while these data offer unparalleled richness in both space and time,

the data lack the formalised recording and structured nature of much traditional data.

This lack of formalised recording introduces significant uncertainty with key con-

cerns including: the proportion of the population represented by each platform, Any

discrepancies in the geography of each platforms users; and the extent to which the

data are fit for purpose. As has been noted, while social media data are often con-

sidered under the umbrella of ‘Big Data’, in reality, once the data are subset they are

often particularly sparse. In many respects this contradicts the supposed panacea of

Big Data and statements regarding the end of theory in the ‘Big Data’ era.

In much traditional social science, the biases in the data are both recognised and un-

derstood with protocols in place to measure and address the issues which they might

present. In regards to social media data, the key challenge is a lack of consistency

and transparency in the current measurement and reporting of social media demo-

graphics and geography. While the biases are increasingly recognised, there does

not yet exists a common interpretation or formalised framework for their quantifica-

tion. Moving forwards two specific areas of research would benefit from a greater

amount of focus. These are the production and implementation of a formal frame-

work for the effective benchmarking and application of each social media platform

and, research into the the effective data linkage of multiple social media platforms.

In this thesis we take a step forwards in establishing the provenance of the Twitter

online social network which may be considered as a blueprint for future benchmark-

ing exercises. The provision of such information in a accessible and standard format

should provide academics and industry with a consistent point of reference whereby

the aforementioned biases may be recognised and addressed in future analysis. Not

only would a standard for benchmarking contribute to more robust use of social me-

dia data within the social sciences, the provision of said standards could potentially
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improve the integrity of research outputs addressing many of the common criticisms

levelled against social media analysis. While this focus is on overall coverage, it

should be reiterated that a demographic bias is not in itself a problem, rather it con-

strains the scope of analysis to specific portion of the population. This portion may

in fact be better represented than the population as a whole.

Second, considering the synthesis of data from multiple social media platforms, the

nature of social media is such that not all platforms appeal to all parts of the popu-

lation. For example, it is discussed in Section 3.2 how many social media platforms

target specific portions of the population for a range of different purposes. Given

that a large proportion of the population use some form of online social media, there

exists significant opportunities to develop cross-platform analyses designed to best

capture the activities of specific portions of the population. In looking to exploit

such data a number of challenges must be addressed. These include the relative size

of each platform and the effective standardisation of scale, effective linkage such

that biases are understood and controlled rather than magnified and, the effective

standardisation of data formats.

In looking to the future of social media and the social sciences we must also remain

aware of issues of data ownership, privacy and ethics. Given the range of personal

insight potentially available, we must be mindful of the risks of intrusion which may

occur inadvertently through the analysis and linkage of new data. A further con-

sideration is the sharing of data. While Twitter data are relatively easily accessible,

restrictions are placed on the subsequent sharing and distribution of the data. In

terms of disseminating the explicit research outputs this is a potential challenge. It

should be noted that this issue is evident with many new forms of data and that there

exists a growing interest in developing pathways by which the products of research

using such data may be made publicly available. In the interim, it is important that

the methods and general findings are made available such that future analysis can

gain the maximum advantage.

Beyond the direct impacts which social media data will have within the social

sciences, many of the challenges and opportunities raised throughout this thesis may
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be observed more broadly across new forms of data. Over the past 10 years there

has been an explosion in the rate at which data are generated with data increasingly

being considered as a raw data resource and a business asset with increasing refer-

ence to a new data economy. In parallel, there has been a dramatic growth in the

publication and availability of open data and new forms of data more generally. The

availability of these data has seen a shift in who provides access to data, what data

are available and subsequently the emergence of many innovative new data-driven

products.

While many positives may be observed as a consequence of new data being avail-

able, there are also a number of challenges which remain to be faced. Two examples

of such are the pressures on organisations to provide open-data products and also,

the shift to dependence on commercial data providers. In the case of some open

data, increased financial pressure has been placed on the data providers. Where his-

torically there data could be marketed as a product, often these organisations are

now required to provide access to a large proportion of the data at zero or limited

cost. Second, with the availability of new data an increase in the use of commer-

cially sourced data has been observed such as cell-tower data which is discussed

in Section 7.3.1. The use of such data, while often effective, raises questions as to

the usefulness of the research beyond academia. Analysis using proprietary data,

whether from cell-towers or alternative sources, is intrinsically dependent upon the

cooperation of the data provider to allow future access to their data. Another con-

cern relates to the volume of data that are now available. This can be considered

under the umbrella of ‘Big Data’. The volume and variety of data is such that many

of the tools and applications traditionally relied upon in academia are no longer fit

for purpose. Increasingly need to employ new bespoke applications. For example,

Hadoop, Apache Spark and Google’s Big Query. These changes require social sci-

entists, among others, to develop a new quantitative skill set.

A further consideration for the analysis of new forms of data is the issue of data

standardisation and the meta-data reporting. Within the context of social media

data it has been discussed how demographic biases within the population exist
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and may impact upon the conclusions drawn when making data-based inference.

It was suggested that consistent assessment of said bias and subsequent reporting

could improve data provenance improving both the quality of analysis and also

the degree of confidence which may be placed on the data. The creation of such

‘meta-data’ will be an important step in the transition from the use of traditional

population data to administrative and consumer data. A noteworthy mention in

the Consumer Data Research Centre (CDRC) based at University College London

(see: https://www.cdrc.ac.uk). The CDRC has developed a portal for consumer data,

similar to the UK Government’s open data portal, providing a new standard for ac-

cess to consumer data.

In closing, the use of new forms of data and ‘Big Data’ for the generation or popu-

lation insight are still very much in their infancy. While the potential of such data is

huge, it is, as with the case of social media data, that caution is exercised in the appli-

cation and interpretation of analysis. Further, given the range of data now available,

individuals’ privacy should not be sacrificed in the pursuit of greater insight.

In regards to the role which social media data and Twitter more specifically have in

the study of demographics, it is clear that considered independently, these data are

insufficient to address the full spectrum of requirements in regards to the effective

description of the population. However, such is the variety of new data that signifi-

cant potential exists in the formation of novel data linkages. Through an improved

understanding of the relative merits of each data source, and through cooperation

with data providers their exists tangible opportunities to incorporate new forms of

data in support of existing demographic datasets. In particular, the use of Twitter

may provide a means to interpolate between paired static datasets such as the Cen-

sus of Population Output Areas and Workplace Zones geography.

8.5 Future Work and Closing Remarks
While this thesis has covered significant ground, there are undoubtedly opportuni-

ties to extend the work. As a first contribution, it might be possible to develop an

end-to-end toolkit that uses Twitter data to monitor population stocks and flows.

https://www.cdrc.ac.uk
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The delivery of such a toolkit would assist practitioners in delivering high quality

and consistent insight. In addition, it would be beneficial to develop a series of case

studies in which such a toolkit was applied to a series of specific scenarios. For

example, in determining the optimum allocation of policing resources at a football

stadium, the Twitter data could be employed to determine footfall, catchment and

potential stress points. Such analysis could draw on historical data as a means to

enrich the analysis and provide further insight for planning. This extension, in par-

ticular, would benefit from engagement with the relevant agencies and organisations

to provide better tailored solutions and address any misconceptions in the flaws of

social media-based analysis.

A further extension to this thesis is to explore the potential insight manifest

within the Tweets text through the use of text-mining techniques. Text-mining of-

fers an additional avenue of analysis and has the potential to extend the insight be-

yond what may be possible with alternative New Forms of Data. The potential for

such analysis was briefly explored in Chapter 7. Within text mining, there are a

number of major themes including topic modelling, sentiment analysis and event

detection. Considering first topic modelling, various techniques exist to identify

common themes within large collections of text data. Such techniques offer a means

by which we may examine place and space providing an improved understanding of

who is occupying space and for what purpose. Sentiment analysis provides a means

of determining the general mood within a string of text. As discussed in Chapter 7,

sentiment analysis may be employed for a range of purposes. In the airport case

study, it was proposed that it could facilitate the identification of stress points in

space and time, so that the airport authority at Stansted knows when to deploy street

entertainers. Event detection is a powerful tool for the identification of unusual or

isolated behaviour. While some of the proposed ideas have already been explored,

they have not previously accounted for the population bias. Further, text mining

offers an additional opportunity to differentiate between individuals based on their

activities answering questions such as: How can we differentiate between those who

are permanent vs. those who are transient? In the airport case study, how can we fil-
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ter out those individuals who are employed on the airport campus versus those who

are passing through? In effect, there is an opportunity to further attribute individual

users based on their typical activity patterns.

Considering new forms of data more broadly it is evident that each has its own

unique strengths and weaknesses. Considered in isolation, each form of data is sub-

ject to various limitations including issues of privacy and ethics, demographic repre-

sentativeness and spatial coverage. Seeking to address these issues may necessitate

the development of a framework or standard by which various new forms of data may

be linked. One potential area of research involves the calibration of Twitter tempo-

ral profiles based on the samples collected using WiFi or other motion sensors. A

UK-wide network of WiFi footfall sensors, suitably stratified across business sec-

tors and land use, could provide a means to calibrate Twitter activity patterns more

broadly. In effect, addressing the limitations of both the Twitter-derived footfall and

WiFi monitoring techniques simultaneously.

This thesis may thus conclude on a positive note. Clearly, the analysis of Twitter

data is by no means a perfect substitute for conventional population survey data and

other secondary sources. However, it does provide an exciting new frontier in how

we may investigate and observe the stocks and flows of populations.
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Table A.1: List of Special Characters and the substitutions employed.

Character Substitution Character Substitution

Á A Ñ N
À A Ň N
Â A N, N
Ä AE Ŋ N
Ã A Ø O
Ă A Ó O
Å AA Ò O
Ā A Ô O
Ą A Ö OE
Ć C Õ O
Ĉ C Ő O
Č C Ō O
Ċ C Ǒ O
Ç C Ŕ R
Ð D Ř R
Ď D R, R
É E Ś S
È E Ŝ S
Ê E Š S
Ë E Ş S
Ě E T T
Ė E Ť T
Ē E Ţ T
Ę E Ú U
Ě E Ù U
Ĝ G Û U
Ğ G Ü UE
Ġ G Ū U
G, G Ǔ U
H H Ű U
Ĥ H Ů U
Í I Ū U
Ì I U̧ U
Î I Ŵ W
Ï I Ý Y
Ĩ I Ŷ Y
İ I Ÿ Y
Ī I Ź Z
I̧ I Ž Z
Ǐ I Ż Z
Ĵ J Þ TH
K, K Æ AE
Ł L Ĳ IJ
Ĺ L Œ OE
Ľ L ß SS
L, L
L̇ L
Ń N



Appendix B

Audit of the UCL Worldnames

Database

B.1 Introduction
The Worldnames Database is a collection of over 20 publicly available individual-

level inventories of personal names. The data are largly sourced from electoral roll

and telephone directory datasets. Combined, the data are representative of some two

billion of the Earth’s population. The objective here is to audit the data such that

future work, which relies upon the data as an accurate reference, may be performed

in confidence. As part of the audit process, meta-data will be generated pertaining

to data source, time of collection, and representative capability. The motivation for

this audit is to determine the provenance of the component datasets, as this is not

always immediately clear or well documented.

B.2 Method
The approach to the audit is as follows. for each of the Worldnames countries, a

series of tests will be performed. The results of the test and data sources used in

the case of each validation will then be reported. The representativeness of the data

will be tested on a country-by-country basis. In each case, the most common names

as recorded by the Worldnames datasets will be compared against any alternative

sources available.

Two tests will be used to measure how representative the data are. In the first
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case, the degree of overlap between the alternative data sources will be measured.

Overlap will be determined on the number if names shared in the top 10, 20, 50

and 100 where sufficient data are available. The second test will use the Spearman’s

rank statistic to measure the rank correlation between the most top 10, 20, 50 and

100 names where available. Where possible the validation data will be sourced from

national statistic agencies, however, this is not always possible. The key premise for

each test is that the frequency distribution of names is generally very distinct within

the most commonly occurring names.
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B.3 Results

Argentina
The Worldnames data for Argentina are sourced from the Electoral Register though

no year is available. The data contain records for 24.9 million individuals, represent-

ing 60% of the 2013 population. Three sets of validation data were identified, neither

of which specified a source or year. The data are from Forebears.io, Wikipedia (al-

legedly sourced from the Worldnames Database) and Behindthename.com.

Table B.1: Validation of Argentine names versus Forebears.io data.

Overlap (%) Correlation (rho)

Top 10 Top 20 Top 50 Top 100 Top 10 Top 20 Top 50 Top 100

Value 100 80 84 96 0.648 0.903 0.92 0.897

p-value 0.049 < 2.2e-16 < 2.2e-16 < 2.2e-16

Table B.2: Validation of Argentina names versus Behindthename.com and Wikipedia data.

Overlap (%) Correlation (rho)

Top 10 Top 20 Top 50 Top 100 Top 10 Top 20 Top 50 Top 100

Value 90 70 68 79 0.55 0.736 0.788 0.702

p-value 0.133 0.004 5.50E-07 < 2.2e-16

• http://forebears.io/argentina

• http://surnames.behindthename.com/top/lists/argentina/2006

• http://en.wikipedia.org/wiki/List_of_most_common_surnames_in_South

_America

The overlap in names is fairly high for all four samples for each validation

dataset. Overlap ranged from 80-100% in the case of the Forebears data and 68-

90% in the case of the BehindTheName.com data. Further, the data appear to ex-

hibit strong positive relationships in all but the top-10 sample sets. The analysis

suggests that the Worldnames data for Argentina are a good representation of the

true population.

http://forebears.io/argentina
http://surnames.behindthename.com/top/lists/argentina/2006
http://en.wikipedia.org/wiki/List_of_most_common_surnames_in_South_America 
http://en.wikipedia.org/wiki/List_of_most_common_surnames_in_South_America 
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Australia
The Worldnames data for Australia are sourced from the 2002 Telephone Directory.

The data contain records for 7.8 million individuals, which represents 34% of the

population in 2013. The directory has been cleaned to keep only residential ad-

dresses. The data, used for validation are sourced from IP Australia, a portion of the

Australian Government devoted to intellectual property.

Table B.3: Validation of Australia names versus IP Australia data.

Overlap (%) Correlation (rho)

Top 10 Top 20 Top 50 Top 100 Top 10 Top 20 Top 50 Top 100

Value 90 100 98 98 0.983 0.971 0.996 0.997

p-value 5.0E-05 6.6E-06 < 2.2e-16 < 2.2e-16

• http://pericles.ipaustralia.gov.au/atmoss/Falcon_Search_Tools.Main?pSearch

=Surname&pWord=*&pCommand=Search

The overlap between names is very high in each of the four selections with

90-100% or names common to both populations. Further, there is a high degree

of correlation between the two sets of ranked data. The analysis suggests that the

Worldnames data for Australia are a very good representation of the true population.

http://pericles.ipaustralia.gov.au/atmoss/Falcon_Search_Tools.Main?pSearch=Surname&pWord=*&pCommand=Search
http://pericles.ipaustralia.gov.au/atmoss/Falcon_Search_Tools.Main?pSearch=Surname&pWord=*&pCommand=Search
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Austria
The Worldnames data for Austria are sourced from the 2007 Telephone Directory.

The data contain records for 2.9 million individuals, which represents 35% of the

2013 population. The directory has been cleaned to keep only residential addresses.

Two sets of validation data were identified. The data are from Forebears.io and the

Wiener Sprachblätter newspaper (a periodical focused on language). The Forebears

data claims to be from 2014 though lists no source. The Sprachblätter data claims

to be from the 2005 telephone directory.

Table B.4: Validation of Austria names versus Sprachblätter data.

Overlap (%) Correlation (rho)

Top 10 Top 20 Top 50 Top 100 Top 10 Top 20 Top 50 Top 100

Value 100 100 97.5 0.903 0.976 0.981

p-value 0.001 6.60E-06 < 2.2e-16

Table B.5: Validation of Austria names versus Forebears.io data.

Overlap (%) Correlation (rho)

Top 10 Top 20 Top 50 Top 100 Top 10 Top 20 Top 50 Top 100

Value 90 95 88 88 0.667 0.895 0.963 0.884

p-value 0.059 < 2.2e-16 < 2.2e-16 3.90E-30

• http://www.sprache-werner.info/WSBAlles_Gruber_in_Oestereich.10287.html

• http://forebears.io/austria

The overlap between names is very high in each of the four selections with

90-100% and 88-95% of names common to both populations respectively. Further,

there is a high degree of correlation between the two sets of ranked data. The analysis

suggests that the Worldnames data for Austria are a very good representation of the

true population.

http://www.sprache-werner.info/WSBAlles_Gruber_in_Oestereich.10287.html
http://forebears.io/austria
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Belgium
The Worldnames data for Belgium are sourced from the 2007 Telephone Directory.

The data contain records for 3.52 million individuals, which represents 31% of the

2013 population. The directory in questions has been cleaned to keep only residen-

tial addresses. The data, used for validation are sourced from Behindthename.com

which attribution suggests are from the Belgium Statistics Authority. It is believed

the data are from 2001.

Table B.6: Validation of Belgium names versus Behindthename.com data.

Overlap (%) Correlation (rho)

Top 10 Top 20 Top 50 Top 100 Top 10 Top 20 Top 50 Top 100

Value 90 90 92 90 0.967 0.992 0.965 0.978

p-value 2E-04 1.00E-05 < 2.2e-16 < 2.2e-16

• http://surnames.behindthename.com/top/lists/belgium/2001

The overlap between names is very high in each of the four selections with

90% or higher shared between the two populations. Further, there is a high degree

of correlation between the two sets of ranked data. The analysis suggests that the

Worldnames data for Belgium are a very good representation of the true population.

http://surnames.behindthename.com/top/lists/belgium/2001
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Brazil
The Worldnames data for Brazil is the Telephone Directory for an unknown year.

The data contain records for 0.28 million individuals, which represents 0.13% of

the 2013 population. The data have been cleaned to remove businesses addressed

and keep residential addresses. It is important to note that the data represent only

5 cities: Sergipe, Salvador, Curitiba, Vitoria and Alagos. The data used for the

validation are sourced from Forebears.io, which gives the impression the data are

from 2014.

Table B.7: Validation of Brazil names versus Forebears.io data.

Overlap (%) Correlation (rho)

Top 10 Top 20 Top 50 Top 100 Top 10 Top 20 Top 50 Top 100

Value 60 60 68 72 0.886 0.552 0.561 0.552

p-value 0.033 0.067 0.001 8.20E-07

• http://forebears.io/brazil

The overlap between names is low in each of the four selections ranging from

60-72%. Further, there is a low degree of correlation between the two sets of ranked

data. Whilst the source of the validation dataset is uncertain, it suggests that the

Worldnames data for Brazil are a poor representation of the true national population.

The poor performance is almost certainly associated with the limited geographic

coverage of the data.

http://forebears.io/brazil
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Bulgaria
The Worldnames data for Bulgaria is the Telephone Directory for an unknown year.

The data contain records for 0.74 million individuals, which represents 10% of the

2013 population. The data used for the validation are sourced from Forebears.io,

which gives the impression the data are from 2014. The analysis is performed using

both raw and gender standardised surnames.

Table B.8: Validation of Bulgarian names versus Forebears.io Unstandardised data.

Overlap (%) Correlation (rho)

Top 10 Top 20 Top 50 Top 100 Top 10 Top 20 Top 50 Top 100

Value 70 50 58 50 0.571 0.81818 0.922 0.801

p-value 0.2 0.007 2.40E-07 < 2.2e-16

Table B.9: Validation of Bulgarian names versus Forebears.io Standardised data.

Overlap (%) Correlation (rho)

Top 10 Top 20 Top 50 Top 100 Top 10 Top 20 Top 50 Top 100

Value 50 55 52 55 0.9 0.961 0.852 0.579

p-value 0.083 2.40E-06 3.40E-08 3.70E-06

• http://forebears.io/bulgaria

In the case of both comparisons the level of agreement between the two datasets

is fairly poor. Notably, the level of agreement is the most common names varies

between 50-70% and 50-55% for the unstandardised and standardised data respec-

tively. Whilst the sources of the validation dataset is uncertain, the results suggest

that the Worldnames data for Bulgaria are a poor representation of the true national

population.

http://forebears.io/bulgaria 
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Canada
The Worldnames data for Canada is sourced from the Telephone Directory. The

data contain records for 4.75 million individuals, which represents 14% of the 2013

population. In this case, the year of collection is unknown. The directory has been

cleaned to remove businesses addressed and keep residential addresses. The data

used for reference are sourced from the Wikipedia, however, are attributed to Statis-

tics Canada and appears to be correct as of 2006. The data available only referred

to the top 20 most common names.

Table B.10: Validation of Canadian names versus Wikipedia data.

Overlap (%) Correlation (rho)

Top 10 Top 20 Top 50 Top 100 Top 10 Top 20 Top 50 Top 100

Value 10 20 n/a -0.224

p-value n/a 0.537

Table B.11: Validation of Canadian names versus Forebears.io data.

Overlap (%) Correlation (rho)

Top 10 Top 20 Top 50 Top 100 Top 10 Top 20 Top 50 Top 100

Value 20 50 46 55 1 0.079 0.202 0.309

p-value 1 0.838 0.355 0.022

• http://en.wikipedia.org/w/index.php?title=List_of_most_common_surnames

_in_North_America&oldid=367685342

• http://forebears.io/canada

The overlap between names is very low in both cases with only 50% overlap in

the top 20 and 10% in the top 10. Further, there is a very poor degree of correlation

between the two sets of ranked data, though these are not statistically significant.

The names that were not matched in the top 20 were Lee, Lam, Roy, Tremblay, Lee,

Gagnon, Wilson, Williams, Cote and Chan. The high proportion of ethnic names

suggests systematic under-reporting. The analysis suggests that theWorldnames data

for Canada are a poor representation of the true population.

http://en.wikipedia.org/w/index.php?title=List_of_most_common_surnames_in_North_America&oldid=367685342
http://en.wikipedia.org/w/index.php?title=List_of_most_common_surnames_in_North_America&oldid=367685342
http://forebears.io/canada
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Denmark
The Worldnames data for Denmark are sourced from the Telephone Directory. The

data contain records for 3.29 million individuals, which represents 59% of the 2013

population. In this case, the year of collection is unknown. The directory has been

cleaned to keep only residential addresses. The data used for reference are sourced

from the ‘My Danish Roots Website’ and appear to be correct as of 2014. This data

was validated against data published by the Danish Statistics Authority that provide

the top 20 names.

Table B.12: Validation of Danish names versus MyDanishRoutes.com data

Overlap (%) Correlation (rho)

Top 10 Top 20 Top 50 Top 100 Top 10 Top 20 Top 50 Top 100

Value 100 95 98 95 1 1 0.988 0.988

p-value < 2.2e-16 8.4E-06 1.5E-39 5.2E-77

• http://www.dst.dk/da/Statistik/emner/navne/navne-i-hele-befolkningen

• http://www.mydanishroots.com/surnames-meaning-and-origin/the-100-

most-common-surnames-in-denmark.html

The overlap between names is very high in each of the four selections with

95% or higher shared between the two populations. Further, there is a high degree

of correlation between the two sets of ranked data. The analysis suggests that the

Worldnames data for Denmark are a very good representation of the true population.

http://www.dst.dk/da/Statistik/emner/navne/navne-i-hele-befolkningen
http://www.mydanishroots.com/surnames-meaning-and-origin/the-100-most-common-surnames-in-denmark.html 
http://www.mydanishroots.com/surnames-meaning-and-origin/the-100-most-common-surnames-in-denmark.html 
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France
The Worldnames data for France are sourced from the Telephone Directory. The

data contain records for 20.36 million individuals, which represents 31% of the 2013

population. In this case, the year of collection is unknown. The directory has been

cleaned to keep only residential addresses. The data used for reference are sourced

from Le Journal des Femmes. The data are based on data for 11 million users of

Copains d’avant, a website similar to Friends Reunited.

Table B.13: Validation of French names versus Le Journal des Femmes data.

Overlap (%) Correlation (rho)

Top 10 Top 20 Top 50 Top 100 Top 10 Top 20 Top 50 Top 100

Value 90 95 94 93 0.533 0.909 0.918 0.942

p-value 0.148 < 2.2e-16 < 2.2e-16 < 2.2e-16

• http://www.journaldesfemmes.com/nom-de-famille/noms/1/2/france.shtml

The overlap between names is very high in each of the four selections with

90% or higher shared between the two populations. Further, there is a high degree

of correlation between the two sets of ranked data though the correlation in the top

10 is not statistically significant. The analysis suggests that the Worldnames data for

France are a very good representation of the true population.

http://www.journaldesfemmes.com/nom-de-famille/noms/1/2/france.shtml 
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Germany
The Worldnames data for Germany are sourced from the 2007 Telephone Directory.

The data contain records for 32.54 million individuals, which represents 40% of the

2013 population. The directory has been cleaned to keep only residential addresses.

The data used for reference are sourced from Wikipedia.

Table B.14: Validation of German names versus Wikipedia data.

Overlap (%) Correlation (rho)

Top 10 Top 20 Top 50 Top 100 Top 10 Top 20 Top 50 Top 100

Value 100 95 98 97 1 1 0.999 0.999

p-value <2.2e-16 8.4E-06 <2.2e-16 <2.2e-16

• http://de.wikipedia.org/wiki/Liste_der_h%C3%A4ufigsten

_Familiennamen_in_Deutschland

The overlap between names is very high in each of the four selections with

95% or higher shared between the two populations. Further, there is a high degree

of correlation between the two sets of ranked data though the correlation in the top

10 is not statistically significant. The analysis suggests that the Worldnames data for

Germany are a very good representation of the true population.

http://de.wikipedia.org/wiki/Liste_der_h%C3%A4ufigsten_Familiennamen_in_Deutschland
http://de.wikipedia.org/wiki/Liste_der_h%C3%A4ufigsten_Familiennamen_in_Deutschland
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Hungary
The Worldnames data for Hungary are sourced from the Telephone Directory. The

data contain records for 0.28 million individuals, which represents 3% of the 2013

population. In this case, the year of collection is unknown. The directory has been

cleaned to remove businesses addressed and keep residential addresses. The data

used for reference are sourced from the Hungarian ‘Administrative and Public Ser-

vices Central Office’ and appears to be correct as of 2011.

Table B.15: Validation of Hungary names versus the Hungarian Administrative and Public
Services data.

Overlap (%) Correlation (rho)

Top 10 Top 20 Top 50 Top 100 Top 10 Top 20 Top 50 Top 100

Value 90 70 78 71 0.433 0.776 0.735 0.805

p-value 0.25 0.002 4.90E-07 2.80E-17

• http://infolux.uni.lu/familiennamen/grundstrukturen/#haeufigste

The overlap between names is fairly high in each of the four selections with

70% or higher shared between the two populations. Further, there is a high degree

of correlation between the two sets of ranked data. However, the correlation is con-

sidered statistically insignificant when only the top 10 names are compared. The

analysis suggests that the Worldnames data for Hungary are a good representation

of the true population.

http://infolux.uni.lu/familiennamen/grundstrukturen/#haeufigste
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India
The Worldnames data for India are from the India Telephone directory for

2005/2006. The data contain records for 3.73 million individuals, which represents

0.2% of the 2013 population. In the case of the Indian data, it is important to note that

it represents only 3 cities: New Delhi, Mumbai and Hyperabad. The data have been

cleaned to keep only residential addresses. The data used for reference are sourced

from Forebears.io. The data claim to be from 2014 though no formal source or year

is recorded.

Table B.16: Validation of Indian names versus Forebears.io data.

Overlap (%) Correlation (rho)

Top 10 Top 20 Top 50 Top 100 Top 10 Top 20 Top 50 Top 100

Value 10 35 26 29 n/a 0.143 0.571 0.562

p-value n/a 0.783 0.045 0.002

Table B.17: Validation of Indian names versus Low Chen Australia data.

Overlap (%) Correlation (rho)

Top 10 Top 20 Top 50 Top 100 Top 10 Top 20 Top 50 Top 100

Value 10 15 20 23 n/a 1 0.345 0.403

p-value n/a 0.333 0.331 0.058

• http://forebears.io/india

• http://www.lowchensaustralia.com/names/popular-indian-names.htm

Based on the forebears.io data, the overlap between names is very low in each of

the four selections with less that 30% of names hared between the two populations.

Further, there is a very low degree of correlation between the two sets of ranked

data. From the alternative source, the overlap between names in the second reference

is also very low in each of the four selections with less that 23% of names hared

between the two populations. Further, there are no significant correlations between

either of the two sets of ranked data. Whilst the sources of the validation datasets

are uncertain, the results suggest that the Worldnames data for India are a very poor

representation of the true national population.

http://forebears.io/india
http://www.lowchensaustralia.com/names/popular-indian-names.htm 
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Ireland
The Worldnames data for Ireland are from an unknown source in an unknown year.

The data contain records for 2.92 million individuals which suggests they may be

from a telephone directory or similar, which represents 63% of the 2013 population.

The data have been cleaned to keep only residential addresses. The data used for the

validation are sourced from Forebears.io that gives the impression the data are from

2014. This information is not verified, however.

Table B.18: Validation of Irish names versus Forebears.io data.

Overlap (%) Correlation (rho)

Top 10 Top 20 Top 50 Top 100 Top 10 Top 20 Top 50 Top 100

Value 90 90 88 89 0.833 0.913 0.943 0.883

p-value 0.01 < 2.2e-16 < 2.2e-16 < 2.2e-16

• http://forebears.io/ireland

The overlap between names is very high in each of the four selections with 88%

or higher shared between the two populations. Further, there is a high degree of

correlation between the two sets of ranked data. Whilst the source of the validation

dataset is uncertain, it still suggests that the Worldnames data for Ireland are a good

representation of the true population.

http://forebears.io/ireland
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Italy
The Worldnames data for Italy are from the Italian Telephone directory for

2005/2006. The data contain records for 15.94 million individuals, which repre-

sents 27% of the 2013 population. The data have been cleaned to remove businesses

addressed and keep residential addresses. The data used for reference are sourced

from Cognomix which is an Italian genealogical website. The data were published

in 2010 though no formal source or year is recorded.

Table B.19: Validation of Italian names versus Cognomix data.

Overlap (%) Correlation (rho)

Top 10 Top 20 Top 50 Top 100 Top 10 Top 20 Top 50 Top 100

Value 80 100 88 93 0.929 0.925 0.968 0.955

p-value 0.002 4.40E-06 < 2.2e-16 < 2.2e-16

• http://www.cognomix.it/top100_cognomi_italia.php

The overlap between names is very high in each of the four selections with 80%

or higher shared between the two populations. Further, there is a high degree of cor-

relation between the two sets of ranked data. Whilst the source of the validation is

uncertain, it still suggests that the Worldnames data for Italy are a good representa-

tion of the true population.

http://www.cognomix.it/top100_cognomi_italia.php 
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Japan
The Worldnames data for Japan are from an unknown source and the year of col-

lection is unknown. The data contain records for 44.99 million individuals, which

represents 35% of the 2013 population. The data have been cleaned to remove busi-

nesses addressed and keep residential addresses. The data used for reference are

sourced from the ‘The National Same Family Name Investigation’ by the Meiji Ya-

suda Life Insurance Company and appears to be correct as of 2008. The data are

based on customer details for 6.1 million individuals.

Table B.20: Validation of Japanese names versus Wikipedia data.

Overlap (%) Correlation (rho)

Top 10 Top 20 Top 50 Top 100 Top 10 Top 20 Top 50 Top 100

Value 90 95 92 95 0.9 0.809 0.933 0.857

p-value 0.002 3.10E-05 4.10E-21 1.60E-28

• http://en.wikipedia.org/wiki/List_of_most_common_surnames_in

_Asia#Japan

The overlap between names is very high in each of the four selections with 90%

or higher shared between the two populations. Further, there is a high degree of cor-

relation between the two sets of ranked data. However, the correlation is considered

statistically insignificant when only the top 10 names are compared. The analysis

suggests that the Worldnames data for Japan are a good representation of the true

population.

http://en.wikipedia.org/wiki/List_of_most_common_surnames_in_Asia#Japan
http://en.wikipedia.org/wiki/List_of_most_common_surnames_in_Asia#Japan
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Luxembourg
The Worldnames data for Luxembourg are sourced from the national Telephone Di-

rectory. The data contain records for 0.12 million individuals, which represents 23%

of the 2013 population. In this case, the year of collection is unknown. The direc-

tory has been cleaned to remove businesses addressed and keep residential addresses.

The data used for reference are sourced from data shared by the University of Lux-

embourg.

Table B.21: Validation of Luxembourg names versus infolux data.

Overlap (%) Correlation (rho)

Top 10 Top 20 Top 50 Top 100 Top 10 Top 20 Top 50 Top 100

Value 70 75 72 68 1 0.993 0.84376 0.90297

p-value 4E-04 < 2.2e-16 5.10E-08 < 2.2e-16

• http://infolux.uni.lu/familiennamen/grundstrukturen/#haeufigste

The overlap between names is fairly high in each of the four selections with

70% or higher shared between the two populations. Further, there is a high degree

of correlation between the two sets of ranked data. The analysis suggests that the

Worldnames data for Luxembourg are a fair representation of the true population.

http://infolux.uni.lu/familiennamen/grundstrukturen/#haeufigste 
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Malta
The Worldnames data for Malta are the Electoral roll in an unknown year. The

data contain records for 0.33 million individuals, which represents 79% of the 2013

population. The data have been cleaned to remove businesses addressed and keep

residential addresses. The data used for the validation are sourced from Forebears.io

which gives the impression the data are from 2014. This information is not verified,

however.

Table B.22: Validation of Malta names versus Forebears.io data.

Overlap (%) Correlation (rho)

Top 10 Top 20 Top 50 Top 100 Top 10 Top 20 Top 50 Top 100

Value 90 100 98 93 0.983 0.983 0.974 0.987

p-value < 2.2e-16 < 2.2e-16 6.5E-06 5.0E-05

• http://forebears.io/malta

The overlap between names is very high in each of the four selections with

90% or higher shared between the two populations. Further, there is a high degree

of correlation between the two sets of ranked data. Whilst the source of the data

is uncertain, it still suggests that the Worldnames data for Malta are a very good

representation of the true population.

http://forebears.io/malta
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Netherlands
The Worldnames data for the Netherlands are the Telephone Directory for an un-

known year. The data contain records for 4.87 million individuals, which represents

29% of the 2013 population. The data have been cleaned to remove businesses ad-

dressed and keep residential addresses. The data used for the validation are sourced

from Forebears.io which gives the impression the data are from 2014.

Table B.23: Validation of Malta names versus Forebears.io data.

Overlap (%) Correlation (rho)

Top 10 Top 20 Top 50 Top 100 Top 10 Top 20 Top 50 Top 100

Value 80 90 82 86 0.762 0.944 0.953 0.937

p-value 0.037 2.20E-06 < 2.2e-16 < 2.2e-16

• http://forebears.io/netherlands

The overlap between names is very high in each of the four selections with 80%

or higher shared between the two populations. Further, there is a high degree of

correlation between the two sets of ranked data. Whilst the source of the validation

is uncertain, it still suggests that the Worldnames data for the Netherlands are a good

representation of the true population.

http://forebears.io/netherlands
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New Zealand
The Worldnames data for New Zealand are recorded as being from the Electoral

Roll, though the specific year is unclear. The data contain records for 2.84 million

individuals, which represents 63% of the 2013 population. However, on inspection,

the data are clearly a synthesis of datasets spanning almost 100 years. The earliest

records pertain to 1897 and the most recent to 1992. This theory has been con-

firmed though investigation of a specific user, a Mr Austin Edgar Andrews, who

is recorded in the Worldnames for the period 1912 to 1917. The individual was

also matched to a news report about the history of the Thomas’s department store

(http://www.thomass.co.nz/page/about-us.aspx) and referenced by mentions of his

wife. A further observation of the data was that multiple individuals were recorded

at the same address over an extended period. In one instance, 4 different individuals

from 3 different families were recorded at one address (26 Francis Street, Blenhiem).

When a subset was created for only the most recent residents (1992) only 122297

individuals remained of the previous 2.84 million. The data used for reference are

sourced from the New Zealand Department for Internal Affairs and contain data for

2015. In this case, only the top 20 names are made available.

Table B.24: Validation of Malta names versus Forebears.io data.

Overlap (%) Correlation (rho)

Top 10 Top 20 Top 50 Top 100 Top 10 Top 20 Top 50 Top 100

Value 70 65 0.964 0.989

p-value 0.003 < 2.2e-16

• http://www.dia.govt.nz/press.nsf/d77da9b523f12931cc256ac5000d19b6/

738cf2a0e2ef4d2ecc257d340013fc3b!OpenDocument

The overlap between names is medium in each of the two selections with 65-

70% of names shared between the two populations. There is a very high degree

of correlation between the two sets of ranked data. It should be noted that the

Worldnames data appears to under-represent ethnic minorities. From the top 20,

the 7 names not evident in the Worldnames data were Singh, Wang, Li, Chen, Pa-

http://www.thomass.co.nz/page/about-us.aspx
http://www.dia.govt.nz/press.nsf/d77da9b523f12931cc256ac5000d19b6/738cf2a0e2ef4d2ecc257d340013fc3b!OpenDocument 
http://www.dia.govt.nz/press.nsf/d77da9b523f12931cc256ac5000d19b6/738cf2a0e2ef4d2ecc257d340013fc3b!OpenDocument 
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tel, Zhang, and Kumar. The analysis suggests that the Worldnames data for New

Zealand are a poor representation of the true population.
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Norway
The Worldnames data for Norway are sourced from the Telephone Directory. The

data contain records for 3.58 million individuals, which represents 70% of the 2013

population. In this case, the year of collection is unknown. The directory has been

cleaned to keep only residential addresses. The data used for reference are sourced

from the Norwegian National Statistics Authority and pertain to 2014.

Table B.25: Validation of Norwegian names versus the Norwegian National Statistics Au-
thority data.

Overlap (%) Correlation (rho)

Top 10 Top 20 Top 50 Top 100 Top 10 Top 20 Top 50 Top 100

Value 100 95 94 97 0.976 0.996 0.997 0.982

p-value < 2.2e-16 8.4E-06 < 2.2e-16 < 2.2e-16

• http://www.ssb.no/en/befolkning/statistikker/navn/aar/2015-01-27

?fane=tabell&sort=nummer&tabell=216083

The overlap between names is very high in each of the four selections with 94-

100%of names common to both two populations. Further, there is a very high degree

of correlation between the two sets of ranked data. The analysis suggests that the

Worldnames data for Norway are a very good representation of the true population.

http://www.ssb.no/en/befolkning/statistikker/navn/aar/2015-01-27?fane=tabell&sort=nummer&tabell=216083
http://www.ssb.no/en/befolkning/statistikker/navn/aar/2015-01-27?fane=tabell&sort=nummer&tabell=216083
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Poland
TheWorldnames data for Poland are sourced from the national Telephone Directory.

The data contain records for 8.17 million individuals, which represents 21% of the

2013 population. In this case, the year of collection is unknown. The directory has

been cleaned to keep only residential addresses. The data used for reference are

sourced from the Polish Ministry for Interior and contain data for 2014. The data

are available split by gender and as such must be combined. In this, it is important

to note that the orders differ potentially meaning a count of either the feminine, or

masculine form of the name is not available. In this situation, the name is omitted.

Table B.26: Validation of Poland names versus the Polish Interior Ministry data.

Overlap (%) Correlation (rho)

Top 10 Top 20 Top 50 Top 100 Top 10 Top 20 Top 50 Top 100

Value 50 60 68 62 0.2 0.378 0.543 0.622

p-value 0.783 0.227 0.001 1.40E-07

• https://www.msw.gov.pl/pl/aktualnosci/12891,100-najpopularniejszych-

polskich-nazwisk.html?search=96137220

The overlap between names is quite poor in each of the four selections with no

observation over 70% shared between the two populations. Further, there is a very

low degree of correlation between the two sets of ranked data. Furthermore, the

correlations in the case of both the top 10 and 20 are considered insignificant. The

analysis suggests that the Worldnames data for Poland are a poor representation of

the true population.

https://www.msw.gov.pl/pl/aktualnosci/12891,100-najpopularniejszych-polskich-nazwisk.html?search=96137220
https://www.msw.gov.pl/pl/aktualnosci/12891,100-najpopularniejszych-polskich-nazwisk.html?search=96137220
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Serbia
The Worldnames data for Serbia are the Yugoslavia Telephone Directory for an un-

known year. The data are a subset of this for Serbia. The year is estimated as being

between 1992 and 2006 based on the breakup of Serbia and Montenegro. The data

appear to represent key cities, which include Pristina, Belgrade, Uzice, Kragujavac,

Nis and Novi Sad. The dataset also include records for Podgorica, which is now the

capital of Montenegro. The data contain records for 1.59 million individuals, which

represents 22% of the 2013 population. The data have been cleaned to keep only res-

idential addresses. The data used for the validation are sourced from Forebears.io,

which gives the impression the data are from 2014. This information is not verified,

however. It should be noted that the Worldnames uses the Æ character in place of

Ć. For the comparison the Æ character is pre-converted to Ć.

Table B.27: Validation of Serbian names versus the Forebears.io data.

Overlap (%) Correlation (rho)

Top 10 Top 20 Top 50 Top 100 Top 10 Top 20 Top 50 Top 100

Value 90 75 84 89 0.767 0.882 0.752 0.889

p-value 0.021 < 2.2e-16 1.10E-07 < 2.2e-16

• http://forebears.io/serbia

The overlap between names is fairly high in each of the four selections with 75-

90% of names shared between the two populations. Further, there is a high degree

of correlation between the two sets of ranked data. Whilst the source of the vali-

dation is uncertain, it still suggests that the Worldnames data for Serbia are a good

representation of the true population. However, it would appear that the character

substitution would be necessary.

http://forebears.io/serbia 
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Slovenia
The Worldnames data for Slovenia are the Telephone Directory for 2006. The data

contain records for 0.35million individuals, which represents 23% of the 2013 popu-

lation. The data have been cleaned to keep only residential addresses. The data used

for the validation are sourced from Forebears.io that gives the Slovenian Statistics

Authority. The data include the 200 most common surnames. It is evident that there

issues with the use of specific characters. Specifically, the È character is used in the

telephone directory where it should be a Ć. Once changed, the results are drastically

improved.

Table B.28: Validation of Slovenia names versus the Slovenian Statistics Authority data.

Overlap (%) Correlation (rho)

Top 10 Top 20 Top 50 Top 100 Top 10 Top 20 Top 50 Top 100

Value 90 80 80 85 0.967 0.95 0.958 0.886

p-value 2E-04 < 2.2e-16 < 2.2e-16 < 2.2e-16

• http://www.stat.si/ImenaRojstva/sl/FamiliyNames/ExpandFamiliyNames

The overlap between names is high in each of the four selections ranging from

80-90% between the two populations. Further, there is a high degree of correlation

between the two sets of ranked data. The analysis suggests that the Worldnames for

Slovenia are a very good representation of the true population. However, for this to

be the case the character issue must be resolved.

http://www.stat.si/ImenaRojstva/sl/FamiliyNames/ExpandFamiliyNames
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Spain
The Worldnames data for Spain are sourced from the 2004 Telephone Directory.

The data contain records for 10.4 million individuals, which represents 22% of the

2013 population. The directory has been cleaned to remove businesses addressed

and keep residential addresses. The data used for reference are sourced from the

Spanish National Statistics Authority and contain data for 2014.

Table B.29: Validation of Spanish names versus the Spanish National Statistics Authority
data.

Overlap (%) Correlation (rho)

Top 10 Top 20 Top 50 Top 100 Top 10 Top 20 Top 50 Top 100

Value 90 95 86 80 0.933 0.988 0.987 0.972

p-value 7E-04 8.40E-06 < 2.2e-16 < 2.2e-16

• http://www.ine.es/apellidos/formGeneralresult.do?vista=1

The overlap between names is very high in each of the four selections with

80% or higher shared between the two populations. Further, there is a high degree

of correlation between the two sets of ranked data. The analysis suggests that the

Worldnames for Spain are a very good representation of the true population.

http://www.ine.es/apellidos/formGeneralresult.do?vista=1 
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Sweden
The Worldnames data for Sweden are sourced from the 2006 national Telephone

Directory. The data contain records for 0.79 million individuals, which represents

8% of the 2013 population. The directory has been cleaned to remove businesses

addressed and keep residential addresses. The data used for reference are sourced

from Statistics Sweden and contain data for 2014.

Table B.30: Validation of Swedish names versus the Statistics Sweden data.

Overlap (%) Correlation (rho)

Top 10 Top 20 Top 50 Top 100 Top 10 Top 20 Top 50 Top 100

Value 100 85 86 74 0.99 0.99 0.95 0.96

p-value < 2.2e-16 1.1E-05 < 2.2e-16 < 2.2e-16

• http://www.scb.se/sv_/Hitta-statistik/Statistik-efter-

amne/Befolkning/Amnesovergripande-statistik/Namnstatistik/30898/

30905/Samtliga-folkbokforda–Efternamn-topplistor/31063/

The overlap between names is very high in each of the four selections with 85%

or higher shared between the two populations. Further, there is a very high degree

of correlation between the two sets of ranked data. The analysis suggests that the

Worldnames data for Sweden are a very good representation of the true population.

http://www.scb.se/sv_/Hitta-statistik/Statistik-efter-amne/Befolkning/Amnesovergripande-statistik/Namnstatistik/30898/30905/Samtliga-folkbokforda--Efternamn-topplistor/31063/ 
http://www.scb.se/sv_/Hitta-statistik/Statistik-efter-amne/Befolkning/Amnesovergripande-statistik/Namnstatistik/30898/30905/Samtliga-folkbokforda--Efternamn-topplistor/31063/ 
http://www.scb.se/sv_/Hitta-statistik/Statistik-efter-amne/Befolkning/Amnesovergripande-statistik/Namnstatistik/30898/30905/Samtliga-folkbokforda--Efternamn-topplistor/31063/ 
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Switzerland
The Worldnames data for Switzerland are the Telephone Directory for an unknown

year. The data contain records for 1.87 million individuals, which represents 23%

of the 2013 population. The data have been cleaned to remove businesses addressed

and keep residential addresses. The data used for the validation are sourced from

Forebears.io that gives the impression the data are from 2014.

Table B.31: Validation of Switzerland names versus the Forebears.io data.

Overlap (%) Correlation (rho)

Top 10 Top 20 Top 50 Top 100 Top 10 Top 20 Top 50 Top 100

Value 60 50 60 58 0.714 0.6 0.407 0.407

p-value 0.136 0.073 0.026 0.002

• http://forebears.io/switzerland

The overlap between names is very low in each of the four selections ranging

from 50-60% between the two populations. Further, there is a very low degree of

correlation between the two sets of ranked data. Whilst the source of the valida-

tion is uncertain, it suggests that the Worldnames data for Switzerland are a poor

representation of the true population.

http://forebears.io/switzerland
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UK
The Worldnames data for the UK are an enhanced version of the 2011 public elec-

toral register. The data, provided by CACI Ltd, are enhanced to account for those

individuals who have chosen to opt out of inclusion in the public register. The data

contain records for 54.29 million individuals, which represents 85% of the 2013

population. The data have been cleaned to remove businesses addressed and keep

residential addresses. The data used for the validation are sourced from Forebears.io,

which gives the impression the data are from 1991. Further, it appears that the data

do not include Scotland and Northern Ireland. This information is not verified, how-

ever. Surname Frequency data are not published by the national statistics agency.

Table B.32: Validation of UK names versus the Behindthename.com data.

Overlap (%) Correlation (rho)

Top 10 Top 20 Top 50 Top 100 Top 10 Top 20 Top 50 Top 100

Value 100 100 90 94 0.976 0.982 0.96 0.963

p-value < 2.2e-16 6.5E-06 < 2.2e-16 < 2.2e-16

• http://surnames.behindthename.com/top/lists/england-wales/1991

The overlap between names is very high in each of the four selections ranging

from 90-100% between the two populations. Further, there is a very high degree of

correlation between the two sets of ranked data. Whilst the source of the validation

data is uncertain, it suggests that the Worldnames data for the UK are a very good

representation of the true population.

http://surnames.behindthename.com/top/lists/england-wales/1991
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USA
The Worldnames data for the USA are sourced from the national Telephone Direc-

tory. The data contain records for 78.46 million individuals, which represents 25%

of the 2013 population. In this case, the year of collection is unknown. The direc-

tory has been cleaned to remove businesses addressed and keep residential addresses.

The data used for reference are sourced from US Census and contain data for 2000.

The data contain all surnames and counts for names with greater than 100 owners.

Table B.33: Validation of USA names versus the US Census data.

Overlap (%) Correlation (rho)

Top 10 Top 20 Top 50 Top 100 Top 10 Top 20 Top 50 Top 100

Value 70 75 80 82 0.964 -0.261 0.511 0.859

p-value 0.003 0.35 0.001 < 2.2e-16

• http://www.census.gov/topics/population/genealogy/data/2000

_surnames.html

The overlap between names is medium in each of the four selections with 70%

or higher shared between the two populations. However, the correlation analysis

suggests that: the internal ranks do not conform particularly well. The analysis sug-

gests that the Worldnames data for the USA are a good representation of the true

population.

http://www.census.gov/topics/population/genealogy/data/2000_surnames.html
http://www.census.gov/topics/population/genealogy/data/2000_surnames.html
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