
    

CHARACTERISATION OF BIOCATALYST PRODUCTION 

WITHIN AN INTEGRATED BIOREFINERY CONTEXT 
 

 

 

 

 

 

 

Nurashikin Binti Suhaili 

 

 

 

 

A thesis submitted for the degree of 

Doctor of Philosophy 

to 

University College London 

 

 

 

 

The Advanced Centre for Biochemical Engineering 

Department of Biochemical Engineering 

University College London 

 

 

2017 

 



2 
 

DECLARATION 
 

 

I, Nurashikin Binti Suhaili, confirm that the work presented in this thesis is my own. Where 

information has been derived from other sources, I confirm that this has been indicated in the 

thesis. 

 

 

  

Signature: ___________________________________ Date: _________________________ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In loving memory of my Dad 

And to my Mum 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 
 

ABSTRACT 
 

With the emerging interest in integrated biorefinery concepts, there is a need to identify and 

develop profitable product streams and ensure the utilisation of as many waste streams as 

possible. Early stage bioprocess development for these processes can be facilitated by the use 

of high throughput bioreactor platforms that enables rapid, quantitative and scalable data 

acquisition. This thesis aims to establish high throughput methodologies for the production and 

characterisation of industrial biocatalysts within an integrated biorefinery context. Specifically, the 

work focuses on the production of the CV2025 ω-Transaminase (CV2025 ω-TAm) in Escherichia 

coli BL21 (DE3) using sugar beet vinasse, a bioethanol waste stream, as a fermentation 

feedstock. The high throughput platform to be explored is a 24-well, controlled microbioreactor 

(MBR) that provides individual monitoring and control of process parameters at the well level.  

 

Initially, batch E. coli BL21 (DE3) fermentations expressing CV2025 ω-TAm were established in 

the controlled MBR using a synthetic medium to provide benchmark data on cell growth and 

enzyme expression. These cultures indicated a good degree of monitoring and control with 

respect to process parameters as well as culture reproducibility across the wells. Significant 

enhancements in relation to maximum biomass concentration (Xmax), yield of biomass on 

substrate (YX/S) and CV2025 ω-TAm specific activity of 3.7, 1.9 and 2.2-fold, respectively, were 

shown in the MBR compared to conventional shake flask system, also representing a 31-fold 

volumetric reduction. Optimisation of CV2025 ω-TAm production in the MBR showed that the 

best cell growth and enzyme titre was achieved with an early induction (6 h), 0.1 mM IPTG and 

0.024 mmol IPTG gdcw
-1, yielding enhancements in Xmax, YX/S and CV2025 ω-TAm specific activity 

of 1.04, 1.2 and 1.4-fold, respectively over the non-optimised cultures. Control of dissolved 

oxygen (DO) levels between 30 - 50% oxygen saturation had no significant impact on cell growth 

and CV2025 ω-TAm titre.  

 

Evaluation of vinasse as a fermentation feedstock for CV2025 ω-TAm production has led to 

several novel findings. Characterisation of vinasse showed that the feedstock comprised mainly 

of glycerol along with several reducing sugars, sugar alcohols, acetate, polyphenols and protein. 

Preliminary results showed E. coli BL21 (DE3) cell growth and CV2025 ω-TAm production were 

feasible in cultures using 17 to 25% (v/v) vinasse with higher concentrations demonstrating 

inhibitory effects. The D-galactose in vinasse was shown to facilitate auto-induction of the 

pQR801 plasmid leading to comparable CV2025 ω-TAm expression as obtained in IPTG-induced 

cultures. Assessment of different vinasse pre-processing options confirmed the relevance of the 

dilution step in reducing polyphenol concentrations to below inhibitory levels. Moreover, the use 

of pasteurised vinasse was found to be promising for large scale applications.  

 

Further medium optimisation studies in the MBR showed the benefit of supplementing vinasse 

with specific media components. Supplementation of diluted vinasse medium with 10 g L-1 yeast 

extract enabled enhancements of 2.8, 2.5, 5.4 and 3-fold in specific growth rate, Xmax, CV2025 

ω-TAm volumetric and specific activity, respectively, over those achieved in non-supplemented 
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cultures. Additionally, the CV2025 ω-TAm titre attained here represented 81% of that obtained 

using an optimised synthetic medium. Investigation into the metabolic preferences of E. coli BL21 

(DE3) when grown on a complex carbon source like vinasse showed the sequential metabolism 

of D-mannitol before glycerol utilisation, which was followed by the simultaneous metabolism of 

glycerol, D-xylitol, D-dulcitol and acetate thereafter.  

 

Finally, scale-up of the optimal conditions for CV2025 ω-TAm production using both synthetic and 

vinasse-based media, from the controlled MBR to a 7.5 L stirred tank reactor (STR) was shown 

based on matched kLa values and specific aeration rates. Results showed a good reproducibility 

with respect to cell growth, substrate consumption and CV2025 ω-TAm production between the 

scales, representing a 769-fold volumetric scale translation. The feasibility of further 

intensification of CV2025 ω-TAm production in STR at higher kLa values using both synthetic and 

vinasse-based media was also demonstrated leading to enhancements of 1.4 and 1.9-fold in 

enzyme titre, respectively. Overall, this work has established high throughput methodologies for 

the characterisation, optimisation and scale-up of industrial biocatalyst production. The approach 

was demonstrated within the context of an integrated sugar beet biorefinery. However, the utility 

of the high throughput approach is considered generally applicable across the industrial 

biotechnology sector.    
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IMPACT STATEMENT† 
 

This research has established a high throughput platform and methodologies for production of 

industrial biocatalysts. The utility of the approach has been demonstrated for production of 

CV2025 ω-TAm by E. coli BL21 (DE3) within an integrated sugar beet biorefinery using vinasse 

from bioethanol production as a fermentation feedstock. There are several potential benefits 

arising from this work that will have impact across academia, the environment and industry.  

 

From the academic perspective, the accomplishment of this project will facilitate exploration of 

the enzymes produced using vinasse for bioconversion studies, and also the valorisation of 

vinasse for production of other target products from fermentations. These will be potential spin 

off projects from this research. The results from this work can also be written up for publication, 

to facilitate wider dissemination, and serve to support creation of teaching materials for courses 

related to industrial biotechnology, biocatalysis and fermentation.  

 
Moreover, the research could have considerable impact on the environment and sustainability. 

With the increasing demand of bioethanol in future, utilisation of the increased amount of vinasse 

generated, as the bioethanol by-product, could help to overcome environmental pollution 

otherwise associated with vinasse. The exploitation of renewable feedstocks such as vinasse 

may also help to reduce society’s reliance on expensive and diminishing fossil-based resources. 

This could help further reduce greenhouse gas emission. From a broader perspective, the present 

research gives useful insights into adoption of green technologies for industrial production. 

 

Another benefit arising from this research is the potential for commercial exploitation leading to 

wealth and job creation. For biorefinery the procedures established in this work, if implemented, 

may help to increase the overall revenues from biorefinery operation. This subsequently may 

enhance the sustainability of future biorefinery operations. Moreover, the present research may 

also create promising opportunities in biorefineries using other crops such as sugar cane and 

starchy plants. Considering the biocatalyst (CV2025 ω-Transaminase) focused in this research, 

development of its cost effective production as shown by the utilisation of renewable feedstocks, 

such as vinasse, may help to enhance the importance of the biocatalyst for its further industrial 

applications as well as the viability of its commercialisation. Meanwhile, concerning the high 

throughput technology explored in this work, further development and validation of the procedures 

such as the scale-up procedure for aerobic fermentation from microbioreactors to large scale 

reactors, will help companies that utilise the technology to reduce the costs and timescales of 

bioprocess development.  

 

Overall, this research has generated outputs at several levels that could have real impact either 

immediately or incrementally in future. This process could be accelerated through disseminating 

research outputs such as journal papers, conference posters/presentations and course materials. 

____________________________________________________________________________ 

†Included as part of the requirements for publication of a UCL doctoral thesis.  
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NOMENCLATURE 
 

Symbol  Units 

A Gas liquid interfacial area m-1 

CL Dissolved oxygen concentration in the liquid phase kg.m-3 

CLO Dissolved oxygen concentration in the liquid phase at t=0  kg.m-3 

CL
* Saturated oxygen concentration in the liquid phase kg.m-3 

d Path of light cm 

Di Impeller diameter m 

Dt Tank diameter m 

Dw Well diameter m 

Hi Impeller height m 

Ht Tank height m 

Hw Well height m 

k Degree of reduction per carbon - 

kLa Volumetric mass transfer coefficient h-1 

m Mass kg 

N Agitation / shaking frequency min-1 

P/V Specific power input  kg m-1s-3 

Q Airflow rate L min-1 

R2 Coefficient of determination - 

rpm Revolutions per minute min-1 

T Temperature oC 

t Time  s 

tm 1/kLa s 

U Unit of enzyme activity µmol min-1 

V Volume L 

vs Superficial velocity ms-1 

vvm Gas volume flow per unit of liquid volume per minute min-1 

v/v Volume by volume - 

X Biomass concentration gdcw L-1 

Xmax Maximum biomass concentration  gdcw L-1 

YX/S Biomass yield on substrate used gdcw g-1 

 

 

Greek symbols 

µ Specific growth rate h-1 

τp Probe response time s 

ε Extinction coefficient mM-1 cm-1 
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ABBREVIATIONS 
 

Abs Absorbance 

ABT 2-amino-1, 3, 4-butanetriol 

AC Activated carbon  

ADP Adenosine diphosphate 

AP Acetophenone  

ATP Adenosine triphosphate 

AV Autoclaved vinasse 

BFL Direct sparged miniature bioreactor plate format with baffles 

BOD Biological oxygen demand 

BSA Bovine Serum Albumin 

cAMP Cyclic adenosine monophosphate 

CCR Carbon catabolite repression 

CDA Clean dry air 

CFD Computational Fluid Dynamics 

CHO Chinese hamster ovary 

CH4 Methane 

COD Chemical oxygen demand 

CO2 Carbon dioxide 

CV2025 Chromobacterium violaceum 2025 

DFA Difructose anhydride 

DISMT Dual indicator system for mixing time (DISMT) 

DMSO Dimethyl sulfoxide 

DO Dissolved oxygen 

DoE Design of experiment 

DV Dilute vinasse  

dcw Dry cell weight 

FC Follin-Ciocalteu 

FV Filtered vinasse 

GA Gallic acid 

glpF Glycerol transporter 

glpK Glycerol kinase 

glpD Glycerol-3-phosphate dehydrogenase 

glpABC Glycerol-3-phosphate dehydrogenase 

GS-CHO Glutamine-synthetase Chinese hamster ovary 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer 

His 6-tag 6x Histidine-tagged 

HPLC High performance liquid chromatography 

HTP High throughput 

H3PO4 Phosphoric acid 

H2SO4 Sulphuric acid 

ICS Ion chromatography system 

IgG Immunoglobin G 

IPTG Isopropyl-β-D-thiogalactopyranoside 

kDa Kilo Dalton 

KH2PO4 Monopotassium phosphate 

K2HPO4 Dipotassium phosphate 

KOH Potassium hydroxide 

LB Luria Bertani 

LED Light emitting diodes 

MBA Methylbenzylamine 

MBR Microbioreactor 
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mtlA Mannitol operon gene responsible for the production of mannitol specific 

enzyme II of the phosphotransferase 

mtlC Cis-dominant regulatory gene 

mtlD Mannitol-1-phosphate dehydrogenase 

MWP Microwell plate 

NADH Nicotinamide adenine dinucleotide  

NH3 Ammonia 

(NH4)HPO4 Ammonium hydrogen phosphate 

NaH2PO4 Monosodium phosphate 

NH4Cl Ammonium Chloride 

NH4OH Ammonium hydroxide 

(NH4)SO4 Ammonium sulphate 

N2O Nitrous oxide 

OD Optical density 

OD600 Optical density at 600 nm 

OTR Oxygen transfer rate (kgO2 m-3s-1) 

OUR Oxygen uptake rate (kgO2 m-3s-1) 

PCR Polymerase chain reaction 

PID Proportional integral derivative 

P&ID Piping and instrumental diagram 

PERC Headspace sparged miniature bioreactor plate format 

PHA Polyhydroxyalkanoate 

PLP Pyridoxal 5’phosphate 

PMP Pyridoxamine 5’phosphate 

PPG Poly propylene glycol 

PTS Phosphotransferase 

PV Pasteurised vinasse 

REG Direct sparged miniature bioreactor plate format 

RO Reverse osmosis 

sccm Standard cubic centimetre per minute 

SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

STR Stirred tank reactor 

TB Terrific broth 

TE Trace elements 

TK Transketolase 

TP Therapeutic protein 

YE Yeast extract 

ω-TAm ω-Transminase 
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CHAPTER 1 
 

 INTRODUCTION 
 

 

1.1 Overview of industrial biocatalysis 

 

With the global trend towards greener approaches to industrial product synthesis, there is a 

growing interest in the application of biocatalysis. This is due to several benefits of biocatalysis 

such as high enantioselectivity and regioselectivity in aqueous solution, no requirement for 

protection and deprotection of functional groups and milder reaction conditions i.e. pH and 

temperature (Buchholz et al., 2005; Tao and Xu, 2009; Sanchez and Demain, 2011). In contrast 

chemical syntheses are now often seen as unfavourable from an environmental perspective. This 

is because these routes normally involve the use of toxic and hazardous solvents and 

compounds, leading to non-recyclable wastes and thus making the process unsustainable (Halim, 

2012).  

 

Owing to the advantages offered by biocatalysis, its industrial implementation is becoming 

increasingly widespread. Both whole cells and purified enzymes play important roles in the 

industrial biocatalysis (Schmidt et al., 2001) and their selection is dependent on the specific needs 

and applications. Whole cells biocatalysts are particularly useful for reactions that require 

regeneration of cofactors as it is much easier and less costly than it is under in vitro conditions 

(Schmidt et al., 2001). Additionally, the natural environment provided by the whole cells is more 

likely to be conducive for the enzymes, reducing the risk of activity loss due to conformational 

alterations in the protein structure in an in vitro environment (de Carvalho and da Fonseca, 2007). 

The major challenge in whole cells biocatalysis, however, lies in the access of the substrates to 

the enzymes which is hindered by the cell wall and the cell membrane. This may reduce the 

efficiency of the enzymatic reactions contrary to those by isolated enzymes (de Carvalho, 2011). 

On the other hand, the major advantages of using purified enzymes in biocatalysis include high 

specificity of reactions, less complex protocols and higher tolerance to co-solvents used for 

solubilising poorly water soluble substrates (Roberts et al., 1995). Among the limitations 

associated with this form of biocatalyst are the isolation and purification of enzymes that could be 

costly and labour intensive, in addition to the requirement for co-factors addition (de Carvalho, 

2011).   

 

It is reported that the application of biocatalysis at an industrial scale, which is on an annual basis 

of commercialised products of more than 100 kg, has showed a two-fold increase every decade 

(Fernandes, 2010). In the fine and bulk chemical industries, several compounds have been 

produced via enzymatic synthesis such as glycolic acid (Panova et al., 2007), acrylamide (Cui et 

al., 2014; Kang et al., 2014), 1, 3-propanediol (Nakamura and Whited, 2003; Sabra et al., 2010; 

Riekenberg et al., 2014), cyclodextrins (Duan et al., 2013; Wang et al., 2013) and (R), (S)-

epichlorohydrin (Jin et al., 2012). Generally, the bioconversion processes described for these 
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compounds were found to be advantageous in circumventing limitations related to the chemical 

synthesis such as use of environmental pollutants (Choi et al., 2015), requirement for high 

pressure and temperature (Panova et al., 2007) and product instability and low solubility (Jin et 

al., 2012).   

 

Moreover, in the pharmaceutical industry the application of biocatalysis is also attractive for the 

synthesis of several drugs. In the synthesis of an anti-diabetic compound, Sitagliptin, the 

biocatalytic reaction was found to give several benefits such as reduction in total wastes, 

exclusion of heavy metal use, increase in product yield and feasibility for enzyme recycling (Desai, 

2011; Truppo et al., 2012; Ghislieri and Turner, 2013). Meanwhile, in the production of an anti-

asthmatic drug (Montelukast), atorvastatin, duloxetine, phenylephrine, ezetimibe and crizotinib, 

the biocatalytic reactions catalysed by a keto reductase from Lactobacillus kefir were found to be 

beneficial in eliminating the use of a hazardous chemical catalyst (Huisman et al., 2010; Huisman 

and Collier, 2013).  

 

In the production of 2-amino-1, 3, 4-butanetriol (ABT), a chiral synthon for the synthesis of 

protease inhibitors such as NelfinavirTM, transaminase (TAm) was exploited for the transamination 

of L-Erythrulose (Kwon and Ko, 2002). Other pharmaceuticals including boceprevir (Li et al., 

2012), telaprevir (Znabet et al., 2010), solitenacin, levocetirizine (Ghislieri and Turner, 2013) have 

all been synthesised by monoamine oxidase from Aspergillus niger. Generally, the increasing 

demand of biocatalysis in the pharmaceutical industry is partly due to the continued need for 

compounds with structural complexity, which are otherwise difficult to be synthesised by 

conventional chemical routes (Pollard and Woodley, 2006).    

   

There is also an interest in adopting biocatalysis in the food industry particularly in the production 

of functional foods like prebiotics, low-calorie sweeteners and rare sugars (Akoh et al., 2008). 

Some examples include difructose anhydride (DFA) III (Hang et al., 2011) and galacto-

oligosaccharides (Rodriguez-Colinas et al., 2011; Vera et al., 2012). Likewise in the 

aforementioned applications, the biocatalytic processes in most food industries promote high 

production yields and simpler processes with lower cost (Choi et al., 2015).     

 

Furthermore, biocatalysis is also of interest in other fields such as cosmetics, textile, pulp and 

paper industries. In cosmetics, production of arbutin, a glycosylated hydroquinone, by a spectrum 

of enzymes including α-amylases, α-glucosidase, transglucosidase, sucrose phosphorylase and 

dextransucrase has been reported (Wang et al., 2006). Other examples include myristyl myristate 

that is synthesised via an esterification reaction catalysed by lipase (Hilterhaus et al., 2008). In 

the textile industry, cellulases and proteases play important roles in several processes such as 

jeans staining, colour enhancement and wrinkle minimisation (Yachmenev et al., 2002; Silva et 

al., 2005; Dincer and Telefoncu, 2007). Meanwhile, in the pulp and paper industries, several 

enzymes are of importance such as xylanases and ligninases that are exploited for improving the 

pulp quality by lignin and hemicellulose removal (Maijala et al., 2008). Moreover, the recycling of 

printed papers is facilitated by the biocatalytic reaction of cellulase (Patrick, 2004).     
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Numerous studies have focused on development of new biocatalytic activities and aspects such 

as alleviating the downsides associated with the use of naturally occurring enzymes and 

ultimately in generating the maximum possible level of product synthesis (Ingram et al., 2007; 

Valetti and Gilardi, 2013). Moreover, various technologies have been proposed to further enhance 

the biocatalytic process among which are continuous reaction and separation bioreactors (De 

Roode et al., 2001), packed bed reactors (Jeong et al., 2000), immobilised enzyme reactors 

(Krenkova and Foret, 2004; Urban et al., 2006; Matosevic et al., 2011) and microscale and high 

throughput (HTP) platforms (Baboo et al., 2012; Halim et al., 2013). With the increasing 

technology and process development to overcome limitations related to biocatalytic reactions, the 

future direction of biocatalysis is promising and it continues to serve as an efficient tool, replacing 

the roles of the traditional chemical processes in many areas. 

 

Generally, the growing application of biocatalysis has also prompted an increased demand for 

biocatalysts supply. Acquisition of economical and stable biocatalysts has emerged as one of the 

challenges alongside other issues around the biocatalytic systems such as design methods and 

productivity (Lye and Woodley, 1999). In order to facilitate the implementation of biocatalysis in 

industry, a good knowledge of suitable biocatalysts and their process development is 

indispensable. One of the significant classes of biocatalysts used in the pharmaceutical industry 

are transaminases (TAm) which are particularly relevant to this work. Further details of TAm will 

be discussed in Section 1.2.  

  

 

1.2 Introduction to Transaminases (TAm) 

 

TAm catalyzes the transfer of an amine group from an amino-donor, to an acceptor ketone, 

yielding a secondary amino compound and a ketone by-product (Brunhuber and Blanchard, 1994; 

Hyun and Davidson, 1995). The catalytic reaction is mediated by a cofactor, pyridoxal 5’ 

phosphate (PLP) that binds as a prosthetic group. The ω-TAm from Chromobacterium violaceum 

is a homodimeric enzyme with a molecular weight of 50 kDA (Halim, 2012). Figure 1.1 illustrates 

the reaction scheme of a TAm-mediated bioconversion in the presence of a co-factor PLP. The 

reaction mechanism is known as ping-pong bi-bi mechanism that is divided into two reactions 

(Christen and Metzler, 1985).  During the first half reaction or oxidative deamination, the amino 

group is transferred to an enzyme-bound PLP, yielding a pyridoxamine 5’-phosphate (PMP) and 

the respective keto product. Subsequently, during the second half reaction, the PLP is restored 

via the reductive amination of the carbonyl compound.  
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Figure 1.1. Reaction scheme of a TAm-mediated bioconversion in the presence of co-factor PLP. 
The compounds in the box and circle denote amino donor and amino receptor respectively. 
Abbreviations: E-PLP – Enzyme bound PLP; E-PMP – Enzyme bound PMP. Adapted from Park 
and Shin (2013). 

  

 

This class of enzyme exhibits significant potential for industrial synthesis of amino acids and chiral 

amines, which are important in the pharmaceutical industry (Shin and Kim, 2001) as preparative 

materials for production of neuorological, immunological, anti-hypertensive and anti-infective 

drugs ( Sutin et al., 2007; Koszelewski et al., 2008). Generally, chiral compounds comprised of 

either single enantiomers or racemates constitute over half of the worldwide approved drugs 

(Caner et al., 2004). It is revealed that about 70% of the drugs are synthesised in routes that have 

an amino group reaction (Halim, 2012).  

 

There are four different groups of TAm based on their different primary structure (Mehta et al., 

1993; Sayer et al., 2007). However the type of a cofactor needed to facilitate the reaction by all 

the TAms is similar. Further division of TAm into subgroups is based on the types of substrate 

accessed. TAm from Group II, which is generally recognized as ω-TAm has a notable superiority 

whereby it can utilise an array of substrates that are not accepted by aminotransferases present 

in other TAms from Groups I, III and IV (Stirling, 1992). Other visible advantages of ω-TAm 

include elimination of the need for redox cofactor recycling (Stewart, 2001).  

 

ω-TAms are found in a number of microorganisms and higher organisms where the enzymes are 

responsible for amino-acid metabolism (Christen and Metzler, 1985). Previous work reported their 

basic characteristics in Vibrio fluvialis JS17, Klebsiella pneumoniae JS2F, and Bacillus 

thuringiensis JS64 (Shin and Kim, 2001). Among the advantages demonstrated by the ω-TAm 

from these microorganisms are high enantioselectivity for several chiral amine enantiomers ( Shin 

and Kim, 2001; Sayer et al., 2007) and high reactivity of amino receptor for pyruvate (Shin and 

Kim, 2001). In comparison with K. pneumoniae JS2F, and B. thuringiensis JS64, V. fluvialis JS17 
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was revealed as the best strain for exhibiting better kinetic resolution and asymmetric synthesis. 

In a more recent work by Kaulmann et al. (2007), they have successfully cloned an ω-TAm gene 

from C. violaceum DSM30191 into a pET29a vector and expressed this in an E. coli BL21 (DE3) 

host whereby the resulting plasmid was later designated as pQR801. Figure 1.2 illustrates the 

structure of the plasmid pQR801. The plasmid has an inducible T7 promoter, lac repressor and 

codes for kanamycin as the selective marker. The protein sequence of the C. violaceum CV2025 

enzyme demonstrates a 38% resemblance with that from V. fluvialis JS17. Additionally, the C. 

violaceum enzymes were also revealed to favour the transamination in the forward direction, 

making them promising candidates for the synthesis of chiral amino alcohols. The use of CV2025 

ω-TAm will be of a specific interest in this study.    

 

 

 

Figure 1.2. Structure of the plasmid pQR801. 

 

 

In many multi step catalytic reactions involving CV2025 ω-TAm, its low activity often becomes 

the bottleneck in overall bioconversion productivity (Halim et al., 2013). Apart from enhancements 

in CV2025 ω-TAm activity during the enzymatic reaction, another possible way to overcome this 

problem is by intensifying the enzyme expression during the upstream stage. Rios-Solis et al. 

(2015) have highlighted the importance of manipulating the induction conditions to increase 

CV2025 ω-TAm production in a whole cell E. coli BL21 (DE3) biocatalyst harbouring 

Transketolase (TK) and CV2025 ω-TAm. Their findings led to a high ratio of CV2025 ω-TAm to 

TK, yielding an efficient multi-step synthesis of amino alcohols. Moreover, their study is among a 
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few that highlighted the strategies for increasing the expression of dual enzymes in a single strain 

where the particular focus was on CV2025 ω-TAm.   

 

Future studies should also consider in-depth investigations into the expression of a single enzyme 

in order to gain a thorough understanding of factors influencing the level of enzyme production. 

In particular, the development of ω-TAm production has not been specifically emphasised in any 

previous work that mostly focused on its catalytic reaction (Halim et al., 2013; Park and Shin, 

2013; Gustavsson et al., 2014).  Hence, key information about optimal production of ω-TAm 

remains limited. 

 

 

1.3 E. coli culture process development 

 

Over the years, E. coli has been the most extensively used microbial platform for producing 

heterologous proteins due to the fact that it is well characterised in relation to its molecular 

genetics, physiology and protein synthesis (Makrides, 1996; Choi and Lee, 2004). This includes 

the expression of CV2025 ω-TAm (as discussed in Section 1.2) whereby E. coli BL21 (DE3) with 

a pET-expression system was used (Kaulmann et al., 2007). Establishing a high cell density 

culture of E. coli is a foremost concern in achieving a maximum CV2025 ω-TAm titre. As most of 

E. coli recombinant proteins, including CV2025 ω-TAm are produced in the cytoplasm, the overall 

productivity of their production depends greatly on the cell density and amount of protein formed 

per unit cell mass (Lee, 1996). Over the decades, a large number of works have been dedicated 

to developing high cell density cultures of E. coli with numerous determining aspects being 

highlighted. Several specific strategies will be highlighted in the following sub sections.  

 

 

1.3.1 Possible strategies for achieving high cell density and protein titre 

 

1.3.1.1 Media development 

 

Nutrition is one the factors that exerts notable impacts on the metabolic regulation and growth of 

any microorganism including E. coli. A basic understanding of nutrient requirements along with 

the cell growth behaviour is crucial in determining suitable growth media. Table 1.1 outlines the 

fundamental elements in E. coli dried cells that signify the important nutrients required for the cell 

metabolism.  
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Table 1.1. Elemental composition of E. coli dried cells. Adapted from Bunch (1994).   

Element Proportion (%) 

Carbon 50 – 70 

Nitrogen 15 – 20 

Oxygen 10 – 20 

Hydrogen 6 – 8 

Phosphorus 2 – 4 

Sulphur 1 – 3 

Potassium 1 – 2 

Iron 0.1 – 0.3 

Calcium 0.01 – 0.05 

Magnesium 0.01 – 0.05 

Chlorine 0.02 – 0.03 

Trace elements 0.2 – 0.5 

 

 

Generally, cultivation media can be categorised into three types: defined, semi-defined and 

complex. Defined media have a definite concentration of each nutrient whereas in complex media, 

the composition of the components such as yeast extract and peptone may be inconsistent (Lee, 

1996). Despite the variation of those components, semi-defined and complex media are normally 

exploited for accelerating product formation (Lee, 1996). In general, suitable media consisting 

sufficient components in accordance with the metabolic requirement of the microorganism for 

instance E. coli, as outlined in Table 1.1, should be designed in attempting optimal production of 

the protein of interest.  

 

It is shown in Table 1.1 that carbon is the major element found in E. coli, which implies the 

significance of carbon source in the media formulation. Different types of carbon source have 

been widely exploited for growing E. coli. In early studies, glucose is commonly used in most E. 

coli cultures. In later works, glycerol has been increasingly exploited for E. coli cultivations owing 

to several benefits such as low cost, higher reduction ability and low generation of acetate (Oh 

and Liao, 2000; Shiloach and Fass, 2005). Whilst an inhibitory threshold of 50 g L-1 was reported 

for glucose in E. coli fermentations (Lee, 1996), none is reported for glycerol thus far in the 

literature. Comparative analyses between glucose and glycerol for E. coli fermentations have 

been widely discussed  (Korz et al., 1995; Macaloney et al., 1996; Martínez-Gómez et al., 2012) 

suggesting the potential of glycerol in substituting glucose as a carbon source to achieve high cell 

densities. Table 1.2 summarises the applications of both carbon sources alongwith other major 

medium components for production of various recombinant proteins in E. coli. Exploitation of 

waste glycerol from biofuel industry as fermentation feedstocks will be discussed further in 

Section 1.6.2. 
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Several works reported the benefits of certain medium components in alleviating some limitations 

that normally occur in basic media like Luria Bertani (LB) and Terrific Broth (TB), which could 

consequently increase the cell density. The maximum achievable E. coli cell density in pH, 

temperature and oxygen-controlled cultivations using LB medium for example is only 1 gdcw L-1 

(Shiloach and Fass, 2005). A number of works addressed the addition of trace elements like 

FeCl3.6H2O, MnSO4.H2O, CaCl2.2H2O, CoCl2, ZnSO4.7H2O, Na2MoO2.2H2O, CuCl2.2H2O and 

H3BO3, which are important for achieving high cell densities (Shiloach and Bauer, 1975; 

Riesenberg, 1991; Sivakesava et al., 1999; García-Arrazola et al., 2005; Shiloach and Fass, 

2005; Siurkus et al., 2010; Marisch et al., 2013). Furthermore, some elements like selenium, 

nickel and molybdenum were found essential in reducing the accumulation of formate, which has 

a similar inhibitory effect as acetate, in E. coli cultures (Soini et al., 2008). Incorporation of the 

aforementioned elements is beneficial as they can serve as cofactors in the degradation of 

formate to carbon dioxide and hydrogen, catalysed by a formate hydrogen lyase (Soini et al., 

2008).   

 

Some components of a complex medium may naturally act as inducers of heterologous protein 

expression and thus may trigger automatic induction (auto-induction) despite the absence of a 

typical inducer like isopropyl-β-D-thiogalactopyranoside (IPTG) during protein expression 

(Studier, 2005). Xu and co-workers (2012) reported a considerable amount of galactose in 

peptone (7.07 g kg-1) while a trace amount of lactose was detected in peptone, yeast extract and 

tryptone. The feasibility of lactose to cause induction has been demonstrated in a number of 

works pertaining to the production of various recombinant proteins by different E. coli strains 

(Tyler et al., 2005; Giomarelli et al., 2006; Gordon et al., 2008; Nishi et al., 2010). In contrast to 

lactose, galactose has a similarity with IPTG whereby it is not metabolised during the cell growth 

upon its addition to the culture medium (Xu et al., 2012). However, unlike IPTG, galactose does 

not hamper the cell metabolism despite its presence throughout the cultivation (Mattanovich et 

al., 1998), which enables a high cell density to be attained (Xu et al., 2012). The feasibility of 

galactose in mediating induction in E. coli expression systems has also been reported in several 

other works (De Leon et al., 2003; Menzella and Gramajo, 2004). Both lactose and galactose are 

regarded as weak inducers and hence, they are needed in a high concentration to allow optimal 

protein expression (Xu et al., 2012). 
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Table 1.2. Applications of several medium components in various E. coli cultivations.   

Medium 
component 

Function Product Reference 

Glucose Carbon 
source 

Human tumor necrosis factor-
related apoptosis-inducing ligand 
(Apo2L/TRAIL) 
 
Human epidermal growth factor 
(hEGF) 
 
Human tumor necrosis factor-α 
(rhTNFα) 
 
Uricase  
 
Ribonuclease inhibitor 
 
Mycobacterium tuberculosis 

Shen et al. (2004) 
 
 
 
Sivakesava et al. (1999) 
 
 
Poo et al. (2002) 
 
 
Nakagawa et al. (1995) 
 
Siurkus et al. (2010) 
 
Piubelli et al. (2013) 

 
Glycerol 

 
Human interleukin-7 
 
Protective antigen protein 
 
Antifungal peptides 
 
Insulin-like growth factor-1 fusion 
protein 
 

 
Ouellette et al. (2003) 
 
Chauhan et al. (2001)  
 
Gavit and Better (2000)  
 
Choi et al. (2003) 

Yeast extract Nitrogen 
source 

Human tumor 
necrosis factor-α (rhTNFα) 
 
Human tumor necrosis factor-
related apoptosis-inducing ligand 
(Apo2L/TRAIL) 
 
Benzoylformate decarboxylase 
 
Alcohol dehydrogenase and 
formate dehydrogenase 
 
CV2025 ω-TAm 
 
 
Pectate lyase 
 

Poo et al. (2002) 
  
 
Shen et al. (2004) 
 
 
 
Losen et al. (2004) 
 
Hortsch and Weuster-Botz 
(2011) 
 
Halim et al. (2013), Rios-
Solis et al. (2011) 
 
Matsumoto et al. (2002) 

Peptone Human tumor 
necrosis factor-α (rhTNFα) 
 
Isoprenoid 
 
Glyceraldehyde-3-phosphate 
dehydrogenase 
 
Alcohol dehydrogenase and 
formate dehydrogenase 
 

Poo et al. (2002) 
 
 
Zhang et al. (2013) 
 
Nancib et al. (1993) 
 
 
Hortsch and Weuster-Botz 
(2011) 
 

Tryptone Human tumor necrosis factor-
related apoptosis-inducing ligand 
(Apo2L/TRAIL) 
 
Isoprenoid 
 

Shen et al. (2004) 
 
 
 
Zhang et al. (2013) 
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Ribonuclease inhibitor 
 
CV2025 ω-TAm 
 
 
Benzoylformate decarboxylase 
 

Siurkus et al. (2010) 
 
Halim et al. (2013), Rios-
Solis et al. (2011) 
 
Losen et al. (2004) 

K2HPO4 / 
KH2PO4 
(NH4)2HPO4 / 
NaH2PO4  
 

Phosphate 
source, 
buffer  

Ribulose 1, 5-Biphosphate 
carboxylase / oxygenase 
 
Alcohol dehydrogenase and 
formate dehydrogenase 
 
Mycobacterium tuberculosis 
 
Benzoylformate decarboxylase 
 
Thioredoxin (Trx) and human 
parathyroid hormone (hPTH) 

Kleman et al. (1996)  
 
 
Hortsch and Weuster-Botz 
(2011) 
 
Piubelli et al. (2013) 
 
Losen et al. (2004) 
 
Fu et al. (2006) 
 
 

 

 

1.3.1.2 Inoculum development 

 

The inoculum is another important factor that contributes to the attainment of high cell density 

cultures. Several aspects are considered important such as inoculum medium, age and initial cell 

concentration for a fermentation. In any case, the primary aim is to shorten the lag phase of the 

subsequent fermentation to achieve optimal cell growth. Some generic approaches have been 

adopted in previous works including supplementation with amino acids (Marchlis, 1957) and 

elimination of inhibitory compounds (Yamamoto et al., 1993). Moreover, inoculum age has also 

been reported as a critical factor that determines the duration of the lag phase in fermentations 

(Ginovart et al., 2011; Xia and Wu, 2012). 

 

In several studies involving E. coli cultures, the medium used for the seed culture is similar to that 

used for the subsequent production cultures (Wang and Lee, 1998; Paliy and Gunasekera, 2007; 

Casablancas et al., 2013). Although the reason was not explicitly discussed in those studies, the 

underlying reason is believed to ease the adaptibility of the cells when transfering from the seed 

culture to the fresh production medium that in turn may possibly shorten the lag phase of the 

fermentations. 

 

 

1.3.1.3 Optimisation of induction conditions 

 

Induction of the expression system in a recombinant microorganism leads to the regulation of the 

genes for the energy synthesis, transcription and translation, which are all responsible for protein 

production (Haddadin and Harcum, 2005). The induction can be performed by using a chemical 

inducer like IPTG or by manipulating the physical conditions of the cultures such as temperature 

(Donovan et al., 1996). IPTG is commonly preferred due to its inherent efficiency in inducing 
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expression even at a low concentration. Other possible inducers include lactose and galactose 

(Xu et al., 2012) as discussed previously in Section 1.3.1.1.  

 

Among factors that influence induction efficiency are inducer concentration and induction time. 

The optimal concentration of inducer depends greatly on the promoter strength, availability of the 

plasmid secretory repressor genes, cellular sites of production, cell interaction upon expression 

of the recombinant protein, protein solubility and protein features (Cserjan-Puschmann et al., 

2002). The usual range of IPTG concentration used in most of E. coli cultivations lies between 

0.1 and 1.0 mM (Losen et al. 2004; Krause et al. 2010; Fang et al. 2011; Hortsch and Weuster-

Botz 2011; Rios-Solis et al. 2011). Normally, induction is performed during the exponential phase 

of cell growth. As claimed by Rios-Solis (2012), the best induction time and temperature for the 

expression of CV2025 ω-TAm by E. coli BL21 (DE3) is during the early exponential phase at a 

temperature of 37 oC. In other scenarios, where cell growth is severely hampered by the addition 

of the inducer, induction can be performed during the late exponential or early stationary phase 

(Donovan et al., 1996). 

 

Another way to manipulate induction is by adjusting the culture temperature. This has been 

demonstrated by Schmidt et al. (1999) whereby a thermally inducible expression vector was used 

for expressing human insulin fusion proteins in a recombinant E. coli. The expression of the insulin 

fusion proteins was induced by shifting the temperature from 30 to 42 oC. This induction approach 

is another alternative in replacing the use of the costly IPTG.  

 

At present, the trend in studying protein expression in E. coli has shifted towards utilising high 

throughput (HTP) platforms to facilitate parallel experiments during process development and 

optimisation studies. As E. coli continues to be exploited as a prominent host for production of 

numerous recombinant proteins, future research may need to constantly focus on the aspects 

related to the throughput efficiency and process sustainability. The former will be discussed in 

detail in the following section.  

 

 

1.4 High throughput (HTP) technology 

 

In facilitating early stage process development of microbial fermentations, the exploitation of HTP 

models is of great interest. Miniaturisation and parallel operation promotes HTP experimentation 

and low material requirements leading to rapid data acquisition and in general, shortens the 

process development timelines (Long et al., 2014). Primarily, the technology is heavily used for 

analytical purposes (Persidis, 1998) but lately it has been further exploited for other applications. 

The use of laboratory automation platforms and conventional microwell plate (MWP) has become 

widespread in various applications such as microbial (Duetz et al., 2000; Minas et al., 2000; 

Elmahdi et al., 2003; Islam et al., 2008) and mammalian cell culture (Girard et al., 2001), 
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biocatalysis (Stahl et al., 2000; John and Heinzle, 2001; Ferreira-Torres et al., 2005; Baboo et al., 

2012) and downstream processes (Welch et al., 2002; Jackson et al., 2006; Rayat et al., 2010). 

  

Despite the advantages of HTP, one limitation of conventional MWPs lies in the absence of in-

situ measurement of certain process paramaters such as pH and DO although controlled 

microbioreactor (MBR) technologies are now becoming available. In the following sections, 

applications of conventional MWP and controlled MBRs for fermentations will be discussed 

further.  

 

 

1.4.1 Conventional microwell plate (MWP) technologies 

  

Over the last decade, several works have addressed the use of MWP for optimisation studies of 

various microbial and cell cultures. For instance, Ferreira-Torres et al. (2005) reported the use of 

96-deep square well plates for a linked sequence of microscale operations involving fermentation, 

enzyme induction and bioconversion for cyclohexanone monoxygenase production by E. coli and 

Acinetobacter calcoaceticus. Throughout their study, the potential of the microscale platform in 

quantitatively distinguishing between different strains was demonstrated. Furthermore, the 

fermentation and bioconversion microscale kinetics were found to be predictive for a 1400 and 

2800-fold scale translation, respectively, confirming the potentials of the microscale platform for 

the whole process operation.  

 

In another investigation, optimisation studies based on a statistical Design of Experiment (DoE) 

approach using 24-well and 48-well plates was demonstrated for firefly luciferase production by 

E. coli (Islam, 2007). The results proposed the reliable role of the microscale platform to facilitate 

rapid data collection for the optimisation studies and also scalability of the process to laboratory 

and pilot scales. Meanwhile, the application of MWP for murine hybridoma cell culture expressing 

IgG1 was reported by Barett and co-workers (2010). Their findings suggested the reproducibility 

of the culture performance with respect to the standard shake flask culture while presenting a 30-

fold scale reduction of the operation. 

  

There are fewer works dealing with the implementation of fed-batch operations in shaken MWPs. 

Silk and co-workers (2010) evaluated the use of a bolus feed for cultivating a Glutamine-

Synthetase-Chinese hamster ovary (GS-CHO) cell line. The results obtained were equivalent to 

those attained in shake flask cultures in relation to cell growth, viability and antibody titre. The 

use of EnBaseTM or enzyme-based-substrate delivery technology in MWPs has been addressed 

by several researchers. Siurkus et al. (2010) and Li et al. (2015) have examined the technology 

for E. coli fermentations in MWPs and translation of the processes, to laboratory scale reactors. 

A good equivalency of the fermentation kinetics between the fed MWP and laboratory scale 

reactor cultures was reported. Despite the simple solution that these substrate-release systems 

have offered for carrying out fed-batch operations in the microscale platforms, a significant 
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challenge with respect to the MWP system itself at this point is the integration of a feeding system 

that can regulate the feed more effectively as in the conventional reactors. This may solve the 

limitation associated with the fast release rate of the substrate using the aforementioned fed-

batch approaches, which might be challenging for cell cultures that have a relatively lower 

substrate uptake rate than the microbial cultures (Hegde et al., 2012).   

 

Whilst there are several inherent advantages offered by MWPs over the conventional shake flask 

system such as HTP and low materials requirement, the unavailability of monitoring and control 

for certain process parameters particularly pH and dissolved oxygen (DO) limits their application. 

A number of works have reported several approaches to overcome the limitations in MWP of 

which only a few are given a particular mention here. For example, the benefit of pH control in 

microscale fermentations of S. erythraea for erythromycin production was demonstrated by 

Elmahdi and co-workers (2003). The implementation of a pH control system, which was initially 

introduced at the 7 L scale, was successfully reproduced at the microwell scale yielding to an 

increase in both maximum specific growth rate and biomass concentration in comparison with the 

uncontrolled pH cultures.  

 

The development of MWPs with the incorporation of oxygen sensors has been discussed in 

several works. Hynes et al. (2003) and Deshpande and Heinzle (2004) demonstrated the 

application of oxygen sensors for cell cultures in microplates that enables the determination of 

the oxygen uptake rates and specific uptake rates of the cells. In another study by O’Riordon et 

al. (2000), they investigated the use of a disposable phosphorescent sensor in the microwell 

fermentation for cultivating Schizosaccharomyces pombe in order to determine the DO levels in 

the culture. The study has shown the benefits of the incorporated oxygen sensors, which are non-

consumptive and non-invasive, for monitoring the respiration of the cells. Generally, all the 

abovementioned studies on the intensification of MWPs have given early insights into the 

feasibility and importance of the incorporation of process control, ensuring the benefits of HTP 

platforms to be further extended. 

 

 

1.4.2 Controlled microbioreactor (MBR) technologies 

 

The growing interest in conventional MWPs over the past decade has led to the development of 

controlled MBR technologies, which are equipped with a real-time monitoring and control of 

process parameters such as pH, DO and temperature. Figure 1.3 depicts the comparison of 

features between a standard shake flask, a HTP controlled MBR and a conventional scale, stirred 

reactor. As clearly illustrated, the controlled MBR combines the advantages featured by shake 

flasks and conventional scale, stirred reactors along with its HTP and automation capabilities. On 

the other hand, the limitation of the conventional MWPs lies in the absence of the environmental 

control that is available in the laboratory reactors. Having the integrated benefits of the shake 

flasks and laboratory reactors, the use of controlled MBRs is highly desirable to support early 
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process development such as strain screening and process optimisation, replacing the typical 

role of the two former systems.  

 

 

 

Figure 1.3. Comparison of features between a standard shake flask, HTP controlled MBR and 

conventional scale, stirred reactor.  

 

 

There are now a number of commercialised controlled MBRs that are available in different 

geometries, sizes and functionalities. Over the past decade, a number of works have reported 

the applications of these commercialised systems. One of the popular MBRs is the Micro-24 (Pall 

Corporation, USA). It is a 24-well miniature single-use MBR featuring independent control of pH, 

DO and temperature in every well. The working volume ranges between 3 and 7 ml. This MBR is 

one of its kind to have the monitoring and control of the process parameters at individual well 

level (Isett et al., 2007). The use of Micro-24 has been discussed by several researchers. Tang 

et al. (2006) first evaluated its use for optimising the growth of Shewanella oneidensis MR-1 and 

further evaluated it for the reduction of chromium (Cr (VI)) by investigating the influence of several 

determinants of the process.  

 

In a study by Isett et al. (2007), an initial assessment of the Micro-24 was carried out for cultivating 

S. cerevisae, P. pastoris and E. coli apart from the characterisation of volumetric mass transfer 

coefficient (kLa) and mixing time. A good reproducibility of the process parameters namely pH, 

DO and temperature was observed between the wells. Comparing the cultivation performance 

between Micro-24 and a 20 L stirred tank reactor (STR) for S. cerevisae and E. coli, the authors 

found that the growth and metabolite kinetics between the scales were reproducible for the former 

strain while in the latter case, there were limitations encountered with respect to pH and DO 
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profiles although the dextrose consumption was found to be reproducible during the exponential 

phase. Meanwhile for P. pastoris, a high cell density culture was successfully cultivated under 

batch and fed-batch operations with a good reproducibility of pH, DO and temperature profiles.  

 

The application of Micro-24 for Chinese hamster ovary (CHO) cell culture was first discussed by 

Chen and colleagues (2009). Among the findings reported include the interwell reproducibility in 

relation to process parameters, cell growth, metabolites, protein titre and quality and the feasibility 

of a 400-fold scale translation. In a later study by Betts et al. (2014), the impact of aeration 

strategies on CHO cell culture was investigated using direct sparged cassette (REG) and 

headspace sparged cassette (PERC) along with some characterisation studies with respect to 

kLa and mixing time. Whilst a superior cultivation performance was reported for PERC cassette, 

the authors highlighted the pronounced role of the REG cassette for scale-up application due to 

its similarity with the STR in terms of the dispersed gas phase. Generally, these two studies 

suggest the promising application of Micro-24 as a scale-down platform for cell culture process 

development. 

 

Holmes et al. (2009) further evaluated the application of the Micro-24 for optimising recombinant 

protein production in P. pastoris through a DoE approach. The proposed model from their study 

was found to predict well the protein yield in both Micro-24 and 7 L STR under fed-batch operation. 

Their study was the first attempt that used the DoE strategy for optimisation studies in Micro-24. 

Recently, Ramirez-Vargas et al. (2014) investigated the respirometric potential of Micro-24 by 

examining the DO fluorescent quenching sensors. The studies suggested that the capability of 

the MBR to determine oxygen uptake rate (OUR) from 0.038 to 3390 mg L-1h-1 when pure oxygen 

is used where that range spans over the typical OURs reported for most bacteria, yeast and cell 

cultures.  

 

Another type of MBR is the BioLector system (m2p-Labs, Germany), a miniature 48-shaken 

microtitre plate that also operates with non-invasive optical sensors. It provides an online 

monitoring technique for quantifying biomass concentration and fluorescence. The system allows 

integration with a liquid handling system, enabling a fully automated MBR unit. Among early 

applications of this MBR system include the cultivation of E. coli and Hansenula polymorha 

(Kensy et al., 2009b). The work reported the feasibility of the MBR to facilitate studies related to 

media and clone screening for both microorganisms. Huber et al. (2009) first reported the 

integration of BioLector with a liquid handling robot (Robolector) for cultivating E. coli BL21 (DE3) 

pRhotHi-2-EcFbFP, expressing the fluorescence protein EcFbFP. The use of the RoboLector has 

further extended the capability of BioLector to facilitate a HTP and fully automated 

experimentation with a rapid collection of high content kinetic data.  

 

Scale-up works involving the BioLector have been discussed in several studies. Kensy and co-

workers (2009a) reported the feasibility of a 7000-fold scale translation from the BioLector to a 

1.4 L STR based on a matched kLa value where reproducible growth and protein expression 

kinetics were observed between the scales. In a later study by Rohe et al. (2012), the scalability 
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of an optimal production of cutinase by Corynebacterium glutamicum has been demonstrated 

between BioLector and 1 L and 20 L STR. In line with the report by Kensy et al. (2009a), identical 

growth and product titre were reported although the scale-up basis was not explicitly discussed.    

 

A fed-batch approach based on enzymatic release of polymeric glucose has been demonstrated 

in the BioLector by Toeroek et al. (2015) for E. coli based production processes. The results 

suggested the feasibility of the fed-batch process to support a high cell density E. coli culture 

without any limitations in oxygen supply, which is also transferable to larger scales. Other 

applications of the BioLector include optimisation of lipid accumulation in Yarrowia lipolytica (Back 

et al., 2016), recombinant virus-like particle production for chimeric vaccines in E. coli (Effio et al., 

2016), screening of cellulases for biofuel production (Jager et al., 2011), and evaluation of 

inducible promoter / repression systems for recombinant protein expression in Lactobacillus 

plantarum (Heiss et al., 2016).  

 

One of the latest additions to the controlled MBRs is the ambrTM system (TAP Biosystems, 

Royston, Cambridge) a micro stirred bioreactor that comes up with 24 single-use individual 

vessel, equipped with a closed loop control of pH and DO with an independent control of O2 and 

CO2. The system is integrated with an automated liquid handling unit that aids reactor set up, 

feeding and sampling. Initial assessments of this MBR were mostly centered for cell culture 

application. The application of the ambrTM system for cultivating CHO cell lines was discussed by 

Hsu et al. (2012), Nienow et al. (2013) and Rameez et al. (2014) whereby the reproducibility of 

the process parameters and cultivation performance between ambrTM and laboratory scale 

reactors has been highlighted. Additionally, in these studies the superiority of the cultivation 

performance in ambrTM over that in the shake flask system was reported, implying the benefits of 

the control system provided in the former system.  

 

An extensive evaluation of the ambrTM system for process characterisation, process parameters 

classification and development of process parameters control strategy for a manufacturing 

process of a cell culture was first reported by Janakiraman and Kwiatkowski (2015). The results 

suggested the transferability of the cell culture performance from the ambrTM system to a bench 

(5 L) and manufacturing (15 000 L) scale reactor under a defined specific aeration rate. The 

comparability of the DoE data between the ambrTM system and bench scale reactor indicated the 

promising role of the former system to facilitate rapid data collection for early process 

development. Generally, the application of the ambrTM system for microbial cultivations is still 

limited. Further studies concerning options for scaling up as well as the characterisation of the 

MBR will be beneficial.   

 

The most recent controlled MBR to enter the market is the micro-Matrix (Applikon Biotechnology 

B. V., Holland). Sani (2016) reported the initial evaluation of the micro-Matrix system for cultivating 

CHO cell lines. Throughout the study, the best strategies comprising controlled addition and 

continuous feeding have been identified to favour high cell concentration and viability. Moreover, 
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the feasibility of a 1000-fold scale translation of the CHO cultivation was demonstrated between 

the micro-Matrix and a 5 L STR based on a matched mixing time whereby an equivalent 

performance was observed between the two geometries in relation to viable cell concentration 

and IgG titre. This initial report has validated the promising application of micro-Matrix for 

screening and optimisation studies particularly for cell culture application.  

 

The application of the micro-Matrix for microbial cultures nonetheless, remained to be explored. 

One challenge that might lie in its application for microbial cultures is in terms of its aeration 

system, which is based on head space aeration that is unlikely to support highly aerobic microbial 

cultures. Nevertheless, the availability of the feeding system in this MBR may enable efficient fed-

batch operations to be conducted. A summary of the basic features of all the abovementioned 

controlled MBRs is outlined in Table 1.3. 

 

The integration of  HTP and single-use technologies has further enhanced their significant role in 

early stage bioprocess development. The application of single-use reactors has eliminated the 

need for the laborious steps before and after the production stage such as the set up, sterilisation 

and cleaning. Other advantages include minimal risk of contamination, reduced turn-around time 

and enhanced flexibility and productivity (Allison and Richards, 2014; Gao and Allison, 2015). 

Although there may be a trade-off with the cost of the disposable reactors, in general, adoption 

of both HTP and single-use technologies can accelerate the process development timeline with 

significant labour and energy savings. In Chapter 3 of this thesis, a particular approach of the 

exploitation of a HTP single-use controlled MBR (Micro-24) for E. coli BL21 (DE3) culture will be 

explored in detail.  



Table 1.3. Specification of selected commercially available HTP controlled MBRs. Adapted from 
Long et al. (2014).   

 

Characteristic Controlled microbioreactor 

BioLector Micro-24 Ambr micro-Matrix 

Working volume 0.8 – 1.5 mL per 

well 

3 – 7 mL per well 10-15 mL per 

vessel 

1 – 7 mL per well 

Mixing 

mechanism 

Orbital shaking Orbital shaking 

 

Agitation Orbital shaking 

 

Aeration strategy Headspace Headspace /  

Dispersed  

Dispersed  Headspace 

Throughput 48 wells 24 wells per 

cassette 

24 or 48 vessels 24 wells per unit 

Process 

parameters / 

information 

Online 

monitoring and 

control of pH, 

DO, T, biomass 

and 

fluorescence 

protein 

Online 

monitoring and 

control of pH, 

DO, T, 

Online 

monitoring and 

control of pH, 

DO, T, 

Online 

monitoring and 

control of pH, 

DO, T, 

Oxygen transfer 

rate  

(mmol L-1 h-1) 

>100  >300  n.a. >300  

Feed availability Possible 

integration with 

a liquid handling 

system 

Possible 

integration with 

a liquid handling 

system 

Automated 

liquid handling 

robot for set up, 

feeding and 

sampling 

Automated liquid 

handling robot 

for set up, 

feeding and 

sampling 

Manufacturer m2p-Labs Pall Corporation TAP 

Biosystems,  

Applikon 

Biotechnology  

n.a. – not available 

Note: Headspace aeration – refers to aeration provided to the culture from the liquid surface 

alone; dispersed aeration – refers to aeration provided from the gas bubbles that pass through 

the culture (in addition to any headspace aeration).   
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1.5 Scale-up of fermentation processes 

 

One of the concerns regarding the application of HTP cultivation systems is the reproducibility of 

the optimal process conditions established in those platforms at larger scales of production. 

Generally, the ultimate aim of a scale-up is to acquire a larger quantity of product with an increase 

or at least reproducible specific yield and product quality (Schmidt, 2005). Among the key 

challenges in scale-up is the variation between the scales in terms of the system geometries and 

the prevailing mechanisms of heat and mass transfer. This has led to studies on the 

characterisation of reactor systems prior to scale-up in order to gain insights into the identification 

and validation of the critical scale-up parameters. 

 

The selection of the scaling parameter generally depends on the factors that affect the specific 

process behaviour such as oxygen supply, mass transfer, mixing, aeration and power input 

(Najafpour, 2007; Burke, 2008). There is no generic scale-up rule that fits all cultivations; therefore 

the possibility of achieving a successful scale-up via different strategies is usually possible. The 

combination of more than two scaling parameters is commonplace in many fermentations with 

both of them being fixed during scale translation (Schmidt 2005; Najafpour, 2007; Marques et al., 

2010). Several typical scale-up parameters are described in detail below.  

 

 

1.5.1 Concepts and strategies of scale-up 

 

1.5.1.1 Volumetric mass transfer coefficient (kLa) 

 

Oxygen serves as one of the main substrates in any aerobic bioprocesses for cell growth, 

maintenance and metabolites production (Buchs, 2001; Liu et al., 2006). The transfer of oxygen 

normally from bubbles or the liquid surface to cultures is typically hindered by the low oxygen 

solubility in water of approximately 0.272 mmol L-1 at 25 oC and 101 kPa air pressure, making it 

a limiting substrate in aerobic fermentations (Doran, 1995). Hence, the subsequent challenge lies 

in supplying adequate amount of oxygen to the cultures.  

 

Oxygen transfer rate (OTR) is characterised in terms of the combined, overall volumetric mass 

transfer coefficient (kLa) and the oxygen concentration gradient (CL
*-CL) (Doran, 1995; Burke, 

2008) as outlined in Equation 1.1.  

 

OTR = kLa(CL
∗ − CL)       (Equation 1.1) 
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Where kL represents mass transfer coefficient, a is interfacial area, CL is the dissolved oxygen 

concentration in the liquid phase (kg.m-3) and CL
* is the saturated oxygen concentration in the 

liquid phase (kg.m-3). Due to the difficulty in measuring kL and a separately, their product, kLa is 

often regarded as a single variable. Increasing the OTR is often crucial in overcoming high oxygen 

demand during fermentations, normally regarded as oxygen uptake rate (OUR) (Marques et al., 

2010). In increasing OTR, (CL
*-CL) renders less possibilities for enhancement since the CL

* value 

is typically small (Rao, 2010). Thus, kLa plays a relatively important role in determining the OTR. 

Both kL  and a are influenced by several factors, among which are power consumption, gas 

superficial velocity, liquid phase properties that include ionic strength, surface tension and 

viscosity (Van’t Riet, 1979).  

 

Due to the low solubility of oxygen in water despite its high demand during aerobic bioprocesses, 

oxygen transfer appears to be a limiting factor in these cases. Hence, maintaining a constant 

OTR, which is mainly governed by kLa, is a typical basis for scaling aerobic bioprocesses. The 

oxygen uptake rate (OUR) of bacterial cells ranges from 0.46 - 2.33 x 10-3 g cell-1 h-1, in contrast 

to 2 to 10 x 10-12 g cell-1 h-1 for mammalian cells (Michelletti et al., 2006). As the oxygen may not 

adversely impact the growth of mammalian cell cultures (Lavery and Nienow, 1987), most works 

involving cell cultures normally do not consider kLa as the scaling basis. 

 

There are several ways to directly measure kLa, which can be categorised into chemical and 

physical methods of which the latter case will be of concern in this study. Chemical methods 

include sodium sulphite oxidation (Cooper et al., 1944) and absorption of CO2 (Danckwerts and 

Gillham, 1966). One of the limitations of these chemical methods is that the chemicals addition 

may vary the physicochemical properties of the fluid; the mass transfer coefficient may also be 

over predicted due to the increased oxygen absorption rate caused by the chemical reaction 

(Garcia-Ochoa and Gomez, 2009).  

 

Physical methods, on the other hand, involve direct measurement of changes in DO levels using 

an oxygen-selective probe (Garcia-Ochoa and Gomez, 2009). This approach is known as the 

dynamic gassing-out method and is a widely adopted technique for kLa determination due to its 

simplicity and accuracy (Marques et al., 2010). The dynamic method of absorption involves 

purging the oxygen from the liquid phase, usually by sparging nitrogen gas until the oxygen 

concentration reaches 0%. Subsequently, air is sparged into the reactor under appropriate 

agitation and aeration conditions and the change of the DO with time is recorded. Meanwhile, the 

dynamic method of desorption comprises first sparging the liquid phase with air until a saturation 

level of oxygen concentration is attained. Following that, the oxygen is purged by sparging the 

nitrogen until the concentration reaches 0% and the change of the DO with time is recorded. In 

either method, the influence of the probe response time (τp) needs to be incorporated into the kLa 

measurement (Garcia-Ochoa and Gomez, 2009). τp is defined as the time taken to achieve 63% 

of the saturation level of DO (Van’t Riet, 1979). The relationship between kLa, dissolved oxygen 

concentration and time during the absorption and desorption techniques is represented by 
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Equations 1.2 and 1.3, respectively; in both cases, kLa represents the slope of the graph of ln f 

(CL) versus time.  

 

ln (1 −
CL

CL
∗ ) = −kLa(t)         (Equation 1.2) 

 

ln
CLO

CL
= kLa(t)          (Equation 1.3) 

 

Where CL0 is the dissolved oxygen concentration in the liquid phase at 0 h (kg.m-3). Apart from 

the experimental methods, kLa can also be predicted using empirical correlations. The variation 

of the types of fluid used, type and size of reactor, operational conditions and measuring methods 

applied in the development of the empirical correlations are likely to influence the accuracy 

between the experimental and calculated kLa values (Garcia-Ochoa and Gomez, 1998; Gogate 

et al., 2000).  

 

The most widely used kLa correlation was proposed by Van’t Riet (1979), which is represented 

by Equation 1.4.  

 

kLa = a(
P

V
)b(Vs)c                                             (Equation 1.4) 

 

Where (P/V) denotes volumetric power consumption (kg m-1s-3), vs is superficial velocity (ms-1) 

and a, b and c are correlation coefficients. The use of Equation 1.4 to predict kLa in STRs has 

been reported extensively in the literature (Montes et al., 1999; Weuster-Botz et al., 2002; Islam 

et al., 2008; Baboo et al., 2012).  

 

 

1.5.1.2 Mixing time 

 

Scale-up can also be based on constant mixing time between the scales. Mixing time is defined 

as the time needed to achieve a certain uniformity level of the reactor contents upon tracer 

injection (Marques et al., 2010). The rationale of adopting mixing time as a scale-up basis is to 

ensure a similar homogeneity of the culture composition across the scales. Experimental 

determination of mixing time in a reactor is commonly performed based on colorimetric methods. 

Generally, these are based on a colour-decolourisation concept where a liquid tracer is injected 

into the reactor containing liquid and the dispersion of the tracer within the reactor content is 

observed and recorded over time (Ascanio, 2015). As the method was initially developed for a 

conventional laboratory reactor, there lies a challenge in quantifying the mixing time in a shaken 
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microscale platform. Thus, certain modifications need to be carried out. In a study by Nealon and 

co-workers (2006), they established a high-speed video method to measure the jet macro-mixing 

times in a static MWP. The technique also allows visualisation of the jet formation and liquid flow 

patterns throughout the wells. Meanwhile, Rodriguez et al. (2014) used the Dual Indicator System 

for Mixing Time (DISMT) approach for the quantification of mixing time in orbital shaken reactors. 

They demonstrated the incorporation of a critical Froude number as promising for the 

development of the scaling law for mixing time between the shaken reactors of different scales.  

 

 

1.5.1.3 Volumetric power consumption 

 

Constant ungassed (Po) or gassed power (Pg) per unit volume between the scales can be used 

as bases for scale-up. For stirred reactors of standard geometry, according to Rushton et al. 

(1950a) and Rushton et al. (1950b), empirical determination of Po is based on Equation 1.5: 

 

Po = NpN3Di
5ρ                                                 (Equation 1.5) 

 

Where Np is the impeller power number, N is agitation speed (rpm), Di is impeller diameter (m) 

and ρ is density of broth (kg m-3). Meanwhile, Pg can be determined based on Equation 1.6 that 

is proposed by Michel and Miller (1962):  

 

Pg = m (
Po

2 NDi
3

Q0.56 )
0.45

                      (Equation 1.6) 

 

Where m is impeller constant and Q denotes airflow rate (L min-1). A wide number of other 

correlations for determining power consumption are available in the literature (Hughmark, 1980; 

Buchs et al., 2000a; Buchs et al., 2000b). Indirect determination of specific power input in an STR 

can also be based on torque measurements (Ojo, 2014). The scarcity of suitable methods for the 

measurement of power consumption in small scale HTP reactors, of non-standard geometry, has 

limited the application of the specific power input as a scale-up basis (Marques et al., 2010). 

Moreover, most empirical correlations were developed based on STR systems that incorporate 

direct mechanical agitation via an impeller. Additionally, there is still lack of information concerning 

correlations involving power consumption in MWPs or other microscale reactors. The use of 

Computational Fluid Dynamics (CFD) was highlighted by several researchers as a tool to estimate 

power consumption in shaken microwells (Zhang et al., 2008; Barrett et al., 2010). In a more 

recent report by Durauer et al. (2016), a novel colorimetric method to quantify the power input in 

shaken microtitre plates has been introduced. The method facilitated a direct measurement of the 

specific power input in the microtitre plate, which may potentially be applied further for the scale-

up purposes where this has yet to be demonstrated.  
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1.5.1.4 Specific aeration rate (Q/VL or vvm) 

 

Standardisation of the specific aeration rate is another possible approach for scale-up. The 

rationale for this approach is that a similar volumetric ratio of air to the working volume of the 

culture will ensure a fair provision of the oxygen to the culture. A compromise should be made 

concerning the Q value as excessive air supply may result in foaming and high gas hold up in the 

reactor. The typical values of Q/VL used for a scale-up range between 1 and 1.67 with lower 

values normally adopted for larger scales (Junker, 2004).  

 

 

1.5.2 Scalability of HTP fermentations 

 

Ever since HTP reactors began to be used as optimisation platforms for microbial and cell 

cultures, significant attention has also been paid to the feasibility of scale translation of culture 

performance. Certain traditional scale-up approaches such as similar reactor geometry and 

constant impeller tip speed are generally not applicable to most HTP reactor formats (Table 1.3) 

due to the preference for shaken systems at small scale.  

 

Table 1.4 summarises several works that reported the scalability of the cultivation processes in 

various HTP platforms to laboratory scale, stirred reactors using defined scale-up criteria. As 

already suggested in Section 1.5.1.1 for most aerobic cultivations such as E. coli fermentations, 

constant kLa is widely adopted as the basis of the scale translation.  

 

One of the challenges in using kLa as the scaling basis is that it is a process-dependent parameter; 

therefore, it is subjected to change throughout different phases of a fermentation (Buckland, 

1984). Nevertheless, this limitation may be alleviated by the standardisation of the optimal CL 

during the scale translation (Ju and Chase, 1992) whereby maintenance of CL above the minimum 

level required for an optimal cell growth may help to ensure a sufficient supply of oxygen to the 

culture. In the case of a viscous mycelial culture, the CL value of between 30 and 70% saturation 

is required whereas for less viscous cases such as yeast and E. coli cultures, the minimum level 

of CL ranges from 10 to 30% (Junker, 2004).    

 

In scale-up works involving cell cultures, the use of mixing time as a scaling basis is commonplace 

compared to other scaling parameters. This is due to the fact that cell cultures grow relatively 

slowly compared to microbial cultures thus, provision of a well-mixed environment is crucial in 

ensuring a good quality of the cell suspension as well as the regulation of the incoming and 

outgoing gases from the cultures (Ozturk, 1996; Serrato et al., 2004; Lara et al., 2006). In addition, 

scale-up based on a matched mixing time may also be potentially applied for fed-batch E. coli 

and yeast cultures as the high cell densities may challenge the mixing performance within the 

cultures (Junker, 2004).  
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Alternatively, the feasibility of maintaining a specific power consumption as the scale-up basis for 

VPM8 hybridoma cell culture between MWP and a laboratory reactor has been demonstrated by 

Michelletti and co-workers (2006). The equivalency of the cultivation performance between the 

scales indicates the practicability of the estimated power consumption by CFD as a scaling 

criterion apart from the commonly used mixing time.  

 

Overall, there is usually a need to elaborate a specific scale-up strategy for each specific 

fermentation and product type. Here, a particular approach of scaling up an E. coli BL21 (DE3) 

fermentation process from a HTP controlled MBR to a laboratory STR will be described in Chapter 

5 of this thesis.  

 

Table 1.4. Summary of scale-up studies under defined engineering criteria using HTP platforms.  

Scaling parameter High throughput 

platform 

Microorganism Reference 

kLa Conventional MWP E. coli Ferreira-Torres et al. 

(2005), Michelleti et al. 

(2006), Islam et al. (2008), 

Zhang et al. (2008), Baboo 

et al. (2012), Marques et al. 

(2012) 

BioLector E. coli, 

Hansenula 

polymorpha 

Kensy et al. (2009a) 

24-well miniature 

photobioreactor 

(mPBr) 

Chlorella 

sorokiniana, 

Chlorella 

protothecoides 

Ojo (2015) 

Mixing time Micro-24 CHO Betts (2014) 

Micro-Matrix CHO Sani (2016) 

Specific aeration rate Ambr CHO Janakiraman and 

Kwiatkowski (2015) 

Power consumption Conventional MWP VPM8 hybridoma 

cells 

Michelleti et al. (2006) 

 

 

 

1.6 Exploration of renewable feedstocks for industrial fermentations 

 

In addition to establishment of efficient and reliable cultivation platforms to facilitate early stage 

and scalable bioprocess development (Section 1.4), another generic challenge is the high cost 

associated with the feedstock. Typically, 38 - 73% of the total production cost attributed to the 

feedstock cost alone (Stansbury et al., 1999). Conventionally, there is still a high reliance on fossil-

fuel based feedstocks in many industries. The continual depletion of fossil fuels has resulted in 
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an increased price and thus, making any associated process dependent on the source as 

expensive.  

 

Recently, there has been a growing interest in exploiting renewable feedstocks for production of 

value-added products by fermentation. Valorisation of renewable feedstocks helps to reduce 

overall production cost, increase process sustainability and minimise environmental hazards such 

as the emission of greenhouse gases such as CO2, CH4 and N2O (Maity, 2014). Among examples 

of potential renewable feedstocks for bioproductions are wastes generated from biorefineries, 

food, agricultural and agro-based industries. One such source, sugar beet vinasse, is the focus 

of this thesis. 

 

 

1.6.1 Introduction to vinasse 

 

One of the potential biorefinery waste stream is vinasse, the stillage discharged following the 

distillation of industrial bioethanol fermentation broths (Fitzgibbon et al., 1995). Ethanol produced 

from fermentation process constitutes 90 – 95% of the global production, leaving only a small 

proportion produced via chemical synthesis (Sarris and Papanikolaou, 2016). With the growing 

demand for bioethanol, due to a multitude of applications, the production of vinasse is also 

expected to increase. Conventionally, vinasse is mainly exploited for soil mineralisation and as 

an additive for fertilizers and animal feeds due to its high content of organic nutrients (Parnaudeau 

et al., 2008). However, application of vinasse on soil may lead to severe water and soil pollution 

as a result of the leaching of metals to groundwater, variation of soil texture, a rise of phytotoxicity 

and generation of bad odours due to production of methane and nitrous oxide gases (Christofoletti 

et al., 2013; De Oliveira et al., 2013). Additionally, the market for soil mineralisation is relatively 

small. A large portion of vinasse is still disposed into the water streams, causing an adverse 

impact on the aquatic ecosystem due to the presence of toxic compounds such as phenols, 

polyphenols and heavy metals, which resulted in high biological oxygen demand (BOD) (15-46 g 

L-1) and chemical oxygen demand (COD) (26-91 g L-1) (Espana-Gamboa et al., 2011). 

 

Over the years, a number of studies have focused on vinasse pre-treatment using several 

methods with the aim of removing toxic substances before disposal. Early work by Coca and 

Gonzalez (2006) highlighted the treatment of vinasse via a chemical route. Meanwhile, biological 

treatment of vinasse has been reported widely in the literature. Cibis et al. (2011) and Ryznar-

Luty et al. (2015) have focused on the assimilation of betaine, a major pollutant in vinasse during 

aerobic biodegradation using a mixed culture of Bacillus species. Other studies reported the same 

approach but using different microorganisms (Lutoslawski et al., 2011). On the other hand, 

vinasse treatment via anaerobic biodegradation has also been discussed. The major advantage 

of treatment via this method, apart from being cheaper than the preceding techniques, is the 

production of biogas such as methane and CO2 whereby the former can be utilised as fuels for 

use within the refinery plant itself (Benitez et al., 2003; Beltran et al., 2005). Janke and co-workers 

(2016) reported the enhancement in methane gas production by 79% during anaerobic 
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biodegradation of sugarcane vinasse by supplementation with trace elements, nitrogen and 

phosphate. The on-site production of biogas that can potentially contribute to the overall revenue 

of the biorefinery is one of the early solutions that can help to ensure the sustainability of the 

industry in general apart from minimising the ecological impact associated with vinasse disposal.  

 

Other works have addressed the exploitation of vinasse for production of various value-added 

products such as polyhydroxyalkanoate (PHA) (Bhattacharyya et al., 2012; Pramanik et al., 

2012), biohydrogen and volatile fatty acids (Sydney, 2013) and xylitol (Salgado et al., 2010). 

Furthermore, vinasse has also been used as one of the medium components for the production 

of Spirulina maxima biomass (Barrocal et al., 2010). Meanwhile, the recycling of vinasse for 

ethanol fermentation has also been addressed (Navarro et al., 2000; Fadel et al., 2014). Overall, 

these works denoted the potential utilisation of vinasse as an alternative fermentation feedstock 

to synthetic media. The findings also provide useful insights into the potential use of vinasse for 

growing other microorganisms that have yet to be explored, such as E. coli, which is one of the 

preferred hosts for recombinant enzyme production.  

 

Furthermore, there are several studies that reported the extraction of valuable components from 

vinasse. For example, Caqueret and colleagues (2008) reported the separation of betaine, which 

has amphoteric surfactant properties making it valuable for production of toiletries and health care 

products. In their study, the removal of polyphenolics and coloured compounds was initially 

investigated in order to facilitate the separation of betaine by ion-exchange. Apart from that, the 

recovery of the polyphenolic compound itself from vinasse has also become of interest. Diaz et 

al. (2012) reported the recovery of polyphenols from white wine vinasse where the compound 

was found to possess a potent ability as an antioxidant and therefore has potential applications 

such as in the food industry. The study reported the extraction of about 45% dry weight phenolics 

from 1 L of wine vinasse that generated 42 grams of dry product.  

 

All of the aforementioned studies suggest the potential of vinasse in creating value-added 

opportunities that can enhance the economics of the overall biorefinery industry. Nonetheless, 

there is still an ongoing demand for more profitable process streams to be developed utilising 

vinasse in overcoming its bulk abundance as a result of the increasing demand of bioethanol in 

future.  

 

 

1.6.2 Potential of waste glycerol as a biorefinery feedstock 

 

The biofuel industry generally produces glycerol-based waste streams (Li et al., 2013). Likewise, 

vinasse that is generated from the bioethanol industry, comprises mainly glycerol that is co-

produced during ethanol fermentation by yeast (Figure 1.4). Despite the environmental hazards 

that the stillage might pose, the presence of glycerol in vinasse has enhanced the economic 

viability of the stillage due to various potential uses of the carbon source. The increasing 

production of biofuels over the years has resulted in a surplus of waste glycerol and therefore a 
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reduction of its price, which is about 6 times cheaper than refined glycerol (Yang et al., 2012). 

This factor, along with the high cost of petrochemical precursors, has reduced the proportion of 

glycerol produced via chemical synthesis to about 10% of the total production (Yazdani and 

Gonzalez, 2007), making waste glycerol from the biofuel industry as an important contributor to 

the overall market. Waste glycerol presents several potential uses such as for direct application 

as a simple carbon source, chemical transformations and bioproductions (Johnson et al., 2007; 

Siles et al., 2010; Bohon et al., 2011; Yang et al., 2012). The latter application will be given a 

particular concern in this study.  

 

 

 

 

Figure 1.4. Metabolic pathway during a typical ethanol fermentation by Saccharomyces cerevisae 

indicating glycerol production as a by-product. Adapted from Macedo and Brigham (2014).  

 

  

In microbial fermentations, the use of glycerol as a carbon source has several advantages over 

other carbon sources including glucose. Apart from being a non-food feedstock with a low cost, 

glycerol has a higher degree of reduction per mole of carbon, k (4.67) in comparison with glucose 

and sucrose where k=4 (Adnan et al., 2014). Additionally, the rate of nicotinamide adenine 

dinucleotide (NADH) generation is also higher during glycerol metabolism whereby consumption 

of 1 mole of glycerol (C3H8O3) generates 2 moles of NADH in contrast to only 1 mole of NADH 

when half a mole of glucose (C6H12O6) is metabolised (Neijssel et al., 1975; Lin, 1976). This has 

made glycerol a favourable carbon source for microbial growth, which can potentially lead to a 

higher yield of the products in comparison to glucose and sucrose (Yazdani and Gonzalez, 2007). 

The metabolic pathway of glycerol utilisation in E. coli, the host studied in this work, is illustrated 

in Figure 1.5. The metabolism is mediated by a glycerol transporter (glpF), a glycerol kinase (glpK) 

and two respiratory glycerol-3-phosphate dehydrogenases (glpD and glpABC) (Pettigrew et al., 
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1990; Borgnia and Agre, 2001; Walz et al., 2002). Moreover, unlike glucose, the use of glycerol 

in a fermentation also minimises the production of acetate during the metabolism as cell growth 

is relatively lower that in turn can prevent the overflow of carbon flux (Oh and Liao, 2000).    

 

 

 

 

Figure 1.5. Metabolic pathway of glycerol utilisation in E. coli in the presence of electron 
acceptors facilitated by an ATP-dependent glycerol kinase (GK, coded for by glpK) and respiratory 
aerobic glycerol-3-phosphate dehydrogenase (ae-G3PDH) and anaerobic glycerol-3-phosphate 
dehydrogenase (an-G3PDHs), encoded by glpD and glpABC, respectively. Abbreviations: G3P - 
Glycerol-3-Phosphate; DHAP – Dihydroxyacetone phosphate; PYR – Pyruvate; ATP – adenosine 
triphosphate; ADP –  adenosine diphosphate; H – reducing equivalents. Adapted from Murarka 
et al. (2008).    

 

 

Extraction of waste glycerol from biofuel stillage may be beneficial in certain applications that 

attempt to minimise the problems arising from the complexity of the stillage composition when it 

is used as a fermentation feedstock. Nonetheless, reports on the use of glycerol extracted from 

bioethanol stillage are still scarce in comparison with those from biodiesel. The use of biodiesel 

derived glycerol is mainly discussed in this section although some generic issues will be 

highlighted. Several works have reported the application of extracted glycerol from the biofuel 

industry as feedstocks for production of various biochemical products as outlined in Table 1.5. A 

number of studies have highlighted the superior performance of waste glycerol over pure glycerol 

in terms of the product yield (Li et al., 2013; Adnan et al., 2014). The higher product titre is due to 

the existence of additional carbon or electron sources, nitrogen and some metals that may present 

in a trace amount in waste glycerol (Thompson and He, 2006; Lee et al., 2012).  
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Table 1.5. Production of various value-added products from glycerol extracted from the biofuel 

industry.   

 

Product Microorganism Reference 

1,3-propanediol Klebsiella pneumoniae 

Clostridium butyricum 

Hiremath et. al. (2011) 

Chatzifragkou et. al. (2011) 

Citric acid Yarrowia lypotica Rywińska et al. (2009)       

Erythritol Yarrowia lypotica Rymowicz et al. (2009) 

D-lactic acid Escherichia coli Mazumdar et al. (2010) 

Polyhydroxyalkanoate Cupriavidus necator 

Zobellella denitrificans 

Cavalheiro et al. (2009) 

Ibrahim et al. (2009) 

Phytase Pichia pastoris Tang et al. (2009) 

Propionic acid Propionibacterium 

acidipropionici 

Zhang and Yang (2009) 

Lipase  Staphylococcus caseolyticus Volpato et al. (2008) 

Succinic acid Basfia succiniciproducens Scholten et al. (2009) 

Ethanol E. coli  

Kluyvera cryocrescens 

Klebsiella pneumoniae 

Adnan et al. (2014) 

Choi et al. (2011) 

Oh et al. (2011) 

Lipid Schizochytrium limacinum 

Chlorella protothecoide 

Liang et al. (2010) 

O’Grady et al. (2011) 

Butanol Clostridium pasteurianum 

 

Taconi et al. (2009) 

Kao et al. (2013) 

Hydrogen  Enterobacter aerogenes and 

Clostridium butyricum 

Pachapur et al. (2015) 

 

  

In comparison to the whole stillage, one of the advantages of using extracted glycerol lies in the 

downstream processing stages used for end-product recovery; fewer impurities are expected with 

extracted glycerol.  However, there is an additional cost that needs to be invested in order to 

separate or further purify the glycerol from biofuels in the first place. Depending on the purpose 

and cost that need to be invested, purification of glycerol to a high-quality grade may be beneficial 

for critical applications related to the pharmaceutical and food industries where the removal of 

impurities is a prerequisite (Wan Isahak et al., 2015).  

 

Another advantage of using extracted glycerol as a fermentation feedstock could be in terms of 

the elimination of several potential cell growth inhibitors such as acetate, polyphenols and furfural, 

which are generally present in biofuel wastes including vinasse. Typically, the composition of 

waste glycerol largely depends on the process operations related to biofuel production (Yang et 

al., 2012). It has been reported that extracted glycerol from biofuels generally does not contain 

the aforementioned cell growth inhibitors (Hansen et al., 2009). In the case where the whole 
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vinasse is to be considered for bioproduction, suitable strategies such as pre-treatment for 

polyphenol removal are necessary in order to exclude the impact of these growth inhibitors. This 

has been addressed by Bhattacharyya et al. (2012) and Pramanik et al. (2012) whereby they 

incorporated a pre-treatment with activated carbon (AC) in order to eliminate the polyphenols from 

vinasse prior to the use of the feedstock for PHA production.  

 

Generally, the abovementioned studies highlight the potential of waste glycerol, the major 

component of bioethanol stillage, as a potential fermentation feedstock. A comparative analysis 

between whole vinasse and extracted glycerol from vinasse for use in bioproduction may be 

beneficial in evaluating different process options. Essentially, a compromise should be made 

considering the process economics and viability in defining the relevant use of extracted glycerol 

and whole vinasse for any particular fermentation.  

  

 

1.7 Integrated biorefinery concept: Opportunities and future direction 

 

A biorefinery is defined as a production plant that utilises biomass as a starting material to 

generate a multitude of products particularly fuels, chemicals and energy (Kamm and Kamm, 

2004a; Kamm et al., 2006). The shortage of fossil fuels and also the emerging trend in the 

exploitation of biomass for the production of non-food products has led to the evolvement of the 

biorefinery concept since the 1990s (Ohara, 2003; Kamm and Kamm, 2004a; Kamm and Kamm, 

2004b; Fernando et al., 2006; Kamm et al., 2006). There are three broad categories of a 

biorefinery, which are defined by the biomass utilised namely triglycerides, lignocellulosic and 

sugar/starchy materials (Maity, 2014). In the present study, the latter type will be discussed in 

detail with a specific focus on sugar beet.  

 

Over the years, routes to several bioproducts have been developed within existing biorefineries. 

Use of a side stream to generate biogas, such as methane by anaerobic digestion, is among early 

examples of an integrated biorefinery concept. The methane gas produced can potentially be 

used as a source of energy within the biorefinery plant that consequently may open up 

opportunities for energy integration. Furthermore, in a typical sugar beet biorefinery, apart from 

sugar as the principal product, there are a number of co-products resulting from the side process 

streams among which are bioethanol, animal feed, power supply and liquid CO2. At the 

Wissington factory in the UK, they also incorporated a horticulture business within the sugar beet 

biorefinery whereby the glasshouse is heated by the combustion of gases in a power station, 

yielding about 140 million tonnes of tomatoes per year. The framework comprising a spectrum of 

process streams within the Wissington factory is shown in Figure 1.6.  

 

From a more holistic perspective, a fully integrated biorefinery should aim to utilise the maximum 

possible amount of intermediates and by-products, where the output of one process may serve 

as an input for another, with the aim of producing sustainable products and minimise unnecessary 

wastes generated from the whole facility. One of the generic challenges however, still lies in the 
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effective utilisation of the wastes generated. Among the principal wastes generated in a sugar 

beet biorefinery are sugar beet pulp and vinasse, which are identified as among the main causes 

of the environmental hazards (Vaccari et al., 2005).  

  

 

 

 

Figure 1.6. AB Sugar Wissington biorefinery (Norfolk, UK) indicating the sugar beet processing 
for sugar production and also various integrated process streams. Reproduced with permission 
from AB Sugar. 

 

 

Sugar beet pulp (SBP) is generated upon the extraction of sugars in the crop during the early 

stage of sugar production. With over 8 million tonnes of sugar beet being harvested yearly in the 

UK, there is a significant amount of pulp generated following the crop processing (Ward et al., 

2015). Conventionally, the pulp is processed as an animal feed via a costly and energy intensive 

drying process to remove water (Zheng et al., 2012). Having a high content of carbohydrates 

mainly cellulose and pectin (Micard et al., 1996), SBP could potentially serve as a promising 

source of useful monomers derived upon the separation process. Recently, Cárdenas-Fernández 

et al. (2017) have reported the purification of L-arabinose and D-galacturonic acid, main 

components of pectin from SBP, which have many potential industrial applications. L-arabinose 

is an important substrate for production of biopolymers following esterification (Borges and 

Balaban, 2014). Apart from that, L-arabinose in its reduced form, arabinitol is useful for the 

construction of the unsaturated polyester resins (Werpy and Petersen, 2004). D-galacturonic acid 

on the other hand, is normally utilised for the production of hyperbranched polyesters and 

plasticisers (Werpy and Petersen, 2004). Moreover, both L-arabinose and D-galacturonic acid 

could serve as attractive substrates for biocatalysis, yielding novel chiral aminopolyols (Ingram et 
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al., 2007; Smith et al., 2010; Rios-Solis et al., 2015) that have important applications as 

pharmaceutical intermediates.  

 

The work on the bioconversion of SBP has driven an interest in the development of on-site 

biocatalyst production within an integrated biorefinery like Wissington. The abundance of both 

SBP and vinasse offers a continuous supply chain thus ensuring the sustainability of the potential 

process streams while eliminating the current challenges and environmental hazards associated 

with their disposal. Figure 1.7 illustrates the integration of existing sugar and bioethanol 

production with the aforementioned proposed novel process streams within an integrated sugar 

beet biorefinery framework. In a broader context, these two on-site process streams may serve 

as promising process options for the development of a fully integrated sugar beet biorefinery in 

future. Exploration into the feasibility of developing a process for on-site biocatalyst production 

using vinasse will be discussed in Chapter 4 of this thesis.  

 

 

 

 

Figure 1.7. Diagram showing the potential integration of the existing and novel process streams 
within a sugar beet biorefinery context. Novel process streams are enclosed in the box with 
dashed lines. The quantitative information is provided by British Sugar (personal communication, 
2017) based on operations at Wissington biorefinery. Abbreviation: p.a. – per annum. 
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1.8 Critical appraisal of the published literature  

 

Whilst various studies related to the use of HTP microreactors have been reported for both 

microbial and cell culture applications (Section 1.4), there remains a need to understand the 

flexibility and scalability of the platforms for real-world applications. A number of works have 

highlighted the use of conventional MWPs on defined media over the past decade as detailed in 

Section 1.4.1. Nonetheless the absence of monitoring and control for key environmental 

parameters, particularly pH and DO limits the quality of the data that can be attained. The most 

recent studies have focused on controlled MBRs for mammalian cell cultures (Section 1.4.2) 

however, there remains a need for additional studies on microbial cultures in these systems and 

in particular mixing and oxygen mass transfer characteristics under microbial culture conditions.  

 

Most scale-up studies from microwell to STR scales have either focused on conventional MWPs 

or mammalian cell culture (Section 1.5.2). There is therefore a need to study microbial cultivation 

in controlled MBRs and scale-up to laboratory and pilot scale STRs. The few studies that have 

addressed microbial scale-up (Isett et al., 2007; Chen et al., 2009; Holmes et al., 2009) have 

generally been empirical and not defined specific engineering bases for scale translation. The 

challenge here lies in understanding the fundamental engineering characteristics of the emerging 

controlled MBRs that come in various geometries and subsequently, the reproducibility of the 

cultivation at larger scales.  

 

With regards to the biocatalyst used in this study, CV2025 ω-TAm (Section 1.2), the optimisation 

of its production during fermentation has not been a major focus in previous works (Kaulmann et 

al., 2007; Rios-Solis et al., 2011; Halim et al., 2013). As most proteins are produced intracellularly 

in E. coli, including CV2025 ω-TAm, there is a proportionality between the cell density and product 

titre, which implies the importance of achieving high cell density cultures. This in turn will facilitate 

the subsequent bioconversion stage where a high biocatalyst concentration is of an immense 

interest. The application of HTP platforms such as controlled MBRs for optimisation of biocatalysts 

production is again rarely described in the literature. Apart from that, there is also a need for 

cheap and sustainable feedstocks to replace the expensive fossil-based media for 

bioproductions. To date, exploitation of renewable feedstocks such as vinasse (Section 1.6.1) for 

industrial biocatalysts production particularly is still scarcely reported.  

 

In the context of vinasse, which is the renewable feedstock explored in this work, although there 

have been several works in the literature, generally, the scope of studies is still limited. As 

elaborated in Section 1.6.1, a number of works have discussed the pre-treatment of vinasse by 

various methods (Coca and Gonzalez, 2006; Ghosh et al., 2007; Cibis et al., 2011; Luty et al., 

2015). Other aspects addressed include removal of polyphenols (Caqueret et al., 2012), recycling 

for ethanol fermentation (Fadel et al., 2014) and also bioproductions involving several types of 

microorganisms (Barrocal et al. 2010; Salgado et al., 2010; Bhattacharyya et al., 2012; Pramanik 

et al., 2012). Undoubtedly, these studies provide initial insights into the promising applications of 

vinasse however, to date, there is no work reporting the utilisation of vinasse for E. coli growth 
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and biocatalyst production. As E. coli is a typical host exploited for production of many invaluable 

recombinant proteins, it is interesting to investigate the feasibility of developing a cost effective 

fermentation process by utilising a renewable feedstock such as vinasse.  

 

Another interesting aspect is the exploration of potential process streams using vinasse within an 

integrated biorefinery approach. As discussed in Section 1.7, the feasibility of deriving 

monosaccharides from SBP has led to an interesting concept of linking the process of 

bioconversion and biocatalyst production within an integrated sugar beet biorefinery framework.  

 

 

1.9 Aim and objectives  

 

Based on the above consideration (Section 1.8) the aim of this thesis is to establish HTP 

methodologies for the production and characterisation of industrial biocatalysts for use within an 

integrated biorefinery context. A 24-well single-use, controlled microbioreactor platform (Micro-

24) will be utilised in this work (Table 1.3). As described in Section 1.4.2, the direct gas sparging 

and oxygen blending capacity are expected to provide adequate oxygen transfer rates to support 

microbial cell growth above the levels achievable in shaken flasks. The focus will be on optimising 

the production of the CV2025 ω-TAm in E. coli BL21 (DE3), as this has been shown to be an 

important biocatalyst for chiral amine synthesis (Section 1.2). The biorefinery context is provided 

from related studies on the creation of an integrated biorefinery for SBP utilisation (Section 1.7). 

The work here will address methods for the utilisation of sugar beet vinasse, the side-stream of 

bioethanol distillation, as an inexpensive and renewable source of nutrients for E. coli BL21 (DE3) 

growth and CV2025 ω-TAm production. The key objectives of the project are outlined below.    

  

 The initial objective will be to establish a small scale fermentation system as a platform 

for parallel studies of biocatalyst production in microbial hosts. Preliminary studies will 

involve media screening in batch flask cultures. The performance of the controlled MBR 

will be initially assessed in terms of the measurement and control of the process 

parameters and culture reproducibility. Subsequently, the basic culture conditions for 

CV2025 ω-TAm production will be established in the controlled MBR using a synthetic 

medium (a model system) and compared to the standard shake flask cultures. Once the 

experimental methodologies are developed, the utility of the controlled MBR will be then 

demonstrated in optimisation studies for E. coli BL21 (DE3) growth and CV2025 ω-TAm 

production. The optimal levels of cell growth and CV2025 ω-TAm activity achieved here 

will serve as the benchmark for subsequent studies on vinasse utilisation and scale-up. 

The results of this work are presented and discussed in Chapter 3. 

 

 The second objective will be to explore the integration of the controlled MBR technology 

within a biorefinery context using sugar beet vinasse as a fermentation feedstock. 

Preliminary studies will involve characterisation of vinasse with an emphasis on the 
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composition of fermentable sugars and related compounds. Following that, several 

possible vinasse pre-processing techniques will be evaluated. In addition, pre-treatment 

of vinasse by AC adsorption will be studied. Initial studies using vinasse as a fermentation 

medium will be performed in shake flasks whereby the influence of several parameters 

such as vinasse concentration and IPTG induction will be determined. The use of the pre-

treated vinasse will also be evaluated over the untreated vinasse for the CV2025 ω-TAm 

production. Additionally, the reproducibility of vinasse between different batches will be 

assessed in terms of the fermentation performance and product titre. Further optimisation 

of fermentation and CV2025 ω-TAm production using vinasse will be carried out in the 

controlled MBR. The influence of supplementation with trace elements and nitrogen-

containing substrates on the fermentation performance will be studied. Additionally, the 

metabolism of E. coli BL21 (DE3) in vinasse medium that links to sugar utilisation and 

selectivity will also be elucidated. The results of this work are elaborated in Chapter 4.     

 

 The third objective will be to scale-up the optimised fermentation processes using both 

synthetic and vinasse-based media (based on the results in Chapter 3 and 4). Scale-up 

demonstrated from the controlled MBR (6.5 ml) to a conventional STR scale (5 L) 

representing a 769-fold volumetric scale translation. The scale-up studies will be based 

on matched kLa values and specific aeration rates (Section 1.5.1). Experimental 

quantification of kLa values will be first undertaken in both controlled MBR and 7.5 L STR 

using water, synthetic and vinasse media in order to establish the correlations for 

prediction of kLa values. For the vinasse medium, additional studies will be performed 

related to options for vinasse pre-processing procedures suitable for a large scale 

application. Finally, optimum conditions for cell growth and CV2025 ω-TAm production 

will be scaled-up and evaluated in a 7.5 L STR. The results of this work are described in 

Chapter 5. 

 

 

In addition to the above, Chapter 2 describes the equipment and experimental methods 

established during this work; in particular Micro-24 operation and control and assays for the 

quantification of the complex carbohydrate mixtures present in sugar beet vinasse. Finally, 

general conclusions from these studies and suggestions for future work are discussed in Chapter 

6.   
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CHAPTER 2 
 

 MATERIALS AND METHODS 
 

 

2.1 Microorganism 

E. coli BL21 (DE3) containing plasmid pQR801 that incorporates the ω-transaminase gene from 

Chromobacterium violaceum (CV2025 ω-TAm) with an N-Terminal His6-tag (GenBank accession 

no. NP_901695), as established in earlier work (Kaulmann et al., 2007), was used throughout this 

study. Working stock cultures were stored in a 20% (v/v) glycerol solution at -80 °C. 

 

2.2 Materials 

All chemicals used in this work were obtained from Sigma-Aldrich (Gillingam, UK) unless 

otherwise stated and were of the highest purity available. The sugar beet vinasse was provided 

by AB Sugar Wissington biorefinery. It was received in chilled form, i.e. with the temperature 

approximately below 5 oC. Two batches were received during the study, named thereafter as 

Batch 1 and 2, which were supplied on 15 September 2014 and 27 November 2015, respectively. 

Reverse Osmosis (RO) water was used in all experimental procedures. 

 

2.3 Media Preparation  

 

2.3.1 Synthetic medium 

The compositions of the media used in this work are as follows. Luria Bertani (LB) – glycerol 

medium, as reported by Rios-Solis et al. (2011), contained (g L-1): glycerol, 10; yeast extract, 5; 

tryptone, 10 and sodium chloride, 10. Defined medium and complex medium were modified from 

that described by Hortsch and Weuster-Botz (2011). Defined medium consisted of (g L-1): 

glycerol, 30; KH2PO4, 13; K2HPO4, 10; MgSO4.7H2O, 1; NH4Cl, 0.2; (NH4)2SO4, 2; NaCl, 5 and 

trace elements, 150 μL L-1. Complex medium consisted of (g L-1): glycerol, 30; yeast extract, 5; 

KH2PO4, 13; K2HPO4, 10; MgSO4.7H2O, 1; NH4Cl, 0.2; NaCl, 5 and trace elements, 150 μL L-1. 

The trace element solution was made up as described by Marisch et al. (2013) and was prepared 

in 5 N HCl. The composition is as follows (g L-1): FeCl3.6H2O, 10; MnSO4.H2O, 10; CaCl2.2H2O, 

2; CoCl2, 0.2; ZnSO4.7H2O, 2; Na2MoO2.2H2O, 5; CuCl2.2H2O, 30; H3BO3, 30.  

 

Before sterilisation the pH of all the media was adjusted to 7 using 1 M NaOH or1 M HCl whenever 

required. The trace element solution was sterilised by filtration through a 0.22 µm pre-sterilised 

filter (Milipore, USA). All other media components were autoclaved at 121 oC for 20 minutes using 

a Denley autoclave (Thermo Fischer Scientific, USA). Phosphate components were also 

autoclaved separately. These and the trace element solutions were added to the other media 

components aseptically prior to fermentation.  
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2.3.2 Vinasse medium 

A typical composition of vinasse as provided by AB Sugar Wissington biorefinery is shown in 

Table 2.1. Prior to its use in this work, suspended solids were removed by centrifuging the raw 

vinasse at 4000 rpm for 30 minutes at 4 oC (Avanti J-E Centrifuge, Beckman Coulter, USA). The 

resulting liquid fraction was then stored in -20 oC. In this work, vinasse medium was prepared by 

a number of pre-treatment routes as illustrated in Figure 2.1. Five different options were 

considered. For pre-treatment Option 1, clarified vinasse was diluted as required using RO water 

and then adjusted to pH 7 before it was filtered through a 0.22 µm sterile filter (Millipore Express 

Plus, Merck, UK). In Option 2, pre-treatment with AC (Section 2.10) was included while the 

remaining procedures were as in Option 1. In Option 3, the vinasse was autoclaved after the pH 

adjustment before being used for fermentation. In Option 4, D-galactose was added to the 

autoclaved vinasse prior to fermentation. Finally, in Option 5, the vinasse was used directly after 

the pH adjustment without any sterilisation.     

 

Table 2.1. Summary of vinasse on a dry mass basis. Data is provided by AB Sugar. 

Component Percentage (%) 

Sugars 8.77 

Glycerol 34.89 

Crude protein 31.03 

Ash 23.4 

Total 98.10 

 

 

 
 

Figure 2.1. Pre-treatment options evaluated with sugar beet vinasse for use as a fermentation 

feedstock. 
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2.3.3 Agar plates  

Agar plates were prepared using LB broth with agar at a working concentration of 40 g L-1. Upon 

sterilisation, once the temperature reached approximately 40 oC, kanamycin to a final 

concentration of 0.15 g L-1 was added to the agar solution and the mixture was mixed thoroughly 

before it was then poured aseptically into a petri dish (Fischer Scientific, UK). The agar plate was 

then allowed to solidify before being used for cell growth assessment.  

 

2.4 Master stock cultures preparation 

The master stock cultures for this project were prepared according to protocols by Halim (2012). 

Initially, the working strain was grown on an agar plate and incubated for 24 h. Following that, a 

single colony was picked and grown in 25 mL LB-glycerol medium supplemented with 0.15 g L-1 

kanamycin in a 250 mL shake flask. The culture was then incubated on an orbital shaker at 250 

rpm and 37 oC. When the OD600nm of the culture reached about 0.5, the culture was withdrawn. 

Four hundred microliters of the culture was then pipetted aseptically into a sterilised Eppendorf 

tube and mixed with 200 µL of 50% (v/v) filter sterilised glycerol solution. The aliquots were then 

kept at -80 oC for use during the course of this project.  

 

2.5 Controlled microbioreactor system 

In this work, a Micro-24 reactor (Pall Corporation, Port Washington, USA) was used as a HTP 

platform for parallel evaluation of microbial cell growth and biocatalyst production. The reactor 

allows 24 simultaneous experiments using single-use cassettes with independent control of 

process parameters (pH, DO and temperature) in every well within the cassette. Figure 2.2 shows 

the overall set-up of the Micro-24 reactor system. The Micro-24 reactor comprises of a single 

base unit with a closable lid. Figure 2.3 depicts the overview of the Micro-24 guard. The guard is 

mounted onto the orbiter at a fixed shaking diameter of 2.5 mm with the speed operates in the 

range 500 – 800 rpm. During shaking, the cassette was clamped on to the Micro-24 guard by an 

applied vacuum supported by clean dry air (CDA) provided from the compressor at 85-120 psi. 

The gas delivery gaskets on the guard are used for the delivery of the gas to the wells while the 

optic windows are for the optical sensing system. The thermistors and heaters allow the 

monitoring and control of temperature in each well.  
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Figure 2.2. Photograph showing the overall set-up of a Micro-24 reactor. Note: the CDA line, from 
a centralized supply, is connected to the back of the Micro-24 machine. 

 

 

 
 

Figure 2.3. Overview of the Micro-24 guard. 
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Figure 2.4 shows the rear view of the Micro-24 reactor. The system allows up to three gases to 

be used at one time. In a microbial culture application, the pH is typically controlled by 15% (v/v) 

NH3 and 50-100% (v/v) CO2. The former gas was generated from 28% (v/v) NH4OH that was 

initially diluted with RO water to 15% (v/v) before being placed in the ammonia generator (Figure 

2.2). Figure 2.5 shows the gas configurations for fermentations using complex (Chapter 3) and 

vinasse (Chapter 4) media, respectively.  The DO is normally controlled by either a pure oxygen 

or a blending of pure oxygen and nitrogen. The range of each gas delivered to the well is between 

0.1 and 20 standard cubic centimetre per minute (sccm) and the gas addition to the well is 

controlled via a Proportional Integral Derivative (PID) loop control. The machine is also equipped 

with the heating and cooling exchanges where the incubator temperature is typically set 2 oC 

below the lowest temperature of the well.    

 

 

 

 

Figure 2.4. Micro-24 rear view. 
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Figure 2.5. Piping and Instrumentation diagram (P&ID) showing the gas configuration during 
fermentations using (A) complex medium (Chapter 3) and (B) vinasse medium (Chapter 4) in the 
Micro-24. Numbers refer to inlet ports of Micro-24.    

 
 
 
For each new media and sensor lot, the pH sensor offset was calibrated as it may vary with the 

media formulation. In contrast, the DO sensor does not vary from lot to lot and thus, a calibration 

may not be essential with lot changes. The protocol for the calibration of the pH sensor offset is 

as follows. A cassette containing the cultivation medium was incubated at the working 

temperature with no DO and pH control for at least 2 h. Following that, the pH of the medium 

withdrawn from the Micro-24 wells was measured offline using a standard pH meter (Mettler 

Toledo, Switzerland) and the readings were compared to the online pH values obtained from the 

data log provided by the operating software. The adjusted offset for the pH sensor was calculated 

based on Equation 2.1 where the sensor offset and slope values are provided by the 

manufacturer.   

 

 

Adjusted offset = sensor offset − (
offline pH−online pH

sensor slope
)                  (Equation 2.1) 

 

 

The cassette is available in regular, direct sparged (REG), baffled, direct sparged (BFL) and 

headspace sparged (PERC) design where the former was used in this study (Figure 2.6 (A)). 

Each cassette consists of 24 pre-sterilised wells that are 61 mm in height (hw) and 14 mm in 

diameter (dw) for every well. Each well has a 0.2 μm sterile sparge membrane that allows the 

passage of the gases. Additionally, every well is fitted with PreSens (PreSens-Precision Sensing, 

(A) (B) 
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GmbH, Regensburg, Germany) fluorescent pH and DO sensing patches that enable optical 

monitoring through light emitting diodes (LED) and detectors on the machine guard. The linear 

range of the pH is from 6 to 8. Meanwhile, for the DO the range and accuracy is around ±5% at 

0% saturation and ±10% at 100% saturation. The temperature is controlled by a Pelletier heating 

element, which is equipped on the base of every well, with the range of between 18 and 45 oC. 

The wells are sealed using pre-sterilised closures of which in this work, Type D caps as shown in 

Figure 2.6 (B) were used. Both cassette and closures are supplied irradiated and intended for 

single use. Each cap consists of a sterilising filter in the middle that allows a two-way gas 

exchange with the atmosphere. Prior to using any new medium in REG and BFL cassettes, a 

compatibility test need to be carried out in order to determine if the medium is compatible with the 

sparge membranes and sensors. In this work, the following procedure was undertaken. The 

cassette was filled with the medium and then placed on a paper towel in an incubator at working 

temperature for at least two hours. Following that, the permeability of the membrane was checked 

by observing whether there is any leak from the well. In the case where the membrane is 

permeable to the medium used, the use of PERC cassette may be necessary.   

 

 

 

 

Figure 2.6. Details of the Micro-24 cassette and caps used in this work: (A) REG plate with a 
sparge membrane and sensor spots visible in the base of each well; (B) Type D cap incorporating 
a sterilising filter in the middle of the outer side.  
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Figure 2.7. Schematic diagram of an individual well from the REG cassette showing location of 

sparger (sterile membrane) and optical sensors. 

 

 

The process control of the Micro-24 during the incubation is monitored by a MicroReactor Control 

software (Pall Corporation, USA) that is pre-installed on the laptop controller, which is connected 

to the reactor unit by an USB connection. The control panel has several menu bar drop down 

options for setting up the process parameters prior to an experiment such as shaking frequency, 

environment temperature, well temperature, pH, DO, airflow rate and also PID values. During the 

operation, the control panel displays the historical and real time data of the running system as 

well as other information related to the reactor status. Figure 2.8 illustrates a typical example of 

the Micro-24 control panel screen during an operation. A graph display from a typical well showing 

both historical and real time data is depicted in Figure 2.9.   
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Figure 2.8. A typical example of the Micro-24 control panel screen during an operation. 

 

 
 

 
Figure 2.9. A graph display from a typical well showing both historical and real time data. The 
drop of DO, pH and temperature at 1.5 h is due to the removal of the cassette from the reactor 
for sampling.  
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2.6 7.5 L stirred tank reactor (STR) 

Batch fermentation in a STR was performed in a 7.5 L glass reactor (BioFlo 310, New Brunswick, 

Hertfordshire, UK). The aspect ratio of the reactor is 1.79:1 and it consists of two, six-bladed 

Rushton impellers (Di = 59 mm, Di/Dt = 0.25) and four equally spaced baffles. The reactor is 

equipped with a built-in software that allows the user to interface through the touchscreen display 

in order to set the process parameters and monitor the progress of the operation. Figure 2.10 

depicts a schematic diagram of the vessel. 

 

The temperature was monitored by a thermocouple and controlled by the circulation of water in 

the external jacket of the reactor. The pH was monitored using an Ingold gel filled pH probe (Ingold 

Messtechnik, Urdorf, Switzerland) and controlled by the addition of 8.5% (v/v) H3PO4 and 28% 

(v/v) NH4OH. The DO was controlled using a polarographic oxygen electrode (Ingold 

Messtechnik, Urdorf, Switzerland) via cascade control of air and pure oxygen at 5 L min-1. Prior 

to sterilisation, the pH probe was calibrated using standard buffers at pH 7 and 4. The calibration 

for the DO probe was performed using pure nitrogen and air for the deoxygenation and 

oxygenation, respectively. The sparged air into the reactor was sterilised using a 0.2 μm 

membrane filter. Apart from the built-in software as described earlier, the reactor system is also 

possibly controlled from a computer via a BioCommand software (BioFlo 310, New Brunswick, 

Hertfordshire, UK). During the operation the historical and real time data can be accessed from 

this operating software. The picture of the reactor system is as shown in Figure 2.11. 
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Figure 2.10. Schematic diagram showing the geometry of the 7.5 L STR (BioFlo 310, New 

Brunswick, Hertfordshire, UK) used in this work.  

 

 

Figure 2.11. Photograph showing the 7.5 L STR (BioFlo 310, New Brunswick, Hertfordshire, UK). 
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2.7 Inoculum preparation 

A glycerol stock vial (600 µL) of E. coli BL21 (DE3) (Section 2.4) was aseptically inoculated into 

100 mL of sterile medium in a 1 L-baffled shake flask. In all cultivations, the medium formulation 

used for inoculum preparation was the same as used in the corresponding Micro-24 or 7.5 L STR 

fermentation. Kanamycin was added to a final concentration of 0.15 g L-1. The culture was 

incubated on an orbital shaker (Adolf Kuhner AG, Birsfelden, Switzerland) at 250 rpm (shaking 

diameter 25 mm) for 12 h at 37 oC. Unless otherwise stated, the inoculum concentration was 

standardised at 0.1 gdcw L-1.  

 

 

2.8 Fermentation  

 

2.8.1 Shake flask culture 

Fermentation was carried out in a 250 mL baffled shake flask with a working volume of 20 mL. 

Prior to inoculation, sterile kanamycin was added to the medium to a final concentration of 0.15 g 

L-1. All cultures were shaken on an orbital shaker (Adolf Kuhner AG, Birsfelden, Switzerland) at 

250 rpm at 37 oC. Sterile IPTG was added to a final concentration of 0.1 mM at mid exponential 

phase unless otherwise stated. All fermentations were performed in triplicate.  Cell growth was 

followed by removing about 3 mL samples approximately every 2 h and measuring OD as 

described in Section 2.12.2. 

 

2.8.2 Controlled microbioreactor culture  

Fermentation was carried out in the REG plate design, fitted with Type D caps with a working 

volume of 6.5 mL in each well. The wells were filled aseptically with a sterile medium followed by 

the addition of kanamycin to a final concentration of 0.15 g L-1 prior to the inoculation. An 

autoclaved propylene glycol (PPG) was also added to each well with a working concentration of 

1 mL L-1 and thereafter it was added as required throughout the cultivation. The culture was 

shaken at 800 rpm, which is the optimal speed recommended for REG cassette by the 

manufacturer. The DO was controlled by a blending of pure oxygen and nitrogen where the flow 

rate was set at 6.5 sccm for each gas. Meanwhile, the pH was controlled one sided either by 

using 15% (v/v) NH3 for cultures using a synthetic medium or 100% (v/v) CO2 in the case of 

vinasse medium with the flow rate of 10 sccm in either condition.  

 

The set-points in each well were at a temperature of 37 oC and a pH and DO of 7 and 30%, 

respectively unless otherwise stated. The PID values of the pH and DO control used were as 

provided by the manufacturer. In the case of a synthetic medium, unless otherwise mentioned, 

the culture was induced with 0.1 mM IPTG after 6 h of inoculation. The cell growth was monitored 

by removing about 650 µL samples at certain time intervals where the OD was then measured as 

described in Section 2.12.2. Figure 2.12 illustrates a typical E. coli BL21 (DE3) culture grown in 

the Micro-24 using a complex medium after 24 h of inoculation. 
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Figure 2.12. Illustration of a typical E. coli BL21 (DE3) culture in the Micro-24. Cells grown on a 

complex medium (Section 2.3.1). Photograph taken 24 hours after inoculation. 

 

 

2.8.3 7.5 L STR culture 

Fermentation was carried out with a working volume of 5 L. In the case of the synthetic medium, 

the vessel was initially filled with 4.5 L of all medium components (except KH2PO4 and K2HPO4) 

and was then sterilised by autoclaving. The phosphate components were sterilised separately 

and were aseptically added to the reactor prior to inoculation. In the case of vinasse medium, the 

vessel was initially filled with 4 L of water with 10 g L-1 yeast extract and was then sterilised at 

121 oC for 20 minutes. Upon cooling to room temperature, a concentrated vinasse was then added 

to the vessel. In both media, filtered kanamycin with a final concentration of 0.15 g L-1 was 

aseptically added to the reactor prior to inoculation. The appropriate volume of inoculum that 

corresponded to a standardised initial cell concentration at 0.1 gdcw L-1 was aseptically added to 

the reactor. Incubation was carried out at 37 oC. The pH was maintained at pH 7 by the controlled 

addition of 8.5% H3PO4 (v/v) and 28% NH4OH (v/v). The DO was controlled at 30% via cascade 

control of airflow and oxygen. The flow rate of air/oxygen was controlled at 5 L min-1 (1 vvm). 

Sterilised antifoam PPG was added periodically as required. The culture using a synthetic medium 

was induced with IPTG during the exponential phase of cell growth to a final concentration of 0.1 

mM. Meanwhile for cultivation using vinasse medium, no IPTG was added. Cell growth was 

followed by removing 5 mL samples approximately at certain time intervals and the OD was then 

measured as described in Section 2.12.2. 

 

2.9 Cell recovery and lysis 

For all fermentation experiments, 500 µL aliquots of the harvested broth were placed in Eppendorf 

tubes and centrifuged at 13 000 rpm for 40 minutes at 4 oC (Hettich Universal 320 Benchtop 

Centrifuge, GMI Inc, USA). The resulting supernatant was used for glycerol (Section 2.12.6), 

acetate (Section 2.12.6), sugar (Section 2.12.7) and sugar alcohol (Section 2.12.7) determination. 

The pellets were resuspended in 200 µL of 2 mM pyridoxal 5’-phosphate (PLP) in 50 mM 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer, pH 7.4. The cells were then 



73 
 

disrupted using a Soniprep 150 sonicator (MSE, Sanyo, Japan) with 10 cycles of 10 seconds on 

and 10 seconds off at 10 μm amplitude. The disrupted cells suspension was again centrifuged 

and the clarified lysate recovered for protein quantification and enzyme activity analysis as 

described in Section 2.12.3 and 2.12.5, respectively. 

 

2.10 Pre-treatment of vinasse 

As illustrated in Figure 2.1, upon removal of the suspended solids by centrifugation, the clarified 

vinasse was then pre-treated using powdered AC according to a modified version of a method 

originally described by Pramanik et al. (2012). The pre-treatment process was performed in a 100 

mL shake flask with a working volume of 10 mL, initial pH of 2, shaking frequency of 160 rpm and 

at 25 oC. Different concentrations of AC (5, 10, 15 and 20 % (w/v)) and incubation time (1, 2, 3, 

4, 5 and 24 h) were tested. The pre-treated vinasse was then centrifuged at 12 000 rpm for 40 

minutes at 4 oC. Subsequently, the pre-treated vinasse was diluted accordingly with RO water 

and the pH was adjusted to pH 7, using a pH meter, prior to filtration through a 0.22 µm filter 

(Millipore Express Plus, Merck, UK) before being used for fermentation.  

 

2.11 Characterisation of the oxygen mass transfer coefficient (kLa)  

 

2.11.1 Measurement of kLa in MBR  

Determination of kLa was based on the dynamic gassing out method (Van’t Riet, 1979). Prior to 

kLa measurement, the DO sensor was pre-calibrated to 0% using nitrogen and subsequently to 

100% using air. The method for measuring kLa involves two stages namely deoxygenation and 

oxygenation. Two different configurations of the Micro-24 were required. The gasses were re-

routed where house air was connected to gas inlet 3 and nitrogen to gas inlet 2. All experiments 

were conducted at 37 oC. The cassette was filled up with 6.5 mL of fermentation medium with 1 

mL L-1 PPG. 

 

Figure 2.13 shows the gas configuration for kLa measurement during deoxygenation and 

oxygenation in the Micro-24. In the deoxygenation stage, the pH control loop was used to sparge 

the nitrogen. The pH set point was chosen in such a way to sparge the nitrogen to the wells until 

the DO readout was 0%. Following that, during the oxygenation stage, both the DO and pH control 

systems were turned off. The shaking frequency was set at predetermined value, between 500 – 

800 rpm, while the aeration rate was varied from 1.0 to 10 sccm. The air was sparged until the 

DO reached saturation. The change in the measured DO profile was recorded by the 

MicroReactor software.  
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Figure 2.13. Piping and Instrumentation diagram (P & ID) showing the gas configuration for kLa 
measurement (dynamic gassing out method) during (A) deoxygenation and (B) oxygenation in 
Micro-24. Numbers refer to inlet ports of the Micro-24.   

 

 

The kLa value was determined by the slope of the graph of ln (CL*-CL) where CL* represents the 

equilibrium concentration of DO and CL is the measured DO at each data point. The probe 

response time was determined based on the modified method by Ramirez et al. (2014). The 

measurement of probe response time was performed individually for every well and the average 

value of the 24 wells was then determined. Oxygenated water was prepared by sparging the air 

into a beaker of water. In parallel with this, the cassette was filled up with 3.25 mL of water and 

sparged with nitrogen until the DO readout was stabilised at 0%. A volume of 3.25 mL of 

oxygenated water was then added to the well. Figure 2.14 illustrates the procedure for the 

determination of probe response time in the MBR. 

 

 

 

Figure 2.14. Procedure for the determination of probe response time in MBR.  

 

 

(A) (B) 
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Whenever the value of 1/ kLa is less than the probe response time, then it is necessary to correct 

the kLa value by using Equation 2.2.  

 

 

Cp =
1

tm−τp
[tmexp (

−t

tm
) − τpexp (

−t

τp
)]                                 (Equation 2.2) 

 
 

 

Where Cp denotes the normalised DO at time t, tm = 1/kLa (s) and τp represents the probe response 

time (s).  

 

 

2.11.2 Measurement of kLa in 7.5 L STR 

 

2.11.2.1 Experimental kLa 

As for the MBR, the measurement of kLa in the 7.5 L STR was based on the dynamic gassing out 

method. Calibration of the DO probe was carried out between 0 and 100% using nitrogen and air 

respectively. All experiments were performed at 37 oC with an agitation speed of 200 – 1000 rpm 

and airflow rate of 5 – 10 L min-1. Initially, nitrogen was sparged to the reactor in order to purge 

the dissolved oxygen in the test medium until the DO readout was equilibrated at 0%. Following 

that, air was sparged and the change of DO with time was monitored and recorded by DASGIP 

Control 4.5 software (Eppendorf, Germany). The probe response time in the 7.5 L STR was 

determined by first immersing the probe in a beaker containing water that has been deoxygenated 

by nitrogen gas. Once the DO readout was stabilised at 0%, the probe was transferred swiftly to 

the reactor that was initially filled with water at 100% saturation. Likewise, whenever necessary, 

the effect of probe response time was incorporated in the determination of kLa values.  

 

2.11.2.2 Calculated kLa 

Calculated kLa in the 7.5 L STR was determined based on a correlation by Van’t Riet (1979) that 

relates kLa with the process variables (Equation 2.3).  

 

kLa = a(N3Di
2)b(vs)c                                                          (Equation 2.3) 

 

Where N is agitation speed (rpm), Di is impeller diameter (m), vs is superficial velocity (m s-1) 

whereas a, b and c represent coefficients. A collection of the experimental kLa values as 

determined in Section 2.11.2.1 were used as ‘guess’ kLa values to solve for the coefficients (a, b 

and c) by using a multiple linear regression analysis module in a MATLAB software (Matlab R14, 

MathWorks, USA). 
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2.12 Analytical Methods 

 

2.12.1 Determination of dry cell weight 

The calibration curves, as shown in Figures A1.1 (complex medium) and A1.2 (vinasse medium) 

were determined based on the relationship between the biomass concentration (gdcw L-1) and 

absorbance at 600 nm. Two millilitres aliquot of the cell suspension, sampled at certain time 

interval was pipetted into a pre-weighed Eppendorf tube and was then centrifuged at 13 000 rpm 

for 5 minutes (Eppendorf, AG, Germany). Following that, the supernatant was decanted and the 

pellet in the tube was left to dry in an oven at 90 oC until a constant weight was achieved. The 

biomass concentration, determined by dividing the weight of the dry pellet with the initial volume 

of the cell suspension added to the tube (2 mL) was then plotted over the corresponding OD value 

measured for every time interval.  

 

2.12.2 Measurement of optical density (OD) 

The OD of small aliquot of culture broth withdrawn at a certain time interval was determined at a 

wavelength of 600 nm using an Ultrospec 500 Pro spectrophotometer (Amersham Bioprocess, 

Amersham, UK). Whenever necessary, the aliquot was diluted with RO water such that the 

measured OD value was in the range 0.2 – 0.8. The OD was then translated to a dry cell weight 

based on the standard curve established as shown in Figure A1.1 (complex medium) and Figure 

A1.2 (vinasse medium).  

 

2.12.3 Protein assay 

Total protein concentration of the lysate, as obtained from Section 2.9, was determined based on 

the Bradford assay (Bradford, 1976). Bradford reagent was used along with bovine serum albumin 

(BSA) as the standard protein. Fifty microliters of diluted clarified lysate was incubated with 1 mL 

of Bradford reagent and the mixture was incubated at room temperature for 5 minutes. The 

absorbance of the reaction mixture was then measured at 595 nm using an Ultrospec 500 Pro 

spectrophotometer and translated into protein concentration based on the calibration curve 

established as shown in Figure A1.3. 

 

2.12.4 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-PAGE analysis was performed on a Mini -155 Protean II system (Bio-Rad Laboratories Inc., 

Hemel Hempstead, UK). Precast gel (10 cm x 12 wells) of SDS 10% (w/v) was run in Tris-glycine 

buffer system. Clarified lysate was mixed with Lamelli 4x concentrated protein sample buffer 

(Sigma-Aldrich, UK) and heated to 99 oC in a polymerase chain reaction (PCR) machine (Techne 

LTD, Cambridge, UK) for 16 min. Following that, 15-20 μg of the total protein of the clarified lysate 

suspension was loaded in each lane. The first lane was loaded with 3 μL of EZ-Run Prestained 

Rec Protein Ladder (Thermo Fisher Scientific Inc, UK) as the protein molecular weight marker. 

The gel was run at a power of 175 V for about 40 minutes. The gel was stained with appropriate 

amount of Coomassie Blue that consists of 0.1% (w/v) Coomassie Blue R-250, 40% (v/v) 

methanol and 10 % (v/v) acetic acid for 1-2 hour on a rocking table (Genetic Research 
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Instrumentation Ltd., Essex, UK). Next, the gel was de-stained overnight with de-staining buffer 

(10% (v/v) acetic acid, 30% (v/v) methanol and 60% (v/v) RO water). The gel was finally visualized 

and analysed on a Gel–Doc–it bioimaging system using Labworks 4.5 software (Bioimaging 

systems, Cambridge, UK). 

 

2.12.5 CV2025 ω-TAm assay 

The activity of CV2025 ω-TAm was determined based on the reaction between 

methylbenzylamine (MBA) and pyruvate (BDH Chemicals), yielding acetophenone (AP) and L-

alanine (Casablancas et al., 2013). Twenty microliter of lysate sample was mixed with 180 μL 

substrate buffer (50 mM phosphate buffer pH 7.4 containing substrates 11 mM MBA, 11 mM 

pyruvate, 1.25% (v/v) dimethyl sulfoxide (DMSO) and 0.1 mM PLP) in a 96-well, flat-bottomed 

microtiter plate (Radleys Discovery Technologies, Essex, UK). Throughout the reaction, the 

increasing absorbance of the reaction mixture was measured at 280 nm and at 30 oC, every 20 s 

for 2 min. The enzymatic activity was calculated according to Equation 2.4 where ΔAbs/min was 

determined from the slope of the linear equation for each activity measurement, d is the path of 

light and the extinction coefficient (cm), ε of AP 0.8477 mM-1 cm-1 was calculated from a plot of 

absorbance at 280 nm in the function of its concentration (Figure A1.4).  

 

 

 
U

ml
=

∆Abs

min
×

Vtotal

Vsample
×

1

εAP
×

1

d
                                                 (Equation 2.4) 

 

One unit (U) of activity is defined as the amount of enzyme that catalyses production of 1 μ mole 

of AP per minute. Figure A4.1 shows typical time courses of absorbance for samples with different 

activity levels. 

 

2.12.6 Determination of glycerol and acetate 

Glycerol and acetate were quantified using a Dionex high performance liquid chromatography 

(HPLC) system consisting of an ASI-100 automated sample injector, P680 HPLC pump and STH 

585 column oven. The system was fitted with an Aminex HPX-87H ion exclusion column (300 mm 

x 7.8 mm, Bio-Rad Labs, Rishmond, CA, USA), injection volume of 10 μL, column oven 

temperature of 60 oC with 5 mM H2SO4 as mobile phase at a flow rate of 0.6 mL min-1 for 30 min, 

monitored with a refractive index detector (RefractoMax 520 ERC) controlled by Chromeleon 

client 7.20 software. Retention times for glycerol and acetate were 13.3 and 14.8 min respectively. 

Calibration curves of peak area against solute concentration are shown in Figures A1.5 and A1.6. 

A chromatogram sample is shown in Figure A2.1. 

  

2.12.7 Determination of sugars and sugar alcohols 

Sugars and sugar alcohols were quantified using a Dionex ion chromatography system ICS-

5000+ (Thermo Fisher Scientific Inc, Sunnyvale, USA) with AminoPac SA10 column (4×250 mm). 

The separation was performed at 30 °C for 30 min using gradient elution with 0.5-15 mM KOH as 
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the mobile phase at a flow rate of 0.25 mL min-1 and controlled by Chromeleon client 7.20 

software. Retention times for D-xylitol, D-dulcitol, D-mannitol, D-maltitol, D-galactose and D-

fructose were 2.3, 2.6, 2.8, 6.2, 12.1 and 18.7 min respectively. Calibration curves of peak height 

against solute concentration are shown in Figures A1.7 – A1.13. A chromatogram sample is 

shown in Figure A2.2. 

 

2.12.8 Determination of polyphenols 

Polyphenols was determined according to the Folin-Ciocalteu (FC) method (Cicco et al., 2009). 

Gallic acid (GA) was used as a standard. One hundred microlitre of the test sample was mixed 

with 100 µL of FC reagent and equilibrated for 2 minutes prior to addition of 800 µL of 5% (v/v) 

sodium carbonate solution. The reaction mixture was placed in a water bath at 40 oC for 20 

minutes. Following that, the absorbance was read at 740 nm. 1 OD is equivalent to 0.0722 g GA. 

A typical calibration curve is shown in Figure A1.14.  

 

2.12.9 Determination of viscosity 

The rheology and viscosity of the culture medium were determined using a standard parallel 

plates method (Newton et al., 2017). The measurement of viscosity of the media was carried out 

using a Kinexus Rheometer Lab+ (Malvern Instrument, Malvern, UK). The geometry used was 

PU50 (plate upper with the diameter of 50 mm) and the gap between the base and the geometry 

was maintained at 0.3 mm during the measurement. The measurement was carried out at 37 oC. 

The rheometer was linked to the computer with the software interface, rSpace (Malvern 

Instrument, Malvern, UK) that facilitates the test set-up and exhibits the real-time profiles and data 

during the measurement. The shear rate range was between 100 and 1000 s-1 with 10 

measurements made at each shear rate.  An example of viscosity-shear rate curve is shown in 

Figure A3.1. 

 

2.12.10 Growth inhibition assessment  

The inhibitory effect of vinasse on cell growth was determined according to the cup-plate agar 

diffusion method (Pramanik et al., 2012). About 100 μL of E. coli BL21 (DE3) culture was spread 

evenly on the LB-agar plate, which preparation as described in Section 2.3.3. A filter paper disc 

that had been soaked in 100% (v/v) vinasse was then placed in the middle of the plate. The plate 

was then incubated for 24 h at 37 oC. Following that, the formation of inhibition zones was 

observed.  

 

2.12.11 Growth assessment 

LB agar plates supplemented with 0.15 g L-1 kanamycin (Section 2.3.3) were spread evenly with 

48 h sample of E. coli BL21 (DE3) culture that was initially grown using either pasteurised or 

filtered dilute vinasse. Control plates were prepared by substituting the sample culture with either 

blank pasteurised or filtered dilute vinasse. The plates were then incubated for 24 - 72 h at 37 oC, 

following which, the growth was then assessed.  
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2.13 Statistical analysis 

The statistical analysis of the data was carried out by using Student’s t-test. The results were 

considered statistically significant if the p-value <0.05.  
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CHAPTER 3 
 

ESTABLISHMENT OF A SMALL SCALE FERMENTATION SYSTEM FOR 

PARALLEL STUDIES OF BIOCATALYST PRODUCTION 
 

 

3.1 Introduction 

 

To facilitate the early development of biocatalyst production processes, HTP cultivation systems 

are increasingly seen as beneficial (Section 1.4). The advantages introduced by the HTP platform 

has led to rapid data acquisition and in general, shortens the process development timelines. The 

lack of pH and DO control in conventional MWPs has limited their application in true optimisation 

studies to date; these are ideally conducted under controlled conditions using environmental 

control strategies representative of those in larger scale bioreactors. The latest microbioreactor 

(MBR) systems (Section 1.4.2) offer control of key process parameters at the individual well level 

overcoming limitations of conventional MWPs.  

 

As discussed in Section 1.4.2, a number of studies have reported the utility of various commercial 

MBRs and their applications for mammalian cell culture process development. Amanullah et al. 

(2010) demonstrated the feasibility of a SimCellTM MBR for a fed-batch cultivation of CHO cells. 

In addition, they also addressed the scalability of the process to the bench and pilot scale 

bioreactor. The use of an AmbrTM system for mammalian cell culture as well as its comparability 

to a bench scale reactor has been reported by Hsu et al. (2012). Meanwhile, there are several 

publications on the characterisation of a 24-microwell bioreactor, the Micro-24 (Figure 2.2) and 

also its application as a scale-down tool for mammalian cell culture (Chen et al., 2009; Betts et 

al., 2014; Ramirez-Vargas et al., 2014). Most recently, Sani (2016) has demonstrated the proof-

of-concept of a new HTP microbioreactor system, the micro-Matrix, for CHO cell culture and its 

reproducibility in a lab scale reactor based on a matched mixing time.  

 

The majority of studies on MBRs to date have focused on mammalian cell cultures. Microbial 

cultures, in contrast, are more challenging due to their faster growth rates, the higher cell 

concentrations achieved and greater oxygen requirements. A particularly important area for 

microbial cultures is in industrial enzyme production. In this chapter, the applicability of a 

controlled MBR for microbial culture will be investigated. A particular focus will be on the 

production of CV2025 ω-TAm (Section 1.2) by E. coli BL21 (DE3) given the interest in this enzyme 

for industrial biocatalysis. Previous works have reported the role of CV2025 ω-TAm in 

bioconversion processes (Kaulmann, et al., 2007; Rios-Solis et al., 2011; Halim et al., 2013) 

however, optimisation of biocatalyst production has not been the focus of these studies. A good 

understanding of the strategies for optimising CV2025 ω-TAm production is a prerequisite for 

efficient and economically viable bioconversion processes.  
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In maximizing the expression of a recombinant protein such as CV2025 ω-TAm, establishing a 

high cell density culture followed by a suitable induction strategy are important considerations for 

maximising biocatalyst activity. The use of a controlled MBR for optimising CV2025 ω-TAm 

production has not previously been reported. This work will therefore provide new insights into 

the exploitation of controlled MBR technologies for parallel investigation of biocatalyst production.  

 

 

3.2 Aim and objectives 

 

The aim of this chapter is to establish methodologies for investigation of microbial culture and 

industrial enzyme production using MBR technologies. To illustrate this, a controlled MBR from 

Pall Corporation (Micro-24 system) will be evaluated for the production of CV2025 ω-TAm by E. 

coli BL21 (DE3). The results will provide a benchmark for further development of CV2025 ω-TAm 

production using renewable feedstocks (as described in Chapter 4). The experimental approach 

will first involve screening of suitable fermentation media for E. coli BL21 (DE3) in batch shake 

flasks followed by the development of comparable culture methods in the controlled MBR. 

Subsequently, the work will focus on the use of the MBR for optimisation of CV2025 ω-TAm 

production. The key objectives of the chapter are outlined below:  

 

1. To establish basic culture conditions for E. coli BL21 (DE3) fermentation expressing 

CV2025 ω-TAm in batch shake flask cultures.  

2. To investigate the performance of the controlled MBR for E. coli BL21 (DE3) culture in 

terms of monitoring and control of key process parameters and hence the establishment 

of operating strategies for reproducible culture.  

3. To compare E. coli BL21 (DE3) culture performance between shake flask and controlled 

MBR cultures for CV2025 ω-TAm production. 

4. To demonstrate the utility of the controlled MBR for optimisation of CV2025 ω-TAm 

production by investigating the influence of induction time, IPTG concentration and DO 

level on cell growth performance and biocatalyst titre.  

 

 

3.3 Results  

 

3.3.1 Preliminary shake flask studies (medium screening) 

 

Initial studies focused on medium screening for E. coli BL21 (DE3) growth and CV2025 ω-TAm 

production. Cultivations were performed in a conventional, uncontrolled shake flask system as 

described in Section 2.8.1. The growth kinetics and specific activity data obtained will serve as a 

benchmark for later comparison with that obtained in the controlled MBR (Section 3.3.2.3) and 

those using vinasse medium (Chapter 4). Previously, CV2025 ω-TAm has been produced in 

cultivations employing LB-glycerol medium (Rios-Solis et al., 2011; Halim et al., 2013). One of 

the possible strategies to maximise the production of recombinant protein is by developing a 
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growth medium that can sustain both high cell growth rate and high protein titre (or in the case of 

enzymes, specific activity). In many laboratory scale studies, complex media like LB and Terrific 

Broth (TB) are typically adopted for growing microorganisms (Kram and Finkel, 2015) since they 

can generally supply adequate amounts of key nutrients. However, to achieve higher cell density 

and therefore a greater target protein expression level, a well-formulated medium with the optimal 

concentration of necessary components must be utilised.  

 

Three different media formulations namely LB-glycerol, defined and complex media, as specified 

in Section 2.3.1, were evaluated as media for E. coli BL21 (DE3) growth and CV2025 ω-TAm 

production. The former medium was employed in order to reproduce the results by Rios-Solis 

(2012) and Halim (2012). In all formulations, glycerol was chosen as the main carbon source as 

this avoids excessive accumulation of acetate, which normally occurs in glucose-based cultures 

(Oh and Liao, 2000). Furthermore, as a by-product of biodiesel and oleochemical production, 

glycerol is abundantly available at a low price (Anitha et al., 2016), making it an attractive carbon 

source in a biorefinery context.  

 

Figure 3.1 shows the comparison of cell growth kinetics employing the three different media 

formulations. It was observed that the lag phase in the fermentation using a defined medium was 

slightly longer (4 h) in contrast to that in the complex and LB-glycerol media. This could be 

attributed to the presence of yeast extract in the latter two formulations. Yeast extract possesses 

growth factors and vitamins (Zhang et al., 2003; Krause et al., 2010) that are believed to 

accelerate the E. coli BL21 (DE3) growth rate. By enriching the medium with trace minerals and 

phosphate, as in the defined and complex media, the maximum biomass concentration was 

enhanced by 1.6 to 1.9-fold compared to LB-glycerol. Previous works by Rios-Solis (2012) and 

Halim (2012) showed that the maximum biomass concentration attained in cultivations using LB-

glycerol were approximately 1.7 and 1.4 gdcw L-1, respectively, which are roughly comparable with 

the result from this study (2.0 gdcw L-1). The superiority of the enriched media over LB-glycerol is 

in agreement with other works that emphasised the significance of the additional medium 

components such as trace elements (García-Arrazola et al., 2005; Siurkus et al., 2010; Marisch 

et al., 2013) and phopshate components (Kleman et al., 1996; Paliy and Gunasekera, 2007; Soini 

et al., 2008; Zhang et al., 2013; Kram and Finkel, 2015) in achieving high cell densities.  
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Figure 3.1. Batch fermentation kinetics of E. coli BL21 (DE3) cultured on various growth media 
in conventional shake flasks. (●) LB-glycerol, (▲) defined medium and (■) complex medium. Error 
bars denote one standard deviation from the mean (n=3). All fermentations were induced with 0.1 
mM IPTG at 10 h for each cell growth profile. Fermentations were performed as described in 
Section 2.8.1. Biomass concentration was determined as described in Section 2.12.2.  

 

 

The corresponding CV2025 ω-TAm activity for cell cultured in each of the different media was 

also quantified. The assay used for CV2025 ω-TAm activity determination (Section 2.12.5), was 

chosen as it is rapid, reliable and quantitative. Due to different enzyme quantification methods 

employed between present and previous works (Halim, 2012; Rios-Solis, 2012), a fair comparison 

of the enzyme activity may be challenging. Thus, in this work, the CV2025 ω-TAm activity 

obtained from the cultures using LB-glycerol medium will be referred to as a benchmark since the 

experiment was actually reproduced using similar medium as employed by Halim (2012) and 

Rios-Solis (2012). This is further supported by the fact that the maximum biomass attained 

between present and their works was roughly comparable, as discussed earlier.  

 

Figure 3.2 shows the maximum CV2025 ω-TAm volumetric and specific activity measured in E. 

coli BL21 (DE3) fermentation using the three different media. Significant improvements, 4.6 to 

8.7-fold, in volumetric activity and 1.7 to 1.9-fold, in specific activity were achieved with defined 

and complex media, respectively, compared to the LB-glycerol medium. Comparing the 

performance of the defined and complex media in terms of CV2025 ω-TAm volumetric activity, 

there was a significant enhancement (p-value = 0.02) shown by the use of the latter medium.  

 

The enhancement shown in the fermentation using a complex medium may be associated with 

the presence of yeast extract. Yeast extract does not only promote rapid growth but also facilitates 

the expression of recombinant protein due to the availability of transcription enhancers like cAMP 

(Donovan et al., 1996). This is further supported by Liu and co-workers (1999) who reported the 
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enhancement of recombinant protein expression by several E. coli BL21 (DE3) strains by the 

addition of yeast extract in concentrations between 0.5 - 1.5% (w/v) during induction. In summary, 

an enriched media formulation appears essential for the enhancement of both cell growth and 

CV2025 ω-TAm specific activity. Evaluation of the fermentation performance between defined 

and complex media will be further verified in the controlled MBR as discussed in Section 3.3.2.4.  

 

 

Figure 3.2. Maximum CV2025 ω-TAm (■) volumetric and (□) specific activity obtained in shake 

flask fermentations using different media (Figure 3.1). Error bars denote one standard deviation 
from the mean (n=3). The CV2025 ω-TAm activity was determined as described in Section 2.12.5.  

 

 

3.3.2 Establishment of controlled MBR cultivation conditions 

 

Following the establishment of the benchmark cultures as attained in Section 3.3.1, subsequent 

studies were focused on the development of cultivation conditions in the controlled MBR. Firstly, 

measurement and control of process parameters: temperature, pH and DO were assessed across 

all wells in the MBR. This will ensure the reliability of the MBR in measuring and controlling 

process parameters with respect to their set points as well as their consistency from well to well. 

Secondly, reproducibility of parallel MBR cultivations were examined with regards to cell growth, 

substrate consumption and biocatalyst production. The rationale behind these studies is that 

comparability of the cultivation performance across the MBR is essential for studies involving high 

throughput reactors, which reinforces the purpose of conducting parallel experiments. 

Subsequently, comparison of shake flask and controlled MBR culture performance was carried 

out whereby the output will reflect the importance of the latter platform in realizing high cell density 

cultures. Finally, evaluation of the fermentation media as screened in Section 3.3.1 was 
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performed in the controlled MBR where the findings will represent the benchmark of the cultivation 

performance using a synthetic medium, replacing those standards as obtained in shake flasks.      

 

 

3.3.2.1 Measurement and control of process parameters  

 

The advantage of MBR technologies over conventional shake flasks is that they enable control of 

key process parameters such as temperature, pH and DO. Initial batch E. coli BL21 (DE3) 

cultivations in the MBR focused on the control and reproducibility of these parameters across a 

single 24-well plate. Figure 3.3 illustrates the average values of temperature, pH and DO from 12 

random wells during a typical fermentation process using a complex medium with standardised 

culture conditions as described in Section 2.8.2. The temperature profile shows a good control 

around the set point with a deviation of less than 0.5 oC (Figure 3.3 (A)). These results were 

obtained with a set point of 37 oC in all 24 wells. According to the standard operating procedure 

for the Micro-24, the variation of the temperature between adjacent wells must not exceed 2 oC, 

thus this needs to be considered in the design of any optimisation study involving variation of 

temperature.  

 

One-sided pH control in Micro-24 cultures was achieved by sparging either 100% CO2 or 15% 

NH3 (Section 2.8.2). In studies involving the complex medium, as the cultures tend to acidify due 

to the accumulation of acetate, 15% (v/v) NH3 was sparged into the wells in order to increase the 

pH back to the pH 7 set point. In cultures using sugar beet vinasse medium (Chapter 4), where 

the pH increases throughout the course of the fermentation, 100% (v/v) CO2 was sparged to 

maintain the neutral pH.  

 

As shown in Figure 3.3 (B), pH is controlled close to the set point (pH 7) with fluctuations generally 

within ± 0.2 in the complex medium. Comparative on-line and off-line pH measurements generally 

showed 95 – 98% agreement, indicating the comparability of pH measurement between the 

Micro-24 and a typical pH meter. In comparison to the pH fluctuations recorded in shake flasks 

the pH variation in the Micro-24 is considerably smaller.     

 

The mean value of the DO from 12 random wells is presented in Figure 3.3 (C). The DO in each 

well was controlled at 30% as described in Section 2.8.2. The deviation of DO from the set point 

was most apparent during the first 10 h of cultivation as this mainly represents the log phase 

where the oxygen demand is the highest. From 10 h onwards there is a good control of pH around 

the set point in all wells.  
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Figure 3.3. Online measurements of (A) temperature, (B) pH and (C) DO in controlled, parallel 
Micro-24 E. coli BL21 (DE3) batch fermentations. Horizontal dotted lines represent the set point 
for each process parameter. Figure shows mean values from 12 random wells across the 
cassette. Fermentations were performed using a complex medium as described in Section 2.8.2. 
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Overall, the results in Figure 3.3 show a good control of key fermentation parameters around their 

set point. In this work, the DO was controlled by blending oxygen and nitrogen, which was the 

same approach reported by Tang and co-workers (2006). The sparging of nitrogen was used to 

counterbalance the ‘noise’ imparted by oxygen sparging especially during the exponential phase 

of cell growth. This approach seems to be advantageous in terms of DO stability and the fast 

response towards the maintenance of DO around the set point, contrary to the one-sided control 

by oxygen that tends to give greater noise. However, the implementation of a two-gas DO control 

system will restrict pH control on the Micro-24 to be only one-sided due to the utilisation of the 

two out of the three available gas inlets to the reactor (Figure 2.4). Among other possible factors 

that might also contribute to the noise of the DO control are the PID values and the aeration rate. 

Although in certain circumstances tuning of PID values will be necessary, the default values 

provided by the manufacturer appear adequate in this case. The fine tuning of the aeration rate 

may also further reduce any DO fluctuations.  

 

Overall, the results presented here show that the controlled MBR enabled direct measurement of 

on-line processes parameters and their control. The corresponding pH and DO variations were 

therefore less than in the shake flask cultures confirming the suitability of the Micro-24 bioreactor 

system.   

 

3.3.2.2 Reproducibility of parallel MBR cultivations  

 

Another essential aspect in considering the utility of any MBR platform is the well-to-well 

variability. Fermentation profiles and enzyme activity from cultures performed in 12 random wells 

across the controlled MBR plate were assessed. In all fermentations, similar culture conditions 

(pre-cultures, medium and induction conditions) were used as described in Section 2.8.2. The 

culture conditions used in these specific experiments were not optimised and hence can be 

improved further. 

 

Figures 3.4 and 3.5 show the variation in biomass concentration and CV2025 ω-TAm specific 

activity, respectively between the wells. It is clear that there was a good reproducibility of the 

biomass, glycerol and acetate profiles. For biomass, the average specific growth rate recorded 

was 0.35 ± 0.01 h-1 while the average maximum biomass achieved was 12.0 ± 0.8 gdcw L-1. The 

trend of the glycerol consumption in all wells was generally similar; a complete utilisation was 

mostly seen after 10 h of culture. The average YX/S value obtained was 0.40 ± 0.03 gdcw
-1 g-1. 

Meanwhile, the acetate profiles across the 12 wells were comparable showing a slight 

accumulation during the first 10 h followed by a decrease after 24 h. Quantification of the CV2025 

ω-TAm specific activity also showed a good reproducibility. The mean value of CV2025 ω-TAm 

specific activity recorded was 256.3 ± 21.3 U gdcw L-1. In general, these results suggest that the 

environmental control that can be achieved in the Micro-24 provides consistent well-to-well 

performance.  
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Figure 3.4. Fermentation kinetics of 12 parallel, batch E. coli BL21 (DE3) fermentations in the 
controlled MBR: (●) biomass, (□) glycerol, (▲) acetate. Fermentations were performed using a 
complex medium as described in Section 2.8.2. Analytical procedures were carried out as 
specified in Section 2.12.2 (biomass concentration) and Section 2.12.6 (glycerol and acetate).  

 

 

Figure 3.5. Comparison of CV2025 ω-TAm specific activity achieved at 24 h during batch E. coli 
BL21 (DE3) fermentations in 12 random wells across the controlled MBR (Figure 3.4). The 
CV2025 ω-TAm assay was performed as described in Section 2.12.5.   
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3.3.2.3 Comparison of shake flask and controlled MBR culture performance 

 

Shake flasks have been widely used for fermentation screening owing to their simplicity and 

relatively low volume requirement (Buchs, 2001; Lye et al., 2003). The absence of monitoring and 

control however, particularly for pH and DO, limits their application for more focused optimisation 

studies. Here, a direct comparison of the performance of shake flasks and the controlled MBR for 

E. coli BL21 (DE3) fermentation, under similar culture conditions, is demonstrated. 

 

Figure 3.6 shows a comparison of fermentation profiles obtained in shake flasks and the 

controlled MBR using a complex medium. A marked enhancement in cell growth is evident in the 

controlled MBR with a notable increase of 3.7-fold in the biomass concentration after 24 h. MBR 

cultures demonstrated a close relationship between growth and glycerol consumption where rapid 

utilisation occurred during the exponential growth phase. The mean value of YX/S in the controlled 

MBR cultures was 0.38 ± 0.02 g dcw per g glycerol, while that for the shake flask cultures was 

only 0.20 ± 0.01 g dcw per g glycerol.  

 

The significant increase in final cell density in the controlled MBR is attributed to the DO and pH 

control. Since metabolism of facultative aerobes such as E. coli BL21 (DE3) is highly responsive 

to oxygen; its sufficient supply is paramount in order to ensure optimal cell growth rate and target 

protein production are achieved while minimising the synthesis of undesirable co-products 

(Marques et al., 2010). As the oxygen transfer in shake flasks only depends on surface aeration 

aided by orbital shaking (Gupta and Rao, 2003), oxygen deficiency may become one of the 

bottlenecks for aerobic cultures in this cultivation platform. Although mixing may be enhanced by 

the use of baffled flasks and low working volume (Lotter and Buchs, 2004), the OTR is well below 

that which can be achieved in the oxygen sparged MBR. In baffled shake flasks, the kLa range is 

reported to be between 40-58 h-1 (Gupta and Rao, 2003) while in Micro-24 system, the kLa ranged 

from 8 to 90 h-1, depending on several determining factors such as cassette, closure, shaking 

frequency and aeration rate (Ramirez-Vargas et al., 2014). Quantification of oxygen mass transfer 

coefficients is described later in Chapter 5.     
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Figure 3.6. Comparison of batch E. coli BL21 (DE3) fermentation kinetics using a complex 
medium in (A) shake flask and (B) controlled MBR. (▲) biomass, (●) glycerol and (■) acetate. 
Error bars denote one standard deviation from the mean (n=3). Fermentations were performed 
as described in Section 2.8.1 (shake flask) and 2.8.2 (controlled MBR). Analytical procedures 
were carried out as specified in Section 2.12.2 (biomass concentration) and Section 2.12.6 
(glycerol and acetate).  
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Accumulation of the metabolic side product acetate reaches 2.6 g L-1 in shake flask cultures 

resulting in a drop in pH from 7 to about 5.6. This has further limited the cell growth and 

consequently CV2025 ω-TAm production (Figure 3.6 (A)). Although there is contradictory 

information in the literature about acetate production in glycerol-based fermentation, the results 

obtained in this study are consistent with several reports (Korz et al., 1995; Macaloney et al., 

1997; García-Arrazola et al., 2005). In contrast, in the controlled MBR the acetate level remained 

below 1.0 g L-1 and the on-line data showed that the pH remained at pH 7 ± 0.2 throughout the 

culture.  

 

The corresponding CV2025 ω-TAm specific activity in shake flask and controlled MBR cultures 

was also evaluated. Both cultures were induced with 0.1 mM IPTG at 10 h and CV2025 ω-TAm 

activity was determined 14 h later.  The CV2025 ω-TAm volumetric and specific activity attained 

in the controlled MBR were 5.3 ± 0.6 U ml-1 and 261.7 ± 10.6 U gdcw
-1 respectively, which were 

2.1 and 2.2-fold higher than that attained in the shake flask cultures. The considerable 

improvements in cell growth and enzyme shown in the controlled MBR compared to the shake 

flasks confirm the benefits of introducing monitoring and control of culture parameters. This further 

supports the potential of the controlled MBR particularly Micro-24 as shown in this work, as a HTP 

platform for optimisation of biocatalyst production.  

 

 

3.3.2.4 Evaluation of fermentation media in the controlled MBR 

 

In continuation of the preliminary study using shake flask cultures described in Section 3.3.1, E. 

coli BL21 (DE3) culture on defined or complex media was further investigated in the controlled 

MBR. The pre-culture conditions (age and concentration) as well as induction time (10 h) (Section 

2.7) and inducer concentration (0.1 mM IPTG) were standardised for both types of media.  

 

Figure 3.7 compares the kinetics of E. coli BL21 (DE3) cultures in the controlled MBR using both 

types of media. It is clearly shown that cell growth was more rapid using a complex medium with 

the maximum biomass being 1.4 times greater than in the defined medium. The cell growth 

observed in both fermentations was found to correspond directly with their glycerol consumption 

profiles. Whilst a complete consumption of glycerol was seen after 24 h with the complex medium, 

in the defined medium, only 62% of glycerol was consumed. The depletion of glycerol in the 

culture employing a complex medium has resulted in the consumption of acetate, which could be 

seen with its reducing concentration throughout the course of the fermentation period. In contrast, 

in the fermentation using a defined medium, the acetate was found to accumulate to 1.2 g L-1 

after 24 h. Similar to the results discussed in Section 3.3.1, the presence of yeast extract in the 

complex medium is believed to be responsible for the improved growth compared to the defined 

medium. 
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Figure 3.7. Comparison of batch E. coli BL21 (DE3) fermentation kinetics in the controlled MBR 
fermentations using defined and complex media: (∆) biomass (defined medium), (▲) biomass 
(complex medium), (○) glycerol (defined medium), (●) glycerol (complex medium), (□) acetate 
(defined medium), (■) acetate (complex medium). Error bars denote one standard deviation from 
the mean (n=5). Fermentations were performed as described in Section 2.8.2. Analytical 
procedures were carried out as described in Section 2.12.2 (biomass concentration) and Section 
2.12.6 (glycerol and acetate).  

 
 

 

The corresponding CV2025 ω-TAm production from both fermentations was analysed and the 

biocatalyst volumetric and specific activity at 24 h are presented in Figure 3.8. The results showed 

that there was a significant difference (p-value = 0.01) with regards to the CV2025 ω-TAm 

volumetric activity obtained from fermentations using defined and complex media, with latter 

being the superior. Furthermore, the CV2025 ω-TAm specific activity of 252.7 U gdcw
-1 was 

obtained in the fermentation that employed a complex medium where this represented an 

enhancement of 1.2-fold over that in the cultures grown using a defined medium. These different 

media results obtained in the controlled MBR confirmed the advantage of using a complex 

medium due to its rapid and higher cell growth performance and CV2025 ω-TAm production.  
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Figure 3.8. Maximum CV2025 ω-TAm (■) volumetric and (□) specific activity obtained in the 

controlled MBR fermentations using a defined and complex medium (Figure 3.7). Error bars 
denote one standard deviation from the mean (n=5). The CV2025 ω-TAm assay was performed 
as described in Section 2.12.5.   

 
 
 
3.3.3 Controlled MBR fermentation optimisation studies 

 

Following the establishment of basic culture conditions in the controlled MBR, subsequent work 

aimed to demonstrate the utility of the platform for fermentation optimisation studies. The effects 

of several parameters such as induction time, IPTG concentration and DO level on the biocatalyst 

production were evaluated. The rationale of these studies is that the influence of the induction 

time and inducer concentration on recombinant protein expression is crucial (Donovan et al., 

1996). Meanwhile, as the E. coli fermentation is an aerobic fermentation, DO level may influence 

the cultivation performance and thus should also be investigated. An optimal level of DO may 

facilitate not only the attainment of high cell density cultures but also will enhance the cost 

efficiency of the fermentation process.   

 

3.3.3.1 Influence of induction time and IPTG concentration 

 

As the E. coli BL21 (DE3) strain used in this work consists of an inducible T7 promoter, the 

addition of IPTG, which is an allolactose analogue, binds the repressor thus allowing transcription 

of the lac operon and hence protein expression. To examine the influence of induction time, 

induction times of 6, 8 and 10 h that represent early, middle and late exponential phase, 

respectively were evaluated. Two levels of IPTG concentrations, namely 0.1 and 1.0 mM, were 

compared. The concentration of 0.1 mM normally serves as the minimum concentration applied 
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in most studies involving expression of the recombinant protein in E. coli BL21 (DE3) including 

CV2025 ω-TAm (Rios-Solis, 2012). In contrast, 1.0 mM is usually referred to as the maximum 

level of IPTG used for induction as applied by Kaulmann and co-workers (2007) in their early 

works on the same biocatalyst. 

 

Figures 3.9 and 3.10 depict cell growth, glycerol consumption and acetate concentration profiles 

of fermentations performed with different induction times. It was observed that there was a slight 

decrease of maximum biomass (7%) and specific growth rate (14%) in fermentations that were 

induced at 6 h when the IPTG concentration was increased from 0.1 to 1.0 mM (Table 3.1). This 

could be attributed to the high IPTG concentration that imparted a large metabolic burden on the 

cell soon after growth had actively started. The same level of IPTG did not really affect the 

fermentations induced during the mid and late exponential phase since at those points, the growth 

has already slowed down.  

 

For fermentations that were induced during the mid and late exponential phase, the glycerol 

content was completely depleted after 10 h, which also denoted the point of maximum biomass 

and at which the growth started to cease. In all fermentations, acetate was metabolised once 

glycerol became deficient. The cell growth kinetics parameters were quite comparable despite 

the different IPTG concentrations. Generally, there was no notable difference in terms of 

maximum biomass, specific growth rate (µ) and biomass yield on substrate (YX/S) (Table 3.1).  

 

 

 

 

 

 

 

 

 

 

 

 



95 
 

  

  

  

Figure 3.9. Comparison of a batch E. coli BL21 (DE3) fermentation kinetics in a controlled MBR 
induced with 0.1 mM IPTG at (A) 6 h, (B) 8 h and (C) 10 h: (▲) biomass, (●) glycerol and (■) 
acetate. Dotted vertical lines indicate the point of induction. Error bars denote one standard 
deviation from the mean (n=3). Fermentations were performed as described in Section 2.8.2. 
Analytical procedures were carried out as specified in Section 2.12.2 (biomass concentration) and 
Section 2.12.6 (glycerol and acetate). 
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Figure 3.10. Comparison of a batch E. coli BL21 (DE3) fermentation kinetics in a controlled MBR 
induced with 1.0 mM IPTG at (A) 6 h, (B) 8 h and (C) 10 h: (▲) biomass, (●) glycerol and (■) 
acetate. Dotted vertical lines indicate the point of induction. Error bars denote one standard 
deviation from the mean (n=3). Fermentations were performed as described in Section 2.8.2. 
Analytical procedures were carried out as specified in Section 2.12.2 (biomass concentration) and 
Section 2.12.6 (glycerol and acetate). 
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Table 3.1. Fermentation kinetics parameters for E. coli BL21 (DE3) grown on a complex medium 
under different induction conditions. Fermentations were performed as described in Section 2.8.2. 
Analytical procedures were carried out as specified in Section 2.12.2 (biomass concentration) and 
Section 2.12.6 (glycerol). 

 

 

 

Parameters 

IPTG concentration (mM) 

0.1 1.0 

Induction time (h) 

6 8 10 6 8 10 

Xmax (gdcw L-1) 12.2 ± 0.3 13.1 ± 0.7 11.4 ± 0.3 11.4 ± 0.4 12.8 ± 0.1 11.5 ± 0.1 

µ (h-1) 0.35 ±  

0.01 

0.37 ± 

0.01 

0.36 ± 

0.01 

0.30 ± 

0.01 

0.37 ± 

0.01 

0.35 ±  

0.00 

Yx/s (g g-1) 0.46 ±  

0.04 

0.46 ± 

0.04 

0.40 ± 

0.01 

0.40 ± 

0.02 

0.46 ± 

0.03 

0.42 ±  

0.01 

 

 

The corresponding profiles of CV2025 ω-TAm volumetric and specific activity achieved for 

different induction conditions are presented in Figures 3.11 and 3.12 respectively. Generally, it 

was observed that higher volumetric and specific enzymatic activity were achieved in 

fermentations that were induced at 0.1 mM IPTG compared to 1.0 mM IPTG. For instance, the 

difference of CV2025 ω-TAm specific activity at 24 h between fermentations induced with 0.1 mM 

IPTG and 1.0 mM IPTG ranged from 22 to 43%. High levels of IPTG, attempting to completely 

induce the lac operon, did not necessarily lead to an increase in the target protein expression. An 

excessive amount of IPTG could also result in a disproportionate metabolic burden and toxicity 

to the cells (Olaofe et al., 2010; Marini et al., 2014).  

 

In terms of the effect of induction time, the highest CV2025 ω-TAm volumetric and specific activity 

were obtained when the culture was induced during the early exponential phase (6 h). As shown 

in Figure 3.11, there was a steady increase in CV2025 ω-TAm activities throughout the post 

induction period. Sufficient time for the protein expression during the exponential phase is 

beneficial in balancing the protein synthesis flux and therefore reducing the amount of inclusion 

bodies formed (Yong et al., 2007). This could be the case for the induction at the early exponential 

phase as the longer duration supported a relatively slower rate of protein translation thus enabling 

the expression of the active proteins. In contrast, the time frame was reduced when the induction 

was performed during the mid and the late exponential phase. The CV2025 ω-TAm specific 

activity of cultures induced with 0.1 mM IPTG at the late exponential phase was 40% lower than 

the corresponding fermentation with an early induction, which may be probably associated with 

the decreased growth rate and substrate deficiency.  
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Figure 3.11. (A) Volumetric activity and (B) specific activity of CV2025 ω-TAm expressed from 
fermentations in a controlled MBR with (■) early, (   ) mid and (□) late exponential phase induction 
induced at 0.1 mM IPTG. Error bars denote one standard deviation from the mean (n=3). The 
CV2025 ω-TAm assay was performed as described in Section 2.12.5.   
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Figure 3.12. (A) Volumetric activity and (B) specific activity of CV2025 ω-TAm expressed from 
fermentations in a controlled MBR with (■) early, (   ) mid and (□) late exponential phase induction 
induced at 1.0 mM IPTG. Error bars denote one standard deviation from the mean (n=3). The 
CV2025 ω-TAm assay was performed as described in Section 2.12.5.   
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Induction of protein expression is generally ideal in the middle of the exponential phase of a cell 

growth where the cells still have high viability and nutrients are still abundant. The stationary 

phase is rarely deemed suitable for induction as the rate of the protein expression is largely 

dependent on the growth rate (Donovan et al., 1996). The marked difference of the biocatalyst 

activity at different times of the exponential phase as seen in this work indicates the importance 

of selecting an appropriate induction time. Additionally, the biocatalyst activities obtained are even 

higher than reported in previous section (Figure 3.8) indicating the benefits of optimising the 

induction conditions.  

 

The relationship between the maximum CV2025 ω-TAm specific activities and IPTG to biomass 

ratio attained in every induction condition was also studied. As shown in Figure 3.13, there was 

an increase in the maximum CV2025 ω-TAm specific activities as the ratio ranges between 8.8 

and 23.7 µmol gdcw
-1 before it declined thereafter. The highest CV2025 ω-TAm specific activity, 

which was attained in the fermentation with an early induction, corresponded to IPTG to biomass 

ratio of 23.7 ± 0.5 µmol gdcw
-1. The results demonstrated the reliance of the induction upon 

biomass hence suggesting the importance of the specific IPTG concentration on the recombinant 

protein expression.  

 

Previously, Durany et al. (2004) reported the optimal values of the specific IPTG concentration 

for the production of fuculose-1-phosphate by E. coli to range between 33 and 70 µmol gdcw
-1. 

Meanwhile, a study by Olaofe et al. (2010) found out that a ratio of 40 µmol IPTG per gdcw enabled 

the attainment of a maximum amidase specific activity in E. coli cultivation. The variation of the 

specific IPTG concentration between different E. coli strains might be associated to the different 

levels of biomass achieved. In general, maintaining the optimal IPTG concentration to biomass 

ratio could be very useful particularly for production of recombinant protein at a higher scale or 

when using different fermentation strategies like a fed-batch operation where higher cell densities 

are attained.  
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Figure 3.13. Relationship between maximum CV2025 ω-TAm specific activity and IPTG to 
biomass ratio. Experiments were performed as described in Figures 3.9, 3.10 and 3.11 and 3.12. 
Error bars denote one standard deviation from the mean (n=3). 

 

 

3.3.3.2 Influence of DO level 

 

Upon the establishment of the induction strategies for CV2025 ω-TAm production, subsequent 

work examined the influence of DO levels. Two levels of DO were evaluated, namely 30 and 50%. 

The fermentation performance was evaluated with regards to the growth kinetics and CV2025 ω-

TAm activity. In all fermentations, similar pre-cultures were applied and the induction strategies 

were based on the optimal conditions (6 h and 0.1 mM IPTG) as specified in Section 3.3.3.1.  

 

Table 3.2 summarizes the kinetics parameters obtained from fermentations performed at both DO 

values. The results showed that both cultivations yielded a comparable growth rate, maximum 

biomass concentration as well as product titre, suggesting that there was no apparent benefit of 

increasing the DO beyond 30%. It was initially hypothesized that increasing the oxygen supply 

might promote the development of a higher cell density but apparently, maintaining the DO above 

the limiting level seems to be adequate. Additionally, an excessive oxygen supply such as DO of 

50% might not be favourable as it may result in toxicity to the cell. Junker (2004) revealed that 

the minimum DO value needed for an E. coli or yeast fermentation in reactor as 10% air saturation. 

From the results obtained here, it can be concluded that the DO of 30% was relevant for the E. 

coli BL21 (DE3) fermentation expressing CV2025 ω-TAm in Micro-24, where this process 

condition will be applied in the subsequent studies. 
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Table 3.2. Comparison of growth kinetics parameters and enzyme activity from fermentations 
performed at DO of 30 and 50%. Fermentations were performed as described in Section 2.8.2. 
Analytical procedures were carried out as specified in Section 2.12.2 (biomass concentration) and 
Section 2.12.6 (glycerol and acetate).  

 

Parameters Dissolved oxygen (%) 

30 50 

µ (h-1) 0.36 ± 0.01 0.36 ± 0.01 

Xmax (gdcw L-1) 12.4 ± 0.5 12.9 ± 0.4 

YX/S (gdcw g-1) 0.45 ± 0.03 0.42 ± 0.02 

CV2025 ω-TAm specific activity  

(U gdcw
-1) 

370.0 ± 11.4 377.4 ± 8.4 

CV2025 ω-TAm volumetric activity (U mL-1) 9.6 ± 0.3 9.8 ± 0.2 

 

 

 

3.4 Summary 

 

In this chapter, a HTP controlled MBR cultivation platform for microbial culture is demonstrated 

for the production of CV2025 ω-TAm by E. coli BL21 (DE3). Additionally, important strategies for 

enhancing the cell growth and production of CV2025 ω-TAm have been highlighted. Preliminary 

work on the evaluation of the fermentation medium for CV2025 ω-TAm production (Section 3.3.1) 

has showed that an enriched medium has significantly increased the maximum biomass 

concentration as well as the biocatalyst titre in comparison with the typically used LB-glycerol 

(Figures 3.1 and 3.2). Furthermore, the establishment of E. coli BL21 (DE3) cultivations 

expressing CV2025 ω-TAm in a controlled MBR has been demonstrated (Section 3.3.2). Good 

process monitoring and control was observed (Figure 3.3) and the well-to-well cultivation 

performance across the reactor was found to be reproducible (Figures 3.4 and 3.5). In addition, 

a significant enhancement of the cultivation performance was observed in a controlled MBR in 

comparison with the basic shake flask culture while representing a 31-fold volumetric reduction 

(Figure 3.6). Further comparison of the cultivation performance between defined and complex 

media in the controlled MBR has confirmed the superiority of the latter medium for optimal 

production of CV2025 ω-TAm (Figure 3.7).  

 

The utility of the controlled MBR as an optimisation platform for CV2025 ω-TAm production was 

demonstrated by investigating several factors such as induction time, inducer concentration and 

DO level (Section 3.3.3). The results showed that an early induction (6 h), 0.1 mM IPTG and 0.024 

mmol IPTG gdcw
-1 yielded a maximal attainment of CV2025 ω-TAm expression in a batch culture 

(Figure 3.11). Evaluation of the DO level between 30 and 50 % oxygen saturation suggested little 

impact on fermentation performance and CV2025 ω-TAm titre obtained (Table 3.2).  
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Overall, the results confirm the suitability of the controlled MBR as a HTP platform for parallel 

studies of microbial fermentation and enzyme production in early stage of process development. 

As the controlled MBR is amenable to further intensifications such as automation and also 

integration of a liquid handling system, current limitations of the platform that are associated with 

the manual feeding and sampling may be solved. The optimal levels of CV2025 ω-TAm 

production obtained in this chapter provide a baseline for subsequent work where the exploitation 

of a renewable feedstock for biocatalyst production is examined. This will be discussed in the 

following chapter.   
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CHAPTER 4 
 

EVALUATION OF SUGAR BEET VINASSE AS A BIOREFINERY 

FEEDSTOCK FOR BIOCATALYST PRODUCTION 
 

 

4.1 Introduction 

 

In the development of any bioprocess the expense of the feedstock is a major contributor to the 

overall cost (Stanbury et al., 1999). As discussed in Section 1.6, there is growing interest in the 

exploitation of renewable feedstocks as media suitable for fermentation. Among the many 

potential renewable feedstocks for the production of value-added products are waste streams 

generated from biorefineries. Integration of the new process streams with the existing ones may 

potentially increase the overall profitability of biorefinery operation.   

 

One potentially useful biorefinery waste stream is sugar beet vinasse. This is the stillage 

generated after the distillation process during bioethanol production (Section 1.6.1). In spite of 

the ecological hazards that vinasse poses, due to its high organic content, the stillage consists of 

several useful components particularly glycerol (Espana-Gamboa et al., 2011). Glycerol can be 

exploited as a carbon source to support microbial growth and consequently the production of 

recombinant proteins (Section 1.3.1.1). The abundant on-site supply of vinasse will ensure 

sustainability of an integrated biorefinery process. As discussed in detail in Section 1.6.1, previous 

studies have reported the use of vinasse for production of an array of value-added products such 

as polyhydroxyalkanoates (Bhattacharyya et al., 2012; Pramanik et al., 2012) biohydrogen and 

volatile fatty acids (Sydney, 2013) xylitol (Salgado et al., 2010). Nevertheless, there is an ongoing 

need to explore the feasibility of vinasse utilisation in specific applications. To date, there has 

been no report on exploitation of vinasse for E. coli fermentation in the literature.  

 

In the context of an integrated sugar beet biorefinery, as discussed in Section 1.7, on-site 

production of enzyme used for the valorisation of sugar beet breakdown products would be 

beneficial. One of the industrially relevant biocatalysts being investigated in this regard is CV2025 

ω-TAm (Section 1.2). For example, L-arabinose that can be derived from sugar beet pectin (Ward 

et al., 2015) may serve as potential substrate for CV2025 ω-TAm yielding a spectrum of useful 

intermediates for various applications. Exploration of sugar beet vinasse as a potential feedstock 

for the production of CV2025 ω-TAm by E. coli BL21 (DE3) is therefore of interest. Fermentation 

process optimisation often requires a large number of experiments (Panda et al., 2007). In this 

work the controlled MBR (Micro-24) methods established in Chapter 3 will be used to help 

evaluate CV2025 ω-TAm production from E. coli BL21 (DE3) cultured on vinasse with addition of 

various nutrients supplements.    

 



105 
 

4.2 Aim and objectives 

 

Given the wider context of this project (Section 1.6) the aim of this chapter is to explore the 

feasibility of using sugar beet vinasse as a feedstock for the production of industrial biocatalysts. 

The work will utilise the HTP fermentation platform established in Chapter 3. The focus will again 

be on production of CV2025 ω-TAm by E. coli BL21 (DE3) with the previous growth and activity 

data obtained with a complex medium being used as a benchmark for comparison (Section 3.3.3). 

The specific objectives of this chapter are outlined below. 

  

1. To characterise the composition of sugar beet vinasse with a view to its utilisation as a 

renewable fermentation feedstock. 

2. To demonstrate the utility of vinasse as a feedstock for E. coli BL21 (DE3) growth and 

CV2025 ω-TAm production and to assess the stability and variability of vinasse from 

different batches on cell growth and biocatalyst titre. 

3. To establish methods for the pre-treatment of vinasse, e.g. polyphenols removal, and to 

subsequently evaluate the impact of pre-treatment on fermentation performance.  

4. To optimise CV2025 ω-TAm production from sugar beet vinasse, using the controlled 

MBR established in Chapter 3, by evaluating the influence of medium supplements on 

cell growth and biocatalyst titre. 

5. To establish a fundamental understanding of E. coli BL21 (DE3) metabolism and nutrient 

uptake when grown in vinasse medium. 

 

 

 

4.3 Results  

 

4.3.1 Characterisation of sugar beet vinasse 

 

Before using sugar beet vinasse for fermentations, it is of importance to evaluate its composition 

especially in recognising potential fermentable components. The significance is that identification 

of the key fermentable components will facilitate successive studies such as pre-treatment 

options, optimisation and metabolic understanding of vinasse utilisation.   

 

Sugar beet vinasse, supplied from the AB Sugar biorefinery at Wissington, UK, was first 

characterised in terms of its physical properties and composition. It is a heterogenous mixture 

consisting of suspended solids, made up of mostly dead yeast cells, and a blackish liquid fraction. 

Figure 4.1 shows vinasse before and after the removal of the suspended solids by centrifugation. 

Unlike previous reports in the literature that focused more on environmental aspects (Espana-

Gamboa et al., 2011; Pramanik et al., 2012), vinasse characterisation in this study focused on the 

composition of fermentable sugars and related compounds. Table 4.1 outlines the composition of 

vinasse obtained from two different batches. 
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Figure 4.1. Raw vinasse before (left) and after (right) suspended solids separation. Suspended 

solids removal by centrifugation as described in Section 2.3.2.   

 

 

Table 4.1. Characterisation of vinasse composition from two separate batches provided by AB 
Sugar (Wissington biorefinery, UK). The analytical procedures were performed as specified in 
Section 2.12.6 (glycerol and acetate) Section 2.12.7 (sugars and sugar alcohols), Section 2.12.3 
(total protein) and Section 2.12.8 (polyphenols). Errors represent one standard deviation about 
the mean (n=3).    

 

Parameters Batch 1 Batch 2 

pH 4.9  5.4  

Glycerol (g L-1) 187.6 ± 2.8 183.6 ± 2.3 

D-mannitol (g L-1) 8.0 ± 0.0 5.3 ± 0.1 

D-galactose (g L-1) 5.5 ± 0.0 10.2 ± 0.1 

D-xylitol (g L-1) 5.4 ± 0.1 6.5 ± 0.1 

D-fructose (g L-1) 2.0 ± 0.0 2.1 ± 0.1 

D-dulcitol (g L-1) 2.0 ± 0.0 1.5 ± 0.0 

Acetate (g L-1) 1.7 ± 0.0 7.2 ± 0.1 

Total Protein (g L-1) 5.1 ± 0.1 11.5 ± 0.2 

Polyphenols (geq L-1) 6.0 ± 0.0 7.1 ± 0.2 
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As shown in Table 4.1, sugar beet vinasse has an acidic pH in the range 4.9 and 5.4. This is in 

agreement with the values reported in the literature (Caqueret et al., 2008; Parnaudeau et al., 

2008; Salgado et al., 2010; Pramanik et al., 2012; Ryznar-Luty et al., 2015). The acidic pH of 

vinasse can be associated with organic acids that are probably formed during the yeast 

fermentation. As vinasse is formed from ethanol fermentation, its composition is closely 

influenced by the metabolism of the ethanol-producing microorganism. The concentration of 

glycerol in vinasse in this study was found to range from 184 to 188 g L-1. A study by Lutoslawski 

et al. (2011) reported a much lower concentration of glycerol (3.33 g L-1) in sugar beet vinasse 

obtained from Wloclawek, Poland. The resulting concentration of glycerol in vinasse is thought to 

be proportional to the initial concentration of molasses employed for the ethanol fermentation 

process. As detailed in Section 1.6.2, glycerol has been revealed as a potential carbon source for 

the production of fuels and chemicals as it is inexpensive, abundantly available and possesses a 

relatively high degree of reduction (Murarka et al., 2008).  

 

The analysis in Table 4.1 also shows that vinasse contains several sugars such as D-fructose 

and D-galactose. These sugars are believed to originate from D-raffinose, a trisaccharide 

composed of D-galactose, D-glucose and D-fructose, which is also found in the sugar beet 

(Haagenson et al., 2008). There was no D-glucose and D-raffinose detected in vinasse in this 

study. Additionally, sugar alcohols including D-mannitol, D-xylitol and D-dulcitol were also 

identified with concentrations of less than 10 g L-1. The presence of sugar alcohols as by-products 

of ethanol producing yeasts has been discussed in the literature (Spencer et al., 1957; Onishi and 

Sizuki, 1968). The type of sugar alcohols and their amounts produced vary with different yeast 

strains (Peterson et al., 1958). 

 

Apart from potential fermentation carbon sources, vinasse also possesses cell growth inhibitors 

such as acetate and polyphenols (Table 4.1). The acetate concentration ranged from 1.7 to 7.2 g 

L-1, which was is in agreement with Cibis et al. (2011). In contrast, the acetate concentration 

reported by Ryznar-Luty et al. (2008) was higher (12.1 g L-1) than the results here. On the other 

hand, it was observed that sugar beet vinasse also comprised of polyphenols, ranged between 

6.6 and 7.1 g L-1 (expressed as gallic acid). Previous works reported the concentration of 

polyphenols in vinasse in the range between 1.9 and 2.5 g L-1 (Salgado et al., 2010) or in a much 

lower amount (< 1 g L-1) (Martín Santos et al., 2003; Bhattacharyya et al., 2012).  

 

Literature also indicates that the variation of the physico-chemical characteristics of vinasse can 

be attributed to the type of crop that it originated from, as well as variation in the ethanol 

fermentation and distillation processes (Espana Gamboa et al., 2011). In general, the 

characterisation results obtained here suggest that vinasse has potential for use as a fermentation 

feedstock. This will be explored in the following section. 
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4.3.2 Preliminary studies on vinasse as a fermentation feedstock 

 

Following the characterisation of sugar beet vinasse, an evaluation of the basic culture conditions 

needed for CV2025 ω-TAm production by E. coli BL21 (DE3) is necessary. These include 

assessments of suitable concentration of vinasse for fermentations, basic trends of recombinant 

protein expression in E. coli BL21 (DE3) when grown on vinasse as well as the stability of vinasse 

with regards to different batches. Assessment of these conditions will create an understanding on 

the basic culture requirements so as to facilitate further steps to improve the cultivation 

performance.       

 

4.3.2.1 Influence of vinasse concentration and IPTG induction on E. coli BL21 (DE3) growth  

 

Preliminary studies on the evaluation of vinasse as a fermentation medium for CV2025 ω-TAm 

production by E. coli BL21 (DE3) were carried out in batch shake flasks. The initial aim was to 

study the influence of vinasse concentration and IPTG induction on cell growth and CV2025 ω-

TAm activity. Different concentrations of vinasse (17, 25, 50 and 100% (v/v)) were prepared using 

RO water as a diluent. The detailed pre-processing procedure is described as Option 1 in Figure 

2.1 (Section 2.3.2). Figure 4.2 depicts the cell growth kinetics using vinasse and a complex 

fermentation medium (Section 2.3.1) as a control. It was observed that in both non-induced and 

IPTG-induced cases, the vinasse concentration of 50 and 100% (v/v) exerted an inhibitory effect 

on the E. coli BL21 (DE3) growth. The inhibitory effect might be possibly caused by polyphenols 

in vinasse. On the other hand, the influence of acetate on cell growth might not be pronounced 

since its concentration in vinasse from Batch 1, which is used in this preliminary study, is 1.7 g L-

1. This is much lower than the inhibitory level for E. coli that is about 5 g L-1 (Lee, 1996).  

 

In fermentations using 17 and 25% (v/v) vinasse, comparable cell growth profiles were observed 

in both non-induced and induced cultures. The maximum biomass concentration obtained in non-

induced cultures using 17 and 25% (v/v) vinasse was about 70 - 80% of that using the complex 

medium. For the induced cultures it was 60 - 63%. The good cell growth obtained in these cultures 

suggested a tolerance against the lower concentrations of polyphenols. Previous literature reports 

have suggested the feasibility of sugar cane / sugar beet vinasse as growth media for several 

microorganisms such as Chlorella vulgaris (Marques et al., 2013), Haloarcula marismortui 

(Pramanik et al., 2012), Spirulina maxima (Barrocal et al., 2010) and Debaryomyces hansenii 

(Salgado et al., 2010) but there has been no study reported for E. coli thus far.   
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Figure 4.2. Comparison of batch fermentation kinetics of E. coli BL21 (DE3) cultured in shake 
flasks with (A) no IPTG induction, and (B) IPTG induction using complex and vinasse media: (○) 
complex medium; (▲) 17% (v/v) vinasse; (●) 25% (v/v) vinasse; (♦) 50% (v/v) vinasse; (■) 100% 
(v/v) vinasse. Vertical dotted line indicates the point of IPTG induction. Error bars denote one 
standard deviation about the mean (n=3). Fermentations were performed as described in Section 
2.8.1. Biomass concentration was determined as described in Section 2.12.2. 
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The corresponding CV2025 ω-TAm titres from the fermentations using 17 and 25% (v/v) vinasse 

were also determined. Figure 4.3 shows the comparison of the CV2025 ω-TAm volumetric and 

specific activity obtained from the non-induced and IPTG-induced fermentations using vinasse 

and a standard complex medium. In induced cultures, the results showed that the maximum 

CV2025 ω-TAm volumetric and specific activity achieved at 24 h using both vinasse media were 

comparable (p-values of 0.24 and 0.66, respectively) and consistent with the similar levels of cell 

growth. The maximum specific activity attained in vinasse medium was about 70 - 72% of that in 

the complex medium.    

 

Interestingly, it was also observed that there was CV2025 ω-TAm expression in non-induced 

fermentations employing both vinasse media. Comparable attainments of maximum CV2025 ω-

TAm volumetric and specific activity in fermentations using 17 and 25% (v/v) vinasse were 

achieved with p-values of 0.12 and 0.69, respectively. The maximum CV2025 ω-TAm specific 

activities achieved in 17 and 25% (v/v) vinasse medium were 90 and 89 U gdcw L-1, respectively; 

this is 2.6-fold higher than that obtained in the non-induced complex medium fermentations and 

between 79 – 80% of the maximum value attained in the complex medium cultures with IPTG 

induction. This is an important finding since the cost of IPTG for enzyme induction would represent 

a significant contribution to the overall Cost of Goods at large scale.   

 

The SDS-PAGE analysis of the soluble intracellular protein obtained from each fermentation, is 

shown in Figure 4.4. This confirms the expression of CV2025 ω-TAm in both non-induced and 

induced cultures employing vinasse medium. CV2025 ω-TAm expression in the non-induced 

cultures is most likely due to the presence of significant concentrations of D-galactose in vinasse 

(Table 4.1), which can act as an inducer of enzyme expression with lac promoter due to the 

similarity in structure to IPTG and lactose (Xu et al., 2012). This phenomenon is termed auto-

induction, that is the expression of a recombinant protein due to the presence of a natural inducer 

in the medium (Xu et al., 2012). Elucidation of the role of D-galactose as an inducer will be 

discussed in detail in Section 4.3.2.2.  
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Figure 4.3. Volumetric and specific activity of CV2025 ω-TAm at 12 and 24 h from fermentations 
with (A) no IPTG induction, and (B) IPTG induction. Data shown for fermentations from Figure 4.2 
using complex medium (CM), 17% (v/v) and 25% (v/v) vinasse (V). Error bars denote one 
standard deviation about the mean (n=3). The CV2025 ω-TAm assay was performed as 
described in Section 2.12.5.  
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Figure 4.4. SDS-PAGE analysis of the soluble cellular extract obtained from E. coli BL21 (DE3) 
fermentations at 12 h (Figure 4.2) using (A) complex medium; lane 1: non-induced, lane 2: IPTG 
induced (B) vinasse medium; lane 1: 25% (v/v) vinasse, non-induced, lane 2: 17% (v/v) vinasse, 
non-induced, lane 3: 25% (v/v) vinasse, IPTG-induced, lane 4: 17% (v/v) vinasse, IPTG-induced. 
Fifteen microgram of protein were applied per lane. M represents marker. Molecular weight of 
CV2025 ω-TAm is 51 kDa (Rios-Solis, 2012). SDS-PAGE analysis was performed as described 
in Section 2.12.4.  

 

4.3.2.2 Confirmation of auto-induction by D-galactose 

 

To confirm that the auto-induction of CV2025 ω-TAm was due to the presence of D-galactose in 

the sugar beet vinasse, a separate experiment was carried out, incorporating addition of D-

galactose to the standard complex medium. A D-galactose concentration of 5.1 mM, which is 

similar to that in 17% (v/v) vinasse, was added to the complex medium either at 0 or 6 h. Figure 

4.5 shows the time course of cell growth and CV2025 ω-TAm expression from fermentations 

using a complex medium in the absence and presence of D-galactose. Whilst no noticeable 

variation was seen in cell growth, there was a significant difference in CV2025 ω-TAm expression 

between the fermentations. In cultures that were supplemented with D-galactose at 0 and 6 h, the 

CV2025 ω-TAm specific activity reached a maximum of 279 and 98 U gdcw
-1 respectively, whereas 

in the non-supplemented culture, the titre only represented the basal expression level from the 

lac operon.  

 

The expression of CV2025 ω-TAm in the clarified lysates obtained from each fermentation in this 

study was confirmed by SDS-PAGE results as illustrated in Figure 4.6. Since the gel was loaded 

with similar total protein concentration, the CV2025 ω-TAm in the culture induced with D-

galactose at 0 h (lane B) is expressed at a higher level than the host cell protein and hence is 

more pure and has higher specific activity. Overall, these results suggest that the D-galactose 

worked well in inducing the lac operon of E. coli BL21 (DE3) strain used in this study, yielding a 

considerable level of CV2025 ω-TAm expression overcoming the requirement for IPTG induction.  

 

(B) (A) 
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Figure 4.5. Comparison of batch E. coli BL21 (DE3) fermentation kinetics and CV2025 ω-TAm 
specific activity cultured on (A) complex medium (B) complex medium supplemented with 5.1 mM 
D-galactose at 0 h and (C) complex medium supplemented with 5.1 mM D-galactose at 6 h: (●) 
biomass concentration (▲) CV2025 ω-TAm specific activity. Error bars denote one standard 
deviation about the mean (n=3). Fermentations were performed as described in Section 2.8.1. 
The analytical procedures were performed as described in Section 2.12.2 (biomass 
concentration) and Section 2.12.5 (CV2025 ω-TAm assay).  
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Figure 4.6. SDS-PAGE of the soluble cellular extract obtained from the cultivations of E. coli BL21 
(DE3) expressing CV2025 ω-TAm at 12 h (Figure 4.5): (A) no D-galactose, (B) D-galactose 
supplemented at 0 h, (C) D-galactose supplemented at 6 h. Fifteen microgram of protein were 
applied per lane. M represents marker. SDS-PAGE analysis was performed as specified in 
Section 2.12.4.  

 

 

Additionally, the difference in the CV2025 ω-TAm specific activity obtained from the D-galactose-

induced cultures clearly indicated that the induction time is a significant factor for the biocatalyst 

production.  In contrast to IPTG addition, that may retard cell growth upon induction, addition of 

D-galactose from the beginning of the fermentation did not retard the cell growth and appeared 

to be more beneficial than the induction during the logarithmic phase. The addition of D-galactose 

at 0 h mostly mimicked the vinasse medium, which originally had D-galactose at a comparable 

concentration. These results confirm that D-galactose in the vinasse medium can cause an auto-

induction for recombinant protein production.  

  

The occurrence of auto-induction by D-galactose has been discussed in several published works. 

Xu et al. (2012) reported auto-induction in the production of therapeutic proteins in E. coli BL21 

(DE3) using both T7 and tac promoters, where the modified LB medium used comprised of soy 

peptone that had D-galactose added. They also observed that the minimum concentration of D-

galactose that can trigger the induction of the E. coli promoter was 0.4 mM, which is below the 

levels used here in 17 and 25% (v/v) vinasse that were 5.1 and 7.6 mM, respectively. In another 

study, León et al. (2003) reported that 2.8 mM D-galactose was sufficient to cause an induction 

of the lac promoter in a recombinant E. coli for the production of the enzyme penicillin acylase. 

These results suggest that if D-galactose is to be used as an alternative to IPTG for induction 

then, an in-depth study on the D-galactose concentration for an optimal enzyme expression is 

necessary.  

 

M           A           B           C 
 

    CV2025 ω-TAm 

    56 kDa 

 

43 kDa 
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Auto-induction in fermentation processes employing sugar beet molasses as a feedstock was 

reported by Calik and Levent (2009) for the production of benzaldehyde lyase in E. coli BL21 

(DE3). In contrast to sugar beet vinasse, sugar beet molasses is the non-crystallised syrup 

resulting after the extraction process during the sugar production (Finkenstadt, 2014). Calik and 

Levent (2009) inferred that the auto-induction of the lac promoter was linked to the presence of 

galactose, released from raffinose that is present in sugar beet molasses. The efficiency of the 

galactose-mediated induction is influenced by the type of strain used in the fermentation (De Leon 

et al., 2003). The transport of galactose towards the lac operon was assumed to be facilitated by 

the inactivation of the galactose kinase gene (galK) in the mutant strain, which eventually enabled 

the induction of the recombinant protein (Wu and Kalckar, 1966; Wu, 1967).  

 

An auto-induction of the lac promoter in E. coli BL21 (DE3) in vinasse medium, as found here, 

has not been described in the literature to date. It is expected that other types of waste residues 

or streams, especially those from sugar-based industries that contain D-galactose, might also 

exhibit an auto-induction phenomenon if utilised as fermentation media for a recombinant protein 

production. Although the advantages of this auto-induction may be significant for expression of a 

single heterologous protein, it might be more challenging in the case of multiple protein expression 

in a single host system as there may be a need to separately regulate protein expression from 

different plasmids. However, since IPTG is expensive, toxic and requires intensive studies on 

optimum induction conditions, elimination of its use in the fermentation may give another potential 

benefit of vinasse as a feedstock for enzyme production within an integrated sugar beet 

biorefinery.  

 

 

4.3.2.3 Evaluation of batch to batch stability  

  

The studies discussed so far were carried out using vinasse from Batch 1 whereas in later work, 

the vinasse used was from another batch (Batch 2). Thus, it was necessary to evaluate the 

reproducibility of CV2025 ω-TAm production between different batches even if their overall 

composition was similar (Table 4.1). Batch 2 contained similar concentrations of glycerol and 

polyphenols, by nearly twice as much galactose and 4.2-fold acetate. The preparation of the 

vinasse medium from each batch was described as Option 1 in Figure 2.1 (Section 2.3.2) and 

fermentations were performed in batch shake flasks using 17% (v/v) vinasse with no IPTG 

induction.  

 

Figure 4.7 shows the time course of cell growth obtained from fermentations using vinasse 

medium prepared from both batches. Despite a small variation (<25%) in biomass concentration 

throughout the period of fermentation, the cell growth trends exhibited were seen to be similar. 

Moreover, a good agreement was found between the two cultivations in terms of the specific 

growth rate and maximum biomass concentration obtained: 0.19 and 0.19 h-1 and 2.3 and 2.2 

gdcw L-1, respectively. Although there were some variations in vinasse composition, such as in D-
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mannitol, D-galactose, acetate and total protein, between the two batches (Table 4.1), those 

components might not have a profound influence on the cell growth. The impact of the high 

concentration of acetate in Batch 2 was alleviated by the 6-fold dilution (17% (v/v) vinasse) that 

may reduce the concentration of acetate to below the inhibitory level for E. coli BL21 (DE3) 

growth.     

 

 

 

Figure 4.7. Comparison of batch E. coli BL21 (DE3) fermentation kinetics cultured on diluted 
vinasse medium prepared from (●) Batch 1 and (▲) Batch 2 (see Table 4.1 for compositions). 
Error bars denote one standard deviation about the mean (n=3). Fermentations were performed 
in shaken flasks as described in Section 2.8.1. Biomass concentration was determined as 
described in Section 2.12.2. 

 

 

The corresponding production of CV2025 ω-TAm from the fermentations was also examined. The 

volumetric and specific activity of the enzyme in the two fermentations as a function of time is 

presented in Figure 4.8. In both cases, the CV2025 ω-TAm volumetric and specific activity 

reached a maximum of around 0.5-0.6 U ml-1 and 110 U gdcw
-1, respectively between 12 and 24 h 

of cultivation.  As with the cell growth profile, the maximum CV2025 ω-TAm volumetric and 

specific activity at 12 h showed insignificant statistical variations with p-values of 0.54 and 0.95, 

respectively between the two batches, suggesting the reproducibility of the feedstock with regards 

to the impact on cell growth and enzyme activity. The variation of D-galactose levels between the 

two batches seems not to be significant, suggesting that the concentration of D-galactose in the 

dilute vinasse from either batch is higher than the minimum concentration of D-galactose needed 

to cause an auto-induction. Overall, it is concluded that there was good reproducibility in cell 

growth and enzyme expression using the two batches of vinasse confirming the reliability of the 

results produced.  
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Figure 4.8. Comparison of CV2025 ω-TAm volumetric and specific activity obtained at different 
time points during the shake flask fermentations shown in Figure 4.7 using vinasse medium from 
Batch 1 (B1) and Batch 2 (B2). Error bars denote one standard deviation about the mean (n=3). 
The CV2025 ω-TAm assay was performed as described in Section 2.12.5.  

 

 

4.3.3 Vinasse pre-treatment options  

 

Along with the establishment of the basic culture conditions for CV2025 ω-TAm production in E. 

coli BL21 (DE3) as discussed above, development of an efficient pre-treatment strategy is also 

an important concern. An effective pre-treatment strategy will facilitate the exploitation of the 

useful components as well as elimination of inhibitory compounds in the feedstock, which in turn 

can support an optimal production of the target protein during the fermentation.  

 

As shown in Figure 2.1, a number of options for pre-treatment of the sugar beet vinasse before 

fermentation utilisation could be considered (Section 2.3.2). Initially, two potential options were 

evaluated, illustrated as Option 1 and 2 (Figure 2.1). In both cases, only the liquid fraction was 

considered for the fermentation and the suspended solids were firstly removed in the early stage 

of the preparation. This was considered necessary due to the high level of minerals in those 

suspended solids that can result in the cessation of cell growth (Salgado et al., 2010). In the 

subsequent step of Option 1, vinasse was diluted to the optimal concentration (17% (v/v)), as 

described in Section 4.3.2.1 and sterilisation of the medium was performed by microfiltration 

(Section 2.3.2).  

 

In Option 2, the vinasse was pre-treated by AC adsorption (Pramanik et al., 2012). This aimed to 

remove the polyphenolic compounds in vinasse that might be inhibitory to cell growth. The 

quantification of polyphenols was based on GA (Section 2.12.8). Initially, a growth inhibition 
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assessment was performed whereby the effect of vinasse on E. coli BL21 (DE3) growth on an 

agar plate was examined. Figure 4.9 shows the inhibition zone around a filter paper disc that had 

been soaked in vinasse. It was evident that cell growth was inhibited in the vicinity of the disc 

resulting in an inhibition zone toward the centre of the plate. As the vinasse concentration 

decreased towards the edge of the plate, the inhibition zone became less apparent and the cell 

growth was more visible.  

 

These results are in line with those obtained in Section 4.3.2.1, confirming inhibition of E. coli 

BL21 (DE3) growth at high concentration of vinasse that might be caused by the presence of 

polyphenols that are known to inhibit cell growth (Pramanik et al., 2012). Hence, in pre-treatment 

of vinasse via Option 2, AC adsorption for polyphenols removal was examined prior to 

fermentation. It is revealed that adsorption process using AC or other adsorbent materials serves 

as among the best options for the removal of polyphenolic compounds from natural feedstocks 

(Garcia-Araya et al., 2003; Figaro et al., 2006; Caqueret et al., 2008). AC has previously been 

shown to exhibit excellent capacities for adsorbing organic matter such as polyphenolic 

compounds (Caqueret et al., 2008).  

 

   Inhibition zone ends  

                                                                                       Inhibition zone starts 

 

 

 

 

 

 

 

 

 

Figure 4.9. Inhibition zone on an E. coli BL21 (DE3) agar plate after 24 h of incubation. The agar 
plate was initially swabbed with an E. coli BL21 (DE3) culture before being incubated with a disc 

containing concentrated vinasse. Experiment was performed as described in Section 2.12.10.  

 

 

4.3.3.1 Pre-treatment of vinasse by activated carbon (AC) 

 

In this pre-treatment study, the influence of AC concentration and incubation time on polyphenols 

removal was investigated. Prior to pre-treatment, the pH of the vinasse was first adjusted to pH 

2. An acidic pH is favourable for efficient adsorption (Caqueret et al., 2008). This is because at 

acidic pH, protonation of AC acidic functional groups facilitates the adsorption of hydrophobic 

polyphenolic compounds (Qi et al., 2004).  
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Figure 4.10 shows the change in polyphenols concentration in vinasse using different pre-

treatment conditions. The profiles are also compared to a control case that has no AC added. The 

amount of polyphenols reduction was found to be proportional to the concentration of AC used. 

Pre-treatment of vinasse with 15 and 20% (w/v) AC led to a maximum removal of polyphenols of 

85 - 89%, which is comparable with the findings by Pramanik and co-workers (2012). Overall, a 

rapid decrease of the polyphenols concentration was observed whereby the adsorption process 

reached a steady concentration after 1 h of incubation.  

 

 

 

Figure 4.10. Kinetics of polyphenols removal in untreated (control) and AC pre-treated vinasse 
using different concentrations of AC: (♦) 5% (w/v); (■) 10% (w/v); (▲) 15% (w/v); (●) 20% (w/v) 
and (○) control. Error bars denote one standard deviation about the mean (n=3). AC pre-treatment 
of vinasse was performed as described in Section 2.10. The polyphenols concentration was 
determined as described in Section 2.12.8.   

 

 

Figure 4.11 compares the physical appearance of the untreated and pre-treated vinasse using 

different AC concentrations. As clearly seen, decolourisation was achieved in the pre-treated 

vinasse. The intensity of the brown colour was proportional to the concentration of polyphenols 

remaining in the pre-treated vinasse. This clearly suggests that the brown colour of vinasse is 

associated with the presence of the polyphenolic compounds. Evaluation of the AC pre-treated 

vinasse as a fermentation medium will be discussed in the subsequent section.     
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Figure 4.11. Appearance of the untreated and AC pre-treated vinasse from the experiments 
shown in Figure 4.10. I: untreated vinasse; II: pre-treated vinasse 5% AC (w/v); III: pre-treated 
vinasse 10% AC (w/v); IV: pre-treated vinasse 15% AC (w/v); V: pre-treated vinasse 20% AC 
(w/v). Samples taken and photographed after 24 h of incubation. 

 

 

4.3.3.2 Impact of vinasse pre-treatment options on E. coli BL21 (DE3) fermentations 

 

The impact of untreated and AC pre-treated vinasse on E. coli BL21 (DE3) fermentations and 

CV2025 ω-TAm production was next investigated. All of the AC pre-treated vinasse media were 

diluted with RO water to 17% (v/v); as found to be optimal in Section 4.3.2.1. The media were 

further prepared as described in Section 2.3.2. The pre-treated vinasse using 20% (w/v) AC was 

not included in this study since it exhibited a comparable level of residual polyphenols as that 

prepared using 15% (w/v) AC. All fermentations were carried out in batch shake flasks.  

 

Figure 4.12 shows the time course of cell growth using the dilute untreated and pre-treated 

vinasse media. Generally, all profiles followed a similar trend with regards to cell growth whereby 

a stationary phase was reached after about 12 h of incubation. The specific growth rate observed 

in all fermentations using the pre-treated vinasse media ranged between 0.21 and 0.25 h-1, which 

were higher than in the culture using untreated vinasse (0.17 h-1). The maximum biomass 

concentrations obtained from cultures using both untreated and pre-treated vinasse were 

comparable and in the range 1.8 to 2.3 gdcw L-1, indicating that AC pre-treatment has limited further 

impact on cell growth after vinasse dilution. 
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Figure 4.12. Comparison of batch fermentation kinetics of E. coli BL21 (DE3) cultured in shake 
flasks using diluted vinasse, untreated and pre-treated with different AC concentrations: (♦) 5% 
(w/v); (■)10% (w/v), (▲)15% (w/v) and (●) no AC. Error bars denote one standard deviation about 
the mean (n=3). Pre-treatment was performed as described in Section 2.10. Fermentations were 
performed as described in Section 2.8.1. Biomass concentration was determined as described in 
Section 2.12.2. 

 

 

The corresponding CV2025 ω-TAm expression from fermentations employing the dilute untreated 

and pre-treated vinasse was also evaluated. Figure 4.13 depicts the CV2025 ω-TAm volumetric 

and specific activity attained in all cultures at 24 h. The results showed that both volumetric and 

specific activity of CV2025 ω-TAm attained in cultures employing pre-treated vinasse were found 

to be much lower than that achieved using the dilute untreated vinasse. Comparing this 

performance with the results obtained in Section 4.3.2.1, it can be strongly suggested that the 

polyphenols concentration in 17 and 25% (v/v) vinasse media, which was approximately 1.0 and 

1.5 geq L-1, respectively, did not impart significant inhibitory effect on both cell growth and 

biocatalyst production. It can be inferred here that the removal of polyphenols in vinasse may not 

necessarily be a prerequisite for an enhanced fermentation performance as long as the minimum 

inhibitory concentration of the compound on the cell growth is not exceeded. This finding suggests 

the pre-processing procedure of vinasse is likely to be less laborious and thus offers another 

advantage of its application along with other benefits. The preparation of vinasse medium for the 

subsequent works in this chapter will be based on the methodology outlined in Option 1 unless 

otherwise stated.  
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Figure 4.13. Volumetric and specific activity of CV2025 ω-TAm from E. coli BL21 (DE3) 
fermentations at 12 h and 24 h using dilute untreated vinasse (I) and dilute pre-treated vinasse 
with 5% (w/v) AC (II), 10% (w/v) AC (III) and 15% (w/v) AC (IV). Biomass growth as shown in 
Figure 4.12. Error bars denote one standard deviation about the mean (n=3). The CV2025 ω-
TAm assay was performed as described in Section 2.12.5.  

   

 

4.3.4 Optimisation of CV2025 ω-TAm expression using vinasse medium 

 

Following the establishment of a suitable method for vinasse preparation (Section 4.3.3), 

subsequent work aimed to further enhance biocatalyst production using the vinasse medium. The 

use of the HTP controlled MBR established in Section 3.3.2 would be explored for this purpose. 

One of the major challenges noted thus far with vinasse was the low cell growth rate, which was 

about 1.9-fold lower than that achieved using a complex medium (Figure 4.2). Therefore, the 

influence of vinasse medium supplementation with trace elements (Section 2.3.1) and nitrogen-

containing substrates namely yeast extract, NH4Cl and (NH4)2SO4 on cell growth and biocatalyst 

production was investigated. The rationale behind these medium supplementation experiment is 

to replace any nutrients in the vinasse that have either been used during yeast fermentation or 

degraded during distillation. Figure 4.14 shows the comparison of the batch E. coli BL21 (DE3) 

fermentation kinetics cultured on complex medium and various vinasse-based media and the 

growth kinetic parameters are outlined in Table 4.2. The corresponding maximum CV2025 ω-

TAm volumetric and specific activity are shown in Figure 4.15. 
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Figure 4.14. Comparison of batch E. coli BL21 (DE3) fermentation kinetics cultured on complex 
medium and various vinasse-based media. Error bars denote one standard deviation about the 
mean (n=3). Fermentations were performed in a controlled MBR as described in Section 2.8.2. 
Biomass determination was performed as described in Section 2.12.2. CM: complex medium; DV: 
dilute vinasse; TE: trace element; YE: yeast extract.  

 

  

Table 4.2. Fermentation kinetic parameters for E. coli BL21 (DE3) grown on complex and various 
vinasse-based media. Biomass growth as shown in Figure 4.14. DV: dilute vinasse; TE: trace 
elements; YE: yeast extract. 

 

Medium Specific growth rate, µ  

(h-1) 

Maximum biomass 

concentration, Xmax (gdcw L-1) 

Complex medium 0.36 ± 0.01 11.5 ± 0.6 

DV only 0.13 ± 0.00 4.5 ± 0.2 

DV + 150 uL L-1 TE 0.12 ± 0.01 4.7 ± 0.3 

DV + 1 g L-1 NH4Cl 0.27 ± 0.01 6.8 ± 0.1 

DV + 1 g L-1 (NH4)2SO4 0.26 ± 0.02 7.7 ± 0.1 

DV + 1 g L-1 YE 0.34 ± 0.02 6.1 ± 0.3 

DV + 5 g L-1 NH4Cl 0.22 ± 0.01 7.9 ± 0.1 

DV + 5 g L-1 (NH4)2SO4 0.23 ± 0.01 8.4 ± 0.2 

DV + 5 g L-1 YE 0.35 ± 0.03 7.7 ± 0.5 

DV + 10 g L-1 YE 0.36 ± 0.02 11.4 ± 0.2 

DV + 15 g L-1 YE 0.38 ± 0.01    13.1 ± 0.3 
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Figure 4.15. Maximum (■) volumetric and (□) specific activity of CV2025 ω-TAm from E. coli BL21 
(DE3) fermentations using complex medium and various vinasse-based media. Biomass growth 
as shown in Figure 4.14. Error bars denote one standard deviation about the mean (n=3). The 
CV2025 ω-TAm assay was performed as described in Section 2.12.5. CM: complex medium; DV: 
dilute vinasse; TE: trace elements; YE: yeast extract.  

 

 

Initial assessment of the effect of trace elements on biocatalyst production showed that there was 

no significant effect of cell growth rate or the maximum biomass concentration. The negligible 

impact could be because trace elements might not be at limiting concentration for E. coli BL21 

(DE3) growth. Even if they had been partly utilised in the bioethanol fermentation any remaining 

nutrients would have been concentrated during the distillation step. Whilst an increase in CV2025 

ω-TAm specific activity by 21% was observed in the supplemented cultures, the volumetric activity 

was comparable to that in the base vinasse medium.  

  

Evaluation of nitrogen source addition to the vinasse, in the concentration range of 1 - 5 g L-1 had 

a more notable impact. The maximum biomass concentration and specific growth rate were found 

to increase by 1.4 - 1.9-fold and 1.7 - 2.7-fold, respectively (Table 4.2). In particular, it was 

observed that the addition of yeast extract increased CV2025 ω-TAm production in comparison 

with the other nitrogenous substrates evaluated in this study. For example, addition of 1 g L-1 of 

(NH4)2SO4 to the dilute vinasse promoted a 1.4-fold increase in CV2025 ω-TAm volumetric activity 

whereas in the fermentation supplemented with 1 g L-1 of yeast extract, the titre increased 3.4-

fold. Supplementation of vinasse with yeast extract at 5 g L-1 showed the greatest improvement 

in maximum biomass concentration and CV2025 ω-TAm specific activity by 1.7 and 3.7-fold, 

respectively compared to the non-supplemented culture. The presence of transcription enhancers 
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such as cyclic adenosine monophosphate (cAMP) in the yeast extract (Donovan et al, 1996; 

Grossman et al., 1998) may also facilitate recombinant protein expression as has been discussed 

widely in the literature (Liu et al., 1999; Fu et al., 2006; Nair et al., 2009; Jia et al., 2011). 

 

The study on the yeast extract supplementation was subsequently extended by investigating the 

effect of higher concentration from 10 to 15 g L-1. It was found that the maximum biomass 

concentration increased proportionately with the increasing concentration of yeast extract. In 

terms of the cell growth rate, the cultures supplemented with 10 to 15 g L-1 yeast extract yielded 

an enhancement of about 2.8 to 2.9 times higher than the non-supplemented culture. This was 

again expected since yeast extract also contains other growth factors and vitamins (Zhang et al., 

2003; Krause et al., 2010). 

 

Increasing the yeast extract concentration up to 10 g L-1 had a positive effect on the CV2025 ω-

TAm production. With regards to enzyme titre (U ml-1), the culture supplemented with 10 g L-1 

yeast extract was found to achieve the highest CV2025 ω-TAm activity being approximately 5.4-

fold greater than the non-supplemented culture. Moreover, the titre obtained in this optimal 

vinasse medium represented 81% of that attained using the complex medium. As this medium 

formulation gave a suitable compromise between availability and cost, it will be used in the scale-

up studies described later in Chapter 5.  

  

Within the context of the sugar beet biorefinery (Section 1.7) it is noted that commercial yeast 

extract is typically manufactured from S. cerevisae, which is the same strain used for bioethanol 

production. There is thus the potential to integrate lysis of the yeast recovered post fermentation, 

into the existing biorefinery. The on-site production of yeast extract, from another waste stream, 

to supplement the vinasse medium could remove the need to purchase yeast extract from other 

commercial sources. The idea of incorporating an autolysis process between the ethanol 

fermentation and distillation process was discussed by Moon et al. (2013) whereby they reported 

the feasibility of the vinasse produced from autolysed yeast to enhance the production of lactic 

acid by 27%. Another potential route of producing yeast extract is by exploiting the used yeast 

cells directly after the ethanol fermentation. Chae et al. (2001) reported the utilisation of brewer’s 

yeast cells for the production of yeast extract by an enzymatic hydrolysis. In either case, the on-

site production of yeast extract may eliminate the dependence on external sources and may help 

minimise the overall cost of production.  

 

 

 

4.3.5 Understanding E. coli BL21 (DE3) metabolism in vinasse medium  

 

Having shown the utility of vinasse as a fermentation medium it is of fundamental interest to 

understand E. coli BL21 (DE3) metabolism when grown on vinasse and more specifically the 

utilisation of the different fermentable carbon sources present. As discussed in Section 4.3.1, 

besides glycerol as the main component, vinasse also consists of several sugars and sugar 

alcohols. To enable consideration of carbon source utilisation the kinetics of different substrate 
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consumption were determined for a fermentation using diluted vinasse supplemented with 10 g 

L-1 yeast extract. Figure 4.16 shows the time course of cell growth and substrates consumption 

throughout the fermentation.  

 

As indicated in Figure 4.16, the initial phase of cell growth was accompanied by a decrease in D-

mannitol concentration. It was also observed that during this initial phase of D-mannitol 

consumption, the concentration of all the other sugars and sugar alcohols remained largely 

unchanged. A decrease of glycerol concentration was then observed which only began once the 

D-mannitol had been fully depleted. This occurred in what appears to be the mid exponential 

phase of cell growth. Additionally, it was seen that the reduction of glycerol was also followed by 

a simultaneous drop in D-xylitol and D-dulcitol concentrations as well as acetate. Acetate was 

found to be generated particularly during the period of D-mannitol metabolism where a 

concentration of up to 6 g L-1 was produced during exponential growth. Nonetheless, the capability 

of the E. coli BL21 (DE3) strain to co-utilise the acetate along with glycerol, D-xylitol and D-dulcitol 

appears to eliminate the inhibitory effect of acetate on cell growth. Throughout the fermentation 

the concentrations of D-fructose and D-maltitol remained constant indicating that they were not 

utilised during the E. coli BL21 (DE3) growth in the vinasse medium.  
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Figure 4.16. Carbon source utilisation, cell growth and acetate formation during batch 
fermentation of E. coli BL21 (DE3) cultured on dilute vinasse medium supplemented with 10 g L-

1 yeast extract. Error bars denote one standard deviation about the mean (n=3). Fermentations 
were performed in the controlled MBR as described in Section 2.8.2. The analytical procedures 
were carried out as described in Section 2.12.2 (biomass), Section 2.12.6 (glycerol and acetate) 
and Section 2.12.7 (sugars and sugar alcohols).  
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The above results suggest that D-mannitol was the favoured carbon and energy source during 

the initial stage of E. coli BL21 (DE3) growth in the vinasse medium followed by glycerol. This 

may be attributed to the phenomenon of carbon catabolite repression (CCR), a mechanism that 

represses the secretion of enzymes responsible for the metabolism of the secondary substrate 

when the preferred carbon and energy source is present (Gorke and Stulke, 2008). CCR serves 

as an important regulatory mechanism for the microorganism to thrive in a natural environment 

that comprises many complex nutrients (Aidelberg et al., 2014). Among examples of CCR 

phenomena in E. coli include a repression of lactose metabolism in the presence of glucose 

(Monod, 1942) and a consumption of arabinose over xylose (Kang et al., 1998; Desai and Rao, 

2010). On the other hand, D-mannitol was also reported to exert strong catabolite repression on 

the glucitol and galactitol operons (Lengeler and Lin, 1972). To date, the occurrence of CCR 

between D-mannitol and glycerol has not been reported in the literature.  

 

As discussed previously in the characterisation study (Section 4.3.1), there was no D-glucose 

detected in the vinasse. Glucose is known as the preferred substrate for many microorganisms 

including E. coli (Gorke and Stulke, 2008). The phenomenon of diauxic growth in E. coli BL21 

(DE3) between glucose, as the primary substrate and other sugars such as sorbitol, rhamnose, 

xylose, arabinose and galactose (Monod, 1942) and glycerol (Martínez-Gómez et al., 2012) has 

previously been reported. To further elucidate the principles of E. coli BL21 (DE3) metabolism 

when grown on vinasse medium and D-glucose, cultures were carried out in the presence of 

added D-glucose. In this experiment, D-glucose was added to the vinasse medium at a 

concentration of 3 g L-1. A low concentration of D-glucose was chosen here to facilitate its rapid 

consumption during the fermentation.  

 

Figure 4.17 illustrates the time course of cell growth and carbon source consumption in the 

fermentation using the vinasse medium supplemented with 3 g L-1 D-glucose. It was observed 

that D-glucose was metabolised first with a rapid decrease in its concentration between 4 and 12 

h; this corresponded to a reciprocal increase in biomass concentration from 0.09 to 1.58 g L-1. 

The consumption of D-mannitol up to 12 h was minimal with only about 26% being used. 

Subsequently, a significant utilisation of D-mannitol was observed between 12 and 24 h when the 

D-glucose concentration became limiting. This suggests that although D-glucose and D-mannitol 

were found to be utilised simultaneously, E. coli BL21 (DE3) metabolism appeared to favour D-

glucose over D-mannitol. In an early report by Lengeler and Lin (1972) on D-mannitol metabolism 

in E. coli, it is revealed that when the wild-type E. coli cells were grown in the presence of D-

glucose and D-mannitol, the metabolic pathway of the latter is not hampered by the presence of 

the former. In this experiment, the switch to a third carbon source after D-mannitol consumption 

was not observed since cell growth was retarded due to the accumulation of acetate that reached 

nearly 10 g L-1 after 24 h of incubation. As a consequence, the maximum biomass concentration 

only reached 2.2 g L-1 compared to 11.4 g L-1 when cultured on the basic, yeast extract 

supplemented vinasse medium (Figure 4.16). This significant increase in acetate, not seen in the 

base-case vinasse fermentation (Section 4.3.4) was believed to be caused by D-glucose 

metabolism, which generates approximately 4.6 moles of acetate per mole of D-glucose 
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consumed (Figure 4.17). Moreover, in base-case vinasse fermentation (Figure 4.16), the acetate 

was co-utilised during the glycerol consumption, resulting in the decrease of its concentration to 

about 1 g L-1 after 48 h of incubation. The key finding obtained in this supplementary study is that, 

between D-glucose and D-mannitol, the former remains the favoured carbon source by E. coli 

BL21 (DE3). Moreover, the absence of D-glucose in vinasse has given an advantage in the 

exploitation of glycerol, which constitutes as the main carbon source of the feedstock.         
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Figure 4.17. Carbon source utilisation, cell growth and acetate formation during batch 
fermentation of E. coli BL21 (DE3) cultured on dilute vinasse medium supplemented with 10 g L-

1 yeast extract and 3 g L-1 D-glucose. Error bars denote one standard deviation about the mean 
(n=3). Fermentations were performed in the controlled MBR as described in Section 2.8.2. The 
analytical procedures were carried out as described in Section 2.12.2 (biomass), Section 2.12.6 
(glycerol and acetate) and Section 2.12.7 (sugars and sugar alcohols). 

 

 

Overall, the hierarchy of the carbon source utilisation by E. coli BL21 (DE3) when cultured in the 

yeast extract supplemented vinasse medium is proposed to be: 

 

D-mannitol > Glycerol > D-xylitol, D-dulcitol 

 

An understanding of this hierarchy is important since industrial production of CV2025 ω-TAm 

within an integrated biorefinery would most likely occur by fed-batch fermentation. In developing 

a fed-batch process this preferential utilisation must be taken into account. In this case, glycerol 
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might serve as the best feeding option since it appears to be the limiting substrate for cell growth 

(after D-mannitol) and is, itself a relatively cheap by-product of the biofuel industry (Li et al., 2013). 

 

 

4.4 Summary  

 

This chapter has demonstrated the successful exploitation of sugar beet vinasse as a biorefinery 

feedstock for industrial biocatalyst production. The initial work on the characterisation of vinasse 

showed that the feedstock contains several potential components suitable for E. coli BL21 (DE3) 

fermentation such as glycerol, sugars and sugar alcohols (Table 4.1). Preliminary studies in batch 

shake flask cultures showed the feasibility of this feedstock at concentrations in the range of 17 - 

25 % (v/v) for E. coli BL21 (DE3) growth and expression CV2025 ω-TAm (Section 4.3.2). It has 

also been demonstrated that vinasse can be utilised with minimal pre-treatment (Section 4.3.3). 

Simple dilution with water by a factor of 6 results in a reduction in the concentration of glycerol to 

fermentable levels as well as a reduction in polyphenols concentration to below inhibitory levels 

(Section 4.3.3.2). Removal of the residual polyphenols concentration by AC adsorption to levels 

below 1 g L-1 did not lead to any remarkable improvements in E. coli BL21 (DE3) growth (Figure 

4.12) and expression CV2025 ω-TAm (Figure 4.13). Moreover, evaluation of batch to batch 

variation of vinasse indicated little change in composition or concentration of key nutrients (Table 

4.1) and hence comparable fermentation performance in terms of cell growth and CV2025 ω-

TAm titre (Figures 4.7 and 4.8).  

 

Interestingly, the vinasse medium demonstrated an auto-induction phenomenon whereby the 

CV2025 ω-TAm titre in non-induced cultures was found to be comparable with that obtained in 

standard IPTG-induced cultures (Figures 4.3 and 4.4). Auto-induction was associated with the 

presence of D-galactose in the vinasse that previous literature has shown to be a weak inducer 

of the lac operon (Xu et al., 2012). In a biorefinery context, this eliminates the need for IPTG 

induction, which can be expensive at large scale.  

 

Further optimisation of the fermentation performance in the controlled MBR showed that, by 

supplementing the dilute vinasse medium with 10 g L-1 yeast extract, an enhancement of 2.8 and 

2.5-fold was achieved in terms of the specific growth rate and maximum biomass concentration, 

respectively (Figure 4.14 and Table 4.2). Moreover, the CV2025 ω-TAm volumetric and specific 

activity showed increases of 5.4 and 3 times, respectively compared to the non-supplemented 

culture (Figure 4.15). Finally, the metabolic preference of E. coli BL21 (DE3) in the presence of 

the various carbon sources in vinasse was also elucidated showing that D-mannitol and glycerol 

were the favoured sources (Figure 4.16).  

 

In the following chapter, scale-up of CV2025 ω-TAm production from MBR to a larger scale (7.5 

L) STR will be addressed.  
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CHAPTER 5 
 

 SCALE TRANSLATION BETWEEN MINIATURE AND LABORATORY 

SCALE BIOREACTORS    
 

“Scale-up strategies tend to be ‘mixed bags’ engendering art, empiricism, conventional wisdom 

and (frequently) wishful thinking.” – Marvin Charles 

 

5.1 Introduction 

 

In the previous chapters the controlled MBR was established as a platform for rapid fermentation 

process development and biocatalyst production. Its application was shown for a standard 

complex medium (Section 3.3.3) and for a vinasse medium within the context of a sugar beet 

biorefinery (Section 4.3.4). For both cases it is necessary to evaluate the reproducibility of the 

processes developed at a larger scale. This will validate the utility of the controlled MBR as a 

small scale optimisation platform. Various strategies for scaling up fermentations were described 

previously in Section 1.5.1 that may be potentially employed depending on the details of specific 

cultures and reactors.  

 

Based on the few early studies involving the scalability of fermentations from Micro-24 to 

conventional STR scale (Section 1.4.2), there is still lack of definition around the engineering 

basis employed. For example, Isett et al. (2007) reported a direct comparison between the Micro-

24 and a 20 L reactor for S. cerevisae and E. coli cultures based on offline metabolite and cell 

growth profiles. However, no engineering scale-up basis was highlighted in either cultivation. 

Likewise, the application of Micro-24 as a scale-down model for CHO cell culture has also been 

reported by Chen and co-workers (2009), nevertheless, there is limited description about the 

scale-up strategy used. In another work, the feasibility of the Micro-24-derived models for 

cultivating P. pastoris in a 7 L STR has been demonstrated (Holmes et al., 2009). Whilst good 

scalability of the model was achieved in the latter platform, little is known on the basis of the scale-

up. In contrast, the feasibility of using matched mixing time as a scale-up basis for CHO cell 

culture between the Micro-24 and a 1.5 L STR has been reported by Betts (2014). This is probably 

the only work that provides a clearly defined engineering basis for scale-up of Micro-24 cultures 

although its application is limited to mammalian cell cultures where oxygen transfer is not rate 

limiting.  

 

An engineering basis for scale-up of aerobic fermentations, such as E. coli cultures, between 

controlled MBRs and laboratory scale STRs remains to be established and validated. One of the 

most effective approaches for scaling up aerobic fermentations in general, is based on matched 

kLa values (Section 1.5.1.1). The use of this approach has been reported widely for conventional 

MWPs (Islam et al., 2008; Baboo et al., 2012; Marques et al., 2012). The advantage of using kLa 

as a basis for scale-up of aerobic cultures is that it directly links the oxygen transfer performance 

of the specific culture conditions with the uptake rate of a growth-limiting nutrient i.e. oxygen. The 
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ability to monitor and control DO in the Micro-24 provides an additional refinement over 

conventional MWPs.  

 

5.2 Aim and objectives 

 

The aim of this chapter is therefore to establish kLa as an engineering basis for scale-up of E. coli 

BL21 (DE3) growth and enzyme production between the controlled MBR and a conventional 7.5 

L STR. Based on work in the previous chapters the approach will be validated for production of 

CV2025 ω-TAm in E. coli BL21 (DE3). The general applicability of the approach will be 

established by scaling up optimal culture conditions established for both the complex (Section 

3.3.3) and vinasse media (Section 4.3.4). In fermentations using a complex medium, optimal 

induction conditions (Section 3.3.3.1) will also be reproduced. The specific objectives of this 

chapter are outlined below.  

 

1. To quantify kLa values in the controlled MBR and 7.5 L STR as a function of operating 

conditions and to establish suitable engineering correlations. 

2. To demonstrate the use of matched kLa values as a scale-up strategy for E. coli BL21 

(DE3) fermentations for CV2025 ω-TAm production between MBR and 7.5 L STR scales. 

3. To develop an effective pre-processing procedure for vinasse preparation for larger scale 

fermentations. 

4. To demonstrate the scalability of E. coli BL21 (DE3) fermentation for CV2025 ω-TAm 

production between the controlled MBR and 7.5 L STR based on matched kLa values 

using complex and vinasse media.   

5. To intensify the CV2025 ω-TAm production in the 7.5 L STR at higher kLa values using 

complex and vinasse media.  

 

 

 

 

 

 

 

 

 

 



132 
 

5.3 Results  

 

5.3.1 Quantification of kLa values in the controlled MBR and a 7.5 L STR 

 

Prior to any scale-up studies, it is necessary to quantify the scaling parameter and characterise 

its variation as a function of bioreactor operating conditions. The rationale is that such studies will 

provide an understanding on the fundamental behaviours of the scaling parameter with respect 

to bioreactor operation. This in turn will ease decision making in the scale-up work through the 

identification of a matched condition between two platforms, such as similar kLa, as well as 

development of mathematical models that can be used to predict how the scaling parameter 

varies under different operating conditions at the two scales. 

 

In this work, the kLa was first characterised in both the controlled MBR and a STR using three 

types of media: water, complex medium and vinasse medium. The dynamic gassing-out method 

was used in all experimental runs (Section 2.11). Unless otherwise stated, all of the process 

parameters during the kLa characterisation studies were standardised as in fermentations 

(Section 2.8.2 and 2.8.3) in order to mimic the culture environment. The probe response times for 

the controlled MBR (fluorescence-based optical sensor) and 7.5 L STR (standard polarographic 

oxygen electrode probe) were determined as 16.3 and 13 s, respectively (Section 2.11). 

Whenever necessary, the influence of the probe response time was incorporated in the kLa 

determination by applying Equation 2.2 (Section 2.11.1).  

 

Figure 5.1 illustrates typical DO profiles obtained during the deoxygenation and oxygenation 

stages in the controlled MBR and 7.5 L STR, respectively. In both reactors the DO is seen to fall 

to zero during nitrogen sparging and then increases rapidly upon the switch to sparging with air. 

In the case of the controlled MBR the variation in DO as a function of low (36 h-1), medium (47 h-

1) and high (77 h-1) kLa values is shown in Figure A4.1. As expected the rate of DO increases with 

increasing kLa values with DO ultimately reaching the 100% level in all three cases. This data 

confirms the sensitivity of kLa quantification in the MBR using the fluorescence-based optical 

sensors.   
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Figure 5.1. Typical examples of DO profiles during deoxygenation and oxygenation stages of kLa 
measurement in the (A) controlled MBR at different kLa designated as low (L), intermediate (I) 
and high (H) values and (B) 7.5 L STR. Experiments were performed as described in Section 
2.11.1 (controlled MBR) and Section 2.11.2 (7.5 L STR). 
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5.3.1.1 Variation of kLa values in the controlled MBR 

 

Figure 5.2 shows the profiles of kLa in the controlled MBR using water, complex and vinasse 

media at different shaking frequencies and aeration rates. Overall, the kLa values obtained in 

water, which ranged from 33 - 143 h-1, were much higher than in the other two media. This is 

expected since water has a much lower viscosity than the other two fluids as shown in Appendix 

3 (Figure A3.1) and oxygen transfer is known to be inversely proportional to viscosity.  

 

Comparing the kLa values obtained between the complex and vinasse media, generally, higher 

profiles were attained in the former case with maximum kLa of 77 h-1 in contrast to 67 h-1 in the 

latter case. The addition of antifoam to both media may also impact the OTR by increasing bubble 

coalescence that consequently reduces the specific surface area and thus lowers the kLa (Al-

Masry, 1999). Figure 5.2 also shows that increasing the shaking frequency and aeration rate 

leads to an increase in the kLa values with a greater dependency on the former. The increase in 

the shaking frequency results an increase in the displaced liquid height in the well, which in turn 

enhances the gas liquid interfacial area, a and hence kLa (Betts et al., 2014).  
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Figure 5.2. kLa variation in the controlled MBR at different shaking frequencies and aeration rates 
using (A) water (B) complex medium with 1 mL L-1 PPG and (C) vinasse medium with 1 mL L-1 
PPG; (●) 650 rpm, (▲) 750 rpm, (■) 800 rpm. Error bars denote one standard deviation about the 
mean (n=3). Experiments were performed as described in Section 2.11.1. 
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Table 5.1 summarizes and compares the kLa values obtained in the present work and those 

reported in the literature for the Micro-24. Whilst there is order of magnitude agreement between 

the values, differences between the various studies are likely due to the different media, cassettes 

and caps used. Different media might have different rheological properties that may influence the 

mixing behaviour and kLa values. Likewise, the presence of a single baffle and the central draft 

tube in the BFL and PERC cassettes, respectively, may also create different hydrodynamic 

behaviours in comparison to the REG cassette, which may also lead to variation in the measured 

oxygen transfer rate. Additionally, the type of caps fitted to each well may also have an impact on 

the kLa behaviour (Ramirez-Vargas et al., 2014).   

 

 

Table 5.1. Comparison of kLa values in Micro-24 between the present work and literature data. 
For the present work data, kLa values were determined as described in Section 2.11.1. 

kLa  

(h-1) 

Cassette Medium Reference 

46 – 143 

38 – 77 

21 – 67 

REG Water 

Complex medium with 1 mL L-1 PPG 

Vinasse medium with 1 mL L-1 PPG 

Present work 

4 – 53 

4 – 46 

4 – 22 

4 – 44 

REG  

 

PERC 

Proprietary CHO growth medium 

Water with 0.5 g L-1 Pluronic solution  

Proprietary CHO growth medium 

Water with 0.5 g L-1 Pluronic solution  

Betts et al. 

(2014) 

8 – 90 BFL and 

PERC 

Water Ramirez-Vargas 

et al. (2014) 

33 – 56 

(non-sparged) 

REG Galactose-limited, leucine-free defined 

medium 

Isett et al. 

(2007) 

 

 

 

5.3.1.2 Variation of kLa values in the 7.5 L STR 

 

Comparable experiments were performed in the 7.5 L STR. Figure 5.3 depicts the kLa profiles 

obtained using water, complex and vinasse media in the 7.5 L STR at different agitation speeds 

and aeration rates. Overall, a similar trend as in the controlled MBR was observed whereby the 

kLa values increased as the agitation speed and aeration rate were increased. In all three media, 

the impact of airflow rate on the measured kLa values was small which is in the agreement with 

the findings of Gill et al. (2008). For example, increasing the agitation rate by two-fold in water 

resulted in an enhancement in kLa of 3.2-fold while increasing the aeration rate from 1 - 2 vvm 

only gave an increase in kLa of approximately 1.3-fold. In the case of the STR an increase in the 

agitation speed will lead to an increase in energy dissipation throughout the vessel. This, in turn, 

facilitates the bubble breakage into smaller sizes and hence an increase in gas-liquid surface 

area, OTR and hence kLa.  
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The highest kLa values were determined in water at 2 vvm, which ranged between 57 and 474 h-

1. In complex and vinasse media, the range of kLa values was comparable although the absolute 

values were slightly lower i.e. 43 – 378 and 41 – 322 h-1, respectively. The similar impact of culture 

medium on kLa values as seen in the controlled MBR emphasizes the important role of the 

rheological factor in resulting the variation of the kLa profiles between the test fluids. It is observed 

that in any medium, the kLa range obtained in the 7.5 L STR spans over those achieved in the 

controlled MBR (Section 5.3.1.1), indicating the possibility of matching the kLa between the two 

scales for the scale-up purposes. This will be highlighted further in Section 5.3.3.  
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Figure 5.3. kLa variation in a 7.5 L STR at different agitation speeds and aeration rates using (A) 
water (B) complex medium with 1 mL L-1 PPG and (C) vinasse medium with 1 mL L-1 PPG; (●) 1 
vvm, (▲) 1.5 vvm, (■) 2 vvm. Error bars denote one standard deviation about the mean (n=3). 
Experiments were performed as described in Section 2.11.2. 
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The kLa variation in water and complex medium exhibited a linear relationship which is in 

agreement with previous studies (Islam, 2008; Baboo, 2012). On the other hand, the kLa profile 

for the vinasse medium showed two distinct phases: a linear increase in kLa was observed 

between 200 and 800 rpm whereas further increasing the speed from 800 to 1000 rpm resulted 

in a slight increase in the kLa values. Table 5.2 outlines the linear relationship between kLa and 

agitation speed developed for each medium at different airflow rates. The regression coefficient, 

R2 values determined for all equations were all greater than 0.9, indicating a good degree of 

linearity between kLa and agitation speed over the specified ranges.  

 

 

Table 5.2. Linear relationship between kLa and agitation speed (N) developed for each medium 

at different airflow rates. 

Medium Airflow rate 

(vvm) 

Equation  R2 

Water 1 kLa=0.31N - 9.15 0.95 

 1.5 kLa=0.47N - 55.69 0.98 

 2 kLa=0.51N - 58.54 0.98 

Complex medium with 1 mL L-1 

PPG 

1 kLa=0.33N - 37.92 0.99 

1.5 kLa=0.41N - 59.90 0.99 

 2 kLa=0.40N - 53.97 0.96 

Vinasse medium with 1 mL L-1 

PPG 

1 kLa=0.33N - 17.40 0.96 

1.5 kLa=0.35N - 3.12 0.91 

 2 kLa=0.39N - 7.66 0.96 

 

 

 

Figure 5.4 shows the comparison between the experimental and calculated kLa values of which 

the latter were determined using the equations as outlined in Table 5.2 for each medium. As 

shown, there is good agreement between the experimental and predicted kLa values for all three 

media. Furthermore, the kLa data obtained from this work generally showed good consistency 

with those reported in the literature as outlined in Table 5.3. Any discrepancy may be associated 

with the difference in medium and bioreactor operating conditions applied in each work.     
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Figure 5.4. Comparison between experimental and calculated kLa values in the 7.5 L STR using 
(●) water, (□) complex medium and (▲) vinasse medium. Dotted lines represent parity plot (x=y). 
Experimental kLa values were determined based on procedures described in Section 2.11.2.1. 
Calculated kLa were determined based on equations as outlined in Table 5.2. 

 

 

Table 5.3. Comparison of kLa values in a 7.5 L STR between present and literature data. For 
present work data, kLa determination was described as in Section 2.11.2.1. 

kLa (h-1) Medium  Agitation 

speed 

(rpm) 

Specific 

aeration rate 

(vvm) 

Reference 

36 – 474 

21 – 378 

29 – 322  

Water 

Complex medium 

Vinasse medium   

 200 – 1000 1 – 2 Present work 

160 – 275 TB   200 – 800 1 Islam (2008) 

~40 – 225 TB   400 – 800 1 Baboo (2012) 

 

 

 

To be able to relate kLa values to bioreactor operating conditions i.e. power input and gas velocity, 

it is useful to establish kLa correlations based on Van’t Riet (1979) correlation (Equation 2.3) 

(Section 2.11.2.2). The N3D2 term is associated with the agitation speed (N) and impeller diameter 

(Di) while superficial velocity (vs) is linked to the aeration rate. Although kLa is widely represented 

by the power per unit volume (P/VL) term, measurement of an accurate power input to the reactor 

might be a challenge. Alternatively, the N3Di
2 term may be used to replace P/VL term and this has 

been highlighted in several works (Yagi and Yoshida, 1975; Ozbek and Gayik, 2001). Equations 

5.1, 5.2 and 5.3 represent the correlations developed here for water, complex and vinasse media, 
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respectively over the full range of agitation and aeration rates studied. These correlations were 

obtained by fitting the models to the full experimental data sets as described in Section 2.11.2.2.    

 

 

kLa = 0.0256(N3Di
2)0.43(vs)0.52                 (Equation 5.1)  

 

kLa = 0.0086(N3Di
2)0.44(vs)0.12                 (Equation 5.2) 

 

kLa = 0.0104(N3Di
2)0.46(vs)0.27                 (Equation 5.3) 

 

 

A comparison of the values of the constants and exponent values obtained for the correlations 

developed in this study with those reported in the literature are summarised in Table 5.4. 

Generally good agreement was observed between the results reported here and the literature 

data. Any slight discrepancy is again thought to be due to variation in the media compositions and 

bioreactor designs used.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



142 
 

Table 5.4. Comparison of kLa correlation coefficient values obtained from this study and literature 
data. For the present work, the coefficient values were determined as described in Section 
2.11.2.2. 

Medium  Coefficient value Reference 

a b1 b2 c 

Water 

 

Complex 

medium + PPG 

 

0.0256 

 

0.0086 

0.43 

 

0.44 

- 

 

- 

0.52 

 

0.12 

Present work 

Vinasse medium 

+ PPG 

 

0.0104 0.46 - 0.27  

Water 

 

n.a. 0.42 - 0.62 Ozbek and Gayik 

(2001) 

Water n.a. 0.16 -0.37 0.4 – 1.0 0.3 – 0.48 Aksak (1990) 

Water n.a. 0.43 – 

0.68 

n.a. n.a. Yoshida et al. 

(1960) 

Water + glycerol 

+ millet jelly 

 

n.a. 0.74 n.a. n.a. Yagi and Yoshida 

(1975) 

 

Coalescing 

medium 

 

0.026 - 0.4 0.5 Van’t Riet (1979) 

Non-coalescing 

medium 

 

0.002 - 0.7 0.2 Van’t Riet (1979) 

TB  0.002 - 0.7 0.2 Islam et al. (2008) 

Water-ions 0.22 - 0.35 0.52 Gill et al. (2008) 

      

Water  0.01 - 0.48 0.40 Smith et al. (1977) 

 

Water 0.0068 - 0.94 0.65 Vilaca et al. (2000) 

Water 0.01 -  0.7 0.58 Linek et al. (2004)  

Key: ‘-‘ – not applicable; n.a. – data not available; a – refers to correlation constant; b1 – refers 

to coefficient of N3Di
2; b2 – refers to coefficient of P/VL (where applicable); c – refers to 

coefficient of vs. 

 

 

The experimental kLa values for the STRs, as discussed in Section 5.3.1.2 were further compared 

to the kLa values calculated from the developed correlations (Equations 5.1 - 5.3). The 

comparison between the experimental and calculated kLa data for each medium is presented in 

Figure 5.5. Generally, in water and complex medium, there is good agreement between the 

experimental and calculated kLa values with R2 values of 0.97 and 0.98, respectively. Meanwhile, 

for the vinasse medium, good comparability was observed up to 800 rpm, above which the model 

correlation seems to overpredict the experimental kLa values.  

 

Although the correlation (Equation 2.3) that relates the N3Di
2 term may not be widely referred to 

in the literature, it is shown here that it does demonstrate a reasonable fit to the data as the more 

commonly used P/VL term.  
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Figure 5.5. Comparison between experimental and calculated kLa values in the 7.5 L STR using 
(A) water, (B) complex medium and (C) vinasse medium. Dotted lines represent parity plot (x=y). 
Experimental kLa values were determined based on procedures described in Section 2.11.2.1. 
Calculated kLa were determined based on Equations 5.1 - 5.3. 
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5.3.2 Evaluation of options for large scale vinasse preparation  

 

As discussed in Section 4.3.3, two options for vinasse preparation prior to fermentation were 

proposed. Option 1, which included filtration as the sterilisation technique, was used for the small 

scale optimisation studies described in Section 4.3.4. Considering larger scale applications, 

filtration may not be ideal as it is costly (membrane surface area required) and time consuming 

(low permeate fluxes with complex media). Therefore, a more efficient and cost effective 

procedure needs to be developed. On the other hand, evaluation of Option 2 (Figure 2.1) has 

been discussed in Section 4.3.3.2 whereby the results showed that the AC pre-treatment has 

insignificant impact on cell growth and CV2025 ω-TAm production. Thus, in this section, several 

other pre-processing options for vinasse suitable for large scale applications (designated as 

Options 3-5 in Figure 2.1) will be evaluated in terms of cell growth performance and CV2025 ω-

TAm production. Option 1 will be referred to as a benchmark. This study was carried out in the 

controlled MBR with the experimental procedure as described in Section 2.8.2.  

 

As outlined in Figure 2.1, in both Options 3 and 4, autoclaving was used as the sterilisation 

technique for vinasse. In Option 3, the autoclaved vinasse was used directly for fermentation while 

in Option 4, the autoclaved vinasse medium was supplemented with filter sterilised D-galactose 

at two different concentrations (0.7 and 1.7 g L-1). The former concentration represents the 

diminished concentration of D-galactose determined after autoclaving raw vinasse while the latter 

is equivalent to that in 17% (v/v) diluted vinasse. Finally, in Option 5, no sterilisation step was 

performed after pH adjustment. The vinasse medium prepared from Option 5 is hereafter referred 

to as pasteurised dilute vinasse. In all fermentations, the diluted vinasse medium (17% v/v) was 

supplemented with 10 g L-1 yeast extract and 0.15 g L-1 kanamycin.  

 

Figure 5.5 shows the time course of fermentations using vinasse media prepared via different 

options 1 and 3 - 5. It is clear that the same overall cell growth trends can be observed across all 

cultures. Apparently, in cultures employing autoclaved vinasse, no inhibition of cell growth was 

observed although Maillard reactions during heating might be expected to have an impact. The 

Maillard reaction occurs between a carbonyl group from a reducing sugar and an amino acid 

group from a nitrogenous substrate (Maillard, 1912). Rufian-Henares et al. (2006) and Hauser et 

al. (2014) observed the inhibitory impact of Maillard reaction products on E. coli cell growth. The 

extent of Maillard reactions may be influenced by several factors such as temperature and 

duration of the heating step, which in turn may determine the yield and composition of the resulting 

Maillard reaction products (Mu et al., 2016).  

 

It can be inferred from the data shown in Figure 5.6 that the extent of the Maillard reactions that 

occur following autoclaving of the vinasse medium does not result in reaction products that inhibit 

the cell growth. It is also interesting to note the comparable cell growth performance obtained in 

fermentations employing pasteurised vinasse as found when using filtered vinasse. This further 

suggests the promising application of the pasteurised vinasse directly for a fermentation.  
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Figure 5.6. Comparison of batch fermentation kinetics of E. coli BL21 (DE3) cultured in the 
controlled MBR using (●) filtered dilute vinasse medium, (▲) autoclaved vinasse medium without 
D-galactose, (■) autoclaved vinasse medium with 0.7 g L-1 D-galactose, (♦) autoclaved vinasse 
medium with 1.7 g L-1 D-galactose and (○) pasteurized diluted vinasse medium. Error bars denote 
one standard deviation about the mean (n=3). Fermentations were performed as described in 
Section 2.8.2. Biomass concentration was determined as described in Section 2.12.2. 

  

 

A growth assessment was carried out in order to examine the growth of E. coli BL21 (DE3) on 

agar plates using pasteurised and filtered dilute vinasse as fermentation media (Section 2.12.11). 

Figure 5.7 compares the results obtained using pasteurised and filtered dilute vinasse media, 

respectively. It was observed that after 72 hours of incubation, there was no visible growth of 

microorganisms in the control experiments that contained either pasteurized dilute vinasse 

(Figure 5.7 (A)) or filtered dilute vinasse (Figure 5.7 (C)). Meanwhile, roughly comparable growth 

is seen after 24 h of incubation when 48 h samples from the E. coli BL21 (DE3) cultures, initially 

grown using either pasteurized or filtered dilute vinasse, was applied on the agar plates, as shown 

in Figures 5.7 (B) and 5.7 (D), respectively. The presence of kanamycin, which is the CV2025 ω-

TAm selection marker used in this study also facilitates the culture of E. coli BL21 (DE3) pQR801 

during the early stage of the culture post inoculation.   
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Figure 5.7. LB-agar plates spread with (A) blank pasteurised dilute vinasse medium, after 72 h 
of incubation and (B) 48 h sample of E. coli BL21 (DE3) culture grown using pasteurised dilute 
vinasse medium, after 24 h of incubation. (C) blank filtered dilute vinasse medium after 72 h of 
incubation and (D) 48 h sample of E. coli BL21 (DE3) culture grown using filtered dilute vinasse 
medium, after 24 h of incubation. Preparation of LB-agar plates as described in Section 2.3.3. 
Growth assessment was performed as described in Section 2.12.11. 

 

 

The corresponding CV2025 ω-TAm production from the cultures grown using different types of 

vinasse media was also evaluated. Figure 5.8 compares the CV2025 ω-TAm volumetric and 

specific activity obtained at several time points during the different cultures. In the culture where 

filtered dilute vinasse was used, the highest volumetric and specific activity of CV2025 ω-TAm 

attained after 48 h were 6.4 U ml-1 and 286.8 U gdcw
-1, respectively. Meanwhile, the maximum 

volumetric and specific activity attained in cultures using dilute autoclaved vinasse medium only 

reached 4.4 U ml-1 and 160.3 U gdcw
-1, respectively. It was initially expected that the decrease of 

the biocatalyst titre may be associated with the reduction of D-galactose by about 46% after 

autoclaving. As discussed in Chapter 4, D-galactose in vinasse was identified as acting as an 

inducer to the lac operon, resulting in expression of CV2025 ω-TAm in E. coli BL21 (DE3). 

Nevertheless, supplementing the dilute autoclaved vinasse medium with synthetic D-galactose, 

as shown by the performances of cultures using autoclaved vinasse (AV) II and AV III, was not 

able to match the CV2025 ω-TAm specific activity attained in fermentations using dilute filtered 

vinasse medium (although an enhancement of about 14 - 17% was observed with D-galactose 

supplementation). The maximum CV2025 ω-TAm volumetric and specific activity achieved using 

dilute pasteurized vinasse medium were 6.4 U ml-1 and 246.5 U gdcw
-1, respectively, which were 

(C) 

(A) (B) 
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approximately 30% and 35% higher than the maximum obtained using dilute autoclaved vinasse 

medium. This further supports the use of the pasteurised vinasse for larger scale fermentations.  

 

 

 

Figure 5.8. (A) Volumetric activity and (B) specific activity of CV2025 ω-TAm from E. coli BL21 
(DE3) fermentations samples at (   ) 12 h, (□) 24 h and (■) 48 h using dilute filtered vinasse (FV), 
dilute autoclaved vinasse (AV I), dilute autoclaved vinasse with 0.7 g L-1 D-galactose (AV II), dilute 
autoclaved vinasse with 1.7 g L-1 D-galactose (AV III) and dilute pasteurized vinasse (PV). 
Biomass growth as shown in Figure 5.7. Error bars denote one standard deviation about the mean 
(n=3). The CV2025 ω-TAm assay was performed as described in Section 2.12.5.  
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The complexity of the vinasse composition has made it challenging to fully understand the 

interaction of various components during processing. As discussed in Section 4.3.1, vinasse 

consists of several compounds including reducing sugars and nitrogenous substrates (Table 4.1). 

The existence of these two compounds in vinasse poses a challenge regarding heat sterilisation 

in that the high temperature may lead to Maillard reaction products. Whilst no apparent inhibition 

was observed on the cell growth, the decrease of the biocatalyst titre despite the D-galactose 

supplementation is not fully understood. It is hypothesised that an unknown inhibitory pathway 

might have been formed upon autoclaving that in turn might impact the induction of the lac operon 

and hence production of CV2025 ω-TAm.  

 

The feasibility of using dilute pasteurised vinasse directly for fermentations offers an additional 

benefit for vinasse valorisation. Vinasse has already been exposed to a high temperature during 

distillation where the microbial load will already have been reduced. Owing to the other potential 

benefits such as low cost, no requirement for IPTG induction (Section 4.3.2.1) and simple pre-

processing steps (Section 4.3.3.2), direct use of pasteurised vinasse offers practical and 

economic fermentation feedstock. Subsequent work will be focusing on using pasteurised vinasse 

as a fermentation medium.   

 

 

5.3.3 Fermentation scale-up at matched kLa and specific aeration rate 

 

5.3.3.1 Scale-up with complex medium 

 

Previous works have suggested the use of kLa as a basis for scale-up of aerobic fermentations 

between shaken microwells and laboratory stirred tank bioreactors (Section 1.5.2). The selection 

of a matched kLa value between the two reactors in this study was restricted to the value attained 

at 800 rpm in the controlled MBR, the optimal speed recommended by the supplier for the REG 

cassette, and also to 1 vvm, the standardised specific aeration rate for the fermentations in both 

reactors. Figure 5.9 shows the comparison of kLa profile at 1 vvm in the controlled MBR and 7.5 

L STR using a complex medium. The matched kLa value selected was 75 h-1. Based on Equation 

5.2, the agitation speed in the 7.5 L STR determined at 75 h-1 and 1 vvm was 374 rpm. The 

shaking frequency and agitation speed in the controlled MBR and 7.5 L STR were maintained 

throughout the fermentation so as to provide an approximately uniform level of oxygen transfer 

rate. The same inoculum, which was prepared in shake flasks (Section 2.7), was used for both 

reactors in order to eliminate any possible variation arising from the seed culture. The optimal 

IPTG induction conditions as established in Section 3.3.3.1 were applied in both systems. Table 

5.5 outlines the process parameters of both reactors for fermentations at 75 h-1.  
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Figure 5.9. Comparison of kLa profile in (▲) the controlled MBR and (●) a 7.5 L STR using a 
complex medium with 1 mL L-1 PPG aerated at 1 vvm as a function of shaking frequency or 
agitation speed respectively. Horizontal dotted line indicates the matched kLa value between the 
two reactors. Error bars denote one standard deviation about the mean (n=3). Experiments were 
performed as described in Section 2.11.1 (controlled MBR) and Section 2.11.2 (7.5 L STR). 

  

 

Table 5.5. Process parameters in the controlled MBR and 7.5 L STR during scale-up using the 
complex medium at a matched kLa of 75 h-1. Fermentations were performed as described in 
Section 2.8.2 (controlled MBR) and Section 2.8.3 (7.5 L STR). 

Parameter Controlled MBR 7.5 L STR 

Total reactor volume 10 mL 7.5 L 

Working volume 6.5 mL 5 L 

Shaking frequency / agitation speed 800 rpm 374 rpm 

Orbital shaking diameter 2.5 mm Not applicable 

Specific aeration rate 1 vvm 1 vvm 

kLa  75 h-1 75 h-1 

DOT 30% 30% 

pH 7 7 

Temperature 37 oC 37 oC 
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Figures 5.10 and 5.11 show the fermentation kinetic profiles achieved in the controlled MBR and 

7.5 L STR, respectively. A comparable trend of cell growth was observed between the cultures 

grown in both reactors whereby a stationary phase was achieved after 12 h of incubation, 

accompanied by the reciprocal decrease of the glycerol concentrations. In both cases, complete 

utilisation of glycerol was achieved after 24 hours. Additionally, the maximum specific growth 

rates attained in the controlled MBR (0.36 h-1) and 7.5 L STR (0.38 h-1) were also comparable.  

 

Whilst there was direct gas sparging in both the controlled MBR and 7.5 L STR, the difference of 

DO profiles observed between both systems as depicted in Figures 5.10 (B) and 5.11 (B), was 

likely due to dissimilar levels of gas bubble break-up and dispersion and dissimilar control 

mechanisms. In the MBR, the DO was controlled by blending oxygen and nitrogen that resulted 

in an instantaneous regulation around the set point throughout the course of the fermentation. In 

contrast, in the 7.5 L STR, the DO was controlled by blending air and oxygen. Initially the DO 

profile shows a gradual decrease with increasing biomass concentration until the set point was 

reached. Thereafter, the DO was maintained around the set point until the point the oxygen 

demand decreased, which led to an increase in DO towards the end of the cultivation. In general, 

the DO in both reactors was successfully maintained above the critical level for E. coli BL21 (DE3) 

growth, which is about 10% (Junker, 2004).  
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Figure 5.10. (A) E. coli BL21 (DE3) fermentation kinetics in the controlled MBR at a kLa of 75 h-

1: (▲) biomass concentration, (●) glycerol, (■) CV2025 ω-TAm specific activity. (B) Online data 
showing (-) DO, (x) temperature and (+) pH profiles obtained in the controlled MBR. Dotted vertical 
line indicates the point of IPTG induction. Dotted horizontal lines indicate the set point for each 
process parameter. Error bars denote one standard deviation about the mean (n=3). 
Fermentations were performed as described in Section 2.8.2. Analytical procedures were 
performed as described in Section 2.12.2 (biomass concentration), Section 2.12.5 (CV2025 ω-
TAm assay) and Section 2.12.6 (glycerol).   

0

50

100

150

200

250

300

350

400

450

500

0

5

10

15

20

25

30

35

0 5 10 15 20 25

C
V

2
0
2
5
 ω

-T
A

m
 s

p
e
c
if
ic

 a
c
ti
v
it
y 

(U
 g

d
c
w

-1
) 

B
io

m
a
s
s
 c

o
n
c
e
n
tr

a
ti
o
n
 (

g
d

c
w

L
-1

),
 

G
ly

c
e
ro

l 
(g

 L
-1

)

Time (h)

0

2

4

6

8

10

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25

p
H

D
O

 (
%

),
 T

 (
o
C

)

Time (h)

(A) 

(B) 



152 
 

 

 

Figure 5.11. (A) E. coli BL21 (DE3) fermentation kinetics in the 7.5 L STR at a kLa of 75 h-1: (▲) 
biomass concentration, (●) glycerol, (■) CV2025 ω-TAm specific activity. (B) Online data showing 
(-) DO, (x) temperature and (+) pH profiles obtained in the 7.5 L STR. Dotted vertical line indicates 
the point of IPTG induction. Dotted horizontal lines indicate the set point for each process 
parameter. Error bars denote one standard deviation about the mean (n=3). Fermentations were 
performed as described in Section 2.8.3. Analytical procedures were performed as described in 
Section 2.12.2 (biomass concentration) and Section 2.12.6 (glycerol).   
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Figure 5.12 depicts the CV2025 ω-TAm volumetric and specific activity attained at different time 

points in the controlled MBR and 7.5 L STR. Although the CV2025 ω-TAm volumetric activity 

between the two platforms were statistically different at a significance level of 0.05, particularly 

from 9 to 24 h, a similar trend was observed in both cultivations whereby the highest titres were 

achieved at 12 h. In addition, the CV2025 ω-TAm specific activity achieved in both platforms at 

every time interval were found to be statistically similar. A good comparability of the biocatalyst 

specific activity is crucial in order to show that there is no loss of process efficiency during the 

scale translation.  A summary of the fermentation kinetics parameters obtained in both controlled 

MBR and 7.5 L STR at 75 h-1 is outlined in Table 5.6. 
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Figure 5.12. (A) Volumetric and (B) specific activity of CV2025 ω-TAm from E. coli BL21 (DE3) 
fermentations performed at a matched kLa of 75 h-1 at different time points in (□) controlled MBR 
and (■) 7.5 L STR cultures. Biomass growth as shown in Figure 5.10 (controlled MBR) and Figure 
5.11 (7.5 L STR). Error bars denote one standard deviation about the mean (n=3). The CV2025 
ω-TAm assay was performed as described in Section 2.12.5. 
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Table 5.6. Comparison of fermentation kinetics parameters between the controlled MBR and 7.5 
L STR at a matched kLa value of 75 h-1. Fermentation kinetics as shown in Figure 5.10 (controlled 
MBR) and Figure 5.11 (7.5 L STR). Analytical procedures were performed as described in Section 
2.12.2 (biomass concentration), Section 2.12.5 (CV2025 ω-TAm assay) and Section 2.12.6 
(glycerol). 

 

Parameter Controlled MBR 7.5 L STR p-value 

Controlled MBR 

vs. 7.5 L STR 

Xmax (gdcw L-1) 11.5 ± 0.6 15.5 ± 0.7 0.05 

µ (h-1) 0.36 ± 0.01 0.38 ± 0.01 0.29 

Maximum CV2025 ω-TAm    

   specific activity (U gdcw
-1) 

385 ± 13  454 ± 15 0.07 

Maximum CV2025 ω-TAm   

   volumetric activity (U ml-1)     

7.6 ± 0.4 14.3 ± 0.2 0.01 

YX/S (g g-1) 0.42 ± 0.00 0.51 ± 0.00 0.01 

  

 

Parity plots of biomass concentration, glycerol consumption and CV2025 ω-TAm volumetric and 

specific activity between the two scales are shown in Figure 5.13. Except for CV2025 ω-TAm 

volumetric activity, in general, plots show good similarity with the points lying mostly near to the 

parity lines. These results demonstrate the promising feasibility of a 769-fold volumetric scale-up 

between the two platforms using a matched kLa value and specific aeration rate as the scaling 

parameters. 
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Figure 5.13. Parity plots of (A) biomass concentration, (B) CV2025 ω-TAm volumetric activity, 
(C) CV2025 ω-TAm specific activity and (D) glycerol concentration in the controlled MBR and 7.5 
L STR.  Fermentation kinetics were shown in Figure 5.10 (controlled MBR) and Figure 5.11 (7.5 
L STR). Dotted lines represent parity lines (x=y).  

 

 

5.3.3.2 Scale-up with vinasse medium 

 

As decided in Section 5.3.2, a pasteurised dilute vinasse medium represents a potential 

biorefinery fermentation feedstock.  In this case, the same scale-up procedure as in Section 

5.3.3.1 was applied whereby matched kLa values and specific aeration rates were used as the 

scaling parameters. The comparison of the kLa profile at 1 vvm in the controlled MBR and 7.5 L 

STR is shown in Figure 5.14 where the matched kLa value selected was 66 h-1. Equation 5.3 was 

used to determine the corresponding agitation speed in the 7.5 L STR at 66 h-1 and 1 vvm, which 

was found to be 298 rpm. The shaking frequency and agitation speed in the controlled MBR and 

7.5 L STR were maintained at 800 and 298 rpm, respectively throughout the fermentation. Table 

5.7 outlines the process parameters used for both reactors for fermentations at 66 h-1. A similar 

seed culture was applied in fermentations in both systems (Section 2.7). 

 

 

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35
7

.5
 L

 S
T

R
 [

G
ly

c
e

ro
l]
 (

g
 L

-1
)

Controlled MBR [Glycerol] (g L-1)

(D) 

R2=0.9227 



158 
 

  

Figure 5.14. Comparison of kLa profile in (▲) the controlled MBR and (●) a 7.5 L STR using 
vinasse medium with 1 mL L-1 PPG aerated at 1 vvm as a function of shaking frequency or 
agitation speed, respectively. Horizontal dotted line indicates the matched kLa value between the 
two reactors. Error bars denote one standard deviation about the mean (n=3). Experiments were 
performed as described in Section 2.11.1 (controlled MBR) and Section 2.11.2 (7.5 L STR). 

 

 

Table 5.7. Process parameters in the controlled MBR and 7.5 L STR during scale-up using the 
vinasse medium at a matched kLa of 66 h-1. Fermentations were performed as described in 
Section 2.8.2 (controlled MBR) and Section 2.8.3 (7.5 L STR). 

Parameter Controlled MBR 7.5 L STR 

Total reactor volume 10 mL 7.5 L 

Working volume 6.5 mL 5 L 

Shaking frequency / agitation speed 800 rpm 298 rpm 

Orbital shaking diameter 2.5 mm Not applicable 

Specific aeration rate 1 vvm 1 vvm 

kLa  66 h-1 66 h-1 

DOT 30% 30% 

pH 7 7 

Temperature 37 oC 37 oC 

 

 

Figures 5.15 and 5.16 represent the fermentation profiles in the controlled MBR and 7.5 L STR 

at 66 h-1, respectively. The results showed good comparability of cell growth kinetics between the 

two platforms. The same trend for substrate consumption is also exhibited in both reactors 

whereby D-mannitol was the primary substrate followed by a simultaneous consumption of 

glycerol, D-xylitol and D-dulcitol.  
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Figure 5.15. (A) E. coli BL21 (DE3) fermentation performance in the controlled MBR at a kLa of 
66 h-1 (B) Online data showing (-) DO, (x) temperature and (+) pH profiles obtained in in the 
controlled MBR throughout the fermentation course. Dotted horizontal lines indicate the set point 
for each process parameter. Error bars denote one standard deviation about the mean (n=3). 
Fermentations were performed as described in Section 2.8.2. Analytical procedures were 
performed as described in Section 2.12.2 (biomass concentration), Section 2.12.6 (glycerol and 
acetate) and Section 2.12.7 (sugars and sugar alcohols).   
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Figure 5.16. (A) E. coli BL21 (DE3) fermentation kinetics in the 7.5 L STR at a kLa of 66 h-1 (B) 
Online data showing (-) DO, (x) temperature and (+) pH profiles obtained in 7.5 L STR throughout 
the fermentation course. Dotted horizontal lines indicate the set point for each process parameter. 
Error bars denote one standard deviation about the mean (n=3). Fermentations were performed 
as described in Section 2.8.3. Analytical procedures were performed as described in Section 
2.12.2 (biomass concentration), Section 2.12.6 (glycerol and acetate) and Section 2.12.7 (sugars 
and sugar alcohols).   
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Figure 5.17 depicts the CV2025 ω-TAm volumetric and specific activity attained at different time 

intervals in the two platforms. The highest CV2025 ω-TAm volumetric and specific activity in both 

cultivations were achieved at 48 h. Generally, the CV2025 ω-TAm volumetric and specific activity 

obtained from fermentations in both reactors at every time interval were found to be statistically 

equivalent with respect to a significance level of 0.05. The summary of the fermentation kinetics 

parameters between the controlled MBR and 7.5 L STR at 66 h-1 is summarised in Table 5.8.  

 

 

 

Figure 5.17. (A) Volumetric activity and (B) specific activity of CV2025 ω-TAm from E. coli BL21 
(DE3) fermentations performed at a matched kLa of 66 h-1 in (□) controlled MBR and (■) 7.5 L 
STR cultures. Biomass growth as shown in Figure 5.15 (controlled MBR) and Figure 5.16 (7.5 L 
STR). Error bars denote one standard deviation about the mean (n=3). The CV2025 ω-TAm 
assay was performed as described in Section 2.12.5. 
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Table 5.8. Comparison of fermentation kinetics parameters between the controlled MBR and 7.5 
L STR at a matched kLa value of 66 h-1. Fermentation kinetics as shown in Figure 5.15 (controlled 
MBR) and Figure 5.16 (7.5 L STR). Analytical procedures were performed as described in Section 
2.12.2 (biomass concentration), Section 2.12.5 (CV2025 ω-TAm assay) and Section 2.12.6 
(glycerol and acetate).   

Parameter Controlled MBR 7.5 L STR p-value 

Controlled MBR 

vs. 7.5 L STR 

Xmax (gdcw L-1) 11.3 ± 0.7 11.7 ± 0.2 0.67 

µ (h-1) 0.35 ± 0.01 0.35 ± 0.02 1.0 

Maximum CV2025 ω-TAm specific 

    activity (U gdcw
-1) 

246.5 ± 3.2 224.7 ± 10.4 0.17 

Maximum CV2025 ω-TAm 

   volumetric activity (U ml-1)     

6.4 ± 0.1 5.5 ± 0.5 0.07 

 

 

 

Figure 5.18 illustrates parity plots of biomass concentration, substrate utilisation and product 

formation obtained in the two different scale bioreactors. Although some disparities were 

observed for D-dulcitol (Figure 5.18 (F)) and D-xylitol (Figure 5.18 (G)) consumption profiles, the 

R2 values recorded for the main factors such as biomass concentration (Figure 5.18 (A)), CV2025 

ω-TAm volumetric activity (Figure 5.18 (B)), CV2025 ω-TAm specific activity (Figure 5.18 (C)), D-

mannitol (Figure 5.18 (D)), and glycerol (Figure 5.18 (E)) were greater than 0.95, indicating good 

reproducibility between the two scales. In general, along with the results discussed in Section 

5.3.3.1, the results here further confirmed the reproducibility of the CV2025 ω-TAm production 

between the two reactors using vinasse medium. This gives an initial insight into the potential of 

biocatalyst production using a renewable feedstock on a larger scale.   
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Figure 5.18. Parity plots of (A) biomass concentration, (B) CV2025 ω-TAm volumetric activity (C) 
CV2025 ω-TAm specific activity, (D) D-mannitol, (E) glycerol, (F) D-dulcitol and (G) D-xylitol 
consumption in the controlled MBR and 7.5 L STR. Fermentation kinetics were shown in Figure 
5.15 (controlled MBR) and Figure 5.16 (7.5 L STR), respectively. Dotted lines represent parity 
lines (x=y).  

 

 

5.3.3.3 Opportunities and challenges of scale translation between the controlled MBR 

and STR 

 

In comparison to conventional MWP technologies (Section 1.4.1), one of the benefits of scaling 

up using a controlled MBR system is the potential for pH and DO control. Most previous studies 

that reported on scale-up between MWP and STR did not have pH and DO control at the microwell 

scale (Ferreira-Torres et al., 2005; Islam et al., 2008; Kensy et al., 2009a; Baboo et al., 2012). As 

discussed in Section 3.2.2, accumulation of organic acid such as acetate during fermentation in 

shake flasks with no pH control leads to a severe drop in pH from 7 to about 5.6, thus resulting in 

inhibition of cell growth and consequently a reduction in product titre. Moreover, the lack of direct 

gas sparging and DO control may also cause oxygen-limitation. This will retard the growth of 

aerobic microorganisms and consequently hinder the optimal production of protein of interest 

while may also trigger the synthesis of the undesirable side products (Marques et al., 2010). 

Therefore, the availability of pH and DO control during the scale translation between the controlled 

MBR and STR as demonstrated in this work, will enable better defined and more predictive scale-

up than in the earlier MWP studies.  

 

One limitation, however, is the small window in which kLa values overlap between the controlled 

MBR and 7.5 L STR and the lower values found in the controlled MBR (Section 5.3.1). Whilst the 

mixing in the controlled MBR can be considered ideal at 800 rpm, nonetheless, the kLa value 

attained at that particular speed in the 7.5 L STR was lower than matched kLa values used in 

previous works which ranged between 115 and 277 h-1 (Michelleti et al., 2006; Islam et al., 2008; 
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Baboo et al., 2012). Further intensification of biocatalyst production in STR may be thereof be 

expected by enhancing kLa and oxygen transfer rate. 

 

In general, the scale-up approach based on similar kLa values and specific aeration rates as 

demonstrated in this study was found adequate to support the scale translation between the 

controlled MBR and STR for both media. This confirms the reliability of the former platform as a 

small scale system that can support rapid and parallel studies of biocatalyst production as 

discussed in Section 3.3.3 (complex medium) and Section 4.3.4 (vinasse medium). In the 

subsequent section, opportunities for further intensification of CV2025 ω-TAm production in the 

7.5 L STR at higher kLa values will be explored.  

 

 

5.3.4 Enhancement of STR biocatalyst productivity at higher kLa values 

 

Having established a feasible basis for scale-up, the feasibility of further enhancing CV2025 ω-

TAm production in the 7.5 L STR using both media was explored. The kLa during fermentation 

was increased by 4-fold resulting in agitation speeds of 1073 and 818 rpm in complex and vinasse 

media, respectively. The increased kLa values in both media were chosen so as to yield agitation 

speeds that lie within the normal range operated for a 7.5 L STR, which is approximately between 

600 and 1000 rpm. Figures 5.19 and 5.20 show the fermentation kinetic profiles achieved in the 

7.5 L STR at the abovementioned agitation speeds using complex and vinasse media, 

respectively. 

 

In fermentations using a complex medium (Figure 5.19 (A)), increasing the kLa by 4-fold led to an 

increase in maximum biomass concentration and volumetric CV2025 ω-TAm activity by about 1.2 

and 1.4-fold, respectively. Meanwhile, in vinasse medium (Figure 5.20 (A)), it was found that the 

maximum biomass concentration increased by 1.4-fold whereas the volumetric CV2025 ω-TAm 

activity rose by 1.9 fold. These results show that there is some potential to further improve 

fermentation performance by increasing kLa once the initial scale-up has been verified. As also 

shown in Figures 5.19 (A) and 5.20 (A) the carbon source utilisation follows the same trends as 

shown previously (Figures 5.11 and 5.16) only they occur slightly more rapidly due to the 

increased cell growth and CV2025 ω-TAm synthesis. Table 5.9 summarises the kinetic 

parameters obtained from fermentations performed using both media.   
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Figure 5.19. (A) E. coli BL21 (DE3) fermentation kinetics in the 7.5 L STR using complex medium 
at a kLa of 302 h-1. Dotted vertical line indicates the point of IPTG induction: (▲) biomass 
concentration, (●) glycerol, (■) CV2025 ω-TAm specific activity. (B) Online data showing DO, 
temperature and pH profiles obtained in the 7.5 L STR throughout the fermentation course. Dotted 
vertical line indicates the point of IPTG induction. Dotted horizontal lines indicate the set point for 
each process parameter. Error bars denote one standard deviation about the mean (n=3). 
Fermentations were performed as described in Section 2.8.3. Analytical procedures were 
performed as described in Section 2.12.2 (biomass concentration), Section 2.12.5 (CV2025 ω-
TAm assay) and Section 2.12.6 (glycerol).   
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Figure 5.20. (A) E. coli BL21 (DE3) fermentation kinetics in the 7.5 L STR using vinasse medium 
at a kLa of 264 h-1 (B) Online data showing DO, temperature and pH profiles obtained in the 7.5 
L STR throughout the fermentation course. Dotted horizontal lines indicate the set point for each 
process parameter. Error bars denote one standard deviation about the mean (n=3). 
Fermentations were performed as described in Section 2.8.3. Analytical procedures were 
performed as described in Section 2.12.2 (biomass concentration), Section 2.12.5 (CV2025 ω-
TAm assay), Section 2.12.6 (glycerol and acetate) and Section 2.12.7 (sugars and sugar 
alcohols).   

 

 

0

2

4

6

8

10

0

20

40

60

80

100

120

0 10 20 30 40 50

p
H

D
O

 (
%

),
 T

 (
o
C

)

Time (h)

DO

T

pH

(A) 

(B) 



169 
 

Table 5.9. Comparison of fermentation kinetic parameters in the 7.5 L STR using complex and 
vinasse media at initial scale-up kLa values and 4-fold increased kLa values. Fermentation kinetics 
were shown in Figure 5.19 (A) (complex medium) and Figure 5.20 (A) (vinasse medium). 
Fermentations were performed as described in Section 2.8.3. Analytical procedures were 
performed as described in Section 2.12.2 (biomass concentration), Section 2.12.5 (CV2025 ω-
TAm assay).  

 

Medium kLa 

(h-1) 

µ (h-1) Xmax  

(gdcw L-1) 

Maximum CV2025 

ω-TAm specific 

activity (U gdcw
-1)  

Maximum 

CV2025  

ω-TAm 

volumetric 

activity  

(U mL-1) 

Complex medium 75 0.38 ± 0.01 15.5 ± 0.7 453.5 ± 15.0 14.3 ± 0.2 

302 0.43 ± 0.04 19.1 ± 1.8 504.2 ± 4.0 20.5 ± 0.8 

Vinasse medium 66 0.35 ± 0.02 11.7 ± 0.2 224.7 ± 10.4 5.5 ± 0.5 

264 0.35 ± 0.03 16.7 ± 0.6 295.1 ± 6.9 10.6 ± 0.1 

 

 

Finally since DO could be adequately controlled in the fermentations with both media, 

developments could focus on fed-batch operation to increase biomass and CV2025 ω-TAm yields 

further. In this case, other scale-up bases might need to be considered such as matched mixing 

time that has been reported to be relevant for high cell density cultivation of yeast and E. coli fed-

batch cultures (Junker, 2004).    

 

 

5.4 Summary 

 

The overall aim of this chapter of establishing a suitable basis for scale-up of controlled MBR 

fermentations to a stirred laboratory scale reactor has been achieved. Initially, characterisation of 

kLa in both reactors was performed (Section 5.3.1). This provided an understanding of how 

oxygen transfer capability varied as a function of bioreactor operating conditions (Figures 5.2 and 

5.3). The overlap in kLa values at the two scales suggested the feasibility of using matched kLa 

as a suitable basis for E. coli cultivations from the controlled MBR to a 7.5 L STR (Section 5.3.3) 

for both complex (Figures 5.10, 5.11 and 5.12) and vinasse media (Figures 5.15, 5.16 and 5.17).  

 

In the case of the vinasse medium, a suitable pre-processing procedure particularly for large scale 

fermentations has been proposed (Section 5.3.2). The feasibility of using pasteurised dilute 

vinasse directly for fermentations has further enhanced the viability of this feedstock for use within 

an integrated sugar beet biorefinery (Figures 5.6 and 5.8). The minimal pre-processing required 

with no additional sterilisation after ethanol distillation offers an economic advantage in terms of 

time and energy saving. Furthermore, the use of pasteurised dilute vinasse has been proven to 
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be feasible for a laboratory scale fermentation as demonstrated in the 7.5 L STR (Sections 5.3.3 

and 5.3.4).  

 

The scale-up comparisons with both complex and vinasse media showed good comparability in 

terms of the trends in cell growth, substrate consumption and product formation (Section 5.3.3). 

Although further improvement could be made in order to increase the comparability of maximum 

biomass concentration and CV2025 ω-TAm volumetric activity for fermentations using a complex 

medium (Figures 5.10 – 5.12), the results shown in vinasse medium were nonetheless promising 

with little significant difference between the two scales (Figures 5.15 – 5.17). Overall, the 

feasibility of a 769-fold scale-up between the two reactors has confirmed the promising role of the 

controlled MBR as a HTP platform for early process development studies. Further enhancement 

of the biocatalyst production at higher kLa values (Section 5.3.4) indicated the potential of further 

improving fermentation performance at STR scale (Table 5.9). In the following chapter, general 

conclusions from these studies and recommendations for future work will be discussed.     
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CHAPTER 6 
 

GENERAL CONCLUSIONS AND FUTURE WORK 
  

 

6.1 General conclusions 

 

The emerging need for cost effective and sustainable productions of industrial biocatalysts has 

spurred on the creation of new technologies to speed their development and optimise their 

manufacture. This work has established HTP methodologies for characterisation and optimisation 

of industrial biocatalysts for use within a biorefinery context in line with the main aim of this thesis 

as stated in Section 1.9. The research undertaken has demonstrated a novel concept for on-site 

production of CV2025 ω-TAm within the framework of an integrated sugar beet biorefinery. This 

has been achieved by exploitation of one of the biorefinery waste streams, sugar beet vinasse as 

a cheap and renewable fermentation feedstock. Several key findings and their significance will 

be discussed in detail in the following sub sections.    

 

  

6.1.1 Controlled MBR 

 

As mentioned in Chapter 3, the primary objective was to establish a parallel cultivation platform 

using a 24-well, controlled MBR system (Micro-24) to characterise biocatalyst production (Figure 

2.2). Initially, the basic culture conditions for CV2025 ω-TAm production were established 

whereby a suitable synthetic-based medium that favoured maximum biomass concentration and 

biocatalyst titre was selected (Section 3.3.1). In particular, the results indicated superior 

performance with a complex medium (Figures 3.1 and 3.2). Establishment of a standard culture 

using a pre-defined medium in shake flasks served as a first benchmark in this study for later 

comparison with the results obtained using the controlled MBR and also vinasse medium. 

Subsequently, the utility of the controlled MBR was first evaluated in terms of measurement and 

control of key process parameters like temperature, pH and DO (Figure 3.3) as well as the culture 

reproducibility (Figures 3.4 and 3.5). Good measurement and control of the process parameters 

were observed and this has validated the functionality of the MBR in providing a controlled 

environment throughout the cultivation. Furthermore, the reproducibility of the culture 

performance throughout the MBR has confirmed the suitability of the platform for parallel studies. 

Following that, an E. coli BL21 (DE3) fermentation expressing CV2025 ω-TAm was successfully 

developed in the controlled MBR system (Section 3.3.2), demonstrating enhancements of 3.7, 

2.1 and 2.2-fold of maximum biomass concentration (Figure 3.6), CV2025 ω-TAm volumetric and 

specific activity respectively, over the conventional shake flask culture. This has further confirmed 

the advantages offered by the MBR as a result of the provision of a controlled environment during 

cultivations.  
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6.1.2 Optimisation of biocatalyst production  

 

The utility of the controlled MBR was further demonstrated by optimising CV2025 ω-TAm 

production using both complex and vinasse media. In the former case, the influence of several 

factors such as induction time, inducer concentration and DO level on the fermentation 

performance were investigated in parallel (Section 3.3.3). While a DO of 30% was found adequate 

to support the E. coli BL21 (DE3) fermentation expressing CV2025 ω-TAm in the controlled MBR 

system (Table 3.2), the best induction strategies involved induction during the early logarithmic 

growth phase (6 h) with volumetric and specific IPTG concentrations of 0.1 mM (Figures 3.9 (A) 

and 3.11) and 23.7 µmol gdcw
-1 (Figure 3.13), respectively. An enhancement of 2 and 1.4-fold of 

maximum CV2025 ω-TAm volumetric and specific activity respectively, were achieved in 

comparison with the non-optimised performance. The fermentation performance achieved using 

a pre-defined medium here served as a benchmark for comparison with the cultivations using 

vinasse medium.  

 

Optimisation of CV2025 ω-TAm using vinasse medium was carried out in the controlled MBR by 

investigating the influence of supplementation of the medium with several media components (i.e. 

trace elements and nitrogenous substrates). The results showed that nitrogenous substrates had 

a positive impact on the fermentation performance (Section 4.3.4). In comparison with the non-

supplemented case, the results showed that supplementation of dilute vinasse with 10 g L-1 yeast 

extract resulted in enhancements in specific growth rate and maximum biomass concentration by 

about 2.8 and 2.5-fold, respectively (Figure 4.14 and Table 4.2). Meanwhile, the intensification of 

the CV2025 ω-TAm volumetric and specific activity were 5.5 and 3 times, respectively higher than 

that obtained using the non-supplemented culture (Figure 4.15). Generally, it has been shown 

that the utility of the controlled MBR mimics a conventional STR. For the optimisation studies 

using both complex and vinasse media it has been demonstrated that an optimal titre of CV2025 

ω-TAm was successfully achieved.  

 

 

6.1.3 Scalability of controlled MBR results 

 

Following establishment of optimal CV2025 ω-TAm production conditions using both complex 

and vinasse media in the controlled MBR, another objective was to scale-up the optimised 

production yields to a larger scale reactor (Section 1.9). These results are discussed in Chapter 

5. The scale-up methodology used was based on matched kLa values and specific aeration rates 

between the two reactors. Initially, the kLa was characterised in the controlled MBR system (Figure 

5.2) and 7.5 L STR (Figure 5.3) using water, complex and vinasse media. Suitable kLa correlations 

were developed for the case of the 7.5 L STR (Equations 5.1 – 5.3). In general, the results showed 

a linear relationship shown in water (Figure 5.4 (A)) and complex medium (Figure 5.4 (B)) was 

found to be in a good agreement with R2 values greater than 0.90. For vinasse medium, prior to 

the scale-up work, several possible options for pre-processing were investigated (Section 5.3.2). 

The results suggested that the use of pasteurised dilute vinasse was the most relevant 
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considering both practicability and feasibility. Having a nearly comparable fermentation 

performance with that obtained using the filtered dilute vinasse in terms of cell growth (Figure 5.6) 

and biocatalyst titre (Figure 5.8), the option offers another economic advantage in terms of time 

and energy saving since no additional sterilisation is required after the ethanol distillation and 

pasteurisation.   

  

As discussed in Section 5.3.3, it was shown that the scale-up strategy based on matched kLa 

values and specific aeration rates was suitable to achieve reproducible batch fermentation 

performance using both media between the controlled MBR and laboratory scale reactor. 

Although notable discrepancies were seen in the utilisation of certain substrates (Figures 5.13 

(D), 5.18 (F) and 5.18 (G)), a good reproducibility in terms of biomass concentration (Figures 5.13 

(A), 5.18 (A)) and CV2025 ω-TAm production (Figures 5.13 (C), 5.18 (B) and 5.18 (C)) was 

observed between the two scales for both media with the R2 values attained of more than 0.95. 

Generally, the consistency of the fermentation performance and biocatalyst titre achieved using 

both media has confirmed the feasibility of a 769-fold scale translation between the two reactors. 

This further validates the significant role of the controlled MBR as a HTP platform to support early 

process development studies for industrial biocatalysts production.   

 

Eventually, further enhancement of biocatalyst activity in the 7.5 L STR using both complex and 

vinasse media was performed by increasing the kLa by 4-fold (Section 5.3.4). An increase of about 

1.2-fold of the maximum biomass concentration and 1.5-fold of the maximum volumetric CV2025 

ω-TAm activity were achieved in the complex medium system while in the vinasse medium, the 

further enhancements were 1.4 and 1.9-fold, respectively (Table 5.9). In both cases, the results 

suggested that by increasing the OTR in the STR, the fermentation performance can be 

enhanced, indicating the potential of further process intensification upon. In conclusion, the key 

findings in Chapter 5 included the predictive methodologies for scaling up the optimal CV2025 ω-

TAm production from the controlled MBR to a 7.5 L STR using both complex and vinasse media. 

The feasibility of the scale translation between the two platforms is crucial in ensuring the 

relevance of the process developed in the controlled MBR to industrial applications.    

  

 

6.1.4 Vinasse as a fermentation feedstock 

 

The need for the production of industrial biocatalysts such as CV2025 ω-TAm as demonstrated 

in this study, has stemmed from the future demand for integrated biorefinery designs, which can 

realize the effective exploitation of monosaccharides derived from SBP such as L-arabinose and 

D-galacturonic acid (Cardenas et al., 2017). Sugar beet vinasse appears to be an interesting 

fermentation feedstock for biocatalyst production due to its abundant availability and high 

concentration of glycerol. 

 

As discussed in Chapter 4, exploitation of sugar beet vinasse as a fermentation feedstock for 

CV2025 ω-TAm production led to the discovery of several significant insights. The 
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characterisation studies confirmed the presence of several useful compounds in vinasse with the 

major component being glycerol (Table 4.1). Assessment on the batch to batch stability of vinasse 

showed the comparability of the feedstock with respect to the fermentation performance (Figure 

4.7) and enzyme activity (Figure 4.8). It was observed that cell growth and CV2025 ω-TAm 

production were feasible at vinasse concentration between 17 and 25% (v/v), while higher 

concentrations (50 and 100% (v/v)) were found to be inhibitory (Figure 4.2).  

 

Evaluation of the impact of induction using IPTG showed that comparable expression of CV2025 

ω-TAm was achieved in both non-induced and induced fermentations (Figures 4.3 and 4.4). This 

was confirmed to be due to an auto-induction phenomenon promoted by the presence of D-

galactose in vinasse (Figures 4.5 and 4.6). The auto-induction in vinasse has contributed another 

potential benefit of the feedstock removing the need for IPTG as an inducer, which is expensive 

and can be cytotoxic. An assessment on the pre-processing options of vinasse for a fermentation 

(Section 4.3.3) showed that dilution with water was sufficient to reduce the glycerol concentration 

to a fermentable level as well as inhibitory polyphenols. This eliminates the need for laborious 

pre-treatment steps to remove the latter compound (Figures 4.12 and 4.13). Upon the optimisation 

of the vinasse medium (Figure 4.15), the optimal titre of CV2025 ω-TAm was found to represent 

81% of the performance achieved using a complex medium. This has further confirmed the 

promising performance of the vinasse medium in comparison with the standard pre-defined 

medium. 

 

This part of the thesis also demonstrated the metabolic preference of E. coli BL21 (DE3) in the 

presence of multiple carbon sources in vinasse (Section 4.3.5). The findings suggested that 

sequential metabolism occurred between D-mannitol and glycerol with the former being the 

primary carbon source (Figure 4.16). The occurrence of CCR between D-mannitol and glycerol 

was predicted, which has not been reported previously in the literature. An additional study to 

further understand E. coli BL21 (DE3) metabolic preferences in the presence of D-glucose and 

vinasse medium showed that the former sugar was favoured over D-mannitol during the 

fermentation (Figure 4.17). The knowledge gained here could facilitate better understanding on 

the metabolism of E. coli BL21 (DE3) when grown on multiple carbon sources. In addition, this 

could aid the decision for the feeding substrate during fed-batch fermentations using vinasse 

medium in future.   

 

Overall, the results achieved here have confirmed the feasibility and potential benefits of vinasse 

as a fermentation feedstock, which further provides novel insights into the potential for on-site 

industrial biocatalyst production within an integrated sugar beet biorefinery. Whilst the focus of 

this study was on the production of CV2025 ω-TAm in E. coli BL21 (DE3), the same approach 

may be undertaken for production of other valuable bioproducts in other microorganisms. 

Utilisation of an inexpensive fermentation feedstock such as vinasse will help to increase the 

sustainability of an integrated biorefinery industry in future.  
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6.2 Future work 

 

Future work comprises studies to clarify and extend some of the findings reported here and also 

to explore the broader context of the work. These are discussed in detail below:   

 

 A more in-depth study to further increase the enzyme titre using either synthetic or 

vinasse-based media could be undertaken. Here the application of DoE methods to 

evaluate more factors and investigating the interactions between factors could be 

beneficial.  

 

 Detailed studies on the mechanism of auto-induction by D-galactose in vinasse medium 

is considered essential. Furthermore, the auto-induction strategy could be optimised 

further by addition of more D-galactose and investigation of induction time and 

temperature.  

 

 Development of a HTP microreactor with a feeding system will be an advantage in 

developing fed-batch approaches for biocatalyst production in order to further enhance 

the cell growth and enzyme titre.  

 

 A comparative bioconversion study using CV2025 ω-TAm produced from vinasse with 

that produced from a synthetic medium is required in order to assess the utility of the 

biocatalysts produced. The studies should consider various aspects including 

comparison of the biocatalytic performance between whole cell, lysate and pure enzyme, 

substrate screening and also strategies to enhance the biocatalytic activity. Evaluation of 

the monomers derived from SBP such as L-arabinose and D-galacturonic acid as the 

substrates may also be attractive. If the use of pure enzyme is considered beneficial for 

the bioconversion then, future studies should also consider the purification of the CV2025 

ω-TAm.  

 

 The possibility of integrating fermentation and bioconversion using whole cell biocatalyst 

into a single-pot process could also be explored. Optimisation of the bioconversion will 

be necessary in order to enhance the viability of the whole process.  

 

 The proof-of-concept of vinasse as a fermentation feedstock can be further extended to 

other processes involving different microorganisms and target enzymes. This could 

expand the utility and flexibility of the feedstock especially when its production is expected 

to increase with the growing demand for bioethanol in the near future. Moreover, this can 

also contribute an economic advantage to the biorefinery industry.  

 

 As discussed in Section 4.3.4, whilst the supplementation of vinasse medium with yeast 

extract has intensified the biocatalyst titre significantly, the additional cost associated with 

the yeast extract must also be taken into account, especially for large scale operation. 
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Further biorefinery integration could be explored such as by generating yeast extract on-

site from the S. cerevisae biomass waste stream obtained after the bioethanol 

fermentation. This will require development of an autolysis process using either dried or 

wet yeast cells. The development of an on-site autolysis process will not just benefit the 

supplementation of vinasse for a bioproduction but it may also contribute another 

potential product stream to the biorefinery. Following that, studies of the autolysis itself 

such as process optimisation, characterisation and evaluation of the resulting yeast 

extract should be performed.  

 

 In gaining a fundamental insight into the E. coli BL21 (DE3) metabolism when grown in 

media with multiple carbon sources such as vinasse, an assessment on genes and 

enzymes involved in the metabolic pathway is necessary. Additionally, studies involving 

measurement of the promoter activity coupled with the cell growth assessment might also 

be beneficial to optimise utilisation of all carbohydrates present in the vinasse.  

 

 Building on development of a microreactor suitable for fed-batch operation, different 

feeding strategies may also be investigated. In the case of vinasse medium, variability of 

the feeding materials whether fresh dilute vinasse or glycerol should be determined.  

 

 Different scale-up options involving other parameters and their combination should be 

investigated in translating the optimal production of the biocatalyst from microreactors to 

even larger scale reactors. This may facilitate an effective scale-up of fed-batch 

operations in future.  

 

 Finally, it would be beneficial to perform a comparative economic analysis of the costs 

and constraints regarding biocatalyst production from synthetic and vinasse media. This 

will provide a definitive picture on the feasibility of using vinasse to produce industrial 

enzymes within an integrated sugar beet biorefinery.  
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APPENDIX 1 (A1): STANDARD CURVES 
 

 

Figure A1.1. Dry cell weight (gdcw L-1) in the function of OD600 nm in a cultivation using a complex 
medium. Every point represents the mean value of triplicates. Experiment was performed as 
described in Section 2.12.1 and 2.12.2. 

 
 

 
Figure A1.2. Dry cell weight (gdcw L-1) in the function of OD600 nm in a cultivation using a vinasse 
medium. Every point represents the mean value of triplicates. Experiment was performed as 
described in Section 2.12.1 and 2.12.2. 
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Figure A1.3. BSA (g L-1) in the function of OD595 nm. Every point represents the mean value of 

triplicates. Experiment was performed as described in Section 2.12.3. 

 

 

 

Figure A1.4. Acetophenone (mM) in the function of absorbance at 280 nm. Every point represents 

the mean value of triplicates. Experiment was performed as described in Section 2.12.5. 
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Figure A1.5. Glycerol calibration curve (g L-1) in the function of area. Every point represents the 
mean value of triplicates. Experiment was performed as described in Section 2.12.6. 

 

 

  

Figure A1.6. Acetate (g L-1) in the function of area. Every point represents the mean value of 

triplicates. Experiment was performed as described in Section 2.12.6. 
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Figure A1.7. D-mannitol (g L-1) in the function of height. Every point represents the mean value 

of triplicates. Experiment was performed as described in Section 2.12.7. 

 

 

 

Figure A1.8. D-xylitol (g L-1) in the function of height. Every point represents the mean value of 

triplicates. Experiment was performed as described in Section 2.12.7. 
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Figure A1.9. D-dulcitol (g L-1) in the function of height. Every point represents the mean value of 

triplicates. Experiment was performed as described in Section 2.12.7. 

 

 

 

Figure A1.10. D-maltitol (g L-1) in the function of height. Every point represents mean value of 

triplicates. Experiment was performed as described in Section 2.12.7. 
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Figure A1.11. D-galactose (g L-1) in the function of height. Every point represents mean value of 

triplicates. Experiment was performed as described in Section 2.12.7. 

 

 

 

Figure A1.12. D-glucose (g L-1) in the function of height. Every point represents mean value of 

triplicates. Experiment was performed as described in Section 2.12.7. 
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Figure A1.13. D-fructose (g L-1) in the function of height. Every point represents mean value of 

triplicates. Experiment was performed as described in Section 2.12.7. 

 

 

 

Figure A1.14. Gallic acid (g L-1) in the function of absorbance at 740 nm. Every point represents 

the mean value of triplicates. Experiment was performed as described in Section 2.12.8. 
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APPENDIX 2 (A2): HPLC AND ICS CHROMATOGRAMS  
 

 

 

 

Figure A2.1. Example of an HPLC chromatogram showing the peaks of glycerol (retention time 
13.3 min) and acetate (retention time 14.8 min). Experiment was performed as described in 
Section 2.12.6. 

 

 

 

 

Figure A2.2. Example of an ICS chromatogram showing the peaks of D-xylitol (retention time 2.3 
min), D-dulcitol (retention time 2.6 min), D-mannitol (retention time 2.8 min), D-maltitol (retention 
time 6.2 min), D-galactose (retention time 12.1 min) and D-fructose (retention time 18.7 min). 
Experiment was performed as described in Section 2.12.7. 
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APPENDIX 3 (A3): VISCOSITY-SHEAR RATE CURVE  
 

 

 

Figure A3.1. Relationship between apparent viscosity and shear rate of (▲) water, (●) complex 
medium with 1 mL L-1 PPG and (■) vinasse medium with 1 mL L-1 PPG. Experiment was 
performed as described in Section 2.12.9.  
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APPENDIX 4 (A4): TYPICAL TIME COURSES OF ABSORBANCE FOR 

SAMPLES WITH DIFFERENT CV2025 ω-TAM ACTIVITY LEVELS 
 

  

 

 

Figure A4.1. Typical time courses of absorbance for duplicate samples with (A) low, (B) 
intermediate and (C) high CV2025 ω-TAm activity. Experiment was performed as described in 
Section 2.12.5. 
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