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Abstract

This project investigates the impact and plasticity of perceptual cue weight-

ing strategy for normal hearing (NH) listeners with cochlear implant (CI)

acoustic simulation and CI users. It is hypothesised that how listeners

allocate perceptual attention on different speech cues is related to how

accurately and effectively they can restore the phonemic structures from

the acoustic inputs. Therefore, it can be beneficial to use auditory training

to guide listeners’ attention to the more reliable and informative cues for

their own specific language, in order to improve speech recognition and

ease listening effort.

The first part of this project investigated the impact of perceptual weighting

strategy for both groups of listeners. Listeners’ sentence recognition and

pupillary response (taken as a measure of listening effort) were measured.

They were then taken into the same model with listeners’ acoustic cue

weighting ratio and auditory sensitivity to explore their relation.

The second aim of this project was to examine the possibility of using audi-

tory training to change listeners’ acoustic cue weighting strategy towards

an optimal one. A distributional training method was used here, with the

sampling of spectral and temporal cues in the training word stimuli manip-
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ulated in a way that only the spectral cue followed a bimodal distribution

that resembled the natural speech. This was to increase the saliency of the

spectral cue, in order to direct listeners’ attention to the spectral cue. Sen-

tence recognition performance in quiet, acoustic cue weighting strategy

and pupillary responses were measured before and after the training to

examine the effectiveness of the training.

Findings from this project will extend the current understanding on CI

users’ perceptual cue weighting strategy and provide inspiration for a

more comprehensive rehabilitation scheme for CI users.
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Chapter 1

Introduction

Since their first introduction in the early 1980s, multi-channel cochlear

implants (CI) have significantly improved the speech perception perfor-

mance and life quality of profoundly and totally deaf patients (Budenz

et al. 2011; Clark, Clark, & Furness 2013; Mosnier et al. 2015; Sladen et al.

2017). However, many challenges still remain. Current postoperative speech

recognition measures typically report an average of approximately 70% for

sentence recognition in quiet, and significantly impaired performance in

noise (Firszt et al. 2004; Gifford et al. 2008; Di Nardo et al. 2010; Sladen

& Zappler 2015). There is also substantial variability among individuals in

both speech performance and life quality (Hirschfelder et al. 2008; Capretta

& Moberly 2016a; Sladen et al. 2017). In order to maximise post-lingually

deaf CI users’ benefits from the device, a variety of rehabilitation strate-

gies have been developed to provide users with intensive auditory training

on the degraded and distorted auditory inputs through the CI. Typically,

they focus on improving listeners’ speech recognition performance. This

might not be sufficient to characterise the difficulties experienced by CI
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users. High levels of listening effort and fatigue are reported by hearing

impaired (HI) listeners and CI users, and their ratings of life quality are

not correlated with their speech recognition (McCoy et al. 2005; Bologna

et al. 2013; Sladen & Zappler 2015; Capretta & Moberly 2016a; Sladen et

al. 2017). Therefore, without a training program that aims to ease listening

effort and a post-training assessment that measures the change in listening

effort, there is no guarantee that CI listeners will have a more effortless

speech communication after the rehabilitation, even if the speech recogni-

tion scores have improved.

This project intends to investigate the effect of an auditory training method

that aims to utilise listeners’ sensitivity to the statistical features of speech

cues in order to adopt a better listening strategy. It is hypothesised that

how listeners prioritise certain acoustic cues in speech is related to their

speech recognition performance and listening effort. Arguably, allocating

cognitive resources on the speech cue that is most informative for restor-

ing phonemic structure and most reliable across different styles of speech

should help listeners to map the acoustic inputs to their phonological rep-

resentations better and quicker. Therefore, the training that encourages

listeners to adopt this strategy should be beneficial both behaviourally and

cognitively.

This chapter will firstly review past studies on normal hearing (NH) and

post-lingually deaf CI listeners’ acoustic cue weighting strategy and its

possible relation with listeners’ general speech performance, in order to

illustrate the potential benefit of a certain weighting strategy. The sec-
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ond section will look at the plasticity of listeners’ acoustic cue weighting

strategy and speech recognition, in order to explore the possibility of inte-

grating the adjustment of the weighting strategy into the auditory training

for CI users.

Finally, this chapter will provide an introduction to the project, explaining

its rationale and potential contribution to the existing studies.

1.1 Acoustic cues and listeners’ perceptual weight-

ing strategy

1.1.1 Acoustic cues and perceptual weighting

To understand speech, listeners need to recover linguistic structure from

an acoustic speech signal. Components of the acoustic signal relevant to

phoneme identities are referred to as cues (Repp 1982). Acoustic cues can

come from the spectral, temporal, or amplitude structure in the speech

signal (Lisker & Abramson 1964). Using these cues to recover the linguis-

tic structure is not a straightforward process since there is no one-to-one

mapping from an acoustic input to a phonemic representation (Liberman

et al. 1967). Lisker (1978) catalogued as many as 16 acoustic cues that could

characterise the English plosive voicing distinction. Accordingly, listeners

rarely use one acoustic cue to make phonemic decisions. Instead, multiple

co-occurring cues in the acoustic inputs are used to identify speech sounds

(Lisker 1978; Bailey & Summerfield 1980; Best et al. 1981).

Nevertheless, not all acoustic cues that contribute to phonemic identity are
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perceptually equivalent to listeners in determining the perceptual category

of a sound, a procedure referred to as cue weighting. Listeners’ cue weight-

ing strategy depends on a few factors.

Typically, different languages use different sets of acoustic cues for cate-

gorising speech sounds. This specialisation in cue weighting strategy takes

a significant amount of time for listeners to develop. It could start as early

as the first year after birth and continue through the first decade of life

until the strategy matches that of adults. For instance, 4-month-old infants

displayed better general voice-onset-time (VOT) boundary discrimination

than native French speakers, and at 8 months they showed increased sen-

sitivity to the VOT boundary in French (Hoonhorst et al. 2009). 3-year-old

children weighted formant transitions more than fricative-noise spectra

cue in categorising syllable-initial fricatives compared to adults, but at 6

years old shifted to more weighting to the noise spectra cue with no sig-

nificant difference from adults (Nittrouer 2002). Once this developmental

shift in perceptual attention is completed, the weighting strategy will be

rather robust and dominate listeners’ perception of acoustic cues, making

the processing of foreign language sound patterns difficult (Bradlow et al.

1999; Iverson et al. 2003). Therefore, at least within a language community,

listeners share the use of a similar set of acoustic cues and a similar pattern

of allocating perceptual attention to acoustic cues, although with some

individual variabilities (Hazan & Rosen 1991).

Furthermore, certain features of acoustic cues also explain listeners’ per-

ceptual weighting strategy. Firstly, listeners’ perceptual sensitivity to an
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acoustic cue could be constrained by the auditory processing system. The

auditory encoding of an acoustic cue is not linearly related to its physical

properties meaning that equal physical steps do not correspond to equiv-

alent changes in percept (Kuhl & Miller 1975; Stevens 1989; Kuhl 1991).

Therefore, changes in some acoustic dimensions could be perceptually

more salient than others. For instance, onset asynchrony differences less

than 20ms in both speech and nonspeech stimuli are not well resolved in

human auditory system (Jusczyk et al. 1980; Sinex & McDonald 1989; Sinex

et al. 1991; Simos & Molfese 1997). This auditory constraint might heavily

influence listeners’ categorical perception of voicing since it provides a

cut off on the VOT continuum, making the VOT cue more salient than

other acoustic cues in identifying voicing categories (Pisoni 1977; Holt et al.

2004). Secondly, acoustic cues also vary in their distributions and variances

within- and between-category, which gives a different reliability of acoustic

cues in delimiting speech categories (Holt & Lotto 2006; Toscano & Mc-

Murray 2010; Idemaru & Holt 2011). For instance, VOT values in American

English do not overlap across voicing categories, making VOT cue a more

robust and informative marker of category identity (Lisker & Abramson

1964; Keating 1984). As a result, listeners would allocate more importance to

this cue to facilitate categorisation. Meanwhile, the large within-category

variance might decrease the informativeness of an acoustic dimension,

since it increases the likelihood of overlaps between categories for differ-

ent speakers or speaking styles, and also introduce more uncertainties

during the phonemic mapping. Typically for the English tense and lax
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vowel contrast, the primary acoustic cue is the spectral shape and the sec-

ondary cue is the vowel duration (Lehiste & Peterson 1961; Hillenbrand et

al. 1995; Watson & Harrington 1999; Hillenbrand et al. 2000; Leung et al.

2016). Compared to lax vowels, tense vowels are produced with more ex-

treme articulatory target positions and slower articulatory movement into

and away from the target positions. Therefore, they have a larger vowel

space with more peripheral formant frequencies and less dynamic formant

trajectories. Vowel duration is also an important difference between En-

glish tense and lax vowels since the articulators need longer time to reach

the more extreme target positions of tense vowels. However, this difference

in vowel duration is more impacted by the contextual factors such as con-

sonantal context and speaking style than the spectral features, potentially

making it a more variable and hence less reliable cue for the vowel identity

(Nearey & Assmann 1986; Port 1981; Gopal 1990; Leung et al. 2016).

Also, listeners’ perceptual weighting strategy is affected by the acoustic

features of the speech input. Speech communication rarely happens in a

quiet room and between speakers with the same accents. The acoustic and

distributional features of speech cues could be significantly affected by

signal degradations, speakers’ physiological features, dialect, etc (Allen et

al. 2003; McMurray & Jongman 2011; Babel & Munson 2014; Iverson et al.

2006; Winn et al. 2012). Therefore, listeners should also be able to detect

the mismatch between the immediate acoustic inputs and the phonemic

representations and adjust the use of different acoustic cues to maximise

speech perception performance. Indeed, various studies have shown that
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adult NH listeners with an established cue weighting strategy could still

change their relative attention based on the acoustic integrity and distri-

bution of speech cues. Normally in English, spectral cues are informative

and robust as to vowel identity: listeners could identify vowels even with

only the synthesised stable formant section or snapshots of the vowel’s on-

set and offset (Jenkins et al. 1983; Nearey & Assmann 1986; Hillenbrand &

Nearey 1999). However, after noise-vocoding, a technique for manipulating

the level of spectral detail in the speech signal and simulating CI speech

processors, spectral cues are significantly affected. Noise-vocoded speech

is created by dividing the speech signal into frequency bands (analogous to

the individual electrodes in a CI) and then applying the extracted amplitude

envelope in each frequency range to band-limited noise. This procedure in-

troduces great spectral resolution reduction and spectral smearing, so the

informativeness and reliability of the spectral dimension are significantly

compromised. Formant structure is less distinctive and salient through the

transmission of between-band amplitude differences, and can even be rep-

resented in inconsistent and unnatural frequency regions if further spectral

shifting is implemented to simulate relatively shallow CI electrode inser-

tion. Dynamic formant movements are also replaced by the noise within

the channel (Dorman et al. 1997; Fu & Shannon 1999; Rosen et al. 1999;

Davis et al. 2005; Roberts et al. 2010; Zhou et al. 2010). Vowel duration,

in comparison, is untouched by this manipulation. To accommodate this

significant change in the input signals, NH listeners adjust their original

cue weightings. For instance, without any degradation, listeners typically
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weight the spectral cue heavier than the duration cue for vowel recognition.

This is shown in Iverson et al. (2006) as a greater damage to the undegraded

vowel recognition when removing vowel’s formant movements. In com-

parison, when the vowel durations were equated across stimuli, there was

less decrease in vowel recognition. This suggested that NH listeners were

more affected by the damage on the spectral than the duration cue, hence,

a greater perceptual weighting of the spectral cue. Similarly, Winn et al.

(2012) showed that when performing a tense and lax undegraded vowel

categorisation task, NH listeners altered their responses to a greater extent

when stimuli were changing in formant structure and formant dynamics,

compared to the duration. This suggested that listeners were relying more

on the differences in the spectral dimension to perform vowel categorisa-

tion. With 8-band noise-vocoded speech, NH listeners typically decrease

the perceptual weighting of the formant structure and dynamics cue. This

is shown in Winn et al. (2012) as a decrease in the reliance on the formant

structure and dynamics, and an increase in reliance on the vowel duration.

This suggested that with the degradation of spectral cues, listeners relied

less on them since they gave less information about vowel identity. The du-

ration cue retained the same probabilistic relation with the vowel identity,

therefore, listeners increased the importance of the duration cue in making

the phonemic decision. Note that this adjustment couldn’t compensate fully

the spectral degradation, since vowel recognition decreased in general. But

rather, it used the remaining categorical differences between tense and lax

vowels to maximise performance in the task. Iverson et al. (2006) showed
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no significant difference in the impact of formant dynamics and duration

manipulations on vowel recognition after 8-band noise-vocoding. But when

more spectral degradation was applied (4-band and 2-band), listeners didn’t

show significant changes in vowel recognition in the condition with for-

mant dynamics eliminated, suggesting that listeners decreased their use of

the spectral cue possibly because the degradation left little information in

the spectral dimension. They also showed no change when vowel duration

was equated, suggesting that NH listeners didn’t increase the use of vowel

duration when less spectral information was available. This difference with

Winn et al. (2012) in the use of the duration cue might be due to the differ-

ent nature of the task. Vowel length is not a phonemic contrast for English

vowels, therefore, it might not contain much information to vowel iden-

tities but still remain useful for telling apart tense and lax vowels. While

listeners could pay no attention to the duration cue in a multiple choice

recognition task without compromising the performance, in a two-choice

categorisation task everything that could help to tell apart the two tokens

will have much more perceptual importance. This also illustrates the im-

portance of task requirements when investigating acoustic cue weighting,

since the same acoustic dimension in the same signal may be more heavily

weighted in one perceptual task but less in another (Holt & Lotto 2006).

This plasticity of NH listeners’ cue weighting can also be found when

the distribution of speech cues was manipulated. For instance, when the

distribution of the VOT cue that differentiates word-initial voicing was

manipulated to have smaller variance, NH listeners showed steeper cate-
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gorisation function slopes, compared to the condition with larger variance

(Clayards et al. 2008a). It seemed that listeners were able to both perceive

the distributional change in the speech input and adjust their use of the

VOT cue in categorising the new acoustic inputs. In a more extreme case,

Idemaru and Holt (2011); Lehet and Holt (2017) created an artificial accent

with the distribution of the F0 cue reversed in its correspondence to the

voicing and VOT cues. Along with VOT, F0 is used by listeners as an acous-

tic cue to voicing: typically voiced consonants have lower F0s than the

voiceless consonants (Kohler 1982, 1984). In the artificial accent, low F0 was

coupled with longer VOT and high F0 was coupled with shorter VOT for

the ‘beer’ - ‘deer’ and ‘pier’ - ‘tier’ word contrast. After a short period of ex-

posure, listeners showed less difference in voiceless responses between low

and high F0, suggesting that they used the F0 cue less to categorise voicing

since its new distribution was unfamiliar. However, unlike previous studies,

listeners were not able to incorporate the new distribution of F0 cues by

associating low F0s with voiceless consonants and high F0s with voiced

consonants, even after 5 days of training. This shows that although NH

listeners are sensitive and flexible to the short-term changes in the acoustic

signal, this plasticity couldn’t overwrite the long-term acoustic cue encod-

ing and cue weighting. Considering that the VOT distribution tends to have

less within-category variation due to the auditory perceptual discontinuity

mentioned above, Liu and Holt (2015) created a similar artificial accent for

tense and lax vowels in American English. Tense vowels were coupled with

short vowel durations and lax vowels were coupled with long vowel du-
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rations. Similarly, NH listeners down-weighted the use of vowel duration

for vowel categorisation after a short period of exposure, suggesting that

even for more variant speech categories, listeners still maintain similar

sensitivity to the statistical features of the acoustic cues. Note that this line

of studies manipulated the non-primary cue, and used the primary cue to

guide the word recognition and adjust the weighting of the non-primary

cue. It is likely that since the probabilistic relation between the primary

acoustic cue and speech category is intact, there is enough information to

guarantee reliable identification and the best strategy would be to ignore

other insignificant and noisy cues. However, if the acoustic integrity and

distribution of the primary cue are damaged, finding a coping strategy

might be more complex and requires more than just acoustic inputs. Top-

down lexical tuning might be necessary to firstly re-establish the speech

category, and the weighting on both cues might need to be adjusted based

on the amount of distinctive information left and their probabilistic relation

with the speech category.

1.1.2 Cue weighting strategies of post-lingually deaf CI users

Modern cochlear implants have multiple electrodes that are inserted into

the scala tympani to try to recreate the normal tonotopic distribution of in-

formation along the cochlea. Cochlear implant speech processors typically

filter speech signals into multiple frequency bands, and within each band

the relatively slowly varying temporal envelope is extracted and is used to

modulate a high-rate train of electrical pulses. The processed outputs are
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then presented to electrodes spaced along the tonotopic locations along the

cochlear.

Different acoustic cues are affected by this process, but compared to the

temporal and amplitude cues, the spectral cues are significantly damaged in

both the quantity and quality of the information they contained for speech

recognition. Although the slowly varying temporal envelope cannot trans-

mit spectral fine structure (>500 Hz), it still contains important linguistic

information like the manner of articulation, voicing, periodicity and du-

rational contrasts (Rosen 1992; Drullman 1995; Shannon et al. 1995). Studies

manipulating the temporal structure of speech (envelope low-pass filtering,

pulse rate, temporal reversal) also showed that temporal modulation over

20 Hz has little effect on speech recognition (Drullman et al. 1994; Shannon

et al. 1995; Arai &Greenberg 1998; Fu& Shannon 2000; Fu&Galvin III 2001).

Similarly, loudness mapping procedures in the CI device reduces the bigger

acoustic amplitude range into the smaller electrical range of the electrodes,

limiting the number of amplitude steps in the speech signal. Although an

important cue to the syllable structure, amplitude structure has little corre-

lationwith the linguistic structure of speech, and the reduction of amplitude

steps only affects phoneme recognition in quiet when there are less than 8

levels (Zeng & Galvin III 1999; Loizou et al. 2000). In comparison, spectral

cues are informative and robust for speech perception, as mentioned above.

However, CI users have only limited access to the detailed spectral structure

in the signal, due to the limited number of effective spectral channels and

interactions among those channels (Chatterjee & Shannon 1998; Friesen et
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al. 2001). Meanwhile, incomplete insertion of the electrodes presents spec-

tral information to the wrong populations of auditory nerve fibres, with a

shift of spectral information to nerves that typically carry higher-frequency

information. Studies show that speech recognition is significantly damaged

if the shift is more than about 3mm, or if the frequency-to-place mapping is

linearly expanded or compressed bymore than 3mm (Dorman et al. 1997; Fu

& Shannon 1999; Baskent & Shannon 2003). This spectral distortion along

with the reduction of spectral resolution makes spectral cues contain less

distinctive information about the linguistic structure, and distorts the cor-

respondence between the spectral cues and the phoneme categories.

Note that the acoustic integrity is not the only factor that could constrain

post-lingually deaf CI users’ speech processing ability. While NH listeners

might have similar auditory and cognitive abilities, CI users are more vari-

able. For instance, the duration of deafness is correlated with the extent of

peripheral neural degeneration (Nadol & Eddington 2006). So for CI listen-

ers who experience a longer period of deafness and suffer more spiral gan-

glion cell degenerations, the electrical stimulation from the device might

not even reach the brain. Some listeners might have ‘dead regions ’ on the

cochlear where there are no functioning neurons, and the electric currents

delivered to those regions would spread to the neighbouring neurons, caus-

ing more distortions to the tonotopic representations (Shannon et al. 2002;

Moore 2004). And even if all the peripheral auditory system is relatively

intact, functional cortical auditory networks might be re-wired after a long

period of deafness. Due to progressive hearing loss, listeners’ phonological
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representations deteriorate with the lack of auditory inputs. For instance,

listeners employ different strategies when performing a rhyme matching

task prior to the implantation. After the implantation, listeners using the

phonological information performed better, suggesting that preserving the

phonological structure of the language helps listeners to regain phonolog-

ical sensitivity with electric stimulation (Lazard et al. 2010).

Considering all these factors, it should not be a surprise if NH listeners and

CI users have different sensitivity to acoustic cues or employ cues differ-

ently for speech processing. For instance, Dorman et al. (1991) compared

CI and NH listeners’ discrimination response to the place of articulation of

stops with three cues: formant transitions, spectrum tilt at signal onset and

the abruptness of spectral change. Using words with three steps on each di-

mension, they showed that NH listeners’ responses were more significantly

affected by the step change in formant transition than that in the spectrum

tilt and abruptness, but CI listeners were more affected by the change in

spectrum tilt and abruptness. Hedrick and Carney (1997) manipulated the

formant onset amplitude and the vowel spectrum for /sɑ/ - /ʃɑ/ and /pɑ/ -

/tɑ/ labelling. Comparison of d-prime values for each continuum showed

that CI listeners were more sensitive to the amplitude cue. A ratio between

two d-prime values was interpreted as the degree of cue integration, and

the comparison between CI and NH listeners showed that CI listeners had

less equivalent weighting on both cues. For vowel perception, Kirk et al.

(1992) showed that adding the formant transition cue was less beneficial to

vowel recognition than adding the vowel centres for CI users. This was in-
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terpreted as listeners’ lack of access to the dynamic spectral cue, although

no auditory test on the spectral information was performed. Donaldson et

al. (2013) also manipulated vowels’ dynamic and stable spectral cues in a

/dVd/ syllable, by attenuating the entire vowel centre to silence or deleting

the vowel transition section (both with the vowel duration fixed).While NH

listeners’ vowel recognition performance was not affected by the loss of the

dynamic cue in the absence of the duration cue, CI listeners’ performance

was significantly impaired, suggesting that both cues were weighted more

strongly by CI users. Donaldson et al. (2015) added the vowel duration cue

to the stimulus set, making six types of /dVd/ syllables that varied in vowel

centre, formant transitions and duration. When the vowel centre was pre-

served, fixing duration led to a significant drop in performance for CI users

but not NH listeners, suggesting the importance of the duration cue for CI

users even when the formants were intact. When the formant transitions

were preserved, fixing the vowel duration had no impact on either group,

possibly because listeners’ couldn’t perceive the silence between the abrupt

vowel edges as the vowel.

While these studies typically investigate listeners’ use of acoustic cues by

constructing stimuli that have one dimension fixed or eliminated, Winn et

al. (2012) adopted a different approach by introducing gradient steps on each

acoustic dimension investigated. It provided the possibility to investigate

listeners’ perceptual sensitivity to changes in acoustic cues and to quan-

tify this sensitivity using a statistical model that was sensitive to individual

variability. Winn et al. (2012) constructed multiple steps on the acoustic
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dimensions between the tense - lax (‘hit’ ‘heat’) vowel and word-final voic-

ing (‘loss’ ‘laws’) and combined them orthogonally. Listeners’ categorical

responses were then fit by mixed effect models using the acoustic steps.

Results showed that in both contrasts, in comparison to NH listeners, CI

listeners’ response function for spectral cues was flatter, but their response

function for the vowel duration cue was steeper. This suggested that CI lis-

teners used the changes in the spectral dimension for speech categorisation

to a lesser degree than NH listeners, but CI listeners used the changes in the

temporal dimension to a greater degree than NH listeners. Note that all the

previously mentioned studies didn’t specifically assess CI users’ spectral

resolution on the acoustic stimuli, making it impossible to interpret the re-

sults entirely as the effect of listeners’ perceptual weighting. It is possible

that some listeners might not have sufficient spectral resolution to detect

variation in the spectral dimension to use it for making further phonemic

decisions. Therefore, both the minor impact of eliminating the spectral cue

or flatter response function observed in these studies might be due to lis-

teners’ limited access to the spectral information.

This possibility was investigated in Moberly et al. (2014), where CI par-

ticipants were asked to both label and discriminate synthesised stimuli as

either /bɑ/ or /wɑ/.The syllable-initial stop and glide have similar onset and

steady-state formant frequencies, since the articulatory gestures involved

are essentially the same: lips are initially closed and then opened with the

tongue reaching the target position of the vowel. But for the stop /b/, it

takes less time to reach the steady-state values and the peak amplitude. The

36



Chapter 1.

time to reach the target formant frequencies was termed as the formant

rise time (FRT) cue, and the time to reach the peak amplitude was termed

as the rise time (ART) cue. Previous studies with NH listeners have shown

that NH native English speakers use FRT as the primary cue (Nittrouer &

Studdert-Kennedy 1986; Nittrouer et al. 2013). CI listeners were required to

label four continua of syllables, with one of the cues fixed to the value of a

typical /b/ or /w/ and another cue varying in multiple steps.Their responses

were fitted with logistic regression and the coefficients of the acoustic cues

were used as their perceptual weighting factors. Results showed that CI lis-

teners in general had smaller weighting factors on the FRT cue and bigger

weighting factors on the ART cue. They also conducted an AX discrimina-

tion task using stimuli with the same cue values but with formants replaced

by sinewaves.These stimuli were used as non-speech controls, andwere in-

tended to measure listeners’ absolute sensitivity to the acoustic properties,

without the influence of phonemic knowledge. Regression analysis found

no significant relations between ART and FRT’s cue weighting factors and

the d-prime values of the sine-wave counterparts. Similar results were re-

ported using other phoneme contrasts: word-final /p/ and /b/ that differ in

vocalic duration (temporal cue) and syllable-final formant transition (dy-

namic spectral cue), and /s/ and /ʃ/ that differ in fricative-noise spectrum

(static spectral cue) and syllable-initial formant transition (dynamic spec-

tral cue) (Moberly et al. 2016). The cues’ weighting factors were also not

significantly related to the d-prime values for the sine-wave counterparts,

for both CI and NH listeners. These studies seem to suggest that listeners’
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decision on which acoustic cue to rely on for speech processing does not

depend only on the auditory saliency of the acoustic cues through the CI

device. Other factors might also play a role, for instance, their perceptual

weighting strategy prior to the hearing loss. Moberly et al. (2016) also re-

ported that half of the CI participants could not complete the spectral dis-

crimination or labelling task, suggesting that a large number of CI users

only have limited access to the spectral features of the acoustic inputs.It

also highlights the importance to pre-screen listeners’ auditory ability and

take it into account when conducting perceptual weighting experiments for

CI users. However, using sine wave speech as a non-speech control in both

studies might have an unpredictable effect on the accuracy of auditory sen-

sitivity measurements. It is still unclear whether CI listeners perceive a sim-

ilar non-speech sound quality as NH listeners from the sine wave speech.

While reducing the speech signals to only two or three frequency modu-

lated sine waves destroys the speech naturalness for NH listeners, it might

decrease the amount of smearing between electrodes by stimulating only

a small number of electrodes and transmit better the spectral shape and

movement for CI users.

Although there is little doubt that adult post-lingually deaf CI users and NH

listeners have access to different acoustic cues, whether they weight differ-

ently the cues they have access to is less clear. Due to the hearing loss later

in life, post-lingually CI users should have enough language exposures to

develop a highly specific and robust perceptual weighting strategy like NH

listeners. After implantation, listeners could either use the acoustic cues
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that are immediately available, or apply the mature perceptual weighting

strategies acquired for the specific language prior to the deafness. As men-

tioned above, Winn et al. (2012) demonstrated a simultaneous change in the

weighting of the spectral and temporal cues, but it was unclear whether CI

listeners adopted a different relative weighting strategy by switching to du-

ration as the primary speech cue. This question was also not answered in

Moberly et al. (2014, 2016), mostly due to the lack of a measurement that

describes the relative reliance on acoustic cues. Lowenstein and Nittrouer

(2015) demonstrated the importance of looking at such a measurement, by

using the data from Nittrouer et al. (2013) that compared the coefficients of

the FRT and ART cues in the /bɑ/ /wɑ/ contrast for 4, 5-year-olds and adults.

While it seems that 4- and 5-year-olds weighted the FRT cue less than adults

compared to the ART cue, a ratio of the two coefficients shows no signifi-

cant difference between two groups, suggesting that the proportion of total

perceptual weight allocated to each cue is similar across age groups. This

method is also used in other speech perception studies (Giezen et al. 2010;

McMurray & Jongman 2011; Moberly et al. 2014). Arguably, this relative

measurement is relevant when comparing CI and NH groups, since simi-

larly, they don’t have the same amount of access to the acoustic cues. Look-

ing only at their absolute weighting of speech cues might be insufficient to

display the difference in the weighting strategy between two groups. Note

that this cue weighting ratio involves measurements from different acoustic

dimensions. It only provides information on listeners’ relative reliance on

different cues, while listeners’ absolute use of acoustic cues is not included.
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Therefore, both the weighting of acoustic cues and the ratio are informative

and should be included in the analysis. Meanwhile, the much bigger vari-

ability in the cue weighting for CI than NH listeners also makes it difficult

to compare two groups statistically. Typically in these studies, some CI lis-

teners might have similar weightings as NH listeners, and some might have

different weightings.

1.1.3 Perceptual weighting strategy and speech perception

This great variability in CI listeners’ acoustic cue weighting has been found

to be related to their speech recognition performance. Even with an older

CI system, Kirk et al. (1992) has shown that CI listeners’ open-set word

recognition was positively correlated with their vowel recognition perfor-

mance in the condition with only the dynamic spectral cue, but not with

the condition with only the vowel centre. But as commented above, since

there was no assessment of listeners’ auditory abilities, this correlation

might only suggest the relation between listeners’ spectral resolution and

word recognition. More controlled recent studies showed a similar pattern.

Moberly et al. (2014) showed that CI listeners’ word recognition perfor-

mance was correlated with the weighting factor on the FRT cue, but not

with the weighting factor of the ART cue or auditory sensitivity to the

non-speech counterparts. The same relations were reported in Lowenstein

and Nittrouer (2015), for both NH adults and 8- and 10-year olds using an

eight-band noise vocoder on the same stimuli. For the word-final /p/ - /b/

contrast used in Moberly et al. (2016), the weighting factor of the dynamic

spectral cue was positively related to listeners’ word recognition, and again
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no such correlation for the weighting factor of the duration cue or to au-

ditory sensitivity to the non-speech stimuli. For the /s/ - /ʃ/ contrast, no

significant correlation was found, possibly due to the small number of CI

listeners passing the pre-screen requirement. Winn and Litovsky (2015)

also reported a similar relation. CI listeners’ word recognition score was

significantly correlated with their weighting of the formant cue in a /ba/-

/da/ categorisation task, but not with their weighting of the spectral tilt

cue. However, although in these studies listeners’ auditory acuities were

measured, they were not taken into the same model with acoustic cue

weightings in explaining the variability in word recognition. Therefore, it

is unclear whether the perceptual weightings would still remain significant

after taking away the part of the variability in word recognition explained

by listeners’ differences in auditory sensitivity.

Nevertheless, all these studies shared a similar pattern in that CI listen-

ers who had a similar cue weighting strategy as NH listeners had better

word recognition. This might at first sound counter-intuitive. NH listen-

ers typically weight the spectral cue more than the duration cue in these

contrasts, but since CI listeners only have limited access to the spectral

dimension, it does not sound beneficial to put most perceptual attention on

a compromised cue. However, considering that the weighting strategy of

a typical NH listeners is developed over years and highly specific to their

native language, it should allocate more importance on acoustic cues that

are most useful and robust in that language. Therefore, it is likely that even

when the informativeness of this primary cue is compromised, it might still
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be more reliably associated with speech categories than other cues. Putting

more perceptual attention on this damaged primary cue will not yield the

same level of performance as NH listeners, but it will give the best possible

speech performance level with the remaining information.

In summary, listeners’ perceptual weighting of acoustic cues is a result

of both a long-term and language-specific perceptual weighting strategy,

and the features of the perceived speech. Post-lingually deaf CI users will

have developed an optimal cue weighting strategy prior to the hearing loss,

but this strategy is altered after the implantation due to the differences in

the electric hearing. However, the benefits of this weighting strategy for

speech recognition might still be preserved for some listeners, even though

the access to the primary speech cue in some phonemic contrasts has been

significantly compromised. Therefore, there might potentially be a benefit

to train listeners to re-tune to this optimal strategy for the specific lan-

guage, in order to utilise the most useful and informative speech cues to

maximise speech performance.

1.2 Rehabilitation for CI users

1.2.1 Speech training for CI users

Most CI users take 6 months or more to make sense of the new signals

via the implants, and for some listeners this process of adaptation requires

more than daily passive listening (Manrique et al. 1997; Dillon et al. 2013).

A variety of active and intensive rehabilitation strategies have been devel-
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oped to improve listeners’ speech performance.

A number of studies used CI acoustic simulations to train NH listeners’

degraded speech perception. Typically, noise-vocoded speech and noise-

vocoded speech with spectral shifting were used. They present different

challenges to NH listeners for adaptation. Although both methods reduce

the spectral resolution of the speech signal, spectral shifting involves spec-

tral distortion that introduces phonological mismatch between the acoustic

inputs and listeners’ phonemic representations. This mismatch requires lis-

teners to re-establish the phonological association, and therefore is found

in past studies to take longer time to adapt to compared to noise-vocoded

speech (Dorman et al. 1997; Skinner et al. 2002; Finley & Skinner 2008;

Di Nardo et al. 2010).

Rosen et al. (1999) trained NH listeners with 4 band and 6.46mm shifted

noise-vocoded speech for over ten sessions (about three hours), with

a highly interactive audio-visual Connected Discourse Tracking (CDT)

(De Filippo & Scott 1978) procedure. Both the talker and listeners were en-

gaged during the training: they faced each other through a glass partition

in two adjacent sound-proofed rooms and worked together to maximize

the correct level of listeners’ verbal repetitions of speech materials. Listen-

ers’ were always presented with the processed discourses from the talker,

while the talker received undistorted feedback from the listener. After the

training, listeners’ speech test scores (BKB sentences, vowel and consonant

recognition) improved significantly, but only the performance of conso-

nants reached a similar level with the unshifted noise-vocoded speech at the
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end of the training. A detailed analysis of consonant features showed that

only the place of articulation perception was still significantly worse with

shifted than unshifted speech after ten sessions. In terms of the speed of im-

provements, listeners improved faster in sentence recognition. A later study

also showed that a similar computer-based training with pre-recorded ma-

terials was similarly effective (Faulkner et al. 2012). This seemed to suggest

that speech materials with rich contextual information were most effective

in helping listeners to recover from the spectral distortions and degrada-

tions, but only to a certain level even with intensive training.

Also training NH listeners but with a different CI acoustic simulation (8

band 8mm shifted sine-vocoded speech), Fu, Nogaki, and Galvin III (2005)

compared the change in vowel categorisation of four different training

groups: group 1 received no training; group 2 were trained with the same

vowels as in the testing but spoken by different talkers; group 3 were

trained with different sets of medial vowels through an adaptive scheme,

in which listeners started from the easiest vowel contrasts to smaller vowel

differences as they improved; group 4 were trained with isolated sentences.

Vowel categorisation showed no significant improvement after the training

for group 1 and, surprisingly, group 4, and a larger as well as faster improve-

ment for group 2 than group 3. It seemed that vowel recognition benefited

most from the multi-talker repetitions.Note that the post-training speech

performance was only measured in phoneme categorisation. Therefore, it

is unclear whether listeners will improve similarly in the recognition of

sentences that are more realistic speech materials in daily communication.

44



Chapter 1.

Stacey and Summerfield (2008) compared the effects of another three train-

ing schemes on sentence and phoneme categorisation (with the 8 band and

6mm shifted noise-vocoded speech). The word training group was deliv-

ered as two-alternative word choosing tasks; the sentence training group

was similar to group 4 in Fu, Nogaki, and Galvin III (2005) of using pre-

recorded isolated sentences, although presented in a specific distorted-

clear-distorted sequence; the phonetic training group was delivered with

single vowel and CV syllable discrimination tasks starting from pairs with

easy phonemic contrasts to harder ones. For all groups, the training started

only after participants reached an asymptotic level of performance with

test materials and was then run for ten sessions. There was no significant

effect of phonetic training on sentence recognition, and no significant effect

of sentence and phonetic training on consonant and vowel categorisation.

This was interpreted as demonstrating the importance of lexical labels for

training, since the most ineffective phonetic training condition provided no

information on the lexical level. Although perceptual learning experiments

using noise-vocoded words (Davis et al. 2005) and spectrally-shifted vowels

(Li & Fu 2007) also demonstrated the importance of a lexical level feedback,

after controlling for the differences in working memory, Hervais-Adelman

et al. (2008) reported similar results for lexical and phonological feedback.

The worse performance of the phonetic training condition in Stacey and

Summerfield (2008)might also be due to the difference between the training

and testing stimuli. The vowels in the phonetic training were only present

in two phonetic contexts (isolated and word-final) and consonants only at
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the beginning of the word, while vowels and consonants in the testing were

in the middle of a word. Similarly, Dahan and Mead (2010) reported no gen-

eralisation between onset and coda of noise-vocoded words, suggesting the

importance of including phonetic variants in training.

The training studies above using CI acoustic simulations experimentedwith

different training methods and provided important insights into how NH

listeners adapt to the degraded and distorted speech signals. The studies

above show that using training materials with more contextual and lexi-

cal information, and using an interactive procedure with intensive training

sessions seem to benefit listeners sentence recognition and generalisation

after the training. However, for CI users, the amount of speech degradation

and distortion is much more severe, and listeners’ hearing, cognitive and

demographic conditions are more variable. Therefore, it is important to ex-

amine whether CI listeners are also responsive to these training methods.

Fu, Galvin, et al. (2005) trained ten CI users with an adaptive method simi-

lar to group 3 in Fu, Nogaki, and Galvin III (2005). Their pre-training base-

line performances were measured multiple times over a 1- or 2-week pe-

riod, so that listeners were fully familiar with the training procedure and

stimuli. Based on their baseline levels, poorer-performing listeners were

firstly trained with an adaptive 3-forced-choice phoneme discrimination

task, with the acoustic differences between phonemes (F1, F2 and duration

values for vowels; voicing, manner and place of articulation for consonants)

increasedwith thewrong response and decreasedwith the correct response.

As listeners improved on the discrimination, they were trained with the

46



Chapter 1.

phoneme categorisation task, and with increasing number of word choices

as they improved (up to 6 words). All together, they were trained 1 hour per

day, 5 days per week, and a retest every two weeks with adjustments to the

training program to target theworst performing tasks. After the training, CI

listeners’ vowel, consonant and sentence recognition score improved sig-

nificantly. Listeners were also different in terms of the speed of improve-

ment.

Wu et al. (2007) also trained Mandarin-speaking CI users using a similar

adaptive procedure, and saw a significant improvement in vowel, consonant

and tone recognition. This seemed to suggest that a training procedure that

was tailored to individual performances and improvements could benefit

CI users even after they’ve reached their asymptotic speech levels. Stacey

et al. (2010) performed the same word and sentence training as in Stacey

and Summerfield (2008) on one group of CI users who varied in age, speech

processors and speech performance for three weeks, five days per week and

one hour per day.The results showed significant improvements in IEEE (but

not BKB) sentence recognition and consonant (but not vowel) categorisa-

tion after the training. A large variability was also observed between each

training session. Compared to the Stacey and Summerfield (2008), there

was little evidence that CI listeners benefited as much as NH listeners from

the training, possibly due to the need of a longer training time and a greater

between-session variability.

Miller et al. (2016) trained nine postlingually deaf CI users with a /ba/, /wa/,

/da/ and /ja/ identification task. Training stimuli were spoken by eight na-
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tive American English speakers and more speakers were only added if the

identification correct rate was over 90%. Pre- and post-training assessments

were the same set of stimuli, but spoken by another four speakers. After the

training, listeners’ phoneme categorisation scores improved significantly,

even for phonemes produced by different talkers. But similarly, there was

a large variability in both listeners’ rate and level of improvement. Note

that although stimuli were chosen based on their spectral and temporal

differences, no adaptive scaffolding was applied to the acoustic differences

between phonemes, but only on the number of speakers. Also, only four

sets of phonemes were used in the training and testing, so it was unsure

whether the speaker generalisation observed in the results was applicable

for bigger speech units.

Fu and Galvin (2008) reported a pilot study, which trained listeners word

and sentence recognition in multi-talker babble noise adaptively: if lis-

teners failed to reach a certain level, the noise level decreased and vice

versa. Both auditory and visual feedback were provided, and the SNR level

was adjusted in each trial based on listeners’ previous responses. After the

training, listeners’ phoneme categorisation performance increased in both

steady speech-shaped and multi-talker babble noise, but only the listener

trained with sentences had an improvement in a post-training sentence

recognition task. Although with only two CI users, this experiment com-

pared the effect of training on speech recognition in different types of noise.

This could be specifically important for CI users, since they had significantly

worse speech performance in background noise.
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Ingvalson et al. (2013) trained five CI users’ word, phrase and sentence

recognition in multi-talker babble noise adaptively. Their pre- and post-

training performance were assessed with QuickSIN and HINT sentences

in noise. Results showed an improvement in the noise tolerance level for

both sentence types. Even when training with digits in noise, Oba et al.

(2011) showed significant improvement in ten CI users on digit recognition

in speech-shaped noise, HINT in multi-talker babble and IEEE sentences

in multi-talker babble for moderately difficult SNRs. They also maintained

these gains at 1-month post-training. But no improvement in HINT recogni-

tion in speech-shaped noise or in IEEE sentence recognition in multi-talker

babble at extremely difficult SNRs was observed. Note that in these three

studies, no control group and no randomisation onmulti-talker babble were

included in the design. This makes it difficult to assess the real effect of the

training, since it is likely that listeners could learn the pattern of noise after

some exposures and improve by expecting the right ‘dips’ in the signals.

With more CI users, Schumann et al. (2015) had fifteen CI users in the train-

ing group and twelve in the control group.The training group received VCV

and CVC syllables in a closed-set identification task format as training. If

the subject responded incorrectly, the next target syllable would be more

different in the voice gender, speech rate and sound type, so the task would

be easier. No training was provided for the control group. After the training,

improvements of sentence recognition in the moderate noise condition (5

dB SNR) were significantly greater for the training group than for the con-

trol group, but not in the condition with a difficult noise level (0 dB SNR).
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There was also an improvement in syllable recognition in quiet after the

training, but the size of improvement depended on the actual syllable.

In general, intensive speech training for CI listeners seems to be able to im-

prove their speech perception abilities, even after their initial adaptation pe-

riod. However, due to the small number of CI participants, limited stimulus

randomisation, no use of control groups in the design, and lack of compre-

hensive assessment post-training, it remains unclear whether the training

effect observed was due to a real change in listeners’ speech perception

ability, or familiarisation to the test procedure or materials. Meanwhile, al-

though high listening effort and fatigue during speech communication is

reported by CI users, no study yet has assessed the impact of training on

this aspect (Alhanbali et al. 2017).

Listening effort was defined in Pichora-Fuller et al. (2016) as the ‘deliberate

allocation of mental resources to overcome obstacles in goal pursuit when

carrying out listening tasks’. This concept is based on a limited-capacity

resource model in which ongoing cognitive operations engage a given per-

centage of total cognitive capacity (Kahneman 1973; Rudner 2016). High task

demands or low input signal quality, for instance, background noise or the

use of a CI, will require additional resources to be allocated to maintain suc-

cessful speech processing. This reallocation of resources is perceived sub-

jectively as an increased effort and can produce decrements on other cogni-

tive activities (Pichora-Fuller et al. 2016; Rudner 2016). For CI users, degra-

dation of input signals and deficiencies in speech processing and cognitive

abilities all require extra cognitive resources for understanding speech. Ide-
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ally, a rehabilitation scheme should enhance CI listeners’ abilities to extract

meaning from the speech signals. In that case, speech recognition would re-

quire proportionally less cognitive resources afterwards, freeing up cogni-

tive ‘space’ for other mental activities. Studies have shown that CI listeners’

quality of life ranking improved after aural rehabilitation, and this trend is

not significantly related to listeners’ speech recognition levels (Capretta &

Moberly 2016a; Harris et al. 2016). Intuitively, a subjective ranking of life

quality should be related to the effort involved in speech communication,

but previous studies with NH and HI listeners have shown that subjective

scales couldn’t reliably predict fatigue and don’t correlate with objective

measurements (Zekveld et al. 2011, 2013; Alhanbali et al. 2017). Therefore,

a direct and objective measurement of listening effort would be useful, for

instance, pupillometry, which has been used in many NH and HI studies.

The pupillary response has been associated with many cognitive processes,

and is used as an index for cognitive processing load in different types of

tasks, for instance short-term memory (Kahneman & Beatty 1966; Peavler

1974), mental arithmetic (Hess & Polt 1964; Bradshaw 1968), physical (Zénon

et al. 2014), near-threshold stimuli perception (Hakerem & Sutton 1966) and

attentional tasks (Hillyard et al. 1973; Parasuraman 1979). As the task be-

comes more demanding, a larger pupil dilation will be evoked. Typically in

the auditory tasks, when a task requires more cognitive resources in the

same time interval, for instance with lower signal-to-noise ratios (SNRs),

divided attention and spectral degradation, mean pupil dilation is larger

(Zekveld et al. 2011; Koelewijn et al. 2012; Zekveld &Kramer 2014; Koelewijn
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et al. 2015; Winn et al. 2015). The maximum dilation in that time window

can also be taken as an index of the maximum processing load, and peak

latency as an index of processing time (Zekveld et al. 2011). Therefore, com-

paring the pupillary responses during listeners’ sentence recognition task

before and after the training will provide us insights into whether CI lis-

teners also benefit from the training to use the limited amount of cognitive

resources more efficiently for speech recognition. Arguably, it should be

used alongside speech recognition scores as an assessment of the efficacy

of CI training, since both the level and the efficiency of speech perception

are important outside the laboratory in the daily communication and for

real CI users. A rehabilitation scheme that enables CI users to have higher

speech recognition scores is promising, but if it comes at the expense of a

greater listening effort after training, that might be more detrimental to the

CI users’ daily life.

1.2.2 Training acoustic cue weighting strategy

There is also no study yet to train CI listeners’ cue weighting strategy. As

reviewed above, training materials used either high-level linguistic units

like sentences or words and guided listeners’ learning with their rich lexical

and contextual information, or minimal pairs to attract listeners attention

to the acoustic details of phonemes. The potential problem with using the

first type of material is that it is unsure how exactly listeners improved and

what they changed to achieve better speech recognition. And the potential

problem with the second is that stimuli typically change in many different

dimensions, making it unclear to listeners which acoustic feature to track.
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As reviewed in the first section, listeners’ acoustic cue weighting strategy

could be related to listeners’ speech perception abilities and possibly pro-

cessing speed (Tillman et al. 2017). Arguably, if CI users’ cue weighting

strategy could be trained towards a better one that allocates more per-

ceptual importance on the most informative and robust speech cues, their

speech perception performance would improve after the training. Also, the

training could decrease their listening effort, since listeners would invest

most cognitive resources to the most reliable features of the language and

restores the phoneme structure from acoustic inputs more effectively.

One training method that utilises listeners’ plasticity in acoustic cue

weighting strategy by manipulating the distributions of speech cues is

termed distributional training. It has seen some success in adjusting NH

adult listeners’ acoustic cue weighting for better identification of speech

categories in a foreign language. Typically in distributional training, lis-

teners hear a randomly presented series of stimuli that vary in steps along

an acoustic dimension. Each stimulus on the continuum is presented with

a certain frequency, such that some values along the acoustic dimension

appear more often than others. In this way, listeners hear a certain distri-

bution of speech sounds. For instance, in a bimodal distribution of speech

cues, listeners will hear stimuli with values near the means of the two

modes more frequently than the stimuli with marginal values. In a uni-

form distribution, listeners will hear stimuli with values near the means of

the modes as frequently as other values. After the training, the listeners

exposed to the bimodal distribution should have better recognition score
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along the acoustic dimension than those listeners exposed to the uniform

distribution, although the same set of stimuli appears in both distributions.

The bimodal distribution could induce the perception of the two modes

as exemplars of two different speech sound categories, while the uniform

distribution couldn’t facilitate the formation of speech categories with no

‘clusterings’ along the acoustic dimension.

For example, Gulian et al. (2007) exposed native Bulgarian speakers to bi-

modal distributions of the Dutch vowel contrasts /ɑ/–/a:/ and /ɪ/–/i/, which

these listeners tend to perceive as the single Bulgarian vowels /a/ and /i/

respectively. After the training, listeners exposed to a bimodal distribution

classified the vowels in each contrast more accurately than before the train-

ing. Escudero et al. (2011); Wanrooij and Boersma (2013); Wanrooij et al.

(2013) presented Spanish-speaking listeners with bimodal distributions of

Dutch /ɑ/–/a:/. The two Dutch vowels differ both in their formant structure

(/a:/ has higher first and second formants) and duration (/aː/ is longer).

Dutch native-speaking listeners rely primarily on the formant structure,

while Spanish listeners rely heavily on the durational differences when dis-

criminating the two vowels due to the lack of a similar phonemic contrast

in their native language (Escudero et al. 2009). To train Spanish listeners

to weight more on the formant structure, these experiments presented lis-

teners with an /ɑ/ - /a:/ continuum that had formant structure in a bimodal

distribution and duration fixed. After the training, listeners presented with

the bimodal distribution showed better vowel categorisation, and this im-

provement was larger than in the control condition, where listeners were
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exposed to a unimodal distribution of the formant structure. The training

effect was also found to last six and twelve months after the training session

(Escudero & Williams 2014).

To some extent, CI users face a similar problem as non-native listeners.

With the signal degradation and distortion, the acoustic inputs are ‘for-

eign’ to listeners with ambiguous and shifted phoneme boundaries. And

with the temporal cues intact, listeners might increase the relative weight-

ing to the duration cue and down weight the more informative spectral

cue, similar to a non-native listener facing the phonemic pattern of a new

language. To facilitate the shift of perceptual attention to the spectral cue

for speech processing, listeners need to be trained with stimuli that have

an accentuated spectral feature. Therefore, manipulating the distribution

of the spectral cue might be effective in drawing listeners’ attention to it

and encourage listeners to adopt the best listening strategy for a specific

language.

1.3 The experiments

This dissertation intends to explore the impact of CI users’ acoustic cue

weighting strategy on their speech recognition performance and listening

effort. It is hypothesised that CI users with a similar cue weighting strategy

to NH listeners will have better sentence recognition and less listening

effort. The weighting strategy shared by NH listeners within the same lan-

guage community is developed over years and is robust, suggesting that it

might be the optimal strategy to process acoustic cues for speech percep-
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tion by allocating more attention to the most informative and reliable cues.

Although CI listeners don’t have access to all the information in the speech

cues, relying on the most informative cue could still bring some benefits

to both the accuracy and speed in mapping from acoustic inputs to their

phonemic representations. The first two chapters examined this hypothe-

sis. Chapter 2 firstly investigates the impact of different degrees of spectral

degradation, distortion and background noise to acoustic cue weighting in a

/bɪt/ - /bit/ contrast for NH listeners with CI acoustic simulations. Listeners’

spectral and temporal cue weighting strategy was obtained by modelling

listeners’ vowel categorisation with a logistic regression model, and was

calculated as a ratio between the two model coefficients. In this way, lis-

teners’ weighting strategy was better quantified and comparable across

listeners. CI acoustic simulation only provides a coarse reproduction of

CI speech processing, without considering other auditory and cognitive

differences between CI users and NH listeners. Therefore, chapter 3 mea-

sured both NH and CI listeners sentence recognition and listening effort,

and explored how listeners’ acoustic cue weighting strategy affect this re-

lation. For CI users, their auditory sensitivity was also measured and taken

into account, in order to clarify the relation between listeners’ auditory

sensitivity and perceptual attention.

The second interest of this dissertation is to investigate whether CI lis-

teners’ acoustic cue weighting strategy can be altered by manipulating the

distribution of speech cues. If the results of Chapter three suggest that a cer-

tain strategy is better for the accuracy and efficiency of speech processing,
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then training listeners to adopt this strategy should benefit their sentence

recognition and ease their listening effort. Chapter 4 experimented with

NH listeners using CI simulations to see whether adult NH listeners still

retain the sensitivity to the statistical features of the degraded speech,

since previous studies typically used undegraded speech. Chapter 5 trained

NH and CI listeners with either the stimulus set that has a distribution of

the speech cue that accentuates the spectral aspect, or the stimuli set that

accentuates the duration aspect. Before and after the training, listeners’

acoustic cue weighting strategy, sentence recognition and listening effort

were measured, to investigate the impact of auditory training on these

aspects.

In summary, this dissertation will explore the impact and plasticity of lis-

teners’ acoustic cue weighting strategy. It will extend the previous studies

on this topic, by relating listeners’ cue weighting pattern to their general

speech perception and cognitive effort, and exploring possible applications

for CI users. It will also provide some insights into the methodology of con-

ducting speech and cognitive experiments with a population as variable as

CI users.
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Acoustic cueweighting strategy and

its impact
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Chapter 2

Listeners’ acoustic cue weighting

strategy in different spectrally

degraded conditions

This chapter investigates normal hearing listeners’ (NH) perceptual weight-

ing between temporal and spectral cues using tense/lax vowel categorisa-

tion tasks for spectrally shifted noise-vocoded speech. Listeners were tested

with different numbers of bands and degree of spectral shifting in Exper-

iment 1, and in different signal-to-noise ratios (SNRs) in Experiment 2.

This was to simulate the wide range of signal degradation and distortion

perceived by cochlear implant (CI) users and in degraded listening envi-

ronments.
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2.1 Experiment 1

2.1.1 Methods

Participants

Participants were 10 native Southern British English speaking adults re-

cruited via the UCL Psychology Pool, all aged between 18 and 45. Each par-

ticipant was assessed before the experiment using pure tone audiometry

and all had normal hearing, defined as hearing thresholds of 20dB HL or

better between 250-8000 Hz at octave frequencies. None of them had ex-

tensive exposure to vocoded speech. For their contributions, they were paid

at the rate of 7 pounds per hour. All participants read through the informa-

tion sheet and signed the consent form.

Stimuli

Stimuli were noise-vocoded monosyllabic words, varying orthogonally in

vowel duration and formant structure. A male native Southern British En-

glish speaker was recorded reading a randomised list of words (‘bit’, ‘beat’,

‘sit’, ‘seat’, ‘pit’, ‘peat’, ‘fit’, ‘feat’), with each word repeated 30 times and

all sampled at the rate of 44.1 kHz. The F1 and F2 of both the tense and lax

vowels contexts were measured at 50% into the vowel using Praat (Boersma

& Weenink 2009) and were converted to the equivalent rectangular band-

width (ERB) scale to approximate the frequency spacing in the human au-

ditory system (Moore & Glasberg 1983; Glasberg & Moore 1990). The ratio

between F2 and F1 was then calculated and the distribution of the ratio was

fitted with a custom distribution that was the sum of two Gaussian distri-
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Context x̄1 σ 1 x̄2 σ2

bVt 2.09 0.01 3.12 0.07
sVt 2.01 0.04 3.10 0.07
pVt 2.02 0.08 3.09 0.11
fVt 2.04 0.04 3.16 0.11

Table 2.1: Means and standard deviations for the bimodal distribution fitted to the
F2/F1 ratio of the recorded monosyllable words of each consonant context. The
mean corresponds to the F2/F1 ratio of the most typical word in that category.

butions with equal weights. Parameters of each distribution are listed in

table 2.1. Based on the F2/F1 ratio distributions, two endpoint values were

selected for each continuum that were two standard deviations away from

eachmean of the bimodal Gaussian distributions. In this way, these two val-

ues represented the most typical tense and lax tokens respectively in each

context. This process of endpoint selection is illustrated in figure 2.1 for

‘bit’ - ‘beat’ continuum. Vowel durations of the recorded words were fitted

with a linear regression as a function of F2/F1 ratio. Details of each linear

fitting are listed in table 2.2. The duration and fundamental frequency of

two endpoint tokens in each context were thenmatched by PSOLA (Valbret,

Moulines, & Tubach 1992) in Praat. 150 tokens of each continuumwere syn-

thesised using the Tandem-STRAIGHT algorithm (Kawahara et al. 2008) in

Matlab (MATLAB 2013) and the resulting F2/F1 ratios were measured in

Context Model Fitting

bVt duration = 0.01 × F2/F1 + 0.07 F(1,90)= 185.19, p< 0.01
sVt duration = 0.02 × F2/F1 + 0.07 F(1,80)=70.18, p< 0.01
pVt duration = 0.01 × F2/F1 + 0.07 F(1,90) = 117.01, p< 0.01
fVt duration = 0.02 × F2/F1 + 0.06 F(1,80) = 97.93, p< 0.01

Table 2.2: Model parameters and fittings for linear regressions with vowel duration
as the dependent variable and F2/F1 ratio as the independent variable.
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Figure 2.1: An example of endpoint value selection for ‘bit’ - ‘beat’ continuum: 1)
The F2/F1 ratio was calculated for each recorded words ‘beat’ and ‘bit’, and their
frequency was plotted; 2) A bimodal Gaussian distribution was fitted to the fre-
quency of the ratio and the density function was plotted; 3) One token on the ‘bit’
end that was two SDs away from themean of ‘bit’ category (2.09−2×0.01= 2.07),
and one token on the ‘beat’ end that was two SDs away from the mean of ‘beat’
category (3.12+2×0.07 = 3.14) were selected as most typical ‘bit’ and ‘beat’ for
further processing (shaded in the figure).
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the same way as above. Six equal steps in F2/F1 ratio were then selected

from these synthesised tokens between the two endpoint values obtained

from recorded speech and their corresponding durations were calculated

based on the linear regressions in table 2.2. To construct an orthogonal de-

sign, each F2/F1 step was then cross-paired with each step in duration using

PSOLA, thereby giving altogether 6×6×4 = 144 stimuli.

Noise-vocoding of stimuli was performed in MATLAB software. Sound

files were digitally filtered into six, eight and twelve channels with sixth-

order Butterworth infinite impulse response filters. Filter spacingwas based

on equal basilar membrane distance (Greenwood 1990) across a frequency

range of 70-10000 Hz. The output of each band was then half-wave rec-

tified and low-pass filtered at 30 Hz (fourth-order Butterworth) to extract

the amplitude envelope. The envelope was then multiplied by a wide band

noise, and each filtered by a sixth-order Butterworth output filter. The root

mean square (rms) level of the output signal of each channel was adjusted

to match the original, and the signals were added together. For unshifted

conditions, analysis and output filters had the same centre frequencies. For

shifted conditions, cross-over and center frequencies for both the analysis

and output filters in shifted conditions were calculated using an equation

(and its inverse) relating position on the basilar membrane to characteris-

tic frequency, assuming a basilar membrane length of 35 mm (Greenwood

1990):

f requency = 165.4(100.06x −1) (2.1)
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Figure 2.2: Spectrograms for the word ‘bit’ unprocessed (left) and 6 bands noise-
vocoded and 6mm shifted (right).

Output filters then had their centre frequency increased upward by respec-

tively 2mm, 4mm and 6mm on the basilar membrane distance. All stimuli

were scaled to equal rms intensity in Praat. In sum, there were thirteen con-

ditions (twelve processed and one unprocessed), each different in the band

number and degree of spectral shifting. An example is shown in figure 2.2

to illustrate the impact of noise vocoding and spectral shifting.

Procedure

Experiments were conducted in a quiet room. Auditory materials were

presented over Sennheiser HD 25 SP headphones and programs were run

on a PC installed with custom MATLAB 2013b software. Participants first

received a 15 minutes training session with unprocessed stimuli to famil-

iarise them with the software interface. During the training, they listened

to sentences and then were given written and acoustic feedback. No active

responses were required. They were then tested with thirteen conditions in

a randomised order. For each trial within each condition, participants were

presented acoustically with a token selected randomly from all stimuli and

visually two words on the computer screen, one containing a tense vowel
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and the other a lax vowel in the same context. They were instructed to

click on the word they had heard and the program then continued to the

next token without feedback until the end of all conditions.Their responses

were recorded by the program.

2.1.2 Statistical analysis and results

A measure of cue weighting for each individual was calculated from the

binomial response of participants in the word labeling task. In R, logis-

tic regressions were fitted to the proportion of tense vowel responses for

each participant, with steps in formant structure and vowel duration as

independent variables (no significant interaction was found). Regression

coefficients reflected the proportional change in labeling preference with

each step change on the continuum, hence could be used as perceptual

weighting factors for the spectral and temporal cue. Dividing the coeffi-

cient describing sensitivity to changes in formant structure by the coeffi-

cient describing sensitivity to changes in duration (after exponentiation)

gave a ratio expressing listeners’ relative perceptual reliance on the two

cues. Therefore, a higher ratio indicates more reliance on the spectral cue

relative to the temporal cue; and a lower ratio indicates more reliance on

the temporal cue relative to the spectral cue. Previous studies suggested

that this relative measurement was more robust and comparable across het-

erogeneous listeners (Giezen et al. 2010; Nittrouer et al. 2013; Lowenstein

& Nittrouer 2015). For instance, listeners might differ in the exact amount

of perceptual attention on cues, possibly due to reduced auditory saliency

67



Acoustic Cue Weighting Strategy and Distributional Training

from a degraded signal input or immature language system, but might still

share a similar strategy in distributing attention across cues. Listeners’ av-

eraged response functions for each conditions are displayed in figure 2.3.

This cue weighting ratio was used in all further studies and analysis as an

indication of listeners’ temporal and spectral cue weighting strategy.

A boxplot of the cue weighting ratio across different conditions is shown

in figure 2.4. To investigate how the number of bands and degree of shift-

ing affects listeners’ relative weighting on vowel formant structure and

duration cues, a mixed effects model was built using the lme4 package in R

(Bates et al. 2014) with cue weighting ratios of the processed conditions as

the dependent variable. Mixed effect models allow for controlling the vari-

ance associated with random factors without data aggregation. Therefore,

by using listener as a random effect in the model, we controlled for the

variability in listeners’ tense vowel responses (random intercept) and in

other fixed factors (random slope) that were associated with them. Factors

were entered into themodel in the sequence below: themodel firstly started

with taking listener as the random intercept; fixed effect factors band, spec-

tral shifting and their interaction were then entered; finally, random slopes

were entered into the model. Factors were retained in the model only if they

significantly improved the model fitting, using Chi-squared tests based on

changes in deviance. Details of the best model explaining the variances in

cue weighting ratio are shown in table 2.3.

Number of bands (χ2=23.77, df=2, p<0.01), degree of spectral shifitng

(χ2=34.80, df=3, p<0.01) and their interaction (χ2=46.079, df=6, p<0.01)
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Figure 2.3: The top panel shows the proportion of listeners’ tense vowel responses
in the unprocessed condition, and the bottom panel shows their proportional re-
sponses in the processed conditions. The filled circle (•) is the averaged propor-
tion response for each step in formant structure, and the hollow triangle (4) is
the averaged proportion for each step in duration. The filled line (−) is the logistic
regression fit to the proportion of listeners’ tense vowel responses using steps in
formant structure, and the broken line (- -) is the logistic regression using steps in
duration.
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Figure 2.4: Boxplot of listeners’ spectral and temporal cue weighting ratio for
different noise-vocoding and spectral shifting conditions.

Fixed effects: β SE p χ2 df p

Intercept 1.25 0.13 <0.05
band(8) -0.01 0.16 >0.05
band(12) 1.27 0.16 <0.05 23.78 2 <0.05
shift(2) -0.03 0.16 >0.05
shift(4) -0.22 0.16 >0.05
shift(6) -0.27 0.16 >0.05 34.80 3 <0.05
band(8):shift(2) -0.001 0.23 >0.05
band(12):shift(2) -0.67 0.23 <0.05
band(8):shift(4) 0.03 0.23 >0.05
band(12):shift(4) -1.14 0.23 <0.05
band(8):shift(6) 0.19 0.23 >0.05
band(12):shift(6) -1.19 0.23 <0.05 46.08 6 <0.05

Random effects: SD cor χ2 df p

Intercept | listener 0.22 166.96 1 <0.001

Table 2.3: Model parameter estimates and model comparison statistics for the best
mixed effect model fit to the acoustic cue weighting ratio. The reference level for
the categorical factor band is ‘6 ’, and for shift is ‘unshifted ’.
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were found to be significant. In general, listeners’ cue weighting ratios

were significantly larger in conditions with 12 bands than in 6 bands

(β=0.52, SE=0.08, t=6.37, p<0.05) and 8 bands (β=0.48, SE=0.08,t=5.81,

p<0.05), but there was no significant difference between 6 bands and 8

bands (β=0.05, SE=0.08, t=0.56, p>0.05). This suggests that listeners allo-

cate more perceptual weighting to the spectral cue than the temporal cue

when the spectral resolution is higher, but only when there is sufficient

spectral resolution (more than 8 bands). In conditions with spectral shift-

ing, listeners’ cue weighting ratios were significantly larger in unshifted

and 2mm shifted conditions than in 4mm and 6mm shifted conditions.

Cue weighting ratios were also significantly larger in unshifted conditions

than in 2mm shifted conditions (β=0.25, SE=0.09, t=2.67, p<0.05), but there

was no significant difference between 4mm and 6mm shifted conditions

(β=0.01, SE=0.09, t=0.12, p>0.05). This suggests that listeners allocate more

perceptual weighting to the spectral cue than the temporal cue when the

spectral distortion is smaller, but this effect is insignificant when the spec-

tral distortion is too damaging (over 2mm).

Post-hocWald tests showed that for unshifted conditions, there was no sig-

nificant difference between 6 bands and 8 bands (β=0.001, SE=0.16,t=0.06,

p>0.05). But for 12 bands, the cueweighting ratio was significant larger than

in 6 bands (β=1.27, SE=0.16, t=7.77, p<0.05) and 8 bands conditions(β=1.28,

SE=0.16, t=7.83, p<0.05). The same relation was shown for conditions with

2mm spectral shifting: no significant difference between 6 bands and 8

bands (β=-0.01, SE=0.16,t=-0.07,p>0.05), but a significant larger ratio in 12

71



Acoustic Cue Weighting Strategy and Distributional Training

bands than in 6 bands (β=0.61, SE=0.16, t=3.72, p<0.05) and 8 bands condi-

tions (β=0.60, SE=0.16, t=3.65, p>0.05). However, for conditions with 4mm

and 6mm spectral shifting, there was no difference in acoustic cue weight-

ing ratio among the different number of bands. This seems to suggest that

listeners tend to allocate more perceptual weighting to the spectral cue

than the temporal cue when the spectral degradation and distortion on the

stimuli are smaller. However, once past the threshold (8 bands and 2mm

shifting), there are no differences in listeners’ weighting strategies.

To investigate whether the change in the weighting ratio is driven mainly

by the change in weighting to the spectral or the temporal cue, another two

mixed effect models were built with coefficients of the formant structure

steps and duration steps as dependent variables respectively. Factors were

entered into the model in the same way.

Coefficients of the formant structure showed the same pattern as the

weighting ratio across conditions (details of the best fitting model are

shown in table 2.4). Coefficients were larger for conditions with smaller

spectral degradation and distortion, but there were generally no differ-

ences when the number of bands was less than 8 and the shifting was more

than 2mm. No fixed effect factors were found significant for duration coeffi-

cients. This suggests that listeners maintain the same perceptual weighting

to the duration cue, since it is not damaged across different conditions.

To compare listeners’ spectral and temporal cue weighting strategy in un-

processed and degraded conditions, a mixed effect linear model was fit to

the cue weighting ratio, with listener as a random intercept and unpro-
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Fixed effects: β SE p χ2 df p

Intercept 1.34 0.14 <0.05
band(8) 0.08 0.17 >0.05
band(12) 1.51 0.17 <0.05 25.99 2 <0.05
shift(2) 0.04 0.17 >0.05
shift(4) -0.15 0.17 >0.05
shift(6) -0.15 0.17 >0.05 32.92 3 <0.05
band(8):shift(2) 0.01 0.24 >0.05
band(12):shift(2) -0.82 0.24 <0.05
band(8):shift(4) -0.06 0.24 >0.05
band(12):shift(4) -1.33 0.24 <0.05
band(8):shift(6) 0.10 0.24 >0.05
band(12):shift(6) -1.48 0.24 <0.05 55.00 6 <0.05

Random effects: SD cor χ2 df p

Intercept | listener 0.21 52.40 1 <0.001

Table 2.4: Model parameter estimates and model comparison statistics for the best
mixed effect model fit to the coefficients of formant structure. The reference level
for the categorical factor band is 6, and the reference level for shifting is 0.

cessed/degraded as the independent factor. The cue weighting ratio in the

unprocessed condition is significantly larger than the ratio in degraded

conditions (β=61.71, SE=6.01, p<0.01), suggesting that listeners put signifi-

cantly more weight on the spectral cue when the speech sound is not

degraded. Another two identical mixed effect linear models were fit to the

coefficients of formant structure and duration, showing significant larger

formant structure coefficients in unprocessed conditions than in degraded

conditions (χ2=77.18, df=1, p<0.001, β=72.71, SE=7.10, p<0.001), but no sig-

nificant difference for duration coefficients (χ2=0.78, df=1, p>0.05).

Across all conditions, correlation analysis between the coefficients of for-

mant structure and duration was only significant in conditions with 8 bands

4mm shifting (r=-0.67, p<0.05) and 8 bands 6mm shifting (r=0.75, p<0.05).
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2.2 Experiment 2

2.2.1 Methods

Participants

Participants were 19 different native Southern British English speaking

adults recruited via the UCL Psychology Pool, all aged between 18 and 45.

Each participant was assessed before the experiment using pure tone au-

diometry and all had normal hearing, defined as hearing thresholds of 20dB

HL or better between 250-8000 Hz at octave frequencies. None of them had

extensive exposure to vocoded speech. For their contributions, they were

paid at the rate of 7 pounds per hour. All participants read through the in-

formation sheet and signed the consent form.

Stimuli

Sentence stimuli were Basic English Lexicon (BEL) sentences (Calandruccio

& Smiljanic 2012), recorded at a sampling frequency of 22.05 kHz from a

male native Southern British English speaker. Each of these sentences con-

tained 4 keywords, upon which the scoring was based.

A ‘beat’ - ‘bit’ word continuum was created with a Klatt synthesiser (Klatt

1980), with a sampling rate of 22.05 kHz. Formant values of the two end-

points were based on best exemplars from previous perceptual studies

(Evans & Iverson 2004; Iverson et al. 2006). Formant steps were then inter-

polated using the ERB scale to approximate the bandwidths of the auditory

filters in human hearing. Vowel durations were modelled from a report

by House (1961) and duration steps were interpolated linearly. Altogether,
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Figure 2.5: Spectrograms of the continuum endpoints of the word stimuli in the la-
belling task. Tokens varied in F1 F2 formant structure and vowel duration orthogo-
nally. Each step in formant structure was paired with each step in vowel duration.
The left bottom token had the most typical /i/ formant structure and duration; right
bottom had the most typical /i/ formant structure and /ɪ/ vowel duration; left top
had the most typical /ɪ/ formant structure and /i/ duration; right top had the most
typical /ɪ/ formant structure and duration. All other stimuli varied in equal steps
in between.

there were six steps in formant structure (with the first two formants vary-

ing simultaneously) and six steps in vowel duration.

Each step in formant structure was paired with each step in vowel du-

ration, making 6× 6 = 36 tokens. Exact values of all tokens are listed in

table 2.5 and spectrograms of example tokens are shown in figure 2.5 .

Training materials consisted of two short stories: Aesop’s The north wind

and the sun and The wolf and goat, recorded from a male native Southern

British English speaker, ten BEL sentences in quiet and ten BEL sentences
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Step Number

1 2 3 4 5 6

F1 (Hz) 210 239 269 302 336 372
F2 (Hz) 2707 2604 2505 2410 2318 2230

Duration (s) 0.145 0.133 0.121 0.109 0.097 0.085

Table 2.5: Levels of vowel formant structure and duration for the ‘beat’ to ‘bit’
continua. F0 of all stimuli is 140 Hz, and F3 is 3200 Hz.

masked by speech-shaped noise at an SNR level of 10dB.

All stimuli were then 8-band noise-vocoded and 4mm upward shifted in

MATLAB 2013b. This was to allow for enough spectral resolution for word

recognition and to match the performance of successful CI listeners while

reducing the auditory saliency of spectral cues by systematic distortion

with over 3mm spectral mismatch, as shown in Dorman et al. (1997); Friesen

et al. (2001); Faulkner et al. (2003) and the previous experiment. Each sound

file was digitally filtered into 8 bands, using sixth-order Butterworth in-

finite impulse response filters. Filter spacing was based on equal basilar

membrane distance (Greenwood 1990) across a frequency range of 70-

6000 Hz. The output of each band was full-wave rectified and low-pass

filtered (fourth-order Butterworth) at 30 Hz, using a zero-phase forwards-

backwards technique to extract the amplitude envelope. The envelope was

then multiplied by a wide band noise carrier. The resulting signal was

passed through 8 output filters with their cut-off frequencies shifted up-

wards from the analysis filters by 4mm on the basilar membrane distance

according to the Greenwood map. The rms level of the output signal inten-

sity was adjusted to match the original analysis band and the signal was

summed across all bands.
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Procedure

Participants were seated in a quiet room. All audio stimuli were presented

binaurally through Sennheiser HD25 headphones at a comfortable level.

Experiments were run in Matlab 2013b using custom software.

Before the testing, participants were familiarised to the degraded speech

through a 15 minutes training. During the training, they listened to sen-

tences and then were given written and acoustic feedback. No active re-

sponses were required.

Considering the great variability in listeners’ degraded speech recognition

performance, an adaptive procedure was used to find a suitable SNR level

that was of similar difficulty to each listener. This was intended to con-

trol for the confound of intelligibility. Listeners were firstly tested with

30 randomly chosen BEL sentences in quiet. In each trial, they listened to

a sentence and were scored by the experimenter based on the number of

keywords correctly reported. Their percentage correct was averaged across

trials to obtain their speech recognition score. This was followed by an

adaptive speech perception threshold tests (Plomp & Mimpen 1979) using

speech-shaped noise to track 50% of each individuals’ speech recognition

score. Each SRT test consisted of 15 randomly selected sentences.

Finally, participants’ cue weighting strategies were measured with a word

labeling task. After hearing a word token, they were instructed to choose

what they heard on the screen from either ‘beat’ or ‘bit’. Their response

was recorded by the computer and the next trial started. Their weighting
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strategies were tested in four different conditions: in quiet (quiet), at the

SRT level obtained from each individual (SNR50%), and 3dB over and below

that level (SNR50%+3, SNR50%-3). The order of testing was randomised for

each listener.

2.2.2 Statistical analysis and results

The mean SNR for condition SNR50% is 9.68dB (σ=5.78dB).

In each SNR condition (SNR50%, SNR50%+3, SNR50%-3, noNoise), the cue

weighting ratio for each listener was calculated from the binomial response

of participants in the word labelling task, identical to the method in Experi-

ment 1. A boxplot of the cue weighting ratio across different SNR conditions

is shown in figure 2.6

To investigate the impact of noise on the relative perceptual weighting be-

tween the spectral and temporal cues, a mixed effect model was built with

the cue weighting ratio as the dependent variable, condition as independent

factor and listener as the random intercept. No significant difference was

found across SNR conditions (χ2=1.10, df=3, p>0.05). Another two mixed

effects models were built with the coefficients of the vowel formant struc-

ture and duration as dependent variables respectively, in order to look at

whether noise had an impact on listeners’ reliance on each cue. No signifi-

cant difference was found for the spectral (χ2=2.69, df=3, p>0.05) and the

temporal cue (χ2=3.44, df=3, p>0.05).

A significant correlation between the coefficients of the vowel formant

structure and duration was found in quiet (r=0.75, p<0.001) and SNR50%+3
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Figure 2.6: Boxplot of listeners’ spectral and temporal cue weighting ratio in ‘beat’
- ‘bit’ word categorisation task in different SNR levels.
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Figure 2.7: The left panel shows the scatterplot between formant structure and
duration coefficients in condition quiet, and the right panel shows the scatterplot
in condition SNR50%+3.

conditions (r=0.90, p<0.001), demonstrated in figure 2.7

2.3 Discussion

This chapter investigates the effect of spectral resolution, spectral distortion

and noise masking on NH listeners’ spectral and temporal cue weighting

strategies for spectrally-shifted and noise-vocoded words. Word stimuli

contained the tense - lax vowels varying along two acoustic dimensions,

and listeners’ categorical labeling responses were recorded and charac-

terised with logistic regressions. Coefficients of the two acoustic cues,

vowel formant structure and duration, were used as an indication of listen-
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ers’ perceptual weighting on the spectral and temporal aspects, and their

ratio was used as an indication of the listeners’ weighting strategy.

Testing stimuli in Experiment 1 were synthesised using the Tandem-

STRAIGHT algorithm based on natural recordings, and stimuli in Experi-

ment 2 were based on the best exemplars from the earlier studies. Listeners’

recognition of synethsised vowels was sensitive to the synthesis fidelity,

and the STRAIGHT algorithm has been found to preserve well the spec-

tral features of vowels (Assmann & Katz 2005). The best exemplars were

obtained from native Southern British English speakers who were asked

to fine tune vowel acoustic dimensions to find the perceptually best vowel

representatives (Evans & Iverson 2004; Iverson et al. 2006). Therefore,

both methods should preserve well the acoustic profile of the tense and

lax vowels in Southern British English, the same dialect as all CI and NH

participants.

Spectral resolution was altered here by reducing the spectral information

to 6, 8 or 12 bands wish a noise-band vocoder, and the degree of spectral

distortion was altered by shifting the noise carrier bands relative to the

analysis band by 2mm, 4mm or 6mm. NH listeners relied most heavily

on the spectral cue when words were undegraded. Similar strategies are

shown in other studies using different phonemic contrasts (Souza et al.

2015; Nittrouer et al. 2013; Winn et al. 2013a; Iverson et al. 2006), suggest-

ing that when spectral information is intact NH listeners almost wholly

rely on it for word categorisation. This strategy might be developed over

years of exposure to the specific language, finding the cues that are most
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informative for categorisation and least variable across different speaking

styles or speakers (Holt & Lotto 2006; Nittrouer et al. 2014).

Once spectral degradation and distortion were applied to the stimuli, listen-

ers decreased their perceptual weighting of the formant structure cue. The

decreased reliance on the formant structure cue could be due to not having

a sufficient number of bands to transmit the formant movement from the

tense to the lax end of the continuum through cross-channel amplitude

modulations (Prendergast & Green 2012). Although unavailability of suffi-

cient spectral resolution might explain the significant decrease in the use

of the spectral cue for the 6 bands conditions, there was enough spectral

resolution to perform the word categorisation task here in 8 and 12 bands

conditions. Therefore, the degradation also changed listeners’ perceptual

attention on the spectral cue, so that it was treated as less important in cat-

egorising words, although it might still be useful. Note that the impact of

immediate spectral degradation and distortion was not independent, which

is indicated by the significant interaction between the two factors. The

higher spectral resolution did not always guarantee more reliance on the

spectral cue, since increasing the number of bands didn’t change the cue

weighting pattern for spectral shifting larger than 3mm. This might be due

to the considerable mismatch from the representation of formants in nat-

ural speech for shifts greater than 3mm, making it impossible for listeners

to utilise this damaged cue to restore the phonemic structure from acoustic

inputs immediately. In this experiment, the average F1 value is between 465

Hz and 268 Hz, and the average F2 value is between 1670 Hz and 2243 Hz
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from the lax end to the tense end of the vowel continuum. After a 2mm

upward shift, the average F1 value increases to between 666 Hz and 406 Hz,

and the average F2 value to between 2253 Hz and 3010 Hz. This might not

be unusual in a normal listeners’ hearing experiences since female speakers

can have formants as much as 23% higher than male speakers, and chil-

dren can be 39% higher(Kwon 2010; Peterson & Barney 1952). After 4mm

shifting, however, F1 ranges from 929.9 Hz to 587.2 Hz and F2 3023.2 Hz to

4020.4 Hz, which might extend the normal experience of listeners. This is

consistent with other studies using similar types of spectral degradation

and distortion. Fu and Shannon (1999) reported a significant drop in vowel

categorisation for tonotopic shifts either apically or basally of over 3mm

in 4, 8 and 16 bands noise-vocoded speech. But no interaction between

the number of bands and shifts was found. This might be due to the task

difference: the vowel categorisation task involved using both durational

and spectral cues, while the current study investigated independently two

cues with them varying orthogonally. Therefore, the resistance to spectral

degradation could be stronger in the first case, where intact durational

cues vary consistently with spectral cues to assist the recognition. Rosen

et al. (1999) reported near chance sentence recognition performance for 4-

band noise vocoded and 6.46mm shifted speech compared to the unshifted

speech. Only after 3 hours of training, performance with a single talker

increased to half of that observed with the original unshifted condition.

Arguably, a bigger mismatch makes the mapping from the acoustic inputs

to the phonemic representations more difficult and requires more inputs
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before listeners could re-establish the representation.

Although a wide range of SNR levels was used in Experiment 2, no signifi-

cant changes in the reliance on the spectral and temporal cue were found.

Previous studies have shown that listeners rely more on the acoustic cues

that are less damaged by the masking noise (Winn et al. 2013b; Wardrip-

Fruin 1985). For instance, the VOT cue is less weighted than the F0 cue in

the perception of word-initial voicing in stop consonants when words are

masked by speech-shaped noise. The aspiration noise that characterises the

VOT cue is aperiodic and concentrated in the high-frequency region, so its

intensity will be more affected by the masking noise than the F0 cue in

the vowel section (Winn et al. 2013b). The lack of significance in this study

might be due to the higher SNR level used than previous studies (6.7dB

in this study, 0dB in Wardrip-Fruin (1985) and Winn et al. (2013b) ). The

SNR level pushing individual sentence recognition performance down by

more than 50% could still not be enough to mask the spectral shape of the

vowel to bring out the advantage of shifting the weighting to the duration

cue. Therefore, the performance level might not be a good indication of

listeners’ weighting strategy.

The current study indicates that listeners are able to adjust their acous-

tic cue weighting strategy dynamically, depending on the level of acoustic

degradation and distortion.Their perceptual weighting of the speech cues is

constrained by the amount of information left for mapping to the phoneme,

and also related to listeners’ allocation of perceptual attention based on

how far the speech cues are from the stored representations. Furthermore,
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the large between-individual variances in the cue weighting strategy are

unaccounted for. It is reasonable to hypothesise that how well listeners

can utilise their auditory sensitivity and apply the appropriate language-

specific weighting strategies for reaching phonemic decisions should be

related to how well and how easily they can recover phonemic structure in

the speech signal. The next chapter explores the possibility that listeners’

acoustic weighting strategies for degraded speech might be related to their

general speech performance and listening effort, for both NH listeners and

CI users.
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Listeners’ acoustic cue weighting

strategy, speech performance and

listening effort

It is hypothesised that, despite great variability, listeners employing the

strategy predominately used in non-degraded conditions by NH listeners,

should have better speech recognition performance achieved with less lis-

tening effort. This hypothesis is supported by previous studies reviewed in

chapter 1 that have shown that CI listeners’ acoustic cue weighting strat-

egy is related to their word recognition performance. Typically, CI listeners

who put more weighting to the cues that are weighted more by NH lis-

teners have better word recognition score. Considering that the weighting

strategy shared by NH listeners within the same language community is de-

veloped over years and highly specific, it should allocate more importance

on acoustic cues that are most informative and reliable in that language.

Therefore, applying this weighting strategy should restore the phonemic
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structure from the acoustic inputs with better accuracy as well as with

less cognitive effort, since listeners will not ‘waste’ cognitive resources on

acoustic cues that are not useful for that language.

To test this hypothesis, NH listeners with CI acoustic simulations (Ex-

periment 1) and CI users (Experiment 2) performed a series of sentence

recognition tasks with pupil response simultaneously recorded. It was fol-

lowed by a word labelling task to find their relative weighting of temporal

and spectral cues, and an auditory discrimination task using non-word

stimuli to find their temporal and spectral auditory sensitivity. The pupil-

lary response is a sensitive and reliable index for cognitive processing load

in listening tasks and reveals an aspect of speech comprehension not neces-

sarily reflected in recognition scores. If the task becomes more difficult, for

instance, with lower signal-to-noise ratios (SNRs), divided attention and

spectral degradation, pupil size will increase accordingly (Zekveld et al.

2011; Koelewijn et al. 2012; Zekveld & Kramer 2014; Koelewijn et al. 2015).

Therefore, the task difficulty level needs to be controlled across listeners

in order to observe the dynamic relationship between speech comprehen-

sion and listening effort without other confounds affecting pupil size. This

is especially necessary when testing CI or NH listeners with CI acous-

tic simulation since their speech recognition performance varies greatly

under conditions of auditory or acoustic degradation. Without fixing the

perceptual difficulty of the speech task to a level similar for each listener,

the variability observed in listening effort would be entirely due to the in-

terindividual variability in speech recognition, leaving little to be explained
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by other factors. In this chapter, perceptual difficulty levels were controlled

by masking sentences with a speech-shaped noise at individually set SNRs.

The exact SNRs were obtained from each listener beforehand from adaptive

speech reception threshold (SRT) tests tracking 40%, 50% or 80% of their

degraded sentence recognition performance in quiet. Therefore, each trial

in each condition would be similarly easy or difficult across listeners.

3.1 Experiment 1

3.1.1 Methods

Participants

14 normal-hearing native standard Southern British English speaking adults

were recruited via the University College London (UCL) Psychology Pool.

All participants were aged between 18 and 45 and had normal hearing

(defined as hearing thresholds of 20dB HL or better between 250 - 8000

Hz tested at octave frequencies). None of them had prior experience with

vocoded speech. For their contributions, they were paid at the rate of 7

pounds per hour. All participants consented to take part by reading and

signing a consent form, as approved by the UCL Research Ethics Com-

mittee.

Stimuli

Sentence stimuli were Basic English Lexicon (BEL) sentences (Calandruccio

& Smiljanic 2012), recorded at a sampling frequency of 22.05 kHz from a
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male native Southern British English speaker. Each of these sentences con-

tained 4 keywords, upon which the scoring was based. Sentences were ma-

nipulated using PSOLA (Moulines & Charpentier 1990) in Praat (Boersma

2002) to be of the same duration (mean = 2.02s, standard deviation = 0.24s).

The same synthesised ‘beat’ - ‘bit’ word continnum as in chapter 2 Exper-

iment 2 was used. Each step in formant structure was cross-paired with

each step in vowel duration, making 6×6 = 36 tokens.

Training materials consisted of two short stories (Aesop’s The north wind

and the sun and The wolf and goat, recorded from a male native Southern

British English speaker), ten BEL sentences in quiet and ten BEL sentences

masked by speech-shaped noise at an SNR level of 10 dB.

All stimuli were then 8-band noise-vocoded and 4mm upward shifted in

MATLAB 2013b, using a similar procedure in chapter 2. This was to allow

for enough spectral resolution for word discrimination and to match the

performance of successful CI listeners while reducing the auditory saliency

of spectral cues by systematic distortion with over 3mm spectral mismatch

shown in Dorman et al. (1997); Friesen et al. (2001); Faulkner et al. (2003)

and the previous experiment. Each sound file was digitally filtered into

8 bands, using sixth-order Butterworth infinite impulse response filters.

Filter spacing was based on equal basilar membrane distance (Greenwood

1990) across a frequency range of 70-6000 Hz.The output of each band was

full-wave rectified and low-pass filtered (fourth-order Butterworth) at 30

Hz, using a zero-phase forwards-backwards technique to extract the am-

plitude envelope. The envelope was then multiplied by a wide band noise
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carrier. The resulting signal was passed through 8 output filters with their

cut-off frequencies shifted upwards from the analysis filters by 4mm on the

basilar membrane distance according to Greenwood map. The root mean

square (rms) level of the output signal was adjusted to match the original

analysis band and the signal was summed across all bands.

Procedure

Participants were seated in a quiet room, 70 cm from a 17-inch white screen

monitor and 55 cm from an infrared monocular eye-tracker (Eyelink 1000,

SR Research, 500 Hz sampling rate). All audio stimuli were presented

binaurally through Sennheiser HD25 headphones at a comfortable level.

Experiments were run in Matlab 2015b, using Psychtoolbox and custom

software.

The illuminance of the room was adjusted for each participant (mean il-

lumination = 101 lx), such that the pupil diameter was midway between

maximum and minimum size (elicited by turning off and on the room light-

ing consecutively).

Firstly, participants were familiarised with the simulated speech through

training for 15 minutes. During the training, they listened to sentences and

then were given written and acoustic feedback. No active responses were

required.

To find each individuals’ speech recognition score, participants were then

tested with 30 randomly chosen BEL sentences in quiet. In each trial,

they were scored by the experimenter based on the number of keywords
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correctly reported. Their percentage correct was averaged across trials to

obtain their speech recognition score. This was followed by two adaptive

speech perception threshold tests (Plomp & Mimpen 1979) using speech-

shaped noise to track either 40% or 80% of each individuals’ speech recog-

nition score. Each SRT test consisted of 15 randomly selected sentences and

the order of the two tests was randomised.

At the 2 SRT levels obtained from each individual, 2 fixed SNR speech

recognition tests (condition SNR40% and SNR80%) were then performed

and participants’ pupil responses were recorded simultaneously. Due to

the experimental design, the condition using the SNR from tracking 40% of

participants’ speech recognition (SNR40%) was more difficult compared to

the condition with 80% (SNR80%) for each participant, but each condition

was similarly difficult or easy across participants. In both conditions, the

masking noise was set to the same level, in order to prevent listeners from

predicting the test difficulty based on noise level. For each trial, the presen-

tation of the speech shaped noise masker started 3s before sentence onset

and finished 2s after sentence offset. Participants were instructed to fixate

the black fixation cross on the white monitor and avoid excessive blinks.

After the masker offset, they were prompted by the colour change of the

fixation cross to repeat back the sentence. Their responses were scored by

the experimenter and the program proceeded to the next trial. An example

trial is displayed in figure 3.1. Each fixed SNR test condition consisted of 30

randomly selected sentences with the order of conditions randomised.

Finally, participants’ cue weighting strategies were measured with a word
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Figure 3.1: The trial starts with acoustic presentation of 1s speech-shaped noise and
visual presentation of a black fixation cross against the white monitor screen ( ‘in-
tertrial’ ). This is to allow for pupil size to recover from the previous trial. Another
2s of baseline measurement follows, with the same acoustic and visual presenta-
tion ( ‘baseline’ ). The sentence starts 3s into the trial and finishes after 2.02s (the
duration of the sentence), followed by noise presentation for 2s ( ‘wait peak’ ),
with the same visual presentation. The black fixation cross then changes to yellow
to prompt listeners to repeat back the sentence ( ‘respond’ ). Pupil measurements
during ‘baseline’, sentence presentation and ‘wait peak’ are included for processing
and analysis.

labeling task. After hearing a word token, they were instructed to choose

what they heard on the screen from either ‘beat’ or ‘bit’. Their response

was recorded by the computer and next trial started.

Data processing

Baseline pupil diameter in each trial was calculated as averaged pupil traces

2s before the start of the sentence. The rest of the pupil diameter measure-

ments were subtracted by that baseline level to obtain pupil size change

elicited by sentence recognition. Pupil diameter values below 3 standard de-

viations (SD) of the mean of the trace were coded as blinks. Traces between

50 data points before the start and after the end of blink were cubically

interpolated in Matlab, to further decrease the impact of the obscured pupil

from blinks. Trials that had over 20% of the data points coded as blinks

from the start of baseline to the end of masker presentation were excluded.

Trials containing blinks longer than 0.4s were also excluded, since they
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were more likely to be artefacts than normal blinks (Bristow et al. 2005).

Altogether, 748 trials of pupil response recordings were included, with 53

trials on average for each participant (SD = 9). All valid traces were then

low-pass filtered at 10 Hz with a first order Butterworth filter to preserve

only cognitively related pupil size modulation (Klingner et al. 2008) and

downsampled to 50 Hz. Three indices of pupil response (mean pupil dila-

tion, peak pupil dilation and peak latency) were obtained from processed

traces, consistent with the method in Zekveld et al. (2010, 2011). Mean pupil

dilation and peak pupil dilation were the average and maximum diameter

of pupil measurements from sentence onset to response prompt, relative to

the baseline pupil size. Peak latency response was the time between onset

of the sentence to the peak dilation. These indices were calculated for each

trial.

The cue weighting ratio for each individual was calculated from the bi-

nomial response of participants in the word labeling task, using the same

method as in chapter 2. Similarly, a larger ratio indicates more reliance on

the spectral cue relative to the temporal cue; and a smaller ratio indicates

more reliance on the temporal cue relative to the spectral cue. Listeners’

response functions and cue weighting ratio are shown in figure 3.2.

3.1.2 Statistical analysis and results

The first aim of the statistical analysis was to examine the effect of an

individual’s cue weighting strategy on sentence recognition. To this pur-

pose, a logistic regression model was fitted to listeners’ sentence recogni-
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Figure 3.2: NH listeners’ proportion of tense vowel responses for 8 band noise-
vocoded and 4mm shifted word stimuli. The filled circle (•) is the averaged pro-
portion response for each step in formant structure, and the hollow triangle (4) is
the averaged proportion for each step in duration. The filled line (−) is the logistic
regression fit to the proportion of tense vowel responses using steps in formant
structure, and the broken line (- -) is the logistic regression using steps in duration.
The top panel shows listeners’ code and their cue weighting ratio.
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Figure 3.3: Scatterplot of 14 listeners for their cue weighting ratio and degraded
sentence recognition scores in quiet.

tion performance in quiet using the cue weighting ratio as the independent

variable.A scatterplot of participants’ sentence recognition performance in

quiet and their cue weighting ratio is displayed in figure 3.3. Over all lis-

teners, no significant effect of cue weighting ratio was found (F=0.22, df=1,

p>0.05), suggesting that listeners’ acoustic cue weighting strategy was not

related to their sentence recognition performance in quiet.

The second aim of the analysis was to explore the impact of an individ-

ual’s cue weighting strategy on listening effort during speech perception.

Therefore, trials in SNR40% and SNR80% conditions were analysed. Logis-

tic mixed effect models were fitted to the proportion correct levels of each

trial, predicted by the fixed effect factors pupil response, condition (SNR40%
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and SNR80%) and cue weighting ratio. By using listener and sentence (the

exact BEL sentence tested) as random effect factors in the model, we con-

trolled for the variance in correct levels (random intercept) and other fixed

factors (random slope) that were associated with them. Three models were

constructed using the lme4 package in R (Bates et al. 2014) with each pupil

response index (baseline corrected pupil mean dilation, peak dilation and

latency response) as an independent variable. Factors were entered into the

model in the sequence below: the model firstly started with taking listener

and sentence as random intercepts; fixed effect factors pupil response, con-

dition and cue weighting ratio and their interactions were then entered; fi-

nally, random slopes were entered into the model. Factors were retained in

the model only if they significantly improved the model fitting, using Chi-

squared tests based on changes in deviance.

Details of the best models predicting proportion correct using mean pupil

size, peak pupil size and latency response are shown in table 3.1. For the

model containing mean pupil size, significant fixed effect factors are: con-

dition (χ2 = 8.89, df = 1, p < 0.01), condition × mean pupil size (χ2 = 6.81, df

= 1, p < 0.01), mean pupil size × cue weighting ratio (χ2 = 9.53, df = 1, p <

0.01). Unsurprisingly, post hoc Wald tests showed that the difficult condi-

tion SNR40% had significantly lower averaged sentence recognition score

than the easy condition SNR80% (β = 0.74, SE = 0.26, p < 0.01). In both con-

ditions, the bigger the mean pupil response in a trial, the higher proportion

of correct responses (SNR40%: β = 3.90, SE = 1.60, p < 0.05; SNR80%: β =

6.64, SE = 1.50, p < 0.001). But in the easy condition SNR80%, this effect is
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Fixed effects: β SE p χ2 df p

Intercept -0.65 0.51 0.20
Condition(SNR80%) 0.74 0.26 <0.05 8.90 1 <0.05
Cue Weighting Ratio 0.25 0.41 0.53 <0.05 1 0.97
Mean Pupil Size(SNR40%) 3.90 1.60 0.01
Mean Pupil Size(SNR80%) 6.64 1.50 <0.001 1.79 1 0.18
Mean Pupil Size × Condition(SNR80%) 2.74 1.14 0.02 6.81 1 <0.001
Mean Pupil Size × Cue Weighting Ratio 3.58 1.10 <0.05 9.53 1 <0.05

Random effects: SD cor χ2 df p

Intercept | Listener 0.61 489.80 1 <0.001
Intercept | Listener × Condition 0.55 69.89 1 <0.001
Intercept | Sentence 1.52 488.00 1 <0.001
Mean Pupil Size | Sentence 5.74 -0.74 25.16 3 <0.001

Fixed effects: β SE p χ2 df p

Intercept -1.11 0.57 0.05
Condition(SNR80%) 0.87 0.27 <0.05 8.89 1 <0.05
Cue Weighting Ratio 0.36 0.46 0.44 0.04 1 0.83
Peak Pupil Size 3.43 0.93 <0.001 13.58 1 <0.001
Peak Pupil Size × Cue Weighting Ratio 1.75 0.73 0.02 4.35 1 <0.05

Random effects: SD cor χ2 df p

Intercept | Listener 0.60 489.80 1 <0.001
Intercept | Listener × Condition 0.60 69.89 1 <0.001
Intercept | Sentence 1.49 124.61 1 <0.001

Fixed effects: β SE p χ2 df p

Intercept -0.57 0.25 0.02
Condition(SNR80%) 0.82 0.10 <0.001 8.89 1 <0.05
Latency Response <0.05 <0.05 0.24 3.99 1 <0.05

Random effects: SD cor χ2 df p

Intercept | Listener 0.60 489.80 1 <0.001
Intercept | Sentence 1.38 488.00 1 <0.001

Table 3.1: Model parameter estimates and model comparison statistics for the best
logistic mixed effect models fit to proportion correct. For the categorical factor
Condition, the reference level is Condition SNR40%.
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Figure 3.4: Figure illustrating the interaction between condition and mean pupil
size. Black dots are listeners’ performances in each valid trial. Black lines are lo-
gistic regressions fitted to listeners’ sentence recognition scores.

bigger than in the difficult condition SNR40% (β = 2.74,SE = 1.14, p < 0.05).

This interaction is illustrated in figure 3.4.

The interaction between mean pupil response and cue weighting ratio

suggested that cue weighting strategy explained a significant amount of

variance in the relation between listening effort and sentence recognition

performance. To examine whether cue weighting ratio has any systematic

effect on this relation, a trend analysis was performed. It showed a signifi-

cant linear trend of cue weighting ratio for its interaction with mean pupil

response (F = 14.03, df = 1, p < 0.01), suggesting that for participants with

smaller ratios (more weighting of the duration cue), bigger mean pupil re-

sponses were associated with poorer sentence recognition; and for listeners
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with bigger ratios (more weighting of the spectral cue), bigger mean pupil

responses were associated with better sentence recognition (β = 7.96, SE =

2.18, p< 0.001).

For the model containing peak pupil size, significant fixed effect factors

are: condition (χ2 = 8.89, df = 1, p < 0.01), peak pupil size (χ2 = 13.58, df =

1, p < 0.001), cue weighting ratio × peak pupil size (χ2 = 4.35, df = 1, p <

0.05). For the interaction between peak pupil response and cue weighting

ratio, a trend analysis also showed a significant linear trend (F = 7.37, df =

1, p < 0.01) of cue weighting ratio, suggesting that for participants with a

smaller ratio (more weighting of the duration cue), bigger peak responses

were associated with lower sentence recognition performance; and for par-

ticipants with bigger ratio (more weighting of the spectral cue), bigger peak

responses were associated with better performance (β = 3.91, SE = 1.47, p <

0.01). The interactions are shown in figure 3.5 and figure 3.6.

For the model using latency response, the only significant factor is:

condition (χ2 = 8.89, df = 1, p < 0.01). The easy condition SNR80% had a

shorter average latency than the hard condition SNR40% (β = -0.82, SE <

0.001, p < 0.001).
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Figure 3.5: The shaded region is for baseline measurement, and the rest of the pupil
trace is within the analysis window starting from the offset of the baseline to the re-
sponse prompt. The left panel shows the aggregated pupil traces for 7 participants
with higher cue weighting ratio (greater weighting of the formant structure cue),
and the right panel is for 7 participants with lower cue weighting ratio (greater
weighting of the vowel duration cue). The back lines show the aggregated pupil
traces for trials with >50% correct, and the dashed lines show the aggregated pupil
traces for trials with ≤50% correct.
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3.2 Experiment 2

3.2.1 Methods

Participants

7 native Southern British English speaking and post-lingually deaf cochlear

implant users were recruited and 1 dropped out during the experiment (par-

ticipant Cf). Summary information is shown in table 3.2. All participants

consented to take part by reading and signing a consent form, as approved

by the UCL Research Ethics Committee.

Stimuli

Sentence stimuli were Basic English Lexicon (BEL) sentences (Calandruccio

& Smiljanic 2012) recorded from a male native Southern British English

speaker. Sentences were manipulated using PSOLA in Praat to be of the

same duration (mean = 2.02s, standard deviation = 0.24s).

Training materials consisted of ten BEL sentences in quiet and ten BEL

sentences masked by speech-shaped noise at an SNR level of 10 dB.

To measure listeners’ acoustic cue weighting strategy, the same synthe-

sised ‘beat’ - ‘bit’ word continuum as in Experiment 1 was used. Each step

in formant structure was cross-paired with each step in vowel duration,

making 6×6 = 36 tokens.

To measure listeners’ auditory sensitivity to the spectral shape and dura-

tion along the ‘beat’ - ‘bit’ continuum, the stable vowel section of the most

typical ‘beat’ and ‘bit’ according to table 2.5 were extracted. Two continuua
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were then synthesised. For measuring listeners’ sensitivity to the spectral

shape, 60 tokens were synthesised using Tandem-STRAIGHT algorithm in

Matlab, with F1 F2 values varying linearly from /i/ (F1 = 210 Hz, F2 = 2707

Hz) to /ɪ/ (F1 = 372 Hz, F2 = 2230 Hz) stable formants section, and dura-

tions fixed to 0.12s. For measuring listeners’ sensitivity to the duration, 60

tokens were synthesised, with durations varying linearly from /i/ (0.145s)

to /ɪ/ (0.085s), and F1 F2 values fixed to 269 Hz and 2505 Hz. The spectrum

of some example tokens for the auditory discrimination task are shown in

figure 3.7. All stimuli were then scaled to the same rms intensity level.

Procedure

Participants were seated in a quiet room, 70 cm from a 17-inch white screen

monitor and 55 cm from an infrared monocular eye-tracker (Eyelink 1000,

SR Research, 500 Hz sampling rate). The illuminance of the room was

adjusted for each participant, such that the pupil diameter was midway

between maximum and minimum size (elicited by turning off and on the

room lighting consecutively). All audio stimuli were presented through a

Yamaha MS101 loudspeaker, calibrated at 72 dB SPL. Experiments were run

in Matlab 2015b Psychtoolbox and custom software.

Firstly, participants were familiarised to the speech material through train-

ing for 15 minutes. During the training, they listened to sentences and then

were given written and acoustic feedback. No active responses were re-

quired.

To find each individuals’ speech recognition score, CI userswere then tested
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Figure 3.7: The top panel shows the spectrum of step 10 in the spectral shape dis-
crimination continuum, and the bottom panel shows the spectrum of step 50 in the
spectral shape discrimination continuum.
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with 30 randomly chosen BEL sentences in quiet. In each trial, they were

scored by the experimenter based on the number of keywords correctly

reported. Their percentage correct was averaged across trials to obtain

their speech recognition score. This was followed by an adaptive speech

perception threshold test, using the updated maximum-likelihood (UML)

package in Matlab, to track 50% of each individuals’ speech recognition

score with speech-shaped noise. UML function estimates the psychometric

function by using Bayesian procedures that minimise the expected entropy

of the posterior parameter distribution (Shen & Richards 2012; Shen et al.

2015). Listeners’ sentence recognition score was set in UML function as the

upper bound of the logistic psychometric function. The prior distribution

range of the psychometric function slope was set between 0.1 to 10, and

the range of the threshold was set between -10 dB to 30 dB. The SNR level

of the first trial was set as 5 dB. Then the number of keywords reported by

the participants were entered into the function, and the SNR level for the

next trial was estimated online based on the sweet point for threshold esti-

mation using the Bayesian minimum-variance procedure. The SRT test was

set to converge either when the 90% confidence interval of the threshold

estimation was within 3 dB or reaching the maximum trial number of 30.

At the SRT level obtained from each individual, a fixed SNR speech recog-

nition test with 20 sentences was then performed and participants’ pupil

responses were recorded simultaneously. Due to this control on the intel-

ligibility across participants, each trial in the fixed SNR test was similarly

difficult for each participant, regardless of their speech recognition per-
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formance. The presentation of the speech-shaped noise masker started 2s

before sentence onset and finished 2s after sentence offset. Participants

were instructed to fixate the black fixation cross on the white monitor and

avoid excessive blinks. After the masker offset, they were prompted by

the colour change of the fixation cross to repeat back the sentence. Their

responses were scored by the experimenter and the program proceeded to

the next trial.

Participants’ cue weighting strategies were measured with a word labeling

task using the ‘beat’ - ‘bit’ word continuum. After hearing a word token,

they were instructed to choose what they heard on the screen from either

‘beat’ or ‘bit’. Their response was recorded by the computer and next trial

started.

Then, a three-alternative forced-choice (3AFC) test procedure was used to

measure CI users’ auditory discrimination to the spectral shape and du-

ration of vowels along the ‘beat’ - ‘bit’ continuum. Three frogs appeared

on the screen, with each ‘saying’ one of the stimuli from the continuum.

Participants were instructed to click on the frog that uttered a sound differ-

ent from the other two. The interstimulus interval was set at 500 ms. Two

fixed reference discrimination tasks were used to for each just noticeable

difference (jnd) measurement for the formant structure and duration. In

each task, the standard stimulus was either the ‘bit’ or ‘beat’ endpoint of

the continuum. The test started with the token from the other endpoint as

the comparison stimulus, which was an easy task. A three-down/one-up

adaptive procedure was the used to choose the comparison stimulus based
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on participants’ correct responses so that the stimulus could be discrim-

inated from the standard 79.4% of the time (Levitt 1971). Step size varied

throughout the test, from eight steps at the start and decreasing linearly

over the first three reversals to four steps. The task ended after six reversals

on each track or maximum of 30 trials. The jnd was then calculated by tak-

ing the mean of the final three reversals. A jnd of 10 steps would typically

indicate that the listener was able to discriminate the difference between 2

steps in the acoustic cue weighting test.

Data processing

Baseline pupil diameter in each trial was calculated as averaged pupil traces

1s before the start of the sentence. The rest of the pupil diameter measure-

ments were divided by that baseline level to obtain the proportional pupil

size change elicited by sentence recognition. Pupil diameter values below

3 SD of the mean of the trace were coded as blinks. Traces between 50 data

points before the start and after the end of blink were cubically interpolated

in Matlab, to further decrease the impact of the obscured pupil from blinks.

Trials that had over 20% of the data points coded as blinks from the start of

baseline to the end of masker presentation were excluded. Trials containing

blinks longer than 0.4s were also excluded since they were more likely to

be artefacts than normal blinks (Bristow et al. 2005). Altogether, 132 trials

of pupil response recordings were included, with on average 19 trials for

each participant (SD = 2). All valid traces were then low-pass filtered at 10

Hz with a first order Butterworth filter to preserve only cognitively related
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pupil size modulation (Klingner et al. 2008), and downsampled to 50 Hz.

The processed pupil traces are shown in figure 3.8, aggregated by partici-

pants.

Three indices of pupil response (mean pupil dilation, peak pupil dilation

and peak latency) were obtained from processed traces, consistent with the

method in Zekveld et al. (2010, 2011). Mean proportional pupil size change

and peak proportional pupil size were the average and maximum of pro-

portional pupil changes from sentence onset to response prompt, relative to

the baseline pupil size. Peak latency response was the time between onset

of the sentence to the peak dilation. A principal component analysis (PCA)

was then performed in R, with three variables scaled to the same unit of

standard deviation and centering at zero. PCA is a mathematical algorithm

that reduces large numbers of variables and data points to smaller numbers

of independent factors, without much loss of information (Jolliffe 1986;

Ringnér 2008). This reduction is accomplished by identifying directions,

called principal components, along which the variation in the data is max-

imal. Therefore, these components are a good summary of the variation in

the data. Details of the principal components are displayed in table 3.3 The

first principal component (PC1) explained the most amount of variances in

the three indices (67%), with large loadings on the mean (0.68) and peak

pupil size changes (0.69). This suggests that PC1 is most representative of

the trends in the three pupillary indices. Therefore, it was selected as an

indication for sentence-evoked pupil response.

The cue weighting ratio for each individual was calculated from the bino-
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Importance of principal components:

PC1 PC2 PC3
Standard deviation 1.42 0.97 0.24

Proportion of variance 0.67 0.31 0.02

Rotation:

PC1 PC2 PC3
Latency 0.24 -0.97 0.04

Mean proportional change 0.68 0.20 0.70
Peak proportional change 0.69 0.15 -0.71

Table 3.3: The importance of principal components and variable rotation of the
principal component analysis on CI users’ pupil dilation measurements.

mial response of participants in the word labelling task, using the same

method in Experiment 1. Similarly, a higher ratio indicates more reliance

on the spectral cue relative to the temporal cue; and a lower ratio indicates

more reliance on the temporal cue relative to the spectral cue. CI listeners’

response functions and cue weighting ratio are shown in figure 3.9.

Since there was no significant difference between the jnd measurements in

spectral shape and duration for the first and second discrimination tasks

(spectral shape discrimination: t=-1.48, p>0.05; duration discrimination:

t=-1.29, p>0.05), the smaller jnd step (better discrimination) was chosen for

each measurement. The mean jnd step for spectral shape discrimination is

24.44, with the standard deviation of 5.96; the mean jnd step for duration

discrimination is 32.60, with the standard deviation of 4.47. The jnd step of

the spectral shape was divided by the jnd step of duration, giving a ratio

indicating listeners’ relative auditory sensitivity to the spectral shape and

duration along the tense to lax vowel continuum. A higher ratio indicates

better discrimination of the duration relative to the spectral shape, and a
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Figure 3.9: CI listeners’ proportion of tense vowel responsesword stimuli.The filled
circle (•) is the averaged proportion response for each step in formant structure,
and the hollow triangle (4) is the averaged proportion for each step in duration.
The filled line (−) is the logistic regression fit to the proportion of tense vowel
responses using steps in formant structure, and the broken line (- -) is the logistic
regression using steps in duration. The top panel shows listeners’ code and their
cue weighting ratio.
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lower ratio indicates better discrimination of the spectral shape relative to

the duration.

3.2.2 Statistical analysis and results

The first aim of the analysis is to compare the cue weighting strategy be-

tween CI users and NH listeners with CI simulations (in Experiment 1). An

independent two sample t-test showed no significant difference between

the cue weighting ratio of CI users and NH listeners (t=-1.07, p>0.05; CI:

x̄=1.47,σ=0.92; NH: x̄=1.08, σ=0.49), suggesting that both groups have rela-

tively more weighting on the formant structure cue than the duration cue,

but no significant difference between two groups. To compare their percep-

tual weightings on the two cues, another two t-tests were performed on the

coefficients of the two cues. No significant difference was found between

two groups of listeners for the formant structure cue (t=-0.24, p>0.05) and

duration cue (t=0.70, p>0.05).

The second aim of the analysis is to investigate whether CI users sen-

tence recognition performance in quiet is related to their relative percep-

tual weighting on the spectral and temporal cue, and their auditory sen-

sitivity to the spectral shape and duration of the vowels tested. A scatter-

plot matrix is shown in figure 3.10, showing the relation among sentence

recognition, jnd steps for spectral shape and duration, and coefficients for

formant structure cue and duration cue. A logistic regression model was

fitted to listeners’ sentence recognition performance in quiet using the cue

weighting ratio and auditory discrimination ratio as the independent vari-
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ables. Acoustic cueweighting ratio (χ2=0.98, df=1, p>0.05), relative discrim-

ination ratio (χ2=0.78, df=1, p>0.05) and their interaction (χ2=0.81, df=1,

p>0.05) were not found significant in explaining the variances in listeners’

sentence recognition in quiet. Also, no significant correlation was found 1)

between listeners’ acoustic cue weighting ratio and relative auditory dis-

crimination ratio (r=-2.55, p=0.05); 2) between listeners coefficients on for-

mant structure and jnd step on formant structure discrimination (r=-1.22,

p>0.05); 3) between coefficients on duration and jnd step on duration dis-

crimination (r=0.76, p>0.05). Note that the correlation analysis might be

prone to outliers and not reliable, due to the small sample size.

Thirdly, the analysis intends to explore the impact of an individual’s cue

weighting strategy and relative discrimination ability on listening effort

during speech perception. Therefore, trials in the fixed SNR test were anal-

ysed. One logistic mixed effect model was fitted to the proportion correct

levels of each trial, predicted by the fixed effect factors pupil response (PC1),

auditory discrimination ratio and cue weighting ratio. By using listener and

sentence as random effect factors in the model, we controlled for the vari-

ability in correct levels (random intercept) and other fixed factors (random

slope) that were associated with them. Factors were entered into the model

in the sequence below: themodel firstly started with taking listener and sen-

tence as random intercepts; fixed effect factors and their interactions were

then entered; finally, random slopes were entered into the model. Factors

were retained in the model only if they significantly improved the model

fitting, using Chi-squared tests based on changes in deviance. Details of the
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Fixed effects: β SE p χ2 df p

Intercept -2.07 3.11 0.51
PC1 1.93 1.16 0.10 0.41 1 0.52
Cue Weighting Ratio -0.23 0.65 0.73 0.01 1 0.96
Discrimination Ratio 2.76 3.39 0.42 0.07 1 0.78
PC1:Cue Weighting Ratio 0.22 0.24 0.37 3.55 1 0.05
PC1:Discrimination Ratio -2.88 1.29 <0.05 9.19 1 <0.05

Random effects: SD cor χ2 df p

Intercept | Listener 0.64 300.80 1 <0.001

Table 3.4: Model parameter estimates and model comparison statistics for the best
logistic mixed effect models fit to proportion correct in fixed SNR test for CI users.

best fitting logistic mixed effect model for explaining the variances in pro-

portional correct levels in the fixed SNR test are shown in table 3.4.

There is a significant interaction between correct level and relative au-

ditory discrimination abilities (χ2=11.68, df=1, p<0.001). A trend analysis

showed a significant linear trend of auditory discrimination ratio in its in-

teraction with pupil response (F=8.44, d=1, p<0.01), suggesting that for CI

listeners with smaller ratio (better spectral shape discrimination than du-

ration discrimination on the tense - lax vowel continuum), bigger pupil re-

sponses were associated with better sentence recognition; and for listeners

with bigger ratios (better duration discrimination than spectral shape dis-

crimination), bigger pupil responses were associated with worse sentence

recognition(β=-1.52, SE=0.56, p<0.01). This trend is illustrated in figure 3.11.

There is also a borderline insignificant interaction between correct level

and acoustic cue weighting ratio (χ2=3.55, df=1, p=0.05), suggesting that

as acoustic cue weighting ratio increases (more weighting on the formant

structure cue), more cognitive effort might associate with better sentence

correct (β=0.22, p>0.05). This borderline effect is illustrated in figure 3.12.
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Figure 3.11: The interaction between pupil response and relative auditory discrim-
ination ratio. Each panel displays performance of a single listener, with their rela-
tive discrimination ratio on the panel top. A bigger ratio indicates better duration
discrimination, and a smaller ratio indicates better spectral shape discrimination.
Black lines are the logistic regression fitted to sentence proportion correct, with
pupil response as the independent variable.
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Figure 3.12: The interaction between pupil response and acoustic cue weighting
ratio. Each panel displays performance of a single listener, with their acoustic cue
weighting ratio on the panel top. A bigger ratio indicates more perceptual weight-
ing on the spectral cue, and a smaller ratio indicates more perceptual weighting
on the duration cue. Black lines are the fitted logistic regression on sentence pro-
portion correct, with pupil response as the independent variable.

3.3 Discussion

This chapter investigates the impact of acoustic cue weighting strategy for

NH listeners with CI acoustic simulation and CI users. Specifically, it exam-

ined how much between-individual variance in sentence recognition and

listening effort could be explained by the relative perceptual attention on

119



Acoustic Cue Weighting Strategy and Distributional Training

the temporal and spectral cues (the vowel duration and formant structure

in ‘beat’ - ‘bit’ discrimination). Listening effort was always measured at the

SNR level obtained from SRT tests tracking a certain percentage of indi-

vidual sentence recognition performance in quiet. This procedure intends

to control for the inherent differences among listeners in their abilities and

efforts to comprehend degraded sentences, in order to focus on how their

acoustic cue weighting strategies affect listening effort at a level similarly

difficult or easy for each participant.

3.3.1 Acoustic cue weighting strategy, auditory sensitivity

and sentence recognition

This study expands findings from previous studies of cue weighting strat-

egy by CI users and NH listeners with CI acoustic simulation. By applying

greater distortion to the acoustic simulations and using the same method

for calculating acoustic cue weighting ratio, this study is able to compare

more closely acoustic cue weighting strategies of two groups. There is no

significant difference in the perceptual weighting on the temporal and spec-

tral cue between CI and NH listeners in word labeling task, and both groups

allocate more perceptual weighting on the spectral cue. However, Hedrick

and Carney (1997),Winn et al. (2012),Donaldson et al. (2015) and Moberly

et al. (2016) all showed a bigger reliance on amplitude/duration cues for CI

user compared to NH listeners, and a smaller reliance on dynamic/static

spectral cues for CI users compared to NH listeners. This might be due to

the different speech recognition levels of CI users recruited in these stud-
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ies. Here, CI users’ sentence recognition in quiet reaches a mean of 92.9%

and standard deviation of 6.4%, suggesting that they land on the good per-

formers’ side on the continuum of CI users’ speech outcome. Therefore, it

might be a possibility that good CI performers also have a larger perceptual

weighting on the spectral cue. However, this possibility is not testable since

previous studies didn’t report listeners’ sentence recognition performance.

Also, different acoustic cues and contrasts were used in those studies.While

typically duration and amplitude cues are similarly intact, different types of

spectral cues are affected differently via the CI speech processor. Although

modern CI systems provide a better representation of the spectral envelope

using faster stimulation rates and wider dynamic ranges, dynamic spectral

cues are still poorly transmitted compared to static spectral cues. Dynamic

spectral cues are the transitions in formant frequencies that arise from

movement between consonant constrictions and vowel postures, and are

typically shorter than the static spectral cues. Therefore, they require CI

users to have better spectral acuity and integration of spectral and tem-

poral processing. Typically CI users perform worse in discrimination or

labeling tasks with dynamic spectral cues (Nittrouer et al. 2014; Donaldson

et al. 2015; Moberly et al. 2016). The static spectral cue (formant structure)

used in this study is more accessible and requires less auditory sensitivity,

and may receive more perceptual weighting compared to the dynamic cues

used in other studies (i.e., formant transition) (Winn et al. 2012; Nittrouer

et al. 2014).

No significant relation between acoustic cue weighting strategy and sen-

121



Acoustic Cue Weighting Strategy and Distributional Training

tence recognition was found for either group of listeners (even when au-

ditory discrimination abilities were taken into consideration for CI users).

However, much stronger correlations were found in other studies between

word recognition and cue weighting (for instance, r = 0.55 in Lowenstein

and Nittrouer (2015), r = 0.77 in Moberly et al. (2014), r = 0.54 in Moberly

et al. (2016)). This could be due to several reasons. Firstly, the current study

used relative weighting between temporal and spectral cues as indepen-

dent variables, instead of weighting on one cue. Temporal cues in previous

studies generally didn’t explain significantly word recognition, therefore,

including it in the model might reduce the amount of variability explained

in word recognition performance. To investigate this discrepancy, two

separate logistic regression models were fitted to NH and CI listeners’ sen-

tence recognition performance in quiet using the weighting on coefficients

of spectral and temporal cues as independent variables. No significant

effect was found for either group of listeners. Secondly, we used open-set

sentences, instead of words, for speech recognition, which includes more

top-down processing. Variability among listeners at those stages was un-

accounted for, but could modulate the relationship between cue weighting

pattern and speech recognition significantly.

For CI listeners, their auditory sensitivity to the nonword stimuli’s spec-

tral shape and duration underlie tense to lax word labeling and sentence

recognition. The size of the jnd’s for spectral shape and duration sug-

gests that on average CI users could successfully discriminate two steps

along the ‘beat’ - ‘bit’ word continuum using the spectral shape difference,
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and three steps using the duration difference. Although a better spectral

shape discrimination than duration discrimination score for CI users seems

counter-intuitive, this is mainly due to using the step size in between the

‘beat’ - ‘bit’ continuum instead of the physical stimulus values as the unit.

No evidence was found to suggest that CI users’ auditory sensitivity to the

acoustic cues was linked to their general speech perception performance.

Also, listeners’ acoustic cue weighting strategy was not explained by their

auditory sensitivity to these acoustic cues. Two other studies with larger

sample sizes (Nittrouer et al. (2014) tested 51 CI children and Moberly et al.

(2016) tested 34 CI adults) also showed no significant relation between non-

speech auditory discrimination on duration/spectral cues and acoustic cue

weighting strategy, or between auditory sensitivity and word recognition.

But for listeners who were able to access the dynamic spectral cue, better

sensitivity to the spectral cue is linked to better word recognition. This

seems to suggest that having access to certain cues doesn’t always guar-

antee that CI listeners will allocate perceptual attention on them for word

labeling and speech recognition. Factors other than auditory saliency con-

tribute to CI users’ attention allocation strategies. For instance, whether

or not listeners have enough language exposure to develop the optimal

perceptual weighting strategy for that language seem to affect both their

perceptual weighting on speech cues and speech recognition. It was re-

ported that CI users who have developed hearing loss later in life are more

likely to weight spectral cues heavily and have better word recognition,

probably because they are more likely to have developed an efficient per-

123



Acoustic Cue Weighting Strategy and Distributional Training

ceptual weighting strategies similar to NH listeners (Moberly et al. 2014).

3.3.2 Perceptual difficulty and listening effort

Different perceptual difficulties were shown in Experiment 1 to affect

the efficiency of using cognitive effort in speech recognition. Listening

effort didn’t differ significantly between easy (SNR80%) and hard condi-

tions (SNR40%) in this study (for mean pupil dilation β=-0.003, SE=0.01,

p>0.05; for peak pupil dilation β<0.03, SE=0.03, p>0.05; for latency re-

sponse β=0.28, SE=3.67, p>0.05). Instead, it was the gain in the behavioural

outcome that was affected: in the easy condition, listeners need relatively

less cognitive effort to improve sentence recognition scores compared to

the difficult condition. This suggests that higher perceptual difficulty didn’t

load listeners directly with greater listening effort, but made the resources

allocated for speech recognition less efficient, possibly a sacrifice for cop-

ing with the extra noise. Intuitively, this seems to be in contradiction to

previous studies on listening effort. Typically, more difficult conditions (for

instance with lower SNRs, poorer auditory spectral resolution, or more

competitive lexical competition) were reported to incur greater listening

effort (Koelewijn et al. 2012; Kuchinsky et al. 2013; Zekveld & Kramer 2014;

Winn et al. 2015). This was not found in this study, although the SNR differ-

ence between the two conditions was big enough according to previous

literature (SNR40%: mean = 9.7 dB, SD = 5.3 dB; SNR80%: mean = 16.1 dB,

SD = 6.7 dB). This discrepancy could be attributed to the method of ob-

taining the appropriate level for testing. SRT tests were set in this study
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to find the threshold with reference to listeners’ individual performance in

quiet, instead of assuming that all listeners had similar slope and ceiling

in their psychometric functions for degraded speech perception. Therefore,

the threshold level would match more closely their real degraded speech

perception proficiency, compared to experiments tracking an identical per-

formance level across all participants (Zhang et al. 2014). Considering the

great variability in both speech perception and listening effort for both

NH listeners with CI simulation and CI users, this method should be more

sensitive in unmasking the modulating effect of individual differences.

3.3.3 Acoustic cue weighting strategy and listening effort

The results showed a complex relation between sentence recognition and

listening effort. For both groups of listeners, pupil response as the main fac-

tor was not found to be significant in explaining the variance in sentence

recognition score, even after controlling for inherent individual differences

in intelligibility and auditory discrimination abilities during experimen-

tal design and statistical analysis. This suggests that sentence recognition

and listening effort are not related directly, therefore, potentially for some

listeners, a low speech perception performance might be accompanied

by high listening effort. Previous studies have suggested some individual

differences at auditory, linguistic or cognitive levels that could contribute

to the variation in performance, for instance, auditory spectral resolution,

hearing loss, working memory and attention allocation (Zekveld et al. 2011;

Koelewijn et al. 2012; Kuchinsky et al. 2013; Zekveld & Kramer 2014; Winn
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et al. 2015). In this study, the perceptual cue weighting strategy was shown

to affect the relation between sentence recognition and listening effort for

each listener.

This was demonstrated by a significant linear trend of cue weighting ratio

in its interaction with mean and peak pupil response in predicting sen-

tence recognition score in Experiment 1 for NH listeners with CI acoustic

simulation. For listeners with more weighting on the temporal cue, bigger

pupil responses (indicated by bigger mean pupil dilation and peak pupil

dilation while listening to sentences) were associated with poorer sentence

recognition; and for listeners with more weighting on the spectral cue,

bigger pupil responses were associated with better sentence recognition.

It seemed that listeners weighting more on the spectral cue than the tem-

poral cue had an advantage in the efficiency of using listening effort for

degraded speech perception. In other words, they were able to enhance

their behavioural performance by investing more effort. In comparison, lis-

teners weighting more on the temporal cue failed to gain the same benefit

from increasing listening effort. It was as if that they were ‘wasting’ their

cognitive resources by directing them to less useful information. Therefore,

using the same amount of cognitive effort, listeners weighting more on the

spectral cue would score relatively higher in sentence recognition, because

they are able to focus cognitive resources on more informative and reliable

information for the task.

Even with the small number of CI participants, CI users’ auditory sensi-

tivity is shown to affect significantly how efficiently they use cognitive
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resources for speech recognition, indicated by the significant linear trend

of auditory discrimination ratio in its interaction with pupil response. It

shows that CI listeners who have better spectral shape discrimination are

able to increase their speech performance by investing in more cognitive

resources. This is not surprising, since spectral information is important

for speech perception but seriously diminished in the face of hearing loss

and subsequent implantation. CI users’ access and auditory sensitivity to

the spectral information would be strongly associated with the success of

implants and the remaining integrity of listeners’ auditory system. Pre-

vious studies have shown that having access to dynamic spectral cues is

linked with better word recognition (Nittrouer et al. 2014; Moberly et al.

2016). Therefore, it might be the case that good CI performers are also those

who can effectively use their cognitive resources. There is also a borderline

significant interaction between acoustic cue weighting strategy and pupil

response, suggesting that CI users’ acoustic cue weighting strategy might

affect listeners’ efficiency of using cognitive resources for speech recog-

nition. This insignificant effect shares the same trend with NH listeners,

that is listeners who weight more on the formant structure cue benefit

in sentence recognition from investing cognitive resources. This suggests

that how CI users’ allocate perceptual attention to different acoustic cues

could still be an important individual feature explaining variances in speech

recognition and listening effort, especially considering that this strategy is

independent of auditory sensitivity to the acoustic cues involved.

This finding supports what has only been suggested in past studies. The
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common perceptual weighting strategies observed from mature language

users for their native language are acquired through years of language

exposure (Nittrouer et al. 2014; Lowenstein & Nittrouer 2015). They should,

in principle, utilise the most linguistically informative and reliable acoustic

cues for a certain language. Indeed, some studies have shown that this strat-

egy is predictable through unsupervised learning based on a weighting-by-

reliability principle (McMurray et al. 2009; Toscano & McMurray 2010).

These studies support, indirectly, that acoustic cues favoured by NH listen-

ers are ideal for speech perception. It is possible that this strategy could also

be beneficial cognitively. Potentially, it could be the easiest route to suc-

cessful speech recognition, requiring less processing time and effort. One

cognitive benefit illustrated by this study could be that a better strategy

allows cognitive resources to be used more efficiently for speech percep-

tion. By allocating cognitive resources on informative and reliable acoustic

cues, listeners are prioritising information that could lead to fewer ambigu-

ities and variability in restoring phonemic structure from acoustic inputs.

Therefore, they should need less cognitive effort, compared to listeners who

don’t employ this strategy, to support a certain level of speech perception.

This difference in the efficiency of using cognitive effort, rather than just the

total amount of effort expended, could lead to high fatigue level for some CI

users. Those users who fail to employ an optimal speech perception strat-

egy might try constantly and actively to allocate more cognitive resources

for a conversation, intending to support a better speech communication.

However, little benefit could be gained from this investment. The cognitive
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resources wasted in speech communication would then negatively impact

one’s ability to perform other mental operations, causing fatigue generally

in life (McGarrigle et al. 2014). This might explain the lack of correlation

between quality of life measurements and behavioural or cognitive factors

in some studies, since they might overlook this complex relation during

speech communication (Capretta & Moberly 2016b). Therefore, how effi-

ciently listeners use their limited amount of cognitive resources might be

more relevant when explaining individual differences in listening effort

and speech perception performance. Essentially, expending listening effort

for speech recognition is no bad thing, but expending more listening effort

without much improvement in speech recognition is potentially exhaust-

ing for listeners.

The results of this study suggest there is a good reason to look at CI users’

listening strategy, and the possibility of retuning perceptual attention to

acoustic features that best facilitate language processing, even though these

acoustic cuesmight only be coarsely transmitted through CIs and of low au-

ditory saliency to listeners. An optimal weighting strategy might provide

listeners with better speech recognition and more manageable listening

effort. In this study using the English tense to lax vowel continuum, listen-

ers (using CI simulation) weighting more on the spectral cue were more

efficient in using their cognitive resources for sentence recognition, with

proportionate listening effort input and speech recognition gain. However,

listeners weighting more on the temporal cue seemed to expend effort, but

without much benefit to sentence recognition. Although results are less
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conclusive for CI users, previous studies with larger sample sizes suggest

better word recognition for CI users with a similar weighting strategy

as NH listeners. It is very likely that this benefit could extend to their effi-

ciency in using cognitive resources for speech recognition.Therefore, work

with more CI participants and both cognitive and behavioural assessments

are needed. Furthermore, although ongoing work to enhance the accuracy

of spectral information transmission and rehabilitate listeners’ auditory

abilities for CI users is important, it is still not sufficient to restore a good

listening strategy. The availability of acoustic cues doesn’t automatically

translate to listeners’ reliance on them, as suggested by this study and pre-

vious ones (Nittrouer et al. 2014; Lowenstein & Nittrouer 2015; Kong et al.

2016; Moberly et al. 2016). Therefore, more active and targeted training on

listeners’ perceptual attention should be considered and they should focus

on helping listeners to acquire efficient listening strategies (specific to their

language).

The next two chapters investigate the malleability of listeners’ acoustic cue

weighting strategy through training. Both infants and adults have been

shown to harness statistical regularities of speech cues to acquire new vi-

sual and auditory knowledge (Fiser & Aslin 2002; Wanrooij et al. 2013).

Specifically, distributional training, which exposes listeners to a series of

stimuli varying in a speech cue that has its frequency distribution following

that of a new language, helped listeners to learn non-native speech sound

categories (Ingvalson et al. 2012; Escudero & Williams 2014). This might

also be useful in CI rehabilitation. By constructing training stimuli that
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have statistically-accentuated spectral features, listeners might be able to

gain more reliance and attention on them. Ultimately, the ideal outcome of

rehabilitation is to make CI users better in both speech communication as

well as managing listening effort in everyday life. With training schemes

targeting different aspects of language processing, CI users should be able

to benefit more from the prosthesis and lead a better life.
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The impact of distributional train-

ing
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NH listeners’ cue weighting

plasticity in CI acoustic simulation

NH adults have shown to be able to harness statistical regularities of speech

cues to acquire new visual and auditory knowledge (Fiser & Aslin 2002;

Wanrooij et al. 2013). For instance, NH listeners can learn non-native speech

sound categories through exposure to stimuli varying in a speech cue that

has its frequency distribution following that of a new language (Ingvalson

et al. 2012; Escudero & Williams 2014). NH listeners can also adjust re-

liance on a speech cue depending on its relative probability distribution for

a word or speech category (Clayards et al. 2008b; Toscano & McMurray

2012). However, it is unclear whether listeners can still utilise the statis-

tical information of degraded and distorted speech cues. This experiment

intended to investigate the plasticity of cue weighting strategies of NH

listeners with spectrally degraded and distorted stimuli (12-band noise-

vocoded and 4mm shifted) and the effect of distributional training on the

plasticity. It was hypothesised that listeners who were exposed to stimuli
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with speech cues resembling the statistical regularity in the undegraded

speech would establish the representation of speech categories from the

degraded and distorted acoustic inputs much more easily.

4.1 Methods

4.1.1 Participants

20 normal-hearing native standard Southern British English speaking

adults were recruited via the UCL Psychology Pool. All participants were

aged between 18 and 45 and had normal hearing (defined as hearing thresh-

olds of 20dB HL or better between 250 - 8000 Hz tested at octave frequen-

cies). None of them had prior experience with vocoded speech. For their

contributions, they were paid at the rate of 7.5 pounds per hour. All par-

ticipants consented to take part by reading and signing a consent form, as

approved by the UCL Research Ethics Committee.

They were then randomly assigned to either the experimental group or the

control group, with ten participants in each.

4.1.2 Stimuli

All stimuli were 12-band noise-vocoded and 4mm upward shifted, using the

same method and parameters in chapter 2.

Testing sentences were pre-recorded BKB sentences, sampled at the rate of

44.1 kHz and spoken by a male native speaker of British English (Bench,

Kowal, & Bamford 1979).
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Context Uniform distribution range

bit - beat 1.92 - 3.34
fit - feat 1.96 - 3.36

Table 4.1: Model parameters of the uniform distribution fitted to the F2/F1 ratio of
the recorded monosyllable words of each consonant context.

For testing listeners’ acoustic cue weighting strategy, the same four con-

tinua of stimuli as in Experiment 1 chapter 2 were used. They were mono-

syllabic words containing lax to tense vowels /ɪ/ and /i/ (‘bit’ - ‘beat’, ‘sit’

- ‘seat’, ‘pit’ - ‘peat’, ‘fit’ - ‘feat’), varying orthogonally in vowel duration

and formant structure. Each step in F2/F1 ratio was paired with each step

in vowel duration using PSOLA, thereby giving altogether 6× 6× 4 = 144

stimuli.

Trainingmaterials were two continua of words (‘bit’- ‘beat’ and ‘fit’ - ‘feat’),

selected from the same set of synthesised words in Experiment 1 chapter 2.

For the experimental group, 60 word tokens in each word continuum were

selected based on the bimodal Gaussian distribution fitted to the F2/F1 ra-

tios of the recorded words in Experiment 1 (see details in table 2.1). Each

of these words has F2/F1 ratio with equal intervals in the probability den-

sity of the bimodal distribution, a similar procedure as in Wanrooij and

Boersma (2013). Therefore, all training words have different F2/F1 ratios,

but still preserve the same statistical feature of the original recorded word

continuum. For the control group, 60 word tokens in each continuum were

selected based on the uniform distribution fitted to the F2/F1 ratios of the

recorded words in Experiment 1 chapter 2. Parameters of the uniform dis-

tributions are shown in table 4.1 Each of these word tokens have F2/F1
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Figure 4.1: The curve is the bimodal distribution fit to the F2/F1 ratios of the
recorded ‘bit’ - ‘beat’ words.The grey lines correspond to the F2/F1 values of the se-
lected words for training.The top panel illustrates the selection for the experimen-
tal group. The under-curve area between consecutive lines is identical, therefore,
values close to the mean are selected more often and values far from the mean
are selected less often. The bottom panel illustrates the selection for the control
group. Values are selected equally along the continuum, therefore, values close to
the mean and far from the mean are selected with the same frequency.

ratio with equal intervals in the probability density of the uniform distri-

bution. An illustration of selecting training words for both training groups

is shown in figure 4.1. Then, the durations of all word tokens were manip-

ulated with PSOLA, according to the predictions from linear regressions

in table 2.2. With this design, in the experimental group, the sampling

of the formant structure cue in the word stimuli was manipulated in a
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way that it followed a bimodal distribution that resembled natural speech.

This was to increase the statistical saliency of the spectral cue, in order

to encourage listeners to re-tune their attention towards it after spectral

degradation. For the control group, the sampling of the spectral cue did not

allow the construction of reliable speech categories. A 4mm upward shift

significantly impacted listeners’ categorisation and the use of the spectral

cue, as indicated in chapter 2. Therefore, the difference in the acoustic cue

weighting strategy after the training between the two groups would in-

dicate how much listeners have utilised the statistical regularities of the

training material for recovering from the signal degradation and distortion.

4.1.3 Procedure

Experiments were conducted in a quiet room. Auditory materials were pre-

sented over Sennheiser HD 25 SP headphones and programs were run on a

PC installed with custom MATLAB 2013b software.

Before the first session, participants were introduced to the testing and

training software with unprocessed speech materials.

They were firstly tested with four randomly selected lists of BKB sentences.

During each trial the number of keywords correctly reported by partici-

pants was noted down. Then, participants’ cue weighting strategies were

measured with a word labeling task. After hearing a word token, they

were instructed to choose what they heard on the screen from either ‘beat’

or ‘bit’. Their response was recorded by the computer and the next trial

started.
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Training sessions were conducted on two consecutive days, each lasting

for approximately one hour. Participants were presented acoustically one

word randomly selected from the stimulus set and visually four words on

the computer screen, two foils and two containing targeted tense/lax vow-

els. They were then instructed to select from those four choices the one

they had heard. After registering the response, the program proceeded to

the next trial without feedback. All together, participants were exposed

to two sets of stimuli (‘beat’ - ‘bit’ and ‘feat’ - ‘fit’ ), repeated nine times

each (randomised), totalling to 2×60×9 = 1080 words. The second session

on the next day was conducted with the same number of stimuli but in a

different sequence.

After finishing two training sessions, all participants were tested with an-

other four different lists of BKB sentences. Finally, they were tested with

the word labeling task using the same set of stimuli as in the pre-training

tests, but in a different sequence.

All participants finished the two training sessions and two testing sessions.

4.2 Statistical analysis and results

To investigate whether different types of word training had an impact on

listeners’ open-set sentence recognition, a mixed effect logistic regression

model was built with sentence correct as the dependent variable in R with

lme4. Random effect factor listener, and fixed effect factors training ses-

sion (before or after the training), training group (experimental or con-
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Fixed effects: β SE p χ2 df p

Intercept 1.79 0.37 <0.05
Type(untrained) 0.08 0.47 >0.05 7.22 1 <0.001
Session(post) 0.66 0.47 >0.05 13.07 1 <0.001
Type(untrained):Session(post) 1.93 0.68 <0.05 7.92 1 <0.001

Random effects: SD cor χ2 df p

Intercept | listener 0.57 170 1 <0.001

Table 4.2: Model parameter estimates and model comparison statistics for the best
mixed effect model fit to acoustic cue weighting ratio. The reference level for the
categorical factor training session is pre, and for training type is trained.

trol group) were entered into the model in the same way as in the previ-

ous two chapters. Only training session was found significant (χ2 = 158.82,

df=1, p<0.01), suggesting that regardless of the training materials, listen-

ers’ sentence recognition performance increased after the training (β=0.19,

SE=0.02, p<0.01).

Secondly, to investigate whether exposure to the different sampling of

words had an impact on listeners’ acoustic cue weighting strategy, a mixed

effect linear regression model was fit to the cue weighting ratio. Listen-

ers’ acoustic cue weighting ratio was calculated in the same way as in the

previous two chapters. Therefore, a bigger ratio suggests more perceptual

weighting of the formant structure cue, and a smaller ratio suggests more

perceptual weighting of the duration cue. Random effect factor listener, and

fixed effect effect factors training session (before or after the training), train-

ing group (experimental or control group) and training type (whether the

continuum was trained or not) were entered into the model in the same

way. Details of the best fitting model are displayed in table 4.2. Post-hoc

Wald tests showed that after training, listeners increased significantly their
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Figure 4.2: Boxplot showing the effect of training session, training group and train-
ing type on listeners’ acoustic cue weighting ratio.

cue weighting ratio (β=1.63, SE=0.29, p<0.05), suggesting that they put rel-

ative more perceptual weighting to the formant structure cue after more

exposure to the degraded words. Word continua that were not in the train-

ing stimuli had higher ratios than the continua used in the training (β=1.04,

SE=0.34, p<0.05), but only after the training (β=2.01, SE=0.49, p<0.05). This

interaction is illustrated in figure 4.2.

Finally, to investigate how the sampling of speech cues affects listeners’

perceptual weighting of the formant structure and duration cues, another

twomixed effects linear regressionmodels were fit to the formant cue coeffi-

cients and duration cue coefficients, using the same fixed effect and random

effect factors. Details of the best fitting model on the formant structure cue
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Fixed effects: β SE p χ2 df p

Intercept 5.46 0.63 <0.05
Type(untrained) -0.11 0.57 >0.05 3.56 1 >0.05
Session(post) 1.52 0.70 <0.05 11.09 1 <0.001
Group(control) 0.33 0.79 >0.05 0.57 1 >0.05
Session(post):Type(untrained) 1.91 0.82 <0.05 5.31 1 <0.05
Session(post):Group(control) -1.60 0.82 >0.05 4.06 1 <0.05

Random effects: SD cor χ2 df p

Intercept | listener 0.94 150 1 <0.001

Fixed effects: β SE p χ2 df p

Intercept 1.22 0.07 <0.05
Session(post) 0.12 0.70 >0.05 11.09 1 <0.001
Group(control) -0.01 0.09 >0.05 0.10 1 >0.05
Session(post):Group(control) -0.30 0.13 <0.05 5.88 1 <0.05

Random effects: SD cor χ2 df p

Intercept | listener 0.05 121 1 <0.001

Table 4.3: Model parameter estimates and model comparison statistics for the best
mixed effectmodels fit to the formant structure (top table) and duration coefficients
(bottom table). The reference level for the categorical factor training session is
pre, for the reference level for training type is trained, and for training group is
experimental.

and duration cue coefficients are in table 4.3. Post-hoc Wald tests showed

that the formant structure coefficients increased significantly after training

(β=1.67, SE=0.41, p<0.05), suggesting that listeners put more reliance on the

spectral cue generally after the training.The two significant two-way inter-

action indicated that untrained word continua had bigger coefficients than

trained word continua after the training (β=1.80, SE=0.59, p<0.05), and in

the experimental group coefficients are bigger after the training (β=2.47,

SE=0.58,p<0.05). This interaction is shown in figure 4.3. Coefficients of the

duration cue were significantly bigger after the training in the experimental

group than the control group (β=0.30, SE=0.10, p<0.05). This interaction is
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Figure 4.3: Boxplot showing the effect of training session, training group and train-
ing type on the coefficients of the formant structure cue.
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Figure 4.4: Boxplot showing the effect of the training session, training group and
training type on the coefficients of the duration cue.

shown in figure 4.4.

4.3 Discussion

This experiment intends to investigate whether NH listeners could use the

statistical regularity of degraded speech cues to restore the mismatch be-

tween the acoustic inputs and the phonemic representations. Two groups

of listeners were trained with the same set of word continua, but differ-

ing in the sampling of the speech cues. The experimental group listened

to words that have their spectral and duration cues closely matching the

originally recorded words, while the control group listened to words that
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have speech cues equally sampled over the continuum.

Although listeners’ open-set sentence recognition increased after training,

there was no significant difference between two training groups. There-

fore, the improvement is probably due to more exposure to the degraded

acoustic inputs, instead of the training.

Along with the improvement in sentence recognition, listeners also al-

located more weighting to the formant structure cue than the duration

cue after the training. It seems to suggest that as listeners recover from

the initial signal degradation, they also regain the acoustic cue weighting

strategy used for undegraded speech (more perceptual weighting to the

spectral than the temporal cue). This expands the previous literature in

the investigation of the audio training effect that mainly focused on the

change in speech recognition performance. For instance, Rosen et al. (1999)

trained NH participants with 4-band 6.46mm shifted noise-vocoded speech

for around three hours, and showed that all test scores (BKB sentences,

vowel and consonant recognition) improved significantly, but only the

performance of consonants reached a similar level with the unshifted NV

speech at the end of the training. Stacey and Summerfield (2008) trained

NH listeners with 6mm shifted 8-band noise-vocoded sentences, words and

consonant-vowel syllable pairs. They showed no significant effects of pho-

netic training on sentence tests, and none of both sentence and phonetic

training on consonant and vowel tests. Listeners’ strategies are typically not

investigated in training studies with degraded speech, but it could provide

important information on listeners’ individual differences from training.
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For instance, Wanrooij et al. (2013) showed that although both pre-training

high performers and low performers improved their word categorisation

after the training, they relied on different cues to achieve the improvement.

However, it is unclear from the current study whether this change in acous-

tic cue weighting strategy is due to the manipulation of training stimuli.

There was no significant interaction of training group effect on the change

in acoustic cue weighting ratio before and after the training, suggesting

that the sampling of speech cues in the training materials didn’t change

listeners’ reliance on them. This might be due to an increase in the coeffi-

cients of both speech cues in the experimental group after the training,

making the change in the ratio of these two cues insignificant. Listeners

might be assisted by the ‘peaks’ of both formant structure and duration

cues in the experimental group. Typically, when one acoustic property is

measured across many tokens of a speech sound category, most values are

likely to cluster around a central value (as illustrated in figure 2.1) (Lisker

& Abramson 1964; Newman et al. 2001; Lotto et al. 2004). The number of

clusters would be indicative of the number of speech sound categories.

Past studies suggest that both adult and infants are able to observe the

number of clusters of speech cues and utilise this information to construct

novel speech categories. For instance, the distribution of phoneme /a/ F1

values in Spanish centers at 12.9 ERB, with only one peak representing

one phoneme category. Around similar values, Dutch contains two peaks,

centering at 12.2 ERB and 13.6 ERB, representing the phonemes /a/ and /ɑ/.

After exposure to words with a bimodal sampling of F1 cues similar to that
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of Dutch, Spanish listeners improved significantly in the discrimination

and categorisation of words with /a/ and /ɑ/, compared to the listeners who

were exposed to a unimodal sampling of F1 cues (Wanrooij & Boersma 2013;

Wanrooij et al. 2013, 2015). The 4mm spectral shifting used here induced a

significant shift of F1 F2 values out of listeners’ experience as indicated in

chapter 2, making it difficult for listeners to use this spectral cue for de-

limiting the tense and lax vowel boundary. With exposure to the bimodal

sampling of the shifted spectral cues (Experimental group), listeners could

be quicker to adjust the vowel boundary by observing the clustering in

the acoustic inputs and recover from the distortion. For the group trained

with no peaks in the spectral cue distribution (Control group), there is no

clustering of speech cues to direct listeners’ attention to the new vowel

boundary. This is consistent with the findings of the current experiment.

Listeners increased their perceptual attention on both the formant struc-

ture and duration cues after the training in the Experimental group, and the

increases were significantly bigger compared to the Control group, since

both cues clustered around the typical values of tense and lax vowels in

the Experimental group but there were no cluterings of speech cues in the

control group.

However, the increase in the coefficients of the formant structure cue was

bigger for the untrained word context than the trained word context. This

is inconsistent with other training studies, which typically observe similar

or bigger improvements for the trained stimuli (Fu et al. 2004; Fu, Nogaki,

& Galvin III 2005; Shafiro et al. 2012). Although the ‘sit’ - ‘seat’ and ‘pit’
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- ‘peat’ continua are not in the training materials, their vowel F2/F1 ratios

are within the same range as the trained ‘bit’ - ‘beat’ and ‘fit’ - ‘feat’ con-

tinua (table 2.1). It might be possible for listeners to apply the new vowel

boundaries onto the novel consonant contexts. Meanwhile, training only

contains two continua and the procedure is repetitive. It is likely that listen-

ers could develop fatigue over the trained continua, making their labeling

performance in the post-training testing less reliable.

This study suggests that NH listeners’ use of speech cues was not affected

by the distributional training here that intended to allocate relative more

perceptual attention on the spectral cue. Therefore, the next chapter will

reduce the statistical saliency of the secondary duration cue in the training,

in order to focus listeners attention to the formant structure cue. Ideally, the

training would encourage listeners to employ the optimal cue weighting

strategy specific for their language, and benefit listeners both behaviourally

and cognitively as observed in chapter 3. CI listeners will also be tested,

to investigate whether they could still utilise the statistical regularities of

speech cues and change their acoustic cue weighting strategy accordingly.
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CI listeners’ cue weighting

plasticity

Chapter 4 showed that NH listeners allocated more perceptual weight to

the spectral cue in the English tense - lax vowel contrast after the auditory

training. It is unclear whether CI listeners would also be sensitive to the

statistical regularities of speech cues and utilise this information to adapt

their listening strategies to benefit speech recognition. It is also hypothe-

sised that the benefits of auditory training not only lie in the improvement

of speech recognition, but also in the improvement of the efficiency of

using cognitive resources for speech recognition. Currently, typical in-

tervention outcomes are measured as the change in speech recognition

performance between follow-up sessions relative to the baseline session.

However, listeners with hearing loss often report increased effort and fa-

tigue, even when speech performance is equivalent. It would be likely that

after the intervention, listeners might still suffer from increased effort de-

spite an improvement in speech performance. Therefore, it is necessary to
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compare listeners’ use of cognitive resources for speech recognition before

and after the intervention, using both subjective rankings and objective

physiological measurements. Essentially, this provides an insight into how

hard listeners work to achieve a certain level of speech performance and

how the level of effort changes over training.

In this experiment, both NH (with 8-band noise-vocoded and 4mm up-

ward shifted simulation) and CI listeners were trained with multiple word

continua spoken by different talkers, which contained tense - lax vowels

with formant structure cues sampled either in a pattern similar to natural

speech (Experimental group) or evenly across the vowel categories (Con-

trol group).The difference in the perceptual weighting of speech cues, word

and sentence recognition was compared pre- and post- training.This was to

investigate whether the manipulation of the statistical regularity of speech

cues in the training materials had an impact on howmuch perceptual atten-

tion listeners allocate to the cues for word labelling and open-set speech

recognition. Meanwhile, their listening effort to achieve 50% of their sen-

tence recognition performance in speech-shaped noise was recorded using

pupillometry pre- and post- training. Similar to chapter 3, this adaptive de-

sign aimed to control for the confound of inherent intelligibility differences

across listeners, so that the listening effort was measured at a level simi-

larly difficult or easy for all participants. There was also within-individual

change in sentence recognition score after the training. Therefore, this de-

sign also made sure that listening effort was measured independently from

speech recognition performance.
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5.1 Methods

5.1.1 Participants

22 normal-hearing native standard Southern British English speaking

adults were recruited via the UCL Psychology Pool. All participants were

aged between 18 and 45 and had normal hearing (defined as hearing thresh-

olds of 20dB HL or better between 250 - 8000 Hz tested at octave frequen-

cies). None of them had prior experience with vocoded speech.

The same 6 post-lingually deaf cochlear implant users in Experiment 2

chapter 3 were recruited. Summary information is shown in table 3.2.

For their contributions, they were paid at the rate of 7.5 pounds per hour.

All participants consented to take part by reading and signing a consent

form, as approved by the UCL Research Ethics Committee. They were then

randomly assigned to either the Experimental or the Control group, with

11 NH and 3 CI participants in each.

5.1.2 Stimuli

Testing sentences were pre-recorded Basic English Lexicon (BEL) sentences

(Calandruccio & Smiljanic 2012), sampled at the rate of 44.1 kHz and spoken

by a male native speaker of British English. Sentences were manipulated

using PSOLA in Praat to be of the same duration (mean = 2.02s, standard

deviation = 0.24s).

Tomeasure listeners’ acoustic cue weighting strategy, the same synthesised
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Speaker Recorded words For testing For training
M1 pool, pull Yes Yes

fool, full Yes No
feet, fit Yes Yes
seat, sit Yes No
cart, cat Yes Yes

park, pack Yes No

M2 pool, pull Yes Yes
feet, fit Yes Yes
cart, cat Yes Yes

W1 pool, pull Yes Yes
fool, full Yes No
feet, fit Yes Yes
seat, sit Yes No
cart, cat Yes Yes

park, pack Yes No

W2 pool, pull Yes Yes
feet, fit Yes Yes
cart, cat Yes Yes

Table 5.1: The words recorded from different speakers (2 female W1 W2 and 2 male
M1 M2) used in either the testing (as indicated under the heading ‘For testing ’) or
the training (as indicated under the heading ‘For training ’).

‘beat’ - ‘bit’ word continuum as in chapter 3 was used. Each step in formant

structure was paired with each step in vowel duration, making 6×6 = 36

tokens.

To construct word stimuli for testing and training, 2 male and 2 female

native Southern British English speakers were recorded reading a ran-

domised list of words containing 3 tense - lax vowel contrasts in British

English: /i/ - /ɪ/, /ɑ/ - /ae/, /u/ - /ʊ/. Each word was repeated 30 times and

the exact words uttered by each speaker are listed in table 5.1. For words to

be used in the testing (as indicated by the appropriate column in table 5.1),

10 words in each continuum (5 with tense vowels and 5 with lax vow-

els) were randomly selected from the recordings. Altogether, there were
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(6×2+3×2)×10 = 180 tokens in the word test.

To synthesise words for training, only pool - pull (/u/ - /ʊ/), cart - cat (/ɑ/ -

/ae/) and feet - fit (/i/ - /ɪ/) word continua from the 4 speakers were used, as

indicated by the appropriate column in table 5.1.The synthesising procedure

was similar to chapter 4. The only difference was that this experiment used

the distribution of both F1 and F2 instead of the distribution of the F2/F1

ratio when selecting endpoint tokens. Firstly, the F1 and F2 of each tense

and lax vowels from each speaker were measured at 50% into the vowel

using Praat and were transformed into an ERB scale. The distribution of F1

and F2 along each tense - lax vowel continuum was then separately fitted

with a custom distribution that was the sum of two Gaussian distributions

with equal weights. Parameters of each F1 and F2 distribution are listed

in table 5.2. Based on the bivariate bimodal distribution of F1 and F2, two

endpoint values were selected for each continuum that had the highest

and lowest values on the cumulative density function. These two values

represented the most typical tense and lax tokens respectively in each con-

tinuum. Vowel durations of the recorded words were also measured for

each continuum and fitted with a linear regression as a function of F2/F1

ratio. Details of each linear fitting are listed in table 5.3. Then, 100 tokens

of each continuum were synthesised using the two tokens (matched in du-

ration and fundamental frequency) in the Tandem-STRAIGHT algorithm,

and the resulting F1 and F2 were measured in the same way as above.

The selection of word tokens for training was also similar to chapter 4. For

the Experimental group, 40 word tokens in each word continuum were
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Speaker Continuum Formant x̄1 σ 1 x̄2 σ2

W1 feet - fit F1 11.52 0.33 9.32 0.08
F2 23.11 0.20 21.20 0.17

cart - cat F1 15.15 0.79 13.36 0.47
F2 19.74 0.33 17.17 0.60

pool - pull F1 10.59 0.24 9.30 0.63
F2 15.62 0.22 15.32 0.70

W2 feet - fit F1 10.89 0.46 8.63 0.41
F2 22.82 0.73 19.10 0.17

cart - cat F1 16.27 0.24 14.33 0.38
F2 19.32 0.24 16.56 0.28

pool - pull F1 11.41 0.35 8.90 0.41
F2 18.71 0.63 14.28 0.41

M1 feet - fit F1 9.74 0.20 6.97 0.21
F2 21.58 0.17 19.61 0.27

cart - cat F1 12.94 0.26 12.29 0.47
F2 18.99 0.23 14.87 0.48

pool - pull F1 10.09 0.47 8.08 0.35
F2 22.86 0.28 12.40 0.33

M2 feet - fit F1 9.17 0.34 6.48 0.11
F2 20.99 0.36 19.21 0.23

cart - cat F1 12.08 0.10 11.38 0.24
F2 18.03 0.23 15.51 0.31

pool - pull F1 8.59 0.47 7.43 0.30
F2 21.24 0.12 12.58 0.87

Table 5.2: Model parameters of the bimodal distribution fitted to the F2 and F1 of
the recorded monosyllable words of each speaker.

Speaker Continuum Model Model fit

W1 feet - fit duration = 0.05 × F2/F1 + 0.05 F(1,60)= 185.19, p< 0.01
cart - cat duration = -0.03 × F2/F1+ 0.14 F(1,60)= 102.19, p< 0.01
pool - pull duration = 0.16 × F2/F1 -0.17 F(1,60)= 170.10, p< 0.01

W2 feet - fit duration = 0.04 × F2/F1 - 0.02 F(1,60)= 162.22, p< 0.01
cart - cat duration = -0.73 × F2/F1 + 0.98 F(1,60)= 185.19, p< 0.01
pool - pull duration = -0.07 × F2/F1 + 0.24 F(1,60)= 100.31, p< 0.01

M1 feet - fit duration = 0.01 × F2/F1 + 0.07 F(1,60)= 151.48, p< 0.01
cart - cat duration = -0.25 × F2/F1 + 0.47 F(1,60)= 190.88, p< 0.01
pool - pull duration = -0.01 × F2/F1 + 0.16 F(1,60)= 117.19, p< 0.01

M2 feet - fit duration = 0.03 × F2/F1 + 0.04 F(1,60)= 147.39, p< 0.01
cart - cat duration = -0.14 × F2/F1 + 0.33 F(1,60)= 135.92, p< 0.01
pool - pull duration = 0.05 × F2/F1 + 0.03 F(1,60)= 192.19, p< 0.01

Table 5.3: Model parameters and fittings for the linear regression fitted to the vowel
duration with the F2/F1 ratio as the predictor for each recorded word and speaker.
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selected based on the bivariate bimodal Gaussian distribution fitted to the

recorded words (see details in table 5.2). Each of these words has F1 and

F2 values with equal intervals in the probability density of the bimodal

distribution. Therefore, all training words have different F2 and F1 val-

ues, but still preserve the same statistical features of the original recorded

word continuum. For the control group, 40 word tokens in each continuum

were selected based on the uniform distribution fitted to the F1 and F2 of

the recorded words. Vowel durations were then calculated for each token

based on the linear regressions fitted to the recorded words (table 5.3). For

the Experimental group, the duration of the vowel in each training word

was with PSOLA in Praat to the average of each tense - lax vowel contin-

uum from each speaker, so that the vowel duration of the tense vowel was

the same as that of the lax vowel for each speaker. For the control group,

the duration of the vowel in each training word was manipulated to be the

calculated values from table 5.3.

With this design, the sampling of the formant structure cue in the Exper-

imental training group for the word stimuli was manipulated in a way

that it followed a bimodal distribution that resembled the natural speech.

Different from chapter 4, vowel durations were fixed, making the vowel

duration cue invariant across the tense - lax vowel categories. This was to

increase the statistical saliency of the spectral cue and decrease the saliency

of the duration cue, in order to encourage listeners to re-tune their atten-

tion towards the spectral aspect. For the control group, the sampling of

the formant structure cue did not reliably relate to speech categories, but
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the duration cue could be used since its sampling was closer to the natural

speech. In addition to the synthesised monosyllabic words, 20 common and

distinctively different multi-syllabic words recorded from the 4 speakers

were also included in both training stimulus sets (‘chocolate’, ‘university’,

‘computer’, etc.).

For NH listeners, all testing and training stimuli were 8-band noise-vocoded

and 4mm upward shifted, using the same method and parameters in chap-

ter 2.

5.1.3 Procedure

Participants were seated in a quiet room, 70 cm from a 17-inch white screen

monitor and 55 cm from an infrared monocular eye-tracker (Eyelink 1000,

SR Research, 500 Hz sampling rate). All audio stimuli were presented

through Yamaha MS101 loudspeaker, calibrated at 72 dB SPL. The illumi-

nance of the room was adjusted for each participant, such that the pupil

diameter was midway between maximum and minimum size (elicited by

turning off and on the room lighting consecutively). Experiments were run

in Matlab using Psychtoolbox and custom software.

Before the first session, all participants were introduced to the testing and

training software. They listened to different sets of BEL sentences (simu-

lated speech for NH listeners and unprocessed speech for CI listeners), and

then were given written and acoustic feedback. No active responses were

required.

To find listeners’ baseline performance before the training, they were tested
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with a series of auditory tasks. Firstly theywere testedwith 30 randomly se-

lected BEL sentences in quiet to obtain each individuals’ speech recognition

score. In each trial they listened to a sentence and the number of keywords

correctly reported by participants was noted down. Their percentage cor-

rect was averaged across trials to obtain their speech recognition score.

Then their listening effort was measured in the same way as in Experiment

2 chapter 3. An adaptive speech perception threshold test was performed

for each listener, using speech-shaped noise to track 50% of each individ-

uals’ speech recognition score in quiet with the UML package in Matlab

(Shen & Richards 2012). Their averaged recognition score was set as the

upper bound of the logistic psychometric function. The prior distribution

range of the psychometric function slope was set between 0.1 to 10, and

the range of the threshold was set between -10 dB to 30 dB. The SNR level

of the first trial was set as 5 dB. Then the number of keywords reported

by the participants were entered into the function, and the SNR for the

next trial was estimated online based on the sweet point for threshold es-

timation using the Bayesian minimum-variance procedure. The SRT test

was set to converge either when the 90% confidence interval of the thresh-

old estimation was within 3 dB or reaching the maximum trial number of

30. At the SRT level obtained from each individual, a fixed SNR speech

recognition test with 20 sentences was then performed and participants’

pupil responses were recorded simultaneously. Due to this control on the

intelligibility across participants, each trial in the fixed SNR test was of a

similar difficulty for each participant, regardless of their speech recognition
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performance. The presentation of the speech-shaped noise masker started

2s before sentence onset and finished 2s after sentence offset. Participants

were instructed to fixate the black fixation cross on the white monitor and

avoid excessive blinks. After the masker offset, they were prompted by the

colour change of the fixation cross to repeat back the sentence (see a similar

example in figure 3.1). Their sentence recognition responses were scored

by the experimenter and the program proceeded to the next trial. Then,

participants’ cue weighting strategies were measured with the same word

labeling task as in chapter 3, with the same synthesised ‘beat’ - ‘bit’ word

continuum. Each step in formant structure was paired with each step in

vowel duration, making 6×6 = 36 tokens. Exact values of each token are

illustrated in table 2.5. After hearing a word token, listeners were instructed

to choose what they heard on the screen from either ‘beat’ or ‘bit’. Their

response was recorded by the computer and the next trial started. Finally,

listeners’ word recognition scores were obtained. After hearing a word,

they were instructed to click on the word they heard on the screen, from

all possible 12 words in the testing stimuli. Their response was recorded by

the computer and the next trial started.

For NH listeners, training was conducted in the same room on two con-

secutive days, each lasting for approximately one and half hours. In each

training session, participants were exposed to 3 monosyllabic word con-

tinua recorded from 4 speakers and 20 random multi-syllable words, re-

peated 2 times each and all randomised, totalling to 3×4×40×2+20×2

= 1000 words. The manipulated monosyllable words serve as training stim-
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uli to adjust listeners’ perceptual cue weighting strategy, and the multi-

syllable words were to check whether listeners were paying attention.

Participants were presented acoustically one randomly selected word, and

visually four words on the computer screen, two foils and two containing

targeted tense/lax vowels. They were then instructed to select from those

four choices the one they heard, or click the button ‘none ’ to indicate that

the word was not a monosyllable. If a multi-syllable word was mistakenly

recognised as one of the four choices or vice versa, listeners were prompted

by a window to keep paying attention. After registering the response, the

program proceeded to the next trial without feedback. The second session

on the next day was conducted with the same number of stimuli but in a

different sequence.

For CI listeners, the same training program was compiled in Matlab into

a standalone application. It was then installed on a Windows computer

tablet, which was issued to each CI participant. Altogether, there were

three training sessions, each lasting for approximately one and half hours.

Each session contained the same number of word stimuli, and the sequence

was randomised for each participant. CI listeners were instructed to finish

the three sessions over 5 days at home, and return to the lab for the post-

training testing within 1 week from the baseline testing.

After finishing their training sessions, all participants were tested with the

same series of auditory tasks.

All participants finished their training and testing sessions.
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5.1.4 Data processing

The processing of pupillometry data was identical to Experiment 2 in chap-

ter 3. Baseline pupil diameter in each trial was calculated as averaged pupil

traces 1s before the start of the sentence.The rest of the pupil diameter mea-

surements were divided by that baseline level to obtain the proportional

pupil size change elicited by sentence recognition. Blinks and problematic

trials were excluded using the same rules as in chapter 3. Altogether, 981

trials of pupil response recordings were included for analysis, with 34 tri-

als on average for each NH participant (SD = 4) and 37 trials for each CI

participant (SD = 2). All valid traces were then low-pass filtered at 10 Hz

and downsampled to 50 Hz. Three indices of pupil response (mean pupil

dilation, peak pupil dilation and peak latency) were obtained from pro-

cessed traces, consistent with the method in Zekveld et al. (2010, 2011).

Mean proportional pupil size change and peak proportional pupil size were

the average and maximum of proportional pupil changes from sentence

onset to response prompt, relative to the baseline pupil size. Peak latency

response was the time between onset of the sentence to the peak dilation. A

principal component analysis was then performed in R, with three variables

scaled to the same unit of standard deviation and centering at zero. Details

of the principal components are reported in table 5.4. The first principal

component was mostly related to the proportional mean and peak pupil

size changes, indicated by their large coefficients (0.70 and 0.70). The first

principal component was selected as an index for sentence-evoked pupil
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Importance of principal components:

PC1 PC2 PC3
Standard deviation 1.40 0.99 0.22

Proportion of variance 0.65 0.33 0.02

Rotation:

PC1 PC2 PC3
Latency 0.14 -0.99 -0.08

Mean proportional change 0.70 0.04 0.71
Peak proportional change 0.70 0.15 -0.70

Table 5.4: The importance of principal components and variable rotation of the
principal component analysis on all valid trials.

response, since it explained the most variance in the three indices (65%).

A cue weighting ratio for each individual was calculated from the binomial

response of participants in the word labelling task, using the same method

as in chapter 3. Similarly, a higher ratio indicates more reliance on the

spectral cue relative to the temporal cue; and a lower ratio indicates more

reliance on the temporal cue relative to the spectral cue.

5.2 Statistical analysis and results

A summary of results is displayed in table 5.5. Firstly, to investigate whether

training had an impact on listeners sentence recognition performance, a

mixed effect linear regression model was built for NH listeners, with sen-

tence correct as the dependent variable. Random effect factor listener, and

fixed effect factors training session (before or after the training), training

group (Experimental or Control group) were entered into the model in the

same way as previous chapters. Only training session was found signifi-

cant (χ2=19.72, df=1, p<0.01) and a post-hoc Wald test indicated that after

163



Acoustic Cue Weighting Strategy and Distributional Training

Sentence recognition:
NH CI

pre post pre post

Experimental: 0.65 (±0.15) 0.72 (±0.13) 0.96 (±0.03) 0.96 (±0.03)
Control: 0.55 (±0.08) 0.68 (±0.10) 0.89 (±0.08) 0.90 (±0.02)

Word recognition:
NH CI

pre post pre post

Experimental: 0.45 (±0.14) 0.51 (±0.15) 0.80 (±0.19) 0.85 (±0.10)
Control: 0.39 (±0.09) 0.48 (±0.15) 0.67 (±0.13) 0.79 (±0.05)

PC1 score:
NH CI

pre post pre post

Experimental: 1.33 (±0.97) 0.54 (±0.51) 0.66 (±0.72) 0.36 (±0.30)
Control: 0.93 (±0.93) 0.43 (±0.32) 2.10 (±0.28) 1.15 (±1.06)

Cue weighting ratio:
NH CI

pre post pre post

Experimental: 1.04 (±0.29) 2.07 (±2.10) 1.33 (±0.82) 0.87 (±0.29)
Control: 1.04 (±0.52) 1.18 (±0.92) 1.06 (±0.40) 1.75 (±1.07)

Formant cue coefficient:
NH CI

pre post pre post

Experimental: 2.00 (±0.81) 3.15 (±2.61) 1.97 (±0.34) 2.57 (±1.23)
Control: 1.88 (±0.68) 2.28 (±0.91) 2.33 (±0.30) 3.03 (±1.14)

Duration cue coefficient:
NH CI

pre post pre post

Experimental: 1.89 (±0.55) 2.06 (±1.11) 1.76 (±0.68) 2.87 (±0.45)
Control: 2.11 (±0.80) 2.21 (±0.76) 2.56 (±1.43) 2.14 (±1.10)

Table 5.5: The mean and standard deviation of the testing results for NH and CI
listeners.
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Figure 5.1: The left pair of panels shows the boxplots for NH listeners’ sentence
recognition scores in quiet, and the right pair of panels shows the scores of each
CI participant.

training, NH listeners’ sentence recognition performance in quiet was sig-

nificantly better (β=0.1, SE=0.02, p<0.05). There were no improvement in

sentence recognition scores after the training for CI users (pre: 0.93, post:

0.93), and between training group (Experimental pre: 0.97, Experimental

post: 0.96; Control pre: 0.90, Control post:0.9). Boxplots for NH listeners

and point plots for CI listeners are displayed in figure 5.1.

To investigate whether training had an impact on listeners word recogni-

tion performance, a mixed effects linear regression model was built for NH

listeners, with word correct as the dependent variable. Random effect factor

listener, and fixed effect factors training session (before or after the train-

ing), training group (Experimental or Control group), word type (whether

the word was in the training or not) were entered into the model. Only

training session (χ2=18.61, df=1, p<0.001) was found significant. A post-hoc
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Wald test showed that NH listeners’ word recognition performance was

significant better after the training (β=0.07, SE=0.02, p<0.05). A similar

increase in the word recognition score was also observed for CI users (pre:

0.74, post:0.82).

To compare listeners’ cognitive effort for sentence recognition between

training groups and sessions, a mixed effect linear regression model was

built for NH listeners, with the first principal component score (PC1) of pupil

responses as the dependent variable. Random effect factor listener, and fixed

effect factors training session (before or after the training), training group

(Experimental or Control group) were entered into the model in the same

way. Similarly, only training session was significant (χ2=8.71, df=1, p<0.01),

and the pupil dilation PC1 was significantly smaller after the training (β=-

0.64, SE=0.20, p<0.05), suggesting less listening effort after the training.

Another three mixed effect regression models with the same independent

variables were built, using the mean pupil size, peak pupil size and latency

response as the dependent variable respectively. No significant effect of

training session was found for mean pupil size (χ2=0.91, df=1, p=0.35), peak

pupil size (χ2=2.19, df=1, p=0.14) and latency response (χ2=1, df=1, p=0.32). A

similar decrease in the mean PC1 score after the training was also observed

for CI users (pre: 1.38, post:0.76). The pupil size variation of CI listeners

before and after the training is shown in figure 5.2. A boxplot of PC1 score

for NH listeners and a point plot of PC1 score for CI listeners are displayed

in figure 5.3.

Finally, to examine whether the exposure to a different sampling of speech
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Figure 5.3: The left pair of panels shows the boxplot for NH listeners’ first principal
component scores for the three pupil dilation indices (mean dilation, peak dilation
and latency), and the right pair of panels shows the scores of each CI participant.

cues affected listeners’ acoustic cue weighting strategy, a mixed effects lin-

ear regression model was built for NH listeners, using cue weighting ratio as

the dependent variable, with random effect factor listener and fixed effect

factors training session (before or after the training), training group (Ex-

perimental or Control group). No factor was found significant. Generally,

NH listeners in both Experimental and Control group showed an increase

in the cue weighting ratio after the training (suggesting more perceptual

weighting to the formant structure cue than the duration cue). However,

two out of three CI listeners in the Experimental group (‘Cc’ and ‘Ce’) had

an decrease in the cue weighting ratio, with an increase in the weighting

of the duration cue and a decrease in the formant structures cue. This is

illustrated in figure 5.4 for NH listeners and figure 5.5 for CI listeners.
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Figure 5.4: NH listeners’ proportion of tense vowel responses in the word categori-
sation task.The filled circle (•) is the averaged proportion response for each step in
formant structure, and the hollow triangle (4) is the averaged proportion for each
step in duration. The filled line (−) is the logistic regression fit to the proportion of
tense vowel responses using steps in formant structure, and the broken line (- -) is
the logistic regression using steps in duration.
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Figure 5.5: The top panel shows CI listeners’ proportion of tense vowel responses
with steps in formant structure, and the bottom panel shows the responses with
steps in duration. The circle is the averaged proportion response for each step be-
fore the training, and the triangle is the averaged response after the training. The
filled line is the logistic regression fit to the proportion of tense vowel responses
before the training, and the broken line is the logistic regression fit after the train-
ing. The panel annotation indicates each listener’s training group and acoustic cue
weighting ratio.
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5.3 Discussion

This experiment extends the findings in chapter 4 by investigating CI users’

sensitivity to the statistical regularities of speech cues and comparing the

amount of listening effort used for sentence recognition before and after

the auditory training. While chapter 4 allowed for the variation of vowel

duration in the training stimuli, this experiment fixed vowel duration in

the Experimental group so that the spectral cue was the only speech cue

varying across tense and lax vowel categories. It was hypothesised that by

reducing the utility of the duration cues, listeners would be more likely to

allocate more attention on the spectral cue, which is the cue NH listeners

weighted perceptually more on. As suggested by previous literature and

chapters, this change in the acoustic cue weighting strategy should benefit

listeners’ speech recognition and the efficiency of using cognitive resources

for speech recognition.

No significant impact of training on listeners’ perceptual weighting of the

speech cues was found. Nevertheless, NH listeners showed a similar pattern

of change as in chapter 4.There was an increase in the mean of acoustic cue

weighting ratio after the training, suggesting that listeners allocated more

perceptual weighting to the formant structure cue than the duration cue.

And the increase was bigger in the Experimental group than in the Con-

trol group. This was due to a bigger increase in the mean of the formant

structure coefficient for the Experimental group than the Control group,
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while the increase in the mean of the duration coefficients was similar be-

tween two groups. This difference could be attributed to the manipulations

on the statistical features of the speech cues in the training stimuli. In the

Experimental group, the formant structure cue had a bimodal distribution

pattern along the tense - lax vowel continuum and the duration cue was

invariant; in the control group, the formant structure cue had a uniform

distribution and the duration cue was bimodal. It is likely that the expo-

sure to a bimodal distribution facilitated listeners’ restoration of perceptual

weighting of the damaged spectral cue in the Experimental group, since it

provided clusterings along the vowel continuum that help to adjust listen-

ers’ speech category boundary. The new vowel and tense vowel boundaries

were shifted beyond listeners’ normal experience by the 4mm upward shift-

ing, and listeners’ sensitivity to the spectral shape was diminished by the

8 band noise-vocoding (as indicated by chapter 2). These might make the

spectral cue less useful for listeners in categorising vowels. Although no

past studies have introduced a similar type of distortion, some have shown

that both top-down lexical tuning and statistical regularity in the acoustic

cues improve the mapping of perceptually mismatched stimuli induced by

foreign accent or experimental manipulations (Clayards et al. 2008a; Escud-

ero et al. 2011; Idemaru & Holt 2011; Wanrooij & Boersma 2013; Idemaru &

Holt 2014; Escudero &Williams 2014; Reinisch &Holt 2014; Ong et al. 2015).

Typically in these studies, NH listeners are exposed to speech cues with a

different frequency distribution than their native language, for instance a

different number of clusters (the number of speech categories) and clus-
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ter boundaries as in Escudero et al. (2011); Wanrooij and Boersma (2013);

Escudero and Williams (2014), or a different correlation with other cues

as in Idemaru and Holt (2011, 2014); Liu and Holt (2015). Before the train-

ing, listeners’ use of the speech cues was dominated by that of their native

language, making their recognition and discrimination of the new accent

poor. After the training, their performance improved, suggesting that they

accommodated to the difference and adopted the new pattern. Similarly,

NH listeners in this experiment might also have observed the new distribu-

tion pattern of the spectral cue during the training and adapted it to opti-

mise vowel categorisation and discrimination. This procedure would draw

more attention to the usefulness of the spectral cue that would otherwise be

down-weighted due to the spectral degradation and distortion. Meanwhile,

since the duration cue is intact through the CI simulation, there is little

mismatch between the immediate acoustic input and the long-term repre-

sentation, so the manipulation of its statistical features might not overcome

listeners’ original perceptual attention to it.

Due to the small sample size, no reliable statistical test with three factors

could be performed on the data of CI users. Nevertheless, they showed

some changes in the reliance on the formant structure and duration cues

after the training. However, different from the trend for NH listeners, two

out of three CI participants in the Experimental group showed a decrease

in the cue weighting ratio. Specifically, the coefficient of duration cue in-

creased after the training, although the durations of vowels in the Exper-

imental group training words were fixed and not reliably associated with
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any speech category. It is likely that although the formant structure cue in

the Experimental group formed two clusters to facilitate the construction

of two speech categories, this pattern is not unusual in natural speech. But

fixed duration is uncommon in naturally uttered speech, and this might

attract listeners’ attention to the duration cue instead. Also, the increase

in the mean of the formant structure coefficient was similar between the

Experimental and Control group, suggesting that the experimental manip-

ulation on the statistical distribution of the spectral cue didn’t have an im-

pact on CI listeners’ perceptual reliance. Past studies have suggested that

listeners could utilise the probabilistic speech cues that contribute to the

phonetic identity, and tune their weighting of these cues in order to adjust

for the specific distribution of the cues in different styles of speech (Holt &

Lotto 2006; Clayards et al. 2008b; Lau et al. 2016). However, there could be

a number of sensory and cognitive constraints that might prevent listeners

from achieving this optimised performance. For instance, a secondary task

during speech perception could impact listeners’ speech encoding (Mitterer

& Mattys 2017). Specifically for CI listeners in this experiment, they might

not have enough spectral resolution to be sensitive to the distribution of

the formant structure cues in the training stimuli. Although all CI partici-

pants could perform the auditory discrimination tests in chapter 3, the tests

were constrained within the frequency range of the testing stimuli. It is

unclear whether they have the similar auditory sensitivity at the vowel-

specific and speaker-specific frequency region in the training stimuli to de-

tect the variation in the formant structure. CI listeners’ cognitive abilities
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could also affect their performance. Moberly et al. (2017) showed poorer

working memory accuracy and highly impaired phonological sensitivity

for CI listeners group compared to the age-matched NH listeners group.

Both cognitive functions are important for processing phonological infor-

mation, and the impairment could damage listeners’ observation and use

of the statistical properties of speech cues. All these confounds could intro-

duce a significant amount of stress on CI listeners’ phonological processing,

making them unable to be as flexible as NH listeners in adjusting their per-

ceptual weighting of the speech cues to optimise their performance.

Note, however, that these trends were not statistically significant for either

NH or CI listeners. This might be due to the difference in the training and

testing stimuli. While chapter 4 used the same speaker and vowel in the

training and testing, this experiment used multiple vowels and talkers in

training and synthesised words for testing. Similar studies typically used

the same vowel or consonant from the same speaker in the training and

testing (Idemaru & Holt 2011; Liu & Holt 2015; Schertz et al. 2016). Those

investigating the generalisation of the training effect found that the learn-

ing effect was constrained by the perceptual space and category (Escudero

& Williams 2014; Idemaru & Holt 2014; Reinisch & Holt 2014; Ong et al.

2015). Therefore, using synthesised words for testing might not fully reflect

the impact of the training that contained different vowels and frequency re-

gions. This experiment also introduced a bigger degradation in CI acoustic

simulation that significantly changed listeners’ use of the spectral cue (see

chapter 2). Longer training might be needed before listeners could recover
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the phonemic structure from the distorted acoustic inputs. Furthermore, it

is possible that adults are generally not as sensitive to the statistical fea-

tures of the speech cues as infants, since this low-level mechanism could

be dominated by the top-down influence from the higher-level linguistic

representations that are acquired and matured over years of exposure to a

native language (Wanrooij et al. 2014). Passive exposure might also not be

the ideal training format for adults. Adding explicit procedures along with

the exposure to the statistical distribution of speech cues has been found to

impact listeners’ training outcome significantly. For instance, requiring ac-

tive responses from listeners improved their discrimination of lexical tones,

and presenting listeners with exemplars prior to the training improved their

response time of syllable detection (Batterink et al. 2015; Ong et al. 2015).

Explicit procedures might help to increase listeners attention to the statis-

tical distribution of speech cues, which is a low-level feature of speech that

would otherwise be outweighed by other higher-level features (lexical level,

semantic context, etc.).

While it has long been recognised that listeners with hearing loss report in-

creased effort and fatigue, interventions that aim to help listeners to benefit

maximally from hearing aids seldom investigates its impact on this aspect.

Speech recognition measurements are not enough to characterise listen-

ers’ speech performance. In some cases, a high level of listener effort was

still reported even when performance was equivalent (McCoy et al. 2005;

Bologna et al. 2013); while in other cases, listeners reported more effortless

listening with no significant change in speech recognition (Sarampalis et al.
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2009; Ahlstrom et al. 2014). An independent and unbiased measurement of

listening effort should be applied, in order to better characterise the inter-

vention outcomes. For instance, Kuchinsky et al. (2014) showed improved

word recognition scores as well as more rapid and bigger pupil response

after a word training for older adults with hearing loss. Cochlear implanta-

tion has been proven to improve speech recognition abilities and life quality

for post-lingually deaf listeners (Sladen et al. 2017). Specifically, training has

been found to improve listeners speech recognition performance, and this

study is the first to investigate the change in listening effort induced by

the auditory training. CI listeners were found to have significantly smaller

pupillary response, accompanied by a significant improvement in sentence

recognition after training. Although this resultmight look inconsistent with

the finding of Kuchinsky et al. (2014), it could be due to the different in-

terpretation of pupillary response in the two studies caused by different

experimental manipulations. In Kuchinsky et al. (2014), no adaptive pro-

cedure was applied, therefore, the pupillary response before and after the

training reflects the absolute amount of attention and cognitive resources

allocated for word recognition. After the training, the same task used be-

fore the training became easier, so listeners have extra cognitive ‘space’ to

invest in more resources to enhance their speech performance. Therefore,

the increase in the pupillary response includes both release from the speech

understanding difficulty and listeners’ active allocation of more cognitive

resources. In comparison, this experiment measured pupillary responses

at 50% of each listeners’ performance before and after the training, making
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sure that the measurements reflected the amount of effort required to reach

the same level of performance. Any change in speech processing abilities

due to the training will not affect the adaptive measurement of cognitive

effort. Therefore, a decrease in pupillary response would suggest that after

training, listeners need significantly less cognitive resources to cope with

a similarly difficult speech task as before the training. Therefore, they ex-

perience less cognitive load in general for speech understanding. This also

illustrates the importance of using experimental designs that take into con-

sideration between- and within-individual variances, especially for HI lis-

teners considering their high variability in speech and cognitive abilities.

However, whether this decrease in pupillary response is due to the auditory

training used here is unclear, since there is no significant interaction of the

training group. The decrease in listening effort might just be the result of

CI listeners getting used to the sentence materials and testing procedures.

This study suggests that CI listeners’ sensitivity to the statistical features

of speech cues might be diminished by their auditory and cognitive con-

straints. Nevertheless, exposure to multi-talker words materials, regardless

of the distribution of speech cues, helps to improve CI listeners’ sentence

and word recognition, as well as decrease their listening effort.
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General Discussion and Future

Direction

This dissertation investigates the impact and plasticity of NH (with CI

acoustic simulations) and CI listeners’ acoustic cue weighting strategies. It

was hypothesised that how listeners allocate perceptual attention to differ-

ent speech cues is related to how accurately and effectively listeners can re-

store the phonemic structures from the acoustic inputs. Therefore, it would

be beneficial to use auditory training to guide listeners’ attention to the

more reliable and informative cues for their specific language, in order to

improve their speech recognition and ease listening effort.The first hypoth-

esis was examined in Chapter 3, and the second hypothesis was examined

in Chapters 4 and 5.

Chapter 2 firstly explored the impact of different degree of spectral degrada-

tion, distortion and background noise on the relative spectral and duration

cue weighting in a /bɪt/ - /bit/ contrast for NH listeners with noise-vocoded

and spectrally-shifted speech. This was to simulate the wide range of signal
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degradation and distortion perceived by CI users. Listeners were found to

decrease their perceptual weighting on the formant structure cue but re-

tained the same weighting on the duration cue once spectral degradation

and distortion were applied to the stimuli. This suggests that the CI simu-

lation not only reduced the amount of spectral information available to lis-

teners, but also changed their perceptual attention to the spectral cue. Also,

the impact of immediate spectral degradation and distortion was not inde-

pendent, since increasing spectral resolution by increasing the number of

vocoding bands didn’t change the cue weighting pattern for spectral shift-

ing larger than 3mm. Therefore, both spectral degradation and distortion

had a significant impact on listeners’ acoustic cue weighting. Past studies

typically didn’t use spectral shifting in CI simulations, which might un-

derestimate the degree of signal mismatch experienced by CI users hence

couldn’t characterise their cue weighting pattern.

Chapter 3 investigated whether listeners’ acoustic cue weighting strategies

were related to how they use cognitive resources for sentence recognition.

It was shown that for both NH and CI listeners, there was a trend that more

weighting of the formant structure cue than the duration cue was associ-

ated withmore efficient use of cognitive resources for sentence recognition.

Even for CI users, when their auditory sensitivity was taken into account,

this relation bordered on significance. This seems to suggest that using

the acoustic cue weighting strategy similar to a native language speaker,

even when the speech signals are compromised, benefits the mapping from

acoustic inputs to their phonemic representations. The weighting strategy
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shared by NH listeners within the same language community is robust and

developed over years. Therefore, this strategy is likely to be the most effec-

tive one for that particular language or dialect in processing acoustic cues

for speech perception, by allocating more attention to the most informative

and reliable cues. Post-lingually deaf CI listeners who keep this strategy

after hearing loss and apply it to the speech signals perceived through their

implants are essentially using the most useful strategy for that language,

so they should be better in the speech recognition performance. To further

support this hypothesis, firstlymore CI listeners need to be recruited.Mean-

while, CI listeners from other languages/dialects with different types of cue

weighting strategy should be tested to see whether this effect is replicable.

According to this hypothesis, whatever relative cueweighting pattern a cer-

tain group of adult NH listeners uses, if post-lingually deaf CI users in the

same language community used a similar strategy, they should be better

speech performers.

There could also be an alternative explanation.The relation between acous-

tic cue weighting and speech performance might not be a causal one. In

another word, the better CI performers might be more efficient in speech

processing not because they use a certain cueweighting strategy, but rather,

that these better performers have more intact internal phonological repre-

sentations and phonological processing abilities for their native language,

which were developed prior to their hearing loss. Hence, they have a per-

ceptual cueweighting strategy similar to that of their NH counterparts. Pre-

vious studies showed that adults with hearing impairment had poor perfor-
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mance on even visually presented rhyme-matching tasks, suggesting that

their phonological representations had deteriorated (Lyxell et al. 1998; Clas-

son et al. 2013). In a more recent study, Moberly et al. (2017) showed even

after controlling for age and working memory, that CI users performed sig-

nificantly worse in nonword repetition and lexical decision tasks, which

both require listeners to recognise detailed phonological structure in the

speech inputs. Therefore, CI listeners who have better phonological repre-

sentations and abilities, possibly due to a shorter period of deafness and

better peripheral and central auditory system integrity, are most likely to

be good performers. This might explain the concurrent relation between

listeners’ cue weighting strategy and speech perception efficiency shown

in this experiment.

Past studies and Chapter 3 reported no significant correlation between

listeners’ acoustic cue weighting strategy and their auditory sensitivity

(Moberly et al. 2014, 2016). This suggests that some CI listeners don’t use all

the spectral differences in the perceived auditory signals for speech cate-

gorisation. Also, previous studies and Chapter 4 have shown that NH adult

listeners are still sensitive to the statistical regularities in the visual and au-

ditory inputs, although not at a similar level as infants (Wanrooij & Boersma

2013; Wanrooij et al. 2014). These present the possibility that CI listeners

could be trained to allocate more perceptual attention on the spectral cue

by manipulating the distribution of speech cues. However, results in Chap-

ter 5 suggested that CI listeners were not sensitive to this manipulation of

the training materials. This could be due to many reasons. Firstly, CI listen-
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ers might not have access to this information. As mentioned above, their

phonological processing ability has been compromised due to prolonged

hearing loss and distorted acoustic inputs. This might include the ability to

track occurrences of certain speech categories, observe the differences in

acoustic cues and generate an updated representations of the speech cate-

gories. Secondly, due to the low resolution and saliency of the input signals,

CI listeners’ speech perception might be mainly driven by top-down pro-

cessing. During speech communication, a listener needs to access to the

acoustic signals, employ attention and intention, interpret the linguistic

and pragmatic contexts, etc. However, this continuous cooperation between

the top-down and bottom-up information processing is disturbed when the

acoustic inputs are degraded and distorted. To compensate for that, listeners

are shown to rely more on the contextual information and cognitive pro-

cesses (Davis et al. 2005; Zekveld et al. 2006; Obleser et al. 2007). Therefore,

changes in low-level signal properties, for instance, the statistical features

of acoustic cues, might not have a great impact on CI listeners’ speech per-

ception.

The results in Chapter 5 also suggest that, after training, both groups of

listeners tend to have decreased pupil responses. This suggests that listen-

ers had less listening effort understanding sentences after the training, al-

though the improvement was not likely due to the training implemented.

However, this shows that it is possible for listeners to increase their sen-

tence recognition performance and decrease their listening effort at the

same time. Therefore, rehabilitations for CI users should have an updated
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goal: training should not only improve CI listeners’ speech recognition per-

formance, but also decrease their listening effort. Both aspects are impor-

tant in assessing the efficacy of a CI training program, since speech per-

ception should both be more accurate and less costly in terms of cognitive

resources to support other tasks of daily life.

In summary, this dissertation presents studies that are among the first to in-

vestigate the cognitive impact of individual variability and auditory train-

ing for CI users. Although the specific auditory training method in the cur-

rent study didn’t have an impact on CI listeners sentence recognition and

listening effort, the line of research to find individual auditory or linguistic

features that explains the great variability in listening effort remains impor-

tant. Many studies have investigated the variability in CI users’ accuracy

of speech perception; therefore, how efficiently they understand speech

should receive the same amount of attention. Only by drawing more atten-

tion to their listening effort and tailor auditory training to resolve the prob-

lem of high listening fatigue, can CI users benefit more from the use of their

device and enjoy a higher quality of life.
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