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Abstract

Childhood socioeconomic status (cSES) is a powerful predictor of adult health, but its opera-

tionalization and measurement varies across studies. Using Health and Retirement Study

data (HRS, which is nationally representative of community-residing United States adults

aged 50+ years), we specified theoretically-motivated cSES measures, evaluated their reli-

ability and validity, and compared their performance to other cSES indices. HRS respondent

data (N = 31,169, interviewed 1992–2010) were used to construct a cSES index reflecting

childhood social capital (cSC), childhood financial capital (cFC), and childhood human capi-

tal (cHC), using retrospective reports from when the respondent was <16 years (at least 34

years prior). We assessed internal consistency reliability (Cronbach’s alpha) for the scales

(cSC and cFC), and construct validity, and predictive validity for all measures. Validity was

assessed with hypothesized correlates of cSES (educational attainment, measured adult

height, self-reported childhood health, childhood learning problems, childhood drug and

alcohol problems). We then compared the performance of our validated measures with

other indices used in HRS in predicting self-rated health and number of depressive symp-

toms, measured in 2010. Internal consistency reliability was acceptable (cSC = 0.63, cFC =

0.61). Most measures were associated with hypothesized correlates (for example, the asso-

ciation between educational attainment and cSC was 0.01, p < 0.0001), with the exception

that measured height was not associated with cFC (p = 0.19) and childhood drug and alco-

hol problems (p = 0.41), and childhood learning problems (p = 0.12) were not associated

with cHC. Our measures explained slightly more variability in self-rated health (adjusted

R2 = 0.07 vs. <0.06) and number of depressive symptoms (adjusted R2 > 0.05 vs. < 0.04)

than alternative indices. Our cSES measures use latent variable models to handle item-

missingness, thereby increasing the sample size available for analysis compared to
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complete case approaches (N = 15,345 vs. 8,248). Adopting this type of theoretically moti-

vated operationalization of cSES may strengthen the quality of research on the effects of

cSES on health outcomes.

1 Introduction

Childhood socioeconomic status (cSES) is a powerful predictor of later life health outcomes

[1], via pathways which appear to be distinct from the effects of adult SES [2–5]. Partially

because SES is a complex social phenomenon and it may not be possible to capture it with a

single measure, the operationalization of cSES has varied substantially across studies, and even

between analyses within the same data set [6–8]. For example, in analyses using data from the

Health and Retirement Study, indicators for cSES have been created using both parents’ educa-

tion [9], residential mobility for financial reasons during childhood [10], and combinations of

parental education, occupation, and retrospectively reported SES [3,4,11]. Theories of social

stratification offer alternative frameworks for conceptualizing cSES, such as human capital the-

ory, social production of disease theory, or the theory of fundamental causes [12–15], however,

few researchers investigating cSES specify an explicit conceptual framework to motivate their

interest in social stratification or their operationalization of cSES.

Lack of an explicit conceptual framework for cSES has implications for inference. First,

when cSES is used to control for confounding of other risk factors, proxy indicators for cSES

may not capture all the relevant dimensions, resulting in residual confounding by cSES

[14,16]; this can occur when, for example, cSES is operationalized by father’s occupation

alone, and relevant dimensions such as mother’s education are excluded, resulting in residual

confounding by mother’s education. This residual measurement error can be particularly

problematic when investigating the role of cSES in racial or geographic disparities, potentially

leading to an underestimation of the contribution of cSES in such disparities [15,17]. Second,

a well-defined treatment is one of the assumptions of causal inference [18]; without a well-

defined exposure variable in observational studies, policy interventions to ameliorate the

impacts of childhood socioeconomic disadvantage on later health outcomes are unclear [19].

For example, should more resources be allocated towards helping parents pursue higher edu-

cation (e.g. the Single Mothers Academic Resource Team, SMART, in Oklahoma: http://www.

smartok.org/, accessed June 28, 2017), or should there be more focus on ameliorating financial

disadvantage (e.g. through transfer payments)? In this way, when operationalizations of cSES

that combine multiple constructs are used in research, results do not provide guidance on

which constructs should be the target of interventions to address socio-economic disparities.

In this paper, we apply an explicit conceptual framework to the measurement of cSES using

variables available in the Health and Retirement Study (HRS, which is nationally representa-

tive of community-residing United States adults aged 50+ years), and use psychometric tech-

niques to validate these measures, resulting in validated measures of childhood social capital,

financial capital, and human capital; these measures can be used independently or combined

into a single cSES index (Fig 1). We go on to compare the performance of the validated mea-

sures to other cSES operationalizations previously used in HRS research with respect to quality

of predictions (adjusted R2 for predicting adult self-rated health and number of depressive

symptoms [20]) and achievable sample size. Validation of cSES measures in HRS is important

because the cohort has been widely used to test empirical questions, HRS has rich data on

social conditions throughout the lifecourse, and HRS has numerous international sister-
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studies, offering the potential for international data harmonization. HRS, like many large,

long-running, cohorts, has several conceptually related but not perfectly consistent measures

of cSES, and includes more comprehensive, detailed assessments on selected subsamples or

experimental modules embedded within the larger cohort. In theory, these subsample mea-

sures could substantially improve interpretation of the cruder measures available on the full

sample. However, formal latent variable models to take advantage of the subsample cSES data

have rarely been employed.

1.1 Theoretical perspectives on socio-economic status

We broadly follow the conceptual framework for cSES proposed by Entwisle and Astone [21],

arguing that three types of capital are important for childhood development: financial capital,

human capital, and social capital. A similar theoretical framework was proposed by Oakes and

Rossi [15]. The Entwisle/Oakes frameworks draw on the conceptualization of social stratifica-

tion developed by the sociologist James Coleman, who suggested that power differentials arise

from inequalities between individuals with regard to their interests and control over scarce

resources [22]. Such resources may take the form of (1) material and monetary goods (finan-

cial capital), (2) skills and capabilities (human capital), and (3) the strength and quality of

social relationships (social capital). However, there are other ways to define these types of capi-

tal, see for example, Osterbacka et al., 2010, who posit time spent with children is a form of

human capital [23], whereas the Entwisle/Oakes framework considers time spent with children

an indicator of social capital. We additionally recognize that these constructs may be conceptu-

ally better described as measures of socioeconomic position since they incorporate both status

and resource based indicators [12], but we adopt the terminology socioeconomic status

because it appears to remain predominant in the literature in this area.

In this analysis, we define financial capital as income or wealth, and hence command over

material resources such as shelter, food, clothing, etc. Human capital refers to the stock of

knowledge and skills and, with respect to childhood development, is often operationalized as

parental educational attainment. Social capital is considered the presence and quality of social

connections, either within a family, or from a family to the outside world [15,21]; social capital

as related to children is defined as quality and number of relationships with household adults.

Fig 1. Options for modelling the relationship between SES and Health. There are conceptual and

disciplinary differences in the functional form assumed to describe the relationship between SES and health.

Some researchers posit that social capital, human capital, and financial capital have common effects (i.e. are

mutually exchangeable), meaning an SES index is appropriate (Fig 1a). Other researchers posit that each

form of capital has a distinct effect on health, and therefore each variable should be included in regression

models separately (Fig 1b). Depending on theoretical orientation and the research question, one specification

may be more appropriate than another. We validate measures of childhood social capital, childhood financial

capital, and childhood human capital, which can be used independently or combined into a single cSES index;

we note, however, that combining the measures into an index is likely a violation of the consistency

assumption for causal inference [18,19].

https://doi.org/10.1371/journal.pone.0185898.g001
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Financial, human, and social capital have each been linked with various health outcomes,

including mortality [24,25] and self-rated health [26].

Starting with this framework, we make adjustments based on data availability and the spe-

cific concerns of health researchers. First, we treat human capital, financial capital, and social

capital as conceptually distinct constructs, requiring separate measurement models. We con-

sider financial capital and social capital scales (requiring a reflective measurement model

[27]), which are conceptualized as a pool of measurements correlated because they share a

common cause (the latent variable) [28]. We consider human capital an index because, while

mother’s educational attainment and father’s educational attainment may not share a common

cause, they may have a common effect, requiring a formative measurement model [27,28].

Although we create measures of human, financial, and social capital separately, these con-

structs will often be correlated.

Second, the Entwisle/Oakes framework suggests human, financial, and social capital have

common effects, and can therefore be combined into a single childhood SES index (Fig 1a).

Our approach also allows for the possibility that each form of capital has a distinct relationship

with specific dimensions of health [29] (Fig 1b). In this analysis, we generate separate measures

for each form of capital and provide guidance for creating a single cSES index, consistent with

the approach adopted by Entwisle/Oakes.

1.2 Missing data and retrospective measurement of cSES

A primary challenge with retrospective assessments of cSES is missing data: many respondents

do not know or cannot recall information about their childhood. Missing data may be particu-

larly prevalent among older adults, who are vulnerable to cognitive decline [30]. Further, some

questions commonly used to assess cSES are not appropriate for all respondents, or the miss-

ingness may be informative; for example, missing data on father’s education may indicate

childhood family structure did not include a co-resident father [11]. A complete case approach

would exclude these respondents, who may be the most socially disadvantaged. Even more

sophisticated approaches to missing data, such as multiple imputation, would fail to appropri-

ately incorporate this type of information if the missingness was informative.

We are able to address some missing data issues in this analysis by estimating dimensions

of cSES using latent variable models whenever possible. Each latent variable is considered the

cause of item responses, meaning all items in a scale have the same underlying cause of co-var-

iation [28]. Scale scores can be imputed for individuals who are missing data on some, but not

all, of the items that make up the scale. Through full information confirmatory factor analysis,

we are able to impute scale scores for respondents who answered at least one of the items in

the scale. This approach also allows for efficient and more complete use of data subsamples

(several items used in the cSC and cFC scales came from experimental modules, which were

sent to a random subsample of respondents). Second, we use iterative maximum likelihood

estimation to impute parental education values for individuals who are missing this informa-

tion. This option is often substantially more appealing than selectively deleting individuals

with missing data on key variables, using a missing indicator, or mean imputation of missing

information [31,32].

In this paper, we advance the literature in several ways. We apply a comprehensive theoreti-

cal framework for measuring childhood SES, as proposed by Entwisle/Oakes, in a data set with

rich characterization of childhood social conditions and health information. We use robust

methods to impute latent variable values in the presence of missing data. We employ psycho-

metric tools to assess the internal consistency reliability, construct validity, and predictive

validity of our scales. Finally, we compare these validated measures to comprehensive
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measures created by other HRS researchers [3,11,33] on quality of predictions (adjusted R2 in

predicting adult self-rated health and number of depressive symptoms) and achieved sample

size to demonstrate the comparative effectiveness of these measures in contrast to other com-

prehensive operationalizations.

2 Methods

Methods for this paper are presented in two sections; the first section (2.1) details how cSES

scales were developed and validated, the second section (2.2) describes analyses comparing

these validated measures to previous cSES indices created and used in HRS.

2.1 Development and validation of measures of childhood SES

2.1.1 Sample. Data come from HRS, which began in 1992 as a nationally representative

survey of non-institutionalized individuals born 1931–1941 [34]; in 1993, data were collected

on a nationally representative sample of people aged 70 and older in the study of Assets and

Health Dynamics of the Oldest Old (AHEAD), which included people born 1890–1923 [35].

In 1998, the two studies merged, and cohorts born 1924–1930 and 1942–1947 were added to

form a nationally representative sample of individuals 50 years of age and older. To maintain a

“steady state” population, new enrollments of people aged 50–56 are added every six years

[36]. After enrollment, study members are re-interviewed approximately every 2 years.

Self- and proxy- reported data on all participants who were interviewed on or before 2008

(N = 31,169) were used. We used many variables in this analysis that were first asked in experi-

mental modules, and then incorporated into the main survey, meaning that the same question

could have been asked to different respondents at different time points (see S1 Table for

details). The number of observations differs across variables due to item non-response and the

structure of the HRS questionnaire (i.e. some questions in experimental modules were asked

to a subset of respondents, resulting in substantial missing data) (Figs 2, 3 and 4). All child-

hood measures were retrospectively reported and refer to the period when the respondent was

<16 years; given that the youngest HRS participants are 50 years old, the childhood questions

refer to a time period at least 34 years prior to when they were assessed.

2.1.2 Childhood social capital scale. We hypothesized that the childhood social capital

latent variable had two factors: a) maternal investment (assessed with three items) and b) fam-

ily structure before age 16 (four items). The “maternal investment” factor included: 1) “How

much effort did your mother put into watching over you and making sure you had a good

upbringing?” (N = 6,888, 22.1%) 2) “How much did your mother teach you about life?”

(N = 6,891, 22.1%) and 3) “How much time and attention did your mother give you when you

needed it?” (N = 6,885, 20.1%); response options for these questions were: a lot, some, a little,

and not at all. The “family structure” factor included 1) number of parent figures (operationali-

zation described S2 Fig, N = 735, 2.4%), and if the respondent lived with 2) their mother

(N = 20,722, 66.5%), 3) their father (27,377, 87.8%), 4) their grandparents (yes/ no) before age

16 (N = 26,016, 83.5%); the operationalization of living with mother and father are detailed in

section 2.1.3, below (Fig 2; S1 and S2 Figs).

2.1.3 Childhood financial capital scale. HRS assessed the following variables related to

financial capital: 1) family moved for financial reasons before age 16 (yes/no, N = 26,550,

85.2%), 2) received financial help from relatives before age 16 (yes/no, N = 26,280, 84.3%), 3)

family declared bankruptcy (yes/no, N = 725, 2.3%), 4) family lost business (yes/no, N = 720,

2.3%), 5) self-rated childhood SES, 3 categories (included in core questionnaire, response

options: well off, about average, poor or varied; 276 (1.03%) who reported “it varied” recoded

to “average”, N = 26,670, 85.6%), 6) self-rated childhood SES, 5 categories (included in
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experimental module, response options: very well off, above average, average, below average,

very poor, N = 733, 2.4%), 4) the father’s occupation (six ordinal categories of a) executives &

managers, b) professional specialty, c) sales & admin, d) protection services & armed forces,

e) cleaning, building, food prep, and personal services, f) production, construction, and

Fig 2. Factor structure for the social capital scale. We found that, as hypothesized, a two-factor solution

best fit our data for the childhood social capital scale. Although we had limited data for some questions (i.e.

number of parent figures was only available for 2.4% of the sample), through full-information confirmatory

factor analysis, we were able to impute scale scores for 89.4% of our sample.

https://doi.org/10.1371/journal.pone.0185898.g002

Fig 3. Factor structure for the financial capital scale. We found that a two-factor solution best fit our data

for the childhood financial capital scale (we had hypothesized a one-factor solution, see S1 Fig for details).

Although we had limited data for some questions (i.e. data on if the respondent’s family declared bankruptcy

before at 16 was only available for 2.3% of the sample), through full-information confirmatory factor analysis,

we were able to impute scale scores for 89.5% of our sample.

https://doi.org/10.1371/journal.pone.0185898.g003
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operation occupations; details: S2 Table, N = 20,668, 66.3%), 5) if the respondent’s father was

unemployed for several months (yes, no, father never worked/always disabled, never lived

with father/father was not alive; we recoded to ordinal categories of never worked/always dis-

abled, lost job for several months, and not unemployed for several months, N = 24,990,

80.2%), and 6) if the respondent’s mother worked outside the house (all of the time, some of

the time, not at all, never lived with mother/mother was not alive; we recoded to ordinal cate-

gories of mother worked all of the time, some of the time, not at all, N = 20,188, 64.8%). We

considered the never lived with father (N = 2,459, 8.9%) and never lived with mother

(N = 534, 2.6%) response options as markers of social capital rather than financial capital;

therefore, this response option was coded as missing for the financial capital factor analysis (in

order to impute a scale score), and included in the exploratory analysis for the social capital

scale, detailed above (S1 Fig).

2.1.4 Childhood human capital index. Human capital was operationalized as mother’s

and father’s years of completed education (Fig 4). We conceptualized human capital as an

index (not a scale) because mother’s and father’s education likely do not share a common

cause of co-variation, although they are often correlated. Factor analysis is not appropriate for

an index; in order to create a measure of human capital, we imputed values for individuals

with missing or incomplete information (described below), z-scored both education variables,

summed them to create a single human capital index, and then z-scored the index.

Due to inconsistent response formats across HRS survey waves, parent’s education was

recorded as a continuous variable for most respondents (N = 19,847 mothers and 18,595

fathers), and dichotomized at� 8 years for 7,013 mothers and 7,210 fathers; additionally,

parental education data were missing for 4,095 mothers and 5,360 fathers. To create more

complete measures of childhood human capital, we imputed continuous education values for

mothers and fathers of respondents who had dichotomized or missing data using the iterative

expectation maximization procedure (see S3 Table for details).

2.1.5 Validation outcomes. To ascertain if the scales were measuring the intended con-

structs, we assessed the validity (detailed in section 2.1.7) through correlation with: measured

adult height (data from 2008 and 2010), self-reported educational attainment (0–17 years),

and retrospectively reported self-reported childhood health (excellent, very good, good, fair,

poor), childhood learning problems (question text: “In grade school or high school, did you

have a problem in learning the usual lessons, such that you regularly attended section classes,

Fig 4. Structure of human capital index. For the childhood human capital index, data on parental education

were recorded from 0–17 years for 64% of mothers and 60% of fathers, data were recorded dichotomized at 8

years for 23% of mothers and 23% of fathers, and data were missing for 13% of mothers and 17% of fathers.

Through using expectation maximization (more details in S3 Table), we were able to impute continuous

education information for 100% of the sample. We used expectation maximization rather than full information

confirmatory factor analysis (which was used for the social and financial capital scales) because we

conceptualized human capital as an index.

https://doi.org/10.1371/journal.pone.0185898.g004
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received special training sessions, or had to attend a different school for more than six

months?”; response options: yes/no), and childhood drug or alcohol problems (question text:

“Before you were 16 years old, did you have drug or alcohol problems?”; response options: yes/

no).

2.1.6 Factor analysis. We performed exploratory factor analysis to determine factor struc-

ture, and full-information confirmatory factor analysis to generate scale scores in the presence

of missing data for both the cSC and cFC scales (factor analysis is not appropriate for the cHC

measure because it is an index). We used geomin rotation and weighted least squares estima-

tion because our data were categorical or ordered [37,38].

The number of factors was determined through eigenvalues and two measures of model

fit: the root mean square error of approximation (RMSEA), which reflects how well the

model fits the population’s covariance matrix (values < 0.07 reflect better fit [39]), and the

comparative fit index (CFI), which compares the sample covariate matrix with a null model

(values� 0.95 reflect better fit [40]). Variables with factor loadings above 0.3 were retained

in the scales. After the number of factors was determined, we used full-information weighted

least squares confirmatory factor analysis to generate scores for the cSC and cFC scales for

individuals with missing data on some scale items; individuals missing data on all scale items

were excluded.

2.1.7 Psychometric testing. Internal consistency reliability [28] was assessed for the cSC

and cFC scales with Cronbach’s alpha. Construct validity, or the extent to which the measure

correlates with theoretically relevant constructs [28], was assessed for cSC, cFC, and cHC

through correlations with variables that reflect the respondent’s childhood experience, before

age 16. We hypothesized that the cSC, cFC, and cHC scales would be negatively correlated

with childhood learning problems (i.e. more capital correlated with fewer learning problems

[41]), childhood drug and alcohol problems, as a proxy for contact with police [42], and child-

hood health (i.e. more capital correlated with better health [43,44]).

Predictive validity, or the ability of a scale to predict a future event [28], was assessed

through correlation with variables that reflect health and social outcomes in adulthood. We

hypothesized that the cSC, cFC, and cHC scales would be positively correlated with the respon-

dent’s educational attainment (i.e. more capital would predict more education [45,46]), and

measured height in 2008 or 2010 [47,48]. An additional check of predictive validity is pre-

sented in the comparison analysis described in section 2.2 below, as both outcomes (self-rated

health and number of depressive symptoms) are strongly patterned by socio-economic status

[49]; we hypothesized that more capital would be predict better self-rated health in adulthood,

and fewer depressive symptoms in adulthood.

2.2 Comparison of validated measures to other comprehensive cSES

operationalizations

2.2.1 Sample. In addition to creating and validating measures of childhood social circum-

stances, we compared our measures to previously developed measures of cSES in HRS data

created by Luo [3], Glymour [11], and Hargrove [33] in two ways. First, we contrasted the pro-

portion of variance explained by the alternative cSES measures for two adult health outcomes

(self-rated health, and number of depressive symptoms, assessed with a modified Center for

Epidemiologic Studies Depression Scale [50]). For these comparisons, we used a complete case

analysis (N = 7,733) so identical sample sizes were available for each cSES analysis [20] (see Fig

5 for exclusions). In a second comparison analysis, we contrast the number of observations

retained in analysis using our measures (N = 15,345) to the Luo (N = 15,345), Glymour

(N = 15,345), and Hargrove (N = 8,248) comparison specifications of cSES (Fig 5).
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2.2.2 Creation of a cSES index from the validated measures. Details on how the mea-

sured created in this analysis were created are described in section 2.1, above. In a subset of the

analyses a cSES index was created by combining the cSC, cFC, and cHC scales. All the mea-

sures were z-scored and averaged; if an individual was missing data on one or more compo-

nent variables, the index was created by averaging the other variables. The final index was z-

scored again for interpretability.

2.2.3 Comparison cSES measures used in HRS data. Each of the three previously pub-

lished cSES measures created in HRS data included only human and financial capital as com-

ponents of cSES; none considered social capital part of cSES. Luo included four variables:

mother� 8 years of education, father� 8 years of education, whether the father had a white-

collar job, and whether respondent retrospectively described the family was financially “pretty

well off”, “about average”, or “poor” (“it varied” was coded as missing and the cSES index was

derived from the other variables (Ye Luo, personal communication)). Individuals with missing

data on parent’s education or father’s occupation were considered low cSES. These variables

were combined by standardizing, then averaging to create a continuous index [3].

Similarly, Glymour included mother’s and father’s years of education, and father’s occupa-

tion. These variables were combined into an index as follows: one point was given for known

mother’s and father’s education < 8 years, and father’s manual occupation; unknown informa-

tion did not necessarily indicate low cSES. The three items were averaged so the low childhood

SES index ranged from 0 (best) to 1 (worst) in the original analysis, however, to facilitate com-

parison across measures, we reverse coded the index so 0 represented the lowest cSES and 1

represented the highest [11].

The Hargrove study included the following dichotomous indicators: mother’s

education� 12 years, father’s education� 12 years (we believe Hargrove did not include the

Fig 5. Flowchart of individuals included in the achievable sample size and complete case analyses.

https://doi.org/10.1371/journal.pone.0185898.g005
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AHEAD cohort where parent’s education was dichotomized at 8), moving for financial rea-

sons, self-rated cSES of poor, and father’s white collar occupation [33]. The Luo and Glymour

measures of cSES each had a single variable and do not automatically exclude those with miss-

ing data (both researchers performed sensitivity analyses to ensure inclusion of individuals

with missing data did not substantially change results); the Hargrove measure used five vari-

ables and a complete case approach.

2.2.4 Outcomes. To compare the predictive ability of our measures with previously devel-

oped indexes of cSES in HRS, we examined two outcomes previously established to be strongly

patterned by lifecourse SES: depressive symptoms and self-rated health [49], both measured in

2010. Self-rated health had five response options (excellent, very good, good, fair, and poor).

Depressive symptoms over the previous week were assessed with a modified 8-item Center for

Epidemiologic Studies Depression (CESD) scale summing yes/no responses to 6 “negative”

items (feeling sad and depressed, everything is an effort, sleep is restless, feeling alone, and not

able to get going) and two reverse-coded “positive” items (felt happy and enjoyed life); this

scale is reliable among HRS participants (Cronbach’s alpha = 0.78) [51], and higher CESD

scores indicated more depressive symptoms. The modified scale ranges from 0 to 8 and corre-

lates with the original, 20-item scale [52].

2.2.5 Covariates. All regression analyses adjusted for: age (linear and quadratic terms),

gender, race/ethnicity (Non-Hispanic White (ref), Non-Hispanic Black, Hispanic, and Other

Race), and birthplace indicators (north east (ref), south, mid-Atlantic, east north central, west

north central, mountain, Pacific, or abroad).

2.2.6 Analysis. Linear regression was used to compare performance of our measures to

the other multi-component measures of cSES. In one analysis (complete case), we compared

the amount of variability explained, assessed with the adjusted R2, when the number of obser-

vations was constant across the models (N = 7,783); prior work argues R2 can be used as a

goodness of fit statistic and a way to assess model specification “when comparing two equa-

tions with different explanatory variables and identical dependent variables” [20]. In a second

analysis (achievable N), we compared the number of observations retained for analysis with

our measures to the Luo, Glymour, and Hargrove specifications.

Three specifications of our measures were evaluated. Model 1 included a cSES index com-

prised of our measures. Model 2 included the cSC, cFC, and cHC measures separately. Model

3 includes the components for all measures: maternal investment, family structure (factors for

cSC), average financial resources, financial instability (factors for cFC), and mother’s and

father’s education (components of cHC). All data cleaning and analyses were performed in

SAS, version 9.3, except the factor analyses, which used Mplus, version 7. The code for these

analyses is available on GitHub (https://github.com/anushavable/Validated-cSES-measures-

in-HRS), and the measures we developed are available for download from the HRS data portal

(https://hrs.isr.umich.edu/data-products/access-to-public-data).

3 Results

3.1 Validation of the childhood SES scales

3.1.1 Childhood social capital. The cSC scale included two factors, maternal investment

(3 items) and family structure (4 items), RMSEA = 0.009, CFI = 1.000 (Fig 2 and S4 Table),

which were summed to create the cSC scale (S3 Fig). The final cSC scale was estimated for

27,865 respondents (89.4%); the cSC scale demonstrated acceptable internal consistency reli-

ability (Cronbach’s alpha = 0.63), higher than the acceptable range of 0.5–0.6 for early research

[53] (Table 1 and S5 Table), and good validity (correlation with childhood learning problems β
= -0.11, p< 0.0001; childhood self-rated health β = -0.03, p< 0.0001, childhood drug and
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alcohol problems β = -0.16, p = 0.0086, educational attainment β = 0.01, p< 0.0001; and mea-

sured height β = 0.01, p< 0.0001; adult self-rated health β = -0.05, p< 0.0001, number of

depressive symptoms β = -0.12, p < 0.0001) (Tables 2 and 3, Model 2).

3.1.2 Childhood financial capital. The cFC scale included two factors, average financial

resources (4 items) and financial instability (4 items), RMSEA = 0.037, CFI = 0.954 (Fig 2 and

S4 Table), which were summed to create the cFC scale (S3 Fig). The cFC scale was estimated

for 27,890 respondents (89.5%), and demonstrated acceptable internal consistency reliability

(Cronbach’s α = 0.61) (Table 1 and S6 Table), and validity (correlation with childhood learn-

ing problems β = -0.21, p< 0.0001; childhood self-rated health β = -0.10, p< 0.0001; child-

hood drug and alcohol problems β = -0.34, p< 0.0001; educational attainment β = 0.04,

p< 0.0001; measured adult height β = 0.002, p = 0.19; adult self-rated health β = -0.06,

p< 0.0001; number of depressive symptoms β = -0.14, p< 0.0001) (Tables 2 and 3, Model 2).

3.1.3 Childhood human capital. The childhood human capital (cHC) measure was esti-

mated for 31,169 respondents (100%), and included variables on mother’s and father’s years of

Table 1. Internal consistency reliability of the childhood social capital, and financial capital scales.

Scale N Standardized Cronbach’s alpha

Childhood social capital 226 0.63

Maternal investment 6871 0.89

Family structure 595 0.52

Childhood financial capital 657 0.63

Average financial resources 664 0.56

Financial instability 718 0.74

Reliability is assessed among individuals who have data on all scale items; many of the questions included

in the social and financial capital scales were included in experimental modules, resulting in relatively small

Ns for the relatability calculation. It is not appropriate to calculate the reliability of an index, so cHC is not

included in this table.

https://doi.org/10.1371/journal.pone.0185898.t001

Table 2. Linear regression models evaluating relationships between childhood SES domains and theoretical correlates.

Childhood social capital Childhood financial capital Childhood human capital

Predictors N β p-value N β p-value N β p-value

Childhood financial capital 27,690 0.07 <.0001

Childhood human capital 27,865 0.01 0.0241 27,890 0.21 <.0001

Construct validity Childhood drug / alcohol problems 13,370 -0.16 0.009 13,353 -0.34 <.0001 13,370 0.13 0.235

Childhood learning problems 16,626 -0.11 <.0001 16,606 -0.21 <.0001 16,626 -0.05 0.292

Childhood self-rated health 26,663 -0.03 <.0001 26,682 -0.10 <.0001 26,714 -0.17 <.0001

Predictive validity Educational attainment 27,804 0.01 <.0001 27,829 0.04 <.0001 30,677 0.16 <.0001

Measured height 12,844 0.01 <.0001 12,837 0.002 0.19 12,844 0.04 <.0001

All betas are linear regression coefficients; the row variables predicted the column variables. Childhood social, financial, and human capital, educational

attainment, and measured height are coded so higher numbers reflect better properties; childhood drug / alcohol problems, learning problems, and self-

rated health is coded so lower numbers reflect better properties. Childhood drug / alcohol problems, learning problems, and self-rated health were used to

assess construct validity, while educational attainment and measured height were used to assess predictive validity.

Our finding that childhood financial capital is not associated with adult height is contrary to the literature on cSES and adult height. We conducted

supplemental analyses to understand these discrepant findings and concluded that the observed differences are likely due to differences in the way cSES is

operationalized across studies. Our results suggest that the relationship between cSES and adult height is primarily through parental education, however

similar analyses should be conducted in different samples to confirm or refute these findings.

https://doi.org/10.1371/journal.pone.0185898.t002
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education (Fig 4 and S3 Fig). The cHC demonstrated acceptable validity (correlation with

childhood learning problems = -0.02, p = 0.12, childhood self-rated health β = -0.16,

p<0.0001; childhood drug and alcohol problems β = 0.09, p = 0.41; educational attainment β =

0.15, p< 0.0001; measured adult height β = 0.04, p< 00001; adult self-rated health β = -0.15,

p< 0.0001; number of depressive symptoms β = -0.15, p< 0.0001) (Tables 2 and 3, Model 2).

3.2 Comparison of validated measures to previous cSES

operationalizations

3.2.1 Complete case analyses. There were 7,783 individuals in the complete case

analysis (Fig 5). The cSES index explained 7.0% of the variability in self-rated health (β = -0.18;

Table 3. Complete case comparison of validated measures with other comprehensive measures (N = 7,783) predicting self-rated health and num-

ber of depressive symptoms.

Self-rated health Number of depressive symptoms

Beta (95%CI) p Adj. R2 Beta (95%CI) p Adj. R2

Validated Measures

Model 1 cSES index -0.18 (-0.20,-0.15) <.0001 0.070 -0.25 (-0.29,-0.21) <.0001 0.049

Model 2 cSC -0.05 (-0.07,-0.03) <.0001 0.070 -0.12 (-0.16,-0.09) <.0001 0.050

cFC -0.06 (-0.09,-0.04) <.0001 -0.11 (-0.15,-0.07) <.0001

cHC -0.15 (-0.17,-0.12) <.0001 -0.15 (-0.20,-0.10) <.0001

Model 3 Maternal investment -0.15 (-0.23,-0.07) 0.0002 0.071 -0.32 (-0.46,-0.18) <.0001 0.050

Family structure 0.11 (-0.16,0.37) 0.430 0.07 (-0.40,0.54) 0.782

Average financial resources -0.14 (-0.43,0.14) 0.325 0.38 (-0.12,0.89) 0.137

Financial instability 0.06 (-0.10,0.21) 0.471 0.43 (0.15,0.70) 0.002

Mother’s education -0.10 (-0.13,-0.07) <.0001 -0.10 (-0.16,-0.04) 0.0004

Father’s education -0.06 (-0.09,-0.03) 0.0003 -0.07 (-0.13,-0.02) 0.018

Comparison Measures

Luo Index -0.14 (-0.16,-0.12) <.0001 0.060 -0.15 (-0.19,-0.10) <.0001 0.040

Glymour Index -0.45 (-0.52,-0.37) <.0001 0.060 -0.46 (-0.59,-0.32) <.0001 0.039

Hargrove measures Mother’s education� 12 -0.17 (-0.22,-0.11) <.0001 0.064 -0.15 (-0.25,-0.06) 0.002 0.041

Father’s education� 12 -0.09 (-0.14,-0.03) 0.002 -0.12 (-0.22,-0.02) 0.020

Self-rated poor SES 0.09 (0.03,0.14) 0.002 0.12 (0.02,0.22) 0.014

Moved for financial reasons 0.11 (0.05,0.17) 0.001 0.23 (0.11,0.34) <0.0001

Father occupation -0.10 (-0.17,-0.04) 0.002 0.02 (-0.10,0.13) 0.80

Self-related health and CESD score are coded so lower numbers reflect better health.

All of the validated measures, are coded so that higher number reflect more capital; financial instability, is coded so higher numbers reflect more financial

instability.

All models are adjusted for age (linear and quadratic terms), race / ethnicity, gender, and birthplace. The cSES index, cHC, cFC, cSC, Luo index, as well as,

mother’s years of education, and father’s years of education in Model 3 were all z-scored so a one-unit change represents a change of 1-standard deviation.

Exclusion of the socially vulnerable in the complete case analysis induced a (non-statistically significant, p = 0.14) spurious relationship between average

financial resources and number of depressive symptoms such that more financial resources predicts more depressive symptoms, which contradicts past

literature. In the achievable N analysis (Table 4) the socially vulnerable are included, pushing this relationship towards the null (p = 0.55).

The change in variability explained from 0.060 (Luo and Glymour indices) to 0.070 (the cSES index, Model 1) for self-rated health represents a 17.7%

increase in variability explained; such an increase in variance explained would concomitantly improve statistical power or reduce necessary sample size to

detect an association. To contextualize this change in variability, a one-percentage point increase in explained variability (i.e. 0.060 to 0.070) is more than

double the variability explained by age (linear and quadratic terms) and gender combined (R2 = 0.0046). Simulation results (with 10,000 repetitions) reveal

that, given two measures that explain 7% of the variability in the outcome, a difference in R2 as big a 0.01 occurs 2.6% of the time when N = 7,783, indicating

that this difference is statistically significant.

https://doi.org/10.1371/journal.pone.0185898.t003
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95%CI: -0.20, -0.15; p<0.0001), and 4.9% of the variability in number of depressive symptoms

(β = -0.25; 95%CI: -0.29, -0.21; p< 0.0001) (Table 3, Model 1). The individual cSES measures

predicted both self-rated health (7.0% of variability explained) and number of depressive

symptoms (5.0% of variability explained) (Table 3, Model 2). Inclusion of component mea-

sures did not change the proportion of variability explained (Table 3, Model 3).

The Luo, Glymour, and Hargrove measures of cSES significantly predicted self-rated health

and number of depressive symptoms, though the models explained less of the variability in the

outcome than the validated measures. The Luo cSES and Glymour indices explained 6.0% of

the variability in adult self-rated health, while the Hargrove measures explained 6.4%. For

number of depressive symptoms, the Luo index explained 4.0% of the variability, the Glymour

measure explained 3.9%, and the Hargrove measure explained 4.1% of the variability.

3.2.2 Achievable N analyses. Using all available cases increased the sample substantially:

the validated cSES index had a sample size of 15,345 for self-rated health and 14,181 for num-

ber of depressive symptoms. The Luo and Glymour indices both had sample sizes of 15,345 for

self-rated health and 14,181 for number of depressive symptoms; the Hargrove model had a

sample size of 8,248 for self-rated health and 7,785 for number of depressive symptoms (Fig 5

and Table 4). Although coefficients were generally similar when estimated in the smaller com-

plete case data set (Table 3), estimates were much more precise in the larger available-case

sample (Table 4). An exception was the relationship between average financial resources and

Table 4. Comparison of validated measures with other comprehensive measures on self-rated health and number of depressive symptoms, using

all available cases.

Self-rated health Number of depressive symptoms

N Beta (95%CI) p N Beta (95%CI) p

Validated Measures

Model 1 Childhood SES Index 15,345 -0.19 (-0.20,-0.17) <.0001 14,181 -0.32 (-0.35,-0.29) <.0001

Model 2 cSC 15,322 -0.06 (-0.07,-0.04) <.0001 14,166 -0.16 (-0.19,-0.13) <.0001

cFC -0.06 (-0.08,-0.05) <.0001 -0.14 (-0.17,-0.10) <.0001

cHC -0.16 (-0.18,-0.14) <.0001 -0.19 (-0.23,-0.15) <.0001

Model 3 Maternal investment 15,322 -0.13 (-0.19,-0.08) <.0001 14,166 -0.36 (-0.46,-0.26) <.0001

Family structure 0.004 (-0.14,0.15) 0.962 -0.02 (-0.30,0.25) 0.870

Average financial resources -0.11 (-0.32,0.10) 0.291 0.12 (-0.27,0.52) 0.545

Financial instability 0.07 (-0.04,0.18) 0.248 0.34 (0.13,0.55) 0.002

Mother’s education -0.08 (-0.11,-0.06) <.0001 -0.12 (-0.16,-0.07) <.0001

Father’s education -0.08 (-0.11,-0.06) <.0001 -0.09 (-0.14,-0.05) <.0001

Comparison Measures

Luo Index 15,345 -0.17 (-0.19,-0.15) <.0001 14,181 -0.25 (-0.28,-0.22) <.0001

Glymour Index 15,345 -0.30 (-0.36,-0.24) <.0001 14,181 -0.26 (-0.37,-0.15) <.0001

Hargrove measures Mother’s education� 12 8,248 -0.17 (-0.22,-0.12) <.0001 7,785 -0.15 (-0.25,-0.05) 0.002

Father’s education� 12 -0.11 (-0.16,-0.05) 0.0002 -0.12 (-0.22,-0.02) 0.020

Self-rated poor SES 0.06 (0.01,0.11) 0.026 0.12 (0.02,0.22) 0.014

Moved for financial reasons 0.11 (0.04,0.17) 0.001 0.23 (0.11,0.34) <.0001

Father occupation -0.10 (-0.16,-0.04) 0.002 0.01 (-0.10,0.13) 0.812

Self-related health and CESD score are coded so lower numbers reflect better health.

All of the validated measures are coded so that higher number reflect more capital; financial instability, is coded so higher numbers reflect more financial

instability.

All models are adjusted for age (linear and quadratic terms), race / ethnicity, gender, and birthplace. The cSES index, cHC, cFC, cSC, Luo index, as well as,

mother’s years of education, father’s years of education in Model 3 were all z-scored so a one-unit change represents a change of 1-standard deviation.

https://doi.org/10.1371/journal.pone.0185898.t004
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for number of depressive symptoms, which appeared borderline significant in the complete

case analysis (β = 0.38; 95%CI: -0.12, 0.89; p = 0.137, Table 3, Model 3), but showed no rela-

tionship in the achievable N analysis (β = -0.13; 95%CI: -0.26, 0.53, p = 0.51, Table 4, Model 3).

4 Discussion

Using HRS, a nationally representative cohort that has been particularly influential in life-

course and aging research, we developed and validated a theoretically motivated index of cSES.

Our measures demonstrated acceptable to good internal consistency reliability, construct

validity, and predictive validity. Our validated measures outperformed previous multi-item

indexes proposed by Luo et al., Glymour et al., and Hargrove et al. with respect to proportion

of variability explained for adult self-rated health and depressive symptoms in these data. By

using a latent variable model, the validated measures allow analysts to retain respondents with

partial missingness, increasing available observations compared to a complete case approach.

This increase in sample size improved statistical power and reduced bias in the relationship

between average financial resources and number of depressive symptoms by including the

socially vulnerable who were otherwise excluded.

Despite the popularity of the HRS cohort for lifecourse research, no consensus has emerged

regarding the optimal operationalization of cSES. Various studies select different items for

assessment of cSES and use alternative algorithms to combine the selected items. This incon-

sistency is exacerbated by changes in the HRS questionnaire over time and the availability of

enhanced measures on subsamples of the cohort. The cSES index developed here offers several

advantages, including subscales related to theoretically relevant dimensions of cSES, efficient

use of incomplete data, and modestly improved prediction of adult health.

4.1 Missing data approach benefits

Our approach to handling missing data had two benefits. First, the effective sample size

increased; more data points provide more power, which may be particularly important for

subgroup analyses. Second, our measures reduce bias in point estimates by including the most

socially disadvantaged individuals who are excluded from complete case analyses. Hargrove &

Brown excluded individuals with missing data, implicitly relying on a missing completely at

random (MCAR) assumption, that missingness is not patterned by cSES [31]. However, analy-

sis of HRS data suggests that data on a parent’s education is missing for respondents who did

not live with that parent [11], indicating the missingness is patterned by household structure,

likely impacting childhood financial and human capital. Our analysis shows that individuals

excluded when cSES is based on the Hargrove model are indeed more socially vulnerable than

included individuals (S7 Table).

When missing data are patterned, the missingness should be modeled in order to produce

unbiased point estimates [31]. In this analysis, we imputed scale scores for individuals with

missing data, substantially reducing missing data among the most socially vulnerable, and

reducing bias in point estimates. The point estimate for the relationship between average

financial resources and number of depressive symptoms was positive in complete case analysis

(and borderline statistically significant, p = 0.14) indicating that more financial resources in

childhood predicted more depressive symptoms (Table 3), which is the inverse of the relation-

ship found in past literature (i.e. prior work suggests those with lower SES have more depres-

sive symptoms [54]). In the achievable N analysis, on the other hand, the point estimate is

much smaller, and the p-value is quite large (p = 0.51), indicating that the relationship between

average financial resources and number of depressive symptoms is null (Table 4, Model 3). In

subsequent analyses, we discovered that socially vulnerable individuals excluded from the

Progress and challenges

PLOS ONE | https://doi.org/10.1371/journal.pone.0185898 October 13, 2017 14 / 23

https://doi.org/10.1371/journal.pone.0185898


complete case analysis also had more depressive symptoms (S4 Fig and S8 Table), pushing the

relationship between average financial resources and number of depressive symptoms from a

positive relationship in the complete case analysis (contrary to the literature) to a null relation-

ship in the achievable N analysis, which is more consistent with the literature. These results

suggest that excluding socially vulnerable individuals in the complete case analysis induced a

(non-statistically significant) relationship between average financial resources and number of

depressive symptoms, which disappeared in the larger achievable N sample, where the socially

vulnerable were not excluded.

While there are still missing data with the validated measures, our imputation approach

generated scale scores among socially vulnerable groups excluded in complete case analyses,

decreasing bias in point estimates.

4.2 The consistency assumption, understanding health, and informing

interventions

Some benefits of operationalizations of cSES that enable estimation of different point estimates

for different component measures (i.e. Table 4, Models 2 & 3) include a more nuanced under-

standing of these relationships and the ability to inform future interventions. For example,

cFC exerts a strong influence on number of depressive symptoms (Table 4, Model 2), indicat-

ing that childhood financial resources are very important for adult mental health. However,

because we were able to separate childhood financial capital into two factors, average financial

resources and financial instability, we found that childhood financial instability really matters

for adult mental health, while our results suggest average financial resources in childhood has

no relationship with adult mental health (Table 4, Model 3).

Additionally, a well-defined treatment is one of the assumptions of causal inference [18];

meeting this assumption and can help researchers interpret their findings to inform future

interventions [19], provided other assumptions for casual inference are also fulfilled [55]. As

applied to the example of the factor scores for cFC, our results suggest that programs that miti-

gate financial shocks for families with children, such as reducing medical bankruptcy [56],

more generous unemployment benefits, or increasing the time frame for Temporary Assistant

for Needy Families [57], may help reduce the population prevalence of depression among

older adults. This is particularly important because recent research suggests that childhood

financial conditions have a direct effect on adult health (while the effect of parental education

is mediated through own education)[58], suggesting the deleterious effects of financial insta-

bility in childhood may not be offset by socio-economic gains later in life.

4.3 Limitations

Although the validated cSES measures are an improvement, there are many limitations to

developing scales using existing data. While HRS includes many important questions on early

life social circumstances, notable gaps in HRS topics include, but are not limited to: a) more

complete assessment of maternal investment, b) measures of the social investment of the

respondent’s father, and c) assessments of important skill sets such as language (i.e. speaking

Spanish), music skills, or trade skills (i.e. carpentry, plumbing, electrical, etc.) which are not

necessarily correlated with years of formal education. These measures additionally offer little

insight why these measures of capital may be low, and important explanatory factors, such as

whether mothers invested limited time in the child due to competing demands from other

family members or paid labor, etc. were not assessed. It is also possible that other social capital

measures than the ones available in HRS, such as neighborhood deprivation or civic engage-

ment, are also relevant dimensions for health. Reliability for the cSC and cFC scales were
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relative low (around 0.6); such a low reliability may bias effects towards the null and lead to

residual confounding if analyses do not account for measurement error [59]. The standard

errors for the scales in Table 3 should be interpreted with caution because our analyses did not

account for the two-stage estimation strategy. No gold standards for these dimensions of cSES

are available to assess criterion validity; we relied on imperfect and retrospectively reported

indicators to assess construct and predictive validity. This analysis used subjective SES mea-

sures (i.e. self-reported cSES), however, objective measures (i.e. number of bedrooms in the

house) are likely measured with more precision [60–62]. Several of the questions retained

in the cSC and cFC scale were asked only to a randomly selected subset of respondents

(N< 7,000) in experimental modules; we were able to impute scale scores for many individu-

als who were not asked these questions with our latent variable approach, however the small

sample size likely reduced precision (Fig 2 and S3 Fig). Additionally, the response options

“didn’t live with mother” and “didn’t live with father” were derived from one of several

response options to questions on parental employment; to reduce ambiguity on whether the

respondent lived with either of their parents this question should be asked directly. Lastly,

cSES can vary over the respondent’s childhood; we were not able to capture time variation in

cSES in these analyses.

All of the measures used in this analysis are retrospectively self-reported, which may intro-

duce measurement error and bias. Sources of measurement error include the time interval and

degree of detail remembered [63], and differential recall by adult social class [60,64], or misre-

porting due to poor mental, physical, or cognitive health at the time of data collection. Prior

work has found acceptable concordance of retrospectively reported social class with maternity

records and prior self-report [65], historical records [62], and birth and census records [66],

though some researchers find adults retrospectively report more favorable cSES than was

recorded during childhood [65]. Additionally, research on concordance of siblings’ self-report

finds high concordance for the head of household’s occupation [67] and receipt of welfare ben-

efits but concordance was lower when at least one sibling had a high school education or less

[60]. We are not able to quantify the amount of measurement error or degree of resulting bias

in these measures. While these sources of bias are a cause for concern, alternative approaches

of collecting information on cSES among adults, such as obtaining these data from historical

records [62], birth certificates, or census data [66], may be prohibitively time-consuming,

expensive, may only cover a subset of the relevant content domains, and are relatively rare

[7,8,68].

A final limitation of this work is that the variables used to create our scales may not be rele-

vant for today’s children, and, therefore, we do not necessarily recommend inclusion of these

questions in surveys in other historical or cultural settings. For example, mother’s employment

status for this cohort of older adults may indicate low childhood financial capital, whereas it is

normative for both parents to work today, and a working mother may indicate high childhood

financial capital. Additionally, growing up with one’s grandparents may indicate absent bio-

logical parents in the US, suggesting low childhood social capital, whereas intergenerational

households are normative in other countries and may not reflect childhood social capital.

While we advanced the literature by applying this framework to a dataset with rich characteri-

zation of lifecourse social conditions, we believe that the measurement of cSES could be sub-

stantially improved through new question development and primary data collection.

4.4 Conclusions

This work builds and improves upon previous indicators of childhood SES in several ways.

Substantively, this work is an advance in developing six distinct constructs (maternal
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investment and family structure as measures of cSC, average financial resources and financial

instability as measures of cFC, and more complete measures of mother’s and father’s education

as measures of cHC), which allows for many flexible specifications (i.e. examining additive or

interactive effects, or combining the measures into a single cSES index; we note, however, that

combining the measures into an index is likely a violation of the consistency assumption for

causal inference [18,19]). These measures may also help refine our understanding of the rela-

tionship between cSES and health outcomes. For example, our analysis reveals that childhood

financial instability and childhood maternal investment have large and independent effects on

number of depressive symptoms in adulthood; additionally, these effects are larger than other

commonly used markers of cSES, such as average financial resources or parental education. As

far as we know, the size of these childhood exposures on number of depressive symptoms

among older adults are new findings that we were able to uncover because we used psychomet-

ric approaches to measure cSES.

Implementing these scales in future HRS research will advance the field methodologically

by helping to improve consistency in the measurement of cSES, which can inform future inter-

vention and facilitate meta-analyses. Further, as we demonstrated with the point estimate for

average financial resources, using these measures can reduce bias in point estimates compared

to complete case approaches which may exclude socially vulnerable groups.

However, this work also highlights several remaining gaps in the measurement of cSES.

Theoretical developments on lifecourse SES and older adult health have largely outpaced the

quality of data available to test those theories. Valuable data linkages could be made with a little

more information; for example, if HRS collected information on female respondent’s maiden

name, the household of residence could be established through linkages with census data. Sim-

ilarly, data on the respondent’s elementary and high schools could be linked to data on gradua-

tion rates and school quality to assess whether differences in educational institution explain

heterogeneities in older adult health and well-being.

Outside of HRS, researchers should adopt this conceptually driven approach by creating

cSES measures in other datasets and though primary data collection. Wider adoption of mea-

surement theory will improve consistency across datasets, and, as demonstrated in our analy-

sis, may uncover new relationships to improve our understanding of the social drivers of

health.

Supporting information

S1 Table. Ns for included variables from each wave of data collection. Numbers in this table

may differ slightly from those reported in Figs 2–4 because data some respondents (or proxy

respondents from the exit files) were collected at multiple waves; we used the first self-report,

and then proxy report of information, as detailed in the methods. Please see our code on

GitHub for more details (https://github.com/anushavable/Validated-cSES-measures-in-HRS).

Data on parent’s educational attainment came from the RAND data files, describe elsewhere.

(DOCX)

S2 Table. Father occupation categories. The 1980 census occupation codes had 17 categories,

which were used for the following HRS waves: 1996 core, 1998 HRS, 1998 exit, 2000 core, 2000

exit, 2002 core, 2004 core. The 2000 and 2010 census occupation codes had 25 categories,

which were used for the following HRS waves: 2006 core, 2006 exit, 2008 exit, 2010 core.

(DOCX)

S3 Table. Human capital appendix.

1. Values below 8 were recoded to 8 years

Progress and challenges

PLOS ONE | https://doi.org/10.1371/journal.pone.0185898 October 13, 2017 17 / 23

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0185898.s001
https://github.com/anushavable/Validated-cSES-measures-in-HRS
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0185898.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0185898.s003
https://doi.org/10.1371/journal.pone.0185898


2. Values below 0 were recoded to 0 years

3. Values greater than 17 were recoded to 17 years

Single-imputations were performed using the iterative expectation maximization algorithm

for maximum likelihood estimation within PROC MI procedure in SAS (Truxillo, 2005)

across five different subgroups: a) any missing data on education, b) mothers with < 8

years of education (AHEAD coded at 7.5), c) fathers with< 8 years of education (AHEAD

coded as 7.5), d) mothers with� 8 years of education (AHEAD coded as 8.5), and e) fathers

with� 8 years of education (AHEAD coded as 8.5). All imputation models included birth

year, race (Non-Hispanic White (ref), Non-Hispanic Black, Hispanic), gender, birth place

(southern, foreign), childhood health (excellent (ref), very good, good, fair, poor), and the

following social variables which were significantly correlated with either parents education

(operationalization described in main paper text, dummy variables created for categorical

variables): father’s occupation, self-reported family SES, moved for financial reasons,

received financial help from relatives, father’s unemployment status, mother’s employment

status, if the respondent lived with their grandparents, if the respondent didn’t live with

their mother, if the respondent didn’t live with their father, amount the respondent’s

mother taught them about life, amount of time and attention the respondent received from

their mother, and the amount of effort the respondent’s mother put in their upbringing.

The imputation model for mother’s education when coded as 7.5 in AHEAD would not

converge when all the above variables were included, so these imputations included the fol-

lowing variables that were significantly correlated with mother’s years of education less

than 8 years: birth year, race, gender, birth place, childhood health, father’s occupation,

self-reported family SES, moved for financial reasons, if the respondent lived with their

grandparents, if the respondent didn’t live with their father, and the amount of effort the

respondent’s mother put in their upbringing. Imputed values that were outside the expected

range were recoded to either the minimum or maximum value for that range.

(DOCX)

S4 Table. Factor loadings from the exploratory factor analysis for the retained variables.

(DOCX)

S5 Table. Reliability of the cSC scale with items serially excluded. The low internal consis-

tency of the cSC scale was not due to any one variable. We believe the low internal consistency

is due relatively few questions and dichotomous response options for several items.

(DOCX)

S6 Table. Reliability of the cFC scales with items serially excluded. The low internal consis-

tency of the cFC scale was not due to any one variable. We believe the low internal consistency

is due to a combination of the following: 1) subjective (i.e. reporting family was “pretty well

off”) rather than objective assessments (i.e. renting or owning home, number of bedrooms,

number of bathrooms, etc.), 2) relatively few questions on childhood financial capital, and 3)

dichotomous response options for many of the included items, reducing precision.

(DOCX)

S7 Table. Distribution of social variables for individuals included and excluded by Har-

grove operationalization of cSES. � test of equal variance indicated the variances in the two

groups were not statistically different, therefore the pooled p-value is displayed rather than the

Satterhwaite. The Hargrove operationalization excluded individuals who were more socially

disadvantaged; that is, individuals who were born earlier, more likely to be minorities, born in

the south or abroad, those who experienced worse childhood health, and those grew up in

Progress and challenges

PLOS ONE | https://doi.org/10.1371/journal.pone.0185898 October 13, 2017 18 / 23

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0185898.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0185898.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0185898.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0185898.s007
https://doi.org/10.1371/journal.pone.0185898


environments with lower human capital, financial capital and social capital were excluded

from the Hargrove analysis.

(DOCX)

S8 Table. Means of individuals in the complete case, achievable N, and excluded from the

complete case but included in the achievable N analysis. Socially vulnerable individuals

excluded from the complete case analysis had more depressive symptoms, pushing the rela-

tionship between average financial resources and number of depressive symptoms from a posi-

tive relationship in the complete case analysis (contrary to the literature) to a null relationship

in the achievable N analysis, which is more consistent with the literature.

(DOCX)

S1 Fig. Hypothesized structure for the childhood social capital and financial capital scales,

and the childhood human capital index. Based on variables in the HRS data set, we hypothe-

sized the financial capital scale had one factor, the childhood social capital scale had two fac-

tors, and we operationalized the childhood human capital index as consisting of mothers and

father’s educational attainment.

(DOCX)

S2 Fig. Nested family structure questions in experimental module (N = 735) to create the

“number of parents” item. This operationalization may lead to some misclassification of cate-

gories 1 and 3 because respondents whose parents died may have lived with a stepparent, but

were not asked this question. However, due to the other items in the family structure factor /

social capital latent variable, including if the respondent lived with their mother or father, the

factor analysis should produce appropriate factor scores. Alternative options, such as collaps-

ing this variable into dichotomous response options (i.e. lived with both biological parents vs.

did not live with both biological parents) would lead to a lack of co-variation in the “number

of parents” and the “grew up without a mother” / “grew up without a father” which is not per-

mitted in factor analysis.

(DOCX)

S3 Fig. Distribution of validated measures. None of the validated scales are normally distrib-

uted; notably, most of the observations for the social capital scale are at the upper end of the

distribution. The combined cSES index has a slightly longer left tail than right tail.

(DOCX)

S4 Fig. Scatterplot of average financial resources. The circles represent individuals included

in the achievable N analysis but excluded from the complete case analysis; the hashtags repre-

sent individuals included in the complete case analysis. This figure shows that the complete

case analysis excluded individuals with low average financial resources.

(DOCX)

Author Contributions

Conceptualization: Anusha M. Vable, Paola Gilsanz, Thu T. Nguyen, Ichiro Kawachi, M.

Maria Glymour.

Formal analysis: Anusha M. Vable, Paola Gilsanz.

Investigation: Anusha M. Vable.

Methodology: Anusha M. Vable, Paola Gilsanz, M. Maria Glymour.

Project administration: Anusha M. Vable.

Progress and challenges

PLOS ONE | https://doi.org/10.1371/journal.pone.0185898 October 13, 2017 19 / 23

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0185898.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0185898.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0185898.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0185898.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0185898.s012
https://doi.org/10.1371/journal.pone.0185898


Supervision: Ichiro Kawachi, M. Maria Glymour.

Writing – original draft: Anusha M. Vable, Paola Gilsanz, Thu T. Nguyen, Ichiro Kawachi,

M. Maria Glymour.

Writing – review & editing: Anusha M. Vable, Paola Gilsanz, Thu T. Nguyen, Ichiro Kawachi,

M. Maria Glymour.

References
1. Kuh D., Ben Shlomo Y., & Ezra S (Eds. A Life Course Approach to Chronic Disease Epidemiology

[Internet]. Life Course Approach to Adult Health. 2004. 494 p. http://www.oxfordscholarship.com/view/

10.1093/acprof:oso/9780198578154.001.0001/acprof-9780198578154

2. Loucks EB, Pilote L, Lynch JW, Richard H, Almeida ND, Benjamin EJ, et al. Life course socioeconomic

position is associated with inflammatory markers: The Framingham Offspring Study. Soc Sci Med.

2010; 71(1):187–95. https://doi.org/10.1016/j.socscimed.2010.03.012 PMID: 20430502

3. Luo Y, Waite LJ. The impact of childhood and adult SES on physical, mental, and cognitive well-being in

later life. J Gerontol B Psychol Sci Soc Sci [Internet]. 2005; 60(2):S93–101. Available from: http://www.

pubmedcentral.nih.gov/articlerender.fcgi?artid=2505177&tool=pmcentrez&rendertype=abstract PMID:

15746030

4. Nandi A, Glymour MM, Kawachi I, VanderWeele TJ. Using Marginal Structural Models to Estimate the

Direct Effect of Adverse Childhood Social Conditions on Onset of Heart Disease, Diabetes, and Stroke.

Epidemiology [Internet]. 2012; 23(2):223–32. Available from: http://content.wkhealth.com/linkback/

openurl?sid=WKPTLP:landingpage&an=00001648-201203000-00008 PMID: 22317806

5. Nicklett EJ, Burgard SA. Downward social mobility and major depressive episodes among latino and

Asian-American immigrants to the United States. Am J Epidemiol. 2009; 170(6):793–801. https://doi.

org/10.1093/aje/kwp192 PMID: 19671834

6. Chittleborough CR, Baum FE, Taylor AW, Hiller JE. A life-course approach to measuring socioeco-

nomic position in population health surveillance systems. J Epidemiol Community Heal [Internet]. 2006;

60(11):981–92. Available from: http://jech.bmj.com/cgi/doi/10.1136/jech.2006.048694

7. Galobardes B, Smith GD, Lynch JW. Systematic review of the influence of childhood socioeconomic cir-

cumstances on risk for cardiovascular disease in adulthood. Ann Epidemiol. 2006; 16(2):91–104.

https://doi.org/10.1016/j.annepidem.2005.06.053 PMID: 16257232

8. Galobardes B, Lynch JW, Smith GD. Childhood socioeconomic circumstances and cause-specific mor-

tality in adulthood: Systematic review and interpretation. Epidemiol Rev. 2004; 26:7–21. https://doi.org/

10.1093/epirev/mxh008 PMID: 15234944

9. Haas SA, Krueger PM, Rohlfsen L. Race / Ethnic and Nativity Disparities in Later Life Physical Perfor-

mance : The Role of Health and Socioeconomic Status Over the Life Course. Journals Gerontol Ser B

Psychol Sci Soc Sci. 2012; 67:238–48.

10. Tucker-Seeley RD, Li Y, Sorensen G, Subramanian S V. Lifecourse socioeconomic circumstances and

multimorbidity among older adults. BMC Public Health. 2011; 11:313. https://doi.org/10.1186/1471-

2458-11-313 PMID: 21569558

11. Glymour MM, Avendano M, Haas S, Berkman LF. Lifecourse Social Conditions and Racial Disparities

in Incidence of First Stroke. Ann Epidemiol. 2008; 18(12):904–12. https://doi.org/10.1016/j.annepidem.

2008.09.010 PMID: 19041589

12. Krieger N, Williams DR, Moss NE. Measuring social class in US public health research: concepts, meth-

odologies, and guidelines. Annu Rev Public Health. 1997; 18(16):341–78.

13. Link BG, Phelan J. Social conditions as fundamental causes of disease. J Health Soc Behav. 1995;

Spec No(1995):80–94.

14. Lieberatos P, Link BG, Kelsey JL. The measurement of social class in epidemiology. Epidemiol Rev.

1988; 10:87–121. PMID: 3066632

15. Oakes J. M, Rossi PH. The Measurement of Socioeconomic Status in Health Research: Current Prac-

tice and steps toward a new approach. Soc Sci Med. 2003; 56:769–84. PMID: 12560010

16. Galobardes B, Shaw M, Lawlor DA, Lynch JW, Davey Smith G. Indicators of socioeconomic position

(part 1). J Epidemiol Community Health [Internet]. 2006; 60(1):7–12. Available from: http://www.

pubmedcentral.nih.gov/articlerender.fcgi?artid=2566160&tool=pmcentrez&rendertype=abstract PMID:

16361448

Progress and challenges

PLOS ONE | https://doi.org/10.1371/journal.pone.0185898 October 13, 2017 20 / 23

http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780198578154.001.0001/acprof-9780198578154
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780198578154.001.0001/acprof-9780198578154
https://doi.org/10.1016/j.socscimed.2010.03.012
http://www.ncbi.nlm.nih.gov/pubmed/20430502
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2505177&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2505177&tool=pmcentrez&rendertype=abstract
http://www.ncbi.nlm.nih.gov/pubmed/15746030
http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00001648-201203000-00008
http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00001648-201203000-00008
http://www.ncbi.nlm.nih.gov/pubmed/22317806
https://doi.org/10.1093/aje/kwp192
https://doi.org/10.1093/aje/kwp192
http://www.ncbi.nlm.nih.gov/pubmed/19671834
http://jech.bmj.com/cgi/doi/10.1136/jech.2006.048694
https://doi.org/10.1016/j.annepidem.2005.06.053
http://www.ncbi.nlm.nih.gov/pubmed/16257232
https://doi.org/10.1093/epirev/mxh008
https://doi.org/10.1093/epirev/mxh008
http://www.ncbi.nlm.nih.gov/pubmed/15234944
https://doi.org/10.1186/1471-2458-11-313
https://doi.org/10.1186/1471-2458-11-313
http://www.ncbi.nlm.nih.gov/pubmed/21569558
https://doi.org/10.1016/j.annepidem.2008.09.010
https://doi.org/10.1016/j.annepidem.2008.09.010
http://www.ncbi.nlm.nih.gov/pubmed/19041589
http://www.ncbi.nlm.nih.gov/pubmed/3066632
http://www.ncbi.nlm.nih.gov/pubmed/12560010
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2566160&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2566160&tool=pmcentrez&rendertype=abstract
http://www.ncbi.nlm.nih.gov/pubmed/16361448
https://doi.org/10.1371/journal.pone.0185898


17. Bassett MT, Krieger N. Social class and black-white differences in breast cancer survival. Am J Public

Health [Internet]. 1986; 76(12):1400–3. Available from: http://www.pubmedcentral.nih.gov/

articlerender.fcgi?artid=1646981&tool=pmcentrez&rendertype=abstract PMID: 3777285

18. Hernán MA, Robins JM. Causal Inference. Boca Raton: Chapman & Hall/ CRC, forthcoming; 2016.

19. Rehkopf DH, Glymour MM, Osypuk TL. The Consistency Assumption for Causal Inference in Social

Epidemiology: When a Rose Is Not a Rose. Curr Epidemiol Reports [Internet]. 2016; 3(1):63–71. Avail-

able from: http://dx.doi.org/10.1007/s40471-016-0069-5

20. King G. How Not to Lie with Statistics: Avoiding Common Mistakes in Quantitative Political Science. Am

J Pol Sci [Internet]. 1986; 30(3):666–87. Available from: http://www.jstor.org/stable/2111095

21. Entwisle DR, Astone NM. Some Practical Guidelines for Measuring Youth’ s Race / Ethnicity and Socio-

economic Status. Child Dev. 1995; 65(6):1521–40.

22. Coleman JS. Foundations of Social Theory [Internet]. Book. 1990. 993 p. http://books.google.com/

books?id=a4Dl8tiX4b8C

23. Osterbacka E, Merz J, Zick CD. Human capital investments in children—A comparative analysis of the

role of parentchild shared time in selected countries. IZA. 2012; 9(1):120–43.

24. Rehkopf DH, Berkman LF, Coull B, Krieger N. The non-linear risk of mortality by income level in a

healthy population: US National Health and Nutrition Examination Survey mortality follow-up cohort,

1988–2001. BMC Public Health [Internet]. 2008; 8:383. Available from: http://www.pubmedcentral.nih.

gov/articlerender.fcgi?artid=2587469&tool=pmcentrez&rendertype=abstract PMID: 19000311

25. Montez JK, Hummer RA, Hayward MD. Educational Attainment and Adult Mortality in the United States:

A Systematic Analysis of Functional Form. Demography. 2012; 49(1):315–36. https://doi.org/10.1007/

s13524-011-0082-8 PMID: 22246797

26. Hurtado D, Kawachi I, Sudarsky J. Social capital and self-rated health in Colombia: the good, the bad

and the ugly. Soc Sci Med [Internet]. 2011; 72(4):584–90. Available from: http://www.scopus.com/

inward/record.url?eid=2-s2.0-79954426698&partnerID=40&md5=

d303b92c028ae4d6bd247f88e3174048 PMID: 21185633

27. Jones RN, Manly J, Glymour MM, Rentz DM, Jefferson AL. Conceptual and Measurement Challenges

in Research on Cognitive Reserve. 2017;(2011):593–601.

28. DeVellis RF. Scale Development : Theory and Applications 3 rd ED. Vol. 26. Appl Soc Res Methods

[Internet]. 2012;26:31. http://books.google.com/books?id=Rye31saVXmAC&lpg=PR1&ots=

YHXbaKkzn1&dq=affectivewritingscalevalidityexamples&lr&pg=PR1#v=onepage&q&f=false

29. Glymour M, Avendano M, Kawachi I. Socioeconomic Status and Health : Social Epidemiology. In:

Social Epidemiology [Internet]. 2015. http://oxfordindex.oup.com/view/10.1093/med/9780195377903.

003.0002

30. Wang Q, Capistrant BD, Ehntholt A, Glymour MM. Long-term rate of change in memory functioning

before and after stroke onset. Stroke. 2012; 43(10):2561–6. https://doi.org/10.1161/STROKEAHA.112.

661587 PMID: 22935399

31. Allison PD. Handling Missing Data by Maximum Likelihood. SAS Glob Forum 2012 Stat Data Anal.

2012;1–21.

32. Truxillo C. Maximum likelihood parameter estimation with incomplete data. In: Proceedings of the Thirti-

eth Annual SAS® Users Group . . . [Internet]. 2005. p. 1–19. http://citeseerx.ist.psu.edu/viewdoc/

download?doi=10.1.1.176.880&rep=rep1&type=pdf

33. Hargrove TW, Brown TH. A life course approach to Inequality: examining racial / ethnic differneces in

the relationship between early life socioeconomic conditins and adult health among me. Eth. 2015; 25

(3):313–20.

34. Heeringa SG, Connor JH. Technical description of the Health and Retirement Survey sample design.

Tech Descr Heal Retire Surv Sample Des. 1995;(May).

35. Heeringa SG. Technical Description of the Asset and Health Dynamics (AHEAD) Survey Sample

Design Institute for Social Research University of Michigan October 1995. 1995.

36. Hauser R, Willis R. Survey design and methodology in the Health and Retirement Study and the Wis-

consin Longitudinal Study. Popul Dev Rev [Internet]. 2004; 30:209–36. Available from: http://www.jstor.

org/stable/10.2307/3401469

37. Hooper D, Coughlan J, Mullen M. Structural Equation Modelling : Guidelines for Determining Model Fit

Structural equation modelling : guidelines for determining model fit. Dublin Inst Technol ARROW @

DIT. 2008; 6(1):53–60.

38. Li C-H. Confirmatory factor analysis with ordinal data: Comparing robust maximum likelihood and diago-

nally weighted least squares. Behav Res Methods [Internet]. 2015;1–15. Available from: http://link.

springer.com/10.3758/s13428-015-0619-7

Progress and challenges

PLOS ONE | https://doi.org/10.1371/journal.pone.0185898 October 13, 2017 21 / 23

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1646981&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1646981&tool=pmcentrez&rendertype=abstract
http://www.ncbi.nlm.nih.gov/pubmed/3777285
http://dx.doi.org/10.1007/s40471-016-0069-5
http://www.jstor.org/stable/2111095
http://books.google.com/books?id=a4Dl8tiX4b8C
http://books.google.com/books?id=a4Dl8tiX4b8C
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2587469&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2587469&tool=pmcentrez&rendertype=abstract
http://www.ncbi.nlm.nih.gov/pubmed/19000311
https://doi.org/10.1007/s13524-011-0082-8
https://doi.org/10.1007/s13524-011-0082-8
http://www.ncbi.nlm.nih.gov/pubmed/22246797
http://www.scopus.com/inward/record.url?eid=2-s2.0-79954426698&partnerID=40&md5=d303b92c028ae4d6bd247f88e3174048
http://www.scopus.com/inward/record.url?eid=2-s2.0-79954426698&partnerID=40&md5=d303b92c028ae4d6bd247f88e3174048
http://www.scopus.com/inward/record.url?eid=2-s2.0-79954426698&partnerID=40&md5=d303b92c028ae4d6bd247f88e3174048
http://www.ncbi.nlm.nih.gov/pubmed/21185633
http://books.google.com/books?id=Rye31saVXmAC&lpg=PR1&ots=YHXbaKkzn1&dq=affectivewritingscalevalidityexamples&lr&pg=PR1#v=onepage&q&f=false
http://books.google.com/books?id=Rye31saVXmAC&lpg=PR1&ots=YHXbaKkzn1&dq=affectivewritingscalevalidityexamples&lr&pg=PR1#v=onepage&q&f=false
http://oxfordindex.oup.com/view/10.1093/med/9780195377903.003.0002
http://oxfordindex.oup.com/view/10.1093/med/9780195377903.003.0002
https://doi.org/10.1161/STROKEAHA.112.661587
https://doi.org/10.1161/STROKEAHA.112.661587
http://www.ncbi.nlm.nih.gov/pubmed/22935399
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.176.880&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.176.880&rep=rep1&type=pdf
http://www.jstor.org/stable/10.2307/3401469
http://www.jstor.org/stable/10.2307/3401469
http://link.springer.com/10.3758/s13428-015-0619-7
http://link.springer.com/10.3758/s13428-015-0619-7
https://doi.org/10.1371/journal.pone.0185898


39. Steiger JH. Understanding the limitations of global fit assessment in structural equation modeling. Pers

Individ Dif. 2007; 42(5):893–8.

40. Hu L, Bentler PM. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria

versus new alternatives. Struct Equ Model A Multidiscip J. 1999; 6(1):1–55.

41. Sui-Chu EH, Willms JD. Effects of Parental Involvement on Eighth-Grade Achievement. Sociol Educ.

1996; 69(2):126–41.

42. Flouri E, Buchanan A. Father Involvement in Childhood and Trouble With the Police in Adolescence:

Findings From the 1958 British Cohort. J Interpers Violence [Internet]. 2002; 17(6):689–701. Available

from: http://jiv.sagepub.com/cgi/doi/10.1177/0886260502017006006

43. Currie J. Healthy, Wealthy, and Wise: Socioeconomic Status, Poor Health in Childhood, and Human

Capital Development. Vol. 13987. 2008.

44. Costello EJ, Compton SN, Keeler G, Angold A. Relationships between poverty and psychopathology: a

natural experiment. JAMA [Internet]. 2003; 290(15):2023–9. Available from: http://jama.jamanetwork.

com/article.aspx?articleid=197482 PMID: 14559956

45. Flouri E, Buchanan A. Early father ‘s and mother ‘s involvement and child ‘s later educational outcomes.

Br J Educ Psychol. 2004; 74:141–53. https://doi.org/10.1348/000709904773839806 PMID: 15130184

46. Hango D. Parental investment in childhood and later adult well-being: Can more involved parents offset

the effects of socioeconomic disadvantage? CASE Work Pap 98 (May 2005) [Internet]. 2005;(May

2005). http://sticerd.lse.ac.uk/dps/case/cp/CASEpaper98.pdf

47. Kuh D, Wadsworth M. Parental Height: Childhood Environment and Subsequent Adult Height in a

National Birth Cohort. Int J Epidemiol [Internet]. 1989; 18(3):663–8. Available from: http://ije.

oxfordjournals.org/content/18/3/663.short PMID: 2807671

48. Thomas D. Like Father, Like Son; Like Mother, Like Daughter Parental Resources and Child Height.

1994; 29(4):950–88.

49. Meyer OL, Castro-Schilo L, Aguilar-Gaxiola S. Determinants of mental health and self-rated health: A

model of socioeconomic status, neighborhood safety, and physical activity. Am J Public Health. 2014;

104(9):1734–41. https://doi.org/10.2105/AJPH.2014.302003 PMID: 25033151

50. Clair PS, Bugliari D, Campbell N, Chien S, Hayden O, Hurd M, et al. RAND HRS data documentation,

version L. 2011;(October).

51. Turvey CL, Wallace RB, Herzog R. A revised CES-D measure of depressive symptoms and a DSM-

based measure of major depressive episodes in the elderly. Int Psychogeriatrics [Internet]. 1999; 11

(2):139–48. Available from: http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-

0032769182&partnerID=40

52. Steffick DE. Documentation of affective functioning measures in the Health and Retirement Study.

HRS/AHEAD Doc Rep. 2000;

53. Streiner DL. Starting at the Beginning: An Introduction to Coefficient Alpha and Internal Consistency. J

Pers Assess [Internet]. 2003; 80(1):99–103. Available from: http://www.ncbi.nlm.nih.gov/pubmed/

12584072%5Cnhttp://www.tandfonline.com/doi/abs/10.1207/S15327752JPA8001_18 PMID:

12584072

54. Lorant V, Deliege D, Eaton W, Robert A, Philippot P, Ansseau M. Socioeconomic inequalities in depres-

sion: A meta-analysis. Am J Epidemiol. 2003; 157(2):98–112. PMID: 12522017

55. Pearl J. Statistics and causal inference: A Reivew. Soc Estad e Investig Oper [Internet]. 2003; 12

(2):281–345. Available from: http://www.tandfonline.com/doi/abs/10.1080/01621459.1986.10478354%

5Cnpapers3://publication/doi/10.1080/01621459.1986.10478354

56. Himmelstein DU, Thorne D, Warren E, Woolhandler S. Medical Bankruptcy in the United States, 2007 :

Results of a National Study. AJM [Internet]. 2009; 122(8):741–6. Available from: http://dx.doi.org/10.

1016/j.amjmed.2009.04.012

57. Basu S, Rehkopf DH, Siddiqi A, Glymour MM, Kawachi I. Health Behaviors, Mental Health, and Health

Care Utilization Among Single Mothers After Welfare Reforms in the 1990s. Am J Epidemiol [Internet].

2016; 183(6):531–8. Available from: http://aje.oxfordjournals.org/lookup/doi/10.1093/aje/kwv249 PMID:

26946395

58. Sheikh MA, Abelsen B, Olsen JA. Role of respondents’ education as a mediator and moderator in the

association between childhood socio-economic status and later health and wellbeing. BMC Public

Health [Internet]. 2014; 14(1):1172. Available from: http://bmcpublichealth.biomedcentral.com/articles/

10.1186/1471-2458-14-1172

59. Hutcheon JA, Chiolero A, Hanley JA. Random measurement error and regression dilution bias. BMJ

[Internet]. 2010; 340:c2289. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20573762 PMID:

20573762

Progress and challenges

PLOS ONE | https://doi.org/10.1371/journal.pone.0185898 October 13, 2017 22 / 23

http://jiv.sagepub.com/cgi/doi/10.1177/0886260502017006006
http://jama.jamanetwork.com/article.aspx?articleid=197482
http://jama.jamanetwork.com/article.aspx?articleid=197482
http://www.ncbi.nlm.nih.gov/pubmed/14559956
https://doi.org/10.1348/000709904773839806
http://www.ncbi.nlm.nih.gov/pubmed/15130184
http://sticerd.lse.ac.uk/dps/case/cp/CASEpaper98.pdf
http://ije.oxfordjournals.org/content/18/3/663.short
http://ije.oxfordjournals.org/content/18/3/663.short
http://www.ncbi.nlm.nih.gov/pubmed/2807671
https://doi.org/10.2105/AJPH.2014.302003
http://www.ncbi.nlm.nih.gov/pubmed/25033151
http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-0032769182&partnerID=40
http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-0032769182&partnerID=40
http://www.ncbi.nlm.nih.gov/pubmed/12584072%5Cnhttp://www.tandfonline.com/doi/abs/10.1207/S15327752JPA8001_18
http://www.ncbi.nlm.nih.gov/pubmed/12584072%5Cnhttp://www.tandfonline.com/doi/abs/10.1207/S15327752JPA8001_18
http://www.ncbi.nlm.nih.gov/pubmed/12584072
http://www.ncbi.nlm.nih.gov/pubmed/12522017
http://www.tandfonline.com/doi/abs/10.1080/01621459.1986.10478354%5Cnpapers3://publication/doi/10.1080/01621459.1986.10478354
http://www.tandfonline.com/doi/abs/10.1080/01621459.1986.10478354%5Cnpapers3://publication/doi/10.1080/01621459.1986.10478354
http://dx.doi.org/10.1016/j.amjmed.2009.04.012
http://dx.doi.org/10.1016/j.amjmed.2009.04.012
http://aje.oxfordjournals.org/lookup/doi/10.1093/aje/kwv249
http://www.ncbi.nlm.nih.gov/pubmed/26946395
http://bmcpublichealth.biomedcentral.com/articles/10.1186/1471-2458-14-1172
http://bmcpublichealth.biomedcentral.com/articles/10.1186/1471-2458-14-1172
http://www.ncbi.nlm.nih.gov/pubmed/20573762
http://www.ncbi.nlm.nih.gov/pubmed/20573762
https://doi.org/10.1371/journal.pone.0185898


60. Ward MM. Concordance of sibling’s recall of measures of childhood socioeconomic position. BMC Med

Res Methodol [Internet]. 2011; 11:147. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22044489

61. Sheikh MA, Abelsen B, Olsen JA. Differential recall bias, intermediate confounding, and mediation anal-

ysis in life course epidemiology: An analytic framework with empirical example. Front Psychol. 2016; 7

(NOV):1–16.

62. Berney LR, Blane DB. Collecting retrospective data: accuracy of recall after 50 years judged against his-

torical records. Soc Sci Med. 1997; 45(10):1519–25. PMID: 9351141

63. Coughling SS. Recall Bias in Epidemiologic Studies. J Clin Epidemiol. 1990; 43(I):87–91.

64. Chittleborough CR, Baum F, Taylor AW, Hiller JE. Missing data on retrospective recall of early-life

socio-economic position in surveillance systems: An additional disadvantage? Public Health [Internet].

2008; 122(11):1152–66. Available from: http://dx.doi.org/10.1016/j.puhe.2008.04.013 PMID: 18706666

65. Batty DG, Lawlor DA, Macintyre S, Clark H, Leon DA. Accuracy of adults’ recall of childhood social

class: findings from the Aberdeen children of the 1950s study. J Epidemiol Community Health [Internet].

2005; 59(10):898–903. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=

1732932&tool=pmcentrez&rendertype=abstract PMID: 16166367

66. Rose KM, Perhac JS, Bang H, Heiss G. Historical Records as a Source of Information for Childhood

Socioeconomic Status: Results from a Pilot Study of Decedents. Ann Epidemiol. 2008; 18:357–63.

https://doi.org/10.1016/j.annepidem.2008.01.002 PMID: 18395465

67. Krieger N, Okamoto A, Selby J V. Adult Female Twins’ Recall of Childhood Social Class and Father’s

Education: A Validation Study for Public Health Research. Am J Epidemiol [Internet]. 1998; 147

(7):704–8. Available from: http://aje.oxfordjournals.org/cgi/content/abstract/147/7/704 PMID: 9554610

68. Pollitt RA, Rose KM, Kaufman JS. Evaluating the evidence for models of life course socioeconomic fac-

tors and cardiovascular outcomes: a systematic review. BMC Public Health [Internet]. 2005; 5:7. Avail-

able from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=548689&tool=

pmcentrez&rendertype=abstract PMID: 15661071

Progress and challenges

PLOS ONE | https://doi.org/10.1371/journal.pone.0185898 October 13, 2017 23 / 23

http://www.ncbi.nlm.nih.gov/pubmed/22044489
http://www.ncbi.nlm.nih.gov/pubmed/9351141
http://dx.doi.org/10.1016/j.puhe.2008.04.013
http://www.ncbi.nlm.nih.gov/pubmed/18706666
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1732932&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1732932&tool=pmcentrez&rendertype=abstract
http://www.ncbi.nlm.nih.gov/pubmed/16166367
https://doi.org/10.1016/j.annepidem.2008.01.002
http://www.ncbi.nlm.nih.gov/pubmed/18395465
http://aje.oxfordjournals.org/cgi/content/abstract/147/7/704
http://www.ncbi.nlm.nih.gov/pubmed/9554610
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=548689&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=548689&tool=pmcentrez&rendertype=abstract
http://www.ncbi.nlm.nih.gov/pubmed/15661071
https://doi.org/10.1371/journal.pone.0185898

