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In mathematical terms, there is a celebrated tension between 
forms of discourse and cognition that are delicately nmed to 
cultural practices and those that are focused explicitly on 
mathematics per se, recognisable by its symbolic forms and 
epistemological structures This tension parallels (and is 
perhaps derived fiom) the epistemological duality of mathe­
matical thought as both tool and object, simultaneously a 
component of pragmatic activity and theoretical endeavour 

The preparation of this atticle has afforded an opporturtity 
to reflect retrospectively on this duality and on a corpus of 
reseru·ch in which I and my colleagues have been involved, 
spanning a variety of sub-fields and a couple of decades. I 
hope it is not too fanciful to impose upon this work a nana­
tive that was not necessarily evident to any of us while we 
were engaged upon it. Here is a first outline of that natrative 

I begin with a pervasive finding that arises from investi­
gations with (mainly young) people expressing mathematical 
ideas with computers These studies led to a series of 
thoughts concerning the generation of mathematical mean­
ings that nagged away until the early nineteen-nineties, 
when Celia Hayles and myself began to formulate a theo­
retical flamewmk for describing the phenomena we 
encountered Shortly after this, we had the opportunity to 
work in a variety of settings with the broad common aim of 
elaborating the mathematics used in working practices. 

I shall then illustrate how these studies began to tluow 
light on some fundamental questions, particularly concern­
ing the natute of mathematical practices, and encouraged 
us to investigate fmther the problem of mathematical mean­
ing fiom both cognitive and socio-cultrnal perspectives. This 
effort has led to some general principles about the design of 
mathematical activity systems for leruning and, in particulat, 
the rather special role that digital technologies may play 
within them Thus, perhaps fittingly but probably over-atnbi­
tiously, I will conclude where I began, with the assertion that 
digital technologies can play an unusually powerful role in 
helping to understand and reshape the nature of mathema­
tical sense-making. 

I would like to make two general observations at the out­
set. The first concerns my wish to consider both cognitive 
and social dimensions To steer a course between these two 
approaches is not easy, not least because proponents of each 
often ignore the work of the other, or denounce as mere 
eclecticism any attempt at synthesis (there are important 
exceptions to this: see, for example, Cobb and Bowers, 
1999; Kieran, Forman and Sfatd, 2001) One orgattising idea 
for thinking about this apparent dichotomy has been sug­
gested to me by Andy diSessa who distinguishes between 
phenomena that rue distally and proximally social 

Much of what I have to say comes fiom a recognition that 

many phenomena concerned with mathematical meaning are 
proximally social, in that they manifestly involve social and 
cultrnal relations between people and within communities 
But I also recognise that many facets of human thought are 
only distally social; while it is true that what I think, and 
the techniques I use for thinking and communicating are 
shaped both socially and cultrnally, I think in ways that are 
structured by my personal cognitive history at least as 
strongly as by the socio-culnnal relationships in which I find 
myself embedded 

No attempt to understand how mathematics is learned by 
human beings can afford to ignore this essentially cognitive 
element, any more than it can afford to ignore the social and 
cultmal relations in which cognitive activity is embedded 
Thus, in what follows, I hope to illustrate not only that such 
a perspective need not necessarily lapse into eclecticism, but 
rather that co-ordination of the two approaches provides a 
possible and even necessary methodological stance 

The second observation concerns the title of this article. I 
recognise that it is bad form to tell a joke and then explain 
it Forgive me then, if I explain the double entendre in the 
title I want to talk about mathematical epistemology as it is 
found in work, to understand how mathematics is used and 
how it is conceived by patticipants in their cultrnal practices 
But I also want to talk about mathematical epistemology as 
a crucial element at war kin learning situations; how math­
ematics education researchers can develop not just new 
approaches to teaching, but new mathematical epistemolo­
gies that are more learnable and, at least for all but the few, 
more expressive 

Insights from observations of activities with 
computers 
Over some two decades, Celia Hayles and I have engaged in 
studies of children and adults interacting with computational 
systems designed to afford mathematical expression 
Tluoughout this time, we have noticed an interesting phe­
nomenon, which we can simplistically characterise as 
follows: learners are often able to express themselves in 
terms that might be considered abstract, yet which seem to be 
bound tightly into the tools and symbols of the computational 
world. Leruners can, in other words, say and do things with 
suitably-designed systems that they may be unable to say or 
do without them - and they can often do so in ways that are 
interestingly different from conventional means. Let me give 
an exatnple of this phenomenon fium the recently-completed 
doctoral thesis of my colleague, Lulu Healy. Healy (2002) 
reports the results of an investigation into children's under­
standing of reflection and symmetry, in which she designed, 
constructed and evaluated two leanting systems, one based 
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on Cabti and the other on a Logo-based toolset. 
Within this toolset was one particular tool, named meet, that 

simulated the action of turtles moving successively closer 
(their 'speeds' adjusted accordingly) in order to construct a 
new turtle at the point at which their paths intersect Figure I 
shows three snapshots of the general meet tool in action 

.,.. 
• 

Figure 1. Ihe 'meet'tool in action: copies of each of the tur­
tles at the ends of the line segment inch forward 
until they meet and become one 

In the special case in which the two tmtles are initially 
placed in a (reflective) symmetric configmation, they will, 
of comse, meet on the line of symmetry: smprisingly or not, 
Healy's twelve-year-old students all appeared to acknow­
ledge this intuitively The meet tool, therefore, was designed 
to tap into this intuition and afford students a way both to 
construct symmetrical figures (see Figure 2), as well as to 
justify hypotheses that one turtle was the reflection of 
another in a given line of symmetry 

Figure 2 Using the 'meet' tool to complete a symmetrical 
figure 

I will suppress all of the interesting detail in order to focus 
on the ways that children expressed their ideas about sym­
metry during interactions with this tool As an example, 
Aimee said: 

Every turtle has its own reflection turtle [with] the same 
distance away from the minor and the same angle, 
except for lefts and rights. 

Notice that 'except for lefts and rights' states precisely what 
it means within the Logo setting - under reasonable condi­
tions, a figure is symmetrical if and ouly if it consists of two 
palls which are the same with left and right swapped 
Aimee's expression captures the properties of the figures 
drawn on the screen; but it also focuses on the relationships 
that associate an object with its image (and line of symme­
try), suggesting a view of reflection as a transformation of a 
set of turtles (points) 

Statements such as Aimee's could be used to reason about 
reflection, i.e to generate implied knowledge. Here, for 
example, is Jodie's reasoning: 

It's wrong. If it was symmetrical, the turtles would 
meet on the min 01 This one looks the same distance 
as this [J thinks the tmtles are equidistant from the line 
of symmetry], but it's not going to go the right way 

Jodie has caught rticely two important mini-theorems: that 
symmetry would necessarily imply meeting on the mirror 
line; and the converse too - if they do not meet, then they 
carmot be symmetrical 

I would like to elabmate two points that emerge from this 
little example. The first centres on the ways that learners can 
use technology to shape their mathematical expression -
how some elements of the invariant relationships between 
the given objects ar·e identified and related within the sym­
bolic discomse of the environment In the sense that these 
invariant relationships remain articulated only within activ­
ity using the notational system of the virtual world, they 
likely could not be said to constitute a fmmal abstraction 
But to the extent that they become transfmmed into some­
thing coherent, reusable and general, it does make sense to 
consider such activity as involving an abstraction of some 
kind (Fm fmther elaboration of this argmnent, in the context 
of stochastic thinking, see Pratt, 1998; Pratt and Noss, 2002 
For a study in relation to students' conceptualisations of non­
Euclidean geometry ftom a similar perspective, see 
Stevenson, 1996; Stevenson and Noss, 1999.) 

The second point is related to the first, and concerns differ­
entia! perfmmance Put bluntly, children who may be 
apparently unable to express any relationships about their fig­
mes with pencil and paper are able to express them quite 
adequately (and sometimes quite elegantly) with the computer 

Reports of differential performance depending on con­
text are commonplace. There are consistent and widely­
reported findings concerning the differential perfmmance 
between adults carrying out tasks in everyday settings and 
when given written assessments For example, Scribner's 
(1985) study of the dairy industry, Lave, Murtaugh and de 
Ia Rocha's (1984) investigation of weight-watchers, the 
seminal work of Saxe (1991) and Nunes, Schliemarm and 
Canaher's (1993) investigations of street vendors have all 
shown convincingly that people who are error-prone in tests 
are mostly errm-free in familiar practical contexts and that 
there is a major disjuncture between the strategies used in 
the two settings. 

More generally, and especially since the work of Jean 
lave and Etienne Wenger (1991) and others in broader 
anthropological contexts, we may more or less take for 
granted the situated view of knowledge genesis A key 
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insight is that people construct solutions in the course of 
action and that these solutions are structured by activity In 
the supermarket, for example, Lave et al (1984) illustrate 
how people avoid doing what might be classified as school 
mathematics not because it is too hard, but because the prac­
tice of supermarket shopping carries with it its own 
discourse and its own mechanisms for meaning-making 
One point that is often missed, however, is that we cannot 
conclude that there is nothing that passes for mathematical 
in shoppers' activities The point is that when shoppers do 
use mathematics, it is supermarket mathematics, a mathe­
matics made possible through the resomces of the setting 

Since these studies, the situated cognition perspective has 
become ubiquitous. In its extreme version, it claims that 
"every cognitive act must be viewed as a specific response 
to a specific set of circumstances" (Resnick, 1991, p. 4) 
However, such arguments - compelling as they are - pre­
sent researchers of mathematical learning with a number of 
seemingly intractable difficulties. If mathematics cannot be 
regarded as a decontextualised resource to be learned and 
then mapped onto settings, if it can only be defined in relation 
to specific situations, then we seem to have come close to dis­
tilling the mathematical essence out of mathematical thought 

One way out of this difficulty has been indicated by con­
sidering the role of representations While seeking to 
understand the way schemas of 'if-then' reasoning were 
developed, Cheng and Holyoak (1985) posited the inade­
quacy of the specific-experience view and proposed the 
notion of pragmatic reasoning schemas which are guided 
as much by goals and pmposes as the logic of the argument 
and are: 

primarily the products of induction from recurring 
experiences with classes of goal-related situations 
(p. 414) 

The claim is that: 

people typically reason using abstract knowledge struc­
tures organised pragmatically, rather than in terms of 
purely syntactical rules of the sort that comprise stan­
dard logic. (Cheng et al., 1986, p 314) 

Similarly Nunes, Schliemann and Carraher (1993) show 
convincingly how street vendors could generalise their 
knowledge flexibly and argue that: 

the fact that specific infmmation is contained in repre­
sentations in street mathematics is not a drawback. It 
is specific information that allows subjects to control 
for the meaning and reasonableness of theit answers in 
problem situations [ . ] Thus, representation of the 
particulars of a situation does not imply that the subject 
is restticted to understanding exact situations There is 
ample evidence for flexibility and generalisability of 
the pragmatic schemas of street mathematics (p 147) 

These accounts concm on one impottant point: that indi­
viduals engaged in situated activity can and do generalise 
beyond the specificities of situations. Three questions 
naturally arise What is it that is generalised? What is 
abstract about such knowledge? What is situated about such 
knowledge? 
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Tb try to answer these questions, Hayles and I proposed, 
some ten or so years ago, the idea of situated abstraction (a 
first attempt is in Hayles and Noss, 1992) as a tool to aid in 
understanding how learners construct mathematical ideas by 
drawing on the material and discmsive components of a par­
ticular setting or, as we might put it today, activity system 
Situated abstraction seeks to describe metaphorically how 
a conceptualisation of mathematical knowledge can be both 
situated and abstract. It may be fmely tuned to its construc­
tive genesis - how it is learned, how it is discussed and 
communicated - and to its use in a cultural practice, yet can 
simultaneously retain mathematical invariants abstracted 
within that community of practice. The reflective symmetry 
example above gives a simple illustration of this idea 

A traditional view regards an abstraction as containing 
some essential property of a situation extracted from it­
not contained within it; it is deemed to be 'apart' from, even 
above, the situation of its genesis (see, fm example, Pia get, 
2000, p. 4) From this perspective, abstractions are, by defi­
nition, not embedded in situations. Rather, they involve 
expressions (internally or externally manifested) which, 
although they may derive from specific situations, are meant 
to represent a shift away from that situation. This perspec­
tive leads to the widely-shared assumption that practice is 
merely concrete and that abstraction is an extra-practical 
form of thought: see Wilensky (1991) 

The idea of abstraction as a conceptualisation ot a piece of 
knowledge lying in a separate reahn hom action, tools, lan­
guage or indeed hom any external referential sign system is 
important from a perspective of mathematical discourse, 
since mathematical discourse is notmally conceived as self­
contained: it forms part of a system that has its own objects 
and its own rules for transforming them 

This characteristic of formal mathematical abstraction is cen­
tral to its utility: situated abstraction does not seek to challenge 
that utility, but questions whether mathematical abstractions can 
ever be fnlly separated hom the context of their construction 
or application. Om broader hope is that the idea of situated 
abstraction will contribute to a theory of how mathematical 
knowledge is used or 'transferred' across settings (for other 
contributions to this emerging theory see, for example, Carraher 
and Schliemann, 2002; Sfard, 2001; Nemirovsky, in press; 
Hershkowitz, Schwarz and Dreyfus, 2001) 

At the point at which Hoyles and I began to formulate 
these ideas, they were essentially hypotheses, based only 
on data derived from children and adults engaged with com­
putationally expressive media. Fottunately, in the event, we 
were subsequently able to test these ideas in studies of math­
ematics in work and it is to these that I now turn 

Into the workplace 
The study of mathematics in work provides a particularly 
fruitfnl setting for illuminating fundamental issues concern­
ing the construction of mathematical meanings. Specifically, 
it affords an opportunity to focus on the situatedness of math­
ematical meanings by investigating theit use rather 
than their genesis. In the long term, one might hope that 
such insight will afford leverage on the design of didactical 
strategies within and ultimately beyond work-based settings 
and I will outline some of these towards the end of this article 



Although it is clear that persous studied in their couuuu­
nities yield Iich and useful data that desclibe what they do, it 
remains desitable to locate and elucidate the mathematical 
knowledge that they know. To achieve this aitu, om group in 
London has employed ethnographic and interview data to 
capture meanings created in situ and the dialectical rela­
tionship of these meanings with mathematical expression on 
the one hand and professional expertise on the other This 
has involved Celia Hayles, Stefano Pozzi and myself in a 
series of studies with investment bank employees, paediatric 
nurses and couuuercial pilots; more recently, Phillip Kent 
and myself have been working with a group of structural 
engineers 

These professional groups differ in substantial ways, but 
there are similru:ities: in the explicitness of their mathemati­
cal training and in theii intolerance - to a greater or lesser 
extent- of errors. We have developed a map of mathemati­
cal workplace activities comprised of documentruy analysis, 
interviews with senim staff in each profession, general and 
task-based interviews with practitioner volunteers and 
ethnographic observation of these subjects in the workplace 

I will now try to summarise some of the outcomes of this 
reseru·ch. I do so by sketching five vignettes, chosen to illus­
trate the outline of the theoretical position I wish to advance 
in the form of a set of provisional 'results' The text of each 
vignette is based on the relevant co-authored papers that ru·e 
referenced within it 

Vignette 1: The epistemological fragmentation of the 
workplace 

The first vignette is drawn from a study conducted with a 
group of bank employees, part of which attempted to under­
stand the bankers' ways of thinking about quantitative data 
better (see Noss and Hayles, 1996a) In one of the task­
based interviews, we presented the bankers with a problem 
of graphical interpretation, given in Figme 3 opposite 

The respouses of the bank employees were surprisingly 
uniform. Most identified the graphs as a visual display of 
numbers, as a pictmial representation of underlying data 
rather than as a functional relatiouship and as an indication 
of a trend in data that allowed prediction: as one of them 
put it, a graph was the end result of a table of statistics that 
enabled him "to see [ ] faster [ ] the implications of the 
data" Where we saw graphs as a medium for expressing 
relationships (e.g between quantity and time), bankers saw 
a display of data. 

The origins of tltis epistemological diversity are almost 
certainly to be found in the tools of the system in which the 
bankers operate. On each employee's desk were several 
computers Some, the traders and the operations staff, had 
three or four. On all but a very few screens, there were 
colunms of data, graphs, and more colunms of data: in every 
seuse, graphs were pictures of numbers, rather than graphi­
cal representatious of a functional relatiouship 

This epistemological standpoint with respect to graphical 
representatious can, it seems, be thought of as the graphical 
face of a fragmented knowledge strucrme that characterises 
the practice of investment banking. We encountered deprut­
ments specialising in the finest detail on one financial 

An agent received conunission fOr each transaction as follows: 

(a) fOr transactions less than 
£30,000 
(b) fOr transactions more than 
£30,000 

£750 plus 21h% 
of the transaction 
5% of the transaction 

Which graph shows this situation most realistically? 

1 GraphA 1 GraphB 
Commission Commission 

Amount of transaction Amount of transaction 

1 Graph C 
Commission 

colssion Graph D 

Amount of transaction 

The correct graph is 

Explain why 

Figure 3 Probing notions of quantity and time in relation 
to graphs. the correct option is Graph C 

instrument, sharing a common wall but no common lan­
guage with another - essentially similar - department Of 
course, similruity is in the eyes of the beholder: while we 
might view, say, Nominal Certificates of Deposit and 
Treasmy Bills as flavours of similar financial instruments 
sharing the same (or neruly the same) mathematical struc­
ture, the bankers saw fmely-tuned pragmatic knowledge and 
strategies - and a discourse that served to reinforce the dif­
ferences between them. 

So the first major finding of our studies can be sum-
mruised as follows: 

Result 1. Ihere is an epistemological fragmentation of 
the knowledge structure of the workplace that shapes 
and is shaped by the discourse of the working prac­
tice Strategies are finely tuned to the pragmatic 
demands of work activities, with little tendency to strive 
for a theoretical orientation involving generality or 
appreciation of unifying models 
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Vignette 2: The role of artifacts and tools 

The idea that people think and act within socio-cultmal 
contexts which are mediated by cultmal tools is now com­
monplace The work of Vygotsky, Luria and Leont'ev, 
indeed the entire corpus of work on activity theory, offers 
compelling evidence that both individual and social acts of 
problem solving are contingent upon structuring resources, 
involving a range of artifacts such as notational systems, 
physical and computational tools, and work protocols 
(Gagliardi, 1990) 

Workplace settings are, naturally enough, littered with 
artifacts These artifacts are, for the most part, a simple 
expression of work protocols, so that in routine use - and the 
overwhehning majority of time in wmking practices is spent 
on routine - the stiucture of the ru:tefact is hidden from view 
For example, in one study on a hospital ward (Pozzi, Noss 
and Hayles, 1998), we found that a seemingly straightfor­
ward attefact like a fluid balance chart contained within it 
the crystallised activity (Leont'ev, 1978; see also Wertsch, 
1985) of the hospital community, shaping in complex but 
mainly unnoticed ways the actions and discourse of those 
using it A central part of this crystallised activity was a 
mathematical model of essential variables and relationships 
embedded in the activity: evidence for both the complexity 
and the invisibility of this mathematical model was gained 
by observing the ambiguity and uncertainty felt by a new­
comer to the paediatric ward, as well as the extreme 
difficulty faced by the old-timers in communicating to her 
the structrne that they had come to take for granted 

I he ani val of the newcomer on the ward served to trig­
ger a 'breakdown' or decision point within routine practice, 
a situation in which the models underpinning artifacts and 
the representational infrastructures on which their use 
depends rise to the surface and become open for inspec­
tion and negotiation by participants (and observation by 
researchers) That this model is normally hidden should 
cause no surprise: I have already noted that the pmpose of an 
artefact is to facilitate the pragmatic activities of the work­
place, not to learn mathematics or to gain insight into 
underlying models. 

Nevertheless, when breakdowns do occm, invisible rela­
tionships buried in artifacts do not suffice and there is a 
need for the community to understand at least some of the 
workings of the models, to examine their strengths and lim­
itations and to scrutinise the results of the mathematical 
labour congealed within them (see Hall, 1999, for a sintilar 
finding).. At least in breakdown situations, we are abruptly 
made aware of circumstances that require more than mere 
procedmal routine and the learning of work protocols. They 
require systemic interpretation- the individual is required to 
make sense of what she does within the confines of the 
broader socio-technical system 
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Result 2: Tools and artifacts shape activities and 
thought in ways that only become visible at times of 
breakdown to routine. In disruptions to routine, indi­
viduals need to develop a broader interpretative view of 
the model that underpins their routine practice 

Vignette 3: The anchoring of mathematical meanings in 
practice 

It will help to focus on a specific knowledge domain I will 
trnn to one of the most widely-researched topics in the field, 
ratio and propottion. Researchers on proportional reasoning 
in school and the workplace have distinguished two ubi­
quitous classes of strategies for making proportional 
calculations,fimctional (across measures) and scalar (within 
a single measure) -see Vergnaud (1983) for a thorough 
analysis Nunes, Schliemann and Carraher (1993) have 
suggested that scalar strategies offer a mechanism for hold­
ing on to situational meaning by keeping ouly one measure 
in view. By way of contrast, functional strategies tend to be 
seen as semantically sparse manipulations of numerical 
quantities per se 

It appears that this difference is the reason why people 
tend to prefer scalar strategies, even when they result in 
a more computationally awkward calculation. This is the 
crux of the counterposition in the literature of scalar and 
functional approaches, in that the privileging of the former 
has arisen from the apparent necessity in the latter to relin­
quish meaning in the form of a situational referent Nunes, 
Schleinunan and Carraher concluded that scalar approaches 
are drawn from experiences in everyday situations, are more 
flexible and generalisable than easily forgotten algorithmic 
approaches and, most relevant here, allow people to preserve 
the meaning of the situation by keeping variables separate 
and not calculating across measures 

To see how robust this finding is, I turn to the case of a 
group of paediatric nurses (see Hoyles, Noss and Pozzi, 
2001) who ar·e similarly expert in their field, but who have 
had years of school mathematical education as well as pro­
fessional training. Nurses are drilled to perfotm accurate 
drug-dose calculations flam an early stage in their profes­
sional training One key aspect of this training is what, in our 
early interviews with them, several described as the 'musing 
mantra' which states: "What you want, over what you've 
got, times the amount it comes in" or, in written form: 

What you want 
What you've got 

x The amount it comes in 

This rule is a version of the 'rule of tluee' and is completely 
general in scope Furthermore, it mirrors the actions that a 
nmse mnst take in order to prepare a prescription: look at the 
drug dose prescribed on the patient's chart ('what you 
want'); note the mass of the packaged drug to hand ('what 
you've got'), and then the volume of solution ('the amount it 
comes in'). This match of rule with actions and artifacts pro­
vides a possible explanation for the fact that at no time did 
we ever hear the nmsing rule described in any other order 

During ethnographic observations and interviews, we 
noticed that while all the nurses' drug calculations were car­
ried out correctly (unsmprisingly, in written tests, nurses' 
responses were highly enor-prone), the strategies adopted 
were varied and exhibited a far richer complexity than 
would be suggested either from our interviews or from 
our expectations derived from the nursing literature. Of 



30 episodes related to drug administtation (out of a total of 
250), we collected during 80 hours of observation, 26 com­
binations of ratios were observed with a variety of drugs, 
packaging and prescriptions Of these, only four involved 
the nursing mantra, while equal numbers chose scalar and 
functional strategies. 

When we looked more closely at the strategies employed, 
we certainly found evidence of scalar strategies- as Vergnand 
and Nunes eta/. would predict - even in the face of much 
simpler calculations being available with a functional 
approach. But we also found something surprising I will 
illustrate with an example. 

Belinda needed to give 120 mg of an antibiotic, 
amakacine, prepared in 100 mg per 2 ml vials. Before per­
forming the calculation, she prepared for the administtation 
and rettieved two vials of the antibiotic At this point, she 
found the volume she had to give with a fluency that was 
difficult to follow: 

Belinda Am aka cine [reads doses on the two vials] 
one hundred; one hundred; [reads year of 
expiry] ninety-eight; ninety-eight; [finds 
volume to be given] two point four mils. 

A short interview with Belinda later revealed the nature of 
her strategy: 

Int 

Belinda: 

Int: 

Belinda 

Int: 

Belinda 

I didn't see you do any calculating there at 
all. You just drew it up.[. ] 

I knew the doses. [. ] I know that that one 
is two point four two point fmu· mils. 
With the amakacine, whatever the dose is~ 

if you just double the dose, it's what the mil 
i,s Don't ask me how it works, but it does 
[emphasis added] 

Why, what's the [ ]? 

One hundred and twenty mg, right [dose] 
and it comes in [. ] and it goes in one hun­
dr·ed milligrams per two mils So if you 
double it, that makes two hundred and 
forty [ ] two point four mils 

I'm sorry I don't understand 

So if you just double it up. Double one 
twenty; one twenty and one twenty is two 
hundred and forty. And the dose is two 
forty. So very often that's how it is with 
amakacine, so ifyou're giving eighty[. ] 
eighty milligtams to give, and if you dou­
ble it up, it's one point six. [emphasis 
added] 

Belinda's description clearly indicates a transformation 
from the dose mass to the dose volume, so in this sense the 
strategy is functional. But a simple classification of the 
sttategy as functional does not do it justice. Her description 
suggests that the operation was associated with the 
drug itself rather than with the ratio between the mass and 

volume: "That's how it is with amakacine", says Belinda, 
apparently seeing the allowable arithmetic operation and the 
particular drug itself as intimately connected. Similarly, her 
description of the strategy suggests that she was neither 
simply manipulating numbers (or even quantities) nor 
performing arithmetic operations on them Rather, she 
described the ttansformation as 'doubling up' and effort­
lessly combined into a single process what would generally 
be recognized as the doubling operation and the movement 
of the decimal point 

In this episode, we see an illustration of how the nurses 
often opted for strategies that would, in the literature, be 
described as unlikely and lacking in meaning. Our interpre­
tation of these findings is that the nurses' knowledge of 
concenttation, that is their appreciation of the in variance of 
the relationship between mass and volume as evidenced in 
their· dtug calculations, was anchored in an intimate know­
ledge of the drug itself, as well as in the properties of 
familiar packaging constraints of prescribed doses The 
knowledge was mutually constituted and expressed as both 
mathematical relation and culttnally-shared situational noise 
- the same kind of knowledge that we encountered earlier 
in the context of computer worlds and which we called 
situated absttaction 

Result 3.: Knowledge is mutually constituted by a 
co-ordination produced in activity of mathematical 
knowledge and situational noise to form situated 
abstractions. 

Vignette 4: The qualitative restructuring of mathema-
tical knowledge in activity 

In a recent study, Phillip Kent and myself have been inves­
tigating the ways in which mathematical knowledge is 
conceived and deployed with employees of a large London­
based engineering finn (see Kent and Noss, 2001, 2002) We 
have encountered, even with this mathematically educated 
gtoup, a ubiquitous view that the majority of sttuctural engi­
neers do not 'use mathematics' of any sophistication in theit 
professional careers. So, while all believed that it was 
impottant for graduate engineers to have an appreciation 
for advanced mathematics, it is something they would rarely 
be expected to use 

Once you've left university you don't use the maths you 
learnt there, 'squar·ed' or 'cubed' is the most complex 
thing you do. For the vast majority of the engineers in 
this firm, an awful lot of the mathematics they were 
taught, I won't say learnt, doesn't smface again 

I think that this particular engineer's description of mathe­
matics as not 'smfacing' is a fortuitous one. We have seen 
in the case of the nurses that mathematical knowledge 
becomes fused with professional knowledge as situated 
absttaction, not as absttaction in its pm·e form. But it is this 
pure form, particularly for mathematically sophisticated 
groups such as engineers, that is readily recognisable as 
mathematics. Out engineer is right that mathematics does 
not smface; or rather, that it seldom smfaces in the fmm it 
was learned and taught It has been ttansformed into some­
thing else, something at once more usable, more embedded, 
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more noisy. Only the vestigial traces of the college mathe­
matics taught to engineers remains in the mathematics that 
they actually use in activity. [2] 

The transformation in the chatacter of mathematics 
appears to be not simply a quantitative one, nor merely a 
replacement of mathematical activity by professional 
expettise and experience. It represents a qualitative, episte­
mological and cognitive restructuring of the mathematics 
as it becomes 'embedded' in engineering expertise [3] 
I claim that engineers' conceptualisations of this restructured 
mathematical knowledge are legitimately considered as 
situated abstractions 

I will illustrate with an example. The type of qualitative 
thinking that characterises the use of 'feel' in the engineer­
ing design process is exemplified by the concept of load 
path, the notion that the loads acting on a structure have to 
'flow down into the ground' like a kind of fluid It is a pow­
erful, very physical concept and extremely useful because 
it provides a way of thinking about a stmcture before any 
analysis is done, allowing judgements to be made about the 
validity of a quantitative analysis of the structure One engi­
neer put it thus: 

A load is applied and eventually it's got to get back 
into the ground. It's so fundamental to structural design 
that you have to be able to see what that route is in 
order to have a feeling, to be able to calculate, what 
sorts of loads and forces will be apparent in any par­
ticular member Without a clear idea of the load path, 
you have nothing to judge what you're getting from the 
computer 

Formal mathematical analysis, on the other hand, is based on 
the assumption of static equilibrium, which assumes that 
nothing is moving in a stable structure, an assumption that 
appears to conflict with the load-path concept Nevertheless, 
for the engineer above, load path has become a situated 
abstraction of stability criteria: it allows predictions of 
behaviour that emerge from fusing together the actual pro­
perties of the material ( e g. steel beams) with the associated 
(mathematically-abstracted) forces (see also Bissell and 
Dillon, 2000) 

The attribution of 'mythical' chains of causality to for­
mally non-causal situations has been studied by researchers 
in various areas of cognitive science, although not, as yet, 
within the context of mathematics education Viewed in 
this light, it is tempting to view this as an idiosyncrasy, a 
techrtique that works well enough in practice, as an approx­
imation or useful metaphorical approximation to the 'real' 
mathematical abstraction (L Forces = 0). In fact, it turns 
out that the view of force as momentum flow has a long and 
epistemologically coherent pedigree. diSessa (1980) makes 
a compelling case for a view of force as: 

simply the flow of the conserved 'stuff', momentum, 
from one place to another. (p 2) 

He notes that broadly convergent views have been advanced 
by no lesser scientific figures than Mach, Kirchoff and 
Hertz [4] 

For the moment, the relevant point is this: engineering 
discourse employs, in at least one important way, a kind of 
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knowledge which is at once about mathematical relations 
and about substance I he idea of flow makes no sense with­
out something to flow through - the beams and struts of 
everyday engineering practice. Mathematical knowledge has 
been transformed (in this case, there is an epistemological 
isomorphism) to the extent that even those engaged in it do 
not necessruily recognise its existence. I his poses sharply 
two questions: how does the formally-learned knowledge 
(e g the engineers' knowledge of Newton's laws, or the 
nurses' knowledge of the drug-dose mantra) become trans­
formed, both cognitively and culturally, into something new 
and more functional within professional practice and what 
connection, if any, is maintained between them? 

I have no data on these questions For the moment, the 
key issue concerns the transformation of knowledge, the cre­
ation of new epistemologies as a characteristic part of 
professional expertise Here, at least, is the explanation of 
the apparent invisibility of mathematical activity. Here, too, 
is a broader, more culturally oriented perspective on the hith­
erto individualistic notion of situated abstraction that 
recognises the individual's embedding in an ambient social 
and cultural space 

Result 4. As mathematical knowledge is embedded 
in new settings and activities, it undergoes an episte­
mological and cognitive transformation What is 
consciously thought of as mathematics by practition­
ers appears to be only the visible component of a 
larger, transformed body of mathematics in use that 
takes the form of situated abstractions 

Vignette 5: The situatedness of abstraction 

Ihe final vignette will deal with the most problematic (and 
so far, under-researched) issue. The challenge is to test the 
situatedness of knowledge, to assess the extent to which 
knowledge in the form of situated abstraction 'transfers' to 
new situations (or better still, to fmd a convincing alternative 
metaphor for the notion of transfer itself) 

For this task, I will return to the nurses (this vignette is 
extracted from Noss, Hayles and Pozzi, 2002) Across many 
different drug administrations, with varying degrees of com­
plexity and in a vru:iety of situations, nurses' procedures for 
calculating drug dosages consistently retained a constant 
covru:iation of mass and volume in the drug solution: this is 
the epistemological core of the situated abstraction of con­
centration. In order to probe the nature of this knowledge, it 
was necessruy to devise a methodology that could tease out 
the limits and situatedness of abstractions developed in 
activity. Our solution was to displace the nurses from their 
fantiliar practice, by 'forcing' them to reflect and ruticulate 
what it was they knew, and how - if at all - they thought 
about it in relation to their practice We did this by a series of 
task-based interviews, in which nurses were progressively 
faced with situations that were further and further removed 
from the practices we had observed, yet retained elements of 
familiru:· situations for them. 

I will summru:ise the fmdings. First, when the nurses were 
faced with a close simulation of their practice, they displayed 
similar strategies to those identified in the ethnographic 



studies, together with a strong sense of the invariant rela­
tionship of mass and volume. In these cases, the nurses' 
reasoning was suppotted by a synergy of their exist­
ing (school) mathematical knowledge and their practical 
experience Thus, knowledge of the in variance of drug con­
centration characterised nurses' strategies even when they 
were removed from their practice; they engaged with the 
underlying objects of mass, volume, concentration and 
rate and the relationships among them, in order to develop 
effective strategies, such as mentally dividing extensive 
quantities into visualisable chunks in ways that made a 
direct connection to the artifacts of their practice 

Second, and by contrast, an analysis of the nurses' 
responses to a less familiar scenario illustrated that when it 
became impossible to link contextual elements with mathe­
matical knowledge, the nurses' responses became far less 
clear Om conclusion was that it was crucial for the muses to 
exploit the texture of their· experience as a resomce in their 
mathematical activity: when the texture of that experience 
became unavailable, the mutually constitutive elements of 
professional and mathematical knowledge became discon­
nected 

It would be difficult to explain the nurses' situated yet 
abstract knowledge, if it were merely to consist of a collec­
tion of abstract procedmes or, conversely, if it were entirely 
contingent on participation in the specificities of nrusing 
practice - that is, if the mobilisation of the nmses' know­
ledge depended wholly upon immersion in the cultural 
practice that gave rise to it Moreover, it is clear that the 
noise of the situation is a critical element of the conceptual­
isation of the mathematical knowledge used in the practice, 
one that affmds the extension of a situated abstraction into 
less familiar and novel domains. It also limits its generalis­
ability 

Result 5 (conjecture) The noise of a situation forms a 
core part of a situated abstraction. When it can be 
called upon in a new situation (and only then?), the 
mathematical knowledge can be 'transjernd' 

Designing for change 
I promised at the outset to draw out implications of these 
work studies and to elicit some general principles concern­
ing the design of mathematical practices for learning The 
hypothesis is that the ways in which people reconstruct 
knowledge for use in wmk is spontaneous, in the sense of it 
deriving from participation in the practices of the commu­
nity and, for the most part, not being formally taught within 
the practice. That being so, I ntight further hypothesise that, 
given the functionality of this kind of knowledge, one might 
attempt to design and construct activity systems for learn­
ing that harness the featmes of the workplace, at least those 
that are perceived as constitutive of learning. So I will try, 
very briefly, to map the set of findings from the maths-in­
work studies onto a set of implications for design This will 
also provide an opportunity to refocus this article back on 
the roles of digital technologies and to begin to deliver on 
the undertaking I gave at the outset in this regard .. 

The first finding (vignette 1) concerned the fragmenta­
tion of knowledge within the ecology of the workplace 

system. If it is more generally true that strategies are prag­
matically oriented, perhaps we should design enviromnents 
which explicitly and visibly demonstrate the power of 
(mathematical) invariants This power is singularly lacking 
as an explicit focus of most mathematics curricula. And, as 
we have seen, the role and function of invariants is hardly a 
natural priority in the world of work This observation adds 
something to the 'real world' movement that pervades - at 
least at a rhetorical level - the stated aims and methodolo­
gies of various curricula. It focuses attention on the 
construction of models of reality (rather than reality itself), 
an activity in which the identification of what does and what 
does not vary, as well as how, is a crucial component As I 
will clarify below, this is an initial point of contact with the 
particularly powerful role that digital technologies can play 

The second finding (vignette 2) was that knowledge is 
pervasively structured by artifacts. Artifacts-in-activity - or 
more properly, the knowledge congealed within them - do 
much of the work involved in understanding and predicting 
the behaviom of the workplace, as part of a distributed sys­
tem of knowledge construction within it Yet learning 
enviromnents ar·e typically spartan in their use of artifacts. I 
conjectme that lots of manipulable, combinable and useful 
things are a key part of realising the design challenges we 
face Here, too, we will see the special contribution that 
digital technologies can make: the addition of a digital 
dimension to learning-oriented artifacts can be exploited to 
increase the range of expressive power and creative possi­
bilities afforded by the manipulation of artifacts and, 
crucially, the potential to isolate and reflect upon the mech­
anisms and models that endow them with functionality 

Two further findings (vignettes 3 and 5) concerned the 
role of situated abstractions We saw that situated abstrac­
tions are mutually constituted by mathematical knowledge 
and situational noise, and that situated abstractions extend to 
new situations to the extent that the contextual 'noise' of 
their genesis can be carried alongside fOrmal, mathematical 
knowledge. Two possible implications arise. First, that we 
should include noise as a carefully-designed element of 
learning environments, not as contextual mess (a parti­
cularly irritating practice in the U K is to wrap any 
mathematical idea in contextual clutter and label it 'situ­
ated'), but as cultulally-shared situations that are meaningful 
for its participants Second, we need to design systems that 
affotd the construction of new situations from old ones, in 
ways that allow the knowledge-constitutive elements of 
noise to remain invariant. I his approach would, I think, 
represent rather a radical shift in much cmrent pedagogical 
practice: it suggests that the standard modelling strategy of 
removing noise in order to expose underlying structures 
ntight fruitfully be rethought in favour of a view of contex­
tual noise as an element of what makes knowledge 
learnable, functional and, fOr want of a better word, trans­
ferable 

A fmallesson (vignette 4) from the mathematics-in-work 
studies involved the transformation of mathematical know­
ledge as it crosses boundaries of an individual's experience, 
or its cultural embedding in different types of work situa­
tions This is perhaps the most difficult finding from which 
to draw a canonical implication for design, but I will choose 
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just one I conjecture that the shifting character of mathe­
matical meanings within different representational infra­
stmctrnes is endemic to the workplace and, more generally, 
beyond it If that is the case, we would do well to consider 
designing systems that afford a range of representational 
systems fm expressing mathematical relationships, rather 
than focusing simply on one, standard infrastructure that 
has evolved over time for purposes other than pedagogical 
utility 

I have summarised the findings and their implications 
schematically in Figure 4 This summary should be taken 
as merely indicative, as any map from the workplace find­
ings onto a set of design principles can hardly claim 
uniqueness, perhaps achieving at best an outline research 
agenda rather than a list of defmitive implications 

If. then we should design to 

I knowledge is fragmented demonstrate the power 
and strategies pragmatic, of invruiants 

2a knowledge is pervasively supply lots of Really 
structured by artifacts and Useful Ihings 
their underlying models, 

2b people need to understand make things that people 
the models, can see inside 

3 situated abstractions are maximise situational 
mutually constituted by noise in culturally~ 
mathematical knowledge relevant ways 
and situational noise, 

4 mathematical knowledge respect the mathematical 
is transformed when it epistemologies of new 
structures new activities, representational forms 

5 situated abstractions depend affOrd construction of new 
on noise for 'transfer', situations from old ones. 

Figur~ 4 Some schematic implications of the mathematics 
in wo1 kfindings for the design of learnable envi­
ronments 

In drawing some tentative implications from the maths-in­
wmk studies, I have mentioned the computational presence 
several times. It is now time to concentrate explicitly on the 
place of digital technologies. In om book Windows on Math­
ematical Meanings. Learning, Cultures and Computers 
(Noss and Hayles, 1996b), Celia Hayles and I argue that 
constructing mnnable models in the form of computer 
programs affords a compelling example of a learnable math­
ematics, opening unique oppottunities for students to 
interact with a formal system. In modifying or constructing 
a model of a system, a student must articulate rigorously its 
salient relationships, describing mathematical stmctrnes in a 
language that can be communicated, extended and become 
the subject of reflection 

There are many advocates of a similar perspective (see 
Hayles and Noss, in press a, for a review) In a recent study, 
for example, Sherin (2001) proposes that programming-
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based representations might be easier for students to under­
stand physics with than equation-based representations and 
that programming-based representations might privilege a 
somewhat different 'intuitive vocabulary', i.e. might tap into 
different things that people 'just know' I would add a third 
point: that programming can afford access to a rich and 
extensible set of situated abstractions of physical relation­
ships that I think cmrespond to what he calls a physics of 
processes and causation (as opposed to algebra-physics 
which he characterises as a physics of balance and equili­
brium) 

It is not important whether we accept Sherin's strong con­
jecture or not: in Wtndows, we refer to LogoMathematics or 
Programming Mathematics to emphasise that it is a different 
kind of mathematics that is at issue (this is an instance of 
the fomth design challenge) What is important is that we 
recognise that the switch from one representational fmm to 
another canies with it the possibility of a simultaneous 
switch in both epistemology and learnability 

I would like to underline a fmther element of the consi­
deration of desigu principles for learning environments: the 
impottance of mathematical models, a proximally social issue 
that tacitly underpins much of what has gone before I have 
not dealt with this problem in any depth, except in noting (in 
vignette 2) that in breakdown situations, individuals at work 
are explicitly required to interpret and understand elements 
of the models that underpin the artifacts and wmk systems 
they otherwise take for granted 

I believe the knowledge economy has massively broad­
ened the number of people who need to understand the 
system they are using: elsewhere (Noss, 1998, 2002), I elab­
mate a case that competence in constructing, interpreting 
and critiquing models has become a core part of social and 
professional life in the twenty-first century. As profit mar­
gins ar·e squeezed, and globalisation intensifies, the fall-out 
of the knowledge economy applies to greater slices of the 
(first-wmld) wmkforce- not to everyone, but to substantial 
and increasing sections of it. 

Not many individuals need constantly to access the pre­
cise details of the models that underpin their social and 
professional existence, but I am convinced there are more 
than is evident at first sight. Models are genuinely pervasive; 
more and more people need to know what a model is, even if 
they cannot build one; to understand what a variable is, even 
if they cannot write the relevant equation that defines it; to 
interpret the output (and inputs) of a model, even if they can­
not grasp the model as a unified whole. 

Vast sections of the wmkforce operate with models every 
day - in the fmm of spreadsheets - even if most of their 
wmkings are putposefully obscured in 'macros' or in 
opaquely encoded recipes governing their use 

Sharing, critiquing and representing models is massively 
under-represented in mathematics curricula, still wedded to 
the epistemological and pedagogical requisites of the nine­
teenth centrny rather than transforming both in the face of 
the demands and computational possibilities of the twenty­
first Elsewhere (Noss, 2002), I have labelled the needs of 
the knowledge economy as requiring a meta-epistemological 
stance: 



knowing that things work in pwgmmmed ways 
mther than (necessarily) how; 

knowing that there are assumptions instantiated in 
the choice of variables and that there are relation­
ships between them; 

knowing about connections between variables 
mther than calculational knowledge about their 
detailed interrelationships; 

knowing about interpreting and critiquing models, 
together with the different representational forms in 
which they may be expressed 

Ihis stance is also about the ways in which this kind of 
knowledge is communicated to others who interact with 
other parts of the sarue system or other, linked systems (see 
also Kaput, Hoyles and Noss, 2002) 

In short, I contend that manipulating, modifying, con­
structing and sharing computationally instantiated models of 
mathematical systems affords the best chance we have for 
designing a more learnable mathematics and of realising 
the five challenges outlined in the previous section .. 

My colleagues and I have recently completed a study 
aimed at instantiating this approach in the Playground 
Project [5] Playground has involved a group of resear·chers 
based in four European countries who have developed a 
system with which young children, aged less than eight 
years old, can play, share, construct and rebuild computer 
garues Our goal has been to put children in the role of garue 
designers and game programmers, rather than merely con­
sumers of garues progranuned by adults, and to engage them 
in exploring and understanding the formal rule systems that 
underpin garue play and garue design. Our broader, hitherto 
untested, belief is that the children's deep engagement with 
a formal system of this kind will serve as a powerful generic 
knowledge substmte on which future mathematical learn­
ing might be based 

I will do no more than sketch an outline of the design of 
our Playground. [6] The learner is confronted with a world 
in which things happen and, more importantly, can be made 
to happen It is full of objects - balls, spaceships, charac­
ters, balloons and many, many more Most of these have 
properties, or behaviours - they bounce, fly, walk, talk, and 
so on They interact: when the spaceship is hit by a balloon, 
it may explode; when a ball hits an edge, it can bounce and 
makes a bang Finding out how an object 'works' is straight­
forward: one simply flips it over and inspects the prograru, 
aruending it to one's taste. 

Programs are not lines of text or even icons; programs 
ar·e animated I"Obots, who have been trained by being given 
an example to remember The act of prograruming consists 
of giving a robot a set of objects and a sequence of actions to 
perform on it: she remembers both (in her thought bubble) 
and applies the sequence to any set of objects that matches 
those with which she was trained. Abstraction (how to gen­
eralise fwm a given instance) is achieved not by introducing 
variables, but by erasing specificity 

There is much more to the design of Playground than the 
above paragraph can possibly convey (see http://www ioe 

ac .ukfplayground for a comprehensive overview; see also, 
Hoyles and Noss, in press b) I will resist elaborating the 
design of the project and its findings here; equally, I will 
leave as an exercise to the interested reader the various ways 
in which the design of the project 'conforms' to the design 
principles I outlined above. I he latter enterprise, while ele­
gant, would presuppose a much more detailed elaboration of 
the environment and the learning outcomes associated with 
it Instead, I will focus on a single issue that, among the 
many raised by the Playground study (as well as computa­
tional environments in general), retmns us to the issue of 
mathematical epistemology that has formed au underlying 
theme for this article 

Consider the case of a child designing a game fragment 
in which a ball is to be made to move across the screen as the 
mouse is moved (the case sketched here is based on a real 
episode with an eight-year-old boy, reported in Noss, 2002) 
How should that movement be instantiated? One way is to 
borrow the behaviour of some other, pre-existing object 
that already has a similar behaviour: perhaps there is a 
nearby spaceship whose behaviour can be copied and pasted 
(in Playground, these 'system' actions are performed by 
animated characters, not by key presses) Pasting the space­
ship's behaviour onto the ball has the desired result or at 
least near enough for a first attempt But it is not quite right; 
some fine tuning is necessary and this, in turn, provokes 
some engagement with the program that makes the space­
ship (and now the ball) work It turus out (let us say) that 
the two-dimensional motion of the ball is instantiated as the 
vectm sum of horizontal and vertical components Of 
course, it does not look that way to the child: it might, for 
example, be that there ar·e two robots (one called 'move left 
and right' and the other called 'move up and down') 

Think for a moment of the knowledge congealed in the 
innocent pluase 'vectm sum' Concealed in this pluase is a 
taken-for-granted representational infrastructrne that includes 
the definition of a vector, the algebraic system for combin­
ing two or more vectors and a range of properties ( e g .. scalar 
and vector pwduct) that give meaning to the very idea of 
what a vector is and why it is a conceptually powerful gen­
eralisation of a real number This structure is relatively 
complex and is postponed with good reason until the latter 
stages of compulsory education, if it is taught there at all Yet 
the complexity is in the infrastructure, not the idea. 

The point is that what is and what is not intuitive is hugely 
contingent on the representational infrastructme with which 
the intuition is expressed. In the Playground, the addition 
of vectors is instantiated not as an algebraic relation but as 
a natural property of the representational system The 
(object-oriented) structrnes of the system translate, more or 
less directly, into what kinds of things can be taken for 
granted as being 'just so', what meanings can be derived 
from them, and most importantly, the ways in which the 
objects and their progranuned behaviours can be made func­
tional within a given situation. In shmt, the representational 
infrastructure has transformed not ouly the learuability of 
the mathematical knowledge, but the mathematical episte­
mology at work in the activity system. 
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Concluding remarks 
This last point brings me to the intention I flagged at the out­
set, to conclude with the notion of epistemology at rather than 
in work What is the connection between the two? A key link 
is that the analysis of mathematics in work concerns the trans­
formation of knowledge as it is recontextualized across 
settings. We have seen how a person's mathematical knowl­
edge is not invariant across time and space; it is transformed 
into different guises, different epistemologies, more or less 
visible in the form of mathematics, as the map of an individ­
ual's participation in new activity systems is continually 
redrawn. This transfotmation seems much more powerful 
than the traditional notions of 'application' or 'use' that is 
often employed as a metaphor to describe this process I have 
argued that recognising these transformations and desiguing 
learning enviromnents that exploit them is a priority for the 
construction of a more learnable mathematical epistemology. 

More generally, I have elaborated a further point of con­
nection between cognitive and cultural perspectives. In 
imagining how mathematical stiuctures can be externalised 
and manipulated within an appropriately expressive repre­
sentional structure, I have indicated how abstractions 
constructed within concrete situations may compensate for 
their lack ofuniversality by their gain in expressiveness 
When general relationships can be expressed, they can be 
explored and become familiar. In the process, the links with 
knowledge of lived-in cultures can be maintained, rather than 
severed in the quest for ultimate pinnacles of abstraction 

The objects that populate Playground are every bit as con­
crete and real to a Ieamer as the load path on the components 
of a bridge are to an engineer. like their professional coun­
terparts, children are engaged in an activity that resear·chers 
in the field of mathematical learning may recognise as 
having a mathematical component, but which are to the 
child merely part of the ecological system - the totality of 
relationships between themselves and the environment and 
the ways in which these are expressed and communicated 

That the Playground and mathematical epistemologies run 
side-by-side should not be a matter of surprise: there is, after 
all, no single way in which humans can conceptualise their 
enviromnent (mathematically or otherwise), even though 
some ar·e socially and historically privileged within a given 
culture. Official, symbolic mathematics is privileged in just 
this way and there are good reasons for this. But the com­
pactness and elegance of mathematical expression does not 
necessarily make it equally functional for learning and, if 
learning is our prior goal, we would do well to think about 
new epistemological frameworks in which to embed the 
mathematics we wish om students to understand. New epis­
temologies mean new intnitions, new things to be built with 
them and new means for combining and reconstructing 
them. They involve new sets of situated abstractions that 
are both functional and powerful I think this is the major 
challenge for the desigu of didactical enviromnents, to create 
new systems which tnight, I think, bejustifiably described as 
involving new mathematical epistemologies at work. 
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Notes 
[1] This paper is an expanded and revised version of a plenary address to the 
Twenty-sixth International Conference on the Psychology of Mathematics 
Education, University of East Anglia, June 2002 
[2] In fact there is a division of labour in engineering into 'analysts and 
'designers' The former - who represent a few percent of the profession -
do indeed use mathematics in an explicit and readily recognisable way 
[3] Michele Artigue (in press) has made a related point deriving from the 
work of Yves Chevallard 
[4] diSessa (1980) suggests that a view of force as momentum flow may 
more easily engage and refine students' existing intuitions and therefore pre­
sent a more learnable physics than that represented by the familiar F = ma 
[5] The Playground project invovled a consortium across four countries, 
directed by myself and Celia Hayles. The London team also comprised (at 
various times) Ross Adamson, :Miki Grahame, Sarah Lowe and Dave Pratt 
Ken Kahn, the author of ToonTalk, was a consultant to the project 
[6] Actually, there are two 'playgrounds'; the second, Pathways, will not be 
referred to here See, for example, Goldstein, Noss, Kalas and Pratt (2001) 
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