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Abstract. In this paper, we explore remarkable similarities between
multi-transactional behaviors of smart contracts in cryptocurrencies such
as Ethereum and classical problems of shared-memory concurrency. We
examine two real-world examples from the Ethereum blockchain and an-
alyzing how they are vulnerable to bugs that are closely reminiscent
to those that often occur in traditional concurrent programs. We then
elaborate on the relation between observable contract behaviors and
well-studied concurrency topics, such as atomicity, interference, synchro-
nization, and resource ownership. The described contracts-as-concurrent-
objects analogy provides deeper understanding of potential threats for
smart contracts, indicate better engineering practices, and enable appli-
cations of existing state-of-the-art formal verification techniques.

1 Introduction

Smart contracts are programs that are stored on a blockchain, a distributed
Byzantine-fault-tolerant database. Smart contracts can be triggered by blockchain
transactions and read and write data on their blockchain [38]. Although smart
contracts are run and verified in a distributed fashion, their semantics suggest
that one can think of them as of sequential programs, despite the existence of a
number of complex interaction patterns including e.g., reentrancy and recursive
calls. This mental model simplifies both formal and informal reasoning about
contracts, enabling immediate reuse of existing general-purpose frameworks for
program verification [5,16,31,32] that can be employed to verify smart contracts
written in e.g. Solidity [15] with only minor adjustments.

Although all computations on a blockchain are deterministic,3 a certain amount
non-determinism still occurs due to races between transactions themselves (i.e.
which transactions are chosen for a given block by the miners). We will show in
that non-determinism can be exploited by adversarial parties and makes reason-
ing about contract behavior particularly subtle, reminiscent to known challenges
involved in conventional concurrent programming.

In this paper we outline a model of smart contracts that emphasizes the
properties of their concurrent executions. Such executions can span multiple

3 This requirement stems from the way the underlying Byzantine distributed ledger
consensus protocol enables all involved parties to agree on transaction outcomes.
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blockchain transactions (within the same block or in multiple blocks) and thereby
violate desired safety properties that cannot be stated using only the contract’s
implementation and local state—precisely what the existing verification method-
ologies focus on [5, 32]. To facilitate the reuse of the common programming in-
tuition, we propose the following analogy:

Accounts using smart contracts in a blockchain
are like

threads using concurrent objects in shared memory.

Threads using concurrent objects in shared memory. By concurrent objects we
mean the broad class of data structures that are employed to exchange data be-
tween and manage the interaction of multiple threads (processes) running concur-
rently [20]. Typical examples of concurrent objects are locks, queues, and atomic
counters—typically used via popular libraries such as java.util.concurrent.
At runtime, these concurrent objects are allocated in a block of shared memory
that is accessible to the running threads. The behavior resulting from the threads
accessing the objects simultaneously—i.e. interference—can be extremely unpre-
dictable and thus extremely difficult to reason about.

Concurrent objects whose implementation does not utilize proper synchro-
nization (e.g., with locks or barriers) can manifest data races4 under interference
leading to a loss of memory integrity. Even for race-free objects the observed be-
havior under interference may be erroneous from the perspective of one or more
clients. For example, a particular thread may not “foresee” the actions taken by
the other threads with a shared object and thus may not expect for that object
to change in all of the ways that it does change under interference.

Accounts using smart contracts in a blockchain. Smart contracts are analogous
to concurrent objects. Instead of residing in a shared memory they live in the
blockchain; instead of being used by threads they are invoked by accounts (users
or other contracts). Like concurrent objects, they have internal mutable state,
manage resources (e.g. funds), and can be accessed by multiple parties both
within a block and in multiple blocks. Unlike traditional concurrent objects, a
smart contract’s methods are atomic due to the transactional model of com-
putation. That is, a single call to a contract (or a chain of calls to a series of
contracts calling each other), is executed sequentially—without interrupts—and
either terminates after successfully updating the blockchain or aborts and rolls
back to its previous configuration before the call.

The notion of “atomicity for free” is deceptive, however, as concurrent behav-
ior can still be observed at the level of the blockchain:

– The order of the transactions included to a block is not determined at the
moment of a transaction execution, and, thus, the outcome can largely de-
pend on the ordering with respect to other transactions [27].

4 That is, unsynchronized concurrent accesses by different threads to a single memory
location when at least one of those accesses is a write.
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– Several programming tasks require the contract logic to be spread across
several blockchain transactions (e.g., when contracts “communicate” with
the world outside of the blockchain), enabling true concurrent behavior.

– Calling other contracts can be considered to be a kind of cooperative mul-
titasking. By cooperative multitasking we mean that multiple threads can
run but do not get interrupted unless they explicitly “yield”. That is, a call
from contract A to contract B can be considered to be a yield from contract
A’s perspective, with contract B yielding when it returns. The key point for
smart contracts is that contract B can run code that was unantici-
pated by contract A’s designer, which makes the situation much closer
to a concurrent setting than a typical sequential one.5 In particular, contract
B can modify state that contract A may assume is unchanged during the
call. This is the essence of The DAO bug [9], in which contract B made a call
back into contract A to modify A’s local state before returning [27]. However,
reentrancy is not the only way this kind of error can manifest, since:

– It is not difficult to imagine a scenario in which a certain contract is used as
a service for other parties (users and contracts), managing the access to a
shared resource and, in some sense, serving as a concurrent library. As multi-
contract transactions are becoming more ubiquitous, various interference
patterns can be observed and, thus, should be accounted for.

Our goals and motivation. Luckily, the research in concurrent and distributed
programming conducted in the past three decades provides a large body of the-
oretical and applied frameworks to code, specify, reason about, and formally
verify concurrent objects and their implementations. The goal of this paper is
thus twofold. First, we are going to provide a brief overview of some known con-
currency issues that can occur in smart contracts, characterizing the problems
in terms of more traditional concurrency abstractions. Second, we are aiming to
build an intuition for “good” and “bad” contract behaviors that can be identified
and verified/detected correspondingly, using existing formal methods developed
for reasoning about concurrency.

2 Deployed Examples of Concurrentesque Behavior

Here we discuss two contracts that have been deployed on the Ethereum blockchain
that each illustrate different aspects of concurrent-type behavior. The BlockKing
contract, like many others on the Ethereum blockchain today, implements a
simple gambling game [2]. Although BlockKing is not heavily used, we study it
because it showcases a potential use of the Oraclize service [4], which is a service
that allows contracts to communicate with the world outside of the blockchain
and thus invites true concurrency. Since the early adopters of the Oraclize service
wrote it as a demonstration of the service and has made its source code freely
available, it is likely that many other contracts that wish to use Oraclize will
mirror it in their implementations.

The second example we discuss is the widely-studied bug in the DAO con-
tract [1]. The DAO established an owner-managed venture capital fund with

5 A better term would be “uncooperative multitasking” under the circumstances.
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more than 18,000 investors; at its height it attracted more than 14% of all Ether
coins in existence at that time. The subsequent attack on it cost investors ap-
proximately 3.6 million Ether, which at that time was worth approximately USD
50 million. The DAO employed what we call “uncooperative multitasking”, in
that when the DAO sent money to a recipient then that recipient was able to
run code that interfered (via reentrancy) with the DAO’s contract state that the
DAO assumed would not change during the call.

2.1 The BlockKing contract

The gamble in BlockKing works as follows. At any given time there is a designated
“Block King” (initially the writer of the contract). When money is sent to the
contract by a sender s, a random number j is generated between 1 and 9. If the
current block number modulo 10 is equal to j then s becomes the new Block
King. Afterwards, the Block King gets sent a percentage of the money in the
contract (from 50% to 90% depending on various parameters), and the writer of
the contract gets sent the balance.

Generation of good quality random numbers is often difficult in deterministic
systems, especially in a context in which all data is publicly stored—and in
which there are financial incentives for attackers. Accordingly, BlockKing utilizes
the services of a trusted party, Wolfram Alpha, to generate its random numbers
using the Oraclize service. Assuming Oraclize is well-behaved, this strategy for
random number selection should be very difficult for attackers to predict.

The code for BlockKing is 365 lines long, but the lines of particular interest
are given in Figure 1; line numbers here refer to the actual source code of the
contract as given by Etherscan [2]. The enter function is called when money is
sent to the contract. It sets some contract variables (lines 299–301) and then
sends a query to the Oraclize service (line 303).

The oraclize_query function raises an event visible in the “real world” before
returning to its caller, which then exits (line 304). In the real world the Oraclize
servers monitor the event logs, service the request (in this case by contacting
the Wolfram Alpha web service), and then make a fresh call into the originating
contract at a designated callback point (line 306 in BlockKing). Between the event
and its callback, many things can occur, in the sense that the the blockchain can
advance several blocks between the call to oraclize_query and the resumption
of control at __callback. During this time the state of the blockchain, and even
of the BlockKing contract itself, can have changed drastically. In other words,
this is true concurrent behavior on the blockchain.

What can go wrong? Suppose that multiple gamblers wish to try their luck
in a short period of time (even within the same block). The contract makes
no attempt to track this behavior. Accordingly, each new contestant will over-
write the previous one’s data (the critical warriorBlock and warrior variables)
in lines 299–301. When the callbacks do eventually occur, the last contestant
in the batch will enjoy multiple chances to win the throne curtesy of the ear-
lier contestants in that batch who payed for the other callbacks! The culprit is
lines 339–347 from the process_payment function, called as the last line of the
__callback function in line 309.
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293 function enter() {
294 // 100 finney = .05 ether minimum payment otherwise refund payment and stop contract
295 if (msg.value < 50 finney) {
296 msg.sender.send(msg.value);
297 return;
298 }
299 warrior = msg.sender;
300 warriorGold = msg.value;
301 warriorBlock = block.number;
302 bytes32 myid =
303 oraclize_query(0,"WolframAlpha","random number between 1 and 9");
304 }
305
306 function __callback(bytes32 myid, string result) {
307 if (msg.sender != oraclize_cbAddress()) throw;
308 randomNumber = uint(bytes(result)[0]) - 48;
309 process_payment();
310 }
311
312 function process_payment() {

...

339 if (singleDigitBlock == randomNumber) {
340 rewardPercent = 50;
341 // If the payment was more than .999 ether then increase reward percentage
342 if (warriorGold > 999 finney) {
343 rewardPercent = 75;
344 }
345 king = warrior;
346 kingBlock = warriorBlock;
347 }

Fig. 1. BlockKing code fragments [2].

Each time the process_payment function is called the least significant digit of
warriorBlock is computed and stored into the variable singleDigitBlock.6 Each
time the process_payment function is called by __callback he has a new chance
to match the random number in line 339. If the numbers do match, then that
final contestant is crowned on line 345.

2.2 The DAO contract

The source code for the DAO is 1,239 lines and markedly more complex than
BlockKing [23]. Since much has already been written about this bug (e.g. [9,27]),
we present in Figure 2 only the key lines. The problem is the order of line 1012,
which (via a series of further function calls) sends Ether to msg.sender, and
line 1014, which zeros out the balance of msg.sender’s account.

In a sequential program, reordering two independent operations has no effect
on the ultimate behavior of the program. However, in a concurrent program
the effect of a sequentially-harmless reorder can have significant effect since the
order in which operations occur can affect how the threads interfere. In the DAO,
sending the Ether in line 1012 “yields” control, in some multitasking sense, to
any arbitrary (and thus potentially malicious) contract located at msg.sender.

6 For reasons that seem rather strange to us, this modulus is computed very ineffi-
ciently in lines 315–338 of the contract, which we elide to save space.
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1010 // Burn DAO Tokens
1011 Transfer(msg.sender, 0, balances[msg.sender]);
1012 withdrawRewardFor(msg.sender); // be nice, and get his rewards
1013 totalSupply -= balances[msg.sender];
1014 balances[msg.sender] = 0;
1015 paidOut[msg.sender] = 0;
1016 return true;
1017 }

Fig. 2. DAO code fragment [23].

Unfortunately, the DAO internal state still indicates that the account is funded
since its account balance has not yet been zeroed out in line 1014. Accordingly,
a malicious msg.sender can initiate a second withdrawal by calling back into the
DAO contract, which will in turn send a second payment when control reaches
line 1012 again. In fact, the malicious msg.sender can then initiate a third, fourth,
etc. withdrawal, all of which will result in payment. Only at the end is his account
zeroed out, after being paid many multiples of its original balance.

Previous analyses of this bug have indicated that the problem is due to re-
cursion or unintended reentrancy. In a narrow sense this is true, but in a wider
sense what is going on is that sequential code is running in what is in many
senses a concurrent environment.

3 Interference and Synchronization

Having showed that concurrent-type behavior exists and causes problems in
real contracts on the Blockchain, we will now examine other ways that our
concurrent-objects-as-contracts viewpoint can help us understand how contracts
can behave on the blockchain.

3.1 Atomic updates in shared-memory concurrency

Figure 3 depicts a canonical example (presented in a Java 8-like pseudocode) of
a wrongly used concurrent object, which is supposed to implement an “atomic”
counter with methods get and set. The implementation of the concurrent
counter on the left is obviously thread-safe (i.e., data race-free), thanks to the use
of synchronized primitives [17]. What is problematic, though, is how an instance
of the Counter class is used in the multithreaded client code on the right.

Specifically, with two threads running in parallel and their operations inter-
leaving, the call to incr() within thread2’s body could happen, for instance,
between the assignment to a and the call c.set(a + 1) within the incr() call of
thread1. This would invalidate the condition in the following assert statement,
making the overall program fail non-deterministically for a certain execution!

The issue arises because the implementation of incr() on top of Counter does
not provide the atomicity guarantees, expected by the client code. Specifically,
the code on the right is implemented in the assumption that there will be no
interference between the statements of incr(), hence the counter c is going to be
incremented by 1, and a and b will be the same by the end of its execution. Indeed,
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class Counter {
private int x = 0;

/** Return current value */
synchronized int get() {

return x;
}

/** Set x to be v */
synchronized int set(int v) {

int t = x;
x = v;
return t;

}
}

final Counter c = new Counter();

void incr() {
int a = c.get();
int b = c.set(a + 1);
assert (a == b);

}

// In the main method
Runnable thread1 = () ->

{ incr(); }

Runnable thread2 = () ->
{ incr(); }

thread1.run(); thread2.run();

Fig. 3. A concurrent counter (left) and its two-thread client application (right).

this is not always the case in the presence of concurrently running thread2, and
not only a and b will be different, the later call to c.set() will also “overwrite”
the result of the earlier one.

A better designed implementation of Counter could have instead provided
an atomic implementation of incr(), implemented via a version of fetch-and-
increment operation [20, § 5.6], via explicit locking, or by means of Java’s
synchronized keyword. However, given the only two methods, get and set, the
implementation of Counter has synchronization properties of an atomic register
whose consensus number [20, § 5.1] (i.e., the number of concurrent threads that
can unambiguously agree on the outcomes of get and set) is exactly 1. Therefore,
it is fundamentally impossible to implement an atomic incrementation of c by
using only get and set, and without relying on some additional synchronization,
by giving priorities to certain preordained threads.

Perhaps a bit surprisingly, even though the implementation of Counter from
Figure 3 is not flawed by itself, its weak atomicity properties render it quite
useless in the presence of an unbounded number of threads, making it virtually
impossible to make any stable (i.e., resilient with respect to concurrent changes)
assumptions about its internal state.

3.2 Atomic updates in concurrent blockchain transactions

The left part of Figure 4 shows a smart contract, implemented in Solidity [15],
with functionality and methods reminiscent to those of an atomic concurrent
counter. The function get allows one to query the contract for the current bal-
ance, associated with some fixed address id, whereas the set function allows one
to update balance with the new balance, taken from the message via msg.value,
sending back the old amount and returning it as a result.

Since the bodies of both get and set are going to be executed sequentially in
the course of some transactions, neither there is any need to synchronized them,
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contract Counter {
address public id;
uint private balance;

function get() returns (uint) {
return balance;

}

function set() returns (uint) {
uint t = balance;
balance = msg.value;
msg.sender.send(t);
return t;

}}

// ...
// Same code as in Counter

function testAndSet(uint expected)
returns (uint) {
uint t = balance;
if (t == expected) {

balance = msg.value;
msg.sender.send(t);
return t;

} else {
throw;

}
}

Fig. 4. A counter contract (left) and a synchronizing testAndSet method (right).

nor there is any explicit way to do so in Solidity. However, it is not difficult
to observe that as an implementation of the simplest possible storage (e.g., for
some id-related funds), used by multiple different parties to update it’s balance,
the Counter contract is as useless as its Java counterpart from Figure 3.

For instance, imagine that two parties, unaware of each other try to increment
the amount, stored by an instance of Counter by a certain value. Since the con-
tract does not provide a way for them to do it in one operation, they will have
to first query the amount via get and then try to change it via set function,
following the same pattern as the implementation of incr from Figure 3. Indeed,
both these calls can be accomplished in a single transaction, which would make
the execution sequential. However, because of the limited gas requirement,7 it
is ill-advised to call more than one external contract in the course of execu-
tion. Furthermore, the call to get can be performed by a client, external to the
blockchain, which would mean that the consecutive calls to get and set will end
up in two different transactions. If this is the case, those calls might interfere
with other transactions, launched by multiple parties trying to modify Counter

at the same time, making us face the familiar problem: the result of calling the
function set cannot be predicted out of the local observations.

The cause of the described problem, both in the shared-memory and blockchain
cases, is the lack of strong synchronization primitives, allowing one to simulta-
neously observe and manipulate with the counter in the presence of concurrent
executions. One solution to the problem, which would make it possible to in-
crement the counter atomically, is to enhance the counter with the testAndSet

function (right part of Figure 4). This function implements the check/update
logic similar to the compare-and-swap primitive [20, § 5.8], (known as CMPXCHG,
on the Intel x86 and Itanium architectures), as a way to implement synchro-
nization between multiple threads. The consensus number of testAndSet (and

7 This is a standard way in Ethereum to ensure that execution of a contract terminates:
by supplying it with a limited amount of “gas”, used as a fuel for execution steps.
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contract Counter {
address public owner;
uint private balance;

modifier byOwner() {
if (msg.sender != owner) throw;
_

}

function get() external byOwner
returns (uint) {
return balance;

}

function set() external byOwner
returns (uint) {
uint t = balance;
balance = msg.value;
msg.sender.send(t);
return t;

}}

// Same declarations as in Counter

mapping (address => bool) readers;

// Initialized with 0x0
address writer;

modifier canRead() {
if (msg.sender != writer ||

!readers[msg.sender]) throw;
_

}

modifier canWrite() {
if (msg.sender != writer) throw;
_

}

function acquireReadLock() returns (bool) {
if (writer == 0x0) {

readers[msg.sender] = true;
} else return false;

}

// ... Other synchronization primitives

Fig. 5. An exclusively-owned (left) and Read/Write-locked (right) contract.

some other similar Read-Modify-Write primitives) is known to be ∞, hence it is
strong enough to allow an arbitrary number of concurrent parties agree on the
outcome of the operation.

Notes on formal reasoning and verification. The modern formal approaches for
runtime concurrency verification, based on exploring dynamic execution traces
and summarizing their properties, provide efficient tools for detecting the viola-
tions of atomicity assumptions, and the lack of synchronization [26]. For instance,
by translating our contract to the corresponding shared-memory concurrent ob-
ject, one would be able to use the existing tools to summarize its traces [13],
thus, making it possible to observe undesired interaction patterns.

4 State Ownership and Permission Accounting

A different way to prohibit the unwelcome interference on a contract’s state is
to engineer a tailored permission accounting discipline, controlling the set of
operations allowed for different parties.

Let us first notice that the problems exhibited by the two-thread example
in Figure 3 and preventing one from asserting anything about its state x could
be avoided if we enforced a restricted access discipline: for instance, by stating
that at any moment at most one thread can query/modify its state. This would
grant the corresponding thread an exclusive ownership [30] over the object, thus,
justifying any assertions made locally from this thread about the object’s state.

The unique ownership is traditionally ensured in Ethereum’s contracts by
disallowing any other party, but a dedicated owner, make critical changes in
the contract state. For instance, Figure 5 (left) shows an altered version of the
Counter contract, so no other party can interact with it but its “owner”. The
ownership discipline is enforced by Solidity’s mechanism of modifiers, allowing
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one to provide custom dynamically checked pre-/postconditions for functions.
In our example, the byOwner modifier will enforce that the functions get and set

will be only invoked on behalf of a fixed party—the owner of the contract.
This is a rather crude solution to the interference problem, as it would mean

to exclude any concurrent interaction at a contract whatsoever. It is quite il-
luminating, though, from a perspective on thinking of contracts as concurrent
objects, allowing us to immediately apply our analogy: accounts are threads.
Indeed, by imposing a specific ownership discipline on a contract as shown in
Figure 5 is similar to enhancing its Java counterpart with an explicit check of
Thread.currentThread().getId().

Let us now try to push the analogy between accounts and threads a bit further
by designing a version of a counter with more elaborated access rights. In partic-
ular, we are going to ensure that as long as there are accounts (aka “threads”)
“interested” in having its value immutable (as their internal logic might rely
on its immutability), no other party may be allowed to modify it. Similarly, if
at the moment there is exactly one party that holds a unique permission to
modify the counter, no other parties may be allowed to read it. The solution to
this synchronization problem is well-known in a concurrency community by the
name Read/Write lock [6]. Its implementation requires keeping track of threads
currently reading and writing to the shared object, so a thread should explicitly
acquire the corresponding permission before performing a read/write operation,
and then should release it upon finishing.

The right part of Figure 5 shows the essential fragments of the Read/Write-
locked contract implementation. The two new fields, readers and writer keep
track of the currently active readers and writers. The new modifiers canRead and
canWrite are to be used for the omitted get and set operations correspondingly.
Finally, acquireReadLock allows its caller to acquire the lock as long as there is
no active writer in the system, by registering it in the readers mapping.

As we can see, the accounts-as-threads is a rather powerful analogy, suggesting
a number of solutions to possible synchronization problems that can be taken
verbatime from the concurrency literature. The only drawback of the presented
solution is the fact that it is rather monolithic: the contract now combines the
functionality of the data structure (i.e., the counter) and that of a synchro-
nization primitive (i.e., a lock). We will discuss possible ways to improve the
modularity of the implementation in Section 5.

Notes on formal reasoning and verification. Formal reasoning about permission
accounting and separation of state access is a long studied topic in the shared-
memory concurrency literature (see, e.g., [8] for an overview). Formalisms, such
as Concurrent Separation Logic and [30] Fractional/Counting permissions [6]
provide a flexible way to define the abstract ownership discipline and verify that
a particular implementation follows it faithfully. For instance, our Read/Write
lock contract can be formally proven safe (i.e., prohibiting concurrent write-
modifications) using a formal model of permissions by Bornat et al. [6].
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5 Discussion

5.1 Composing the contracts

The locking contract “pattern”, considered in Section 4, has a significant draw-
back: its design is non-modular. That is, the locking machinery is implemented by
the contract itself rather than by a third-party library. This is at odds with good
practices of software engineering, in which it is advised to implement synchro-
nization primitives, such as ordinary and reentrant locks, as standalone libraries,
which can be used for managing access client-specific resources.

But once the lock logic is factored out of the contract, the reasoning about the
contract’s behavior becomes significantly more difficult, as, in order to prove the
preservation of its internal invariants, one needs to be aware of the properties
of the extracted locking protocol, such as, e.g., uniqueness of a writer, which
are external to the contract. In other words, verification of a contract can no
longer be conduced in an isolated manner and will require building a model that
allows reasoning about a contract interacting with other, rigorously specified
contracts. The idea of disentangling the logic of contracts is not inherent to our
concurrent view and is paramount in the existing good practices of contract
development. For instance, the same idea is advocated as a way to implement
upgradable contracts in Ethereum through introducing and additional level of
indirection [11]. Having a “contract factory”, implemented as another contract,
which can be invoked by any party, poses verification challenges similar to those
of proving the safety properties of higher-order concurrent object (i.e., an object,
that is manipulating with other objects) [19].

The idea of compositional reasoning and verification of mutually-dependent
and higher-order concurrent objects using concurrency logics has been a sub-
ject of a large research body in the past decade [12, 33, 34, 37]. Most of those
approaches focus on a notion of protocol, serving as an abstract interface of an
object’s behavior in the presence of concurrent updates, while hiding low-level
implementation details (i.e., the actual code). We believe, that by leveraging our
analogy, we will be able to develop a method for modular verification of such
multi-contract interactions.

5.2 Liveness properties

With the introduction of locks and exclusive access, another concurrency-related
issue arises: reasoning about progress and liveness properties of contract imple-
mentations. For instance, it is not difficult to imagine a situation, in which a
particular account, registered as a “reader” in our example from Figure 5, might
never release the reader-lock, thus, blocking everyone else from being able to
change the contract’s state in the future. The liveness in this setting would mean
that eventually something good happens, meaning that any party is properly in-
centivised to release the lock. In a concurrency vocabulary, such an assumption
can be rephrased as fairness of the system scheduler, making it possible to reuse
existing proof methods for modular reasoning about progress [25] and termina-
tion [18] in of single- and multi-contract executions.
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6 Related Work

Formal reasoning about smart contracts is an emerging and exciting topic, and
suitable abstractions for describing a contract’s behavior are a subject of active
research. In this section, we relate our observations to the existing results in
formalizing and verifying contract properties, outlining promising areas that
would benefit from our concurrency analogy.

6.1 Verifying contract implementations

Since the DAO bug [9], the Ethereum community has been focusing on preventing
similar errors, with the aid of general-purpose tools for program verification.

At the moment, contracts written in Solidity can be annotated with Hoare-
style pre/postconditions and translated down to OCaml code [32], so they be-
come amenable to verification using the Why3 tool, which uses automation to
discharge the generated verification conditions [16]. This approach is efficient for
verifying basic safety properties of Solidity programs, such as particular variables
always being within certain array index boundaries, and preservation of general
contract invariants (typically stated in a form if linear equations over values of
uint-valued variables) at the method boundaries and before performing external
contract calls—precisely what was violated by the DAO contract.

Bhargavan et al. have recently implemented a translation from a subset of
Solidity (without loops and recursion) [5] into F?—a programming language
and verification framework, based on dependent types [35]. They also provided
a translator from EVM bytecode to F? programs. Both these approaches made
it possible to use F? as a uniform tool for verification of contract properties,
such as invariant preservation and absence of unhandled exceptions, which were
encoded as an effect via F?’s support for indexed Hoare monad [36]. A similar
approach to specify the behavior of contracts and based on dependent types has
been adopted by Pettersson and Edström [31], who implemented a small effect-
based contract DSL as a shallow embedding into Idris [7], with the executable
code extracted to Serpent [14], a Python-style contract language.

Hirai has recently formalized the entire specification of Ethereum Virtual Ma-
chine [22] in Lem [28] with extraction to the Isabelle/HOL proof assistant, al-
lowing mechanized verification of contracts, compiled to EVM bytecode, for a
number of safety properties, including assertions on mutable state and the ab-
sence of potential reentrancy. Unlike the previous approaches, Hirai’s formaliza-
tion does not provide a syntactic way to construct and compose proofs (e.g.,
via a Hoare-style program logics), and all reasoning about contract behavior is
conducted out of the low-level execution semantics [38].

In contrast with these lines of work, which focus predominantly on low-level
safety properties and invariant preservation, our observations hint a more high-
level formalism for capturing the properties of a contract behavior and its com-
munication patterns with the outside world. In particular, we consider commu-
nicating state-transition systems (STSs) [29] with abstract state as a suitable
formalism for proving, e.g., trace and liveness properties of contract executions
using a toolset of established tools, such as TLA+ [24]. In order to connect such
an abstract representation with low-level contract code, one will have to prove a
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refinement [3] between the high-level and the low-level representations, i.e., be-
tween an STS and the code. In some sense, finding a suitable contract invariant
and proving it via Why3 or F? may be considered as proving a refinement be-
tween a one-state transition system, such that the only state is what is described
by the invariant, and an implementation that preserves it. However, we expect
more complicate STSs will be required in order to reason about contracts with
preemptive concurrency.

6.2 Reasoning about global contract properties

The observation about some contracts being prone to unintentional or adversar-
ial misuse due to the interference phenomenon has been made by Luu et al. [27].
They characterised the problem similar to what’s exhibited by our counter
example in Section 3 as transaction-ordering dependency (TOD), which un-
der our concurrency analogy can be generalized as a problem of unrestricted
interference. The solution to the TOD-problem, suggested by Luu et al., re-
quired changing the semantics of Ethereum transactions, providing a primitive,
similar to our testAndSet from Figure 4. While the advantage of such an ap-
proach is the absence of the need to modify the already deployed contracts (only
the client code interacting with them needs to be changed), it requires all in-
volved users to upgrade their client-side applications, in order to account for
the changes. In essence, Luu et al.’s solution targets a very specific concurrency
pattern: strengthening synchronization, provided by atomic registers, by adding
a blockchain-supported read-modify-write primitive. Realizing the nature of the
problem, hinted by our analogy, might instead suggest alternative contract-based
solutions, such as, e.g., engineering a locking proxy contract. The disadvantage
of this approach is, however, the need to foresee this behavior at the moment
of designing and deploying a contract. That said, such an ability to model this
behavior is precisely what, we believe, our analogy enables.

7 Conclusion

We believe that our analogy between smart contracts and concurrent objects can
provide new perspectives, stimulate research, and allow effective reuse of existing
results, tools, and insights for understanding, debugging, and verifying complex
contract behaviors in a distributed ledger. As any analogy, ours should not be
taken verbatim: on the one hand, there are indeed issues in concurrency, which
seem to be hardly observable in contract programming; on the other hand, smart
contract implementers should also be careful about notions that do not have
direct counterparts in the concurrency realm, such as gas-bounded executions
and management of funds.

To conclude, we leave the reader with several speculations, inspired by our
observations, but neither addressed nor disproved:

– A common concurrency challenge in non garbage-collected languages is to
track the uniqueness of heap locations, which can be later reclaimed and
repurposed—an issue dubbed the ABA problem [10]. With the lack of due
caution, the ABA problem may lead to the violation of the object’s state
integrity. Can we imagine a similar scenario in a multi-contract setting?
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– Continuing the analogy, if one sees a blockchain as a shared state, then the
mining protocol defines the priorities for scheduling. Can we leverage the
insights from efficient concurrent thread management in order to analyze
and improve the existing distributed ledger implementations?

– Linearizability [21] (aka atomicity) is a standard notion of correctness for
specifying high-level behavior of lock-free concurrent objects. What would
be an equivalent de-facto notion of consistency for composite contracts with
multi-transactional operations, such as BlockKing?
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