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Abstract:  

There have been a number of attempts in the past to define ‘near extreme’ weather for 

facilitating overheating analysis in free running buildings. The most recently efforts 

include CIBSE latest release of Design Summer Year (DSY) weather using multiple 

complete weather years and a newly proposed composite DSY. This research aims to 

assess how various built forms respond to these new definitions of near extreme 

weathers. A single zone office was used for parametric studies where 4 sampling sets of 

building models were employed to examine the thermal responses of dry bulb 

temperature, global solar radiation & wind speed collectively. London weather data 

from 1976 to 1995 were used and the overheating assessments were made based on 

CIBSE Guide A & BS EN 15251. The research discovers that solar radiation and wind 

both influence the predicted indoor warmth with solar radiation has obvious stronger 

impacts than wind. No perfect correlation was found from observation and Spearman’s 

rank order analysis on the ranks between the weather warmth and the predicted indoor 

warmth. The ranks made using multiple weather parameters show better correlation than 

some of the dry bulb temperature only metrics. The research also discovers that the Test 

Reference Year weather behaves warmer than expected. It is found that no single 

complete year can always represent near-extreme for various built forms and there is no 

evidence a composite DSY is better statistically. These findings support the notion of 

using multiple complete warm weather years for overheating assessments. 

 

Keywords:  

Design Summer Year, Test Reference Year; Overheating in buildings, 

EnergyPlus, Parametric study 

 

1. Introduction 

In assessing potential overheating in free running buildings, near-extreme weather data 

were often used. The methods for generating these standardized weather datasets vary 

but essentially fall within two main categories: either using ‘a complete weather year’ or 

using ‘a composite weather year’. The complete weather year method was used by the 

Charted Institution of Building Services Engineers (CIBSE) since early 2000 when the 

Design Summer Year weather data were released for three sites (London, Manchester & 

Edinburgh) in the UK (CIBSE Guide J 2002). Later release included 14 cities (16 sites) 

in total using the same selection criteria – the third warmest year among a 20 year 
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source weather datasets, or the mid-year of the upper quartile if more than 20 years 

(Levermore & Parkinson 2006). The warmth of a weather year was judged by the 

average Dry Bulb Temperature (DBT) April to September. The appropriateness of this 

averaged DBT method was criticized on the fact that at some locations in the UK the 

predicted indoor warmth using DSY is cooler than its corresponding Test Reference 

Year (TRY) which represents a typical weather (averaged condition) among the same 

source weather years (CIBSE TM48 2009; Nicol et al 2009; Smith & Hanby 2012). A 

detailed analysis on this averaged DBT method discovered a number of issues which 

could cause the chosen DSY less likely being representative as a near-extreme weather 

(Jentsch et al 2014). The latest release of CIBSE weather data in early 2016 (Virk & 

Eames 2016) was following the updated method discussed in TM49 – Design Summer 

Years for London (CIBSE TM49 2014). TM49 uses a definition called “weighted 

cooling degree hours (WCDH)” to judge the outdoor warmth. And as a result three 

complete weather years were selected from a much larger source weather datasets (1950 

to 2006). The three complete weather years are intended to represent: inner urban (1976 

– a year with a long period of persistent warmth), rural (2003 – a year with a more 

intense single warm spell) and intermediate urban & sub-urban (1989 – a moderately 

warm summer).  WCDH is based on adaptive comfort temperature (CIBSE Guide A 

2006; BS EN 15251 2007), and it is closely related to the likelihood of thermal 

discomfort (Smith & Hanby 2012). However, this DBT only selection method and the 

‘conceptual free running building’ analogy used in TM49 can be problematic in 

practices as argued in recent research (Jentsch et al 2015; Ji et al 2016): other weather 

parameters such as solar radiation and wind should also be included in selecting DSY; 

assuming operative temperature is the same as outdoor temperature for the ‘conceptual 

building’ could be unrealistic.   

 

The composite year method was often used for generating typical weather data, for 

example, CIBSE Test Reference Year is using Finkelstein-Schafer (FS) statistical 

method to choose the most representative months from source weather data and 

combine the chosen 12 months as a full year (Finkelstein & Schafer 1971). Similar 

approach was used in the US to generate Typical Meteorological Year (TMY) datasets 

(Wilcox & Marion 2008; Oko & Ogoloma 2011). For near-extreme weather year 

consideration, the composite year near-extreme weather can either be the combination 

of 12 near-extreme months as a ‘warm reference year’ (Frank 2005), or the hottest 

summer combined with the coldest winter as an ‘extreme meteorological year’ (Ferrari 

& Lee 2008), or a set of near-extreme summer data on top of its corresponding TRYs, 

these are thoroughly reviewed by Jentsch et al (2015). For CIBSE near-extreme weather 

data, the DSY, it has been always a complete year as discussed above. The work of Ji et 

al (2016) attempted to propose a new warmth ranking metric (sol-air temperature) 

which takes into account temperature, solar radiation and wind speed but this metric did 

not show noticeable improvement in terms of selecting a complete near extreme year 

compared with other existing metrics. In this particular work a parametric study using 

five different domestic house types was also carried out and it discovered that no single 

complete year weather data can always represent near-extreme condition in terms of the 

predicted indoor warmth. Therefore a composite year may better represent the near-

extreme weather. A new sophisticated method was developed by Jentsch et al (2015) 

following their previous work which discussed the limitation of CIBSE DSYs (Jentsch 

et al (2014). This latest development accepts the method used to generate TRYs is 
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robust. The proposed near-extreme weather, which is called summer reference year – 

SRY, is generated by shifting weather parameters during summer period (from April to 

September) of the existing TRYs. It is therefore a morphed composite near-extreme 

weather (Jentsch et al 2015). Considering how this new near-extreme weather is 

generated (October to March unchanged, April to September mathematically adjusted), 

a SRY will always be consistently warmer than its corresponding TRY, which is clearly 

illustrated by their benchmark model results.  

 

In the efforts of generating both typical weather year and near-extreme weather year 

datasets for building simulation applications,  various methods have been attempted to 

judge measured historical weather data in terms of outdoor warmth. These methods 

range from simple averaged DBT (CIBSE Guide J 2002) to six order polynomial 

regression TRY adjustment (Jentsch et al 2015), and others (CIBSE TM49 2014; 

Watkins et al 2011). One aspect that has not been explored is the role of buildings in the 

assessment of historical weather data. Since the purpose for developing (or selecting) 

weather data sets is to analyse building's performance, how various built forms respond 

to weather data is clearly a question in need of answering. For any particular building 

design in question, it is expected that a warm year should have higher likelihood of 

causing overheating (in case of free running buildings) or have higher cooling demand 

(in case of air conditioned buildings).  

 

Some researchers made recommendation on creating standardized weather data without 

any verification using building models (Levermore & Parkinson 2006; Smith & Hanby 

2012; Belcher et al 2005; Eames et al 2011), whereas others attempted to verify their 

proposals using either a particular building model (Jentsch et al 2008), or simplified 

benchmark building models (Jetsch et al 2015; Nicol et al 2009). The work of Ji et al 

(2016) used various built forms derived from five house types to verify the proposed 

Sol-air parameter alongside other existing ranking metrics. However, with these whole 

building models (UrbanArea 2012), it was not possible to isolate and assess the 

contributions of individual weather parameter in terms of predicted indoor warmth.  

 

This research herein attempts to examine how various built forms of a single zone office 

respond to the existing proposals of near extreme weather conditions. This single zone 

office model was made in such a way that individual weather parameters such as DBT, 

GSR and WS can be examined individually or collectively in terms of their 

contributions to the indoor warmth prediction. Standard near extreme weathers are often 

used to assess the likelihood of overheating, while overheating happens indoors, 

therefore it is important to use various built forms to verify whether these data perform 

as what they are expected to be in terms of indoor warmth prediction.  

2. Weather data analysis 

In this study, the London historical weather data from 1976 to 1995 were used. The key 

weather parameters within these source weather years include: global solar irradiation, 

diffuse solar irradiation, cloud cover, dry-bulb temperature, wet-bulb temperature, 

atmospheric pressure and wind speed. For free running buildings, dry-bulb temperature 

(DBT), global solar irradiation (GSR) and wind speed (WS) are thought to have direct 
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influence on indoor operative temperature. Hereinafter, they will be referred as DBT, 

GSR and WS.  

 

For the purpose of generating standard near extreme weather data, various analyses 

have been used in assessing the historical weather data. Some analyses were focusing on 

DBT only (CIBSE Guide J 2002; Smith & Hanby 2012; CIBSE TM49 2014), others 

considered parameters such as GSR and WS in addition to DBT (Jentsch et al 2015; Ji 

et al 2016). Here we show some new analyses using Finkelstein-Schafer statistics on 

DBT, GSR and WS, number of hours and accumulated degree hours on DBT, and peak 

coincidence probability of DBT-GSR and DBT-WS. The ranking of weather years from 

these analyses are used to compare the parametric modelling results later.  

 

2.1 Finkelstein-Schafer statistics 

Cumulative distribution functions (CDFs) of daily mean weather parameters were often 

used to select candidate months of a typical weather year. The three parameters used for 

typical weather year selection are DBT, GSR and WS when generating CIBSE TRYs 

(Levermore & Parkinson 2006). The most average months were judged by the smallest 

Finkelstein-Schafer (FS) statistics (the sum of FS for the three parameters with equal 

weighting) by comparing CDFs of each individual month to the overall CDFs of the 

whole source weather parameters. By examining the nature of the FS statistic, it may 

also be used to judge extremes, i.e. the largest departure from the overall statistical 

average. The probability density functions (PDFs) of DBT, Radiation and Wind speed 

show different forms, i.e. DBT is more of a normal distribution, while radiation and 

wind speed data are more close to a Weibull distribution (Figure 1, left). While the FS 

statistic relies on the CDFs of the concerned parameter, which distribution the data fall 

within does not matter, as the CDF, by definition, is the percentage possibility of data 

equal or smaller than that particular datum. Figure 1 (right) shows the CDF of weather 

parameters for all the source weather years, Dry Bulb Temperature, Global Solar 

Radiation, and Wind speed. In Figure 1, the overall CDF represents the average, and 

some extreme years are highlighted. 
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Figure 1 Probability density functions (PDF) and Cumulative distribution functions 

(CDF) of weather parameters – DBT, GSR & WS 

 

The FS statistics here are to evaluate the accumulated differences between the CDF of 

each individual year and the CDF of all 20 source weather years, as shown in Eq. 01, 

where x represents weather parameters (DBT, GSR & WS), N is the number of days of 

that month and year, i is year number (1976 to 1995), d is day, m is month, & y is year.  

 

𝐹𝑆(𝑥) = ∑ {𝐶𝐷𝐹(𝑑, 𝑚, 𝑦𝑖) − 𝐶𝐷𝐹(𝑑, 𝑚, 𝑦𝑎𝑙𝑙)}𝑁
𝑑=1       Eq. 01  

 

Graphically, as shown in Figure 1 (right), warmer years (with higher DBT) stay towards 

the right hand side of the overall CDF, i.e. year L76. Similarly, cooler years stay on the 

left hand side. Statistically, as shown in Table 1, the FS statistics of the three weather 

parameters for the 20 years source weather data (from April to September only) can be 

used to rank source weather years. The ranking in Table 1 can identify the extremes, i.e. 

for DBT, the 5 warm years are 76, 95, 89, 90 & 92 while the 5 cooler years are 77, 86, 

78, 79 & 88. The CDFs for the years in the middle, to some extent, intersect with the 
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overall CDF, so the daily FS has both positive and negative values. Table 1 shows the 

sum of all the daily FS values.   

 

Table 1 FS statistics for weather parameters DBT, GSR & WS. 

 
 

2.2 Hours over temperatures  

The number of hours over a base temperature can be a good indicator for judging the 

warmth of weather. A base temperature of 25°C was used to examine the selected DSYs 

for the 14 cities in the UK (Jentsch et al 2015). TM49 (2014) used 28°C as the base 

temperature which mirrors its ‘conceptual free running building’ definition by assuming 

outdoor temperature equals indoor operative temperature, and 28°C is the single 

overheating criterion of CIBSE Guide A (2006) for free running buildings. The work of 

Ji et al (2016) used multiple base temperatures (from 21°C to 28°C) to rank source 

weather years and the ranking was not always consistent. For free running buildings, the 

built form, operation, incidental heat gains, solar radiation gain and wind condition will 

all influence the indoor thermal responses of a building. The combination of these 

factors will cause a ‘difference’ between indoor and outdoor temperature. If this 

temperature ‘difference’ were known, it would be straightforward to know what the 

correct base temperature should be. For example, if the indoor and outdoor temperature 

difference is 6°C, using the CIBSE single temperature criterion (number of hours over 

28ºC) the base temperature will be 22ºC and this base temperature will provide an 

accurate judgement in terms of the warmth ranking of outdoor temperature for that 

particular design. Practically this temperature ‘difference’ is always unknown and it is 

never a parallel shift in terms of outdoor and indoor temperature difference. Table 2 

shows the ‘number of hours over’ a wide range of temperatures and the ‘accumulated 

degree hours (adh) over’ for the 20 years source weather data. For base temperature 

higher than 19°C the year of 1976 has the biggest ‘number of hours over’ numbers, 

smaller base temperatures show a different story, as in Table 2a, the year 1976 is no 

longer the warmest when the base temperature is smaller than 18ºC. Table 2b shows the 

similar shifting.   
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Table 2a Ranking with ‘number of hours over’ base temperatures from 15ºC to 30ºC 

(bottom row is the highest rank) 
15°C 16°C 17°C 18°C 19°C 20°C 21°C 22°C 23°C 24°C 25°C 26°C 27°C 28°C 29°C 30°C 

L77 L77 L77 L77 L77 L77 L77 L88 L88 L88 L78 L78 L78 L93 L93 L93 

L86 L86 L88 L88 L88 L88 L88 L78 L78 L78 L80 L88 L88 L78 L88 L92 

L78 L78 L86 L86 L85 L85 L85 L77 L77 L80 L88 L80 L93 L77 L81 L91 

L88 L88 L78 L85 L78 L80 L78 L85 L80 L77 L85 L79 L79 L80 L80 L88 

L85 L85 L85 L78 L80 L78 L80 L80 L85 L85 L77 L85 L85 L88 L78 L87 

L87 L79 L81 L80 L86 L86 L86 L86 L79 L93 L79 L93 L80 L91 L77 L85 

L79 L81 L79 L79 L79 L79 L79 L79 L93 L79 L93 L77 L77 L85 L92 L82 

L81 L87 L80 L81 L81 L87 L87 L93 L86 L81 L81 L81 L81 L81 L91 L81 

L80 L80 L87 L93 L87 L93 L93 L87 L87 L87 L87 L91 L91 L82 L87 L80 

L93 L93 L93 L87 L93 L81 L81 L81 L81 L86 L91 L92 L82 L79 L85 L79 

L91 L91 TRY TRY TRY TRY TRY TRY L82 L91 L86 L87 L92 L92 L82 L78 

TRY TRY L91 L84 L82 L82 L82 L82 L91 L82 L82 L82 L87 L87 L79 L77 

L84 L84 L84 L91 L91 L91 L91 L92 L92 L92 L92 L86 L86 TRY L86 TRY 

L94 L94 L94 L82 L84 L92 L92 L91 TRY TRY TRY TRY TRY L86 TRY L86 

L83 L83 L82 L92 L94 L84 L94 L84 L84 L84 L84 L84 L84 L84 L84 L84 

L90 L82 L92 L94 L92 L94 L84 L94 L94 L94 L94 L94 L94 L94 L94 L94 

L82 L90 L83 L83 L83 L83 L90 L90 L90 L90 L90 L83 L90 L89 L89 L89 

L95 L92 L90 L90 L90 L90 L83 L83 L83 L83 L83 L90 L89 L83 L83 L83 

L92 L95 L95 L95 L95 L95 L95 L89 L89 L89 L89 L89 L83 L90 L90 L90 

L76 L76 L76 L76 L89 L89 L89 L95 L95 L95 L95 L95 L95 L95 L95 L95 

L89 L89 L89 L89 L76 L76 L76 L76 L76 L76 L76 L76 L76 L76 L76 L76 

 

Table 2b Ranking with accumulated degree hours (adh) over base temperatures from 

15ºC to 30ºC (bottom row is the highest rank) 
15°C 16°C 17°C 18°C 19°C 20°C 21°C 22°C 23°C 24°C 25°C 26°C 27°C 28°C 29°C 30°C 

L77 L77 L77 L88 L88 L88 L88 L88 L78 L78 L78 L78 L78 L93 L93 L93 

L88 L88 L88 L77 L77 L77 L78 L78 L88 L88 L80 L88 L77 L78 L88 L92 

L78 L78 L78 L78 L78 L78 L77 L80 L80 L80 L88 L80 L93 L77 L81 L91 

L85 L85 L85 L85 L85 L80 L80 L77 L77 L85 L85 L93 L88 L80 L80 L88 

L86 L86 L80 L80 L80 L85 L85 L85 L85 L77 L77 L77 L80 L81 L78 L87 

L80 L80 L86 L79 L79 L79 L79 L79 L79 L79 L79 L85 L81 L88 L77 L85 

L79 L79 L79 L86 L86 L93 L93 L93 L93 L93 L93 L79 L85 L85 L92 L82 

L81 L81 L93 L93 L93 L86 L86 L81 L81 L81 L81 L81 L91 L91 L87 L81 

L87 L93 L81 L87 L87 L87 L87 L87 L87 L87 L91 L91 L79 L82 L82 L80 

L93 L87 L87 L81 L81 L81 L81 L86 L91 L91 L87 L82 L82 L87 L91 L79 

TRY TRY TRY TRY TRY L82 L91 L91 L86 L82 L82 L92 L92 L92 L85 L78 

L91 L91 L91 L82 L82 L91 L82 L82 L82 L92 L92 L87 L87 L79 L79 L77 

L82 L82 L82 L91 L91 TRY L92 L92 L92 L86 L86 L86 L86 TRY L86 TRY 

L84 L92 L92 L92 L92 L92 TRY TRY TRY TRY TRY TRY TRY L86 TRY L86 

L92 L84 L84 L84 L84 L84 L84 L84 L84 L84 L84 L84 L84 L84 L84 L84 

L94 L94 L94 L94 L94 L94 L94 L94 L94 L94 L94 L94 L94 L94 L94 L94 

L83 L83 L83 L83 L83 L83 L83 L83 L83 L83 L89 L89 L89 L89 L89 L89 

L90 L90 L90 L90 L90 L90 L90 L90 L90 L89 L83 L83 L83 L83 L83 L83 

L95 L89 L89 L89 L89 L89 L89 L89 L89 L90 L90 L90 L90 L90 L95 L95 

L89 L95 L95 L95 L95 L95 L95 L95 L95 L95 L95 L95 L95 L95 L90 L90 

L76 L76 L76 L76 L76 L76 L76 L76 L76 L76 L76 L76 L76 L76 L76 L76 

2.3 Coincidence of peak values 

Another factor to consider when judging the likelihood of weather causing overheating 

in buildings is the coincidence of high DBT, GSR and WS. Some research has shown 

that the coincidence of warm and sunny days is low, i.e. Chicago weather data 

(Levermore & Chow 2006) and the projected future (2050) DSY of Manchester 

(Watkins et al 2011). For London data, we considered the number of coincidence hours 
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when ‘DBT and GSR’, and ‘DBT and WS’ are both above their respective 87.5 

percentile. The results, after being normalized against the total number of occupied 

hours (9am - 5pm), are shown in Table 3. Relatively, the coincidence of high 

temperature and solar radiation does not vary significantly (ranging from 21.5% to 

42.3%), while the coincidence of high temperature and high wind speed does vary from 

0.8% to 30.8%. Year 1976 has significantly higher peak coincidence between DBT and 

GSR than that of year 1989 and 1990. On the other hand, the coincidence between the 

peaks of DBT and WS for 1976 is much lower than 1995 and 1989. 

 

Table 3 Hourly coincidences of GSR and WS with DBT at 87.5 percentile. 

 

3. Methodology 

This work uses a parametric thermal simulation model of a free-running office space to 

evaluate the indoor conditions under different weather, and uses the predicted indoor 

warmth to verify the selection of near extreme weather years. Three steps are involved 

in this methodology: creating a parametric model that represents a wide variety of free-

running office spaces in the UK; creating a number of sample sets for analyzing the 

impact of weather parameters, in particular, DBT, GSR and WS; and performing 

simulations and statistical analysis on predicted indoor warmth.  

3.1 Parametric models of single zone offices 

Various built forms are represented by a single zone dynamic thermal model with a 

fixed height of 3 metres, and varying widths and depth between 3 and 6 metres, 

respectively, to represent a wide range of cellular and open-plan office spaces. Deriving 

from the four towns survey, such side lit spaces may account for over 45% of all offices 

(Steadman et al 2000a).  

 

 
Figure 2 The single zone office model 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

Figure 2 is the graphic representation of the single zone model. This single zone space is 

assumed to be taken from a free running office building. Only the façade with a window 

is exposed to the ambient environment. The rest are either internal roof/ceiling or 

partition walls. Adiabatic condition is assumed for these internal surfaces. The cellular 

office is occupied from 9am to 5pm during which ventilation is provided by opening the 

window. A fixed night time ventilation schedule may be enabled, so that ventilation is 

employed when internal temperature is above 22°C between 1am and 8am.  

 

The model is created using EnergyPlus. In order to cover the wide variations of office 

spaces in the UK, parameters including orientation, wall construction, insulation level, 

window type, window sizes and openable area, internal heat gain, and night ventilation 

operation are applied to the model. Table 4 shows the parameters of the model, and their 

variations. The number of all variations resulted from the combinations of different 

parameter values are in the order of 106.  

 

Table 4 Model parameters and their selected values 

Parameters Values Count 

Geometry 

Height (m): 3.0 1 

Depth (m): 3.0, 4.0, 5.0, 6.0 4 

Width (m): 3.0, 4.0, 5.0, 6.0 4 

Orientation 
45°, 90°, 135°, 180°, 225°, 270°, 315°, 

360°(0°) 
8 

Construction type 

Light – timbre frame wall and wooden floors 

Heavy - concrete block wall and cast concrete 

floors 

2 

Insulation thickness 

(mm) 
0, 25, 50, 81.4, 100, 150, 200 7 

Glazing/wall ratio 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 7 

Window type Single pane, double pane, triple pane 3 

Window percentage 

open (for ventilation 

during occupancy 

only) 

5%, 10%, 20%, 30%, 40%, 50% 6 

Internal gains (W/m2) 20, 30, 40, 50, 60, 70 6 

Infiltration (ACH) 0.3 1 

Night time ventilation Allowed, disallowed 2 

 

3.2 Sampling index description 

To examine the impact on indoor warmth of naturally ventilated offices from 

temperature, solar radiation and wind, four sampling scenarios are devised. Sample "i" 

examines the combined influence of temperature, solar radiation and wind using 

complete random building models from table 4. Sample "ii" is also using the complete 

random building models but focuses on the sole influence of temperature, excluding the 

impact of solar radiation and wind completely. For solar, a spectrum filter applied as a 

shading device that stops all solar irradiance on the facade is employed. This setting 
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prohibits visible light through the window for the whole simulation period. The internal 

lighting is scheduled instead of being controlled with lighting sensors therefore ‘no 

visible light’ does not affect the internal gains of the model. For wind, the weather data 

is filtered to remove wind speed, so that natural ventilation is only driven by buoyancy.  

 

Sample "iii" examines the maximum possible impact of solar radiation. The random 

building models are filtered by the ‘maximum window to wall ratio’ and the ‘south east 

window’ (315°) where it receives the most solar gains during occupancy period 

compared with other orientations. Influence of wind is also disabled using the same 

method as in Sample "ii". Sample "iv" assesses the maximum possible wind influence 

without the presence of solar radiation. By examining London's weather data, the 

prevailing wind direction is south west. Therefore the random building models have the 

following fixed conditions: south west facing (45°), maximum window to wall ratio 

(80%) and maximum openable area (50%), whereas solar is blocked using the shading 

device. Table 5 is a short summary of the sampling conditions. 

 

Table 5 Descriptions of the samples  

Sample index Descriptions 

i  Full parametric building models (complete random sample) 

ii  
Full parametric building models but the influence of wind and solar 

is removed 

iii  
Influence of wind is removed; random models are filtered by 

maximum glazing and south east facing 

iv  
Influence of solar is removed; random models are filtered by 

maximum glazing, maximum opening area, and south west facing 

 

3.3 Overheating criteria and predicted indoor warmth 

 

There are various criteria which can be used to examine the thermal responses of 

buildings under the influence of environmental conditions. In this study, we selected 

single overheating criterion as defined in CIBSE Guide A (2006), and the adaptive 

overheating criteria from BS EN 15251 (2007).  

 

CIBSE single temperature criterion assesses number of hours the indoor operative 

temperature over 28°C, i.e. for office setting such as this work, overheating is judged if 

there is more than 1% occupied hours (which corresponds 20 hours over a year) when 

operative temperature is over 28°C. Adaptive overheating criteria are based on 

extensive field studies that examine the relationship between indoor comfort conditions 

and the outdoor environment (Humphreys & Nicol 1998). The limiting comfort 

temperature 𝑇𝑐𝑜𝑚𝑓 defined as BS EN 15251 by: 

 

𝑇𝑐𝑜𝑚𝑓 = 0.33𝑀𝑎𝑥(10, 𝑇𝑟𝑚) + 18.8  where    Eq. 02 

 

𝑇𝑟𝑚 = 𝛼𝑇𝑟𝑚−1 + (1 − 𝛼)𝑇𝑑𝑚−1     Eq. 03 
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 (𝑇𝑟𝑚−1 and 𝑇𝑑𝑚−1 are the running mean and daily mean temperature previous day) 

 

𝑇𝑐𝑜𝑚𝑓, as shown in Eq. 02, is no longer a fixed temperature, it varies with the daily 

running mean temperature (Figure 3). The overheating limiting temperatures in BS EN 

15251 were divided into three categories (Category I, II & III) and the upper limit 

temperatures for these categories are 2°C, 3°C and 4°C, respectively, above the comfort 

temperature calculated using Eq. 02. Similarly as CIBSE single temperature criterion, 

the number of hours over these limiting temperatures can be used as a measure of 

overheating, i.e. number of hours over these upper limiting temperatures should be no 

more than 3% of total occupied hours (which corresponds around 61 hours) for that 

specific category the assessment falls within.  

 

 
Figure 3 The limiting comfort temperature for the year of 1976 using Eq. 02 for April to 

September (the upper limits of Category I, II & III would be a parallel shift of Tcomf by 

2, 3 & 4 degree Celsius).  

 

As discussed in CIBSE TM52 (2013), overheating occurrence does not always reflect 

the actual overheating severity which is the accumulated degree hours over limiting 

temperatures (either a fixed temperature as CIBSE Guide A or varying ones as BS EN 

15251). In this work the accumulated degree hours (adh) is calculated the same as 

CIBSE TM52.     

 

The predicted indoor warmth (including both overheating occurrence and severity) is 

ranked for each individual parametric model from the intended sampling (i to iv in 

Table 5). A criteria index list is made to facilitate the organization of the indoor warmth 

assessment (as shown in Table 6).  
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Table 6 Overheating assessment criteria 

Index Description Unit 

c0 Number of hours over 28C during occupancy [hrs] 

c1 adh over 28C during occupancy [deg.hrs] 

c2 BS EN 15251 Category I exceeded during occupancy [hrs] 

c3 adh over Category I during occupancy [deg.hrs] 

c4 BS EN 15251 Category II exceeded during occupancy [hrs] 

c5 adh over Category II during occupancy [deg.hrs] 

c6 BS EN 15251 Category III exceeded during occupancy [hrs] 

c7 adh over Category I during occupancy [deg.hrs] 

 

3.4 Statistical ranking and sampling method 

 

The method for analysing the data is statistical ranking, i.e. to use statistics on the 

ranking orders of the results. The statistical ranking process is following the method 

used in Ji et al (2016):  

 

1) A random sample of simulation cases is generated from the parametric model. 

2) Simulations are carried out on the set of sample cases, with each of the 20 

London weather years (1976-1995) and the Test Reference Year, respectively. 

3) Using the results of each simulated case, the 20 weather years are ranked by the 

predicted indoor warmth using the overheating criteria defined in Table 6.  

4) The ranks of the weather years of each simulation case, according to each 

criterion, are collated, so that for each weather year, frequency histograms of the 

ranks are calculated. 

 

Given the number of building parametric models is over 2 million, sampling is 

necessary to represent the whole model population. In this work, the Latin Hypercube 

Sampling (LHS) method is used (Stein 1987). With LHS, a sample size of normally 10 

times of the number of variables is sufficient for estimating mean values of the 

population. As a result, 100 random building models for each weather year will be 

enough for producing reliable estimation of the average overheating profiles. For the 

analysis where statistical ranking of the weather years is of interest, the relationship 

between built form characters and their overheating risks under different climatic 

conditions need to be examined, a larger sample is therefore required. After 

experimenting, a Quasi-Monte Carlo sample of 2,000 designs for each weather year, 

generated using the Sobol sequence, was used. Sampling and simulation of the 

parametric model is managed using the jEPlus tool (Zhang 2009). In total, 42,000 

simulations have been performed for the years 1976-1995 plus TRY weather data. 

4. Results and discussions 

With 4 sets of samples (Table 5), 8 criteria (Table 6) and 20 source weather years 

(London 1976-1995), in total 32 groups of histograms were produced to illustrate the 

ranking probability of predicted indoor warmth for each weather year. Figures 4 & 5 are 

the typical representation of these graphs. Presenting 32 similar graphics like Figures 4 
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& 5 for all the samples (Table 5) and overheating criteria (Table 6) is deemed 

unnecessary, therefore the analysis is primarily carried out against those warm weather 

years of interests: the top 6 warmer years and the TRY (Figures 6 to 10, and 12), with 

the assumption that one of these weathers must be able to represent the ‘near-extreme’ 

weather, i.e. being the third warmest.  

4.1 Typical modelling outputs 

Figure 4 shows the full parametric sampling results of indoor warmth ranking 

probabilities against the CIBSE single temperature (number of hours over 28ºC) 

criterion using the statistical ranking process discussed in section 3.2. The ranking 

probabilities can be interpreted as the percentage likelihood of appearance on a 

particular ranking position among all sample cases (i.e. Sample "i" with 2000 random 

building models) simulated for a particular weather year, i.e. there is 37% chance the 

year 1989 weather is the warmest (1st position), and the chance of being the 5th warmest 

position for 1983 is about 46%. In terms of predicted indoor warmth ranking the general 

observation from Figure 4 is that the outdoor warmth of these weather years defined by 

various methods (DBT only or multiple parameters) does not seem to be well correlated, 

for example, the year 1976 has been consistently rated the warmest year, however, with 

the predicted indoor warmth, this year being warmest has only about 32% chance with 

the 2000 random building sample.  

 

 
Figure 4 [sample i + c0] – Ranking probability by the number of hours over 28ºC for the 

single zone office space during occupancy (x-axis is ranking position and y-axis is the 

probability of being that position for a particular year, same hereafter) 
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The overheating severity (accumulated degree hours over 28°C) ranking probability in 

Figure 5 shows better statistical significance for these warm weather years, i.e. the year 

1976 has a much higher chance of being the warmest (above 90%), followed by the year 

1995 with 84% of being the second warmest. However the year of 1989 does not seem 

to sustain a strong position. The years of 1983, 1990 and 1994 positioned relatively 

strong but all the other years do seem to be arbitrary.  

 

The random nature of the predicted indoor warmth ranking probabilities was observed 

in the previous study of Ji et al (2016) with different types of dwelling models. As 

reviewed earlier in section 1, these models do not have the flexibility to distinguish the 

level of contributions from individual weather parameters in terms of predicted indoor 

warmth.  

 

 

 
 

Figure 5 [sample i + c1] – Ranking probability by the number of accumulated degree 

hours over 28°C for the single zone office space during occupancy. 

4.2 Analysis on the warmer years 
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Figure 6 [samples i to iv + c0] Ranking probabilities by the ‘number of hours over’ 

28°C (ref: Table 6) for the single zone office space during occupancy. 

 

In Figure 6, i to iv + c0 are the ranking probabilities of the 4 sample sets in Table 5 by 

the number of hours over 28°C for the single zone office space during occupancy. For 

the year 1976, the probability of being the warmest in terms predicted indoor warmth is 

only about 32% for the full parametric Sample "i"; while this probability increases to 

48% when excluding influences of both solar radiation and wind condition (Sample "ii" 

– only dry bulb temperature is the key driver for possible overheating), and to 74% for 

Sample "iv" where the random models have a maximum possible influence of wind 

speed and direction on top of Sample "ii". There seems to be a tendency that the 

probability of being the warmest for 1976 increases when the sampling conditions can 

lead to less number of hours over the limiting temperature. On the contrary, 

significantly less probability (6%) of being the warmest for the year 1976 was resulted 

by Sample "iii" where the solar radiation is maximized as well as removing the 

influence of the counter factor of wind in terms of predicted indoor warmth. The year 

1989 does not seem to sustain a ranking position with statistical significance apart from 

for sampling iii where its probability of being the warmest is over 80%. For the c0 

criterion, it is more likely for the year 1990, 1983 & 1994 to be in the 4th, 5th & 6th 

ranking position and same is true for the year of 1995 to be in the 2nd ranking position 

although this is less obvious and with exception of Sample "iii". For all those concerned 

years Sample "iii" creates a more random order in terms of their ranking probabilities.  

 

Looking at the characteristics of these historical weather files some of the above 

phenomena may be explained to some extent. The FS statistics of DBT, GSR & WS in 

Table 1 show that these warm weather years tend to have higher values for DBT & 

GSR. These higher values should have led to higher predicted indoor warmth which is 

reflected on their ranking probabilities although their ranking positions vary towards the 

warmer end.  The FS statistics of WS, these six examined weather years have both high 
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(i.e. windy year 1976) and low values (less windy years 1989 & 1995). It is not obvious 

how this statistic is reflected on Figure 5 broadly but for the case of ‘iv + c0’, low wind 

condition could have contributed the 30% chance of the year 1995 being the warmest 

(or in other words, the probability of being the warmest for the year 1976 could be 

higher than its current stands 70%). In principle, with the single zone office setting and 

London climate, wind promotes natural ventilation which effectively brings down the 

indoor temperature (ref: Figure 11).  

 

For these six warm years, their hourly coincidences of GSR and WS with DBT at 87.5 

percentile (Table 3) do not seem to influence the results explained above significantly. 

For the coincidence level between GSR and DBT, the changes are small as the range is 

only from 26.9% (1989) to 38.5% (1976). For the coincidence level of WS and DBT, 

less windy years (1995 & 1989, ref: Table 1) have higher percentage hourly coincidence 

while the windy year 1976 only has 7.7% coincidence level with DBT during 

occupancy time. It is therefore unlikely these coincidence levels can significantly alter 

the predicted indoor warmth.  

 

Sample "iii" random models emphasize the maximum influence of solar radiation and in 

the meanwhile excluding wind. This would result the highest level of overheating (by 

the number of hours over limiting temperatures) among the 4 sampling sets i to iv. The 

year of 1989 has the highest probability of being the warmest (slightly over 80%). This 

is ‘unusual’ as the year of 1989 has long been used as a near extreme year, never been 

deemed the warmest by any of the previous analysis (CIBSE Guide J 2002; Jetsch et al 

2014; CIBSE TM49 2014; Ji et al 2016).  In Table 2a, when varying the base 

temperatures, the year 1989 has the highest number of hours over 18ºC (as well as small 

base temperatures, 17 ºC, 16 ºC, 15 ºC, etc). The random models from Sample "iii" have 

the largest glazing ratio, facing south east (the highest solar gain orientation during 

occupancy), and no wind. These models may have caused overheating (i.e. indoor 

operative temperatures are higher than 28ºC or the upper limits of the adaptive comfort 

criteria) when outdoor temperature is below 18°C and this could be the reason why the 

year 1989 has the highest probability of being the warmest in terms of the predicted 

indoor warmth.   
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Figure 7 [samples i to iv + c1] Ranking probabilities by both ‘the accumulated degree 

hours (adh) over’ 28°C (ref: Table 6) for the single zone office space during occupancy. 

 

Similarly as observed in Figure 6 above, when examining the overheating severity 

(accumulated degree hours over 28ºC) in Figure 7, the 4 sampling sets i to iv + c1 show 

better consistency in terms of predicted indoor warmth ranking probability. The year 

1976 is consistently the warmest. Even with Sample "iii", its ranking probability of 

being the warmest is still as high as 90%. The ranking probability of the year 1989 

spreads over 4 or 5 positions in Figure 7.  Other years maintain their ranking position 

well with relatively higher percentage probabilities, in particular for sampling sets i, ii 

& iv. Unlike the other three sampling sets, the years 1990 & 1995 behave differently for 

Sample "iii", i.e. the year 1990 stands in the 4th position and the year 1995 has nearly 

60% chance in the 3rd position. For all 4 sampling sets in Figure 7, the highest 

probability ranking position for the years 1983 and 1994 remain unchanged (5th and 6th 

in ranking). The above observations could be explained by Table 2b where the 

accumulated degree hours over various base temperatures for these 20 year historical 

weathers. In Table 2b, the year 1976 is consistently the warmest, while the year 1989 

moving from the 5th to the second warmest when the base temperature is 15 ºC. The 

year 1995 is consistently the second warmest in Table 2b and Figure 7 with the 

exception of Sample "iii" where the parametric models of this sample group are prone to 

cause large number of overheating hours, i.e. when outdoor temperature is 15ºC the 

single zone office space may be already overheated due to maximum possible solar 

gain, internal heat gains and windless condition. In summary, to some extent Figure 7 

does reflect Table 2b well.  

 

Figures 8 to 10 show the ranking probabilities of the six warmer years using the 

adaptive overheating criteria from BS EN 15251 (Table 6). To a great extent, these 

ranking probabilities do behave similarly as those using the CIBSE fixed temperature 

criterion. For example, what has been discussed in Figures 6 & 7 can also be said with 
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these histograms although variations do exist. With ‘the number of hours over limiting 

temperatures (c2, c4, c6 in Table 6), the year 1976 tends to have higher probability of 

being the warmest where sampling sets cause less number of hours over, i.e. Samples 

"ii" & "iv". Sample "iii" is still an ‘outlier’ as the year 1989 has the highest probability 

of being the warmest within this group of random models. For Sample "i", the 

histograms of ‘i+c0’ and ‘i+c2’ do look similar in shape although the exact probabilities 

differ. With the limiting temperature increases from Category I, II & III, there will be 

less number of hours over for all the sampling sets, it is then expected that the 

probabilities of being the warmest for the year 1976 will increase which is certainly the 

case by examining Figures 8 to 10 (i to iv + c2, c4, c6 for the year 1976). The 

probability of being the second warmest for the year 1995 increases from Category I to 

III for sampling sets i, ii & iv (i, ii, iv + c2, c4, c6) but it is not the case for Sample "iii" 

(iii + c2, c4, c6) where the random models in this group causes the maximum possible 

overheating. With the likely more number of hours over limiting temperatures of the 

three categories from BS EN 15251, the year 1989 was the warmest based on its ranking 

probability for this particular sampling set (iii). The years 1990, 1994 and 1983 holds 

their position (being the 4th, 5th, & 6th warmest) relatively better but do not always show 

statistical significance, i.e. histograms of i + c2, c4 & c6 for the year 1994, their highest 

probabilities are only about 20%, 37% & 32% respectively.   

 

For the accumulated degree hours over the limiting temperatures of Category I to III, 

apart from 1976 which is consistently the warmest for all categories and all 4 sampling 

sets, the probability ranking position of other years do vary. For Categories I & II, the 

year 1995 was the second warmest for sampling sets i, ii & iv but for Category III, the 

case of ‘iv + c7’, it moved to the third warmest place, while the year 1990 (iv + c7) 

shows high probability of being the second warmest. This may be evidenced by Table 

2b where when the outdoor base temperature is 29°C or 30ºC, there is more 

accumulated degree hours over these limiting temperatures for year of 1990 than the 

year of 1995. In Table 2a when the base temperature is 29°C or 30ºC the year 1995 is 

still the in the second warmest place, which explains why the year 1995 has the highest 

probability of being the second warmest for the case of ‘iv + c6’ when the ‘number of 

hours over’ criteria are used. To some extent there is alignment between the outdoor 

warmth defined by Table 2 and the predicted indoor warmth ranking probabilities in 

Figures 8 to 10, however, there is no strict correlation between any of the discussed 

outdoor ranking methods (in this work and existing literature such as CIBSE Guide J 

2002; Nicol et al 2009; Jetsch et al 2014; CIBSE TM49 2014) and the predicted indoor 

warmth probability ranking. It is clear that thermal responses of various built forms can 

be very different against the tested historical weather data in terms of predicted indoor 

warmth. Judging by the probability ranking of the predicted indoor warmth it is 

impossible to choose a complete year which can always represent the ‘near extreme’ or 

the third warmest year.  
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Figure 8 [samples i to iv + c2, c3] Ranking probabilities by both ‘the number of hours 

over’ and ‘adh over’ BS EN 15251 Category I upper limit (ref: Table 6) for the single 

zone office space during occupancy. 
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Figure 9 [samples i to iv + c4, c5] Ranking probabilities by both ‘the number of hours 

over’ and ‘adh over’ BS EN 15251 Category II upper limit (ref: Table 6) for the single 

zone office space during occupancy. 
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Figure 10 [samples i to iv + c4, c5] Ranking probabilities by both ‘the number of hours 

over’ and ‘adh over’ BS EN 15251 Category III upper limit (ref: Table 6) for the single 

zone office space during occupancy. 

4.3 The averaged results  

The averaged ‘number of hours over’ 28°C and the upper limiting temperatures from 

the adaptive Categories I, II & III for each sampling set (Table 5) are shown in Figure 

11. Sample "i" is full parametric in terms of built forms while Sample "ii" excluded the 

influence of solar and wind condition so outdoor DBT becomes the only key driver for 

the indoor thermal response from weather data (ref: section 3.2 and Table 5). In Figure 

11, the averaged ‘number of hours over’ for Sample "i" is consistently higher than 
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Sampling "ii" which indicates that the combined influence of wind and solar tends to 

increase the level of overheating. Solar gain is a contributing factor for overheating but 

for free running buildings wind is a counter factor. This increase of overheating level 

means solar radiation plays a more significant role to push the indoor temperature up 

than wind which tends to cool the indoor temperature down through ventilation. 

Although the exact quantity of overheating hours for each individual random model is 

arbitrary the general trend in average term is obvious. The filter conditions of creating 

random building models for sampling sets "iii" & "iv" are to maximize the influences of 

solar and wind individually alongside outdoor DBT. It is evident in Figure 11 that the 

level of increase in overheating hours for Sample "iii" is higher than the level of 

decrease in overheating hours for Sample "iv" when using Sample "ii" as a baseline (see 

table 5). This also confirms the stronger influence on overheating hours from solar than 

from wind. When examining the averaged ‘accumulated degree hours (adh) over’ in 

Figure 11, the observation on the relative influences of solar and wind in overheating 

prediction is the same. For absolute quantities of the averaged adh over 28ºC and 

adaptive Category I to III limiting temperatures, the year 1989 becomes the second 

warmest for Sample "iii" which is consistent with Figures 7 to 10. Similarly for the 

averaged ‘number of hours over’ of Sample "iii" in Figure 11, the year 1989 becomes 

the warmest (as in Figures 6, 8 to 10). 
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Figure 11 Averaged ‘number of hours over’ and ‘adh over’ for all 4 sampling sets of 

random building models (Table 5) against the 8 criteria (Table 6) 

4.4 Spearman’s rank order correlation  

Spearman’s rank order correlation measures the strength and direction of association 

between two ranked variables (Spearman 1904). The correlation coefficient, rho (ρ), is 

determined by the difference in rank order between two pair of datasets, as below Eq. 

04 where 𝑑𝑖  is the rank difference for each individual data and n is the total number of 

data in each dataset.   

 

 ρ = 1 −
6 ∑ 𝑑𝑖

2

𝑛(𝑛2−1)
   Eq. 04 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



By definition -1≤ρ≤ 1, value of -1 or 1 indicates a perfect negative or positive 

correlation, with no correlation when ρ=0. Table 1 (section 2.1) can be used as a quick 

example of this particular correlation analysis. Using Eq (04) the FS statistic ranking of 

DBT and GSR results a correlation coefficient of ρ=0.8391. This is a relatively strong 

correlation between DBT and GSR which implicates that a warmer year tends to have 

higher solar radiation or vice versa. The FS ranking of DBT and WS results a 

correlation coefficients of ρ=-0.4947 which is a weak negative correlation indicating 

that a cooler year may or may not have a stronger wind speed. 

 

The early analysis on the ranking probabilities (Figure 4 to 10) was not able to examine 

the strength of their correlation between the pre-determined outdoor warmth (Table 1 & 

2) and the predicted indoor warmth from the source weather years. Spearman’s rank 

order correlation analysis provides a mean of assessing this strength. Table 7 shows the 

correlation coefficients between ranks in table 1 & 2a and the ranks from the averaged 

predicted indoor warmth using various criteria (Table 6) for all four sampling sets 

(Table 5). FS Ave is the rank by the arithmetic average of FS statistics between DBT 

and GSR shown in table 1. Three other ranks from early studies, such as Ave.DBT 

(averaged DBT from CIBSE Guide J 2002), Sol-air (Ji et al 2016) & WCDH (CIBSE 

TM 49 2014) are also included.  

 

From the first 6 rows in Table 7 stronger correlations are observed for the ranks 

involving both DBT and GSR (i.e. FS Ave & Sol-air) than the DBT or GSR only ranks. 

However, below the first 6 rows - the ranks by the number of hours over base 

temperatures show that some base temperatures have stronger correlation with the 

averaged predicted indoor warmth. In general, correlations are less strong for Samples 

"iii" & "iv" compared with Samples "i" & "ii" with a few exceptions towards the bottom 

of the table. Samples "i" & "ii" are both complete random building models but Sample 

"ii" excluded solar and wind influence (DBT becomes the only driving factor for indoor 

thermal response). From the table it is obvious that Sample "ii" correlates well with 

those base temperatures from 19°C to 24ºC (refer the bold italic numbers) but less well 

with Sample "i". This indicates that the impact from solar and wind does alter the 

probability ranks of the predicted indoor warmth. For Sample "i", apart from the ‘c0’ 

criterion (operative temperature ‘number of hours over 28°C), the correlations for rows 

between 17ºC to 25°C and Sol-air are in similar range. The strong correlations with 

these base temperatures are consistent with the early observation of the probability 

ranking changes against Table 2 (Figures 6 to 10). However, It is still difficult to be 

conclusive from Table 7. There seems to be a tendency that the ranks by the number of 

hours over a particular base temperature can correlate well with the overall predicted 

indoor warmth ranking, however, it is difficult to decide which base temperature, in 

particular, against the four overheating criteria. And the exact influences from solar and 

wind are not obvious.  
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Table 7 Spearman’s rank order coefficients between ranks of outdoor weathers and the averaged predicted indoor warmth  

 

  Sampling i Sampling ii Sampling iii Sampling iv 

  c0 c2 c4 c6 c0 c2 c4 c6 c0 c2 c4 c6 c0 c2 c4 c6 

FS DBT 0.9338 0.9278 0.9233 0.9188 0.9233 0.9308 0.9308 0.9308 0.9158 0.8632 0.8797 0.8932 0.8361 0.8977 0.8977 0.8541 

FS GSR 0.8707 0.8782 0.8902 0.8842 0.8812 0.8902 0.8902 0.8902 0.9188 0.9038 0.9233 0.9233 0.8586 0.8707 0.8677 0.8406 

FS Ave 0.9474 0.9353 0.9398 0.9383 0.9429 0.9489 0.9489 0.9489 0.9564 0.8917 0.9083 0.9308 0.8647 0.9188 0.9158 0.8782 

Ave. DBT 0.9293 0.9263 0.9218 0.9158 0.9188 0.9278 0.9278 0.9278 0.9113 0.8647 0.8767 0.8887 0.8301 0.8902 0.8887 0.8451 

WCDH 0.8947 0.8692 0.8737 0.8767 0.9023 0.8827 0.8827 0.8827 0.8376 0.8120 0.8421 0.8481 0.9263 0.9188 0.9188 0.9158 

Sol-air 0.9459 0.9564 0.9534 0.9444 0.9338 0.9383 0.9383 0.9383 0.8977 0.8947 0.9068 0.9068 0.8752 0.9218 0.9218 0.8872 

Over 15ºC 0.8932 0.8857 0.8872 0.8812 0.8767 0.8887 0.8887 0.8887 0.8932 0.8316 0.8511 0.8556 0.7820 0.8406 0.8421 0.7835 

Over 16ºC 0.9188 0.9083 0.9083 0.9023 0.9053 0.9143 0.9143 0.9143 0.9218 0.8602 0.8767 0.8872 0.8105 0.8707 0.8707 0.8195 

Over 17ºC 0.9504 0.9323 0.9353 0.9323 0.9398 0.9504 0.9504 0.9504 0.9594 0.9008 0.9143 0.9278 0.8556 0.9083 0.9053 0.8617 

Over 18ºC 0.9594 0.9338 0.9338 0.9353 0.9429 0.9534 0.9534 0.9534 0.9549 0.8857 0.9113 0.9263 0.8632 0.9173 0.9143 0.8812 

Over 19ºC 0.9835 0.9579 0.9594 0.9684 0.9684 0.9789 0.9789 0.9789 0.9504 0.9008 0.9248 0.9398 0.9128 0.9489 0.9414 0.9188 

Over 20ºC 0.9699 0.9474 0.9459 0.9549 0.9504 0.9639 0.9639 0.9639 0.9383 0.8962 0.9218 0.9323 0.8992 0.9398 0.9293 0.9128 

Over 21ºC 0.9684 0.9444 0.9429 0.9519 0.9504 0.9609 0.9609 0.9609 0.9368 0.8887 0.9113 0.9263 0.8947 0.9383 0.9263 0.9068 

Over 22ºC 0.9684 0.9398 0.9368 0.9474 0.9654 0.9609 0.9609 0.9609 0.9353 0.8737 0.9023 0.9233 0.9158 0.9519 0.9429 0.9293 

Over 23ºC 0.9729 0.9549 0.9504 0.9564 0.9714 0.9654 0.9654 0.9654 0.9188 0.8767 0.9083 0.9233 0.9398 0.9624 0.9579 0.9474 

Over 24ºC 0.9699 0.9549 0.9549 0.9594 0.9744 0.9639 0.9639 0.9639 0.9113 0.8872 0.9188 0.9248 0.9684 0.9729 0.9699 0.9624 

Over 25ºC 0.9609 0.9549 0.9534 0.9564 0.9654 0.9504 0.9504 0.9504 0.8842 0.8767 0.9038 0.9068 0.9714 0.9669 0.9609 0.9579 

Over 26ºC 0.9128 0.9098 0.9053 0.9023 0.9263 0.9008 0.9008 0.9008 0.8406 0.8556 0.8782 0.8797 0.9459 0.9293 0.9218 0.9323 

Over 27ºC 0.8872 0.8677 0.8632 0.8647 0.9023 0.8707 0.8707 0.8707 0.8105 0.7820 0.8195 0.8361 0.9233 0.9083 0.9068 0.9158 

Over 28ºC 0.8647 0.8391 0.8436 0.8496 0.8662 0.8466 0.8466 0.8466 0.7805 0.7549 0.7925 0.8015 0.9113 0.9098 0.9143 0.9248 

Over 29ºC 0.8030 0.7850 0.8000 0.8045 0.8256 0.8105 0.8105 0.8105 0.7910 0.7820 0.8135 0.8105 0.8842 0.8647 0.8677 0.8782 

Over 30ºC 0.5414 0.5263 0.5308 0.5368 0.5564 0.5474 0.5474 0.5474 0.5504 0.5383 0.5609 0.5549 0.6301 0.5895 0.5789 0.6045 
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4.5 Responses of TRY on random models 

 

By definition TRY represents an averaged weather condition of the historical weather 

data from which it is generated. The 11th ranking position in Figure 12 with a higher 

probability is where ideally it should be. It is clearly not the case. For random model 

Sample "i", TRY is more likely being 7th warmest based on its highest probability 

ranking with the 20 source weather years, although for cases ‘i + c0’ (53%) and ‘i + c2’ 

(35%) the highest probabilities are not statistically significant. With the adh over ‘i + 

c1’ & ‘i + c3’, its probabilities of being the 7th warmest are both higher (around 60%). 

Sample "iv" shows more consistent high ranking probability of being the 7th warmest 

position for all criteria (c0 to c3, table 6). TRY’s probability ranking positions vary for 

random models in sampling sets ii & iii, changing from the 5th warmest position (iii + 

c2, c3), the 6th warmest position (iii + c0) to the 7th warmest position for remaining 

cases with the case ‘ii+c1’ show 90% probability in Figure 12. The above observations 

on the probability ranking of the predicted indoor warmth for TRY do not correlate well 

with the earlier analysis with the weather data. For example, in Table 2a & 2b, the 

highest ranking position for TRY is the 8th warmest in terms of outdoor warmth. With 

lower base temperatures, the TRY tends to move the middle. The FS statistics of the 

TRY weather data using Eq. 01 would give FS(DBT)=0.18, FS(GSR)=1.05 & FS 

(WS)=0.2 (ref: Table 1). If TRY were included in Table 1, its position would be either 

9th for DBT and WS, or 8th for GSR. While in Figure 12, it is in the 7th or warmer 

position.  When coincidence of weather parameters is calculated (ref: Table 3), the 

hourly coincidences of GSR and WS with DBT at 87.5 percentile are 26.1% and 15.4% 

respectively. These do not seem to justify the TRY’s position in probability ranking 

either. From the above observation the probability ranking of the predicted indoor 

warmth for TRY does indicate that TRY is warmer than expected.  
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Figure 12 Ranking probabilities for TRY (21 ranking positions) by both ‘the number of 

hours over’ and ‘adh over’ CIBSE Guide A single temperature criterion 28ºC and BS 

EN 15251 Category I upper limit (ref: Table 6) for the single zone office space during 

occupancy. 

4.6 Discussions  

The current release of the CIBSE weather data sets follows the proposed method of 

TM49 – probabilistic DSYs (pDSYs). This means that there are three DSYs per location 

aiming to represent summers with different characteristics of warmth, in London as 

explained earlier: long persistent warmth (1976), an intense single warm spell (2003), 

and a moderate warm summer (1989). The latest update on UK DSY introduced two 

new metrics on top of the weighted cooling degree hours (WCDH) concept used in 

TM49: static & threshold WCDH (SWCDH & TWCDH) (Eames 2016). The resulting 

London pDSYs for moderate warmth is 2013 although there is little variation for all 

three metrics between 1989 and 2013. The other two pDSYs are the same as in TM49: 

1976 and 2003. It is worth noting that, for the current release, pDSYs for all 14 

locations were selected from all available years per location (i.e. London from 1961, 

Leeds from 1989) based on a ‘return year’ concept which was established by the 30 year 

baseline weather from 1984 to 2013(CIBSE TM 49 2014; Eames 2016). These pDSYs 

by definition are therefore ‘complete’ years selected using DBT only metrics: WCDH, 

SWCDH & TWCDH. This latest update on UK DSYs acknowledges two aspects that 

may need further consideration. One is the verification of these pDSYs in real building 

models as DSYs were developed using a conceptual building model which assumes the 

outdoor temperature is the same as the indoor operative temperature. The other is the 

potential ‘issue’ for not considering solar radiation within the selection process, in 

particular, for heavily glazed buildings.  
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The single office model with its variants by changing size, glazing, orientation, and so 

on (Table 4) resulted a population of building models in the order of 106 and 

simulations were carried out on 2000 sample models selected by LHS sampling 

technique and there are 4 sampling sets were used. From the real building models 

perspective, work presented in this research clearly serves the purpose of verification. 

The 20 weather years used in this research is from London 1976 to 1995 among which 

the 1976 and 1989 were the two pDSYs for London. From the simulation outputs 

discussed earlier, the predicted indoor warmth is very much dependent on the built 

forms. There is no strict correlation on ranks between the warmth defined by CIBSE 

TM49 (or the latest update of DSYs in Eames 2016) and the predicted indoor warmth. 

The Spearman’s rank order does show the relative strength of correlation but no 

‘perfect’ correlation is found. For building models where solar radiation is less 

dominant the year 1976 has the highest chance of being the warmest, while for building 

models where solar radiation has its maximum influences the year 1989 has the highest 

probability of being the warmest. It is evident there is that the thermal responses of 

complete year weather data against various built forms do vary significantly.    

 

It is true from the early analysis that extreme years defined by temperature are in the 

meanwhile having relatively higher solar radiation, for example, the FS statistics in 

Table 1 show that higher temperature years do have higher solar radiation as well. Even 

the coincidence of high temperature and high solar radiation is often low (Table 3 and 

Watkins et al 2011; Levermore & Chow 2006) , the accumulated effects of both 

temperature and solar radiation can play dominant role in terms of the resulted indoor 

warmth for various built forms. Broadly speaking, the warmer years among the 20 

historical weather years of London do result high overheating occurrence and severity, 

however, which year is the warmest or the third warmest (near-extreme) in terms of 

predicted indoor warmth depends very much on built forms. As Eames (2016) rightly 

argues that it is indeed an issue for heavily glazed buildings. Sample "iii" models of this 

work are indeed the most heavily glazed building models and the resulted indoor 

warmth prediction shows that the year 1989 is the warmest rather than the year 1976. 

This is contradictory with most of the existing analysis on warmth ranking including the 

‘return year’ concept, but with exceptions shown in Table 2 where when base 

temperatures are small, the year 1989 does have more ‘number of hours over’ than the 

year 1976. Based on the probability ranking in terms of the predicted indoor warmth, 

the outdoor warmth defined by temperature or multiple parameters does not strictly 

correlate. For free running buildings wind is the primary driving forces for space 

conditioning and it is a counter factor for overheating in buildings due to ventilation. 

This is clearly the case when comparing all four sampling sets in Figure 11. 

Overheating happens indoors and wind does clearly influence the thermal responses of 

buildings greatly although not at the same extent as solar radiation, it is still an 

important influencing factor.  

 

For composite year methods, by definition a DSY will be always warmer than its 

corresponding TRY consistently (Jentsch et al 2016). From the predicted indoor warmth 

of TRY in this work (Figure 12), it is anticipated that the composite DSY (termed as 

SRY by Jentsch et al 2015) will behave similarly as TRY but with a shift towards the 

warmer end. It probably will not sustain any ranking position with statistical importance 

for all the built forms of the 4 sampling sets either. The SRY assumes the method used 
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to generate TRY is robust. The previous analysis indicates that this TRY is not quite the 

‘average’ as it is largely between the 7th to 9th position in the outdoor warmth ranking 

(Tables 1, 2 & 3) and the 5th to 7th position in the predicted indoor warmth ranking 

(Figure 12).    

 

The above discussions emphasize the influence of built forms on the predicted indoor 

warmth. Thermal responses of various built forms to the same weather data can be 

significantly different. This essentially means that whatever methods used to define 

DSYs using existing weather data, either a complete year or a composite year, it is not 

always guaranteed it is actually the ‘near extreme’ from the predicted indoor warmth 

among the baseline or source weather data. It may not even be likely there is a perfect 

definition of DSY by evaluating source weather data which will always represents ‘near 

extreme’ for all the building types and forms in terms of predicted indoor warmth. The 

consideration of classifying built forms in terms of high solar gains and high ventilation 

does not result consistent ranking position of the source weather files from this research 

(sampling set iii & iv). It seems to be unlikely possible to anticipate the thermal 

responses of individual built form without simulating all the source weather years, or at 

least those warmer years defined by various means (i.e. the six years analysed in Figures 

6 to 10). The pDSYs in TM49 and Eames (2016) already proposed 3 complete weather 

years. It is therefore logical to propose more than 3 complete years to make sure one of 

these warm weathers will definitely represent the near extreme in terms of the predicted 

indoor warmth for all the built forms. It is therefore sensible to use multiple weather 

years, as many as necessary from the baseline weather files, to simulate a particular 

design. With the latest advancement of hardware and software technologies, this 

exercise is easily achievable although adding some extra complexity.  

 

4.7 Limitations  

 

Due to license requirement the up to date weather data, such as used to develop DSYs in 

TM49 and Eames (2016), were not used in this research. The Summer Reference Year 

(SRY) proposed by Jentsch et al (2015) was also based on latest source weather data 

which the authors of this work do not have access to. This research is based on London 

weather data from 1976 to 1995 which is deemed largely representative as there are two 

pDSYs were selected from this time period. For TRY, the selection procedures were 

kept the same as the early release, for example the TRY generated from baseline years 

1976 to 1995 used in this research. It would be better to use the more up to date weather 

data to evaluate the thermal responses with various built forms, however, the principles 

and key observations from the current research would still be valid.  

 

The current research focuses on free running office building setting only. As a 

consequence weather parameters such as temperature, solar radiation and wind speed 

were assessed in detail. Humidity level has significant implications on plant size and 

operation if a building were air-conditioned but this is beyond the scope of this research. 

It is also worth noting that the TRY is often used to assess the overall energy 

performance of a building rather than overheating. From this perspective, whether TRY 

is ranked in the ‘middle’ in terms of overheating hours becomes less important as long 
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as it results averaged energy consumptions among the baseline weather data. This 

aspect was not assessed in this research.  

 

As reviewed earlier, many efforts have been attempted to define DSY. The work here 

therefore does not intend to propose a new definition, rather, it aims to assess the 

existing proposals and examine how consistent these definitions can be when using 

them to simulate various built forms.   

5. Conclusions 

This paper sets out to assess the existing definition of near extreme weather years using 

various built forms. Both complete year and composite year methods were discussed 

along with their selection metrics – either DBT only or multiple parameters. The 

variation of built form was made by a single zone office setting through which both 

physical changes (size, orientation, glazing, insulation, etc) and operational changes 

(window opening percentage, internal gains, with or without shading, etc) were 

randomly modified. The LHS sampling technique was used to generate 4 sampling sets 

and the building models from these sampling sets were used to examine the impact of 

built forms on overheating assessments. The 20 years historical weather data of London 

as well as their corresponding TRY were simulated on the sample models of each 

sampling set. These weather data were also analysed using FS statistics, number of 

hours over various base temperatures and the hourly coincidence level between solar 

radiation, wind speed and dry bulb temperature. Both single temperature overheating 

criteria from CIBSE Guide A and adaptive criteria from BS EN 15251 were used to 

assess overheating in these sample building models. This includes assessing overheating 

occurrence and severity. By using a statistical voting procedure, the ranking probability 

of each weather year on their predicted indoor warmth is presented against both 

overheating occurrence and severity.  

The ranking probabilities of predicted indoor warmth for source weather years show no 

strict correlation with any existing ranking metrics discussed in this paper. The general 

observation of warmth from the examined weather years shows that the year 1976 is not 

always the warmest when using the ‘number of hours over’ criteria. There is a clear 

ranking position swap between 1976 and 1989 when the sampling models emphasize 

the maximized solar radiation scenarios, i.e. the year 1989 has highest probability of 

being the warmest for Sample "iii". This observation conflicts with most of the existing 

outdoor warmth definitions apart from the ‘number of hours’ over lower based 

temperatures of existing weather data (Table 2). For the ‘accumulated degree hours 

(adh) over’ criteria, the year 1976 has been largely consistent of being the warmest with 

higher ranking probability of predicted indoor warmth. For Sample "iii" the year 1989 

can become the warmest with the adh over but its probability is much lower than the 

overheating occurrence cases. Other examined weather years such as 1983, 1990, 1994 

& 1995 could not hold any particular ranking position either, but relatively, they are 

more chances for them to appear in the 5th, 3rd, 6th & 2nd position although they do swap 

positions with different sampling sets and different criteria used to judge overheating.  

For all 4 sampling sets the averaged ‘number of hours’ and ‘adh’ over clearly indicates 

the strong influences from solar radiation and wind speed on the indoor thermal 
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responses. Although the exact ‘number of hours’ over (for both overheating occurrence 

and severity) contributed by solar and wind could be random for individual built forms, 

the averaged ‘number of hours’ over shows that the influence from solar radiation does 

overweigh the counter influence from wind induced space conditioning through 

ventilation. The Spearman’s rank order between these averaged predicted indoor 

warmth and the outdoor warmth defined by various methods does indicate various 

correlation strengths, however, it is far from obvious to make conclusive judgement 

which outdoor ranking method is always better than others.  

The ranking probabilities of predicted indoor warmth for TRY show that TRY is 

warmer than expected as its highest ranking probability happens most likely in the 7th 

position when compared with its 20 source weather years. Even with this 7th position, 

the statistical significance is not always maintained as for some cases the probability of 

being the 7th warmest is less than 40%. The TRY is examined to mirror its 

corresponding SRY developed recently. It is anticipated that SRY will behave similarly 

as TRY in terms of variations in ranking position based on how it is generated.   

It is evident from this research that built forms have significant influences on indoor 

overheating and the near extreme definitions using historical weather data do not always 

correlate with the predicted indoor warmth. This lack of correlation is true for both 

complete year definition and composition year definition, and taking multiple weather 

parameters into account in the selection process does not show obvious advantages than 

the temperature only metrics due to the arbitrary nature of the thermal responses of 

individual built forms. As shown in this research, it is true that warmer years defined 

from historical weather data using various methods (i.e. averaged DBT, WCDH, 

SWCDH, TWCDH, FS statistics on DBT & Solar radiation, etc) are also warmer years 

based on their predicted indoor warmth ranking probability (1976, 1983, 1989, 1990, 

1994 & 1995). However, the exact ranking sequence is often not maintained, i.e which 

year is the warmest and which year is the near extreme for individual built forms. This 

supports the notion of the CIBSE latest release of using pDSYs where multiple weather 

years are used to cover various types of warmth of historical weather. It is therefore 

sensible to suggest that more warmer years should be included to make sure one of 

which can always represent ‘near extreme’ weather for any individual built form.  
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