
Belief in Attacks in Epistemic Probabilistic Argumentation∗

Sylwia Polberg and Anthony Hunter

University College London, London, United Kingdom

Matthias Thimm

University of Koblenz-Landau, Koblenz, Germany

November 30, 2017

Abstract

The epistemic approach to probabilistic argumentation assigns belief to arguments. This is valuable in dialogical
argumentation where one agent can model the beliefs another agent has in the arguments and this can be harnessed to
make strategic choices of arguments to present. In this paper, we extend this epistemic approach by also representing
the belief in attacks. We investigate properties of this proposal and compare it to the constellations approach showing
neither subsumes the other.
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1 Introduction
Abstract argumentation as proposed by Dung [8] provides an important formalism for representing and evaluating
arguments and counterarguments. Proposals for probabilistic argumentation extend this to address aspects of uncer-
tainty arising in argumentation. The two main approaches to probabilistic argumentation are the constellations and
the epistemic approaches [14]. In the constellations approach, the uncertainty is in the topology of the graph. This
approach is useful when one agent is not sure what arguments and attacks another agent is aware of, and so this can
be captured by a probability distribution over the space of possible argument graphs. In the epistemic approach, the
topology of the argument graph is fixed, but there is uncertainty as to the degree to which each argument is believed.

In this paper, we extend the epistemic approach with a probability distribution over the power set of attacks which
we use to represent the uncertainty in each attack. To illustrate, we consider a listener to a political discussion on the
radio. This is a situation where the listener acquires all the arguments and attacks that are presented, but does not
add or delete arguments or attacks. The argument graph is given in Figure 1. Often the listener would evaluate the
arguments and attacks. For instance, she may have a low belief in A3 because she has found World Bank predictions
to be unreliable in the past, and she may have a high belief in argument A2, but a low belief in the attack by A2 on A1.
As a result, she may have a high belief in A1. Note, in the constellations approach, it is not possible to represent all
the arguments and attacks in one graph, and then assign belief to them.

Often uncertainty in attacks arises because “real-world” arguments are normally enthymemes (i. e. some or all of
the premises and/or the claim are implicit). When an agent posits an enthymeme, the recipient decodes it to recover
the intended argument. This creates a risk that the recipient decodes it differently to the way intended (as illustrated
by the attack of A2 on A1 in Figure 1).

∗This research is funded by EPSRC Project EP/N008294/1 “Framework for Computational Persuasion”.
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A1 = The economy is not doing well, and
the rich are not paying enough tax, there-
fore we should increase taxes on the rich.

A2 = Government statistics
show that the rich are in-
creasingly moving abroad.

A3 = World Bank data sug-
gests that the economy of
the country is improving.

Figure 1: Example of an argument graph acquired by a listener to a debate.

A potentially valuable role for the extended epistemic approach is in supporting an agent (X) when arguing with
another agent (Y). Agent X can model agent Y to reflect the arguments and attacks that X thinks Y believes. This
extends proposals for using the epistemic approach for user modelling in persuasion dialogues [16, 15].

The contributions of this paper are: (1) a set of constraints on probability distributions that take into account
uncertainty of arguments and attacks; (2) results on the constraints showing inter-relationships between them; (3)
results showing how with certain combinations of constraints recover and generalize Dung’s dialectical semantics; and
(4) a comparison with the constellations approach showing how neither subsumes the other. All proofs are available
online1.

2 Preliminaries
We start with a brief review of abstract argumentation as proposed by [8]. An argument graph (or a framework) is
a directed graph G = (A,R), where A is the set of arguments and R ⊆ A × A is the set of attacks. The way we
decide which arguments can be accepted or rejected (or neither) is called a semantics. We focus on the argument-based
approach [5, 1] and the adaptation of the attack-based approach from [2].

An argument labeling is a total function L : A → {in, out, und} [1, 5]. By in(L), out(L) and und(L) we denote
the arguments mapped respectively to in, out and und(ecided) by L. We will often write a labeling as a triple (I,O, U),
where I , O and U are sets of arguments mapped to in, out and und. We say that a set of elements attacks another
element if it contains an appropriate attacker. We can now introduce the notion of legality, on which our semantics are
based.

Definition 2.1. An argument A ∈ A is an attacker of B ∈ A iff (A,B) ∈ R. Let L : A → {in, out, und} be a
labeling:

• X ∈ in(L) is legally in iff all its attackers are in out(L).

• X ∈ out(L) is legally out iff it has an attacker in in(L).

• X ∈ und(L) is legally und iff not all of its attackers are in out(L) and it does not have an attacker in in(L).

Definition 2.2. Let L : A → {in, out, und} be a labeling:

(cf) L is conflict-free iff it holds that if A ∈ in(L), then none of its attackers is in in(L), and every A ∈ out(L) is
legally out

(ad) L is admissible iff every A ∈ in(L) is legally in and every A ∈ out(L) is legally out.

(co) L is complete if it is admissible and every A ∈ und(L) is legally und.

Additionally, a complete labeling is stable (st) if und(L) = ∅, it is preferred (pr) if in(L) is maximal wrt. ⊆, and it is
grounded (gr) if in(L) is minimal wrt. ⊆.

1http://www0.cs.ucl.ac.uk/staff/a.hunter/papers/extended epistemic full.pdf
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In Dung’s semantics, attacks are seen as secondary to arguments. For example, ensuring that no attack on a given
argument is accepted is equivalent to making sure that no argument carrying out an attack is accepted. However, this
correspondence does not always hold for various generalizations of Dung’s graph, in which a given conflict may not
be successful due to preferences, probabilities, or when it is a target of an attack as well [4]. Therefore, the status
assigned to a given attack is not necessarily the same as assigned to its source. We will now adapt the approach from
[2] and focus on the extended labelings, which are total functions L? : A ∪ R → {in, out, und}. We introduce the
notion of an extended attacker (attacker?), which is now a conflict, not an argument, and the attackee can be both an
argument and a relation.

Definition 2.3. For an attack α = (A,B) ∈ R, the source of α is src(α) = A and the target of α is trg(α) = B. An
attack α ∈ R is an attacker? 1) of B ∈ A iff B = trg(α), and 2) of β ∈ R iff trg(α) = src(β).

By replacing attacker with attacker? in the previous definitions and maximizing/minimizing attacks as well as
arguments, we obtain the attack-based semantics, further distinguished with ?. We have the following correspondence
between these two families of semantics [2]. Please observe that that extended labelings can, in general, only be
projected to their corresponding ordinary labelings if they are at least complete.

Proposition 2.4. If L = (I,O, U) is a σ–labeling, where σ ∈ {cf, ad, co, pr, gr, st}, then L? = (I ∪ {α | src(α) ∈
I}, O ∪ {α | src(α) ∈ O}, U ∪ {α | src(α) ∈ U}) is a σ?–labeling. If L? = (I?, O?, U?) is a δ?–labeling, where
δ ∈ {co, pr, gr, st}, then L = (I? ∩ A, O? ∩ A, U? ∩ A) is a δ–labeling.

We use σ(G) to denote the set of labelings ofG according to the semantics σ ∈ {cf, ad, co, pr, gr, st, cf?, ad?, co?,
pr?, gr?, st?}. We will say that a set of arguments S is a σ–extension iff there exists a σ–labeling L s. t. in(L) = S.

Example 1. Consider the graph G1 below. The admissible labelings are L1 = (∅, ∅, {A,B,C}), L2 = ({A}, {B},
{C}), L3 = ({B}, {A}, {C}) and L4 = ({B}, {A,C}, ∅). Apart from L3, all of them are complete. L1 is grounded,
L2 and L4 are preferred, and L4 is stable.

A B C

G1

A B C

G2

r1 r2

Now consider the graph G2 above. The admissible labelings are L1 = (∅, ∅, {A,B,C}), L2 = ({A}, ∅, {B,C}),
L3 = ({A}, {B}, {C}), and L4 = ({A,C}, {B}, ∅). L4 is the single complete, preferred, stable and grounded
labeling. The admissible? labelings of G2 are L?1 = (∅, ∅, {A,B,C, r1, r2}), L?2 = ({A}, ∅, {B,C, r1, r2}), L?3 =
({r1}, ∅, {A,B,C, r2}), L?4 = ({r1}, {B}, {A,C, r2}), L?5 = ({r1}, {r2}, {A,B,C}), L?6 = ({r1}, {B, r2},
{A,C}), L?7 = ({A, r1}, ∅, {B,C, r2}), L?8 = ({A, r1}, {B}, {C, r2}), L?9 = ({A, r1}, {r2}, {B,C}), L?10 =
({A, r1}, {B, r2}, {A,C}), L?11 = ({r1, C}, {r2}, {A,B}), L?12 = ({r1, C}, {B, r2}, {A}), L?13 = ({A, r1, C},
{r2}, {B}) and L?14 = ({A, r1, C}, {B, r2}, ∅). L?14 is the single complete?, preferred?, stable? and grounded?

labeling.

We can observe that even though every argument-based labeling has a corresponding extended one, the removal of
attacks from the extended labeling does not necessarily give us a standard one (e. g. L?11 and L?12).

3 Constellations Approach
We review the constellations approach [13] which extends [7] and [19]. It allows representation of the uncertainty over
the topology of the graph: Each subgraph of the original graph is assigned a probability to represent the chances of it
being the actual argument graph of the agent. It can be used to model what arguments and attacks an agent is aware
of.

Definition 3.1. For G = (A,R) and G′ = (A′,R′), the subgraph relation, denoted v, is defined as G′ v G iff A′ ⊆
A andR′ ⊆ (A′ ×A′) ∩ R. The set of subgraphs of G is Sub(G) = {G′ | G′ v G}. A subgraph (A′,R′) is full iff
A′ ⊆ A andR′ = (A′ ×A′) ∩R. A subgraph (A′,R′) is spanning iff A′ = A andR′ ⊆ R.
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If our uncertainty is about which arguments appear in the graph, then only the full (induced) subgraphs of the
argument graph have non-zero probability. If we are only uncertain about which attacks appear, then it is the spanning
subgraphs of the argument graph that can have non-zero probability.

Definition 3.2. A subgraph distribution is a function P c : Sub(G) → [0, 1] with
∑
G′∈Sub(G) P

c(G′) = 1. A
subgraph distribution P c is a full subgraph distribution iff if (A′,R′) is not a full subgraph, then P c((A′,R′)) =
0. A subgraph distribution P c is a spanning subgraph distribution iff iff if (A′,R′) is not a spanning subgraph,
P c((A′,R′)) = 0.

Determining the probability that a set of arguments is an extension (labeling) of a particular type (e. g. grounded,
preferred, etc.) is is done by collecting the probabilities of the subgraphs producing the desired labelings. In a similar
fashion, we can derive the probability of an argument being accepted in a labeling of a given type.

Definition 3.3. For S ⊆ A and σ ∈ {cf, ad, co, pr, gr, st}, the probability that L : S → {in, out, und} is a σ–labeling
is:

Pσ(L) =
∑

G′∈Sub(G) s.t. L∈σ(G′)

P c(G′)

Definition 3.4. Given a semantics σ ∈ {ad, co, pr, gr, st}, the probability that A ∈ A is in in a σ–labeling is

Pσ(A) =
∑

G′∈Sub(G) s.t. L∈σ(G′) and A∈in(L)

P (G′)

Example 2. Consider the graph G = ({A,B}, {(A,B)}. Its subgraphs are G1 = ({A,B}, {(A,B)}, G2 =
({A,B}, ∅), G3 = ({A}, ∅), G4 = ({B}, ∅) and G5 = (∅, ∅). Out of them, G1, G3, G4 and G5 are full, and G1 and
G2 are spanning. Consider the following subgraph distribution P c: P c(G1) = 0.09, P c(G2) = 0.81, P c(G3) = 0.01
and P c(G4) = 0.09 and P c(G5) = 0. The probability of a given set being a grounded extension is as follows:
Pgr({A,B}) = P c(G2) = 0.81; Pgr({A}) = P c(G1) + P c(G3) = 0.1; Pgr({B}) = P c(G4) = 0.09; and Pgr({}) =
P c(G5) = 0. Therefore Pgr(A) = 0.91 and Pgr(B) = 0.9.

4 Extended Epistemic Approach
In the original version of the epistemic approach [22, 14, 17, 3, 18], an argument graph has an associated probability
distribution over the sets of arguments. From this, we derive the probability of a single argument and interpret it as
the belief that an agent has in it (i. e. the degree to which the agent believes the premises and the conclusion drawn
from those premises). We say that an agent believes an argument A to some degree when P (A) > 0.5, disbelieves
an argument to some degree when P (A) < 0.5, and neither believes nor disbelieves an argument when P (A) = 0.5.
Here we extend the approach with uncertainty over attacks. For this, we introduce the probability of attack (i.e. the
degree of belief that the attacker does indeed attack the attackee). We use two functions in the definition because we
want to investigate the interplay between them.

Definition 4.1. An epistemic bidistribution is a pair (P a, P r) where

• P a is a function P a : 2A → [0, 1] with
∑
S⊆A P

a(S) = 1 (argument belief distribution).

• P r is a function P r : 2R → [0, 1] with
∑
S⊆R P

r(S) = 1 (attack belief distribution).

The probability of an argument A is P a(A) =
∑
S⊆A s.t. A∈S P

a(S). The probability of an attack α is
P r(α) =

∑
S⊆R s.t. α∈S P

r(S). Finally, let P b(X) denote P a(X) (resp. P r(X)) when X ∈ A (resp. X ∈ R).

In order to simplify the notation, we drop the brackets for representing the probability of an attack relation, i. e.,
for (A,B) ∈ R, instead of P r((A,B)) we write P r(A,B).

The epistemic probability distributions can be constrained by imposing rationality postulates. In what follows we
will build up on some of the postulates from [18] and introduce some new ones. The previous results can be retrieved
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by considering bidistributions in which all attacks are believed. We separate our new approaches into two families of
postulates.

We start with the independent family of postulates in Definition 4.2 and give results on inter-relationships in Figure
2 where Pµ is the set of bidistributions satisfying postulate µ in G. The family is called independent because there is
no dependence imposed between belief in attacks and belief in attackers, i.e. the probabilities assigned to an attack α
and to src(α) are not necessarily related. RAT?, TER?, COH?, and OPT? require that both the attacker and the attack
itself need to be believed in order to affect the attackee, or that either of them can be disbelieved in order for belief in
the target. For RAT? (resp. STC?), if an attacker and its attack are believed, then the attackee is not believed (resp.
disbelieved). As a dual for STC?, PRO? ensures that if an attack and attackee are believed, the attacker is not believed.
TRU? requires that an argument is believed when there is no evidence to the contrary. By DIS?, an argument can only
be disbelieved for a reason. TER? simply limits beliefs to three values corresponding precisely to the in, out and und
statuses from the standard semantics. The ABIN? postulate prohibits being undecided about beliefs. Finally, while
all the previous properties consider belief and disbelief, the COH? and OPT? properties give margins for probability
assignments—one focuses on the upper, the other on the lower bound. By varying the use of also undecided attacks,
we can specialize our axioms further, as seen in the case of RPRO? and RCOH?.

Definition 4.2. (The independent family of postulates). An epistemic bidistribution (P a, P r) is:

(RAT?) rational? if for all A,B ∈ A s.t. (A,B) ∈ R and P r(A,B) > 0.5, P a(A) > 0.5 implies P a(B) ≤ 0.5.

(STC?) strict? if for all A,B ∈ A, s.t. (A,B) ∈ R and P r(A,B) > 0.5, P a(A) > 0.5 implies P a(B) < 0.5.

(PRO?) protective? if for all A,B ∈ A s.t. (A,B) ∈ R and P r(A,B) > 0.5, P a(B) > 0.5 implies P a(A) < 0.5.

(RPRO?) restricted protective? if for all A,B ∈ A s.t. (A,B) ∈ R and P r(A,B) ≥ 0.5, P a(B) > 0.5 implies
P a(A) < 0.5.

(TRU?) trusting? if for every B ∈ A, it holds that if for all C ∈ A s.t. (C,B) ∈ R, either P a(C) < 0.5, or
P r(C,B) < 0.5, then P a(B) > 0.5.

(DIS?) discharging? if for every B ∈ A, if P a(B) < 0.5, then there exists C ∈ A s.t. (C,B) ∈ R, P r(C,B) > 0.5
and P a(C) > 0.5.

(TER?) ternary? if for all X ∈ A ∪R, P b(X) ∈ {0, 0.5, 1}.
(ABIN?) attack binary? if for all X ∈ R, P r(X) 6= 0.5.

(COH?) coherent? if for all A,B ∈ A s.t. (A,B) ∈ R and P r(A,B) > 0.5, P a(A) ≤ 1− P a(B).

(RCOH?) restricted coherent? if for all A,B ∈ A, s.t. (A,B) ∈ R and P r(A,B) ≥ 0.5, P a(A) ≤ 1− P a(B).

(OPT?) optimistic? if for every A ∈ A, it holds that
P a(A) ≥ 1−

∑
B s.t. (B,A)∈R,P r(B,A)>0.5 and Pa(B)>0.5 P

a(B).

In the independent family, the belief we have in an attacker does not constrain the belief we may have in its attack.
We consider it an intuitive modeling, as we do not have to believe two arguments in order to acknowledge a conflict
between them. Imagine two people witnessing a robbery, one claiming that the criminal ran away in a car, the other
that he used a bike. The statements are clearly conflicting and we can believe the attacks between them independently
of the belief we have in the witnesses. Similarly, we do not need to believe a given attack even if we believe the
arguments participating in it, as exemplified in the introduction.

We present a second family of postulates in Definition 4.3, called the dependent family, and give results on inter-
relationships in Figure 3. This second family is motivated by the observation that in some situations (e. g. when
argument graphs are obtained from logical knowledge bases), it is natural to expect that there is a dependence between
belief in an attacker and its attack. Moreover, in many approaches that explicitly include the attacks in extensions
and labelings, the conflicts need to conform to the same semantics as the arguments. Consequently, we can demand
that the belief in an argument affects the belief in its attacks and vice versa. For this, we introduce the UNI?, SUN?

and WUN? postulates below. Similarly, we also present the attack postulates, which constrain the belief both in the
attacked argument and the conflict whose source is attacked, thus implicitly acknowledging the dependency between
the two. Moreover, while in the independent family the beliefs in the attack and the attacker had to be mentioned
explicitly due to their independence, in this family we consider just the attack itself. This also reflects the intuition
behind the attack–based approach.
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P
PRAT? PSTC?

PPRO?

PRPRO?

PCOH?

PRCOH?

∅

PTER?

PCOH? ∩ PTER? =

PPRO? ∩ PSTC? ∩ PTER?

Figure 2: Relationships for the independent family of postulates where Pµ1 → Pµ2 denotes Pµ1(G) ⊆ Pµ2(G).

P
PASTC?

PACOH?

PARAT?

PAPRO?

PASCOH?

PWUN?

PSUN?

PUNI?

∅

PTER?

PASCOH? ∩ PTER? =
PAPRO? ∩ PASTC? ∩ PTER?

Figure 3: Relationships for the dependent family of postulates where Pµ1 → Pµ2 denotes Pµ1(G) ⊆ Pµ2(G).

Definition 4.3. (The dependent family of postulates). An epistemic bidistribution (P a, P r) is:

(UNI?) unified? if for all (A,B) ∈ R, P r(A,B) = P a(A)

(SUN?) semi–unified? if for all (A,B) ∈ R, P a(A) > 0.5 iff P r(A,B) > 0.5 and P a(A) < 0.5 iff P r(A,B) < 0.5

(WUN?) weakly unified? if for all (A,B) ∈ R, either both P r(A,B) ≥ 0.5 and P a(A) ≥ 0.5 or both P r(A,B) ≤
0.5 and P a(A) ≤ 0.5.

(ARAT?) attack rational? iff for every α ∈ R, if P r(α) > 0.5 and α is an attacker? of X ∈ A ∪R, then P b(X) ≤
0.5.

(ASTC?) attack strict? iff for every α ∈ R, if P r(α) > 0.5 and α is an attacker? of X ∈ A∪R, then P b(X) < 0.5.

(APRO?) attack protective? iff for every X ∈ A ∪ R and α ∈ R s.t. α is an attacker? of X , if P b(X) > 0.5, then
P r(α) < 0.5.

(ATRU?) attack trusting? iff for every X ∈ A∪R, it holds that if for every attacker? β ∈ R of X it is the case that
P r(β) < 0.5, then P b(X) > 0.5.

(ADIS?) attack discharging? iff for every X ∈ A ∪R, if P b(X) < 0.5, then there exists an attacker? β ∈ R of X
s.t. P r(β) > 0.5.

(ACOH?) attack coherent? iff for every X ∈ A ∪ R and α ∈ R s.t. α is an attacker? of X , if P r(α) > 0.5, then
P r(α) ≤ 1− P b(X).

(ASCOH?) attack strongly coherent? iff for everyX ∈ A∪R and α ∈ R s.t. α is an attacker? ofX , if P r(α) ≥ 0.5,
then P r(α) ≤ 1− P b(X).

Some relationships between the two postulate families are given in Figure 4.
Although the independent family is more argument-driven, while the dependent family is more attack-driven, there

is a meeting point between them. In particular, by the use of postulates that tie the belief we have in a conflict to the
belief we have in its source, we can up to a certain degree replace one family with the other.
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PPRO?

PRPRO?

PAPRO?

PRPRO?∩PSUN?

PRAT?

PARAT?

PRAT?∩PSUN?

PSTC?

PASTC?

PSTC?∩PSUN?

PATRU?

PTRU?∩PSUN?

PTRU?

PATRU?∩PSUN?

PADIS?

PDIS?∩PSUN?

PDIS?

PADIS?∩PSUN?

PACOH?

PCOH?∩PUNI?

PCOH?

PACOH?∩PUNI?

∅

Figure 4: Classes of probability functions where Pµ1 → Pµ2 denotes Pµ1(G) ⊆ Pµ2(G).

Example 3. Consider again G2 from Example 1 and an epistemic bidistribution (P a, P r) (partially) defined through
the following constraints:

P a(A) = 0.9 P a(B) = 0.5 P a(C) = 0.6

P r(r1) = 0.7 P r(r2) = 0.6

Then (P a, P r) is (among others) rational?, weakly unified?, and (trivially) attack trusting?. It is, for example, not
strict?, not protective?, and not attack strongly coherent?.

5 Relationship with Classical Semantics
In order to compare the extended epistemic approach with Dung’s classical approach, we introduce the notions of
epistemic and extended epistemic labelings. Elements that are believed (disbelieved or neither) are simply assigned in
(respectively, out and und). We will show which postulates need to be satisfied in order for the (extended) epistemic
labelings to conform to the desired classical semantics and vice versa.

Definition 5.1. Let (P a, P r) be an epistemic bidistribution. The epistemic labeling is LPa = (I,O, U), where
I = {A ∈ A | P a(A) > 0.5}, O = {A ∈ A | P a(A) < 0.5}, and U = {A ∈ A | P a(A) = 0.5}. The extended
epistemic labeling is L?Pa,P r = (I,O, U), where I = {X ∈ A ∪R | P b(X) > 0.5}, O = {X ∈ A ∪R | P b(X) <

0.5}, and U = {X ∈ A ∪R | P b(X) = 0.5}.

We will first show how our independent family of postulates (i. e. Def. 4.2) relates to the classical notions. We can
draw a connection between the epistemic bidistributions and the labelings of a subgraph of the original graph, which
is obtained by considering only those attacks that are believed:

Definition 5.2. Let (P a, P r) be an epistemic bidistribution. The set of believed attacks is BAtts(P r) = {(A,B) ∈
R | P r(A,B) > 0.5}. The subgraph of G induced by P r is G′ = (A,BAtts(P r)).

Proposition 5.3. Let (P a, P r) be an epistemic bidistribution and G′ = (A,BAtts(P r)) the subgraph of G induced
by P r.

• (P a, P r) ∈ PRAT?(G) ∩ PDIS?(G) iff LPa ∈ cf(G′).

• (P a, P r) ∈ PPRO?(G) ∩ PDIS?(G) iff LPa ∈ ad(G′).

• (P a, P r) ∈ PPRO?(G) ∩ PSTC?(G) ∩ PDIS?(G) ∩ PTRU?(G) iff LPa ∈ co(G′).
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We can observe that although one attack distribution induces only one subgraph, a single subgraph can be induced
by multiple distributions. This is due to the fact that the removal of the attacks depends on whether an attack is believed
at all, not on the degree of this belief. Moreover, there can be infinitely many argument distributions associated with
a single complete labeling due to the fact that any of the values from [0, 0.5) (or (0.5, 1]) can lead to an out (or in)
assignment of a given labeling. Although this is to be expected taking into account the fact that probabilistic semantics
carry more information than the classical ones, we would also like to distinguish those probability functions that can
be uniquely associated with a given subgraph and its complete labelings. We thus propose the definition of complete
probability bidistributions; a given subgraph can be induced only by a single ternary and attack binary distribution,
while ternary, trusting, disapproving and coherent postulates lead to a tighter relation with the labelings:

Definition 5.4. An epistemic bidistribution (P a, P r) is complete iff (P a, P r) ∈ PCOH?(G)∩PDIS?(G)∩PTRU?(G)∩
PTER?(G) ∩ PABIN?(G).

From this, we can further define the preferred, complete and stable bidistributions that lead to appropriate labelings
in the associated subgraph by maximizing or minimizing particular assignments, similarly as in the classical semantics.
In this case, instead of focusing on in, out and und assignments, we look for probabilities 1, 0 and 0.5.

Although the extended epistemic approach is quite general, the epistemic labelings without any constraints on
the attack distributions are connected to the labellings of the subgraphs of a given framework, not necessarily the
framework itself. However, if we apply the dependency postulates from the dependent family (Definition 4.3)— in
particular, the semi-unified one—we can observe that we can focus on the original graph again. The only difference
wrt. the previous results is the use of the restricted, not standard protectiveness.

Proposition 5.5. The following holds:

• If L ∈ cf(G), then there exists (P a, P r) ∈ PRAT?(G) ∩ PDIS?(G) ∩ PSUN?(G) s.t. L = LPa .

• If L ∈ ad(G), then there exists (P a, P r) ∈ PRPRO?(G) ∩ PDIS?(G) ∩ PSUN?(G) s.t. L = LPa .

• If L ∈ co(G), then there exists (P a, P r) ∈ PRPRO?(G)∩PSTC?(G)∩PDIS?(G)∩PTRU?(G)∩PSUN?(G)
s.t. L = LPa .

• If (P a, P r) ∈ PRAT?(G) ∩ PDIS?(G) ∩ PSUN?(G), then LPa ∈ cf(G).

• If (P a, P r) ∈ PRPRO?(G) ∩ PDIS?(G) ∩ PSUN?(G), then LPa ∈ ad(G).

• If (P a, P r) ∈ PRPRO?(G) ∩ PSTC?(G) ∩ PDIS?(G) ∩ PTRU?(G) ∩ PSUN?(G), then LPa ∈ co(G).

This leads to the following complete probability bidistribution, which can uniquely describe the complete labelings
of the underlying framework. Using this, we can also retrieve the preferred, grounded and stable labellings as for the
classical case (as discussed in Section 2).

Definition 5.6. An epistemic bidistribution (P a, P r) is jointly complete iff (P a, P r) ∈ PSUN?(G)∩PRCOH?(G)∩
PDIS?(G) ∩ PTRU?(G) ∩ PTER?(G).

Let us now focus on the extended classical semantics. As we could have already observed in Example 1, the
admissible? labelings were not necessarily corresponding to the admissible ones. However, we can easily grasp it with
our attack epistemic postulates.

Proposition 5.7. The following holds:

• (P a, P r) ∈ PWUN?(G) ∩ PARAT?(G) ∩ PADIS?(G) iff L?Pa,P r ∈ cf?(G).

• (P a, P r) ∈ PWUN?(G) ∩ PAPRO?(G) ∩ PADIS?(G) iff L?Pa,P r ∈ ad?(G).

• (P a, P r) ∈ PSUN?(G) ∩ PAPRO?(G) ∩ PASTC?(G) ∩ PADIS?(G) ∩ PATRU?(G) iff L?Pa,P r ∈ co?(G).

The fact that the complete? labelings correspond to bidistributions satisfying the SUN? postulate gives us one
more important result. In particular, under the SUN? postulate we can replace the other postulates from the dependent
family with their counterparts from the independent family. This also means that we can use the jointly complete
bidistributions in order to uniquely retrieve the extended labelings of G that are at least complete?.
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Theorem 5.8. Let (P a, P r) be an epistemic bidistribution. Then L?Pa,P r ∈ co?(G) iff (P a, P r) ∈ PSUN?(G) ∩
PRPRO?(G) ∩ PSTC?(G) ∩ PDIS?(G) ∩ PTRU?(G).

These results show that our new proposal for epistemic probabilities can generalize a wider range of argumentation
semantics than the original one [18]. Moreover, what we have presented can be easily extended to handle the attack-
based semantics from [24] and recursive attacks from [2].

6 Comparison with Constellations Approach
The reasoning behind the epistemic and constellations approaches is different, with the former intended to reflect
the belief in arguments and attacks, and the latter expressing the uncertainty concerning the topology of the graph,
e. g., as to which arguments and attacks are known about or what elements should appear in the graph. Nevertheless,
we can still draw some connections between them. We can observe that in a subgraph distribution assigning non-
zero probability only to subgraphs without attacks, the grounded extension of each subgraph would consist of all of
its arguments. These extensions and their probabilities produce an argument distribution. Thus, the constellations
approach can up to some extent mimic the epistemic approach:

Proposition 6.1. For each argument-belief distribution P a over G, there is a constellations distribution P c over
Sub(G) s.t. for all arguments A in A, P a(A) = P cgr(A).

In turn, a spanning or full subgraph distribution can be simulated with the attack or argument belief distribution
due to the fact that part of a subgraph becomes “fixed” and not directly subject to any uncertainty.

Proposition 6.2. For each spanning subgraph distribution P c over G, there is an attack belief distribution P r s.t. for
all subgraphs G′ v G, and for all sets of attacks S ⊆ R, ifR′ = S, then P c(G′) = P r(S).

Proposition 6.3. For each full subgraph distribution P c over G, there is an argument belief distribution P a s.t. for
all subgraphs G′ v G, and for all sets of arguments S ⊆ A, if A′ = S, then P c(G′) = P a(S).

However, we can observe that if a subgraph distribution is neither a full subgraph distribution nor a spanning
subgraph distribution, then the constellations approach cannot be captured by the epistemic approach. Moreover, in
the constellations approach, the marginal value of a given argument (i. e. the total probability of subgraphs containing
this argument) is never less than the marginal for any attack involving that argument. In contrast, the belief in an
attacker can be greater than then belief in the attack or attackee. This shows that, in general, the epistemic approach
cannot be captured by the constellations method.

Definition 6.4. LetP c be a subgraph distribution. The argument marginal function isPm(A) =
∑
G′∈Sub(G) s.t. A∈A′ P (G′).

The attack marginal function is Pm(A,B) =
∑
G′∈Sub(G) s.t. (A,B)∈R′ P (G′).

Proposition 6.5. Let P c be a subgraph distribution. For all (A,B) ∈ R, P c(A) ≥ P c(A,B).

Example 4. Consider the graph G1 = ({A,B,C}, {(A,B), (B,A), (C,B)}) and its subgraphs G2 = ({A,B,C},
{(A,B), (B,A))}) and G3 = ({A,B}, {(A,B)}). For this graph, we consider the subgraph distribution P c(G1) =
0.3, P c(G2) = 0.5 and P c(G3) = 0.2, which is neither a full subgraph nor a spanning subgraph distribution. We
cannot use P a or P r to represent P c.

We can now consider an epistemic bidistribution (P a, P r) s.t. P r({A,B}) = 1 and for every set S ⊆ A s.t.
A ∈ S, P a(S) = 0 (the remaining assignments are arbitrary as long as we obtain a distribution). Therefore, P a(A) <
P a((A,B)). But there cannot be any subgraph distribution P c for G1 s.t. Pm(A) < Pm((A,B)).

These results show that extended epistemic and constellations approach, although related, do not subsume each
other.
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7 Conclusions
In this paper, we extend the epistemic approach to account for belief in attacks as well as arguments. We do this by
introducing the notion of an epistemic bidistribution. We then provide two families of postulates that offer a variety of
ways of constraining the bidistributions according to different notions of rational behaviour, give some relationships
between these two families, and show how these postulates relate to classical semantics for abstract argumentation,
and we show how the extended epistemic and constellations approaches do not subsume each other.

Important dimensions for probabilistic argumentation include the constellations approach to abstract argumen-
tation (e.g. [7, 19, 20, 6, 9]), the equational approach to abstract argumentation [10], and probabilistic structured
argumentation (e.g. [21, 7, 23]). The extended epistemic approach is complementary to these existing approaches (see
Section 6, for differences with the constellations approach, and see [10], for differences between the epistemic and
equational approaches).

The epistemic approach is a promising approach to user modelling in persuasion where a persuader can model
the beliefs in arguments of the persuadee and update the model during a dialogue [15, 16, 11], and the user model
can be harnessed to make strategic choices of move in a dialogue using decision theory [12]. The extended epistemic
approach offers richer user models, and pontentially more effective decisions about moves (as indicated by our example
in Section 1).
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