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1. Introduction

To describe the flow of n-component chemically reacting compressible mixture, we will use the full Navier–
Stokes–Fourier (NSF) system coupled with the set of n reaction-diffusion equations for the species:

∂t� + div(�u) = 0,

∂t(�u) + div(�u ⊗ u) − divS + ∇π = 0,

∂t(�E) + div(�Eu) + div(πu) + divQ − div(Su) = 0,

∂t�k + div(�ku) + div(Fk) = �ϑωk, k ∈ {1, . . . , n}.

(1.1)

satisfied in (0, T ) × Ω. These equations express the physical laws of conservation of mass, momentum,
total energy and the balances of species mass, respectively.

Here, u : R3 → R
3 is the velocity field, � : R3 → R denotes the total mass density being a sum of

species densities �k, k ∈ {1, . . . , n}. The last unknown quantity is the temperature ϑ : R3 → R which
appears implicitly in all the equations of (1.1) except for the continuity equation. Next, S denotes the
viscous stress tensor, the internal pressure is denoted by π, E is the total energy per unit mass, Q stands
for the heat flux, Fk, k ∈ {1, . . . , n} denote the species diffusion fluxes and ωk, k ∈ {1, . . . , n} are the
chemical source terms, also termed the species production rates.

In (1.1), t denotes the time, t ∈ (0, T ) and the length of time interval T is assumed to be arbitrary
large, but finite. The space domain Ω is a periodic box T

3. The vectors belonging to the physical space
R

3 as well as the tensors are printed in the boldface style.
The species mass conservation equations can be equivalently written in terms of species mass fractions:

∂t(�Yk) + div(�Yku) + div(Fk) = �ϑωk,

where Yk, k ∈ {1, . . . , n} are defined by Yk = �k

� and they satisfy:
n∑

k=1

Yk = 1. (1.2)
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We remark that we will freely switch from one notation to the other using the species unknowns
(�, �1, . . . , �n) or equivalently (�, Y1, . . . , Yn).

The global-in-time existence of solutions for system (1.1), supplemented with physically relevant con-
stitutive relations, was established by Giovangigli [24, Chapter 9, Theorem 9.4.1]. He considered, for
instance, generic matrix Ckl relating the diffusion deriving forces dk to the species diffusion fluxes

Fk = −
n∑

l=1

Ck,ldl + Soret effect, k = 1, . . . n, (1.3)

such that CY = 0, Y = (Y1, . . . , Yn)T , Yk = �k

� , k = 1, . . . , n, and C is not symmetric in general. The
result holds provided the initial data are sufficiently close to an equilibrium state and our main motivation
is to extend it for the case of arbitrary large data. It should be however emphasized that, in comparison
with [19], many simplifications are adopted in the present model. We concentrate only on diffusion effects
due to the mole fraction and pressure gradients and restrict to particular form of the matrix C.

Due to mass conservation, the equations for species must sum to continuity equation which is hyper-
bolic. Moreover, the highly complex structure of diffusion fluxes causes that any standard approach
for parabolic systems can not be applied unhindered. Nevertheless, it has been observed that even for
strongly coupled systems of PDEs the concept of entropy can still be used in order to derive appropriate
compactness results [8,18].

In our case, it is possible provided the matrix Dkl = Ckl

�Yk
, k, l = 1, . . . , n is symmetric and coercive on

the hyperplanes which do not contain the vector Y . This assumption corresponds to the non-negativity
of entropy production rate associated with diffusive process and has been postulated for example by
Waldmann [25]. It turns out that such a description captures quite accurately lot of practical applications
if only the species deriving forces dk are well-fitting.

The most exhaustively studied approximation is the Fick law, widely used especially in the simplified
models: two species kinetics, 1D geometry, irreversible or isothermal reactions (cf. [7,9,10,26,28]). It states
that the diffusion flux of a single species depends only on the gradient of its concentration. Hence, it does
not take into account the cross-effects that play an important role in the multicomponent flows. As far as
the latter are concerned, the issue of global-in-time existence of weak variational entropy solutions was
investigated by Feireisl, Petzeltová and Trivisa [15]. They generalized the proof from [13] to the case of
chemically reacting flows, when there is no interaction among the species diffusion fluxes and the pressure
does not depend on the chemical composition of the mixture. The presence of the species concentration
in the state equation would result in the entropy production rate which may fail to be non-negative.
This in turn interferes with obtaining the fundamental a-priori estimates being the corner stone of the
analysis presented in [15]. A similar problem was apparent in the approximation considered by Frehse,
Goj and Málek [16,17] who proved existence and uniqueness of solutions to the steady Stokes-like system
for a mixture of two (non-reactive) fluids. In their case, neglecting some nonlinear interaction terms in
the source of momentum caused that the basic energy equality was no longer preserved.

Significantly less is known for models with general diffusion. The local-in-time well posedness of the
Maxwell–Stefan equations with multicomponent diffusion in the isobaric, isothermal case is due to Bothe
[1]. More recently, Mucha, Pokorný and Zatorska [23] proved that the system of n diffusion–reaction
equations with particular form of diffusion matrix C admits a global-in-time weak solution, provided the
additional regularity of the total density is available. This extra information can be deduced from the
new kind of estimate found for the Korteweg system by Bresch et al. [6]. It also holds for the compressible
Navier–Stokes equations [5] if the viscosity coefficients μ and ν are density-dependent and the satisfy

ν(�) = 2�μ′(�) − 2μ(�).

On the other hand, such an assumption leads automatically to a problem with defining the velocity field
on the vacuum zones. It was solved on the level of weak sequential stability of solutions by Mellet and
Vasseur [21] who combined the previous results with logarithmic estimate for the velocity. Nevertheless,
construction of sufficiently smooth approximate solutions in this framework remains an open problem,
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some ideas can be found in [3]. A way to overcome this obstacle in the case of heat-conducting fluids was
proposed in a recent paper by Bresch and Desjardins [4]. They introduced a modification of the pressure
close to the zero Kelvin isothermal curve by which it was possible to show that the sets of presence of
vacuum have a zero Lebesgue measure. The same idea was then employed in [22,27] to prove the global-
in-time existence of weak solutions for the isothermally reacting mixture of two gaseous components.

In the present paper we indicate a possible way of generalization of these results to the case of n-
component heat-conducting mixture.

Let us emphasize, that unlike to [4] we use the framework of weak variational solutions, that is to say,
the total energy balance is replaced by the entropy inequality and the global total energy balance. These
solutions were introduced by Feireisl [11] to study solvability of the NSF system, for which the weak
solutions may dissipate more kinetic energy than, if there are any, the classical ones. However, it can be
verified that this “missing energy” is equal to 0 provided the weak solution is regular enough and satisfies
the total global energy balance. Moreover, in [14] the authors proved the weak-strong uniqueness of such
solution, meaning that it coincides with the strong solution, emanating from the same initial data, as
long as the latter exists.

The article is organized as follows. In the next section we specify the structural properties for the
transport coefficients and postulate several simplifications. In Sect. 3, we define the notion of weak
variational solutions and state the main result of the paper. The key a priori estimates are derived in
Sect. 4 together with some further estimates and positivity of the absolute temperature. Finally, the last
step of the Proof of Theorem 5—the limit passage—is performed in Sect. 5.

2. Constitutive Relations and Main Hypothesis

Let us now supplement system (1.1) with a set of expressions determining the form of thermodynamical
functions and transport fluxes in terms of macroscopic variable gradients in the spirit of [19], Chapter 2.

2.1. Thermal Equation of State

We consider the pressure π = π(�, ϑ, Y ), which can be decomposed into

π = πm + πc, (2.1)

where the latter component depends solely on the density and it corresponds to the barotropic process of
viscous gas. It is the only non-vanishing component of the pressure when temperature goes to zero, thus
will be termed a “cold” pressure. We assume that πc is a continuous function satisfying the following
growth conditions

π′
c(�) =

{
c1�

−γ−−1 for � ≤ 1,

c2�
γ+−1 for � > 1,

(2.2)

for positive constants c1, c2 and γ−, γ+ > 1. It was proposed in [4] to encompass plasticity and elasticity
effects of solid materials, for which low densities may lead to negative pressures. By this modification
the compactness of velocity at the last level of approximation can be obtained without requiring more a
priori regularity than expected from the usual energy approach [21].

The first component πm = πm(�, ϑ, Y ) is the classical molecular pressure of the mixture which is
determined through the Boyle law as a sum of partial pressures pk:

πm(�, ϑ, Y ) =
n∑

k=1

pk(ϑ, �k) =
n∑

k=1

ϑ�k

mk
,

with mk the molar mass of the k-th species.
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Likewise the pressure, the internal energy e = e(�, ϑ, Y ) can be decomposed into

e = est + em + ec, est(Y ) =
n∑

k=1

Ykest
k , em(ϑ) = cvϑ, (2.3)

where est
k = const. is the formation energy of the k-th species, while cv is the constant-volume specific

heat, which is assumed to be the same for each of the species. The “cold” components of the internal
energy ec = ec(�) and pressure πc are related through the following equation of state:

�2 dec(�)
d�

= πc(�). (2.4)

The last relation is a consequence of the second law of thermodynamics which postulates the existence
of a state function called the entropy.

2.2. The Entropy Equation

The entropy of a thermodynamical system is defined (up to an additive constant) by the differentials of
energy, total density, and species mass fractions via the Gibbs relation:

ϑDs = De + πD
(

1
�

)
−

n∑

k=1

gkDYk, (2.5)

where D denotes the total derivative with respect to the state variables {�, ϑ, Y }; whereas gk are the
Gibbs functions

gk = hk − ϑsk. (2.6)

Here, hk = hk(ϑ) denotes the specific enthalpy and sk = sk(ϑ, �k) is the specific entropy of the k-th
species

hk(ϑ) = est
k + cpkϑ,

sk(ϑ, �k) = sst
k + cv log ϑ +

1
mk

log
mk

�k
, (2.7)

where sst
k = const. denotes the formation entropy of k-th species.

The constant-volume (cvk) and constant-pressure (cpk) specific heats for the k-th species are constants
related by

cpk = cv +
1

mk
. (2.8)

In accordance with (2.3)–(2.5), the specific entropy of the mixture can be expressed as a weighted sum
of the species specific entropies

s =
n∑

k=1

Yksk (2.9)

and is governed by the following equation

∂t(�s) + div(�su) + div

(
Q
ϑ

−
n∑

k=1

gk

ϑ
Fk

)
= σ, (2.10)

where σ is the entropy production rate

σ =
S : ∇u

ϑ
− Q · ∇ϑ

ϑ2
−

n∑

k=1

Fk · ∇
(gk

ϑ

)
−
∑n

k=1 gk�ϑωk

ϑ
. (2.11)

By virtue of the second law of thermodynamics, the entropy production rate must be non-negative for
any admissible process.
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2.3. The Stress Tensor

The viscous part of the stress tensor obeys the Newton rheological law, namely:

S = 2μD(u) + ν divuI, (2.12)

where D(u) = 1
2

(∇u + (∇u)T
)

and μ = μ(�), ν = ν(�) are C1(0,∞) functions related by

ν(�) = 2�μ′(�) − 2μ(�), (2.13)

which is strictly a mathematical constraint allowing to obtain better regularity of �, [2].
In addition, they enjoy the following bounds

μ′ ≤ μ′(�) ≤ 1
μ′ , μ(0) ≥ 0,

|ν′(�)| ≤ 1
μ′ μ

′(�), (2.14)

μ′μ(�) ≤ 2μ(�) + 3ν(�) ≤ 1
μ′ μ(�),

for some positive constant μ′,

Remark 1. The assumption μ′ ≤ μ′(�) is not optimal, but it makes the proof much easier, however the
bound from above is essential in order to get integrability of several important quantities. For further
discussion on this topic we refer to [21].

2.4. The Species Diffusion Fluxes

Following [19], Chapter 2, Sect. 2.5.1, we postulate that the diffusion flux of the k-th species is given by

Fk = −C0

n∑

l=1

Ckldl, k = 1, . . . n, (2.15)

where C0, Ckl are multicomponent flux diffusion coefficients and dk is the species k diffusion force
specified, in the absence of external forces, by the following relation

dk = ∇
(

pk

πm

)
+
(

pk

πm
− �k

�

)
∇ log πm. (2.16)

We restrict to an exact form of the flux diffusion matrix C compatible with the set of mathematical
assumptions postulated in [19], Chapters 4, 7 (see also references therein). The prototype example is the
same as studied in [23], namely

C =

⎛

⎜⎜⎜⎝

Z1 −Y1 . . . −Y1

−Y2 Z2 . . . −Y2

...
...

. . .
...

−Yn −Yn . . . Zn

⎞

⎟⎟⎟⎠ , (2.17)

where Zk =
∑n

i=1
i�=k

Yi.
Concerning the diffusion coefficient C0, we assume that it is a continuously differentiable function of

ϑ and � and that there exist positive constants C0, C0 such that

C0�(1 + ϑ) ≤ C0 ≤ C0�(1 + ϑ). (2.18)

Remark 2. One of the main consequences of (2.17) is that
n∑

k=1

Fk = 0. (2.19)
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Remark 3. Note that (2.17) also implies that the vector of species diffusion forces d = (d1, . . . ,dn)T is
an eigenvector of the matrix C corresponding to the eigenvalue 1 and we recast that

Fk = −C0

n∑

l=1

Ckldl = −C0dk

= − C0

πm
(∇pk − Yk∇πm) = − C0

πm

n∑

l=1

Ckl∇pl. (2.20)

2.5. The Heat Flux

It is a sum of two components

Q =
n∑

k=1

hkFk − κ∇ϑ, (2.21)

where the first term describes transfer of energy due to the species molecular diffusion, whereas the second
term represents the Fourier law with the thermal conductivity coefficient κ = κ(�, ϑ). It is assumed to
be a C1([0,∞) × [0,∞)) function which satisfies

κ0(1 + �)(1 + ϑα) ≤ κ(�, ϑ) ≤ κ0(1 + �)(1 + ϑα). (2.22)

In the above formulas κ0, κ0, α are positive constants and α ≥ 2.

2.6. The Species Production Rates

We assume that ωk are continuous functions of Y bounded from below and above by the positive constants
ω and ω

− ω ≤ ωk(Y ) ≤ ω, for all k = 1, . . . , n; (2.23)

we also suppose that
n∑

k=1

ωk = 0, and ωk(Y ) ≥ 0 whenever Yk = 0. (2.24)

Another restriction is dictated by the second law of thermodynamics, which asserts in particular that ωk

must enjoy the following condition
n∑

k=1

gk�ωk ≤ 0. (2.25)

2.7. Initial Data

The choice of quantities describing the initial state of system (1.1) is dictated by the weak formulation
of the problem, which is specified in Definition 4 below. We take

�(0, ·) = �0, �u(0, ·) = (�u)0,

�s(0, ·) = (�s)0,
∫

Ω

�E(0, ·) dx =
∫

Ω

(�E)0 dx,

�k(0, ·) = �0
k, for k = 1, . . . , n, in Ω.

(2.26)

In addition, we assume that �0 is a nonnegative measurable function such that
∫

Ω

�0 dx = M0,

∫

Ω

1
�0

∣∣∇μ
(
�0
)∣∣2 dx < ∞, (2.27)



Vol. 17 (2015) Mixtures: Sequential Stability of Variational 443

and the initial densities of species satisfy

0 ≤ �0
k(x), k = 1, . . . , n,

n∑

k=1

�0
k(x) = �0(x), a.e. in Ω. (2.28)

Further, we call the initial temperature ϑ0 a measurable function such that

ϑ0(x) > 0 a.e. in Ω, ϑ0 ∈ W 1,∞(Ω)

and the following compatibility condition is satisfied

(�s)0 = �0s(ϑ0, �0
1, . . . , �

0
n), (�s)0 ∈ L1(Ω). (2.29)

Finally, we require that the initial distribution of the momentum is such that

(�u)0 = 0 a.e. on {x ∈ Ω : �0(x) = 0} and
∫

Ω

∣∣(�u)0
∣∣2

�0
dx < ∞

and the global total energy at the initial time is bounded
∫

Ω

(�E)0 dx =
∫

Ω

(∣∣(�u)0
∣∣2

2�0
+ �0e(�0, ϑ0, �0

1, . . . , �
0
n)

)
dx < ∞. (2.30)

3. Weak Formulation and Main Result

In what follows we define a notion of weak variational entropy solutions to system (1.1) and then we
formulate our main result.

Definition 4. We will say {�,u, ϑ, �1, . . . , �n} is a weak variational entropy solution provided the following
integral identities hold.
1. The continuity equation

∫

Ω

�0φ(0, x) dx +
∫ T

0

∫

Ω

�∂tφ dx dt +
∫ T

0

∫

Ω

�u · ∇φ dx dt = 0 (3.1)

is satisfied for any smooth function φ(t, x) such that φ(T, ·) = 0.
2. The balance of momentum

∫

Ω

(�u)0 · φφφ(0, x) dx +
∫ T

0

∫

Ω

(�u · ∂tφφφ + �u ⊗ u : ∇φφφ) dx dt

+
∫ T

0

∫

Ω

π(�, ϑ, Y ) divφφφ dx dt −
∫ T

0

S : ∇φφφ dt = 0 (3.2)

holds for any smooth test function φφφ(t, x) such that φφφ(T, ·) = 0.
3. The entropy equation

∫

Ω

(�s)0φ(0, x) dx +
∫ T

0

∫

Ω

�s∂tφ dx dt +
∫ T

0

∫

Ω

�su · ∇φ dx dt

+
∫ T

0

∫

Ω

(
Q
ϑ

−
n∑

k=1

gk

ϑ
Fk

)
· ∇φ dx dt + 〈σ, φ〉 = 0 (3.3)

is satisfied for any smooth function φ(t, x), such that φ ≥ 0 and φ(T, ·) = 0, where σ ∈ M+([0, T ]×Ω)
is a nonnegative measure such that

σ ≥ S : ∇u
ϑ

− Q · ∇ϑ

ϑ2
−

n∑

k=1

Fk

mk
· ∇
(gk

ϑ

)
−

n∑

k=1

gk�ωk.
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4. The global balance of total energy∫

Ω

(�E)0 dx φ(0) +
∫ T

0

∫

Ω

�E dx ∂tφ(t) dt = 0 (3.4)

holds for any smooth function φ(t), such that φ(T ) = 0.
5. The weak formulation of the mass balance equation for the k-th species

∫

Ω

�0
k · φ(0, x) dx +

∫ T

0

∫

Ω

(�k∂tφ + �ku · ∇φ) dx dt

−
∫ T

0

∫

Ω

Fk · ∇φ dx dt =
∫ T

0

∫

Ω

�ϑωkφ dx dt (3.5)

k = 1, . . . , n, is satisfied for any smooth test function φ(t, x) such that φ(T, ·) = 0.
In addition we require that

�, �k ≥ 0, k = 1, . . . , n,
n∑

k=1

�k = �, and ϑ > 0, a.e. on (0, T ) × Ω. (3.6)

In this definition the usual weak formulation of the energy equation is replaced by the weak formulation
of the entropy inequality and the global total energy balance (3.3) + (3.4). Note however that the entropy
production rate has now only a meaning of non-negative measure which is bounded from below by the
classical value of σ. Nevertheless, a simple calculation employing the Gibbs formula (2.5) shows that
whenever the solution specified above is sufficiently regular, both formulations are equivalent. In particular
the entropy inequality (3.3) changes into equality, see f.i. Section 2.5 in [12].

We are now in a position to formulate the main result of this paper.

Theorem 5. Assume that the structural hypotheses (2.1–2.25) are satisfied.
Suppose that {�N ,uN , ϑN , �k,N}∞

N=1, k = 1, . . . , n is a sequence of smooth solutions to (1.1) with the
initial data

�N (0, ·) = �0
N , (�u)N (0, ·) = (�u)0N ,

(�s)N (0, ·) = (�s)0N ,

∫

Ω

(�E)N (0, ·) dx =
∫

Ω

(�E)0N dx,

�k,N (0, ·) = �0
k,N , for k = 1, . . . , n, in Ω.

satisfying (2.27–2.30), moreover
inf
x∈Ω

�0
N (x) > 0, inf

x∈Ω
ϑ0

N (x) > 0,

�0
N → �0, (�u)0N → (�u)0 in L1(Ω), (3.7)

(�s)0N → (�s)0, (�E)0N → (�E)0, �0
k,N → �0

k in L1(Ω).

Then, up to a subsequence, {�N ,uN , ϑN , �k,N} converges to the weak solution of problem (1.1) in the
sense of Definition 4.

The proof of this theorem can be divided into two main steps. The first one is dedicated to derivation of
the energy-entropy estimates which are obtained under assumption that all the quantities are sufficiently
smooth. The next step is the limit passage, it consists of various integrability lemmas combined with
condensed compactness arguments.

4. A Priori Estimates

In this section we present the a priori estimates for a sequence of smooth functions {�N ,uN , ϑN , �k,N}∞
N=1

solving (1.1). As mentioned above, assuming smoothness of solutions, we expect that all the natural
features of the system can be recovered. The following estimates are valid for each N = 1, 2, . . . but we
skip the subindex when it does not lead to any confusion.
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4.1. Estimates Based on the Maximum Principle

To begin, observe that the total mass of the fluid is a constant of motion, meaning
∫

Ω

�(t, x) dx =
∫

Ω

�0 dx = M0 for t ∈ [0, T ]. (4.1)

Moreover if solution is sufficiently smooth, a classical maximum principle can be applied to the continuity
equation in order to show that �N (t, x) > c(N) ≥ 0, more precisely

�N (τ, x) ≥ inf
x∈Ω

�0
N (x) exp

(
−
∫ τ

0

‖divuN‖L∞(Ω)dt

)
, (4.2)

in particular � > 0.
Next, by a very similar reasoning we can prove non-negativity of ϑ on [0, T ] × Ω.

Lemma 6. Assume that ϑ = ϑN is a smooth solution of (1.1), then

ϑ(t, x) > c(N) ≥ 0 for (t, x) ∈ [0, T ] × Ω. (4.3)

Proof. Any solution to (1.1) which is sufficiently smooth is automatically a classical solution of the system

∂t� + div(�u) = 0,

∂t(�u) + div(�u ⊗ u) − divS + ∇π = 0,

∂t(�e) + div(�eu) + divQ = −π divu + S : ∇u,

∂t�k + div(�ku) + div(Fk) = �ϑωk, k ∈ {1, . . . , n},

(4.4)

where we replaced the total energy balance by the internal energy balance. Let us hence reformulate it
in order to obtain the equation describing the temperature. Subtracting from the third equation of (4.4)
the component corresponding to the formation energy we obtain

∂t(�(ec + em)) + div(�(ec + em)u) +
n∑

k=1

div(cpkϑFk) − div(κ(�, ϑ)∇ϑ)

= −π divu + S : ∇u − �ϑ
n∑

k=1

est
k ωk,

where we used the species mass balance equations. Next renormalizing the continuity equation and
employing the relation between ec and πc (2.4) we get the temperature equation

∂t(�em) + div(�emu) +
n∑

k=1

div(cpkϑFk) − div(κ(�, ϑ)∇ϑ)

= −πm divu + S : ∇u − �ϑ

n∑

k=1

est
k ωk, (4.5)

where, in accordance with hypotheses (2.14) the second term on the r.h.s. is nonnegative. Conse-
quently, (4.3) is obtained by application of the maximum principle to the above equation, recalling
that ess infx∈Ω ϑ0

N(x) > 0. �

The analogous result for partial masses is stated in the following lemma.

Lemma 7. For any smooth solution of (1.1) we have

�k(t, x) ≥ 0 for (t, x) ∈ [0, T ] × Ω, k ∈ {1, . . . , n}. (4.6)

Moreover
n∑

k=1

�k(t, x) = �(t, x) for (t, x) ∈ [0, T ] × Ω. (4.7)
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Proof. We integrate each of equations of system (1.1) over the set {�k < 0}. Assuming that the boundary
i.e. {�k = 0} is a regular submanifold we obtain

d
dt

∫

{�k<0}
�k dx −

∫

{�k=0}

∂pk

∂n
dSx +

∫

{�k=0}

�k

�

∂πm

∂n
dSx =

∫

{�k<0}
�ϑωk dx.

Since ∂pk

∂n

∣∣
{�k=0} ≥ 0 and ωk

∣∣
{�k<0} ≥ 0 we find
∫

{�k<0}
�k(T ) dx ≥

∫

{�k<0}
�0

k dx = 0,

thus |{�k < 0}| = 0, for every k = 1, . . . , n. When {�k = 0} is not a regular submanifold we construct a
sequence {εl}∞

l=1 such that εl → 0+ and {�k = εl} is a regular submanifold and pass with εl to zero.
The proof of (4.7) follows by subtracting the sum of species mass balances equations from the conti-

nuity equation. The smooth solution of the resulting system must be, due to the initial conditions (2.28),
equal to 0 on [0, T ] × Ω. �

As a corollary from this lemma we recover relation (1.2), moreover we have the following estimate

‖Yk‖L∞((0,T )×Ω) ≤ 1, k = 1 . . . , n. (4.8)

4.2. The Energy-Entropy Estimates

The purpose of this subsection is to derive a priori estimates resulting from the energy and entropy
balance equations. The difference comparing to estimates obtained in the previous subsection is that now
we look for bounds which are uniform with respect to N . We start with the following Lemma.

Lemma 8. Every smooth solution of (1.1) satisfies

d
dt

∫

Ω

�

(
1
2
|u|2 + e

)
dx = 0. (4.9)

Proof. Integrate the third equation of (1.1) with respect to the space variable and employ the periodic
boundary conditions. �

Assuming integrability of the initial conditions (2.30) the assertion of the above lemma entails several
a priori estimates:

‖√
�u‖L∞(0,T ;L2(Ω)) ≤ c,

‖�ec(�)‖L∞(0,T ;L1(Ω)) + ‖�ϑ‖L∞(0,T ;L1(Ω)) + ‖�‖L∞(0,T ;L1(Ω)) ≤ c.
(4.10)

It is well known that these natural bounds are not sufficient to prove the weak sequential stability of
solutions, not even for the barotropic flow. However, taking into account the form of viscosity coefficients
(2.13), (2.14), further estimates can be delivered.

Lemma 9. For any smooth solution of (1.1) we have

d
dt

∫

Ω

1
2
�|u|2 dx +

∫

Ω

S : ∇u dx =
∫

Ω

π(�, ϑ, Y ) divu dx. (4.11)

Proof. Multiply the momentum equation by u and integrate over Ω. �

The above lemma can not be used to deduce the uniform bounds for the symmetric part of the gradient
of u immediately. The reason for that is lack of sufficient information for ϑ, so far we only know (4.10).
However, taking into account the form of viscosity coefficients (2.13), further estimates can be delivered.
The following lemma is a modification of the result proved by Bresch and Desjardins for heat conducting
fluids [4].
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Lemma 10. Any smooth solution of (1.1) satisfies the following identity

d
dt

∫

Ω

1
2
�|u + ∇φ(�)|2 dx +

1
2

∫

Ω

μ(�)|∇u − ∇Tu|2 dx

= −
∫

Ω

∇φ(�) · ∇π(ϑ, �, Y ) dx +
∫

Ω

π(�, ϑ, Y ) divu dx, (4.12)

for φ such that ∇φ(�) = 2μ′(�)∇�
� .

Proof. The rough idea of the proof is the following. The terms from the l.h.s. of this equality can be
evaluated by multiplication of the momentum equation by ∇φ(�) and the continuity equation by |∇φ(�)|2.
Then one has to combine these equivalences with the balance of kinetic energy (4.11) and include (2.13)
to see that some unpleasant terms cancel. For more details we refer to [27] or to the original work of
Bresch and Desjardins [4] . �

To control the r.h.s. of (4.11) and (4.12) one needs i.a. to estimate the gradient of ϑ. To this purpose
we take advantage of the entropy balance (2.10), we have the following inequality

Lemma 11. For any smooth solution of (1.1) we have

∫ T

0

∫

Ω

S : ∇u
ϑ

dx dt +
∫ T

0

∫

Ω

κ|∇ϑ|2
ϑ2

dx dt

+
∫ T

0

∫

Ω

n∑

k=1

πmF2
k

C0ϑ�k
dx dt −

∫ T

0

∫

Ω

n∑

k=1

gk�ωk dx dt ≤ c. (4.13)

Proof. Combining the third equation of (1.1) with the Gibbs relation (2.5) we derive the entropy equation

∂t(�s) + div(�su) + div

(
Q
ϑ

−
n∑

k=1

gk

ϑ
Fk

)

=
S : ∇u

ϑ
− Q · ∇ϑ

ϑ2
−

n∑

k=1

Fk · ∇
(gk

ϑ

)
−

n∑

k=1

gk�ωk. (4.14)

Integrating it over space and time we obtain

∫ T

0

∫

Ω

(
S : ∇u

ϑ
− Q · ∇ϑ

ϑ2
−

n∑

k=1

Fk · ∇
(gk

ϑ

)
−

n∑

k=1

gk�ωk

)
dx dt

=
∫

Ω

�s(T ) dx −
∫

Ω

(�s)0 dx,

where the l.h.s. can be transformed using (2.6) and (2.21) into

∫ T

0

∫

Ω

S : ∇u
ϑ

dx dt +
∫ T

0

∫

Ω

κ|∇ϑ|2
ϑ2

dx dt

−
∫ T

0

∫

Ω

n∑

k=1

Fk

mk
· ∇ log pk dx dt −

∫ T

0

∫

Ω

n∑

k=1

gk�ωk dx dt

=
∫

Ω

�s(T ) dx −
∫

Ω

(�s)0 dx. (4.15)
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The first two terms on the l.h.s. of (4.15) have a good sign, the same holds for the last one due to (2.25).
Non-negativity of the third one follows from (2.19) and (2.20)

−
n∑

k=1

Fk

mk
· ∇ (log pk) = −

n∑

k=1

Fk

ϑ�Yk
∇pk

= −
n∑

k=1

Fk

ϑ�Yk
(∇pk − Yk∇πm)

=
n∑

k=1

πmF2
k

C0ϑ�k
≥ 0.

Thus, it remains to control the positive part of �s(T ) and the negative part of (�s)0. From definition
of the entropy (2.7) we get

�s =
n∑

k=1

�Yksst
k +

n∑

k=1

cv�k log ϑ −
n∑

k=1

�k

mk
log

�k

mk
, (4.16)

therefore
∫

Ω

[�s(T )]+ dx ≤ c

∫

Ω

�(T ) dx + c

∫

Ω

�ϑ(T ) dx −
n∑

k=1

∫

Ω

�k

mk
log

�k

mk
(T ) dx.

The two first terms from the r.h.s. are bounded due to (4.10), whereas to estimate the positive part of
the last one we essentially use the assumption that Ω is a bounded domain. Thus, the positive part of
−x log x is bounded by a constant, and thus integrable over Ω. �

In the rest of Sect. 4 we show how to use Lemmas 10 and 11 in order to derive uniform estimates for
the sequence {�N ,uN , ϑN , �k,N}∞

N=1.

4.3. Estimates of the Temperature

One of the main consequences of (4.13) is that for κ(�, ϑ) satisfying (2.22) we have the following a priori
estimates for the temperature

(1 +
√

�)∇ log ϑ, (1 +
√

�)∇ϑs ∈ L2((0, T ) × Ω), (4.17)

where s ∈ [0, α
2 ] and α ≥ 2. To control the full norm of ϑs in L2(0, T ;W 1,2(Ω)) we will apply the following

version on the Korn–Poincaré inequality (see f.i. Theorem 10.17 in [24]):

Theorem 12. Let Ω ⊂ R
3 be a bounded Lipschitz domain. Assume that r is a non-negative function such

that

0 < M0 ≤
∫

Ω

r dx,

∫

Ω

rγ dx ≤ K, for a certain γ > 1.

Then

‖ξ‖W 1,p(Ω) ≤ C(p,M0,K)‖∇ξ‖Lp(Ω) +
∫

Ω

r|ξ| dx,

for any ξ ∈ W 1,p(Ω).

Recalling (2.4), (2.2), (4.10) and (4.17) one can check that the assumptions of the above theorem are
satisfied for ξ = ϑ, r = � and p = 2. Therefore, the Sobolev imbedding gives the estimate of the norm of
ϑ in L2(0, T ;L6(Ω)), and so, due to the boundedness of ∇ϑ

α
2 in L2((0, T ) × Ω), one gets

ϑ
α
2 ∈ L2(0, T ;W 1,2(Ω)). (4.18)
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4.4. Estimates Following from the Bresch–Desjardin Equality

The aim of this subsection is to derive estimates following from (4.11) and (4.12). Summing these two
expressions we obtain

d
dt

∫

Ω

(
1
2
�|u|2 +

1
2
�|u + ∇φ(�)|2

)
dx

+
∫

Ω

S : ∇u dx +
1
2

∫

Ω

μ(�)|∇u − ∇Tu|2 dx

= −
∫

Ω

∇φ(�) · ∇π(ϑ, �, Y ) dx + 2
∫

Ω

π(�, ϑ, Y ) divu dx. (4.19)

We first need to justify that the terms from the r.h.s. are bounded or have a negative sign so that they
can be moved to the l.h.s. The main problem is to control the contribution from the molecular pressure.
To this purpose we will employ estimate (4.13) coupled with the properties of the diffusion matrix C.

Denoting

C∇xi
p = (∇xi

p)I , (4.20)

where

p =

⎛

⎜⎝
p1

...
pn

⎞

⎟⎠ and ∇p =

⎛

⎜⎝
∇p1

...
∇pn

⎞

⎟⎠ , (4.21)

we obtain, for every k-th coordinate k ∈ {1, . . . , n} and every i-th space coordinate i ∈ {1, 2, 3}, the
following decomposition

(∇xi
p)k = (∇xi

p)I
k + αiYk. (4.22)

Next, multiplying the above expression by mk and summing over k ∈ {1, . . . , n} one gets

αi =
∇xi

(�ϑ)∑n
k=1 mkYk

−
∑n

k=1 mk(∇xi
p)I

k∑n
k=1 mkYk

.

Returning (4.22) we can express the full gradients of partial pressures in terms of gradients of temperature,
density and the gradient of “known” part of the pressure

∇p = (∇p)I +
( ∇(�ϑ)∑n

k=1 mkYk
−
∑n

k=1 mk(∇p)I
k∑n

k=1 mkYk

)
Y. (4.23)

As was announced, we will use the above expression in order to control the molecular part of the pressure
from the r.h.s. of (4.19).

4.4.1. Estimate of ∇π(�, ϑ, Y ) · ∇φ. Using definition of φ (see Lemma 10) and (2.1) we obtain

∇φ(�) · ∇π(�, ϑ, Y ) = μ′(�)π′
c(�)

|∇�|2
�

+
∇μ(�) · ∇πm

�
. (4.24)

The first term is non-negative due to (2.2), so it can be considered on the l.h.s. of (4.19) and we only
need to estimate the second one. Since

∇πm =
n∑

k=1

(∇p)k and
n∑

k=1

(Y )k = 1,



450 E. Zatorska JMFM

we may use (4.23) to write
∫

Ω

∇μ(�) · ∇πm

�
dx

=
∫

Ω

∇μ(�) ·∑n
k=1(∇p)I

k

�
dx +

∫

Ω

∇μ(�) · ∇�ϑ∑n
k=1 �kmk

dx

+
∫

Ω

∇μ(�) · ∇ϑ�∑n
k=1 �kmk

dx −
∫

Ω

∇μ(�) ·∑n
k=1 mk(∇p)I

k∑n
k=1 �kmk

dx =
4∑

i=1

Ii. (4.25)

Note that I2 is non-negative, so we can put it to the l.h.s. of (4.19).
Next, I1 and I4 can be estimated in a similar way, we have

∫

Ω

|∇μ(�)||∑n
k=1(∇p)I

k|
�

dx

≤ ε

∫

Ω

|∇μ(�)|2ϑ
�

dx + c(ε)
∫

Ω

|∑n
k=1(∇p)I

k|2
ϑ�

dx, (4.26)

so for ε sufficiently small, the first term can be controlled by I2 thanks to (2.14). Concerning the second
integral, from (4.13) we have

∫ T

0

∫

Ω

n∑

k=1

πmF2
k

C0ϑ�k
dx dt ≤ c. (4.27)

Using (2.20), the integral may be transformed as follows
∫ T

0

∫

Ω

n∑

k=1

C0(C∇p)2k
πmϑ�k

dx dt ≤ c, (4.28)

thus, due to (4.20) and (2.18), the integral over time of the r.h.s. of (4.26) is bounded. For I3 we verify
that ∣∣∣∣∇μ(�) · ∇ϑ

�∑n
k=1 �kmk

∣∣∣∣ ≤ c(ε)κ(�, ϑ)
|∇ϑ|2

ϑ2
+ ε

�ϑ2

κ(�, ϑ)
|∇μ(�)|2

�
,

and the first term is bounded in view of (4.17) whereas boundedness of the second one follows from the
Gronwall inequality applied to (4.19). Indeed, note that, due to (2.22), �ϑ2

κ(�,ϑ) is bounded by some positive
constant.

4.4.2. Estimate of π(�, ϑ, Y ) div u. By virtue of (2.1) and (2.4) and the continuity equation
∫

Ω

π(�, ϑ, Y ) divu dx = − d
dt

∫

Ω

�ec(�) dx +
∫

Ω

�ϑ

(
n∑

k=1

Yk

mk

)
divu dx.

Furthermore, by the Cauchy inequality
∣∣∣∣∣

∫

Ω

�ϑ

(
n∑

k=1

Yk

mk

)
divu dx

∣∣∣∣∣

≤ c‖Yk‖L∞(Ω)

⎛

⎝ε‖
√

μ(�) divu‖2
L2(Ω) + c(ε)

∥∥∥∥∥
�ϑ√
μ(�)

∥∥∥∥∥

2

L2(Ω)

⎞

⎠ .

Since μ(�) ≥ μ′�, we may write
∥∥∥∥∥

�ϑ√
μ(�)

∥∥∥∥∥
L2(Ω)

≤ c‖�ϑ2‖ 1
2
L1(Ω) ≤ c‖�‖ 1

2

L
3
2 (Ω)

‖ϑ‖L6(Ω). (4.29)
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On account of (4.18), ϑ ∈ L2(0, T ;L6(Ω)). Moreover, the Sobolev imbedding theorem implies that
‖�‖

L
p
2 (Ω)

≤ c‖∇μ(�)√
� ‖L2(Ω) for 1 ≤ p ≤ 6, hence the Gronwall inequality applied to (4.19) implies bound-

edness of (4.29), whence the term ε‖√μ(�) divu‖2
L2(Ω) is then absorbed by

∫
Ω
S : ∇u dx from the l.h.s.

of (4.19).
Resuming, we have proved the following inequality:

ess sup
t∈(0,T )

∫

Ω

1
2
�|u|2 + �ec(�)

1
2
�|u + ∇φ(�)|2(t) dx

+
∫ T

0

∫

Ω

μ′(�)π′
c(�)

|∇�|2
�

dx dt + (1 − ε)
∫ T

0

∫

Ω

∇μ(�) · ∇�ϑ∑n
k=1 �kmk

dx dt

+
∫ T

0

∫

Ω

(
S : ∇u +

1
2
μ(�)|∇u − ∇Tu|2

)
dx dt ≤ c. (4.30)

4.4.3. Uniform Estimates. Taking into account all the above considerations, we can complement the
so-far obtained estimates as follows∥∥∥

√
ϑ�−1∇�

∥∥∥
L2((0,T )×Ω)

+
∥∥∥
√

π′
c(�)�−1∇�

∥∥∥
L2((0,T )×Ω)

≤ c, (4.31)

moreover ∥∥∥∥
∇μ(�)√

�

∥∥∥∥
L∞(0,T ;L2(Ω))

≤ c. (4.32)

Concerning the velocity vector field, in addition to (4.10) we have

‖
√

μ(�)∇u‖L2((0,T )×Ω) +
∥∥∥
√

μ(�)ϑ−1∇u
∥∥∥

L2((0,T )×Ω)
≤ c. (4.33)

4.5. Estimates of Species Densities

Finally, we can take advantage of the entropy estimate (4.13) which together with (4.32) may be used to
deduce boudedness of gradients of all species densities.

Lemma 13. For any smooth solution of (1.1) we have
∥∥∥
√

1 + ϑ∇√
�k

∥∥∥
L2((0,T )×Ω)

≤ c. (4.34)

Proof. First, using Remark 3 we may write

πmF2
k

C0ϑ�k
=

C0|∇pk|2
πm�kϑ

− 2
YkC0∇pk · ∇πm

πm�kϑ
+

Y 2
k C0|∇πm|2

πm�kϑ

which is bounded in L1((0, T ) × Ω) on account of (4.27). Clearly,
∫ T

0

∫

Ω

C0|∇pk|2
πm�kϑ

dx dt ≤ c

(
1 +
∫ T

0

∫

Ω

Y 2
k C0|∇πm|2

πm�kϑ
dx dt

)
. (4.35)

The r.h.s. of above can be, due to (4.23), estimated as follows
∫ T

0

∫

Ω

Y 2
k C0|∇πm|2

πm�kϑ
dx dt =

∫ T

0

∫

Ω

YkC0|
∑n

k=1(∇p)k|2
πm�ϑ

dx dt

≤ c

∫ T

0

∫

Ω

C0

πm�ϑ

∣∣∣∣∣

n∑

k=1

(C∇p)k

∣∣∣∣∣

2

dx dt

+
∫ T

0

∫

Ω

C0

πm�ϑ

(
|∇(�ϑ)|2

(
∑n

k=1 mkYk)2
+

|∑n
k=1 mk(C∇p)k|2

(
∑n

k=1 mkYk)2

)
dx dt,
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which is bounded thanks to (4.17), (4.28) and (4.31). In consequence, (4.35) is bounded. Recalling assump-
tions imposed on C0 (2.18) and the form of molecular pressure πm, we deduce that

∫ T

0

∫

Ω

C0(1 + ϑ)|∇�k|2
�k

dx dt ≤ c

(
1 +
∫ T

0

∫

Ω

(1 + ϑ)�k|∇ϑ|2
ϑ2

dx dt

)

and the r.h.s. is bounded, again by (4.8) and (4.17). �

4.6. Additional Estimates

In this subsection we present several additional estimates based on imbeddings of Sobolev spaces and
the simple interpolation inequalities. Once the B-D estimate is obtained, these estimates can be proven
exactly as in the paper of Bresch and Desjardins devoted to the Navier–Stokes–Fourier system [4].

4.6.1. Further Estimates of �. From (2.2) and (4.31) we deduce that there exist functions ξ1(�) = � for
� < (1 − δ), ξ1(�) = 0 for � > 1 and ξ2(�) = 0 for � < 1, ξ2(�) = � for � > (1 + δ), δ > 0, such that

‖∇ξ
− γ−

2
1 ‖L2((0,T )×Ω), ‖∇ξ

γ+
2

2 ‖L2((0,T )×Ω) ≤ c. Additionally in accordance to (4.10) we are allowed to use
the Sobolev imbeddings, thus

‖ξ
− γ−

2
1 ‖L2(0,T ;L6(Ω)), ‖ξ

γ+
2

2 ‖L2(0,T ;L6(Ω)) ≤ c. (4.36)

Remark 14. Note in particular that exactly as in [4] the first of these estimate implies that

�(t, x) > 0 a.e. on (0, T ) × Ω. (4.37)

Similarly, combining (4.32) with (4.10) we get ‖�
1
2 ‖L6(Ω) ≤ c

∥∥∥∇μ(�)√
�

∥∥∥
L2(Ω)

, and therefore

� ∈ L∞(0, T ;L3(Ω)). (4.38)

4.6.2. Estimate of the Velocity Vector Field. We use the Hölder inequality to write

‖∇u‖Lp(0,T ;Lq(Ω))

≤ c
(
1 + ‖ξ1(�)−1/2‖L2γ− (0,T ;L6γ− (Ω))

)
‖√

�∇u‖L2((0,T )×Ω), (4.39)

where p = 2γ−

γ−+1 , q = 6γ−

3γ−+1 . Therefore, Theorem 12 together with the Sobolev imbedding imply

u ∈ L
2γ−

γ−+1 (0, T ;L
6γ−

γ−+1 (Ω)). (4.40)

Next, by the similar argument

‖u‖Lp′ (0,T ;Lq′ (Ω)) ≤ c
(
1 + ‖ξ1(�)−1/2‖L2γ− (0,T ;L6γ− (Ω))

)
‖√

�u‖L∞(0,T ;L2(Ω)), (4.41)

with p′ = 2γ−, q′ = 6γ−

3γ−+1 . By a simple interpolation between (4.40) and (4.41), we obtain

u ∈ L
10γ−

3γ−+3 (0, T ;L
10γ−

3γ−+3 (Ω)), (4.42)

and since γ− > 1, we see in particular that u ∈ L
5
3 (0, T ;L

5
3 (Ω)).
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4.6.3. Strict Positivity of the Absolute Temperature. We now give the proof of uniform with respect to
N positivity of ϑN .

Lemma 15. Let {ϑN}∞
N=1 be the sequence of smooth functions satisfying estimates (4.10) and (4.17), then

ϑN (t, x) > 0 a.e. on (0, T ) × Ω. (4.43)

Proof. The above statement is a consequence of the following estimate
∫ T

0

∫

Ω

| log ϑN |2 + |∇ log ϑN |2 dx dt ≤ c, (4.44)

which can be obtained, again by application of Theorem 12 with ξ = log ϑN and r = �N . It remains to
check that we control the L1(Ω) norm of �| log ϑ|. By virtue of (3.3) we have

∫

Ω

(�NsN )0 dx ≤
∫

Ω

�NsN (T ) dx,

thus substituting the form of �s from (4.16) we obtain

−cv

∫

Ω

�N log ϑN (T ) dx

≤
n∑

k=1

∫

Ω

�k,Nsst
k (T ) dx −

n∑

k=1

∫

Ω

�k,N

mk
log

�k,N

mk
(T ) dx −

∫

Ω

(�NsN )0 dx

and the r.h.s. is bounded on account of (4.8), (4.38) and the initial condition. On the other hand, the
positive part of the integrant �N log ϑN is bounded from above by �NϑN which belongs to L∞(0, T ;L1(Ω))
due to (4.10), so we end up with

ess sup
t∈(0,T )

∫

Ω

|�N log ϑN (t)| dx ≤ c, (4.45)

which was the missing information in order to apply Theorem 12. This completes the proof of (4.44). �

5. Passage to the Limit

In this section we justify that it is possible to perform the limit passage in the weak formulation of system
(1.1). We remark that we focus only on the new features of the system, i.e. the molecular pressure and
multicomponent diffusion, leaving the rest of limit passages to be performed analogously as in [4,27].

5.1. Strong Convergence of the Density and Passage to the Limit in the Continuity Equation

The strong convergence of a sequence {�N}∞
N=1 is guaranteed by the following lemma

Lemma 16. If μ(�) satisfies (2.14), then for a subsequence we have
√

�N → √
� a.e. andstrongly in L2((0, T ) × Ω). (5.1)

Moreover �N → � strongly in C([0, T ];Lp(Ω)), p < 3.

For the proof see [27] Lemma 7.
In addition, from (4.42), there exists a subsequence such that

uN → u weakly in L
5
3 ((0, T ) × Ω).

On account of that, it is easy to let N → ∞ in the continuity equation to obtain (3.1).
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5.2. Strong Convergence of the Species Densities

Analogously we show the strong convergence of species densities. We have

Lemma 17. Up to a subsequence the partial densities �k,N , k = 1, . . . , n converge strongly in
Lp(0, T ;Lq(Ω)), 1 ≤ p < ∞, 1 ≤ q < 3 to �k. In particular

�k,N → �k a.e. in (0, T ) × Ω. (5.2)

Moreover �k,N → �k in C([0, T ];L3
weak(Ω)).

Proof. The estimate (4.34) together with (4.8) and (4.38) give the bound for the space gradients of �k,N ,
k = 1, . . . , n

∇�k,N = 2∇√
�k,N

√
�k,N is bounded in L2(0, T ;L

3
2 (Ω)). (5.3)

Moreover, directly from the equation of species mass conservation we obtain

∂t(�k,N ) := −div(�k,NuN ) − div(Fk,N ) + �Nωk,N ∈ L
2α

α+1 (0, T ;W−1, 6α
4α+1 (Ω)). (5.4)

Indeed, the most restrictive term is the diffusion flux, which can be rewritten as

Fi,N = − C0

πm,N

(
∇ϑN

�i,N

mi
+ ∇�i,N

ϑN

mi

−Yi,N

n∑

k=1

∇ϑN
�k,N

mk
− Yi,N

n∑

k=1

∇�k,N
ϑN

mk

)
. (5.5)

Due to (4.8) we have that

C0

πm,N

∣∣∣∣∣∇ϑN
�i,N

mi
− Yi,N

n∑

k=1

∇ϑN
�k,N

mk

∣∣∣∣∣ ≤ c (|∇ log ϑN | + |∇ϑN |) �N ,

which is bounded in L2(0, T ;L
3
2 ) on account of(4.17) and (4.38). Similarly,

C0

πm,N

∣∣∣∣∣∇�i,N
ϑN

mi
− Yi,N

n∑

k=1

∇�k,N
ϑN

mk

∣∣∣∣∣

≤ c
√

(ϑN + 1)�N

n∑

k=1

∣∣∣
√

ϑN + 1∇√
�k,N

∣∣∣ ,

thus, according to (4.34) it remains to control the norm of
√

(ϑN + 1)�N in Lp((0, T )×Ω) for some p > 2.
By (4.18) and (4.38) we deduce that �NϑN ∈ Lα(0, T ;L

3α
α+1 (Ω)), so (5.4) is verified. In this manner we

actually proved that the sequence of functions
{

t →
∫

Ω

�k,Nφ dx

}
, φ ∈ C∞

c (Ω)

is uniformly bounded and equicontinuous in C([0, T ]), hence, the Arzelà–Ascoli theorem yields
∫

Ω

�k,Nφ dx →
∫

Ω

�kφ dx in C([0, T ]).

Since �k,N is bounded in L∞(0, T ;L3(Ω)) and due to density argument, this convergence extends to each
φ ∈ L

3
2 (Ω).

Finally, the Aubin–Lions argument implies the strong convergence of the sequence �k,N to �k in
Lp(0, T ;Lq(Ω)) for p = 2, q < 3, but due to (4.8) and (4.38) it can be extended to the case p < ∞. �
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5.3. Strong Convergence of the Temperature

From estimate (4.17) with s = 2 and Theorem 12 we deduce existence of a subsequence such that

ϑN → ϑ weakly in L2(0, T ;W 1,2(Ω)), (5.6)

however, time-compactness cannot be proved directly from the internal energy equation (4.5). The reason
for this is lack of control over a part of the heat flux proportional to �ϑα∇ϑ. This obstacle can be overcome
by deducing analogous information from the entropy Eq. (4.14).

We first show that all of the terms appearing in the entropy balance (4.14) are nonnegative or belong
to W−1,p((0, T ) × Ω), for some p > 1.

Indeed, first recall that due to (4.16)

|�NsN | ≤ c

(
�N + �N | log ϑN | +

n∑

k=1

�k,N | log �k,N |
)

and

|�NsNuN | ≤ c

(
|�NuN | + |�N log ϑNuN | +

n∑

k=1

|�k,N log �k,NuN |
)

,

whence due to (4.10), (4.38) and (4.44) we deduce that

{�NsN}∞
N=1 is bounded in L2((0, T ) × Ω), (5.7)

moreover

{�NsNuN}∞
N=1 is bounded in L2(0, T ;L

6
5 (Ω)). (5.8)

The entropy flux is due to (2.6) and (2.21) equal to

Q
ϑ

−
n∑

k=1

gk

ϑ
Fk =

κ(�, ϑ)∇ϑ

ϑ
+

n∑

k=1

skFk.

The first part can be estimated as follows
∣∣∣∣
κ(�N , ϑN )∇ϑN

ϑN

∣∣∣∣ ≤ |∇ log ϑN | + |�N∇ log ϑN | + |ϑα−1
N ∇ϑN | + |�Nϑα−1

N ∇ϑN |,

where the most restrictive term can be controlled as follows |�Nϑα−1
N ∇ϑN | ≤ |√�Nϑ

α
2
N ||√�N∇ϑ

α
2
N |, which

is bounded on account of (4.17) provided �Nϑα
N is bounded in Lp((0, T ) × Ω) for p > 1, uniformly with

respect to N . Note that for 0 ≤ β ≤ 1 we have �Nϑα
N = (�NϑN )β�1−β

N ϑα−β
N , where (�NϑN )β , �1−β

N , ϑα−β
N

are uniformly bounded in L∞(0, T ;L
1
β (Ω)), L∞(0, T ;L

3
1−β (Ω)) and L

α
α−β (0, T ;L

3α
α−β (Ω)), respectively.

Therefore
{

κ(�N , ϑN )∇ϑN

ϑN

}∞

N=1

is bounded in Lp(0, T ;Lq(Ω)), (5.9)

for p and q satisfying 1
p = α−β

α , 1
q = β + 1−β

3 + α−β
3α . In particular p, q > 1 provided 0 < β < α

2α−1 . The
remaining part of the entropy flux is equal to

n∑

k=1

sk,NFk,N =
n∑

k=1

Fk,N

mk
+ cv

n∑

k=1

log ϑNFk,N −
n∑

k=1

Fk,N

mk
log

�k,N

mk
,

where the middle term vanishes due to (2.19). The worst term to estimate is thus the last one, we rewrite
it using (2.20) in the following way

−Fi,N

mi
log

�i,N

mi
=

C0∇pi,N

πm,Nmi
log

�i,N

mi
− �i,N

�N

C0∇πm,N

πm,Nmi
log

�i,N

mi



456 E. Zatorska JMFM

for i = 1, . . . , n. Both parts have the same structure, so we focus only on the first one, we have
C0

πm,N

∣∣∣∣
∇pi,N

mi
log

�i,N

mi

∣∣∣∣ ≤ c|
√

(ϑN + 1)�i,N log �i,N ||
√

ϑN + 1∇√
�i,N |

+ c
√

�N (|∇ log ϑN | + |∇ϑN |) |√�i,N log �i,N |.
Using (4.17), (4.18), (4.34) and (4.38) we finally arrive at

{
n∑

k=1

sk,NFk,N

}∞

N=1

is bounded in Lp((0, T ) × (Ω)), for 1 < p <
4
3
. (5.10)

We are now ready to proceed with the proof of strong convergence of the temperature. To this end
we will need the following variant of the Aubin–Lions Lemma.

Lemma 18. Let gN , hN converge weakly to g, h respectively in Lp1(0, T ;Lp2(Ω)), Lq1(0, T ;Lq2(Ω)), where
1 ≤ p1, p2 ≤ ∞ and

1
p1

+
1
q1

=
1
p2

+
1
q2

= 1. (5.11)

Let us assume in addition that
∂gN

∂t
is bounded invL1(0, T ;W−m,1(Ω)) (5.12)

for some m ≥ 0 independent of N , and

‖hN − hN (· + ξ, t)‖Lq1 (0,T ;Lq2 (Ω)) → 0 as |ξ| → 0, uniformly in N. (5.13)

Then gNhN converges to gh in the sense of distributions on Ω × (0, T ).

For the proof see [20], Lemma 5.1.
Taking gN = �NsN and hN = ϑN we verify, due to (5.7), (4.18) and (5.6), that conditions (5.11),

(5.13) are satisfied with p1, p2, q1, q2 = 2. Moreover, for m sufficiently large L1(Ω) is imbedded into
W−m,1(Ω), thus by the previous considerations, condition (5.12) is also fulfilled. Therefore, passing to
the subsequences we may deduce that limN→∞ �Ns(�N , ϑN , YN )ϑN = �s(�, ϑ, Y )ϑ. On the other hand,
�N converges to � a.e. on (0, T ) × Ω, hence �s(�, ϑ, Y )ϑ = �s(�, ϑ, Y )ϑ, in particular, we have that

n∑

k=1

�k

mk
ϑ + cv� log ϑ ϑ −

n∑

k=1

�k

mk
log

�k

mk
ϑ

=
n∑

k=1

�k

mk
ϑ + cv�log ϑ ϑ −

n∑

k=1

�k

mk
log

�k

mk
ϑ. (5.14)

Combining Lemma 17 with (5.6) we identify
n∑

k=1

�k

mk
ϑ −

n∑

k=1

�k

mk
log

�k

mk
ϑ =

n∑

k=1

�k

mk
ϑ −

n∑

k=1

�k

mk
log

�k

mk
ϑ,

so (5.14) implies that �log ϑϑ = �log ϑϑ. This in turn yields that log ϑϑ = log ϑϑ a.e. on (0, T ) × Ω,
since � > 0 a.e. on (0, T ) × Ω, which, due to convexity of function x log x, gives rise to

ϑN → ϑ a.e. on (0, T ) × Ω. (5.15)

5.4. Limit in the Momentum Equation, the Species Mass Balance Equations and the Global Total Energy
Balance

Having proven pointwise convergence of sequences {�N}∞
N=1, {�k,N}∞

N=1 and {ϑN}∞
N=1 we are ready to

perform the limit passage in all the nonlinear terms appearing in the momentum equation, the species
mass balance equations and the total global energy balance.
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5.4.1. Limit in the Convective Term. Estimate (4.40) implies that for 0 ≤ ε ≤ 1/2 we have

‖√
�u‖Lp′ (0,T ;Lq′ (Ω))

≤ ‖�‖1/2−ε
L∞(0,T ;L3(Ω))‖

√
�u‖2ε

L∞(0,T ;L2(Ω))‖u‖1−2ε

L
2γ−

γ−+1 (0,T ;L
6γ−

γ−+1 (Ω))

, (5.16)

where p′, q′ are given by 1
p′ = 1−2ε

2γ−
γ−+1

, 1
q′ = 1/2−ε

3 + 2ε
2 + 1−2ε

6γ−
γ−+1

. Taking ε > 1
2(γ−+1) we have p′, q′ > 2,

provided γ− > 1, so the convective term converges weakly to �u ⊗ u in Lp((0, T ) × Ω) for some p > 1.
To identify the limit, we prove the following lemma.

Lemma 19. Let p > 1, then up to a subsequence we have

�NuN → �u in C([0, T ];L
3
2
weak(Ω)), (5.17)

�NuN ⊗ uN → �u ⊗ u weakly in Lp((0, T ) × Ω). (5.18)

Proof. We already know that �N converges to � a.e. on (0, T )×Ω. Moreover, due to (4.40), up to extracting
a subsequence, uN converges weakly to u in Lp(0, T ;Lq(Ω)) for p > 1, q > 3. Therefore, the uniform
boundedness of the sequence �NuN in L∞(0, T ;L

3
2 (Ω)) implies that

�NuN → �u weakly∗ in L∞(0, T ;L
3
2 (Ω)).

Now, we are aimed at improving the time compactness of this sequence. Using the momentum equation,
we show that the sequence of functions

{
t →

∫

Ω

�NuNφ dx

}∞

N=1

is uniformly bounded and equicontinuous in C([0, T ]), where φ ∈ C∞
c (Ω). But since the smooth functions

are dense in L3(Ω), applying the Arzelà–Ascoli theorem, we show (5.17).
On the other hand, uN is uniformly bounded in Lp(0, T ;W 1,q(Ω)) for p > 1, q > 3

2 , so it converges
to u weakly in this space. Since W 1,q(Ω), q > 3

2 is compactly embedded into L3(Ω), by (5.17), we obtain
(5.18). �

5.4.2. Limit in the Stress Tensor.

Lemma 20. If μ(�), ν(�) satisfy (2.14), then for a subsequence we have

μ(�N )D(uN ) → μ(�)D(u) weakly in Lp((0, T ) × Ω)

ν(�N ) divuN → ν(�) divu weakly in Lp((0, T ) × Ω)
for p > 1. (5.19)

Proof. Due to (4.39), there exists a subsequence such that

∇uN → ∇u weakly in Lp(0, T ;Lq(Ω)) for p > 1, q >
3
2
.

Moreover μ(�N ), ν(�N ) are bounded in L∞(0, T ;L3(Ω)), on account of (2.14). Thus, (5.19) follows by
application of Lemma 16. �

5.4.3. Strong Convergence of the Cold Pressure. It follows from estimates (4.10) combined with (4.36)
and the Sobolev imbedding theorem that

‖πc(�N )‖
L

5
3 ((0,T )×Ω)

≤ ‖πc(�N )‖ 2
5
L∞(0,T ;L1(Ω))‖πc(�N )‖ 3

5
L1(0,T ;L3(Ω)) ≤ c. (5.20)

Having this, strong convergence of �N implies convergence of πc(�n) to πc(�) strongly in Lp((0, T ) × Ω)
for 1 ≤ p < 5

3 .
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5.4.4. Convergence of the Diffusion Terms. In the proof of Lemma (17) it was shown in particular that
{Fk,N}∞

N=1 is bounded in L
4
3 ((0, T ) × (Ω)). By the weak convergence of ∇�k,N , ∇ϑN to ∇�k, ∇ϑ,

respectively, deduced from (5.3) and (5.6) together with (5.2), (5.15) and (4.37) we check that it is
possible to let N → ∞ in all terms of (5.5). In other words, we have

Fk(�N , ϑN , �k,N ) → Fk(�, ϑ, �k) weakly in L
4
3 ((0, T ) × Ω), k ∈ {1, . . . , n}.

The convergence results established above are sufficient to perform the limit passage in the momentum,
the total global energy balance and the species mass balance equations and to validate, that the limit
quantities satisfy the weak formulation (3.2),(3.4) and (3.5).

5.5. Limit in the Entropy Inequality

In view of (5.7–5.10) and the remarks from the previous subsection, it is easy to pass to the limit N → ∞
in all terms appearing in (3.3), except the entropy production rate σ.

However, in accordance with (4.13) we still have that
⎧
⎨

⎩

√
μ(�N )
ϑN

(
∇uN + (∇uN )T − 2

3
divuN

)⎫⎬

⎭

∞

N=1

is bounded in L2((0, T ) × Ω). Moreover, by virtue of (4.39), (5.1) and (5.15) we deduce
√

μ(�N )
ϑN

(
∇uN + (∇uN )T − 2

3
divuN

)
→
√

μ(�)
ϑ

(
∇u + (∇u)T − 2

3
divu

)

weakly in L2((0, T ) × Ω). Evidently, we may treat all the remaining terms
⎧
⎨

⎩

√
2
3μ(�N ) + ν(�N )

ϑN
divuN

⎫
⎬

⎭

∞

N=1

,

{√
κ(�N , ϑN )

ϑN
∇ϑN

}∞

N=1

,

{√
πm(ϑN , YN )√
C0�k,NϑN

Fk,N

}∞

N=1

in the similar way using the fact that they are linear with respect to the weakly convergent sequences
of gradients of uN , ϑN and �k,N . Thus, preserving the sign of the entropy inequality (3.3) in the limit
N → ∞ follows by the lower semicontinuity of convex superposition of operators.

Our ultimate goal is to show that the limit entropy �s attains its initial value at least in the weak
sense. We have the following result.

Lemma 21. Let �,u, ϑ, �1, . . . , �n be a weak variational entropy solution to (1.1) in the sense of Definition
4. Then the entropy �s satisfies

ess lim
τ→0+

∫

Ω

(�s) (τ)φ dx →
∫

Ω

(�s)0φ dx, ∀φ ∈ C∞(Ω). (5.21)

Proof. As a consequence of (3.3) we know that
∫

Ω

(�s(ϑ, �k))(τ+)φ dx ≥
∫

Ω

(�s(ϑ, �k))(τ−)φ dx

where φ ∈ C∞(Ω), φ ≥ 0, and where (�s(ϑ, �k))(τ+) ∈ M+(Ω), τ ∈ [0, T ), (�s(ϑ, �k))(τ−) ∈ M+(Ω),
τ ∈ (0, T ] are the one sided limits of �s(τ). Note that due to (4.45) �s ∈ L∞(0, T ;L1(Ω)), thus for any
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Lebesgue point of τ �→ �s(τ, ·) these signed measures coincide with a function �s(τ, ·) ∈ L1(Ω) which
satisfies

∫

Ω

�s(τ)φ dx −
∫

Ω

(�s)0φ dx − 〈σ, φ〉

= −
∫ τ

0

∫

Ω

�su · ∇φ dx dt +
∫ τ

0

∫

Ω

(
Q
ϑ

−
n∑

k=1

gk

ϑ
Fk

)
· ∇φ dx dt, (5.22)

for any test function φ ∈ C∞([0, τ ]×Ω), φ ≥ 0, where σ ∈ M+([0, T ]×Ω) is a nonnegative measure such
that

σ ≥ S : ∇u
ϑ

− Q · ∇ϑ

ϑ2
−

n∑

k=1

Fk

mk
· ∇
(gk

ϑ

)
−

n∑

k=1

gk�ωk.

In order to show (5.21) we thus need to justify that σ is absolutely continuous with respect to Lebesgue
measure on [0, τ ] × Ω. To this end we use in (5.22) a test function φ = ϑ0, we get

∫

Ω

�s(τ)ϑ0 dx − 〈σ, ϑ0
〉

=
∫

Ω

(�s)0ϑ0 dx +
∫ τ

0

∫

Ω

H · ∇ϑ0 dx dt, (5.23)

where, on account of (5.8–5.10)

H = �su +
Q
ϑ

−
n∑

k=1

gk

ϑ
Fk ∈ Lp((0, T ) × Ω), for some p > 1. (5.24)

Now, testing (3.4) with φm ∈ C∞[0, T ) such that φm → 1 pointwisely in [0, τ), φm → 0 pointwisely in
[τ, T ), 0 < τ < T and passing to the limit with m, we obtain

∫

Ω

(∣∣(�u)0
∣∣2

2�0
+ �0e(�0, ϑ0, �0

1, . . . , �
0
n)

)
dx

=
∫

Ω

( |�u|2
2�

+ �e(�, ϑ, �1, . . . , �n)
)

(τ) dx. (5.25)

Combining (5.23) with (5.25), we thus get

∫

Ω

(
|�u|2
2�

(τ) −
∣∣(�u)0

∣∣2

2�0

)
dx

+
∫

Ω

[
�e(τ) − ϑ0�s(τ)

]− [�0e0 − ϑ0(�s)0
]

︸ ︷︷ ︸
I∗

dx +
〈
σ, ϑ0

〉

= −
∫ τ

0

∫

Ω

H · ∇ϑ0 dx dt. (5.26)

By the Fatou lemma

ess lim inf
τ→0+

∫

Ω

(
|�u|2
2�

(τ) −
∣∣(�u)0

∣∣2

2�0

)
dx ≥ 0,

in addition

lim
τ→0+

∫ τ

0

∫

Ω

H · ∇ϑ0 dx dt = 0,
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on account of (5.24). Moreover, recalling (2.3) and (2.7), we recast I∗ as follows

I∗ =
n∑

k=1

(est
k − ϑ0sst

k )(�k(τ) − �0
k) + ϑ0

n∑

k=1

[
�k

mk
log

�k

mk
(τ) − �0

k

mk
log

�0
k

mk

]

+
[
�ec(�)(τ) − �0ec(�0)

]
+ cv

[
�ϑ(τ) − �0ϑ0 − � log ϑ(τ) + �0 log ϑ0

]

=
4∑

i=1

Ii.

Evidently
∫
Ω

(I1 + I2 + I3) dx → 0 in view of weak continuity of � and �k, k = 1, . . . , n. Concerning the
last term, we have

I4 = cv �(τ)
[
ϑ(τ) − log ϑ(τ) − ϑ0 + log ϑ0

]
︸ ︷︷ ︸

≥0

+cv(�(τ) − �0)(ϑ0 − log ϑ0),

therefore limτ→0+

∫
Ω

I4 dx ≥ 0. Since the entropy production rate is always nonnegative, (5.26) together
with above remarks yields ess limτ→0+

〈
σ, ϑ0

〉
= 0, whence

ess lim
τ→0+

σ[[0, τ ] × Ω] = 0.
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[16] Frehse, J., Goj, S., Málek, J.: On a Stokes-like system for mixtures of fluids. SIAM J. Math. Anal. 36(4):1259–1281
(2005) (electronic)
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