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Abstract. The Solar Orbiter mission overall science goal is to discover how the Sun creates and controls the 

Heliosphere. Solar Wind Analyser (SWA) instrument plays a fundamental role in achieving it, providing high time 

resolution measurements of the three-dimensional distribution of major components of solar wind’s plasma (electrons, 

protons, alpha particles). This results in large amounts of observation data to be sent on Ground, but has to face 

constraints descending from the unprecedented operational environment: available telemetry is very limited. This rises 

highly challenging compression issues to deal with. Classical information theory strategies have been applied in order to 

characterize, and then predict, the nature of the data SWA is going to measure, starting from a practical heritage on both 

real data acquired from similar missions and on algorithmic solutions specifically designed for the space domain. 

Therefore, we have defined and tailored strategies able to enhance the redundancy removal from data, exploiting their 

structure. The proposed approach represents a trade-off between computational resources, platform (telemetry) and 

science (data integrity) needs, and demonstrates to be able to meet requirements, achieving an increase of about +17.5% 

in the compression ratio if compared to the reference solution.  
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INTRODUCTION 

Solar Orbiter is ESA’s first M-Class mission under the Cosmic Vision 2015-2025 Program. It is funded by ESA, NASA 

and many European National Agencies; currently the schedule is dictated by a baseline launch date in July 2017. After 

the cruise phase and multiple gravity-assist manoeuvres (Venus, Earth) the spacecraft will operate on an elliptical orbit 
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bringing it to a minimum perihelion distance of ~60 solar radii (0.28 AU), where it will make unprecedented 

measurements. The final goal of the mission is to establish the fundamental physical links between the highly dynamic 

magnetized atmosphere of the Sun and the solar wind in all its quiet and disturbed states. 

The scientific payload of the Solar Orbiter mission is composed of ten experiments. Among the instruments, the Solar 

Wind Analyser suite (SWA), with its four sensors, will provide at high time resolution the velocity distributions for 

protons, alphas particles and electrons, together with measurement of minor heavy ions. 

The Data Processing Unit (DPU) performs all the suite management tasks, together with scientific data processing 

(related to protons and electrons fluxes) in order to compress the science data stream by adapting the collected data rate 

to the limited telemetry bandwidth allocated to the suite. The required compression rates range from 2 to 7.6, according 

to the different kinds of data and associated data product’ volumes.  

Sample data, produced by projecting real data acquired by the CLUSTER mission to the different conditions in which 

SWA is going to operate, have been evaluated considering their information content, using both the entropy figure and 

actual compression ratios (CR). Results demonstrate the Electron Analyser Sensor (EAS) as the most critical case, 

considering its measured three-dimensional (acquisition angles in azimuth and elevation, and energy levels) electron 

distributions have to be compressed by a factor at least equal to 4.3. 

Analyses on the compression performances have been carried out on an extended range of algorithms, considering 

solutions specifically designed for the space domain (CCSDS 121, 122 and 123) and more general ones (as lzma and 

JPEG2000). The one demonstrating the best compression performance was CCSDS 123 (performing the encoding step 

under the block-adaptive entropy coding approach), able to outperform 4.3 on all projected EAS datasets (with one 

exception only reaching only 4.27). 

The DPU however is equipped with a LEON2 processor (running at 100MHz) and in charge of the whole suite 

management (four sensors commanding, housekeeping, S/C communications, FDIR…), so computational resources 

available to compression tasks are limited. Computational load required by CCSDS 123 is not actually sustainable and 

hence drives the need for a compression scheme combining efficient performance, both in terms of achievable ratios 

and computational load. 

 
SOLAR WIND ANALYSER INSTRUMENTS SUITE 

The SWA suite composes of four sensors and the DPU. Sensors are:  

 the Electron Analyser System, with its two heads (EAS-1 and EAS-2), intended to make the high resolution 

determination of the core, halo and strahl electron velocity distributions in the solar wind (energy ranging from 

1 eV to 5 KeV) and their moments; 

 the Proton & Alpha Sensor (PAS), sampling the velocity distribution of proton and alpha particles (energy 

ranging from 0.2 to 20 KeV/q) at high time resolution equivalent to the ambient proton cyclotron period; 

 the Heavy Ions Sensor (HIS), measuring major charge states of C, O and Fe, 3D velocity distributions of 

prominent heavy solar wind ions, suprathermal ions and pick-up ions of various origins, such as weakly 

ionized species (He+, O+). 

Thus each of the sensors collects (and counts) different particles carried by the solar wind, sampling a portion of the full 

sky with a scan of azimuth angles, elevation angles and energy levels. 

The DPU performs scientific data processing on-board, from taking the raw counts generated by the sensors to 

transmitting the spacecraft SSMM the data packets to be transmitted to ground for all the sensor but HIS, which is 

provided of its own processing, and packing logic. The data processing strategy is twofold: the bandwidth allocated to 

SWA is actually limited to a 14,5 Kbit/s average rate, thus a double data reduction approach has been adopted, with a 

regular (continuous) wind flux characterization via moments computation, and a full raw data transmission at longer 

intervals. Moments produce a statistical characterization of the wind (considered as a plasma flux) with synthetic 

parameters, while full raw data allow checking such characterization as well as possible unexpected conditions. 

 
ANALYSES 

DPU operates the SWA sensors in different “modes”, designed to meet the science goals and, producing a wide variety 

of data products. Modes selection controls the “raw” telemetry rates defining time resolutions, on-board processing and 



data compression, i.e. the specific data products. The duty cycle among modes is designed to comply with SWA suite 

telemetry budget limit, assuming the expected compression ratio for each of the products is achieved. 

Our analyses aim to assess processing performances, from both data compression ratios and its computational load 

points of view, considering that processing time is a limited resource, as is the telemetry volume. Analyses have been 

conducted over a number of steps: first of all the worst case for compression was identified considering all the data 

products, their volumes and their generation rates. Each of the EAS sensors produces 32768 samples (@ 16 bit/sample), 

resulting in 512 Kbit/s which, in one of the modes, have to be compressed in real time. This is the case demonstrated to 

be the most critical. 

Secondly, the test data set was identified. Considering that real data available at 0,28 AU are very limited and that Solar 

Wind models have yet to be assessed (this is one of the aims of the mission), defining relevant data sets was not a 

straightforward task. Acquisition conditions are very variable and moreover CR figures are demonstrated to be very 

sensitive to solar wind parameters, mainly to particles density and to solar wind velocity. 

 

      
a)       b) 

Figure 1 Example of a simulated 3D EAS data distribution in sensor’s elevation-azimuth geometry (a) and as an 

acquired data cube (b). 

Data acquired by the PEACE instrument (Plasma Electron And Current Experiment 0) onboard the Cluster mission, 

made similar measurements @1 AU, have been re-conditioned in order to adapt them to different acquisition conditions 

of EAS in the inner heliosphere. Thus the main change is related to the Sun distance (from 1,0 to 0,28 AU). The list of 

the available datasets which produced results presented within this analysis is reported in the following Table 1. They 

have been selected in order to cover a wide range among the possible acquisition conditions the EAS sensor is expected 

to face in operations; a new assessment on test datasets is now on-going on this set according also to data collected from 

the Helios mission @0.5 AU. 

Table 1 EAS Simulated Datasets 

Dataset #id Particles Density  [ppcm3] Wind Velocity  [Km/s] 

DS#20080308 ~3,0 ~450 

DS#20040302 ~2,5 ~700-900 

DS#20070324 ~2,5 ~400 

DS#20080406 ~1,0 ~700 



DS#20080508 ~1,0 ~550 

DS#20080313 ~0,8 ~600 

 

Analyses on the compression performances, in a preliminary assessment step, was carried out using an extended set of 

algorithms, considering solutions specifically designed for the space domain (CCSDS 121, 122 and 123) and general 

ones (as lzma and JPEG2000), and based on a wide set of possible compression approaches: wavelet based, dictionary 

based, sorting and prediction. Tests have been performed considering «off-the-shelf» SW implementations (tools and 

libraries); a summary of the results is reported in the following Table 2. 

Table 2 Compression algorithms performances trade-offs 

Algorithm Compression Ratio (CR) 

JPEG-2000 

(Mathworks Matlab) 
2.26 

LZMA 

(7-zip.org) 
2.85 

SZIP 

(© M.Schindler [8]-[9]) 
3.13 

Rice  

(Basic Compression Library [2]) 
2.71 

CCSDS-121 

(HDF-group [7]) 
2.82 

CCSDS-121  

(ESA WhiteDwarf [4]) 
3.21 

CCSDS-121 

(Custom implementation) 
3.23 

CCSDS-122  

(ESA WhiteDwarf [4]) 
2.22 

CCSDS-123,SA-Modeoption 

(ESA [3]) 
4.09 

CCSDS-123,BA-Modeoption 

(ESA [3]) 
4.27 

According to these results, detailed analyses focused mainly on CCSDS-121 and CCSDS-123 algorithms: full tests on 

the identified worst case data have been considered and results shown in the following Table 3. They demonstrated the 

latter (with the block-adaptive entropy coding option for encoding) being able to achieve the requested rate of 4.3 on all 

EAS datasets (the only exception reached a 4.27 figure which is still acceptable). CCSDS-121 reached instead figures 

ranging from 3.23 to 4.17. It has to be remarked how the single absolute worst distribution has been considered 

adopting a conservative approach, while (hopefully) more significant (and conservative) estimates have been used when 

considering best values. 

Table 3 CCSDS-based compression performances 

Dataset #id 
CCSDS 121 CCSDS 123 

Worst Worst-50 Best-50 Worst Worst-50 Best-50 

DS#20080308 3,57 3,80 3,99 4,45 4,69 4,99 

DS#20040302 3,23 3,48 3,85 4,27 4,53 4,98 



DS#20070324 3,67 3,73 3,74 4,65 4,70 4,72 

DS#20080406 4,06 4,14 4,61 5,33 5,51 6,01 

DS#20080508 4,34 4,52 4,77 5,56 5,79 6,11 

DS#20080313 4,17 4,36 5,02 5,55 5,79 6,55 

However, as already mentioned, the CR was only one of the constraints: computational load on the LEON 2 core had to 

be taken into proper consideration as well. Due to complexity of the processing tasks scheme (not all compressions have 

to be performed at the same rate), the actual figure considered was the ratio between the computing time, evaluated on 

the ASIC reference platform, for each task and its periodic cadence. This figure demonstrated how only CCSDS-121 

produces loads compatible to the constraints in the worst processing conditions (equal to 17.6% vs 68.7% produced by 

CCSDS-123).  

 
METHOD 

Final aim of the analysis performed is to obtain higher compression ratios while still maintaining a limited 

computational load (also considering LEON 2 limited performances in floating point operations). Methods taken into 

consideration were focused on possible improvements of the pre-processing scheme, trying to identify one specifically 

customized to SWA data, which might provide a solution which is simpler than CCSDS-123 but still more effective 

than CCSDS-121. 

First of all a full analysis over the data and their structure has been performed: their 3D organization was investigated to 

evaluate compression performance on data sequences re-arranged wrt the sensor’s acquisition order. Results show how 

a “simple” re-ordering scheme is able to improve the compression ratios by approx. 10%. The performances is strictly 

related to the prediction scheme: Unit Delay predictor actually provides differences to the encoder and thus largely 

benefits of similarity (a slower variation rate) between next adjacent samples. According to the figures reported in the 

following Table 4 (showing percentage CR improvements compared to the acquisition order, nominally equal to 100%), 

elevation angle has been identified as preferential dimension, i.e. the one demonstrating the highest (spatial) correlation 

between samples. Second ordering dimension comes out less evident (actually changing with the specific datasets), and 

different criteria, related to sensors’ acquisition process, can be considered instead.  

Table 4  Simple data reordering impact: discovering preferential direction in particles counts acquisition scheme 

Re-Arranged Sequence (slow 

to fast variations) 
CCSDS 121 CCSDS 123 

El-En-Az 100% 100% 

El-Az-En 83% 98% 

Az-En-El 109% 106% 

Az-El-En 83% 97% 

En-Az-El 111% 115% 

En-El-Az 101% 94% 

 

Simple reordering schemes however still entail periodical jumps in samples’ order each time sensor steers back from the 

last to the first elevation angle or energy level. Data can be re-ordered instead in such a way that jumps are avoided 

completely, always considering a sample that in the 3D space is next to the previous one, varying only one of the three 



indices per time. This, let’s say “complex”, re-ordering scheme provides a total improvement equal to up to 17.5% if 

compared to the custom predictor stand-alone performances, and so is able to bring the CRs to the required figure with 

most datasets (and the two remaining exceptions can be compensated in an overall average reasoning). The 

improvements on the compression performance are shown, and moreover evident, in the following Table 5. 

Table 5 Overall custom data pre-processing performances 

Dataset #id 

acquisition order «simple» re-ordering «complex» re-ordering 

Worst Worst-50 Best-50 Worst Worst-50 Best-50 Worst Worst-50 Best-50 

DS#20080308 3.67 3.85 4.01 3.90 4.04 4.24 4.18 4.32 4.52 

DS#20040302 3.30 3.47 3.90 3.71 3.93 4.33 3.88 4.12 4.57 

DS#20070324 3.75 3.80 3.81 4.08 4.16 4.19 4.30 4.38 4.41 

DS#20080406 4.16 4.25 4.71 4.37 4.62 5.02 4.71 4.90 5.36 

DS#20080508 4.45 4.68 4.90 4.66 4.82 5.11 4.97 5.17 5.50 

DS#20080313 4.24 4.43 5.16 4.62 4.85 5.38 4.90 5.16 4.81 

 

The improvement becomes evident when comparing the distributions of residuals (differences between samples and 

their prediction); pre-processing and specifically mapping (i.e. the second step in pre-processing) are designed to fit on 

Laplacian distributions and they perform better as the actual residual distribution comes closer to the ideal one. The 

following Figure 2 compares cumulative distributions on predictions with the different re-ordering schemes considered: 

it shows how the data distribution after unit delay prediction (i.e. the prediction errors) progressively concentrates 

around zero. 

 

 

 

Figure 2 Empirical cumulative distribution functions of the original and pre-processed data. 



The method does not affect computational load, in terms of mathematical operations, while the possible increased 

amount of memory accesses has to be compensated for, including data re-ordering in data acquisition low-level logic 

(which can use a dedicated FPGA). 

1.1.  EVOLUTIONS 

Further possible improvements were considered, introducing an increased complexity level in prediction (using time 

and/or more space correlations). A prediction scheme involving two samples was able to produce interesting results: 

instead of the difference between current and previous sample, the prediction was based on a triangular filter (as in a 

linear interpolation algorithm). In this way the prediction was considered as an interpolation, current sample’s expected 

value is estimated supposing the knowledge of previous and next ones. This approach demonstrated a further 

improvement equal to 15% on test data (and exceeds +30% if compared to the original scheme). Also from a 

computational point of view the increased complexity of the prediction scheme demonstrated a further advantage: the 

additional load needed in prediction are totally compensated for in the mapping and encoding steps, so that the overall 

load promises to be even better than the standard’ one. 

Unfortunately, such prediction scheme also has a significant disadvantage: it entails the resolution of a non-linear 

system of equations for data de-compression. This system is demonstrated to be not invertible without a reliable initial 

guess and, though not yet having exploited the time correlation, a convenient way to define such a guess (without 

transmitting additional information) is still a matter of research.  

RESULTS 

The approach finally defined, according to the results of tests and analyses performed, foresees a CCSDS 121 scheme, 

to be applied on a custom pre-processing which exploits a “complex” data  reordering scheme. 

The overall results with the proposed scheme, if compared on the standard CCSDS 121 pre-processing, demonstrated an 

improvement in CR from 3,30 to 3.88, equal to 17.5% in the worst case. Figures have been evaluated as an average on 

891 EAS simulated acquisitions at the worst case solar wind’s conditions, considering the best representative 

compression product. It has to be remarked as well how for six, out of the eight data sets considered, the scheme has 

been able to provide a CR at least equal to the required 4.3. This result allows us anyway to adopt the proposed 

approach, because the worst solar wind’s conditions will affect only a limited percentage of data acquisitions and the 

two exceptions are then compensated for during average acquisition cycle. Finally the customized compression scheme, 

designed against electrons data particles counts, and still valid for protons, is able to meet the goal.  
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