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Future river flows and flood extent in the Upper Niger and Inner Niger Delta:
GCM-related uncertainty using the CMIP5 ensemble
Julian R. Thompsona, Andrew Crawleya and Daniel G. Kingstonb

aWetland Research Unit, UCL Department of Geography, University College London, London, UK; bDepartment of Geography, University of
Otago, Dunedin, New Zealand

ABSTRACT
A semi-distributed hydrological model of the Upper Niger and the Inner Niger Delta is used to
investigate the RCP 4.5 scenario for 41 CMIP5 GCMs in the 2050s and 2080s. In percentage terms,
the range of change in precipitation is around four times as large as for potential evapotranspira-
tion, which increases for most GCMs over most sub-catchments. Almost equal numbers of sub-
catchment–GCM combinations experience positive and negative precipitation change. River
discharge changes are equally uncertain. Inter-GCM range in mean discharge exceeds that of
precipitation by three times in percentage terms. Declining seasonal flooding within the Inner
Delta is dominant; 78 and 68% of GCMs project declines in October and November for the 2050s
and 2080s, respectively. The 10- and 90-percentile changes in mean annual peak inundation
range from −6136 km2 (−43%) to +987 km2 (+7%) for the 2050s and −6176 km2 (−43%) to
+1165 km2 (+8.2%) for the 2080s.
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Introduction

Hydrological processes are key drivers within wetland
environments (e.g. Baker et al. 2009). A wetland’s water
level regime exerts a dominant influence upon wetland
vegetation, animals and biogeochemical processes. In
turn, the ecosystem services provided by wetlands are
conditioned by the interplay between hydrological, bio-
physical and ecological processes (Maltby et al. 2011). In
some locations these wetland ecosystem services are
central to the livelihoods of large human populations,
a role that is clearly demonstrated in Africa’s flood-
plains. Seasonal flooding supports agriculture, grazing
and fisheries, provides water for domestic use either
directly or through aquifer recharge, and sustains biodi-
versity that is often of international importance (Drijver
and Marchand 1985, Adams 1992, Thompson and Polet
2000; Rebello et al. 2010). Africa’s floodplains therefore
typify the ecological, economic and social significance of
“wetlands in drylands” (Scoones 1991). Despite this sig-
nificance, many African floodplains have experienced
changes in flooding patterns due to water resource
developments, in particular dams. These changes have
in turn impacted the provision of ecosystem services and
the people that depend upon them (e.g. Thompson and
Hollis 1995, Barbier and Thompson 1998, Lemly et al.
2000, Mumba and Thompson 2005, Kingsford et al.

2006). Further modifications to the hydro-ecological
conditions of Africa’s floodplain wetlands are likely to
result from climate change.

Intensification of the global hydrological cycle will
have major implications for catchment hydrological pro-
cesses (Kundzewicz et al. 2007, Bates et al. 2008; IPCC
2014). Modifications to precipitation and evapotranspira-
tion will impact runoff, river flow and groundwater
recharge, with the nature of these changes varying around
the globe (Arnell and Gosling 2013). Shifts in the magni-
tude and timing of flows into and out of wetlands will
alter wetland water level regimes and flooding patterns
(Ramsar Bureau 2002, Acreman et al. 2009, Singh et al.
2010, Thompson et al. 2017a), with consequent impacts
on their ecological character and ecosystem service deliv-
ery (Erwin 2009, Thompson et al. 2009, Singh et al. 2011).
Hydrological models have been widely used to assess the
impacts of climate change upon a range of wetlands (e.g.
Candela et al. 2009, Thompson et al. 2009, Singh et al.
2010, Barron et al. 2012, Carroll et al. 2015, House et al.
2016). This is commonly undertaken by forcing meteor-
ological inputs to a previously calibrated model with
climate projections from General Circulation Models
(GCMs) that have themselves been forced with green-
house gas emissions scenarios.

Each stage of such a climate change impact assess-
ment is associated with uncertainties (Gosling et al.
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2011), leading to what has been described as a “cascade
of uncertainty” (Schneider 1983, Wilby and Dessai
2010). Uncertainty is associated with future emissions
scenarios, whilst different GCMs often produce different
projections for the same scenario. Additional uncer-
tainty is due to the downscaling of GCM projections
for use in hydrological models. An individual hydrolo-
gical model may be subject to uncertainty due to impre-
cise knowledge of hydrological system behaviour
compounded by incomplete or erroneous hydro-
meteorological data (e.g. Van Dijk et al. 2008), whilst
alternative hydrological models that give similar results
for a historical baseline period may respond differently
when forced with GCM projections for the same climate
change scenario (Chiew et al. 2008, Gosling and Arnell
2011, Haddeland et al. 2011, Thompson et al. 2013).
Translating hydrological changes to ecological responses
within wetlands relies on knowledge of the requirements
of individual species and communities as well as hydro-
logical controls upon ecosystem services. These relation-
ships are often uncertain, as are the potential
management responses to climate change-related mod-
ification to catchment and wetland hydrology.

A number of studies have demonstrated that the most
significant source of uncertainty is often GCM-related
uncertainty (e.g. Graham et al. 2007, Prudhomme and
Davies 2009, Gosling et al. 2011, Thompson et al. 2013,
2014a, 2014b, Green et al. 2014). These earlier studies
include assessments of uncertainty on future river flows
within West Africa’s Upper Niger Basin and in turn the
impacts upon seasonal inundation within one of the
region’s largest floodplain wetlands, Mali’s Inner Niger
Delta (Thompson et al. 2016). A hydrological model of
the basin and Inner Delta was forced with projections
from a relatively small ensemble of GCMs for a 2°C
increase in global mean temperature. Of the seven
GCMs investigated, six produced declines in annual
river inflow to the Inner Delta, although these varied in
magnitude from less than 1% to over 50%. Results for the
remaining GCM suggested small (<5%) increases in river
inflows. Changes in peak seasonal flood extent varied
from a mean increase of just over 10%, through almost
negligible declines, to reductions of nearly 60%. Although
these results indicated a substantial possible range in river
flow and seasonal flood extent, the small ensemble of
GCMs limited the opportunity for assessment of the
most likely direction of change. Like many of the earlier
studies, the climate change projections adopted by
Thompson et al. (2016) were derived from the previous
generations of climate models and emissions scenarios,
rather than those of the more recent Coupled Model
Intercomparison Project Phase 5 (CMIP5) and
Representative Concentration Pathway (RCP) scenarios.

The CMIP5 ensemble is significantly larger than those of
previous generations of GCMs, providing enhanced
opportunities to assess GCM-related uncertainty (Knutti
and Sedlacek 2013). The current study therefore expands
the investigation of GCM-related uncertainty for the
Upper Niger and the Inner Niger Delta using 41
CMIP5s GCMs and the RCP 4.5 scenario.

Methods

The Upper Niger and the Inner Niger Delta

The catchment upstream of the Inner Delta comprises
the Upper Niger (147 000 km2), which rises in the Fouta
Djallon highlands of Guinea, and the Niger’s major
tributary, the Bani (129 000 km2), whose headwaters
are in the Ivory Coast (Fig. 1, Zwarts et al. 2005a). The
Inter-Tropical Convergence Zone controls the climate of
the region and, in turn, the hydrological characteristics
of its rivers (Drijver and Marchand 1985, Adams 1992,
Thompson 1996). Precipitation is highly seasonal and
peaks in August. The duration of the annual wet season
varies from 8 months (March–October) over the south-
west part of the basin to 3 months (July–September)
over the Inner Niger Delta. The intervening dry period
is characterized by very little or no rainfall. Annual
rainfall also displays a similar southwest–northeast gra-
dient. Mean annual totals vary from around 2100 mm
over the headwaters of the Niger, through 1500 mm in
the Upper Bani to around 250 mm over the downstream
parts of the Inner Delta (Thompson et al. 2016). Inter-
annual variability in precipitation across the Upper
Niger is large, with a decline since the 1970s being
widely reported (e.g. Zwarts et al. 2005a, Mahé 2009,
Louvet et al. 2011). Spatial variation in potential evapo-
transpiration (PET) is in the opposite direction to pre-
cipitation; annual PET over the Inner Niger Delta is
around 2150 mm, whilst in the far southwest it is
approximately 1800 mm.

Flows in the basin’s rivers are highly seasonal and,
like precipitation, exhibit large inter-annual variability
with a dominant declining trend since the 1970s. The
magnitude of these declines is larger than that experi-
enced by precipitation (Louvet et al. 2011), likely
reflecting reduced baseflow in response to cumulative
reductions in rainfall (Mahé 2009). Upstream of the
Inner Niger Delta discharges begin to rise with the
rains and peak in September (Zwarts et al. 2005a).
Discharges subsequently decline, with the lowest flows
occurring in March–May. The annual flood takes
3–4 months to pass through the Inner Delta and con-
sequentially discharges downstream peak in November
or December (Sutcliffe and Parks 1989, John et al.
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1993). The period of high flows lengthens from
2–3 months upstream to 7 months downstream
(Zwarts et al. 2005a). Flow magnitudes are reduced
considerably due to evaporation from extensive flood-
ing and seepage beneath inundated areas (Beadle 1974,
Zwarts et al. 2005a). Mahé et al. (2009) estimated that
the mean annual loss was around 40%, although this
varied by between 24 and 48% over the period
1924–1996. Large losses occur when flooding is exten-
sive (Zwarts and Grigoras 2005, Mahé et al. 2009).
These losses are much smaller during drier periods,
when inflows decline dramatically and flood extent is
much reduced (Mahé et al. 2011b).

The lowest water levels within the Inner Niger Delta
occur between May and July (e.g. Bergé-Nguyen and
Crétaux 2015). At this time the area of permanent
standing water is less than 4000 km2 and can be very
small in the driest years (Sutcliffe and Parks 1989,
Zwarts and Grigoras 2005). As the annual flood enters
the Delta, water levels rise with peak inundation occur-
ring in October/November (Grove 1985, Crétaux et al.
2011). Peak flood extent shows large inter-annual
variability. Zwarts and Grigoras (2005) employed a
relationship between water levels and Landsat remote
sensing-derived flood extent to show that peak inunda-
tion between 1956 and 2000 varied from only 8000 km2

during the droughts of the 1980s to more than

24 000 km2 in the 1950s. Estimates of flood extent for
the last decade of this period correspond well with
those established by Mariko et al. (2003) and Mariko
(2004) using AVHRR remote sensing data.

The extensive floodplains of the Inner Niger Delta
are extremely productive. In common with other
African floodplains (e.g. Adams 1992, Thompson and
Polet 2000), flood patterns exert a dominant influence
on ecological conditions. Vegetation zonation is largely
controlled by water depth and its seasonal variations
(Zwarts et al. 2005b), whilst peak flood level and flood
duration regulate fish recruitment and survival through
the following dry season (Welcomme 1986, Zwarts and
Diallo 2005). Although most large wild grazers and
other large mammals such as hippo and manatee
have been lost, the Inner Delta is still a biological hot-
spot, especially for birdlife. It is one of the world’s
largest Ramsar sites. Populations of 28 waterbird spe-
cies exceed 1% of the total flyway population, the
threshold for recognition as internationally important
(Van der Kamp et al. 2005). Over 1 million people
utilize floodplain resources, so the Inner Delta has
tremendous economic and social significance (Zwarts
and Kone 2005a). The floodplains support agriculture,
in particular rice cultivation, fishing and the grazing of
cows, sheep and goats (Goosen and Kone 2005, Zwarts
and Diallo 2005, Zwarts and Kone 2005b).

Figure 1. The Upper Niger Catchment and the Inner Niger Delta. The sub-catchments and their downstream gauging stations for
which separate sub-models were developed are indicated.
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There are a number of water resources schemes within
the river basin which have varying impacts on river flow
and, in turn, flood extent. The Sotuba hydropower dam,
constructed in 1929 on the Niger below Bamako, has a
small reservoir and limited hydrological effects. The lar-
ger Sélingué Dam (1982) is on the Sankarani River
(Fig. 1). Zwarts et al. (2005a) suggested that it reduces
peak flows in the Niger at Ke-Macina by 10–20% and
20–30% in wet and dry years, respectively. Dry season
releases are significant and sustain downstream flows
with water being used for irrigation (Hassane et al.
2000). Water is diverted by the Markala Barrage from
the River Niger for irrigation on the Office du Niger
project (740 km2 compared to the planned 9600 km2).
These diversions are a small percentage of flows in the
wet season, but dry season diversions can reduce flows in
the Niger by half (Zwarts et al. 2005a). The Talo Dam on
the Bani was constructed in 2006, beyond the end of the
simulation period considered in the current study, whilst
there are plans for future dams, including the Fomi
hydropower dam on the Niandan above Kankan, which
are likely to further impact downstream river flows
(Zwarts et al. 2005a, Liénou et al. 2010).

The hydrological model

Thompson et al. (2016) provided a detailed account of
the semi-distributed, conceptual hydrological model of
the Upper Niger and Inner Delta, which is therefore
only summarized here. The model was implemented in
the STELLA systems modelling software (Version 10,
isee systems), which has been used in a number of
hydrological modelling studies (e.g. Zhang and Mitsch
2005, Voinov et al. 2007, Ho et al. 2016). Using the
approach employed by Ho et al. (2016), separate sub-
models were developed for 11 sub-catchments defined
by gauging stations at their downstream outlets (Fig. 1).
Each sub-catchment model comprised reservoirs repre-
senting soil, groundwater and channel stores, and the
water balance for each reservoir was evaluated at a
monthly time step. Meteorological inputs/outputs to
the soil store were specified as sub-catchment averaged
monthly precipitation and PET totals, both multiplied
by sub-catchment area. Precipitation was derived from
the CRU TS 3.0 dataset (Mitchell and Jones 2005), whilst
Hargreaves PET (Hargreaves and Samani 1982) was
calculated using minimum, mean and maximum tem-
perature from CRU TS 3.0 and extra-terrestrial solar
radiation based on latitude. Actual evapotranspiration
was limited by available soil storage. Overland flow from
the soil store to the channel store was evaluated as any
excess soil storage above a maximum storage capacity.
Throughflow from the soil store to the channel store

and percolation from the soil store to the groundwater
store were simulated using linear reservoir constants
when threshold soil storage was exceeded. The same
approach was used for baseflow from the groundwater
store to the channel store. River discharge was simulated
as the product of channel store and a reservoir constant.
Simulated discharge volumes were evenly distributed
through the month for comparison with observed
mean monthly discharges. The model incorporated ele-
ments to represent Sélingué Dam and the Markala
Barrage, the two largest dams operational during the
modelled period or part thereof. As detailed by
Thompson et al. (2016), these were based on previous
analysis of their impacts upon river flow provided by
Zwarts et al. (2005a).

The volume of water and, in turn, flood extent
within the Inner Niger Delta was simulated in another
sub-model replicating approaches used in previous
models of this and other African floodplains (Sutcliffe
and Parks 1987, 1989, Hollis and Thompson 1993a,
1993b, Thompson 1995, Thompson and Hollis 1995).
The hydrological model provided river inflows from
the Niger at Ke-Macina and the Bani at Beney-Kegny.
River outflows were established using a relationship
between mean monthly discharge below the Inner
Delta at Douna and weighted aggregate inflows of the
combined mean monthly discharges at Ke-Macina and
Beney-Kegny during the four most recent months.
River inflows were supplemented by direct precipita-
tion onto the inundated area, based on the product of
CRU TS 3.0 precipitation for grid cells covering the
Inner Niger Delta and flood extent. The latter was
based on a synthetic volume/area relationship which
was subject to calibration. Evapotranspiration was
simulated as the product of Hargreaves PET (calculated
using the CRU TS 3.0 cells covering the Inner Delta)
and the inundated area. This area was also multiplied
by an infiltration rate to simulate seepage beneath the
inundated area, a process that can be particularly sig-
nificant during the flood period (Mahé et al. 2009).

The complete simulation period employed by
Thompson et al. (2016) was 1950–2000, with the first
half (1950–1975) being used for calibration and
1976–2000 for validation. Due to extended periods of
missing data in the source Global Runoff Data Centre
(GRDC) discharge records, model performance was also
assessed for the central 1961–1990 period, which was
used as a baseline for climate change assessment
(repeated herein – see below). Model performance in
reproducing observed discharges for all three periods
was assessed using the Nash-Sutcliffe coefficient (NSE,
Nash and Sutcliffe 1970), the Pearson correlation coeffi-
cient (r) and the bias (Dv; Henriksen et al. 2003).
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Performance was classified using the scheme of
Henriksen et al. (2008). Simulated peak annual flood
extents within the Inner Niger Delta were compared
with corresponding estimates provided by Zwarts and
Grigoras (2005). These were available for 1956–2000,
and were based on a relationship between water levels
within the Delta and remote sensing-derived estimates
of flood extents (a similar approach to that described by
Mariko et al. (2003) and Mahé et al. (2011b)). As
described by Thompson et al. (2016) the model per-
formed very well for the calibration period, with Dv
for river discharge being classified as “excellent” and
“very good” for nine and three gauging stations, respec-
tively. The NSE values were “excellent” for all but one
gauging station. Whilst NSE values for the validation
period were either “excellent” or “very good”, overesti-
mation of seasonal peak discharges was common.
Possible reasons for this overestimation include wide-
spread declines in Sahelian vegetation cover in recent
decades (Diello et al. 2005, Liénou et al. 2005, Leblanc
et al. 2008), although these are more likely to increase
runoff (Descroix et al. 2009, Amogu et al. 2010).
Declining data quality and availability, widely reported
in Sub-Saharan Africa (e.g. World Bank et al., 1993,
Giles 2005, Farquharson 2007, Pitman 2011), may also
be a factor. These declines occurred just after the base-
line period, so that discharge overestimation did not
occur at this time. Values of both NSE and Dv were
classified as “excellent” at nine stations and “very good”
at three. During the calibration and baseline periods,
model performance in terms of reproducing annual
maxima flood extent was generally good, with peaks
being overestimated by on average 3.3% for the former
and underestimated by only 1.3% in the latter period. In
both periods an approximately equal number of annual
peaks were over- and underestimated. This was repeated
for the validation period. Thompson et al. (2016) con-
cluded that the performance of the model in replicating
river discharge and flood extent, especially for the cali-
bration and baseline periods, was sufficient to enable its
use in climate change impact assessment.

Climate change scenarios

Revised meteorological inputs were derived for 41
CMIP5 GCMs (Table 1). The GCM results were
obtained for the RCP 4.5 scenario (radiative forcing is
stabilized at 4.5 W m−2 in the year 2100 without ever
exceeding this value – Thomson et al. 2011) from the
Royal Netherlands Meteorological Institute (KNMI)
Climate Explorer (Trouet and Van Oldenborgh 2013).
This particular RCP scenario was selected since it is
considered an intermediate/mid-range emissions

scenario (Moss et al. 2010, van Vuuren et al. 2011)
and has been used in other hydrological-based studies
of GCM-related uncertainty (e.g. Dai 2012, Ho et al.
2016, Robinson 2017). In addition, the KNMI Climate
Explorer provided results for the largest number of
GCMs for the RCP 4.5 scenario. This multimodel
approach incorporates both structural and parameter
uncertainty by using a relatively large number of
GCMs with different designs (Tebaldi and Knutti
2007). Ho et al. (2016) argued that, as results from
more GCMs are employed, the degree of uncertainty
should decline (Knutti et al. 2009), although this only
applies when a sufficient number of GCMs are used.
Following the approach of Ho et al. (2016), the delta
factor method was used to derive revised sub-catch-
ment precipitation and PET for two time slices:
2041–2070 (referred to as the 2050s) and 2071–2100
(the 2080s). Delta factors are widely used to provide
scenarios suitable for hydrological modelling (e.g.
Wilby and Wigley 1997, Thompson et al. 2009, Singh
et al. 2010, Thompson 2012). The methodology is
advantageous since scenario time series retain climate
variability but are not affected by biases in a GCM’s
simulation of it (Anandhi et al. 2011, Willems et al.
2012). It is, however, important to recognize that the
approach does not represent projected changes in
extremes or inter-annual variability (Diaz-Nieto and
Wilby 2005).

Mean monthly maximum, mean and minimum
temperatures as well as monthly precipitation totals
were derived for each sub-catchment for the period
1961–1990 and each time slice. Monthly delta factors
for both time slices (°C for temperature, % for preci-
pitation) were derived at the sub-catchment scale.
These were used to perturb the original CRU data
and Hargreaves PET was re-evaluated using the new
temperature time series. In addition, mean tempera-
tures (maximum, mean and minimum) and precipita-
tion were evaluated for each sub-catchment from all 41
GCMs. These were used to establish delta factors for
the 2050s and 2080s and, in turn, to derive scenario
precipitation and PET for an ensemble mean scenario
using the methods described above. Empirical evidence
suggests that such a multi-GCM ensemble mean for
current conditions tends to agree more closely with
observed climate data than a single GCM (Lambert
and Boer 2001, Gillett et al. 2002, Palmer et al. 2005).
According to this argument, the ensemble mean sce-
nario should serve as a better indicator of the impacts
of climate change than the results of one GCM.
However, for this to be strictly valid the GCMs should
be independent of each other (Pirtle et al. 2010). As
described by Ho et al. (2016), institutions responsible
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for different GCMs share literature, parameter values
and sections of model code (Abramowitz 2010), whilst
the CMIP5 ensemble includes more than one GCM
from an individual institution or more than one ver-
sion of a given GCM (Table 1). In such cases, strict
model independence is not achieved with, for example,
results from institutions with multiple GCMs, having a
greater influence over the ensemble mean. The poten-
tial for such biases to influence the ensemble mean can
be addressed by grouping GCMs according to shared
characteristics such as their atmospheric model (Hanel
and Buishand 2015). Here the approach of Ho et al.
(2016), which was inspired by the concept of model
genealogy (Masson and Knutti 2011, Knutti et al.
2013), was used to identify 12 groups (Table 2) to
which each of the 41 GCMs were assigned (see fourth
column in Table 1). Five of these groups contained
only one GCM whilst the remaining seven comprised

between three and eight GCMs. Within an individual
group, mean temperatures (maximum, mean and mini-
mum) and precipitation were established for each sub-
catchment and, using the approach described above,
delta factors and, in turn, scenario precipitation and
PET calculated for the 2050s and 2080s. A final

Table 1. CMIP5 GCMs used to produce climate change scenarios.
No Model Institution GCM Group*

1 ACCESS1.0 Commonwealth Scientific and Industrial Research Organisation (CSIRO) and Bureau of Meteorology (BOM),
Australia

10
2 ACCESS1.3 10
3 BCC-CSM1.1 Beijing Climate Center, China Meteorological Administration 12
4 BCC-CSM1.1(m) 12
5 BNU-ESM College of Global Change and Earth System Science, Beijing Normal University 12
6 CanESM2 Canadian Centre for Climate Modelling and Analysis 1
7 CCSM4 National Center for Atmospheric Research 12
8 CESM1(BGC) Community Earth System Model Contributors 12
9 CESM1(CAM5) 12
10 CMCC-CM Centro Euro-Mediterraneo per I Cambiamenti Climatici 11
11 CMCC-CMS 11
12 CNRM-CM5 Centre National de Recherches Météorologiques/Centre Européen de Recherche et Formation Avancée en Calcul

Scientifique
11

13 CSIRO-Mk3.6.0 Commonwealth Scientific and Industrial Research Organisation in collaboration with Queensland Climate Change
Centre of Excellence

2

14 EC-EARTH EC-Earth consortium 11
15 FGOALS-g2 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences 3
16 FIO-ESM The First Institute of Oceanography, SOA, China 12
17 GFDL-CM3 NOAA Geophysical Fluid Dynamics Laboratory 6
18 GFDL-ESM2G 6
19 GFDL-ESM2M 6
20 GISS-E2-H p1 NASA Goddard Institute for Space Studies 7
21 GISS-E2-H p2 7
22 GISS-E2-H p3 7
23 GISS-E2-H-CC 7
24 GISS-E2-R p1 7
25 GISS-E2-R p2 7
26 GISS-E2-R p3 7
27 GISS-E2-R-CC 7
28 HadGEM2-AO Met Office Hadley Centre (additional HadGEM2-ES realizations contributed by Instituto Nacional de Pesquisas

Espaciais)
10

29 HadGEM2-CC 10
30 Had-GEM2-ES 10
31 INM-CM4 Institute for Numerical Mathematics 4
32 IPSL-CM5A-LR Institut Pierre-Simon Laplace 8
33 IPSL-CM5A-MR 8
34 IPSL-CM5B-LR 8
35 MIROC5 Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies,

and Japan Agency for Marine-Earth Science and Technology
9

36 MIROC-ESM Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute (The
University of Tokyo), and National Institute for Environmental Studies

9
37 MIROC-ESM-CHEM 9
38 MPI-ESM-LR Max-Planck-Institut für Meteorologie (Max Planck Institute for Meteorology)

Meteorological Research Institute
11

39 MPI-ESM-MR 11
40 MRI-CGCM3 5
41 NorESM1-M Norwegian Climate Centre 12

*GCM groups are defined in Table 2.

Table 2. CMIP5 GCM groups based on model genealogy.
No Group name Number of GCMs

1 CanESM2 1
2 CSIRO-Mk3.6.0 1
3 FGOALS-g2 1
4 INM-CM4 1
5 MRI-CGCM3 1
6 GFDL 3
7 GISS 8
8 IPSL 3
9 MIROC 3
10 UKMO 5
11 European 6
12 NCAR 8
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scenario, referred to here as the group ensemble mean,
was established based on the mean temperatures and
precipitation across the 12 groups. Subsequent sections
provide results for the 41 GCMs and their ensemble
mean, with the implications of grouping GCMs accord-
ing to their genealogy being assessed separately.

Simulation of the climate change scenarios followed
the approach used by Thompson et al. (2016). The two
existing dams within the model (Sélingué Dam and
Markala Barrage) were simulated as operational
throughout the baseline (1961–1990) and scenario per-
iods. Whilst this represented no change from the ori-
ginal calibrated model for the Markala Barrage, the
Sélingué Dam was assumed to be in operation from
the start of the baseline period instead of from 1982. In
this way, differences between scenarios and the baseline
can be attributed to changes in climate alone rather
than a combination of dams and climate change. This
approach assumes that the rainfall–runoff characteris-
tics represented within the hydrological model remain
stable in the future, an assumption widely employed in
similar modelling studies in Africa (e.g. Ardoin-Bardin
et al. 2009, Kingston and Taylor 2010) and elsewhere
(e.g. Singh et al. 2010, Thompson et al. 2013).

Results

Scenario climate

Table 3 summarizes the impacts of the 41 CMIP5
GCMs upon mean annual precipitation and PET for
the 2050s and 2080s. Baseline annual totals are shown
for each model sub-catchment. Percentage changes in
these totals are provided for the ensemble mean, the
two extreme changes projected by individual GCMs
and for a range of percentiles between 10 and 90%.
The numbers of individual GCMs (and percentage of
the 41 GCMs) in which precipitation and PET increase
or decrease over each sub-catchment are also indicated.
Scenario impacts over five representative sub-catch-
ments are shown graphically in Figure 2 in the form
of percentage changes in mean annual precipitation
and PET. These are superimposed upon shaded bands
that represent the percentile ranges employed in
Table 3. The same bands are employed in Figure 3,
which summarizes the impact of each scenario and the
ensemble mean upon mean monthly precipitation and
PET for the same representative sub-catchments.

Within all 12 sub-catchments, individual GCMs project
both increases and decreases in mean annual precipitation
(Table 3 and Fig. 2). Similar variability is demonstrated in
the distribution of precipitation through the year (Fig. 3).
The number of GCMs projecting increases in annual

precipitation over individual sub-catchments varies from
16 to 30 (2050s) and 15 to 29 (2080s). Out of the 492 sub-
catchment–GCM combinations (12 sub-catchments × 41
GCMs), precipitation increases in 276 (56.1%) for the
2050s and 259 (52.6%) for the 2080s. The inter-GCM
range of change in mean annual precipitation varies con-
siderably between different sub-catchments and increases
between the 2050s and 2080s. There is some consistency in
the GCMs responsible for the extreme changes with, for
example, GCM 37 followed by GCM 36 (MIROC-ESM-
CHEM and MIROC-ESM, respectively) dominating the
largest increases in annual precipitation over eastern sub-
catchments. At the other extreme, GCM 31 (INM-CM4) is
associatedwith the largest reductions in 10 sub-catchments
for the 2050s and in all 12 sub-catchments for the 2080s.

Beyond the most extreme changes, the 10–90-per-
centile range of change in annual precipitation for the
2050s varies between 13.6% (Sankarani – e) and 26.9%
(Tinkisso – a). Across the 12 sub-catchments the mean
range is 19.0%. The mean for the 2080s is 22.5% and
the range varies between 15.6% (Sankarani – e) and
34.4% (Dire – l). The central 33% of changes (i.e. the
33–66-percentile range) has a mean range of 5.8% (4.2–
9.5%, Sankarani (e) and Tinkisso (a), respectively) for
the 2050s and 6.3% (4.2–11.5%, Dire (l) and Tinkisso
(a), respectively) for the 2080s. Figure 3 demonstrates
the small range in mean monthly precipitation for this
central 33% of GCMs. In most cases the baseline falls
within this range. For both time slices an equal number
of sub-catchments experience increases and decreases
in the 50-percentile change in annual precipitation
(Table 3). Inter-sub-catchment variability is relatively
small. On average very small increases in annual pre-
cipitation are projected (0.7 and 0.4% for the two time
slices, respectively). Changes for the ensemble mean
are similarly small (mean 1.1 and 1.3% for the 2050s
and 2080s, respectively) although more sub-catchments
experience increased annual precipitation (eight and
nine, respectively). Mean monthly precipitation in
each sub-catchment for the ensemble mean is very
similar to the baseline (Fig. 3).

Annual PET increases for all GCMs in six of the 12
sub-catchments for both the 2050s and 2080s (Table 3
and Fig. 2). GCMs 36 and 37 project relatively small
declines in the remaining sub-catchments, which are
predominantly due to projected reductions in mean and
especially maximum temperatures during the wet season.
Declines inmaximum temperature at this time of year are
also projected by some other GCMs for some sub-catch-
ments, leading to declines in wet season PET (Fig. 3). For
the rest of the year monthly PET generally increases for
all GCMs. GCMs 36 and 37 are clearly outliers compared
to the other GCMs, and even then Table 3 and Figure 2
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demonstrate that GCM-related uncertainty for scenario
PET is considerably smaller than that for precipitation.
For the 2050s the inter-GCM ranges of change in annual
PET for the 10–90-percentile range vary between 3.8%
(Sankarani – e) and 4.8% (Tinkisso – a). The mean range
of 4.3% is over four times as small as the corresponding
range for precipitation. For the 2080s the mean inter-
GCM range is 5.8% (nearly a quarter of that for precipita-
tion) and for individual sub-catchments varies between
4.5% (Kankan – d) and 6.4% (Bougouni – f). The central
33% of changes in annual PET (i.e. the 33–66-percentile
range) has a mean of 1.4% (0.8–2.0%, Ke-Macina (j) and
Kouroussa (b), respectively) for the 2050s and 1.9% (1.0–
2.8%, Ke-Macina (l) and Tinkisso (a), respectively) for the
2080s. The 50-percentile changes for the 2050s are very
similar throughout the Upper Niger, and range between
3.3% (Kouroussa – b) and 4.8% (Banankoro – c) with a
mean of 4.2%. For the 2080s the 50-percentile changes are

slightly larger and again are similar throughout the catch-
ment (mean: 5.2%, ranging from 4.1% (Kouroussa – b) to
5.8% (Tinkisso – a and Banankoro – c)). These figures are
very similar (all within 0.6%) to those for the ensemble
mean.

Scenario river flow

The impacts of the 41 CMIP5 GCMs upon mean, high
and low flows for the 2050s and 2080s are summarized
in Table 4. This shows simulated baseline mean, Q5
and Q95 discharges (discharges equalled or exceeded
for 5 and 95% of the time, respectively) for the 12
gauging stations represented within the hydrological
model. Percentage changes from the baseline for each
of these discharges are provided for the ensemble
mean, the two extreme changes projected by individual
GCMs and a range of percentiles between 10 and 90%.

Figure 2. Percentage changes in mean annual precipitation and PET for five representative sub-catchments of the Upper Niger for
each CMIP5 GCM and the ensemble mean for the 2050s and 2080s. Shaded bands represent the percentile ranges of the
distribution of the CMIP5 ensemble. E: ensemble mean, 1–41: the CMIP5 GCMs shown in Table 1. (Note: y-axis ranges for
precipitation and PET are consistent for individual sub-catchments for the two time slices but vary between sub-catchments.)
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The number (and percentage) of GCMs in which
mean, Q5 and Q95 discharges increase are also
shown. Figure 4 summarizes the impacts on mean
discharges at six representative gauging stations in the
form of percentage changes from the baseline for the
ensemble mean and each GCM. These results are
superimposed upon shaded bands representing the
percentile ranges employed in Table 4. Changes in
mean discharge are, at least in terms of direction of
change, similar to those for Q5 and Q95 discharges.
Impacts of each GCM and the ensemble mean upon
the river regime (i.e. the mean monthly discharge) at
the same six gauging stations are shown in Figure 5.
These regimes, which are derived from the results for
the 30-year simulation periods, are superimposed upon
the same percentile range bands employed in Figure 4.

As for annual precipitation, both increases and
decreases in mean, Q5 and Q95 discharges are pro-
jected for individual GCMs at all 12 gauging stations.
There is a tendency for mean discharge to increase at
slightly fewer gauging stations compared to the
changes in mean annual precipitation over the 12
sub-catchments. The number of GCMs projecting

increases in mean discharge for the 2050s at individual
stations varies between 16 and 25. For the 2080s mean
discharge increases for between 12 and 25 GCMs. Out
of the 492 gauging station–GCM combinations (i.e. 12
gauging stations × 41 GCMs), mean discharge
increases in 263 (53.5%) for the 2050s and 228
(46.3%) for the 2080s. The very large increases in
annual precipitation for GCMs 36 and 37 over many
sub-catchments are retained in the simulated mean
discharges and river regimes (Figs 4 and 5, respec-
tively). At the other extreme, GCM 31 is responsible
for the largest decreases in mean, Q5 and Q95 dis-
charges at all gauging stations.

The inter-GCM ranges of change in mean discharge
vary considerably between gauging stations and for
both the 2050s and 2080s are larger than those for
mean precipitation. For example, beyond the most
extreme changes (i.e. the 10–90-percentile range) the
mean range of change in mean discharge for the 2050s
is 52.9% (19.0% for precipitation) and varies between
31.0% (–20.7 to 10.3%, Dire – l) and 75.8% (–32.7 to
43.1%, Tinkisso – a). The corresponding mean for the
2080s is 59.5% (22.5% for precipitation) with a range of

Figure 3. Mean monthly precipitation and PET for five representative sub-catchments of the Upper Niger for the baseline, each
CMIP5 GCM and the ensemble mean for the 2050s and 2080s. Shaded bands represent the percentile ranges of the distribution of
the CMIP5 ensemble. (Note: y-axis ranges for precipitation and PET are consistent for individual sub-catchments for the two time
slices but vary between sub-catchments.)
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Table 4. Baseline mean, Q5 and Q95 discharges (m3 s−1) and summary of changes (%) for the 41 CMIP5 GCM climate change
scenarios for 12 gauging stations within the Upper Niger catchment. E.M. indicates the changes (%) for the ensemble mean, Max.
and Min. represent the maximum and minimum changes (%), the corresponding figures for 90−10% represent the changes (%) for
the respective percentile (which define the shaded zones in Fig. 4). Shaded cells indicate negative changes compared to the
baseline. +ve and −ve are the number (% in brackets) of GCMs in which scenario mean discharges are above and below the
baseline, respectively. Letters refer to the stations for the model sub-catchments indicated in Figure 1.
Parameter Scenario Gauging stations

a b c d e f g h i j k l

Mean Baseline 138.8 194.6 924.3 163.4 299.7 86.8 164.2 1235.2 340.9 1171.2 344.8 928.8

2050 E.M. −2.5 2.7 −2.7 4.0 3.0 −11.5 1.1 −1.2 −1.9 −1.3 −2.0 −0.6
Max. 61.2 36.2 40.0 31.9 38.5 81.3 116.5 43.8 117.2 47.4 119.2 29.3
90% 43.1 25.0 14.9 21.5 20.1 17.4 27.1 16.0 25.7 16.7 25.6 10.3
66% 5.7 4.9 2.6 15.7 10.7 3.8 7.2 3.7 7.2 3.9 7.2 3.1
50% −3.7 2.4 −1.2 7.7 6.9 −8.3 4.0 1.8 2.1 1.6 2.3 0.9
33% −16.8 −3.3 −4.9 −5.4 −2.6 −17.5 −1.5 −4.0 −6.9 −4.0 −6.9 −2.5
10% −32.7 −16.4 −24.4 −17.7 −21.4 −48.3 −45.4 −24.4 −47.7 −25.6 −46.7 −20.7
Min. −69.6 −36.0 −47.1 −30.2 −33.9 −73.6 −63.5 −44.4 −68.6 −46.4 −67.1 −40.0
+ve 18 (44) 24 (59) 19 (46) 25 (61) 24 (59) 16 (39) 24 (59) 23 (56) 22 (54) 23 (56) 22 (54) 23 (56)
−ve 23 (56) 17 (4) 22 (54) 16 (39) 17 (41) 25 (61) 17 (41) 18 (44) 19 (46) 18 (44) 19 (46) 18 (44)

2080 E.M. −1.7 4.6 −3.1 4.0 2.4 −14.3 −2.8 −1.7 −5.7 −1.8 −5.5 −1.1
Max. 91.8 44.4 55.1 42.5 51.1 112.3 169.0 58.7 171.4 64.1 179.5 39.0
90% 56.5 32.5 14.4 27.1 22.0 23.2 30.1 15.9 28.2 16.5 28.3 10.3
66% 8.3 11.3 4.9 16.8 13.2 −4.7 3.0 6.7 0.9 6.7 1.0 3.6
50% −6.9 5.5 −1.1 6.4 4.8 −11.8 −2.3 −0.1 −3.5 0.0 −3.0 −0.2
33% −18.9 −4.7 −8.7 −5.4 −5.0 −23.2 −12.5 −8.2 −19.1 −8.6 −18.7 −4.8
10% −39.3 −14.9 −24.5 −19.0 −18.6 −53.8 −56.9 −22.3 −58.9 −23.3 −57.6 −20.2
Min. −89.4 −57.1 −68.1 −51.5 −53.8 −92.5 −82.4 −64.9 −87.1 −67.6 −85.8 −62.8
+ve 17 (41) 25 (61) 20 (49) 24 (59) 23 (56) 12 (29) 17 (41) 20 (49) 15 (37) 20 (49) 15 (37) 20 (49)
−ve 24 (59) 16 (49) 21 (51) 17 (41) 18 (44) 29 (71) 24 (59) 21 (51) 26 (63) 21 (51) 26 (63) 21 (51)

Q5 Baseline 593.9 712.5 3602.2 624.5 1160.2 416.9 919.2 4726.2 1730 4709.5 1742 2128.7

2050 E.M. −3.0 4.8 −1.1 6.1 1.8 −4.5 0.6 0.4 0.5 −2.9 −0.3 −0.8
Max. 41.6 24.0 29.7 27.7 27.4 58.9 82.1 36.5 83.2 35.5 85.6 11.3
90% 29.5 18.2 11.0 15.9 20.3 16.7 18.7 13.1 19.8 9.9 18.3 3.4
66% 3.4 6.5 2.7 13.4 8.7 6.0 5.4 6.0 8.8 2.5 8.6 1.2
50% −3.5 4.6 0.7 10.4 4.5 −1.3 2.5 2.2 4.0 −0.5 3.6 0.6
33% −14.6 −1.9 −4.0 −2.0 −2.8 −8.2 −3.4 −1.8 −5.8 −4.5 −4.8 −1.3
10% −28.0 −9.4 −19.2 −14.3 −20.3 −36.0 −35.7 −19.3 −38.9 −22.0 −37.3 −8.1
Min. −58.9 −24.5 −37.5 −23.0 −28.5 −57.5 −54.9 −35.8 −60.1 −39.5 −59.0 −15.1
+ve 18 (44) 27 (66) 22 (54) 26 (63) 26 (65) 19 (46) 23 (56) 25 (63) 23 (58) 20 (49) 24 (59) 23 (56)
−ve 23 (56) 14 (34) 19 (46) 15 (37) 14 (35) 22 (54) 18 (44) 15 (37) 17 (42) 21 (51) 17 (41) 18 (44)

2080 E.M. −1.2 5.9 −1.3 5.7 1.0 −6.9 −1.8 −0.6 −3.3 −3.7 −2.6 −1.3
Max. 65.2 32.2 40.9 29.6 37.0 84.4 113.8 47.4 120.5 47.3 121.3 15.0
90% 41.2 23.7 12.3 21.1 21.7 18.2 21.4 12.9 19.8 10.0 21.1 3.7
66% 3.4 9.5 4.6 12.9 7.9 0.8 2.5 6.0 2.4 3.1 2.6 0.8
50% −4.2 3.4 1.2 6.7 2.1 −6.1 −0.8 2.6 −2.1 −0.3 −2.5 −0.5
33% −14.4 −0.9 −6.0 −1.2 −4.5 −14.2 −8.7 −6.9 −12.6 −9.3 −12.4 −1.8
10% −30.4 −10.6 −17.8 −12.7 −17.4 −41.2 −48.5 −16.5 −49.6 −19.5 −48.0 −9.0
Min. −82.4 −47.5 −59.5 −42.4 −42.9 −90.0 −77.5 −56.0 −84.8 −57.1 −83.8 −26.5
+ve 17 (41) 26 (63) 22 (54) 28 (68) 24 (59) 16 (39) 18 (44) 24 (59) 18 (44) 20 (49) 19 (46) 19 (46)
−ve 24 (59) 15 (37) 19 (46) 13 (32) 17 (41) 25 (61) 23 (56) 17 (41) 23 (56) 21 (51) 22 (54) 22 (54)

Q95 Baseline 0.6 3.3 7.9 1.5 0.2 0.1 0.1 10.1 0.3 0.0 0.8 0.0

2050 E.M. −16.7 0.0 3.8 0.0 0.0 −100.0 0.0 −5.9 0.0 -† 0.0 -†

Max. 183.3 51.5 63.3 33.3 50.0 0.0 100.0 40.6 1766.7 -† 837.5 -†

90% 116.7 43.9 41.1 23.3 0.0 0.0 0.0 34.2 433.3 -† 237.5 -†

66% 0.0 6.1 10.1 13.3 0.0 0.0 0.0 −1.5 100.0 -† 50.0 -†

50% −16.7 −3.0 0.0 0.0 0.0 −100.0 0.0 −9.9 66.7 -† 25.0 -†

33% −33.3 −10.6 −3.8 −6.7 0.0 −100.0 0.0 −15.3 0.0 -† −12.5 -†

10% −50.0 −21.2 −20.3 −16.7 −50.0 −100.0 −100.0 −30.7 −100.0 -† −75.0 -†

Min. −83.3 −45.5 −45.6 −26.7 −50.0 −100.0 −100.0 −52.5 −100.0 -† −75.0 -†

+ve* 13 (32) 18 (44) 19 (46) 19 (46) 1 (2) 0 (0) 2 (5) 14 (34) 25 (61) -† 23 (56) -†

−ve 23 (56) 22 (54) 20 (49) 16 (39) 11 (27) 23 (56) 12 (29) 27 (66) 10 (24) -† 14 (34) -†

2080 E.M. −16.7 0.0 3.8 0.0 0.0 −100.0 −100.0 −5.0 0.0 -† −12.5 -†

Max. 333.3 75.8 75.9 46.7 50.0 100.0 300.0 58.4 2866.7 -† 1225.0 -†

90% 150.0 51.5 50.0 26.7 0.0 0.0 0.0 36.6 483.3 -† 250.0 -†

66% 16.7 10.6 15.2 13.3 0.0 −100.0 0.0 9.4 66.7 -† 31.3 -†

50% −16.7 3.0 6.3 6.7 0.0 −100.0 0.0 −5.0 0.0 -† 0.0 -†

33% −33.3 −10.6 −7.0 −6.7 0.0 −100.0 −100.0 −19.3 −50.0 -† −50.0 -†

10% −53.3 −22.7 −21.5 −20.0 −50.0 −100.0 −100.0 −31.7 −100.0 -† −75.0 -†

Min. −100.0 −66.7 −67.1 −53.3 −50.0 −100.0 −100.0 −71.3 −100.0 -† −75.0 -†

+ve* 16 (39) 23 (56) 22 (54) 21 (51) 2 (5) 2 (5) 2 (5) 17 (41) 18 (44) -† 19 (46) -†

−ve 23 (56) 17 (41) 17 (41) 17 (41) 12 (29) 27 (66) 19 (46) 22 (54) 17 (41) -† 20 (49) -†

† Q95 for baseline and all GCMs = 0 m3 s−1; * +ve and −ve do not sum to 100% as some Q95 discharges are unchanged.
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between 30.5 and 95.8% (Dire: –20.2 to 10.3%,
Tinkisso: –39.3 to 56.5%). The 10–90-percentile ranges
of change in Q5 discharges are smaller than those for
mean discharge (2050s mean: 40.3%, range: 11.4–
58.5%; 2080s mean: 45.7%, range: 12.6–71.5%). Whilst

the inter-GCM ranges of change in low flows (Q95
discharges) are larger than those for mean discharge,
absolute changes are small. The central 33% of changes
in mean discharge (i.e. the 33–66-percentile range) are
again predominantly larger than those for

Figure 4. Percentage changes in mean discharges at six representative gauging stations in the Upper Niger for each CMIP5 GCM
and the ensemble mean for the 2050s and 2080s. Shaded bands represent the percentile ranges of the distribution of the CMIP5
ensemble. E: ensemble mean, 1–41: the CMIP5 GCMs shown in Table 1. (Note: y-axis ranges are consistent for individual gauging
stations for the two time slices but vary between gauging stations.)
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precipitation. For the 2050s the mean range of change
is 12.7% (5.6–22.6%) and for the 2080s it is 17.4% (8.4–
27.2%). In both cases the extreme ranges of changes are
associated with Dire – l and Tinkisso – a, respectively.
Figure 5 shows that baseline river regimes are within or
very close to the central 33% of scenario river regimes.

The 50-percentile changes in mean discharge for the
2050s, which are all relatively small, are positive at nine
stations and negative at three (range: –8.3 to 7.7%,
mean: 1.4%). This pattern is almost completely
reversed for the 2080s, with positive changes at four
stations and declines at eight (range: –11.8 to 6.4%,

mean: –1.0%). Peak (Q5) discharges follow a similar
pattern, whilst slightly more 50-percentile Q95 dis-
charges increase. Changes in mean discharge for the
ensemble mean in both the 2050s and 2080s are posi-
tive at three gauging stations and decline at the remain-
ing nine (Table 4), an almost perfect mirror of the
changes in mean annual precipitation (Table 3).
Changes are small in most cases, ranging between –
11.5 and 4.0% (mean: –1.1%) for the 2050s and
between –14.3 and 4.6% (mean: −2.2%) for the 2080s.
Whilst in the 2050s an equal number of stations experi-
ence increases and decreases in Q5 discharges (range: –

Figure 5. Simulated river regimes (mean monthly discharge) at six representative gauging stations in the Upper Niger for the
baseline, each CMIP5 GCM and the ensemble mean for the 2050s and 2080s. Shaded bands represent the percentile ranges of the
distribution of the CMIP5 ensemble. (Note: y-axis ranges are consistent for individual gauging stations for the two time slices but
vary between gauging stations.)

HYDROLOGICAL SCIENCES JOURNAL – JOURNAL DES SCIENCES HYDROLOGIQUES 2251

D
ow

nl
oa

de
d 

by
 [

U
C

L
 L

ib
ra

ry
 S

er
vi

ce
s]

 a
t 0

1:
43

 1
4 

N
ov

em
be

r 
20

17
 



4.5 to 6.1%, mean: 0.1%), in the 2080s declines in high
flows are dominant, especially downstream (range: –6.9
to 5.9%, mean: –0.8%). Ensemble mean river regimes
are very similar to the baseline (Fig. 5). Where declines
in Q5 discharges are projected, the seasonal peak
(September for stations above the Delta) tends to be
lower than the baseline, although mean October dis-
charges are higher at most stations. Q95 discharges
both increase (2050s: six stations, 2080s: seven stations)
and decrease.

Scenario impacts on the Inner Niger Delta

Figure 6 summarizes the impacts of the 41 CMIP5
GCMs on river inflows to the Inner Niger Delta.
Using the approach adopted by Thompson et al.
(2016), it shows the combined mean monthly inflows
from Ke-Macina (j) and Beney-Kegny (k) for the base-
line, each GCM and the ensemble mean for both the

2050s and 2080s. Percentage changes from the baseline
in the annual total inflows are also shown for each
GCM and the ensemble mean for both time slices.
Both the monthly inflows and the changes in the
annual total inflows are superimposed on the same
percentile ranges used in the previous analyses.

For the 2050s increases in the mean annual inflow to
the Inner Niger Delta are projected by 25 (61%) of the
41 GCMs, with the remaining 16 (39%) projecting
declines. In the 2080s more GCMs (23/56%) project
reductions than those that project increases (18/43%).
The largest reductions are associated with GCM 31,
whilst GCMs 36 and 37 dominate the largest increases.
The 10–90-percentile range of change in annual river
inflows is very similar for the 2050s and 2080s at 49.3%
(–29.4 to 19.9%) and 48.2% (–27.9 to 20.3%), respec-
tively. The central 33–66-percentile range is, however,
slightly larger in the 2080s (13.1%; –7.9 to 5.2%) com-
pared to the 2050s (9.6%; –4.4 to 5.2%). Whilst baseline

Figure 6. Simulated mean monthly river inflows to the Inner Niger Delta for the baseline, each CMIP5 GCM and the ensemble mean
for the 2050s and 2080s; changes from the baseline in mean annual inflows for each CMIP5 GCM and the ensemble mean for the
2050s and 2080s. Shaded bands represent the percentile ranges of the distribution of the CMIP5 ensemble. E: ensemble mean,
1–41: the CMIP5 GCMs shown in Table 1.
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mean monthly inflows fall within the central 33% of
changes in both time slices during the peak flow period
(September and October), they are just above it during
the rising limb of the annual flood, with these increases
being compensated by declines during the subsequent
recession (Fig. 6). The 50-percentile change in annual
inflows for the 2050s is very slightly positive (2.1%),
whilst a decline of a similar magnitude (–2.5%) is
projected for the 2080s. The ensemble mean for both
time slices results in small reductions in mean annual
inflows of –1.4 and –2.1%, respectively. Mean monthly
inflows for the ensemble mean for both the 2050s and
2080s are very similar to the baseline (Fig. 6). In both
time slices, peak September flows decline slightly (by
3.7 and 4.3% respectively) but are still larger than those
in October, which increase slightly (by 5.2 and 4.3%,
respectively) compared to the baseline.

Figure 7 shows mean monthly flood extent within
the Inner Niger Delta for the baseline, each of the 41
CMIP5 GCMs and the ensemble mean for both the
2050s and 2080s. Model results are superimposed upon
the percentile range bands employed in previous ana-
lyses. The wide range in flood regimes projected by the
different GCMs is clearly demonstrated. In most cases
and both time slices the baseline November peak is
retained. For the 2050s only one GCM (GCM 16)
projects a mean seasonal peak in another month
(October), whilst in the 2080s three GCMs (GCMs 3,
13 and 16) suggest a mean seasonal peak that occurs
1 month earlier. A larger number of GCMs project
declines in the seasonal peak flood extent compared
to those that project increases. Of the 41 GCMs, 32
project declines in both October and November mean
flood extent for the 2050s. Three of the remaining nine
GCMs project declines in October, so that only six
project enhanced flooding in the two peak inundation

months. For the 2080s, 28 of the GCMs project
declines in flooding for both October and November,
with a further four projecting declines in October
alone. Increased inundation in both peak months is
projected by nine GCMs. The apparent anomaly
between changes in annual river inflow to the Inner
Niger Delta (increases for 25 and 18 of the 41 GCMs
for the 2050s and 2080s, respectively) and peak flood
extent is explained by projected climate changes over
this part of the basin. Whilst more GCMs project
increases rather than decreases in annual precipitation
over the Dire/Delta sub-catchment (l), baseline preci-
pitation is low. In contrast, this part of the basin has
the highest baseline annual PET and, with the excep-
tion of two GCMs, it is projected to increase (Table 3
and Fig. 2). As a result, net precipitation (precipitation
− PET) only increases for seven GCMs in both time
slices. In many cases, enhanced evaporation from the
inundated area counteracts the influence of increased
river inflows when they occur.

Impacts of these changes are evident in the relative
position of the baseline flood regime and the central
33–66-percentile range of change in mean monthly
flood extent (Fig. 7). In the 2050s this central range is
below the baseline between August and November, and
the baseline flood regime is instead located within the
66–90-percentile range. The period when the baseline
regime is within this higher range extends into
December for the 2080s. During the latter part of the
flood recession between January (December for the
2050s) and March, as well as at the start of the annual
rise in water levels (July), the baseline regime falls
within the 33–66-percentile range of change.
Conversely during the low water period, the baseline
lies within the 10–33-percentile range since a majority
of GCMs project increased flooding. For the 2050s,

Figure 7. Mean monthly flood extents for the Inner Niger Delta for the baseline, each CMIP5 GCM and the ensemble mean for the
2050s and 2080s. Shaded bands represent the percentile ranges of the distribution of the CMIP5 ensemble.
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flood extent between April and June is above the base-
line for 33 of the 41 GCMs. This declines to 31 for the
2080s. The ensemble mean reflects the dominance of
declines in peak flood extents and increases in dry
season flooding. For both the 2050s and 2080s, the
mean monthly flood extent for this scenario is below
the baseline between July and January, with peak
(October and November) areas of inundation declining
by on average 1841 km2 (13.6%) in the 2050s and
2024 km2 (14.9%) in the 2080s. Conversely, mean
monthly flood extents are very slightly above the base-
line between February and June.

Figure 8 summarizes the climate change impacts on
annual maximum flood extents. For both the 2050s and
2080s it plots peak seasonal flood extent against the
numbers of years in which they are equalled or exceeded
during the 30-year simulation periods. This is done for
the baseline, each GCM and the ensemble mean. Change
from the baseline for the largest, mean and smallest
annual peak flood extents are also shown. Changes in
mean annual maxima are close to those of November
within the flood regime (Fig. 7); small differences are
due to changes in timing of the annual peak. As in
previous analyses, results are superimposed upon

Figure 8. Impacts of climate change on annual peak flood extents within the Inner Niger Delta for the 2050s and 2080s: peak flood
extent–frequency for the baseline, each CMIP5 GCM and the ensemble mean; change from the baseline in the maximum, mean and
minimum annual peak flood extents for each CMIP5 GCM and the ensemble mean. Shaded bands represent the percentile ranges of
the distribution of the CMIP5 ensemble. E: ensemble mean, 1–41: the CMIP5 GCMs shown in Table 1.
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percentile range bands. The dominant trend of declines in
peak flood extent is clearly evident. For the 2050s, 22
GCMs project declines in all 30 annual peak flood extents.
A further four project declines in all but one year. In
contrast, only three GCMs show consistent increases for
the full 30 years. Unsurprisingly these include GCMs 36
and 37 (the other being GCM 12). Only one GCM pro-
jects increases in all but one year, whilst two further
GCMs project declines in all but two years. Mean peak
flood extent declines for 33 GCMs, with only eight pro-
jecting increases. Excluding the more extreme changes
produces a 10–90-percentile range for the 2050s of –
6136 km2 (–43.0%) to 987 km2 (6.9%), whilst the bound-
aries of the central 33% of changes (33–66-percentile
range) are both negative, ranging between –2534 km2

(17.8%) and –931 km2 (–6.5%). The ensemble mean
produces a reduction in annual peak flood extent of
1870 km2 (13.1%). Very similar trends are evident in
the smallest and largest annual floods (Fig. 8). In percen-
tage terms, changes in the smallest flood extents tend to
be greater than those for the mean, although absolute
changes are obviously smaller. Conversely, percentage
changes in the largest floods tend to be smaller than the
mean (absolute changes being larger).

A similar picture emerges for the 2080s although, as
with projected meteorological and river discharge
changes, the inter-GCM range expands from the 2050s
(Fig. 8). Declines still dominate, with 26 GCMs projecting
reductions in peak flood extent throughout the 30 years,
whilst two project declines in 28 years (none projecting
declines in 29 years). Five GCMs project increases in peak
flood extent in all 30 years, with one and two projecting
increases in 29 and 28 years, respectively. The number of
GCMs projecting lower mean peak flood extent reduces
to 30 (11 projecting increases). Changes for the 10–90-
percentile range vary between –6176 km2 (–43.3%) and
1165 km2 (8.2%), whilst the central 33–66-percentile
ranges from −2835 km2 (–19.9%) to –1228 km2 (8.6%).
A reduction in mean peak annual flood extent of
2076 km2 (14.6%) is projected for the ensemble mean.
Reductions in the smallest and largest annual floods are
projected by 28 and 29 GCMs, respectively (Fig. 8). For
both the smallest and largest peak annual flood extents,
the central 33–66-percentile ranges of change are
bounded by declining flood extent, whilst the ensemble
mean is associated with declines of 561 km2 (14.9%) and
3351 km2 (12.8%), respectively.

Implications on climate change projections of the
genealogy-based GCM groups

Figure 9 summarizes the impacts of the climate change
scenarios for the 12 GCM groups that were established

using GCM genealogy. For illustrative purposes it
shows changes from the baseline in mean annual pre-
cipitation and PET as well as mean discharge for three
of the sub-catchments/gauging stations for which com-
parable results were shown in Figures 2 and 4, respec-
tively. These were selected to represent the upstream/
western, middle/central and downstream/eastern parts
of the Upper Niger. For both the 2050s and 2080s
results are shown for the original ensemble mean sce-
nario based on all 41 GCMs, the group ensemble mean
derived from the 12 GCM groups and each of the
individual groups. Simulated river inflows to the
Inner Niger Delta (comparable to Fig. 6) as well as
the mean monthly flood extent and change in mean
peak flood extent (comparable to Figs 7 and 8, respec-
tively) are also shown for these scenarios.

Whilst there are some subtle differences between
results for the genealogy-based GCM groups and the
complete 41 GCM ensemble, the main trends previously
described for the latter are retained. In all sub-catchments
different GCM groups project increases and decreases in
annual precipitation (Fig. 9). Increases are projected in 71
(49.3%) and 75 (52.1%) of the 144 sub-catchment–GCM
group combinations (12 sub-catchments × 12 GCM
groups) in the 2050s and 2080s, respectively (close to
the 56.1 and 52.6% for the 41 GCM ensemble). Across
the 12 sub-catchments changes in annual mean precipita-
tion for the group ensemble mean are small, varying
between –3.2 and 3.6% (2050s) and –3.4 and 4.6%
(2080s). There are fewer positive changes compared to
the original ensemble mean (three compared to eight for
the 2050s, seven compared to nine for the 2080s),
although differences between the two are small (mean
differences: –1.9 and –1.7% for the two time slices,
respectively). Differences between the original and
group ensemble means are very small (all <0.2%) for
annual PET. Small (<5%) declines for Group 9 are only
projected in two sub-catchments (Kankan – d and
Sankarani – e; not shown) with the relatively large
increases in PET projected by GCM 35 (Fig. 2) cancelling
out those previously described for the other two GCMs in
this group (GCMs 36 and 37). Annual PET increases for
all the other scenarios, although the inter-GCM group
range is, as for the full 41 ensemble, much smaller than
that of precipitation (by around five times in percentage
terms for both time slices).

As for the 41 GCM ensemble, increases and
decreases in mean discharge are projected by different
GCM groups (Fig. 9). In both time slices 66 (45.8%) of
the 144 gauging station–GCM group combinations
project increases (compared to 53.5% (2050s) and
46.3% (2080s) for the 41 GCMs). Also in common
with the 41 GCM ensemble, the mean inter-GCM
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group range of change in mean discharge is, in percen-
tage terms, around three times as large as that of mean
annual precipitation. Unlike the original ensemble
mean, the group ensemble mean is associated with
declines in mean discharge at all 12 gauging stations
in both time slices. On average, mean discharge for the
latter scenario declines by 7.3% (2050s) and 8.7%
(2080s) compared to the declines of 1.1 and 2.2% for
the original ensemble mean.

The declines in mean annual river inflow to the Inner
Niger Delta for the group ensemble mean (2050s: –7.5%,
2080s: –8.2%) are around 6% larger than those of the 41
GCM ensemble mean. Inflows increase for seven (2050s)
and six (2080s) of the GCM groups, declining for the
others. Although the largest declines are identical to
those of the 41 ensemble since they are associated with
Group 4, which comprises only one GCM (INM-CM4),
the largest increases are reduced as a result of grouping

Figure 9. Summary of the impacts of GCM group scenarios on the Upper Niger and Inner Niger Delta: percentage change in mean
annual precipitation and PET for three representative sub-catchments; change in mean discharge at three representative gauging
stations; mean monthly river inflows to the Inner Niger Delta and percentage changes in mean annual inflows; mean monthly flood
extent and changes in mean peak flood extent within the Inner Niger Delta. E: ensemble mean of the 41 CMIP5 GCMs, G: group
ensemble mean of the 12 GCM groups, 1–12: the GCM groups shown in Table 2. (Note: y-axis ranges vary between sub-catchments/
gauging stations.)
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the three MIROC GCMs (Group 9). This is repeated for
the changes in mean peak flood extent (Fig. 9). Of the 12
GCM groups, increases are only projected by one in the
2050s, increasing to three for the 2080s. In both time
slices the declines in mean peak inundation projected by
the group ensemble mean are around 6% larger than
those of the 41 GCM ensemble mean (2050s: –
2777 km2/19.5%, 2080s: –2977 km2/20.9%).

Discussion

There are consistencies between the climate results from
the current study and those of the earlier investigation
by Thompson et al. (2016), which employed the same
hydrological model and a smaller set of projections from
seven GCMs for a consistent 2°C increase in global
mean temperature. The addition of more GCMs com-
pared to the earlier study increases the range of inter-
GCM uncertainties in projected changes in hydro-
meteorological conditions in the Upper Niger. Both
studies demonstrate much larger inter-GCM uncertainty
in precipitation compared to PET. Whilst the vast
majority (all in the case of the earlier study) of sub-
catchment–GCM combinations are associated with
increases in PET, both increases and decreases in mean
annual precipitation are projected by different GCMs in
both studies. Similarly, the much larger percentage
ranges of change in annual precipitation for the current
study (Fig. 2, Fig. 9 for the GCM groups) echo those of
Thompson et al. (2016), in which the mean range of
change in annual precipitation exceeded that of PET by
over five times (compared to around four times in the
current study for the full 41 GCM ensemble and five
times for the genealogically-based GCM groups). Larger
uncertainty in precipitation, including variations in the
direction of change, compared to PET reflects results
from other studies (Kingston and Taylor 2010, Kingston
et al. 2011, Singh et al. 2011, Thompson 2012,
Thompson et al. 2013). For example, Ho et al. (2016)
used the same approach and GCMs as those employed
in the current study in their assessment of climate
change impacts on river flow within Brazil’s
Tocantins–Araguaia Basin. For a 2080s time slice,
changes in mean annual precipitation varied between –
25.1 and +21.8% (total range 46.9%) compared to
increases in PET of between 1.9 and 13.9% (range
12%, nearly a quarter of the range for precipitation).

Elevated evapotranspiration results in slightly more
GCMs projecting declines in discharge compared to
precipitation, although considerable uncertainty in the
direction of change remains (Figs 4 and 5, Fig. 9 for the
GCM groups). In common with an earlier study using
a single GCM and hydrological models of four West

African catchments (Ardoin-Bardin et al. 2009),
changes in river flow tend to follow projected changes
in precipitation. Whilst inter-GCM patterns of changes
in mean discharge at gauging stations in upstream sub-
catchments closely correspond with those for mean
annual precipitation over their sub-catchments (e.g.
Koroussa (c) and Pankourou (g) in Figs 2 and 4),
further downstream, and as reported by Thompson
et al. (2016), the cumulative influence of changes in
climate and, in turn, runoff over different sub-catch-
ments impact the degree of direct correspondence.
Similar results were identified by Thompson et al.
(2013, 2014a) for the Mekong River Basin, where var-
iations in climate change responses between different
downstream sub-catchments either amplified or dimin-
ished projected changes in runoff from further
upstream. The larger inter-GCM ranges of change in
discharge compared to precipitation (by two–three
times for the 10–90-percentile range) replicates results
reported by Thompson et al. (2016) for the smaller set
of GCMs over the Upper Niger. They also reflect the
larger observed declines since the 1970s in discharge of
the Bani compared to precipitation (–69% versus–15 to
–25%; Louvet et al. 2011). Elsewhere, Ho et al. (2016)
showed that the inter-GCM range of change in dis-
charge for the Tocantins–Araguaia Basin and the same
GCMs as those employed in the current study was 2.2
times the magnitude of the range for precipitation.

Uncertainties in the direction of change in river
inflows to the Inner Niger Delta from the current
study (Fig. 6) contrast with the results of Thompson
et al. (2016), who found that, of the smaller set of seven
GCMs, only one projected modest (3.9%) increases in
annual inflow to the Inner Delta. Of the remaining six
GCMs, three projected declines in inflows of less than
5%, with results for the remaining three suggesting
declines of between 18.1 and 52.7%. These are of a
comparable magnitude to the changes projected by
some GCMs in the current study.

Whilst there is some uncertainty in the direction of
change in flood extent within the Inner Niger Delta
(Figs 7–9 for the GCM groups), the relative dominance
of declines in annual peaks echoes those reported by
Thompson et al. (2016) where only one out of seven
GCMs projected increases in mean peak flood extent
(of 1405 km2). This one change is of a similar magni-
tude to those resulting from a number of the GCMs in
the current study, although it is considerably lower
than the largest changes simulated by GCMs 36 and
37. Of those GCMs projecting declines in mean flood
extent in the current study, the magnitude of change in
at least one (two for the 2080s) exceeds the largest
decline reported by Thompson et al. (2016) of
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7903 km2. Many of the declines reported herein are
larger than those projected by the remaining five
GCMs in the earlier study. Model results illustrate the
impact of drier local conditions projected by most
GCMs. These result from increases in evapotranspira-
tion over the part of the basin that has the highest
baseline annual PET and lowest annual precipitation.
Evapotranspiration can be a major term in the water
balance of many wetlands (e.g. Gasca-Tucker et al.
2007, Baker et al. 2009) and evaporation losses can
increase substantially during periods of inundation
within floodplains (e.g. Clilverd et al. 2016). Mahé
et al. (2009), for example, demonstrated increases in
these losses from the Inner Niger Delta as flood extent
increased. This process is particularly important within
many of Africa’s major floodplains, including the Inner
Niger Delta, which are located in relatively dry areas
compared to the uplands from where their river
inflows are derived (e.g. Sutcliffe and Parks 1989,
Thompson 1996). Under these conditions, the model
simulates increases in evaporation losses from the
inundated area that are relatively infrequently offset
by higher local precipitation. Only GCMs that project
the very largest increases in river inflow lead to larger
simulated flood extents and, as a consequence, the
dominant, but by no means exclusive, trend is for
declines in seasonal inundation.

Whilst the ensemble mean from a relatively large
number of GCMs should serve as a better indicator of
climate change impacts than the results of a single
GCM, it does, as discussed above, rely on GCM inde-
pendence (Pirtle et al. 2010). The potential influence
upon climate change projections of using a number of
GCMs from the same institution or GCMs with shared
model code was addressed in the current study by
grouping GCMs according to their genealogy.
Although results for the ensemble mean scenario devel-
oped from the resulting 12 GCM groups tend to be
associated with slightly drier conditions than those
derived from the mean of the 41 GCM ensemble,
differences are generally small, echoing the results of
Ho et al. (2016), who used the same approach to
grouping GCMs. On average across the 12 sub-catch-
ments the ensemble mean for the 41 GCMs results in
small increases in mean annual precipitation (average
increases of 1.1 and 1.3% for the 2050s and 2080s,
respectively), although both relatively small decreases
and increases (−2.0 to 6.5%) are projected for indivi-
dual sub-catchments. These inter-sub-catchment varia-
tions in the direction of change are repeated for the
group ensemble mean, although the average change is
negative (−0.8 and −0.4% for the two time slices,
respectively). PET increases throughout the basin for

both ensemble means (in both cases by on average 4.0
and 5.0%, for the 2050s and 2080s, respectively). Whilst
most, but not all, gauging stations experience declines
in mean discharge for the 41 GCM ensemble mean
scenario, the group ensemble mean leads to catch-
ment-wide declines. The magnitudes of these changes
are small (on average 1.1 and 2.2% for the two time
slices, respectively, in the case of the 41 GCM ensemble
mean, with those of the group ensemble mean declin-
ing by a further 6%). For the reasons discussed above,
larger reductions in the annual peak flood extent (13.1
and 14.6% in the 2050s and 2080s, respectively) are
projected for the 41 GCM ensemble mean. These
reductions increase in magnitude to 19.5 and 20.9%
for the group ensemble mean.

Given variable biases of individual GCMs in repro-
ducing observed climate (Tebaldi and Knutti 2007),
GCM-related uncertainty in projected changes in cli-
mate, river flow and flooding for the Upper Niger
could be further constrained using GCM reliability
ratings derived through the comparison of observed
and simulated climate over the region (e.g. Maxino
et al. 2008, Perkins et al. 2007; Ghosh and Mujumdar
2009). In this way, GCM projections could be weighted
according to their ability to reproduce regional climate.
Climate change assessments for the Upper Niger could
also be extended through consideration of the more
extreme RCP scenarios (2.6 and 6.0/8.5; Moss et al.
2010, van Vuuren et al. 2011) with a view to assessing
hydro-climatological responses to alternative emissions
scenarios and their impacts on GCM-related uncer-
tainty (e.g. Gosling et al. 2011, Thompson et al.
2013). A number of previous studies (Hirabayashi
et al. 2013, Koirala et al. 2014) have, for example,
shown greater agreement in the direction of change
in river flows projected by atmosphere–ocean general
circulation models when considering the most extreme
RCP8.5 scenario compared to the intermediary RCP4.5
scenario used herein. Repeating our analysis using the
RCP8.5 scenario would permit an assessment of
whether the stronger model agreement revealed by
these global-scale analyses is repeated at the scale of
the Upper Niger and the Inner Niger Delta.

The variable changes in river flow of the Upper
Niger and flood extent within the Inner Niger Delta
that are projected by different GCMs will clearly have
very different environmental and water resource impli-
cations. A river’s flow regime exerts a dominant influ-
ence upon ecological processes, biodiversity and
ecosystem integrity (e.g. Poff et al. 1997). Equally, the
dominant influence of a wetland’s hydrological regime,
including the magnitude and variability in flood extent,
upon ecosystem functioning and, in turn, ecosystem
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service delivery is widely acknowledged (Baker et al.
2009, Maltby et al. 2011). For example, in Africa’s
floodplain wetlands, including the Inner Niger Delta,
the annual flood is particularly significant in sustaining
fisheries, providing wildlife habitat, including for
waterbirds, as well as underpinning the human utiliza-
tion of the wetland for agricultural productivity such as
rice cultivation (e.g. Adams 1992, Polet and Thompson
1996, Thompson et al. 2016). Changes in flood patterns
within the Inner Delta over recent decades have already
impacted rice cultivation, fishing and grazing (Goosen
and Kone 2005, Zwarts and Diallo 2005, Zwarts and
Kone 2005b). Declines in flood extent projected by
many of the GCMs in the current study are likely to
reduce these ecosystem services, which could, given the
large human population that is reliant upon them, have
significant socio-economic consequences. Conflicts are
more likely between human uses of water resources
and the water requirements of ecosystems such as the
floodplain wetlands, which could, in turn, have impli-
cations for globally significant wildlife populations.
Alternatively, the increases in discharge and enhanced
flooding projected by some GCMs could maintain
aquatic ecosystems, benefit fisheries via the expansion
of floodplain nurseries (e.g. Welcomme 1986, Nestler
et al. 2012) and support extension of some human
activities, such as floodplain agriculture. It is, however,
possible that increased flooding, especially during per-
iods of normally relatively low water levels, could have
detrimental ecological implications. For example,
increases in dry season river flows and/or flooding
within wetlands in Africa (e.g. Goes 2002, Blaser
2013) and elsewhere (e.g. Meynell et al. 2012) have
facilitated changes in vegetation, including the expan-
sion of invasive species, with implication for access to
wetland resources by people and wildlife.

As acknowledged by Thompson et al. (2016), detailed
evaluation of the ecological impacts of projected hydro-
logical changes would be a major undertaking, especially
given the lack of detailed knowledge of hydro-ecological
relationships that are likely to vary in space and time over
such a large geographical area as the Upper Niger. In
response to the growing recognition of the need to sustain
“environmental flows”, a termed widely used to describe
the flow regime of a river that is required to maintain
economically, socially and ecologically important ecosys-
tem services (e.g. Dyson et al. 2003), a range of methods
for assessing potential impacts of hydrological change
have been developed. These acknowledge the influence
of different components of the regime that can be
described by variability, magnitude, frequency, duration,
timing and rate of change of flow (see Tharme 2003,
Acreman and Dunbar 2004). For example, the Range of

Variability Approach uses Indicators of Hydrological
Alteration (IHA) to define ecologically appropriate limits
of hydrological change (Richter et al. 1996, 1997) and
although it is usually applied to river flow it could, with
appropriate modification, be employed to assess differ-
ences in baseline and scenario flood extent. Thompson
et al. (2014b) employed the Ecological Risk due to Flow
Alteration (ERFA) method (Laizé et al. 2014), a modified
IHA approach in their assessment of GCM-related uncer-
tainty for the Mekong. This risk-based method, which
was based on the number of IHAs associated with both
high and low flows that exceeded a specified threshold,
could provide an initial assessment of the potential mag-
nitude of ecological changes and their uncertainty across
the Upper Niger (Thompson et al. 2017b). Development
of the current study in this direction is the next obvious
step for research into GCM-related uncertainty. It will,
however, be important to recognize that there are other
potential sources of uncertainty. These include modifica-
tions in response to climate change in current water
management practices, including the operation of exist-
ing dams that are either included in the model or, in the
case of the Talo Dam, not included since they were
completed after the end of the simulation period. The
potential for further investments in major hydraulic
infrastructure throughout West Africa in response to
growing demands for irrigation, domestic water supplies
and hydropower has been identified (e.g. Barbier et al.
2009). A number of hydropower and irrigation projects
are proposed for the Upper Niger (e.g. Hassane et al.
2000). New schemes, such as the Formi hydropower
dam and another dam at Djenné on the Bani River, can
be expected tomodify river flow and, in turn, flood extent
within the Inner Niger Delta (Zwarts et al. 2005a, Mahé
et al. 2011a). It has, for example, been suggested that
more than 55% of flows into the Delta in a wet year
could be stored by existing and planned upstream dams
(Liénou et al. 2010). Such flow reductions would offset
the increases in discharge and hence flood extent pro-
jected by some GCMs and further increase the magnitude
of the declines in river flow and, in particular, the area of
inundation projected by many of the others. These
changes will be compounded by modifications to water
management, agricultural and other related policies that
might occur in response to climate change and other
pressures (e.g. Van Dijk et al. 2008). Similarly, further
changes in land cover in response to climate change as
well as anthropogenic activities, such as modifications to
the extent of agricultural cultivation, represents another
source of uncertainty. As discussed above, declines in
natural Sahelian vegetation over recent decades have
been widespread (e.g. Leblanc et al. 2008) and have
been linked to increases in runoff coefficients (e.g.
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Amogu et al. 2010, Liénou et al. 2010). Continuation of
such changes into the future could contribute to
enhanced inflows to the Inner Niger Delta. The represen-
tation of such changes would most usefully be simulated
using an alternative modelling approach that enables
both spatially and temporally varying land cover (see
Thompson et al. 2013, 2016).

Conclusions

A previously calibrated/validated hydrological model of
the Upper Niger and the Inner Niger Delta has been
used to investigate the impacts of RCP 4.5 scenarios for
41 CMIP5 GCMs and two future 30-year time slices
centred on the 2050s and 2080s. Grouping of GCMs
based on their genealogy was also undertaken to
address independence of climate model results. Inter-
GCM uncertainty in precipitation is substantially larger
than uncertainty in PET. An almost equal number of
the sub-catchment–GCM combinations project
increases and decreases in mean annual precipitation.
This is repeated for the genealogically-based GCM
groups. Within individual sub-catchments, however,
there is considerable variability in the number of
GCMs projecting precipitation increases or decreases
as well as the magnitude of the inter-GCM range in
these changes. The 10–90-percentile range varies
between 13.6 and 26.9% (mean: 19.0%) for the 2050s
and 15.6 and 34.4% (mean 22.5%) for the 2080s. In
contrast, all but 12 (2.4%) of the sub-catchment–GCM
combinations project increases in annual PET. Declines
are associated with the same sub-catchments, and two
GCMs and are predominantly the result of projected
declines in maximum temperature. Inter-GCM 10–90-
percentile ranges of change vary between 3.8 and 4.8%
(mean: 4.3%) for the 2050s and 4.5 and 6.4% (mean:
5.8%) for the 2080s. In percentage terms the ranges of
change in precipitation for the 41 GCM ensemble and
the 12 genealogically-based GCM groups are around
four or five times as large as those of PET. These results
are repeated for more central percentiles ranges. The 41
GCM ensemble mean scenario projects small changes
in mean annual precipitation which vary in direction
between sub-catchments (−2.0 to 6.3%), with more
experiencing increases (eight and nine for the 2050s
and 2080s, respectively). More sub-catchments experi-
ence small declines in the mean discharge for the group
ensemble mean. Consistent increases in mean annual
PET are projected by the ensemble mean. The magni-
tudes of these changes vary little between sub-catch-
ments and are, on average, 4.0% for the 2050s and 5.0%
the 2080s. Similar results are obtained for the group
ensemble mean.

There is considerable uncertainty in projected river
discharge with variations in both the direction and
magnitude of changes in mean, low and high flows.
Just over half of the 492 gauging station–GCM combi-
nations experience increases in mean discharge for the
2050s, whilst just under half of these changes are posi-
tive for the 2080s. Inter-GCM ranges of change in
discharge are two–three times as large as those for
precipitation. As for precipitation, this range varies
between gauging stations. For the 2050s the mean
10–90-percentile range is 52.9% and varies between
31.0% (−20.7 to 10.3%) and 75.8% (−32.7 to 43.1%).
In common with precipitation and PET, inter-GCM
ranges for discharge increase for the 2080s, with a
mean of 59.5% and range between 30.5% (−20.1 to
10.3%) and 95.8% (−39.3 to 56.5%). Declines in mean
discharge are dominant for the ensemble mean sce-
nario (nine stations in both time slices) although they
are relatively small, ranging between −11.5 and 4.0%
(mean: −1.1%) for the 2050s and between −14.3 and
4.6% (mean: −2.2%) for the 2080s. Declines in mean
discharge are projected at all stations for the group
ensemble mean, but again they are small (mean:
−7.3% for the 2050s, −8.7% for the 2080s).

Of the 41 GCMs, 25 (61%) project declines in mean
annual river inflow to the Inner Niger Delta for the
2050s, the remainder suggesting that inflows will
increase. Fewer GCMs (18 or 43%) project declines
for the 2080s. An almost equal number of the 12
GCM groups project increases and decreases. Inter-
GCM range of change for the 10–90-percentile range
in the 2050s is 49.3% (−29.4 to 19.9%) and for the
2080s it is 48.2% (−27.9 to 20.3%), whilst the ensemble
mean scenario is associated with small declines (−1.4
and −2.1%) for both time slices (with slightly larger
increases for the group ensemble mean). More GCMs
project declines in peak flood extent within the Inner
Delta than those that suggest an increase in the extent
of seasonal inundation. Mean flood extent during the
peak months of October and November is projected to
decline by 32 (78%) and 28 (68%) of GCMs in the
2050s and 2080s, respectively. Far more GCMs project
declines in all or the majority of annual peak flood
extents within the 30-year simulation periods com-
pared to those that project consistent or near consistent
increases. For the 2050s, when 33 GCMs project
declines in all of the annual peaks, changes in the
mean of these peaks for the 10–90-percentile range
from −6136 km2 (−43.0%) to 987 km2 (6.9%) com-
pared to the baseline 14 258 km2. The ensemble mean
projects a decline of 1870 km2 (13.1, 19.5% for the
group ensemble mean). In the 2080s, declines in all
annual peaks are projected by 26 GCMs, whilst the
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10–90-percentile range of change in the mean annual
peak is −6176 km2 (−43.3%) to 1165 km2 (8.2%). A
decline of 2076 km2 (14.6%) is projected by the ensem-
ble mean (20.9% for the group ensemble mean). Many
GCMs project increases in the extent of surface water
that remains within the Inner Niger Delta during the
dry season. With a few exceptions, these increases are,
however, small in absolute terms.

This study has focused on evaluating the hydrologi-
cal impacts and associated uncertainty of projected
changes in climate. Assessment of the potential risks
of ecological changes that could result from modifica-
tions to river regimes using environmental flow
approaches would be a logical extension. Modification
of these approaches to enable comparisons of baseline
and projected flood extent could provide a means of
inferring likely ecological impacts of changes in inun-
dation within the Inner Niger Delta. Other sources of
uncertainty could also be considered through modifi-
cation of the model to include new and proposed water
management infrastructure, in particular dams,
enabling their impacts under current and potential
future climate to be assessed. Further uncertainty
regarding hydrological conditions in the Upper Niger
and the Inner Niger Delta is inevitably linked to future
changes in land cover as well as water management and
related policies that may be driven, at least in part, by a
changing climate and its hydrological consequences.
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