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Abstract

How do people recognize and learn about complex functional structure? Taking inspiration

from other areas of cognitive science, we propose that this is achieved by harnessing

compositionality: complex structure is decomposed into simpler building blocks. We

formalize this idea within the framework of Bayesian regression using a grammar over

Gaussian process kernels, and compare this approach with other structure learning

approaches. Participants consistently chose compositional (over non-compositional)

extrapolations and interpolations of functions. Experiments designed to elicit priors over

functional patterns revealed an inductive bias for compositional structure. Compositional

functions were perceived as subjectively more predictable than non-compositional functions,

and exhibited other signatures of predictability, such as enhanced memorability and reduced

numerosity. Taken together, these results support the view that the human intuitive theory of

functions is inherently compositional.

Keywords: Function learning; Pattern recognition; Compositionality; Structure search;

Gaussian process
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Compositional Inductive Biases in Function Learning

Introduction

Recognizing functional patterns is a ubiquitous problem in everyday cognition,

underlying the perception of time, space and number. How much food should you cook to

satisfy every guest at a party? How far do you have to turn the faucet handle to get the right

temperature? Should you invest in a particular stock that seems to be going up? Since the

space of such mappings is theoretically infinite, inductive biases are necessary to constrain the

plausible inferences (Griffiths, Chater, Kemp, Perfors, & Tenenbaum, 2010; Mitchell, 1980).

But what is the nature of these inductive biases over functions?

The major theoretical accounts of function learning, which we review below, offer two

different answers to this question. Rule-based accounts posit a fixed set of parametric forms

(or rules) that serve as a “vocabulary” for functions; these accounts imply strong inductive

biases for the rules in the functional vocabulary. By contrast, similarity-based accounts posit a

nonparametric representation of functions, implying relatively weak inductive biases.

A major challenge for humans is how to accommodate the virtually infinite diversity of

functions in the real world. Rule-based models can only represent linear combinations of a

fixed set of parametric functions. Similarity-based models can in principle represent an

infinite variety of functions, but their typically weak inductive biases do not support strong

inferences from small amounts of data—an important characteristic of human learning (Lake,

Ullman, Tenenbaum, & Gershman, 2016).

A ubiquitous strategy in many areas of cognition, from language (Chomsky, 1965) to

concept learning (Goodman, Tenenbaum, Feldman, & Griffiths, 2008; Kemp, 2012;

Piantadosi, Tenenbaum, & Goodman, 2016) and visual perception (Biederman, 1987; Lake,

Salakhutdinov, & Tenenbaum, 2015), is to divide and conquer: construct complex

representations out of simpler building blocks using a set of compositional rules.

Compositional systems support strong inferences from small amounts of data by imposing

structural constraints, without sacrificing the capacity for representing an infinite variety of

forms. The primary claim in this paper is that human function learning is structurally

constrained by compositional inductive biases.
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To formalize this idea, we need a theoretical framework for function learning that can

represent and reason about compositional function spaces. Lucas, Griffiths, Williams, and

Kalish (2015) recently presented a normative theory of function learning using the formalism

of Gaussian processes (GPs). As we will describe more formally, GPs are distributions over

functions that can encode properties such as smoothness, linearity, periodicity, symmetry, and

many other inductive biases found by past research on human function learning (Brehmer,

1974b; DeLosh, Busemeyer, & McDaniel, 1997). Lucas et al. (2015) showed how Bayesian

inference with GP priors can be expressed in both parametric (rule-based) and nonparametric

(similarity-based) forms. GPs can therefore serve as a computational-level theory of function

learning that bridges different mechanistic implementations.

In this paper, we build on the GP formalism to study, both theoretically and

experimentally, the compositional nature of inductive biases in human function learning. Our

extensions of the GP formalism not only bridge the “rules” and “similarity” perspectives on

learning, but can also explain how people are able to learn much more complex kinds of

functional relationships that are not well described by either traditional notions of rules or

traditional kinds of similarity metrics.

Our main theoretical contribution is to extend the GP approach to modeling human

function learning with a prior that obeys compositionally structured constraints. We do this

using a compositional grammar for intuitive functions introduced in the machine learning

literature by Duvenaud, Lloyd, Grosse, Tenenbaum, and Ghahramani (2013). We then test the

predictive and explanatory power of this compositional GP model in 10 function learning and

reasoning experiments, comparing the compositional prior to a flexible non-compositional

prior (the spectral mixture representation proposed by Wilson & Adams, 2013, which we will

describe later). Both models use Bayesian inference to reason about functions, but differ in

their inductive biases.

Our experiments begin by comparing these different models of human function learning

on five functional pattern completion tasks, two of which ask participants to choose among

different completions, two of which assess a restricted posterior distribution over

compositional kernels, and one of which asks participants to manually complete sampled
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functions within a graphical user interface.

Throughout all of these experiments, we find that participants’ completions are better

described by the compositional prior as compared to non-compositional alternatives. We then

generate a set of 40 similar functions, 20 of which are compositional and 20 of which are

non-compositional, and compare these functions by asking participants how predictable they

are and letting them learn and predict these functions in two experiments using a trial-by-trial

function learning paradigm. We find that participants not only perceive compositional

functions as more predictable and learn them more easily, but also that a compositional model

of both predictability and function learning provides a quantitatively accurate description of

participants’ behavior. Finally, we investigate how compositional functions influence memory,

change detection, and the perception of numerosity in three additional experiments. To

understand these results computationally, we propose a compositional Bayesian model of

pattern encoding, chunking and retrieval, and compare this model to other alternatives. We

conclude by discussing the implications as well as possible limitations of our proposed model

and spell out future directions of compositional function learning research.

Prior research on human function learning

The general problem of inferring how one variable depends functionally on another is

important for many aspects of cognition. Traditionally, it has been studied in paradigms

assessing how people learn about input-output mappings or how they make sense of

spatiotemporal patterns. Additionally, the way in which we learn about and recognize

functional patterns is also crucial in the modern world as we look at data – either as scientists

or non-scientist decision makers – in trying to understand what function the data reveal. We

are interested in all of these aspects of function learning, but will focus first on the latter

because it can potentially reveal how people recognize and perform inference about structure

very quickly. However, we believe that a strength of our account of compositional inductive

biases is that it can account for empirical effects across a diverse set of paradigms.

Donald Broadbent was among the first psychologists to investigate how people learn and

control functions between inputs and outputs (Broadbent, 1958). In his experiments,



COMPOSITIONAL INDUCTIVE BIASES 6

participants controlled functions within an industrial setting called the “sugar factory,” in

which they learned the relationship between work force and sugar production. Broadbent

showed that participants had difficulty controlling some functions, such as exponential or

power functions, but were good at learning others, for example linear functions (Berry &

Broadbent, 1984).

Since Broadbent’s pioneering work, further studies have established several empirical

regularities (see McDaniel & Busemeyer, 2005, for a review). For example, studies using

interpolation judgments—predictions of function outputs for inputs inside the convex hull of

training inputs—have found that linear, increasing functions are easier to learn than

non-linear, non-monotonic or decreasing functions (Brehmer, 1974a; Brehmer, Alm, & Warg,

1985; Byun, 1995). Presentation order also matters: it is easier to learn functions if the input is

ordered by increasing output (DeLosh et al., 1997).

Important constraints on theories of function learning have come from studies of

extrapolation judgments—predictions of function outputs for inputs outside the convex hull of

training inputs (DeLosh et al., 1997; McDaniel & Busemeyer, 2005). People tend to make

linear extrapolations with a positive slope and an intercept of zero (Kalish, Lewandowsky, &

Kruschke, 2004; Kwantes & Neal, 2006). This linearity bias holds true even when the

underlying function is non-linear; for example, when trained on a quadratic function, average

predictions fall between the true function and straight lines fitted to the closest training points

(DeLosh et al., 1997).

When Little and Shiffrin (2009) asked participants to produce judgments about the best

causal function underlying noisy data, they found that participants also exhibit a simplicity

bias, i.e. that a probability distribution over polynomial degrees obtained over all participants

tended to put most of its mass on smaller degrees.

Two families of theories have been developed to explain these and other regularities.

Rule-based theories (Carroll, 1963; Koh & Meyer, 1991) propose that people learn explicit

parametric functions, for example linear, polynomial or power-law functions, or some

combination of simpler functions. While rule-based theories have had some success in

predicting function learning performance, they have trouble accounting for the
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aforementioned “order-of-difficulty effects” in interpolation tasks (McDaniel & Busemeyer,

2005), fail to fully predict extrapolation performance (DeLosh et al., 1997), especially for

non-linear functions, and are unable to learn a partitioning of the input space (the knowledge

partitioning effect; Kalish et al., 2004).

Similarity-based theories (e.g., Busemeyer, Byun, Delosh, & McDaniel, 1997; DeLosh

et al., 1997) propose that people learn functions by associating inputs and outputs: if input x is

paired with output y, then inputs similar to x should produce outputs that are similar to y.

Busemeyer et al. (1997) formalized this intuition using a connectionist model

(Associative-Learning Model; ALM) in which inputs activate an array of hidden units

representing a range of possible input values; each hidden unit is activated in proportion to its

similarity to the current input. Learned associations between the hidden units and the response

units map the similarity-based activation pattern to output predictions. ALM successfully

captures aspects of interpolation performance, but fails to explain extrapolation and

knowledge partitioning phenomena.

In order to overcome some of these problems, hybrid versions of the two approaches

have been put forward (McDaniel & Busemeyer, 2005). Hybrid models normally contain an

associative learning process that acts on explicitly-represented rules. One such hybrid is

EXAM (Extrapolation-Association Model; Busemeyer et al., 1997). EXAM assumes

similarity-based interpolation, but extrapolates using a simple linear rule. The model

effectively captures the human bias towards linearity, and predicts human extrapolations for a

variety of functions, but without accounting for non-linear extrapolation (Bott & Heit, 2004).

POLE (population of Linear Experts; Kalish et al., 2004), which approximates functions using

piece-wise linear representations, can capture knowledge partitioning and order-of-difficulty

effects (McDaniel, Dimperio, Griego, & Busemeyer, 2009). However, it is unclear if a

combination of linear functions is able to explain human function learning in more complex,

naturalistic contexts, especially given that humans are capable of learning non-linear functions

as well (see Bott & Heit, 2004)1.

1Even though the ability to extrapolate more complex functions such as periodic patterns has been debated

(see Kalish, 2013), and participants seem to have more difficulty learning cyclic instead of quadratic functions

(Byun, 1995), they generally seem to be able to learn non-linear functions (Busemeyer et al., 1997), especially if
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Another area of explaining how people make sense of functional structure could be

called “intuitive science” or forecasting. Here, participants are normally confronted with

multiple data points at once and then have to predict future or left out points.

Various reviews have established factors that influence participants predictions of

visually presented data (see Bolger & Harvey, 1998; Goodwin & Wright, 1993, for example).

Broadly speaking, these factors fall within 4 categories. First, people seem to damp trends

when they make forecasts from noisy data. This means that their forecasts lie below upward

trended lines but above downward ones. Therefore, it appears that forecasters tend to

underestimate the steepness of functions (Andreassen & Kraus, 1990; Keren, 1983). Trend

damping is greater for downward than for upward trended data, especially when the data

representation format is visual rather than in a table (Harvey & Bolger, 1996). Second,

forecasts tend to overestimate functions lacking a trend (Eggleton, 1982). Third, people seem

to deliberately attach random noise to their forecasts, and add more noise to forecasts from

noisier data series. This means that their forecasts appear to represent the way the series will

appear once the outcome has occurred (Harvey, Ewart, & West, 1997). Fourth, forecasts for

independent series should lie on the series mean, but instead they have been found to lie

between the mean and the last revealed data point (Eggleton, 1982), similar to findings in

more traditional function learning paradigms.

Gaussian process regression as a normative theory of function learning

The theories of function learning summarized in the previous section are process

models, specifying mechanistic hypotheses about representations and learning rules.

However, mechanistic hypotheses do not directly give insight into inductive biases, since

different mechanisms may or may not produce the same bias. Thus, if our goal is to

understand human inductive biases, we require a computational-level analysis of function

learning that is agnostic to mechanism. The GP theory of function learning developed by

Lucas et al. (2015) fills this gap.

Formally, a GP is a collection of random variables, any finite subset of which are jointly

the representation format supports encoding (DeLosh, 1995).
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Gaussian-distributed (see Rasmussen & Williams, 2006; Schulz, Speekenbrink, & Krause,

2017). A GP can be expressed as a distribution over functions. Let f : X → R denote a

function over input space X that maps to real-valued scalar outputs.2 The function can be

modeled as a random draw from a GP:

f ∼ GP(m, k), (1)

where m is a mean function specifying the expected output of the function given input x, and

k is a kernel (or covariance) function specifying the covariance between outputs.

m(x) = E[f(x)] (2)

k(x,x′) = E [(f(x)−m(x))(f(x′)−m(x′))] . (3)

Intuitively, the mean function encodes an inductive bias about the expected shape of the

function, and the kernel encodes an inductive bias about the expected smoothness. This does

not necessarily imply that distributions of outputs over different input points have to be

Gaussian as this would also depend on an added noise term which does not have to come from

a Gaussian distribution. To simplify exposition, we follow standard convention in assuming a

prior mean of 0.

Conditional on observed data D = {xn, yn}Nn=1, where yn ∼ N (f(xn), σ2) is a

noise-corrupted draw from the latent function, the posterior predictive distribution for a new

input x∗ is Gaussian with mean and variance given by:

E[f(x∗)|D] = k>∗ (K + σ2I)−1y (4)

V[f(x∗)|D] = k(x∗,x∗)− k>? (K + σ2I)−1k∗, (5)

where y = [y1, . . . , yN ]>, K is the N ×N matrix of covariances evaluated at each pair of

observed inputs, and k∗ = [k(x1,x∗), . . . , k(xN ,x∗)] is the covariance between each observed

input and the new input x∗. See Appendix A for further technical details.

As pointed out by Griffiths, Lucas, Williams, and Kalish (2009) (see also Lucas et al.

2015), the predictive distribution can be viewed as an exemplar (similarity-based) model of
2In general X can be multidimensional and discrete, but in this paper we focus on functions with one-

dimensional, continuous inputs since these have received the most attention in the function learning literature

(but see Juslin, Olsson, & Olsson, 2003; Lewandowsky, Kalish, & Ngang, 2002).
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function learning (DeLosh et al., 1997; McDaniel & Busemeyer, 2005), since it can be written

as a linear combination of the covariance between past and current inputs:

f(x∗) =
N∑
n=1

αnk(xn,x∗), (6)

where α = (K + σ2I)−1y. Equivalently, by Mercer’s theorem any positive definite kernel can

be expressed as an outer product of feature vectors:

k(x,x′) =
∞∑
d=1

λdφd(x)φd(x′), (7)

where {φd(x)} are the eigenfunctions of the kernel and {λd} are the eigenvalues. The

posterior predictive mean is a linear combination of the features, which from a psychological

perspective can be thought of as encoding “rules” mapping inputs to outputs (Carroll, 1963;

Koh & Meyer, 1991). Thus, a GP can be expressed as both a similarity-based model and as a

rule-based model, thereby unifying the two dominant families of function learning theories in

cognitive science (described in detail by Lucas et al., 2015).

Understanding human inductive biases with Gaussian processes

Gaussian processes provide a concrete language for constructing and comparing priors

over functions, which in turn encode different inductive biases. Priors over functions can be

explicitly encoded by the kernel, which means—as we will describe in more detail

below—that the kernel can be used to describe expectations about functional regularities (e.g.,

linear trends, periodic patterns, etc.) directly into the prior, thereby creating inductive biases

that make learning these regularities easier.

Intuitively, a GP favors functions that are “smooth” as encoded by the kernel function.3

The critical question then is: what kind of smoothness do humans prefer?

Experiments have begun to study this question. One experimental technique, known as

iterated learning, estimates priors by simulating a Markov chain across multiple

people—essentially a “game of telephone”. Under certain assumptions, the Markov chain is

guaranteed to converge to a stationary distribution, such that asymptotically it will generate

3A mathematically precise characterization of smoothness induced by a given kernel function is given by the

theory of reproducing kernel Hilbert spaces (Schölkopf & Smola, 2002).
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samples from the prior (Griffiths & Kalish, 2007). In a function learning version of this task,

participants see a set of points, which they then have to remember and re-draw. The resulting

points are presented to another participant, who is asked to repeat the same procedure.

Iterating this procedure multiple times will reveal participants’ priors over functions. Kalish,

Griffiths, and Lewandowsky (2007) showed that participants consistently converged to linear

functions with a positive slope, even when the starting points came from a linear function with

a negative slope, quadratic functions, or when they were generated at random.

Lucas et al. (2015) explained the iterated learning results by postulating a GP with a

mixture of experts kernel that is mostly dominated by a positively linear kernel 4 but can also

generate smooth non-linear extrapolations by utilizing a non-linear radial basis function

kernel. Additionally, their proposed kernel contained negatively linear and quadratic

components. Samples from the GP parameterized in this way tend to be positively linear lines.

This parametrization was able to explain a number of findings from the human function

learning literature, such as the partitioning of the learning space, the linear-polynomial

mixture-like patterns of extrapolations, and the difficulty of learning some functions (e.g.,

exponential patterns) relative to others (e.g., linear patterns).

Going further, Wilson, Dann, Lucas, and Xing (2015) attempted to infer the “human

kernel” by having participants generate extrapolations for different functions sampled from a

radial basis kernel and fitting a non-parametric kernel (the spectral mixture defined by Wilson

& Adams, 2013, which we will describe in detail below) to their extrapolations. They found

that participants expected long-distance correlations between points. These correlations could

be viewed as arising from a mixture between linear and radial basis components5. In a second

experiment, they showed that participants could effectively learn functions sampled from a

mixture of a product of linear and spectral kernels.

These studies suggest that participants’ represent complex functions as compositions of

simpler ones. In the next section, we will motivate compositionality as a core principle of

4Generating functions with a positive linear trend can be achieved by using the linear kernel shown in Table 1

and combining it with a non-zero mean function that is increasing.
5A mixture of linear and radial basis function extrapolations can lead to longer-distance dependencies between

points than a radial basis function alone.
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cognition, and then proceed to formalizing a fully compositional theory of function learning.

Beyond smoothness: compositionality as a core principle of function learning

Humans can adapt to a wide variety of structural forms (Gershman & Niv, 2010; Kemp

& Tenenbaum, 2009); the space of such forms is essentially unbounded, raising the question

of how an infinite variety of forms can be represented. One approach (arguably the only

tractable approach) is to define a compositional system that can build complex structures

through the composition of simpler elements. For example, in functional programming

languages, functional primitives can be combined to create more complex functions which can

then be re-combined to create even more complex functions (Peyton Jones, 1987). Via

re-combinations, compositionality leads to a large increase of productivity—an infinite

number of representations can be constructed from a finite set of primitives (Fodor, 1975;

Fodor & Pylyshyn, 1988).

One source of evidence for compositionality in cognition comes from studies of

rule-based concept learning. In these studies, the rules can be expressed as functions of logical

primitives (e.g. Bruner, Goodnow, & George, 1956; Shepard, Hovland, & Jenkins, 1961). By

studying participants’ mistakes and the relative learning difficulty of different concepts,

researchers tried to unravel the primitives of symbolic thought and how these primitives are

combined. This work has led to a rich set of theoretical ideas and empirical constraints on

compositionality in concept learning (Goodman et al., 2008; Lake et al., 2015; Nosofsky,

Palmeri, & McKinley, 1994; Piantadosi et al., 2016).

Kemp (2012) provided an exhaustive characterization of compositionality in logical

domains, showing how a “conceptual universe” can be formed by a rule inference scheme

based on minimal description length that explains logical reasoning data across a wide set of

domains. Recently, Piantadosi et al. (2016) showed how different sets of structural primitives,

embedded in an approximate Bayesian inference framework, can predict distinct learning

curves in rule-based concept learning experiments. Based on these and other studies, Lake et

al. (2016) argued that compositionality is a necessary requirement for designing algorithms

“that learn and think like people.”
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Compositionality has also been proposed as an important principle of motor learning, in

particular in research on modular decomposition (Wolpert & Ghahramani, 2000). For

example, Flanagan et al. (1999) showed that if subjects had to learn a combined

transformation of kinematic and dynamic transformations, their reaching errors were smaller

if they first learned each transformation separately, suggesting that people have the ability to

combine and decompose different internal models of control. Ghahramani and Wolpert (1997)

exposed participants to discrepancies between actual and visually perceived hand movements

from two different starting positions and found that their movements for intermediate starting

positions indicated an adaptive mixture of both individual strategies.

Given the widespread theoretical and empirical support for compositionality in

cognitive science, it is natural to ask whether humans make use of compositionality in

representing and learning about functions. With a few exceptions (Gershman, Malmaud, &

Tenenbaum, 2016; Gershman, Tenenbaum, & Jäkel, 2016), prior work on function learning

with GPs has assumed a fixed, non-compositional kernel6. Thus, our goal is to formalize a

compositional approach to function learning and compare it to alternative non-compositional

approaches. We accomplish this by positing two candidate kernel parametrizations that

express conceptually different (compositional vs. non-compositional) inductive biases. We

will then present a series of experimental tests that pit these kernels against each other.

Structure learning with Gaussian processes

Broadly speaking, there are two approaches to parametrizing the kernel space: a fixed

functional form with continuous parameters, or a combinatorial space of functional forms.

These approaches are not mutually exclusive; indeed, the success of the combinatorial

approach depends on optimizing the continuous parameters for each form. Nonetheless, this

distinction is useful because it allows us to separate different forms of functional complexity.

A function might have internal structure such that when this structure is revealed, the apparent

functional complexity is significantly reduced. For example, a function composed of many

piece-wise linear segments might have a long description length under a typical continuous

6This is also true for approaches utilizing a mixture of expert kernel, which is fixed a priori, but see Kalish

(2013) for further discussion.
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parametrization (e.g., the radial basis kernel described below), because it violates the

smoothness assumptions of the prior. However, conditional on the change-points between

segments, the function can be decomposed into independent parts each of which is

well-described by a simple continuous parametrization (see Lee & Yuille, 2006, for a

discussion of how this strategy is used by the brain for early vision). If internally structured

functions are “natural kinds”, then the combinatorial approach may be a good model of human

intuitive function representation.

We describe three kernel parametrizations in the rest of this section. The first two are

continuous, differing in their expressiveness. The third one is combinatorial, allowing it to

capture complex patterns by composing simpler kernels. For all kernels, we take the standard

approach of choosing the parameter values that optimize the log marginal likelihood (see

Appendix for details).

Radial basis kernel

The radial basis kernel is a commonly used kernel in machine learning applications,

embodying the assumption that the covariance between function values decays exponentially

with input distance:

k(x,x′) = θ2 exp
(
−|x− x

′|2

2l2

)
, (8)

where θ is a scaling parameter and l is a length-scale parameter determining the speed of the

decay over the distance between inputs. This kernel assumes that the same smoothness

properties apply globally for all inputs. It provides a standard baseline to compare with more

expressive kernels.

Spectral mixture kernel

The second approach is based on the fact that any stationary kernel7 can be expressed as

an integral using Bochner’s theorem. Letting τ = x− x′ ∈ RP , then

k(τ ) =
∫
RP
e2πis>τψ(ds). (9)

7A stationary kernel is a function of x− x′. Thus, it is invariant to translation of the inputs.
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If ψ has a density S(s), then S is the spectral density of k; S and k are thus Fourier duals

(Rasmussen & Williams, 2006, see Appendix). This means that a spectral density over the

kernel space fully defines the kernel and that furthermore every stationary kernel can be

expressed as a spectral density. Wilson and Adams (2013) showed that the spectral density can

be approximated by a mixture of Q Gaussians, such that

k(τ ) =
Q∑
q=1

wq
P∏
p=1

exp
(
−2π2τ 2

pυ
p
q

)
cos

(
2πτpµ(p)

q

)
, (10)

where the qth component has mean vector µq =
(
µ(1)
q , . . . , µ(P )

q

)
and a covariance matrix

Mq = diag
(
υ(1)
q , . . . , υ(P )

q

)
. The result is a flexible and expressive parametrization of the

kernel, in which complex kernels are approximated by mixtures of simpler ones. Further

technical details can be found in Appendix B.

This approach is appealing when simpler kernels (e.g., the radial basis function) fail to

capture functional structure. Its main drawback is that because structure is captured implicitly

via the spectral density, the building blocks are psychologically less intuitive: humans appear

to have preferences for linear (Kalish et al., 2007) and periodic (Bott & Heit, 2004) functions,

which are not straightforwardly encoded in the spectral mixture (though of course a mixture

can approximate these functions). Since the spectral kernel has been successfully applied to

reverse engineering human kernels (Wilson et al., 2015), it is a useful reference of comparison

to more structured compositional approaches.

Compositional kernel

As positive semi-definite kernels are closed under addition and multiplication, we can

create richly structured and interpretable kernels from well-understood base components. For

example, by summing kernels, we can model the data as a sum of independent functions.

Imagine a function that is linearly increasing over time but also shows some seasonal

periodicity; then a combination of a linear and a periodic kernel added together might be a

good description of that function.

Figure 1 shows an example of how different kernels (radial basis, linear, periodic) can

be combined. Our approach, following Duvenaud et al. (2013), is to define a simple grammar

over kernels that generates new kernels through summation or multiplication of simpler
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kernels. Table 1 summarizes the kernels used in our grammar. Given a set of input-output

pairs, the task facing the learner is to identify both the function and an underlying parse tree.

As with the other kernel parametrizations, the parse tree is chosen to maximize the marginal

likelihood.

RBF LIN PER PER+LIN RBFxPER

x

f(x)

Figure 1. Examples of base and compositional kernels. The base kernels are radial basis

(RBF), linear (LIN), and periodic (PER); the composition operators are addition and

multiplication. Adding a periodic and a linear kernel creates functions with trends and

seasonality. Multiplying a periodic kernel with a radial basis kernel results in more localized

periods than a standard periodic kernel would be able to capture.

Table 1

Base kernels in the compositional grammar.

Name Definition

Linear k(x,x′) = (x− θ1)(x′ − θ1)

Radial basis k(x,x′) = θ2
2 exp

(
− (x−x′)2

2θ2
3

)

Periodic k(x,x′) = θ2
4 exp

(
− 2 sin2(π|x−x′|θ5)

θ2
6

)

Many other compositional grammars are possible. For example, we could have included

a more diverse set of kernels, and other composition operators (e.g., convolution, scaling) that

generate valid kernels. However, we believe that our simple grammar is a useful starting point,

since the components are intuitive and likely to be psychologically plausible. For tractability,

we fix the maximum number of combined kernels to be 3 and do not allow for repetition of

kernels in order to restrict the complexity of the inference. The complete set of resulting

kernels is shown in Table 2.



COMPOSITIONAL INDUCTIVE BIASES 17

Table 2

Kernel combinations in the compositional grammar and their interpretations.

Combination Interpretation

Linear Linear function

Radial basis Locally smooth function

Periodic Repeated pattern

Linear + Periodic Linear trend plus repeated pattern

Linear + RBF Linear trend plus local deviations

RBF + Periodic Repeated pattern plus local deviations

Linear × Periodic Repeated pattern with increasing amplitude

Linear × RBF Local deviations with increasing amplitude

RBF × Periodic Slowly changing repeated pattern

Linear + RBF + Periodic Linear trend plus local deviations plus repeated pattern

Linear + Periodic × RBF Linear trend plus slowly changing repeated pattern

Periodic + Linear × RBF Repeated pattern plus local deviations with increasing amplitude

Linear × RBF × Periodic Slowly changing repeated pattern with increasing amplitude

We will use this set of kernels as our proposed compositional function class. Given a

particular task, we will choose the specific composition from the set that maximizes the

marginal likelihood.

Experiment 1a: Pattern completions of compositional functions

Our first experiment examined whether participants prefer compositional over

non-compositional predictions of functions if the ground truth is indeed compositional.

Although this mainly tells us whether people make predictions in accordance with the

underlying structure (i.e., it is not informative about inductive biases per se), Experiment 1b

will examine the case where the ground truth is non-compositional.

We used a “pattern completion” paradigm, motivated by prior research on pattern

perception as a window into cognitive representations (e.g., Buffart, Leeuwenberg, & Restle,
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1981; Kanizsa, 1979). Participants chose among 3 different completions of a partial

one-dimensional function.8 The candidate completions were generated by the different

structure learning approaches described above. Our hypothesis was that if participants have

structured, compositional representations of functions, then they should prefer pattern

completions generated from the compositional kernel.

Methods

Participants. 52 participants (29 women) with an average age of 36.15 (SD = 9.11)

were recruited via Amazon Mechanical Turk and received $1 for their participation. The

experiment took 5 minutes on average to complete.

Design. We preselected 20 different functions9 sampled from a Gaussian process

parametrized by various compositional kernels within an input space of

x = [0, 0.1, 0.2, · · · , 10]. Afterwards, the functional outputs for xlearn = [0, 0.1, 0.2, · · · , 7]

were used as a training set to which all three approaches were fitted and then used to generate

predictions for the test set xtest = [7.1, 7.2, · · · , 10]. The hyper-parameters of the radial basis

kernel as well as the number of components and the hyper-parameters of the spectral mixture

kernel were fitted by optimizing the marginal likelihood given the training set. The best

prediction of the compositional kernel approach was found by choosing the composition from

the grammar (see Table 2) that produced the best marginal likelihood (following Duvenaud et

al., 2013, see Appendix). All of the models were only fitted to the training set (the observed

input-output pairs) and used to complete the patterns (predict the functions) for the test inputs.

The different mean predictions were then used to generate 3 plots (one for every kernel

approach) that showed the given input as a blue curve and the new predictions (the

extrapolation pattern) as a red curve. The procedure was repeated for 20 different

compositions, each corresponding to a separate trial.

8This is essentially a form of extrapolation judgment, but unlike typical extrapolation paradigms that test input-

output pairs one at a time, pattern completion asks participants to consider a set of input-output pairs.
9Most of these functions were generated from two composed kernels and contained either a linear or a periodic

component.
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Procedure. Participants were asked to select one of 3 extrapolations (pattern

completions) they thought best completed a given function (Figure 2). The position at which a

kernel’s predictions appeared was randomized on every trial.

Figure 2. Screen shot of Experiment 1a. Pattern completions (shown in red) were generated

by a spectral mixture (left), a radial basis (middle), and a compositional kernel (right).

Results and discussion

Participants chose the compositional completions on 69% of the trials, the spectral

mixture completions on 17%, and the radial basis completions on 14% (Figure 3). Overall, the

compositional completions were chosen significantly more often than the other two

completions (χ2(N = 1040, df = 2) = 591.2, p < 0.01). Moreover, assessing for each

participant individually whether or not compositional completions were chosen more

frequently than the other two based on a χ2(N = 52, df = 2)-test, showed that 44 out 52

participants significantly preferred the compositional pattern completions (α = 0.05

significance level). The results thus supported our hypothesis that participants will prefer

compositional pattern completions when the ground truth is compositional. Using a hierarchal

Bayesian model (see Appendix for details) to estimate the posterior probability of choosing

the compositional completion led to an estimate of p̂ = 0.71 with [0.65, 0.77] as the 95%

credible set.
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Figure 3. Experiment 1a results: proportion of pattern completion choices for three kernels.

Error bars represent the standard error of the mean.

Experiment 1b: Pattern completions of non-compositional functions

While the results of Experiment 1a suggest a preference for compositionally structured

functions, they do not indicate whether humans have an inductive bias for such functions,

since the results are perfectly compatible with the possibility that participants adapted to the

ground truth structure without a compositional inductive bias. In Experiment 1b, we subject

our theory to a stronger test, measuring pattern completion preferences when the ground truth

is non-compositional (specifically, functions drawn from a GP with the spectral mixture

kernel). If participants prefer compositional completions in this experiment, we can be more

confident that the preference for such functions arises from an inductive bias.

Methods

Particpants. 65 participants (mean age=30, SD = 9.84, 31 male) were recruited from

Amazon’s Mechanical Turk web service and received $0.5 for their participation. The

experiment took 4 minutes on average to complete.
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Design. The design was identical to the one used in Experiment 1a, apart from the fact

that in this experiment the underlying functions were sampled (without any further selection)

from a GP with the spectral mixture kernel parametrized with a randomly assigned number of

components (sampled uniformly between 2 and 5). We also only generated completions for

the compositional and the spectral kernel in this experiment. We did not generate completions

for the radial basis kernel because in some cases these completions corresponded closely to

predictions of the compositional kernel. This correspondence arose due to the fact that there

was not much compositional structure for the compositional kernel to capture in samples from

the spectral mixture kernel.

Procedure. The procedure was as described in Experiment 1a, with the one difference

that participants made choices between two (rather than three) completions.

Results and discussion

As in Experiment 1a, participants chose compositional completions more frequently

than non-compositional (spectral mixture) completions (68% vs. 32%,

χ2(N = 1300, df = 2) = 172.8, p < 0.01; Figure 4). Moreover, 41 of 65 participants

significantly preferred the compositional over spectral pattern completions at the

α = 0.05-level. Using a hierarchal Bayesian model to estimate the posterior probability of

choosing the compositional completion led to an estimate of p̂ = 0.68 with [0.66, 0.72] as the

95% credible set.

This finding is consistent with the claim that human inductive biases for functions are

compositional—and sufficiently strong to induce preference for compositional completions

even when the ground truth is non-compositional.

Markov chain Monte Carlo with people

In our next set of experiments, we sought to elicit samples from a compositional

posterior predictive distribution over functions in order to gain finer-grained insight into the

subjective representation of functions. We accomplished this using a technique called Markov

chain Monte Carlo with People (MCMCP; Sanborn, Griffiths, & Shiffrin, 2010). This

technique asks participants to accept or reject proposed hypotheses, effectively simulating a
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Figure 4. Experiment 1b results: proportions of pattern completion choices. Error bars

represent the standard error of the mean.

Markov chain whose stationary distribution is the posterior over hypotheses given the

presented data. In our experiments, we condition on a training set and ask participants to

choose between completions (as in Experiments 1a and 1b); thus the stationary distribution is

the posterior distribution over pattern completions.

The basic setup of MCMCP consists of a proposal distribution that generates

hypotheses, and an acceptance function that probabilistically accepts or rejects the proposed

hypotheses. If the proposal is rejected, the last accepted hypothesis is retained. The proposal

distribution is determined by the experimental design, while the acceptance function is a

mental construct that we impute to the participant. Under certain assumptions about the

acceptance function (given below), Sanborn et al. (2010) showed that this experimental

procedure implements a form of Markov chain Monte Carlo known as the Metropolis

algorithm. The sequence of hypotheses forms a Markov chain that will eventually (after a

“burn-in” period) produce samples from the posterior distribution.

If the proposal distribution is symmetric (the probability of proposing a new state x∗

from the current state x is the same as the probability of proposing x from x∗), then one
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psychologically plausible acceptance function is Barker’s acceptance function:

A(x∗, x) = π(x∗)
π(x∗) + π(x) , (11)

where π(x) ∝ P (x). Letting D indicate the training set, this leads to the following expression

for the acceptance function:

A(k∗, k) = p(k∗|D)
p(k∗|D) + p(k|D) (12)

which corresponds to Luce’s choice rule, the most common model for discrete choice

distributions in psychology. Thus, under fairly standard assumptions about the choice process,

it is possible to elicit samples from the desired distribution, p(k|D), i.e. the posterior

distribution over kernels given the data.

This means that MCMCP can be used to gain insights into a restricted distribution

(under the assumption that predictions are based on the grammar) over compositional parts by

assessing how frequently a given compositional prediction has been preferred over another

one. We will therefore use empirical data to assess if participants’ posterior distributions over

different kernels approximates sensible compositions.

Experiment 2a: Compositional ground truth

In the first MCMCP experiment, we sampled the underlying functions from

compositional kernels in order to see if the posterior over compositional completions

converges to patterns that match the underlying kernel. Using a MCMCP-like design provides

us with the opportunity to check if the found restricted posterior distribution corresponds well

with the predictions generated by the compositional kernel.

Methods

Design. We generated completions from all possible kernel combinations (up to a

maximum of 3 combined kernels), optimizing each kernel’s hyper-parameters on the training

set and then generating the completions for the extrapolation set. On each trial, participants

chose between their most recently accepted extrapolation and a new proposal.
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Eight different functions were sampled from various compositional kernels, the input

space was split into training and test sets, and then all kernel combinations (i.e., all kernels

described in Table 2) were used to generate completions for the test set. Proposals were

sampled uniformly from this set. We mainly focused on combinations containing linear and

periodic components, as these provide more interesting structure than the smoothness induced

by samples from the radial basis kernel.

Participants. 51 participants (27 male) with an average age of 32.55 (SD = 8.21) were

recruited via Amazon’s Mechanical Turk web service and paid $1. The experiment took 8

minutes on average to complete.

Procedure. There were 8 blocks of 30 trials, where each block corresponded to a

single extrapolation set. The order of the blocks was randomized for each participant.

Results and discussion

We calculated the average proportion of accepted kernels over the last 5 trials, as shown

in Figure 5. The first 25 trials were excluded to avoid trials on which participants might not

have converged yet to their subjective posterior extrapolations, a process commonly called

“burn-in”.

In all cases, participants’ subjective probability distribution over completions placed the

greatest mass on the data-generating kernel (marked in red). Furthermore, we observed a

strong rank correlation between an approximated posterior probability over completions10 and

participants’ subjective distribution (ρ = 0.91, p < 0.01).

This means that the proportions of choices over all compositions produced by the

compositional model was very similar to the proportions produced by our subjects.

Thus, participants approximately converged to the underlying posterior when the

functions were generated from compositional kernels.

10As there is currently no reliable way to generate an exact posterior over compositional parts, the normalized

marginal likelihood of each composition was used as a rough approximation.
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Figure 5. Experiment 1a results: proportions of chosen completions over the last 5 trials. Error

bars represent the standard error of the mean. Generating kernel (ground truth) marked in red.

Experiment 2b: Real-world functions

The second MCMCP experiment assessed what structures people converged to when

faced with real-world data, where the ground truth is unknown. We hypothesized that

real-world data is often intrinsically compositional (see Duvenaud et al., 2013), and hence

human inductive biases may be adapted to such functions.

Participants. 51 participants with an average age of 32.55 (SD = 12.14) were

recruited via Amazon Mechanical Turk and received $1 for their participation. The

experiment took 7 minutes on average to complete.

Procedure. We used four real-world time series (Figure 6): airline passenger data,

volcano CO2 emission data, the number of gym memberships over 5 years, and the number of

times people googled the band “Wham!” over the last 8 years. Some of these functions have

been extensively analyzed in the time series modeling literature and all of them showed
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interesting patterns a priori. Participants were not told any information about the data sets

(including input and output descriptions); they were simply shown the unlabeled input-output

pairs in the experiment.

The input space was split into training (75% of the data) and test sets (25% of the data),

and then all kernel combinations were fitted to the training set and used to generate

completions for the test set. Proposals were sampled uniformly from this set. As periodicity in

the real world is rarely ever purely periodic, we adapted the periodic component of the

grammar by multiplying a periodic kernel with a radial basis kernel, thereby locally

smoothing the periodic part of the function.11 Apart from the different training sets, the

procedure was identical to Experiment 2a.

Results and discussion. Results (again taken from the last 5 trials) are shown in

Figure 7, demonstrating that participants converged to intuitively plausible patterns. In

particular, for both the volcano and the airline passenger data, participants converged to

compositions resembling those found in previous analyses Duvenaud et al. (2013). The most

frequently chosen completions for each data set are shown in Figure 7. The rank correlation

between the subjective distributions and the approximated posterior over completions was

significantly positive (ρ = 0.83, p < 0.01), supporting the hypothesis that the compositional

pattern completions capture human inferences about functions. This shows again that the

proportions of choices over all compositions produced by the compositional model was

similar to the proportions produced by our subjects.

Experiment 3: Manual pattern completion

In our previous experiments, we asked participants to make choices between a discrete

set of pattern completions. In our next experiment, we measured pattern completion in a less

constrained task, by having participants draw the pattern completions manually (see Cox,

Kachergis, & Shiffrin, 2012, for related work).

11See the following page for an example: http://learning.eng.cam.ac.uk/carl/mauna.
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Real world data

Airline Passengers Gym Memberships Volcano Wham!

Favored completions

Figure 6. (Top) Real-world data sets used in Experiment 2b. Descriptions and origin of the

data were unknown to participants. (Bottom) Participants were shown the region in blue; most

frequently selected completions are shown in red. Note that the periodic composition has been

adapted by multiplying it with a radial basis function kernel.

Methods

Design. On each round of the experiment, functions were sampled from the

compositional grammar at random, the number of points to be presented on each trial was

sampled uniformly between 100 and 200, and the noise variance was sampled uniformly

between 0 and 25 and fixed for each function. Finally, the size of an unobserved region of the

function (for completion) was sampled to be of a size between 5 and 50. Participants were

asked to manually draw the function best describing the observed data and to complete this

function within the observed and unobserved regions. A screen shot of the experiment is

shown in Figure 8.
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Figure 7. Experiment 2b results: proportions of chosen predictions over last 5 trials.

Figure 8. Screen shots of manual pattern completions (Experiment 3). The unobserved region

(for completion) is delimited by vertical lines.

Participants. 36 participants with a mean age of 30.5 (SD = 7.15) were recruited from

Amazon Mechanical Turk and received $2 for their participation. The experiment took 12

minutes on average.

Procedure. Participants were asked to draw lines in a cloud of dots that they thought

best described the given data. To facilitate this process, participants placed black dots into the

cloud, which were then automatically connected by a black line based on a cubic Bezier

smoothing curve (see Forrest, 1972). The smoothness of the Bezier curve was adapted online

to fit the points provided by the participants, thereby making it possible to draw less smooth
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lines by placing dots closer to each other12. Participants were asked to place the first dot on the

left boundary and the final dot on the right boundary of the graph. In between, participants

were allowed to place as many dots as they liked (from left to right) and could remove

previously placed dots. There were 50 trials in total. The dots were sampled from a function

that was in turn sampled from a kernel chosen at random out of all possible combinations in

our compositional grammar (as shown in Table 2).

Results and discussion

One concern about our chosen smoothing method was that it might lead to an excessive

tendency towards linear interpolations. However, the mean absolute correlation between the

input space and participants’ predictions did not significantly differ from the mean absolute

correlation between the input space and the true underlying functions. Therefore, the applied

smoothing method did not cause participants to prefer linear functions more than required

(t(36) = 0.09, p = 0.92, d = 0.02)

We assessed the average root mean squared distance between participants’ predictions

(the line they drew) and the mean predictions of each kernel given the data points participants

had seen, for both interpolation and extrapolation areas. This means that we only compared

the kernel’s predictions given the provided data points with participants’ predictions and did

not optimize any parameters in order to achieve better distance measures. As before, we

optimized the parameters for the radial basis kernel and the number of components as well as

the parameters for the spectral mixture kernel by optimizing the log marginal likelihood.

Predictions of the compositional kernel were also generated by choosing the composition that

produced the best marginal log-likelihood given the presented dots. Results are shown in

Figures 9.

We compared the mean distance between the model predictions and participants’

drawings by performing a hierarchical t-test between the distances produced by the different

models while accounting for the nestedness of distance measures within participants and

12Most participants found this set-up to be very intuitive. The source code for this experiment can be found

online at https://github.com/ericschulz/drawfunctions. See also Appendix D for further analysis on the effect of

smoothing the input points.
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Figure 9. Experiment 3 results: average root mean squared error for interpolation (left) and

extrapolation (right) drawings. Error bars show standard error of the mean.

trials; this is essentially the same as performing a mixed-effects regression. All of the mean

distances were lower than the distances produced by a random baseline for both interpolation

(mean distance of baseline: 142.5) and extrapolation (mean distance of baseline=127.5).

Importantly, the mean distance between predictions and participants’ drawings was

significantly higher for the spectral mixture kernel than for the compositional kernel in both

interpolation (86.96 vs. 58.33, hierarchical t-test: t(676) = −2.28, p < 0.05, d = 0.35) and

extrapolation areas (110.45 vs 83.91, hierarchical t-test: t(434) = 2.2, p < 0.05, d = 0.33).

The radial basis kernel produced similar distances as the compositional kernel in interpolation

(55.8, hierarchical t-test: t(649) = −0.55, p > 0.05, d = 0.03), but predicted participants’

drawings significantly worse in extrapolation areas (97.9, t(508) = 1.8, p < .05, d = 0.17).

As extrapolation is normally seen as the best criterion to judge between different models of

function learning (DeLosh et al., 1997), the difference in extrapolation judgments provides

further evidence for the compositional kernel model.

Generating comparison functions

One potential concern with the previous experiments is that compositional and

non-compositional functions may differ in terms of low-level perceptual characteristics, and

these differences (rather than the hypothesized high-level structural differences) are driving
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the behavioral effects. To address this concern, we need a set of non-compositional functions

whose low-level perceptual characteristics (as assessed by the two measures introduced

below) are matched with a set of compositional functions.

We generated 500 functions from both compositional and non-compositional kernels.

The compositional functions were sampled randomly from our compositional grammar by

first randomly sampling a kernel composition and then sampling a function from that kernel,

whereas the non-compositional functions were sampled from the spectral mixture kernel,

where the number of components was varied between 2 and 6 uniformly. We then calculated

the standardized spectral entropy (or “forecastability”) for each function, following Goerg

(2013):

Ω(f) = 1− H(f)
ln(2π) (13)

where H(·) is the Shannon entropy of the function’s normalized spectral density Sf (see

Appendix C for details),

Forecastability can be seen as a measure of how well future output values of a function

can be predicted mathematically. It takes values between 0% and 100%, representing the

proportional reduction in entropy a given function achieves relative to white noise. Although

forecastability technically assumes stationary functions, it has also been shown to produce

reliable measures for non-stationary functions in practice (Hyndman, Wang, & Laptev, 2015).

Of the 500 non-compositional functions that we generated, we selected those that had a

forecastability of higher than 20%, but set the maximum predictability for the compositional

kernel functions to be less than 40% and the minimum predictability for the spectral mixture

kernel functions to be higher than 40%. This means that theoretically the functions generated

from the spectral mixture kernel are more forecastable on average (i.e., contain lower entropy

in their spectral density) than the functions sampled from the compositional kernel. Because

of this forecastability advantage for non-compositional functions, behavior consistent with the

compositional kernel predictions would provide especially strong evidence for our framework.

We verified that all of the functions were matched in terms of low level visual

properties, as measured by a similarity measure based on the discrete wavelet Haar transform

(Montero, Vilar, et al., 2014, see Appendix C). The basic idea of this similarity measure is to
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replace the original series by its wavelet approximation coefficients at an appropriate scale,

and then to measure similarity between the wavelet coefficients. This measure not only

provides a state-of-the art similarity metric between two functions, but also has been used to

model human behavior in visual integration tasks (Field, Hayes, & Hess, 1993). Additionally,

we validated this measure as a predictor of participants’ similarity judgments when comparing

different function in a study described in Appendix E.

We ranked each function based on its wavelet similarity to other functions and selected

the top functions (20 compositional and 20 spectral) from this set. These functions, which are

used in the experiments reported below, are shown in Figures 10 and 11. We will subsequently

refer to these functions as the “matched set.”

Figure 10. Sampled compositional functions.
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Figure 11. Sampled spectral mixture functions.

Experiment 4: Assessing predictability

If human inductive biases for functions are inherently compositional, then compositional

functions should be perceived as more predictable.13 In our previous work (Schulz,

Tenenbaum, Reshef, Speekenbrink, & Gershman, 2015), we operationalized predictability in

terms of generalization error. Formally, predictability is the expected prediction error for a

newly-sampled input point from within a (interpolation) set of points. Intuitively, more

predictable functions should lead to lower generalization error on new inputs. This analysis

identified several key factors determining the predictability of a function; specifically,

predictability increases with sample size and smoothness, and decreases with noise.

Here we posit compositionality as another key factor. If inductive biases for functions

13Predictability is closely related to forecastability, insofar as both measures can be characterized in terms of

the eigenspectrum (Sollich, 2001). Here we focus on predictability since it has a more intuitive interpretation.
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are compositional, then we expect such functions to be perceived as more predictable. We

assess this by collecting both absolute and relative measures of subjective predictability.

Methods

Participants. 50 participants (mean age=32, SD=7.2; 32 males) were recruited via

Amazon Mechanical Turk and received $0.5 for their participation. The experiment took 9

minutes on average.

Procedure. On each trial, one of the “matched” functions defined above was

randomly subsampled with a sample size nj was drawn uniformly from {50, 60, . . . , 100}.

Participants were asked to judge how well they thought they could predict a newly sampled

input point for the function on a scale ranging from 0 (not at all) to 100 (very well). After

judging the subjective predictability for all 40 of the matched functions in a randomized order,

participants then had to make pairwise comparisons between compositional and

non-compositional functions from -100 (function presented on the left is definitely easier to

predict) to 100 (function presented on the right is definitely easier to predict). As with the

absolute predictability judgments, the sample size nj was varied randomly, with the constraint

that both functions had the same sample size and the position of the functions were

counter-balanced over trials.

We did not add noise to the presented functions in order to only assess differences in

predictability judgments that can be traced back to differences between the structure of the

presented functions. For a treatment of predictability judgments in situations with varying

noise levels, we refer the interested reader to our earlier work presented in (Schulz et al.,

2015).

Screen shots of the two tasks are shown in Figure 12.

Results and discussion

As shown in Figure 13, we found that compositional functions were perceived as more

predictable (mean predictability judgment=55.92) than non-compositional functions (mean

predictability judgment=37.88 when performing a hierarchical t-test for which judgments

were nested within participants and items were treated as a random effect, t(31) = 8.35,
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Figure 12. Screen shots of the two predictability judgment tasks (Experiment 4). (Left)

Absolute predictability judgments. (Right) Relative predictability judgments.

p < 0.001, d = 0.73. Moreover, the predictability judgments for compositional judgments

were more strongly correlated with sample size (r = 0.28, p < 0.001) compared to

predictability judgments for non-compositional functions (r = 0.18, p < 0.001; difference

test: z = 2.36, p < 0.05).
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Figure 13. Mean predictability judgments. Error bars represent the standard error of the mean.

To analyze these results further, we fit a hierarchical regression model of subjective

predictability (nested within participants) with two predictors: the size of the shown samples
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and a dummy variable indicating whether or not a presented function was compositional. The

fixed effect results of this analysis, summarized in Table 3, demonstrate main effects of both

compositionality and sample size.

Table 3

Regression model of predictability judgments. Overall model fit: R2 = 0.17.

Estimate Std. Error t-value Pr(>|t|)

Intercept 13.06 3.50 3.72 0.0002

Compositional 17.44 1.53 11.39 0.0000

Sample size 0.34 0.04 7.42 0.0000

The relative predictability judgments tell a similar story (Figure 14). As with the

absolute judgments, compositional functions were perceived to be more predictable relative to

non-compositional functions (t(499) = 13.502, p < 0.001, d = 0.63), and this difference

increased with sample size (r = 0.14, p < 0.001).
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Figure 14. Relative predictability judgments. Positive values indicate that the compositional

function was judged to be more predictable than the non-compositional function. Error bars

represent the standard error of the mean.
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To understand how subjective probability judgments match theoretical predictability, we

approximated the generalization error using the average squared error for a randomly sampled

new input point. We computed this approximation for every sample that a participant saw

under different kernel choices: linear, RBF, spectral mixture, or a compositional kernel. To

generate predictions from each kernel, we chose the hyper-parameters (including the

composition for the compositional kernel) that maximized the log marginal likelihood.

Figure 15 shows the average correlation between each kernel’s generalization error and

participants’ predictability judgments, averaged over all trials and participants.
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Figure 15. Average correlation between model predictions and participants’ predictability

judgments. Predictions were derived from models’ average generalization error. As

generalization error and predictability are inversely related, the inverse of the generalization

error was used to produce the correlations. Error bars represent the standard error of the mean.

The spectral mixture kernel (t-test against a correlation of 0: t(49) = −2.351, p < 0.05,

d = 0.33), the compositional kernel (t(49) = −19.73, p < 0.001, d = 2.79) as well as the

RBF kernel (t(49) = −4.3, p < 0.01, d = 0.61) all described participants’ judgments better

than chance. The linear (t(49) = 0.846, p > 0.1, d = 0.12) kernel did not predict participants’

judgments better than chance. Crucially, the compositional kernel showed a significantly
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higher correlation than either the spectral mixture kernel (t(49) = −7.86, p < 0.001,

d = 1.57) or the radial basis function kernel (t(49) = −9.92, p < 0.001, d = 1.49).

In summary, compositional functions were perceived as more predictable, even though

they were generated to be theoretically less “forecastable” than the non-compositional

functions sampled from the spectral mixture kernel. The generalization error produced by the

compositional structure learning approach matched participants’ predictability judgments

more closely than any of the alternative models.

Experiment 5a: A short version of the traditional function learning paradigm

The experiments presented so far have mostly focused on visual pattern completions,

either by choosing completions in forced choice or MCMCP tasks or by manual pattern

completions. However, psychological experiments on function learning have traditionally

focused on a different task, in which participants produce output predictions given inputs

presented one at a time. For example, Carroll (1963) asked participants to predict the height of

one bar given another bar’s height. After each prediction, participants received feedback about

how close their prediction was to the actual output.

We sought to compare compositional and non-compositional functions using the

traditional function learning paradigm. Additionally, we used this as an opportunity to assess

which account of function learning best captures participants’ trial-by-trial learning.

Methods

Participants. 46 participants (mean age=31, SD=11; 30 males) were recruited via

Amazon Mechanical Turk and received $0.5 for their participation. The experiment took 12

minutes on average to complete.

Procedure. Participants were asked to predict an output indicated by the height of a

red bar given the current input indicated by the height of a blue bar (Figure 16). On each trial,

they saw the current input (a blue bar) and had to indicate their predictions by adjusting the

height of an orange bar using a slider. After submitting their prediction, the actual output

appeared marked as a red bar directly next to the orange bar. Additionally, participants also

saw the actual numbers of the current input, their prediction and –after they submitted their
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predictions– the output, as well as the difference between their prediction and the actual

output. It was explicitly stated to participants that the input is related to the output by an

underlying function and that they had to learn that function in order to produce the smallest

possible difference between their predictions and the outputs.

Figure 16. Screen shots of the input-output learning experiment. The height of the blue bar

indicates the input. The height of the orange output marks the prediction and can be adjusted

by using the slider. After the prediction was submitted, the actual output, marked by the height

of the red bar, appeared and participants were told the absolute difference between their

prediction and the actual outcome.

Participants learned 4 different functions over 4 blocks. Each block consisted of 20

trials (input-output pairs). The input was randomly sampled to be within 0 and 100, and the

output was also transformed to range between 0 and 100. Out of the 4 different functions

participants had to learn, 2 were sampled from the set of matched compositional functions and

2 were sampled from the set of matched non-compositional functions.
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Results and discussion

On average, participants’ predictions were only slightly more accurate for the

compositional functions than for the non-compositional functions as shown when performing

a hierarchical t-test for which predictions were nested within participants and items were

treated as a random effect (t(34) = 1.6, p < 0.1, d = 0.18; Figure 17). Performing a linear

regression with the absolute difference between participants’ predictions and the actual

outputs as the dependent variable and a factor variable encoding whether or not the underlying

function was compositional as well as the trial number (how many predictions participants had

made before) resulted in the model summarized in Table 5.
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Figure 17. Mean difference between predictions and outcomes for compositional and spectral

kernel in Experiment 5a. Error bars represent the standard error of the mean.

Participants clearly improved over the course of each block, as evidenced by the main

effect of trial. Even though compositional functions are on average predicted more easily

(β = −1.56), this effect turned out to be rather small, perhaps because both compositional and

non-compositional functions are non-linear, which are notoriously hard to learn in the

traditional function learning paradigm (Byun, 1995) and also because they were created to be

quite similar when we designed the matched set.
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Table 4

Regression model of the traditional function learning paradigm. Overall model fit: R2 = 0.14.

Estimate Std. Error t value Pr(>|t|)

Intercept 23.01 0.72 32.02 0.0000

Compositional -1.56 0.62 -2.52 0.0118

Trial -0.30 0.0535 -5.65 0.0000

To further disentangle the different models, we created the trial-by-trial predictions for

the linear, compositional, spectral mixture and RBF kernels, and assessed how well each

model’s predictions for the n+ 1 trial after having seen n outputs matched participants’

predictions. As shown in Figure 18, the compositional kernel described participants’

predictions best (r = 0.54, p < 0.01) followed by the linear kernel (r = 0.21, p < 0.01). The

correlation for both the RBF kernel (r = 0.03) and the spectral mixture kernel did not differ

significantly from zero (r = 0.04). Importantly, the compositional kernel predicted

participants’ predictions significantly better than the linear kernel (t(45) = 9.38, p < 0.001,

d = 1.14).

Additionally, more simplistic strategies such as simply matching the height of the input

bar (r = 0.14, p < 0.01) or entering as the next input the output of the previous trial

(r = 0.15, p < 0.01) did not predict participants’ trial-by-trial behavior better than the

compositional model. Thus, the compositional kernel appears to provide a better account of

trial-by-trial learning in the traditional function learning paradigm over shorter trial numbers.

Experiment 5b: An extended version of the traditional function learning paradigm

In order to further probe the different accounts of function learning in a trial-by-trial

function learning paradigm, we ran another experiment with longer learning horizons as well

as an additional stage of both interpolation and extrapolation judgments. This experiment tried

to adhere to the design described in DeLosh et al. (1997).
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Figure 18. Model fit (Pearson correlation coefficient) for predicting participants’ next

predictions given the current input over all trials. Error bars represent the standard error of the

mean.

Methods

Participants. 89 participants (mean age=38, SD=7.7; 44 females) were recruited from

Amazon Mechanical Turk and received $0.5 for their participation as well as a

performance-dependent bonus of up to $1.8. The experiment took 35 minutes on average.

Procedure. As in Experiment 5a, participants had to predict outputs (indicated by the

height of a red bar) given different inputs (indicated by the height of a blue line) by adjusting a

slider and thereby changing the height of an orange bar. However, this time the experiment

consisted of only one block for which –unknown to participants— one function was sampled

from the matched set (i.e., one of the 40 functions described above) and used as the mapping

between inputs and outputs. Participants were told that they had to learn and predict how

different inputs relate to different outputs over 120 trials.14 After the 120 trials were over,

participants were asked to make predictions for 30 more trials but without receiving immediate

14We avoided explicitly mentioning the term “function” in this experiment in order to discourage participants

from imposing familiar functional forms on the data.
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feedback about the output after each prediction. We divided the input space into equidistant

points from x = [0, 1, 2, 3, . . . , 100]. For the first 120 trials, participants had to predict inputs

for values sampled randomly within the boundaries x = [20, 80]. For the 30 remaining trials,

participants had to predict inputs for 10 inputs from within the previously learned range that

they had not seen before, i.e. interpolation predictions, 10 for inputs sampled from the range

[0, 20] and 10 sampled from the range [80, 100], i.e. extrapolation predictions. Participants

gained between 0 and 10 points for the quality of their predictions (measured by the absolute

distance to the output) over the first 120 trials, and between 0 and 20 for the last 30 trials.

After participants had finished the experiment, their total points were converted into money

such and they received $0.10 for every 100 points gained during the experiment.

Results and discussion

Participants gained $2.02 on average. This time, the spectral functions were predicted

better than the compositional functions over all of the 120 trials (hierarchical t-test:

t(87) = −2.38, p < 0.05, d = 0.52). This can also be seen when performing a similar

regression as in Experiment 5a.

Table 5

Regression model of the extended traditional function learning paradigm. Overall model fit:

R2 = 0.14.

Estimate Std. Error t value Pr(>|t|)

Intercept 14.56 0.27 53.22 0.0000

Compositional 3.56 0.26 12.88 0.0000

Trial -0.04 0.003 -10.17 0.0000

This means that —over extended experience— participants learn to predict inputs from

within the provided sets slightly better for the spectral than for the compositional functions.

This is not that surprising as these functions were set up to be more forecastable when we

designed the “matched set”. However, a crucial comparison is then whether compositional or

spectral functions are easier to predict both within the interpolation and extrapolation set. We



COMPOSITIONAL INDUCTIVE BIASES 44

found that whereas spectral functions are easier to predict in interpolation judgments

(t(87) = −1.89, p < 0.1, d = 0.41), compositional functions are easier to predict in

extrapolation judgments (t(87) = 2.1, p < 0.05, d = 0.46). This means that compositional

structure is more difficult to learn than the relatively unstructured but smooth spectral

functions but leads to better out-of-sample predictions over all (Figure 19).
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Figure 19. Experiment 5b results: average error for interpolation (left) and extrapolation

(right) predictions. Error bars show the standard error of the mean.

Next, we again created trial-by-trial predictions for the linear, compositional, spectral

mixture and RBF kernels, and assessed how well each model’s predictions for the n+ 1 trial

after having seen n outputs matched participants’ predictions. Moreover, we also assessed

how well each of the kernels was able to capture participants’ predictions for both the

interpolation and extrapolation trials. Results are shown in Figure 20.

Overall, all models generated better trial-by-trial predictions than what would be

expected at chance level. For the trial-by-trial predictions, the compositional kernel generated

better predictions than the linear kernel (t(87) = 6.99, p < 0.001, d = 0.74), the RBF kernel

(t(87) = 6.85, p < 0.001. d = 0.73) as well as the spectral mixture kernel (t(87) = 8.23,

p < 0.001, d = 0.87). Both the RBF (t(87) = 3.19, p < 0.01, d = 0.34) as well as the spectral

mixture kernel (t(87) = 2.73, p < 0.01, d = 0.29) led to better predictions than the linear

kernel. A similar picture emerged for the interpolation predictions during the test trials, where

the compositional kernel again generated better predictions than the linear (t(87) = 5.11,
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Figure 20. Experiment 5b results: average correlation between model and participants’

predictions for trial-by-trial learning (left), interpolation (center) and extrapolation (right).

Error bars show the standard error of the mean.

p < 0.001, d = 0.54), the RBF (t(87) = 4.84, p < 0.001 d = 0.52), or the spectral mixture

kernel (t(87) = 4.85, p < 0.001. d = 0.51). As before, both the RBF ((87) = 2.36, p < 0.05,

d = 0.25) as well as the spectral mixture kernel (t(87) = 2.36, p < 0.05, d = 0.25) led to

better predictions than the linear kernel. The effects for interpolation predictions were

generally smaller than for the trial-by-trial predictions.

Interestingly, some of the results reversed when comparing performance for the

extrapolation predictions, where the linear kernel led to better performance than either the

RBF (t(87) = 3.16, p < 0.01, d = 0.34) or the spectral mixture kernel t(87) = 3.00, p < 0.01,

d = 0.32). However, the compositional kernel still performed better than the RBF

(t(87) = 14.34, p < 0.001, d = 1.53), the spectral (t(87) = 10.80, p < 0.001, d = 1.15), or

the linear (t(87) = 3.91, p < 0.001, d = 0.42) kernel. The finding that the compositional

kernel can match both interpolation and extrapolation judgments resonates well with previous

studies. For example, DeLosh et al. (1997) proposed a model that applied smooth trial-by-trial

and interpolation learning and simple linear rules for extrapolation. As the compositional

kernel can approximate both smooth and linear function, it is able to capture both behavioral

phenomena (as also proposed by Lucas et al., 2015).
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Experiment 6: Assessing numerosity

In our next series of experiments, we explore the broader implications of compositional

function representation for 3 domains of cognition: numerosity perception, change detection,

and short-term memory. We begin with a standard numerosity judgment task, in which

participants estimate the number of dots appearing briefly on a screen. Zhao and Yu (2016)

showed that, in the absence of explicit grouping cues, structured configurations of dots led to

lower estimates compared to random configurations. This effect of structure on perceived

numerosity appears to arise from the fact that dots belonging to structured configurations are

more likely to be perceptually grouped together; these groups then become the units which are

enumerated. In a related study, Zhao, Ngo, McKendrick, and Turk-Browne (2011) showed

that the accuracy of numerosity judgments improves when statistical regularities are removed,

indicating a direct relationship between statistical learning and numerosity perception.

If compositional functions are perceived as more “structured” than non-compositional

functions (as suggested indirectly by our predictability experiment), then a natural hypothesis

is that dot configurations generated from compositional functions will be perceived as less

numerous. We tested this prediction using a standard numerosity judgment task.

Methods

Participants. 91 participants (mean age=37.84, SD=7.87, 48 female) were recruited

via Amazon Mechanical Turk and received $0.5 for their participation. The experiment took 7

minutes on average to complete.

Procedure. Each participant completed a total of 40 trials. On each trial, participants

were presented with a function drawn from the set of matched functions, discretely sampled

into 100 equidistant gray dots on the screen. This configuration was displayed for one second,

after which the dots vanished. Out of the 100 dots, n = [5, 6, 7, . . . , 15] randomly selected dots

were marked as red. Participants were asked to estimate the number of red dots (between 0

and 20) after all the dots had vanished. A screen shot of the experiment is shown in Figure 21.
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Figure 21. Screen shot of the numerosity experiment. Dots stayed on the screen for 1000ms

and then vanished before the slider could be used.

Results and discussion

Figure 22 shows the effect of the number of dots on participants’ numerosity judgments,

averaged over both compositional and non-compositional functions, demonstrating that

increasing the number of red dots led to greater underestimation of the actual number,

consistent with the idea that perceived numerosity diminishes as structure becomes more

discernible.

We hypothesized that participants would underestimate the red dots if they were

superimposed on more structured functions (functions sampled from a compositional kernel)

as compared to relatively unstructured functions (sampled from the spectral mixture kernel).

Figure 23 shows the direct comparison of numerosity estimates for compositional and

non-compositional patterns. Overall, participants underestimated the number of dots more for

compositional than for non-compositional patterns(−0.74 vs. −0.53, hierarchical t-test:

t(38) = −2.2, p < 0.05, d = 0.43), consistent with our hypothesis.

We performed a regression analysis to account for both the number of dots and the
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Figure 22. Mean difference between presented and estimated number of red dots over number

of shown dots. Error bars represent the standard error of the mean. As more red dots are

presented, participants tend to under-estimate the actual number more.
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Figure 23. Comparative judgments. Lower values mean that participants underestimated the

number of red dots. Error bars represent the standard error of the mean.
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function type. The results (presented in Table 6) showed that with an increasing number of red

dots, participants showed a stronger tendency to underestimate numerosity (β = −0.39).

Additionally, we found a main effect of function type (β = −0.17). There was no interaction

effect between the number of red dots and function type (β = −0.02).

Table 6

Parameter estimates from numerosity judgments regression analysis.

Estimate Std. Error t-value Pr(>|t|)

Intercept 3.23 0.12 27.631 <2e-16

Number of dots -0.39 0.01 -35.845 <2e-16

Compositional -0.17 0.07 -2.43 0.015

Compositional × Number of dots -0.02 0.02 -0.76 0.446

Taking together, our results indicate that perceived numerosity is reduced to a greater

extent by compositional functions compared to non-compositional functions, a finding that

agrees with the results of Zhao and Yu (2016): structural regularity distorts the units of

perception, making them appear less numerous. Even though the non-compositional functions

we used were in fact structured (as measured by forecastability), they produced a weaker

effect on numerosity relative to compositional functions, arguably because their structure is

less “intuitive” (i.e., they lack the inductive bias needed to easily perceive this structure).

Experiment 7: Change detection with functions

We next examined whether compositional structure influences change detection

performance (Pashler, 1988; Rouder, Morey, Morey, & Cowan, 2011). In a typical change

detection paradigm, participants judge whether two stimuli presented rapidly in sequence are

the same or different. It has been suggested that structured representations facilitate change

detection by allowing a summary representation of the stimulus to be stored in short-term

memory (Brady & Tenenbaum, 2013). When the stimulus consists of multiple items, those

items that are not assimilated into the summary representation are encoded as “outliers”.

However, because memory is capacity-limited, only a small number of outliers can be



COMPOSITIONAL INDUCTIVE BIASES 50

encoded. Thus, the summary representation frees up encoding resources for specific items.

The more structure in the display that can be encoded, the more resources will be available for

encoding specific items.

The critical question concerns the nature of this structure—what are the inductive biases

that constrain short-term memory representations? Brady and Tenenbaum (2013) used

Markov random fields to encode information about object features; several other structural

assumptions have been explored in the literature (Lew & Vul, 2015; Mathy & Feldman, 2012;

Orhan & Jacobs, 2013). Here we explore the possibility that the representation of functions in

short-term memory is compositional, leading to the prediction that change detection will be

more accurate with compositional functions compared to with non-compositional functions.

This prediction links the compressibility of functions directly to their generalizability. In fact,

recent attempts in Bayesian machine learning have shown that models providing a good

description of data can also be used for lossy compressions of the same data (see Ghahramani,

2015).

Participants

66 participants (mean age=30, SD=8.2, 42 males) were recruited from Amazon

Mechanical Turk and received $0.5 for their participation. The experiment took 10 minutes on

average.

Procedure

Participants judged whether or not two consecutively displayed patterns were the same

(by pressing “J”) or different (by pressing “L”; see Figure 24). As in the numerosity

experiment, we used functions from the matched set (20 compositional, 20

non-compositional, sampled without noise) and displayed them on the screen as 100

horizontally equidistant gray dots. On each trial, participants saw the original structure for

1000ms, followed by an interstimulus interval (500ms) and then a test probe (1000ms).

Unbeknownst to participants, the probe had a 50% chance of being the same or different.

Change probes were constructed by randomly selecting N ∈ {2, 3, · · · , 5} dots and permuting

them (under the constraint that no point ends up at the same position as before).
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Compositional-Changed

Compositional-No change

Spectral Mixture-Changed

Spectral Mixture-No change

Intial (1000ms)           Test (1000ms)Interstimulus interval (500ms)

Figure 24. Schematic of change detection task. Initial stimulus was presented for 1000ms,

drawn either from the compositional or from the non-compositional (spectral mixture) set.

After an interstimulus interval (500ms), a test probe was presented and participants had to

make a same/different judgment.
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Results and discussion

Participants responded correctly on 82% of no-change trials for the compositional

functions and on 81% of the no-change trials for the non-compositional functions. Thus, there

was no significant difference in correct rejection rate for the two types of functions

(χ2(N = 1185, df = 1) = 0.21, p > 0.05). However, 77% of the changed compositional

functions were correctly identified as having changed, whereas that proportion was only 67%

for the changed non-compositional functions. Therefore, change is more easily detected for

compositional functions (χ2(N = 1188, df = 1) = 12.13, p < 0.001). Moreover, 49 of 66

participants correctly identified change of compositional functions more frequently than

change of non-compositional functions (χ2(N = 66, df = 1) = 9.67, p < 0.01).

Using a Bayesian hierarchical model to assess the posterior distribution of correctly

identifying a probe revealed an estimate of p̂ = 0.79 with a 95% credible set of [0.76, 0.81] for

the compositional probes, whereas the same posterior was only p̂ = 0.72 with a 95% credible

set of [0.68, 0.75] for the non-compositional functions.

We created an indicator variable that was set to 1 if a participant responded correctly,

and 0 otherwise. Figure 25 shows the mean proportions of correct responses for compositional

and non-compositional trials across different levels of change: “no change”, “small change”

(between 1 and 2 dots permuted) and “large change” (between 3 and 5 dots permuted). This

analysis demonstrated that change detection performance was superior for compositional

across levels of change.

In order to quantitatively capture these results, we developed a Bayesian theory of

functional change detection. Let D1 and D2 denote the first and second stimuli (input-output

pairs), respectively, and let f1 and f2 denote the corresponding functions. The task facing

participants is to determine the posterior probability that the two functions are different:

P (f1 6= f2|D1,D2) = P (D1,D2|f1 6= f2)
P (D1,D2|f1 6= f2) + P (D1,D2|f1 = f2) , (14)

where for simplicity we have assumed that the prior probability of change is 0.5. The change

(f1 6= f2) likelihood is given by:

P (D1,D2|f1 6= f2) =
∫
f1
P (D1|f1)P (f1)df1

∫
f2
P (D2|f2)P (f2)df2, (15)
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Figure 25. Proportion of correctly detected changes. Participants were more likely to detect

changes in compositional functions. Error bars represent the standard error of the mean.

and the no-change (f1 = f2) likelihood is given by:

P (D1,D2|f1 = f2) =
∫
f
P (D1|f)P (D2|f)P (f)df. (16)

We used this probabilistic model to make trial-by-trial predictions of performance on the

change detection task. As in our other analyses, we chose hyper-parameters that optimized the

marginal likelihood for a given kernel. For the spectral kernel, we treated the number of

mixture components as a free hyper-parameter (ranging from 1 to 6).

To allow for noise in the decision process, we modeled the binary responses using a

logistic function of the model predictions, with separate predictors for compositional and

non-compositional predictions. The results of this logistic regression are summarized in

Table 7. The compositional model was a significant predictor of human change detection

performance (β = 0.0122, p < 0.001), whereas the spectral mixture model was only

marginally predictive (p = 0.05).

To show this result in a different way, we computed the point biserial correlation

between the model predictions and human responses (Figure 26). The average correlation per

participant for the compositional model was significantly higher than the average correlation
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Table 7

Result of change detection logistic regression.

Estimate Std. Error z value Pr(>|z|)

Intercept 1.3018 0.0918 14.19 0.0000

Compositional prediction 0.0122 0.0006 19.61 0.0000

Spectral mixture prediction 0.0012 0.0006 1.95 0.0517
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Figure 26. Mean point biserial correlation between model predictions and participants’

responses in the change detection task. Error bars represent the standard error of the mean.

for the spectral mixture model (r = 0.68 vs. r = 0.15, t(132) = 20.5, p < 0.001, d = 3.54).

In summary, we found that changes are more easily detected in compositional functions

compared to non-compositional functions, consistent with the idea that compositional

functions are more efficiently encoded into a summary representation. Moreover, a GP theory

of change detection with a compositional kernel allowed us to quantitatively predict human

change detection performance.
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Experiment 8: Compositional chunking in short-term memory

The results of Experiment 7 suggested that change detection is facilitated by

compositional summary representations. A closely related idea is that structural regularities

increase memory capacity because they are “compressible” (Brady, Konkle, & Alvarez, 2011;

Mathy & Feldman, 2012). For example, if multiple items can be chunked together, then a

greater number of items can be stored in memory (Miller, 1956). Chunking has been posited

as the basis of exceptional expert memory (Chase & Simon, 1973; Gobet & Simon, 1998) and

story comprehension (Thorndyke, 1977).

In our next experiment, we pursue this idea further, asking whether compositional

functions are more compressible (and hence more memorable) than non-compositional

functions. We used a standard short-term memory task (the Sternberg paradigm; Sternberg et

al., 1966), in which participants are shown a rapid sequence of items (functions in this case)

followed by an old/new judgment of a probe item. This task additionally allowed us to

measure the interplay between compositionality and set size.

Methods

Participants. 133 participants (mean age=31.05, SD=8.19, 71 male) were recruited

via Amazon Mechanical Turk and received $0.5 for their participation. The experiment took 9

minutes on average.

Procedure. Participants were shown between 2 and 6 functions sampled randomly

from the matched set. Each function appeared on the screen for 1000ms. A 500ms intertrial

interval succeeded the final item, followed by a probe item. Participants were asked to judge

as quickly as possible whether the probe item was old (i.e., appeared in the preceding set) or

new. There were 15 trials in total (3 trials for each set size). The probe was randomly selected

to be either compositional or non-compositional, and probes were old on half of the trials. A

schematic of the experiment is shown in Figure 27.
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Figure 27. Schematic of the memory experiment. A sequence of stimuli was sampled from the

matched set of functions. Every stimulus was presented for 1000ms, followed by an

interstimulus interval (500ms), and then a probe (speeded old/new judgment).

Results and discussion

We excluded 23 participants who failed to respond correctly for more than half of the

trials, and removed all trials that took longer than 5 seconds or less than 500ms.

Participants responded correctly on 77.8% of the compositional probes and on 66.7% of

the non-compositional probes—a significant difference in accuracy

(χ2(N = 1456, df = 1) = 14.252, p < 0.001). 71 of 110 participants responded correctly

more frequently to the compositional probes than to the non-compositional probes

(χ2(N = 110, df = 1) = 9.3, p < 0.01).

This result can be decomposed further into a 75% hit rate for compositional probes,

compared to a 67% hit rate for the non-compositional probes (a significant difference between

hit rates: χ2(N = 709, df = 1) = 5.19, p < 0.05). 78 of 110 participants showed a higher hit
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rat for compositional probes as compared to non-compositional probes

(χ2(N = 110, df = 1) = 19.2, p < 0.01).

Finally, there was also a significant difference between the correct rejection rate (78%

for compositional probes vs. 65% for non-compositional probes;

χ2(N = 747, df = 1) = 8.87, p < 0.01). 76 of 110 participants showed a higher correct

rejection rate for compositional probes as compared to non-compositional probes

(χ2(N = 110, df = 1) = 17.92, p < 0.01).

Using a Bayesian hierarchical model to assess the posterior distribution of correctly

identifying a probe, we found that this posterior was p̂ = 0.76 for the compositional probes

with a 95% credible set of [0.74, 0.78] and only p̂ = 0.67 for the non-compositional probes

with a 95% credible set [0.64, 0.69].

To disentangle compositionality and set size, we ran a logistic regression to predict the

probability of a correct response from compositionality (i.e., compositional vs.

non-compositional probe) and set size factors. As shown in Table 8, the probability of

responding correctly decreases with set size (β = −0.22), and compositional probes are more

likely to be correctly identified (β = −0.37). We also found a significant interaction, whereby

the compositional advantage decreases with set size (β = −0.18; Figure 28). This might be

due to an increased guessing rate that could potentially obscure the compositional advantage.

Table 8

Results of logistic regression analysis of the memory experiment.

Estimate Std. Error z-value Pr(>|z|)

Intercept 2.04 0.29 7 <2.57e-12

Set size -0.22 0.06 -3.33 <0.001

Compositional 1.24 0.37 3.33 <0.001

Set size × Compositional - 0.18 0.08 2.2 0.02

We next developed a Bayesian model of performance in the task, adapting the same

basic framework that we applied to the change detection task. A participant is exposed to a

study list (sequence of independent input-output datasets), denoted by D1:N , generated by
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Figure 28. Proportion of correctly identified probes as a function of set size. Error bars

represent the standard error of the mean.

underlying functions f1:N . The task is to compute the posterior probability that a new dataset

(the test probe), denoted by D′, was generated by one of the functions in the study list:

P (f ′ ∈ f1:N |Y ) =
N∑
n=1

P (f ′ = fn|Dn,D′) (17)

∝
N∑
n=1

P (f ′ = fn)PDn,D′|f ′ = fn). (18)

Following the structure of the experiment, we will assume that the probability of an “old”

trial,
∑N
n=1 P (f ′ = fn), is 0.5. The marginal likelihood is given by:

P (Dn,D′|f ′ = fn) =
∫
f
P (Dn|fn = f)P (D′|f ′ = f)P (f)df. (19)

Our general optimization procedure is the same as described in the change detection model.

We entered the model predictions for both the compositional and spectral mixture

models into a logistic regression to predict participant’s old/new responses. Results of the

logistic regression analysis are summarized in Table 9. Only the compositional model was a

significant predictor of responses (β = 0.054, p < 0.001), whereas the spectral mixture model

was not a significant predictor (β = 0.01, p = 0.07).
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Table 9

Results of logistic regression analysis of the memory experiment.

Estimate Std. Error z value Pr(>|z|)

Intercept 1.4314 0.2147 6.67 0.0000

Compositional prediction 0.0543 0.0098 5.53 0.0000

Spectral mixture prediction 0.0176 0.0096 1.83 0.0676
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Figure 29. Mean point biserial correlation for the compositional and the spectral mixture

models. Error bars represent the standard error of the mean.

Finally, we calculated the correlation between each model’s predictions and

participants’ responses. As shown in Figure 29, the compositional model produced a superior

correlation compared to the non-compositional model (r = 0.35 vs. r = 0.09; t(262) = 9.97,

p < 0.001, d = 0.34). Moreover, assessing two more simplistic models, we found that neither

simply calculating a mean squared distance between the probe and all functions in the set

(r = 0.094), nor counting the number of types within the set and then stating new if the probe

is of the same type as most functions within the set and old otherwise (r = 0.04) led to better

predictions of participants’ responses.

We conclude that compositional functions are more easily remembered than
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non-compositional functions in a version of the Sternberg task. Participants’ old/new

judgments were well-captured by a Bayesian model of short-term memory that used a

compositional kernel.

General discussion

In this paper, we pursued the hypothesis that human inductive biases for functional

pattern recognition are compositionally structured—that is, humans prefer to represent

complex functions as compositions of simpler building blocks. We formalized this idea using

a compositional kernel within a Gaussian Process regression framework, and assessed human

inductive biases across a diverse range of experiments. The first set (Experiments 1, 2, 3 and

5) attempted to directly measure inductive biases using extrapolation and interpolation

judgments, finding that participants preferred compositional over non-compositional pattern

completions. The second set of experiments examined the broader implications of

compositionality, finding that compositional functions are perceived as more predictable

(Experiment 4) and memorable (Experiment 8) compared to non-compositional functions.

Furthermore, discrete displays of items are perceived as less numerous (a signature of

statistical regularities; Experiment 6), and changes in such displays are more easily detected

(Experiment 7). Taken together, our experimental findings provide strong support for the

compositional hypothesis.

There are several reasons why intelligent agents might exhibit compositional inductive

biases. First of all, if the world obeys a similar compositional structure, then compositional

inductive biases support learning and generalization. This conjecture could be further assessed

by testing if participants’ compositional priors over different domains track the structure

within those domains, similar to what has been found in judgments about durations and other

quantities (Griffiths & Tenenbaum, 2006). Moreover, compositionality can improve sample

complexity and approximation accuracy under finite resource constraints (Mhaskar & Poggio,

2016). In principle, allowing for compositionality only ever costs a few extra bits of

information (i.e. storing the compositional priors), but if structure exists that a grammar can

express, then one can save an unbounded number of bits by detecting that structure.
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Another reason for compositional inductive biases could be that compositionality helps

memorizing structure by providing naturally occurring chunks. As seen in Experiment 8,

participants memorized compositional structure more easily and a Bayesian model of

compositional short-term memory for functions described their responses well. Thus, these

biases might support the encoding and retrieval of structure in the real world. Finally,

compositions might also make it easier to describe different structures and therefore support

the social transmission of functions.

Related work

The work presented here is connected to several lines of previous work. Most relevant

are the seminal work of Griffiths et al. (2009) and Lucas et al. (2015) on Gaussian processes

for function learning in general, and Wilson et al. (2015) more recent attempts to

reverse-engineer the human kernel using a non-parametric kernel in particular. We see our

work as complementary to this research. If we want to find out how people perceive and

reason about functional structure then we need both a bottom-up theory to describe how

people make sense of structure as well as a top-down method to indicate what the final

structure might look like when represented as a kernel. Additionally, implementing a structure

search algorithm as a parse tree as we have done here has recently been shown to be

statistically efficient (Xu, Honorio, & Wang, 2017).

Our approach here also ties together neatly with past attempts to model compositional

structure in other cognitive domains. Of course, language (e.g., Chomsky, 1965) and object

perception (e.g., Biederman, 1987) have long traditions of emphasizing compositionality.

More recently, these ideas have been extended to other domains. For example, Gershman,

Tenenbaum, and Jäkel (2016) showed how hierarchical motion perception could be

understood as a kind of vector analysis, using compositional GPs to model the combination of

motion flow fields. This approach has also been applied to decision making; Gershman,

Malmaud, and Tenenbaum (2016) used GPs to model utility functions over tree-structured

objects (e.g., meals in a restaurant). In both motion perception and decision making, simpler

non-compositional models failed to explain human performance.
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Limitations and future directions

While our experiments established the importance of compositional representations for

functional pattern recognition, we do not believe that we have fully characterized the base

functions and composition architecture. We restricted our framework to a small number of

components primarily for practical purposes. Thus, an important direction for future work will

be to systematically investigate the boundaries of function composition. Fortunately, the GP

formalism can accommodate a wide variety of compositional structures (Duvenaud et al.,

2013), so we expect that this task can be accomplished without deviating too far from the

analytical framework laid out in this paper.

Another limitation is that we currently optimize the hyper-parameters of the kernels (for

example, in the pattern completion experiments) a priori, whereas agents learning about

functions in the real world naturally have to learn about both the underlying compositions as

well as their hyper-parameters. One way to build a continuously updating model of

compositional function learning could take inspiration from previously proposed models such

as ALM (Busemeyer et al., 1997). ALM essentially implements a learning algorithm similar

to a GP with an RBF kernel, but instead of using a Bayesian learning algorithm it is based on

simple delta rule learning. Building a delta-learning based compositional function learning

model and comparing it to other models of function learning provides a promising avenue for

future research.

In this work we probed in what sense (if any) human functional inductive biases can be

seen as compositional within a single prediction task. However, composing structures learned

across different tasks could provide even more powerful learning strategies. Future work

could investigate the composition of structure across tasks (as for example shown by Hwang,

Tong, & Choi, 2016), for example in one-shot learning experiments.

There are many other potential implications of compositional inductive biases for

functions. For example, these inductive biases could shape active learning (i.e., tasks in which

participants can choose the next data point). We believe that active learning model

comparisons constitute an interesting framework to pit the structured and unstructured

approaches against each other (Parpart, Schulz, Speekenbrink, & Love, 2015).
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Related issues arise in reinforcement learning tasks, where agents must balance

exploration and exploitation. Such tasks have already been modeled using GPs (Schulz,

Konstantinidis, & Speekenbrink, 2016; Wu, Schulz, Speekenbrink, Nelson, & Meder, 2017),

suggesting their amenability to analysis with compositional kernels. This approach could also

be applied to designing nonparametric value function approximators, which have been

proposed as cognitively and neurally plausible solutions to reinforcement learning problems

(Gershman & Daw, 2015). New experiments will be required to discern whether

reinforcement learning exploits compositional inductive biases.

Finally, the development of compositional inductive biases for functions is another

important and open question. Very little is known in general about the development of

function learning. The studies described in this paper could potentially be run in children,

which would provide insight into the origin of compositional inductive biases.

Conclusions

We proposed that people exhibit compositional inductive biases in function learning and

assessed a compositional model of function learning across 8 experimental paradigms. Our

model not only provides a good account of participants’ completion, learning, perception, and

memorization of functional structure, but also resonates well with a general trend in the

cognitive sciences focusing on the importance of compositionality for intelligent behavior

(Fodor & Pylyshyn, 1988; Lake et al., 2015; Piantadosi et al., 2016; Tenenbaum, Kemp,

Griffiths, & Goodman, 2011). Taken together, our results show how people manage to

construct richly structured representations from simple functional building blocks.
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Appendix A

Gaussian Process Inference

In the case that there is only one test point x∗, the posterior mean f∗ can be calculated as:

f∗ = k>∗ (K + σ2
nI)−1y, (20)

where k∗ = k(x∗, X) and K = k(X,X). The posterior variance of the prediction is given by:

V[f∗] = k(x∗, x∗)− k>∗ (K + σ2
nI)−1k∗. (21)

The marginal likelihood is given by integrating over the latent function f :

p(y|x) =
∫
p(y|f,X)p(f |X)df. (22)

The log marginal likelihood for a GP with hyper-parameters θ is given by:

log p(y|X, θ) := −1
2y
>(K + σ2

nI)−1y − 1
2 log |K + σ2

nI| −
n

2 log 2π. (23)

where the dependence of K on θ is left implicit. The hyper-parameters are chosen to

maximize the log-marginal likelihood, using gradient-based optimization.
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Appendix B

Spectral mixture kernel

Bochner’s theorem

A stationary kernel is a function of τ = x− x′. A complex-valued function k on RP is the

covariance function of a weakly stationary mean-square continuous complex-valued random

process on RP if and only if it can be represented as:

k(τ) =
∫
RP
e2πis>τψ(ds) (24)

where ψ is a positive finite measure. The density S(s) of ψ is called the spectral density of k;

k and S are Fourier duals:

k(τ) =
∫
S(s)e2πis>τds (25)

S(s) =
∫
k(τ)e−2πis>τdτ (26)

Therefore, every kernel can also be represented by a distribution over the spectral density

space.

Mixture of Gaussians spectral kernel

Our treatment of the spectral kernel follows Wilson et al. (2015), and we refer the reader

to that paper for more details. The spectral density modeled with a single Gaussian can be

expressed as:

φ(s, µ, σ2) = 1√
2πσ2

exp{− 1
2σ2 (s− µ)2} (27)

S(s) = 1
2[φ(s)− φ(−s)] (28)

The resulting kernel is given by:

k(τ) = exp{−2π2τ 2σ2} cos(2πτµ) (29)

Extending this result to a mixture of Q Gaussians results in:

k(τ) =
Q∑
q=1

wq
P∏
p=1

exp{−2π2τ 2
p v

(p)
q } cos(2πτpµ(p)

q ) (30)
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where the qth component has the mean µq = (µ(1)
q , . . . , µ(p)

q ) and covariance matrix

Mq = diag(v(1)
q , . . . .v(p)

q ), where the inverse mean represents the component periods and the

inverse standard deviation the length scales.
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Appendix C

Hierarchical model

The Bayesian model used to assess the posterior probabilities in Experiments 1, 7, and 8 is

based on a hierarchical binomial model with the hyper-prior κ ∼ Pareto(1, 1.5), prior

p̂ ∼ Beta(φκ, (1− φ)κ); and the likelihood y ∼ Binomial(K, p̂). Inference was performed

using MCMC as implemented in Stan (Stan Development Team, 2016).
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Appendix D

Assessing the Bezier smoothing technique

We ran simulations to assess whether the Bezier smoothing technique applied in Experiment 3

forced participants’ drawings to be smoother than intended. We sampled 1000 functions (100

points for each) from an RBF kernel and 1000 functions from a less smooth

Ornstein-Uhlenbeck kernel (cf. Schulz et al., 2015), added normally distributed noise

ε ∼ N (0, 0.1) to every observation, and submitted these functions to the Bezier smoothing

algorithm. Afterwards, we used the extracted (Bezier-smoothed) function and performed the

same model comparison as in Experiment 3, assessing which of the two kernels led to better

out-of-sample predictions given different ground truths of the underlying smoothness.

Whereas the RBF kernel was always favored when the ground truth was sampled from a RBF

kernel (mean squared prediction error: 4.94 vs. 4.52), the Ornstein-Uhlenbeck kernel was

preferred for 505 of 1000 samples and led to a lower prediction error if the ground truth was

sampled from an Ornstein-Uhlenbeck kernel (mean squared prediction error: 3.72 vs. 3.74).

Thus, even though the Bezier smoothing technique has a tendency to prefer smoother

functions, it is nonetheless able to pick up on the intention to draw less smooth functions.
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Appendix E

Details on generation of comparison functions

Forecastibility

The Shannon entropy of a function f can be measured by the uncertainty of its spectrum Sf :

H(f) = −
∫ π

−π
Sf (λ) lnSf (λ)dλ (31)

For any stationary function,

H(f) ≤ H(white noise)

= −
∫ π

−π

1
2π ln 1

2πdλ

= ln 2π, (32)

with equality if and only if f is white noise, the least forecastable signal with a uniform

spectrum. The forecastibility measure Ω(f) is then defined as

Ω(f) = 1− H(f)
ln(2π) . (33)

We follow Goerg (2013) and estimate Ω(f) by first estimating the spectrum Sf , normalizing it

so that it integrates to 1, and then plugging it back into Eq. 31. We use the periodogram as an

unbiased estimator of Sf (see Goerg, 2013, for details).

Wavelet transform similarity measure

A discrete wavelet Haar Transform performs a scale-wise decomposition of the time

series in such a way that most of the energy of the time series can be represented by a few

coefficients. The main idea is to replace the original series by its wavelet approximation

coefficients a in an appropriate scale, and then to measure the dissimilarity between the

wavelet approximations. A detailed description of wavelet methods for time series analysis

can be found in Percival and Walden (2006). We used the R-package TSclust (Montero et

al., 2014) to find the appropriate scale of the transform. We then measured the dissimilarity

between two series x1 and x2 by the Euclidean distance at the selected scale:

d(x1,x2) = ||a1 − a2||.
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Is the Haar transform an intuitive measure of similarity?

To assess whether the wavelet Haar transform is an intuitive measure of functional

similarity, we sampled 50 functions from a radial basis function kernel and 50 functions from

an Ornstein-Uhlenbeck kernel and asked 50 MTurkers (mean age=32.94, SD=14.04, 19

female, flat payment of $ 0.3) to rate the similarity between pairs of randomly selected

functions from this pool for 20 consecutive trials on a scale ranging from 0 (not at all similar)

to 100 (very similar). The results of this experiment revealed that the Wavelet transform

similarity measure was predictive of participants’ judgments with an average correlation

between similarity judgments and the wavelet Haar distance between the two functions of

r = −0.49, p < 0.001 over all comparisons, r = −0.60, p < 0.001 when only comparing

functions sampled from the radial basis function kernel, and r = −0.62, p < 0.001, when only

comparing functions from the Ornstein-Uhlenbeck kernel.


