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Abstract

The major part of this work is construction of 54 room-temperature infrared absorp-

tion line lists for isotopologues of carbon dioxide. In accurate nuclear motion cal-

culations an exact nuclear kinetic energy operator is used in the Born-Oppenheimer

approximation and three ab initio and semi-empirical potential energy surfaces for

generation of rotational-vibrational wavefunctions and energy levels. Transition

intensities are calculated with two different high quality ab initio dipole moment

surfaces. The generated line lists are comprehensively compared to state-of-the-art

measurements, spectroscopic databases and other theoretical studies. As a result,

uncertainties in calculated transition intensities in several vibrational CO2 bands

are shown below 1%, which is sufficient for use in remote sensing measurements

of carbon dioxide in the Earth’s atmosphere. Results of the present calculations set

a new state-of-the-art and have been included in the 2016 release of the HITRAN

database.

A theoretical procedure for estimating reliability of computed transition inten-

sities is presented and applied to CO2 line lists. As a result, each transition intensity

received a reliability factor, a particularly useful descriptor for detecting resonance

interactions between rotational-vibrational energy levels, as well as a good measure

quantifying the strength of such interactions.

The theoretical procedure used for CO2 is extended to electronic transitions

in the Born-Oppenheimer approximation. In this extended framework rotational-

vibrational-electronic line lists for SO2 and CaOCa molecules are generated. For

this purpose appropriate ab initio potential energy surfaces and a transition dipole

moment surface are generated. Absolute transition intensities are then calculated



8 Abstract

both in the Franck-Condon approximation and with a full transition dipole moment

surface. Resulting line lists are compared with available experimental and theoret-

ical data. The unprecedented accuracy of the model used in these calculations and

the rotational resolution of transition lines renders the present approach as promis-

ing for future uses in atmospheric science.

Finally a theoretical framework for fully non-adiabatically coupled Hamilto-

nian is derived and discussed. A proposition for computer implementation of this

theoretical scheme is also given.



Acknowledgements

I would like to thank my supervisor Prof. Jonathan Tennyson for his kind support

during my time at UCL.

Because a complete list of persons for which I would like to express my grat-

itude is long, I wish to thank every individual I have met on my way, because you

cannot deny, that reading these words right now, would not be possible without each

and every one of them.



10 Acknowledgements



Contents

1 Introduction 31

2 Theoretical background 37

2.1 General ro-vibrational Hamiltonian for a triatomic molecule . . . . . . . . 37

2.2 Ro-vibrational basis set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3 Additional symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.4 Strategy for solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.4.1 The DVR technique . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.4.2 Product approximation . . . . . . . . . . . . . . . . . . . . . . . . 60

2.5 The Hamiltonian operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.5.1 The DVR Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . 64

2.5.2 The Coriolis-coupled Hamiltonians: Rotlev3 and Rotlev3b . . . . . 69

2.6 Line intensities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3 Rotational-vibrational line lists for isotopologues of CO2 77

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2 Review of theoretical works on high resolution IR spectroscopy of CO2 . . 82

3.2.1 Variational approaches . . . . . . . . . . . . . . . . . . . . . . . . 82

3.2.2 Effective Hamiltonians . . . . . . . . . . . . . . . . . . . . . . . . 83

3.2.3 Discrete Variable Representation . . . . . . . . . . . . . . . . . . . 84

3.3 Computational details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.3.1 General procedure for DVR3D calculations . . . . . . . . . . . . . 85

3.3.2 The potential energy and the dipole moment surfaces . . . . . . . . 85

3.3.3 Parameters for nuclear motion calculations . . . . . . . . . . . . . 90

3.4 Resonance interactions of energy levels . . . . . . . . . . . . . . . . . . . 104



12 Contents

3.4.1 What is a resonance interaction? . . . . . . . . . . . . . . . . . . . 104

3.4.2 Types of resonance interactions . . . . . . . . . . . . . . . . . . . 107

3.4.3 Example: Fermi-type resonance in CO2 . . . . . . . . . . . . . . . 108

3.4.4 Example: Coriolis-type resonance in CO2 . . . . . . . . . . . . . . 108

3.4.5 A theory for ro-vibrational intensity borrowing . . . . . . . . . . . 110

3.4.6 The concept of a scatter factor . . . . . . . . . . . . . . . . . . . . 117

3.4.7 Coriolis interactions in the DVR3D formalism . . . . . . . . . . . 118

3.5 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.6 Summary of line lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

3.7 Error analysis: a method for detecting resonances . . . . . . . . . . . . . . 127

3.7.1 Scatter factor statistics . . . . . . . . . . . . . . . . . . . . . . . . 127

3.8 The story of the 2 µm band . . . . . . . . . . . . . . . . . . . . . . . . . . 141

3.8.1 Why is the 2 µm band so important? . . . . . . . . . . . . . . . . . 141

3.8.2 Issues with HITRAN 2012 . . . . . . . . . . . . . . . . . . . . . . 143

3.8.3 2000’s, first ’sub-percent’ measurements . . . . . . . . . . . . . . . 145

3.8.4 A debate over the 1% - NIST comes to rescue . . . . . . . . . . . . 147

3.8.5 Herman-Wallis factors . . . . . . . . . . . . . . . . . . . . . . . . 150

3.9 Comparison with experiment and databases . . . . . . . . . . . . . . . . . 152

3.10 The main isotopologue (626) . . . . . . . . . . . . . . . . . . . . . . . . . 153

3.10.1 Comparison with high-accuracy measurements . . . . . . . . . . . 153

3.10.2 Comparison with other line lists . . . . . . . . . . . . . . . . . . . 155

3.10.3 HITRAN2012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

3.11 Other symmetric isotopologues . . . . . . . . . . . . . . . . . . . . . . . . 160

3.11.1 Isotopologue 636 . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

3.11.2 Isotopologue 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

3.11.3 Isotopologue 828 . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

3.11.4 Comparison with HITRAN2012, Ames and CDSD-296 . . . . . . . 169

3.12 Asymmetric isotopologues . . . . . . . . . . . . . . . . . . . . . . . . . . 178

3.12.1 Comparison with high accuracy measurements . . . . . . . . . . . 178

3.12.2 Comparison with other line lists . . . . . . . . . . . . . . . . . . . 189

3.13 The radioactive isotopologue (646) . . . . . . . . . . . . . . . . . . . . . . 198

3.14 HITRAN 2016 recommended UCL line lists . . . . . . . . . . . . . . . . . 200



Contents 13

3.15 Concluding remarks on CO2 . . . . . . . . . . . . . . . . . . . . . . . . . 202

4 Ro-vibronic line lists for SO2 and CaOCa 204

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

4.2 The potential energy surface and the transition dipole moment surface . . . 210

4.3 Nuclear motion calculations . . . . . . . . . . . . . . . . . . . . . . . . . 213

4.3.1 Wavefunctions and energy levels . . . . . . . . . . . . . . . . . . . 213

4.3.2 Axis-switching effect . . . . . . . . . . . . . . . . . . . . . . . . . 216

4.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

4.4.1 Vibronic spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

4.4.2 Franck-Condon intensities for a large geometry displacement . . . . 229

4.5 Ro-vibronic line list for CaOCa . . . . . . . . . . . . . . . . . . . . . . . . 230

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

5 Beyond the Born-Oppenheimer approximation 239

5.1 A spin-rotational-vibrational-electronic theory for triatomic molecules . . . 239

5.1.1 The Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

5.1.2 Basis set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

5.1.3 Input functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

5.1.4 Solution strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

6 Conclusions 257



14 Contents



List of Figures

2.1 A generalized coordinate system for a triatomic system introduced by Sut-

cliffe and Tennyson [57]. Ai represents the point at which atom i is positioned. 39

2.2 Two types of embedding of the molecule-fixed coordinate frame used in

DVR3D calculations. A1,A2,A3 stand for labels of atom 1, 2 and 3, respec-

tively. r1,r2,θ are Radau coordinates. The molecule-fixed axis system is

centred at the nuclear centre of mass of the triatomic system. However the

point at which Radau coordinates originate is a geometric mean between the

distance from atom A3 and the centre of mass for atoms A1 and A2 and the

distance from the nuclear centre of mass to the centre of mass for atoms A1

and A2. In the bisector embedding the x-axis bisects the θ angle, whereas

in bond embeddings the z-axis is parallel to the r1 or r2 coordinate. . . . . . 45

2.3 A general scheme for the VBR-DVR transformation. . . . . . . . . . . . . 60

3.1 Schematic illustration of the working principle behind the OCO-2 mission

(left panel). Global concentration maps (in ppm) of carbon dioxide from

OCO-2 measurements taken in April 2016 (upper map) and in February

2016 (lower map). Courtesy of NASA/JPL-Caltech. . . . . . . . . . . . . . 79

3.2 A general computational scheme for calculating ro-vibrational spectra from

first principles with the DVR3D suite. . . . . . . . . . . . . . . . . . . . . 86

3.3 Low-resolution convergence map for DVR calculations. Colour code de-

notes the number of vibrational stretching basis functions (NPNT) needed

to achieve mean convergence of energy J = 0 levels below 13 000 cm−1

better than the given 1 cm−1 threshold value. Optimized are ω0 and r0 pa-

rameters of the Morse-oscillator basis functions. The De parameter was set

to 0.3 Hartree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



16 List of Figures

3.4 High-resolution convergence map for DVR calculations. Colour code de-

notes the number of vibrational stretching basis functions (NPNT) needed

to achieve mean convergence of energy J = 0 levels below 13 000 cm−1

better than the given 0.001 cm−1 threshold value. Optimized are ω0 and r0

parameters of the Morse-oscillator basis functions. The De parameter was

set to 0.3 Hartree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.5 Computation time for DVR3DRJZ and ROTLEV3b runs for 12C16O2 as a

function of J quantum number. For the DVR3DRJZ runs the optimized

basis set was chosen and for ROTLEV3b a 100 element ro-vibrational basis

was chosen (IBASS=100). Linear and quadratic fits are also displayed for

DVR3DRJZ and ROTLEV3b runs, respectively. Test computations were

performed with UCL’s high-performance computer facility ’Legion’. . . . . 95

3.6 A general scheme for DVR3D calculations with the full use of symme-

try: the permutation symmetry of identical nuclei (even/odd) and the parity

symmetry (e/f). The upper panel depicts generation of ro-vibrational en-

ergy levels and wavefunctions with DVR3DRJZ and ROTLEV3b programs.

The lower panel represents transition intensity calculations with DIPOLE.

Each symmetry block of the transition dipole moment matrix for P,R and Q

branches is calculated separately. . . . . . . . . . . . . . . . . . . . . . . . 98

3.7 Schematic illustration of an avoided crossing of two states with the same

symmetry. The dashed black lines represent energies of bare (diabatic) non-

interacting states, whereas the blue and red thick curves are adiabatic states.

In the x-axis given is the energetic separation of the diabatic states ∆E0. . . 106

3.8 Schematic illustration of a resonance interaction between two energy lev-

els in CO2 through operator the Coriolis operator Ĉ. Πu is the vibrational
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Chapter 1

Introduction

Monitoring of the Earth’s atmospheric composition has been one of the grand chal-

lenges since the early days of molecular spectroscopy. In fact, understanding the

processes in the Earth’s atmosphere and the impact of humans on it, represents a

fundamental motivation on which modern science is founded. Thus undeniably,

it is of vital importance for us, humans, to understand and responsibly asses our

impact on the environment. This thesis is an attempt to propagate towards this goal.

Among a number of molecules detected in the Earth’s atmosphere, the tri-

atomic molecules represent a major group containing primarily water, carbon diox-

ide, sulphur dioxide, nitrous oxide and ozone [1]. Identifying sources, sinks and

migration mechanisms of these gases is the key to understanding the processes

observed in the Earth’s atmosphere. This, in turn, requires acquisition of highly

accurate molecular absorption spectra from ground based or remote sensing mea-

surements. Carbon dioxide (CO2) is one of the main greenhouse gases and has been

monitored over the years by several government and private funded projects [2–11].

For determination of the concentration of CO2 in the Earth’s atmosphere, both satel-

lite and ground based measurements use infrared transitions between rotational-

vibrational states of this molecule [6, 12–15]. Very often, the measured spectrum is

compared against a laboratory measurement convolved with a supporting spectro-

scopic model, by means of which the information about the concentration is gained.

The accuracy of such schemes relies on the accuracy of the reference data, and the

transition intensities in particular.
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For responsible conclusions on the impact of human activity on the CO2 levels

in the Earth’s atmosphere 1-ppm resolution in retrieved concentration is needed

[16, 17]. This concentration could be determined in the laboratory from atmo-

spheric samples [18, 19]. Such an approach however is incapable of providing the

global maps of CO2 concentration, whereas understanding mechanisms for migra-

tion and depletion of carbon dioxide on the global scale is essential for climate

science [20–23]. For this reason, a number of continuous detection methods on the

global scale have been developed, one of which is remote sensing [2–6]. In such

measurements, it would be ideal to have several isotopologues of carbon dioxide

quantified simultaneously, to learn about the sources of this gas [23]. For example,

the unstable 14CO2 isotopologue containing radioactive 14C is a key trace species

used as a marker for industrial activities [21, 24–26]. Thus, maps of this isotopo-

logue of CO2 could deliver information about pollution sources.

At the end of the day, all remote sensing measurements require accurate tran-

sition intensities and line shapes for several isotopologues, which can be used in

the retrieval procedure [6, 16]. The 1-ppm resolution requirement imposes levels

of accuracy on reference spectra (0.3% for transition intensities [16]) which have

been, until recently, beyond the reach of the experiment [27,28], mainly due to low

natural abundance of isotopologues of CO2 containing 13C, 17O or 18O. Even for

the main isotopologue 12C16O2, the very recent highly sophisticated measurements

reached 0.3%–1% accuracy for a limited number of transitions [28–33].

Spectroscopic databases such as HITRAN [196], HITEMP [34] and GEISA

[35] are partly dedicated for use in the atmospheric retrieval models. These

databases contain mainly, but not only, line-by-line spectra with quantum number

assignments and a number of other spectroscopic parameters, which together are

called a line list. However, for successful ppm-level retrieval of molar fractions of

molecules in the atmospheric measurements, all absorption lines in a given spectral

region have to be characterized, requiring high-resolution supporting data and this

currently represents a major challenge. In fact, for some molecules, such as SO2 in

the ultraviolet region, only cross-sections at few given temperatures and pressures
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are supplied by the present versions of spectroscopic databases. In addition to that,

these databases still have issues with completeness of the data as well as insufficient

quality of line intensities, which have been so far taken only from measurements.

Thus, a significant portion of the results presented in this thesis is motivated

by the need for high accuracy CO2 infrared transition intensities for remote sens-

ing purposes. For this reason, in the first instance, this thesis presents theoretical

line lists for 13 isotopologues of carbon dioxide, which are dedicated to meet the

requirements by the remote sensing, thereby designed to redefine the old paradigm

of solely empirical sourcing of reference data in the atmospheric science. The line

lists are generated by large scale first principles quantum mechanical calculations.

In the first step the rotational-vibrational Schrödinger equation is solved to provide

energy levels and nuclear wavefunctions, and subsequently the transition intensi-

ties between different rotational-vibrational (ro-vibrational) states of the molecule

are calculated. The final calculated transition line positions, transition intensities,

energy levels and appropriate quantum numbers are stored in the form of a line

list, which serves as a comprehensive data source for various purposes [36]. The

accuracy of transition intensities in these line lists for carbon dioxide, which were

generated with an ab initio dipole moment surface (DMS), has reached and arguably

exceeded experimental accuracy [28,32,37–39]. As a result, for 12 isotopologues of

carbon dioxide in the 0 – 8000 cm−1 wavenumber range, the theoretical transition

intensities calculated and presented in this thesis were included in the 2016 release

of the HITRAN spectroscopic database [196].

Detection and quantification of other very important, but less abundant

molecules in the Earth’s atmosphere, such as SO2 or O3 relies on absorption of

ultraviolet (UV) radiation [40–43], which is accompanied by transition between

rotational-vibrational-electronic (ro-vibronic) states of the molecule. For this rea-

son, as a logical follow up to modelling the infrared spectra of carbon dioxide,

we focus on molecular spectra in the UV, associated with ro-vibronic transitions.

The SO2 molecule is chosen as a case study, mainly because of the relatively rich

experimental data available, but also due to its role in measurements of volcanic
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activity [44, 45]. Again, similar to the case of CO2, a molecular line list for SO2

in the UV is calculated, analysed and compared with experiment. The computa-

tion is done within the Born-Oppenheimer (BO) approximation in the ro-vibronic

resolution, which is the first reported high-accuracy ab initio line list of this type.

From the theoretical point of view a major problem with the calculation of accurate

UV spectra of molecules, associated with an electronic transition, is the breakdown

of the Born-Oppenheimer approximation [46, 47]. In many cases, line lists gener-

ated using the BO approximation are of little use [48–53], especially when crossing

between electronic states occurs. On such occasions, an appropriate ro-vibronic

model needs to be constructed. Thus, to continue from the Born-Oppenheimer UV

absorption calculations presented for SO2, we present a general ro-vibronic theory

for the nuclear motion of triatomic molecules, which if implemented, can be used to

generate accurate spectra for any triatomic molecule, regardless of the complexity

of its electronic structure. The thesis concludes on perspective applications of the

methodology used for the calculation of ro-vibrational CO2 and ro-vibronic SO2

spectra to other triatomic molecules.

Chapter 2 gives a theoretical background for calculations of ro-vibrational and

ro-vibronic line lists for triatomic molecules based on methodology given by Ten-

nyson et al. [54, 55].

Chapter 3 presents 54 theoretical infrared line lists calculated for 13 isotopo-

logues of carbon dioxide. This chapter opens with a discussion of the motivation

for calculations on CO2 in the context of atmospheric science. Next, computational

details and a summary of all line lists are given, which is followed by comparisons

of the calculated line lists (line positions and line intensities) to recent high accu-

racy measurements. Two CO2 absorption bands, which are currently used in remote

sensing measurements are selected and analysed in detail in section 3.3. This anal-

ysis, which is done against the most recent and the most accurate intensity measure-

ments available serves as a quality check for the calculations and indicates the very

high accuracy of calculated transition intensities. As a benchmark supporting the

findings of section 3.3, a more comprehensive comparison to popular spectroscopic
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databases is given for all isotopologues. Although each isotopologue of carbon

dioxide is treated in this thesis separately, all isotopologues can be grouped into

the symmetric ones (xOyCxO) and asymmetric ones (xOyCzO), which explains the

organisation of chapter 3. The isotopologue containing the radioactive nuclei 14C

is discussed separately, because of its special role in monitoring of the industrial

activity and extremely low natural abundance.

Along with calculations of ro-vibrational line lists for isotopologues of CO2,

in chapter 3, we present a theoretical procedure for estimation of uncertainty of

calculated transition intensities. This procedure has been found useful in detection

and quantification of the strength of resonance interactions between ro-vibrational

energy levels. In section 3.4 in chapter 3, a theory for ro-vibrational resonance

interactions is developed and utilized to derive the quantities on which the the-

oretical transition intensity reliability analysis, originally introduced by Lodi and

Tennyson [56], operates.

Chapter 4 contains the description of the theoretical procedure, the potential

energy surface and the transition dipole moment surface used to produce the Born-

Oppenheimer line list for the C̃ 1B2 ← X̃ 1A1 electronic transition in SO2. The

computed line list is then compared against other theoretical approaches as well as

available state-of-the-art measurements, with a perspective for further developments

beyond the Born-Oppenheimer approximation.

Finally, following the demands sparked in chapter 4, the fifth chapter aims at

formulation of the nuclear motion theory for triatomic molecules, which accounts

for all ro-vibronic interactions. This theory builds upon the general nuclear motion

formalism introduced by Sutcliffe and Tennyson [57, 58]. A tentative proposition

for the computational implementation of this theory is also presented, with listing

of necessary molecular input functions.
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Chapter 2

Theoretical background

The aim of this section is to introduce key elements of the theory implemented in the

DVR3D program [59] used in generation of the infrared line lists for carbon diox-

ide and the ultraviolet line list for sulphur dioxide. First, a general ro-vibrational

Hamiltonian for a triatomic molecule is derived and expressed in the chosen ro-

vibrational basis set. Next in section 2.4 details of a solution strategy to the station-

ary Schrödinger equation (SE) are given. This strategy mainly relies on a multi-step

diagonalisation-truncation procedure with the use of the discrete variable represen-

tation technique, details of which are also outlined in subsection 2.4.1. Finally, we

show how solutions to the ro-vibrational SE obtained with DVR3D can be used in

transition line strength and transition intensity calculations, for which appropriate

expressions are derived in section 2.6.

2.1 General ro-vibrational Hamiltonian for a tri-

atomic molecule
A general Hamiltonian for the motion of nuclei of a triatomic molecule within the

Born-Oppenheimer approximation is given (in atomic units) by:

Ĥ(x1,x2,x3) =−
1
2

3

∑
i=1

1
mi

∇
2
i (xi)+V (x1,x2,x3) (2.1)

where xi is a vector representing three Cartesian coordinates of nucleus i with mass

mi and V (x1,x2,x3) is the potential energy of the system. In computational prac-
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tice, a direct solution to the stationary Schrödinger equation with the Hamiltonian

from eq. 2.1 is very inconvenient, especially when a large number of solutions is

needed. This is because the Cartesian representation of the Hamiltonian does not

make any use of symmetries of the system. For this reason, it is more convenient to

use a coordinate system in which the internal energy of the system can be at least

approximately decomposed into contributions from individual translational, vibra-

tional and rotational degrees of freedom. Here, this goal is achieved in a number of

steps.

In the first step, the translational motion of the centre-of-mass of the system

is separated. Such separation is possible because of the translational symmetry

of the system in free 3D space, which corresponds to the conservation of linear

momentum [60]. Following Sutcliffe [61], and Sutcliffe and Tennyson [57], the

Cartesian coordinates of nuclei can be transformed into a translationally-invariant

form, by means of relations:

ti =
3

∑
j=1

x jVji i = 1,2 (2.2)

where Vji is a transformation matrix element satisfying the condition: ∑
3
j=1Vji =

0 for i = 1,2. This condition ensures the translational invariance in the set of ti

coordinates, which can now be called the space-fixed coordinate system, i.e. the

coordinate system which moves along with the centre-of-mass of the molecule. In

this new frame, the three translational degrees of freedom of the centre of mass

are fixed and the corresponding kinetic energy operator can be removed, thus one

can focus on the remaining six internal degrees of freedom only. The transformed

Hamiltonian expressed in terms of the ti coordinates reads:

Ĥ(t1, t2) =−
1
2

2

∑
i, j=1

1
µi j

~∇(ti) ·~∇(t j)+V (t1, t2) (2.3)

where~∇(ti) is simply the Nabla operator in ti coordinate and µ
−1
i j =∑

3
k=1 m−1

k VkiVk j.

Transformation 2.2 can be uniquely characterized by two independent parameters,
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g1 and g2 in the following way:

V =


−g2 1

1 −g1

g2−1 g1−1

 (2.4)

which are determined from the geometric definition of the internal coordinate sys-

tem [57], as displayed in Figure 2.1.

A

R

AA

Q

P

1

23

Figure 2.1: A generalized coordinate system for a triatomic system introduced by
Sutcliffe and Tennyson [57]. Ai represents the point at which atom i is positioned.

With this definition, the geometric parameters g1 and g2 can be written as:

g1 =
A3P
A3A2

g2 =
A3R
A3A1

(2.5)

and 0≤ g1,g2 ≤ 1. A3P stands for length of the segment connecting points A3 and

P. Different choices of g1 and g2 yield different popular types of internal coordi-

nates: g1 =
m1

m2+m3
,g2 = 0 gives Jacobi (scattering) coordinates [59], g1 = 0,g2 = 0

gives bond-length-bond-angle coordinates and g1 = 1− α

α+β−αβ
,g2 = 1− α

1−β+αβ

defines Radau coordinates [62], with α =
(

m3
m1+m2+m3

) 1
2 and β = m2

m1+m2
.

The choice of internal nuclear coordinates is primarily dictated by the geome-

try, mass distribution and perhaps symmetries of the system. Appropriately chosen

internal coordinates can significantly reduce the computational cost of calculations,

by ensuring fast convergence of the variational procedure [58,63–66]. However, an-
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other yet equally important factor which has to be taken into account when choosing

internal coordinates is the location of singularities, which appear inevitably [58] in

the ro-vibrational Hamiltonian for any choice of the internal curvilinear coordi-

nates. Thus, it is reasonable to choose coordinates for which these singularities can

be appropriately dealt with or occur at geometries with very high internal potential

energy, so that the wavefunction can be considered as vanishing in these regions.

Otherwise, expectation values of observables and scalar products can be obscured

by a large magnitude numerical noise originating from the singular regions. In

this work we use Radau coordinates [62], which are suitable for a tightly bonded,

semi-rigid triatomic molecule, such as the CO2 molecule. In these coordinates, it

is possible to restrict the singularities in the Hamiltonian to the very high energetic

C–O–O configuration or even, in some cases, eliminate these singularities with an

appropriate choice of the basis set [67].

The length and the mutual orientation of the t1 and t2 vectors determine the

three internal coordinates of the system, whereas directions of t1, t2 in space de-

fine the orientation of the molecule with respect to the laboratory (LAB) frame.

The internal coordinates will be denoted as follows: r1 = |t1|, r2 = |t2| and

θ = arccos
(

t1·t2
|t1|·|t2|

)
. Then, the translation-free Hamiltonian from eq. 2.3 can

be transformed into a Hamiltonian, which is a function of r1,r2,θ and three an-

gles (α,β ,γ) determining the orientation of the t1, t2 vectors with respect to the

space-fixed coordinate system. This can be achieved by means of embedding of the

molecule-fixed coordinate frame, which is mathematically realised by an orthogonal

transformation C of vectors in the space-fixed coordinate frame to a molecule-fixed

coordinate frame:

ti = C · zi i = 1,2. (2.6)

The transformation matrix C(α,β ,γ) can be expressed in terms of Euler angles only

[60, 68, 69], which define the three rotational degrees of freedom of the molecule.

Here the zyz′ convention for the choice of Euler angles is used [60].

With the transformation in eq. 2.6, it is possible to express the Hamiltonian
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from eq. 2.3 in a form which depends on the internal coordinates r1,r2,θ and

the total angular momentum operators Ĵx, Ĵy, Ĵz. These operators generate rota-

tions associated with the x,y and z axis of the molecule-fixed coordinate frame,

respectively, and can be expressed analytically in terms of the three Euler angles:

α,β ,γ [60,68,69]. Now, with the use of the chain-rule the space-fixed Hamiltonian

(eq. 2.3) can be transformed into the molecule-fixed Hamiltonian, with algebraic

methods presented in refs. [57, 58, 61]. The final molecule-fixed Hamiltonian is

given by:

Ĥ(r1,r2,θ ,α,β ,γ)= K̂(1)
V (r1,r2,θ)+µ

−1
12 K̂(2)

V (r1,r2,θ)+K̂V R(r1,r2,θ ,α,β ,γ)+V (r1,r2,θ)

(2.7)

where:

K̂(1)
V (r1,r2,θ) =−

1
2

[
1

µ1r2
1

(
∂

∂ r1
r2

1
∂

∂ r1
+

1
sinθ

∂

∂θ
sinθ

∂

∂θ

)
+

+
1

µ2r2
2

(
∂

∂ r2
r2

2
∂

∂ r2
+

1
sinθ

∂

∂θ
sinθ

∂

∂θ

)] (2.8)

K̂(2)
V (r1,r2,θ) =−cosθ

∂ 2

∂ r1∂ r2
+

cosθ

r1r2

(
1

sinθ

∂

∂θ
sinθ

∂

∂θ

)
+

+sinθ

(
1
r1

∂

∂ r2
+

1
r2

∂

∂ r1
+

1
r1r2

)
∂

∂θ

(2.9)

K̂V R(r1,r2,θ ,α,β ,γ) =
1
2
[
MxxĴ2

x +MyyĴ2
y +MzzĴ2

z +Mxz
(
ĴxĴz + ĴzĴx

)]
+

+
1
i

[(
1−a
µ1r2

1
− a

µ2r2
2

)(
∂

∂θ
+

cot
2

)
+

2a−1
µ12r1r2

(
cosθ

∂

∂θ
+

1
2sinθ

)
+

+
sinθ

µ12

(
a
r2

∂

∂ r1
− (1−a)

r1

∂

∂ r2

)]
Ĵy

(2.10)

here Ĵi are the molecule-fixed angular momentum operators, obeying the standard

commutation relations
[
Ĵi, Ĵ j

]
= iεi jkĴk (where εi jk is the totally antisymmetric Levi-
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Civita tensor). Mαβ are the elements of the inverse generalized moment of inertia

tensor, given explicitly in ref. [70]. In derivation of eqs. 2.8 - 2.10, it was assumed

that the molecule is located in the x–z plane of the right-handed (det(C) = +1)

molecule-fixed coordinate system. The Jacobian associated with the space-fixed to

molecule-fixed transformation is given by r2
1r2

2 sinθ . Here a ∈ [0,1] determines the

orientation of the molecule-fixed z-axis with respect to the direction of r1 (more

specifically r1 makes an aθ angle with the z-axis). In this work, we are using

orthogonal coordinates only, which by definition give µ
−1
12 = 0 [57]. This causes

the second term in eq. 2.7 to vanish. The last term in eq. 2.7, V (r1,r2,θ) is

the potential energy surface (PES) for a given electronic state, defined as the total

electronic energy in this state for a given configuration of clamped-nuclei.

With the ro-vibrational Hamiltonian in hand, let us write down an Ansatz for

the eigenfunction of the ro-vibrational SE:

|Ψ(h)
rv 〉= ∑

i,l
c(h)i,l |Φrot,i〉|Φvib,l,i〉 (2.11)

where index h enumerates solutions to the stationary SE and i, l stand for general

indices characterizing the rotational and vibrational basis states, respectively. Note

that in the DVR3D procedure the vibrational wavefunction is also indexed with

quantum numbers referring to rotational basis states. Such a rotation-vibration cou-

pling scheme was chosen to ensure proper handling of singularities appearing in the

ro-vibrational Hamiltonian. Below, we are going to show how DVR3D solves the

stationary SE with the Hamiltonian given in eq. 2.7 and the variational wavefunc-

tion given in eq. 2.11. First, let us inspect the rotational degrees of freedom in the

wavefunction.

In general, the rotational degrees of freedom cannot be separated out from the

internal degrees of freedom of the molecule, as shown in eq. 2.10. But because the

angular momentum operators Ĵi depend on the Euler angles alone [71], it is feasible

to employ a spectral representation of the symmetric-top model Hamiltonian [60]

for the rotational degrees of freedom (eigenfunctions of Ĵ2 and Ĵz). In the position

representation of the Euler angles the symmetric-top Hamiltonian eigenvectors can
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be expressed as follows1

|J,k,M〉=
√

2J+1
8π2 (−1)kDJ∗

M,−k(α,β ,γ) (2.12)

where DJ
M,k(α,β ,γ) is the Wigner rotation matrix [72]. Here J stands for the total

angular momentum quantum number, k = −J,−J + 1, ...,J− 1,J is the projection

of the total angular momentum on the z-axis in the molecule-fixed coordinate frame

and M is the projection of the total angular momentum on the z-axis in the space-

fixed coordinate frame. The rotational symmetry ( O(3), which with the choice of

orientation of the coordinate system becomes SO(3) ) of the ro-vibrational Hamil-

tonian guarantees independence of the ro-vibrational energy levels of the M quan-

tum number. For this reason, a shorthand notation for the rotational basis func-

tion will be used |J,k,M〉 ≡ |J,k〉. The complete basis set of 2J + 1 functions:

{|J,k〉}k=−J,...,J is used to perform analytical integration over the rotational degrees

of freedom α,β ,γ in the ro-vibrational Hamiltonian given in eq. 2.7, yielding a

set of effective Hamiltonians depending only on three internal coordinates describ-

ing the vibrational degrees of freedom, and parametrized by the J and k quantum

numbers:

ĤJ′J
k′k (r1,r2,θ)δJ′J = 〈J′,k′|Ĥ(r1,r2,θ ,α,β ,γ)|J,k〉α,β ,γ (2.13)

here J is a good quantum number associated with the invariance of the ro-vibrational

Hamiltonian to 3D-space rotations, but k in general is not a good quantum number

for a triatomic molecule. k only becomes a good quantum number, associated with

the Ĵz operator, when the molecule is in its linear geometry (symmetric-top) or all

Coriolis-couplings (K̂V R) are neglected. Without utilizing any further symmetries,

one arrives with the effective vibrational Hamiltonian in the form:

ĤJ
k′k(r1,r2,θ) = δk′k

(
K̂V (r1,r2,θ)+V (r1,r2,θ)

)
+ K̂V R(r1,r2,θ) (2.14)

1note that the ”=” in equation 2.12 is informal, as we are equating an object from the Hilbert
vector space H to a function from L 2. These distinct spaces are are isomorphic, and in this sense
equation 2.12 should be understood.
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where

K̂V (r1,r2,θ) =−
1
2

[
1

µ1r2
1

∂ 2

∂ r2
1
+

1
µ2r2

2

∂ 2

∂ r2
2
+

(
1

µ1r2
1
+

1
µ2r2

2

)
1

sinθ

∂

∂θ
sinθ

∂

∂θ

]
(2.15)

K̂V R(r1,r2,θ)= δk′k±2
1
4

C±Jk±1C±Jkb−+δk′k±1
1
2

C±Jkλ
±+δk′k

1
2
(
b+(J(J+1)− k2)+b0k2)

(2.16)

with

λ
± =

1
µ1r2

1

[
∓(1−a)

(
∂

∂θ
+

cotθ

2

)
+

(
k± 1

2

)
zx2zz2

r2
2 sin2

θ

]
+

+
1

µ2r2
2

[
±a
(

∂

∂θ
+

cotθ

2

)
+

(
k± 1

2

)
zx1zz1

r2
1 sin2

θ

] (2.17)

and

C±Jk = [J(J+1)− k(k±1)]
1
2 , (2.18)

b± =
Mxx±Myy

2
, b0 = Mzz

the zx1 type terms are elements of the molecule-fixed coordinates matrix defined

in eq. 2.6. The ro-vibrational Hamiltonian in the present form takes infinite

values for θ = 0,π , due to 1
sinθ

terms appearing in both its vibrational and ro-

vibrational part. Sutcliffe and Tennyson suggested [58] that these singularities can

be, at least partially, eliminated with the use of the associated Legendre polyno-

mial basis | jk〉= P(|k|)
j (cosθ) for the bending motion. Additionally, this basis cou-

ples the rotational motion through the k quantum number. Indeed, such effectively

rotation-vibration coupled basis results in cancelling of the singular terms in the ro-

vibrational Hamiltonian for certain embedding types. Integration over the bending

coordinate, with the chosen basis in the phase convention of Condon and Short-

ley [73] further simplifies the effective operators to the radial-vibrational form:
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Ĥ(r1,r2) = δk′k

(
K̂V (r1,r2)+V k

j′ j(r1,r2)
)
+ K̂V R(r1,r2) (2.19)

K̂V (r1,r2) =−δ j′ j

[
− 1

2µ1

∂ 2

∂ r2
1
− 1

2µ2

∂ 2

∂ r2
2
+

1
2

j( j+1)
(

1
µ1r2

1
+

1
µ2r2

2

)]
−

−k2

2

(
1

µ1r2
1
+

1
µ2r2

2

)
〈 j′k′| 1

sin2
θ
| jk〉.

(2.20)
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Figure 2.2: Two types of embedding of the molecule-fixed coordinate frame used
in DVR3D calculations. A1,A2,A3 stand for labels of atom 1, 2 and 3, respectively.
r1,r2,θ are Radau coordinates. The molecule-fixed axis system is centred at the
nuclear centre of mass of the triatomic system. However the point at which Radau
coordinates originate is a geometric mean between the distance from atom A3 and
the centre of mass for atoms A1 and A2 and the distance from the nuclear centre
of mass to the centre of mass for atoms A1 and A2. In the bisector embedding the
x-axis bisects the θ angle, whereas in bond embeddings the z-axis is parallel to the
r1 or r2 coordinate.

The form of the rotation-vibration operator K̂V R(r1,r2) depends on the em-

bedding chosen. Here two cases are considered: bond embedding (a = 0,1) and

bisector embedding (a = 1
2 ). Both types of embeddings are depicted in Figure 2.2.

From now on we are going to use Radau internal coordinates [62], which are also

displayed in Figure 2.2. The bisector embedding of the molecule-fixed frame will

be used to calculate ro-vibrational line lists for the symmetric isotopologues of CO2
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whereas the bond embedding will be used for the asymmetric isotopologues of CO2

and for calculation of ro-vibronic spectra for SO2.

Bond embedding. In bond embedding the z-axis in the molecule-fixed coordinate

frame lies along t1 (a = 0) or t2 (a = 1). The vibration-rotation part of the KEO is

then given by

K̂V R(r1,r2) =−δ j′ jδk′k
1

2µ1r2
1
(J(J+1)−2k2)−δ j′ jδk′k±1

1
2µ1r2

1
C±JkC

±
jk (2.21)

Bisector embedding. In the bisector embedding the x-axis of the molecule-fixed

coordinate frame bisects the angle between t1 and t2 (a = 1
2 ). In such case, the

rotation-vibration KEO couples states with k′ = k± 1 and k′ = k± 2 and can be

split into three parts:

K̂(1)
V R(r1,r2) = δk′k

1
8
(J(J+1)−3k2)

(
1

µ1r2
1
+

1
µ2r2

2

)
I(1)j′k′ jk+

+δk′kδ j′ j
1
16

(J(J+1)− k2)

(
1

µ1r2
1
+

1
µ2r2

2

) (2.22)

K̂(2)
V R(r1,r2) = δk′k±1

C±jk
4

(
1

µ2r2
2
− 1

µ1r2
1

)(
δ j′ jC

±
jk +

(
k± 1

2

)
I(2)j′k′ jk

)
(2.23)

K̂(3)
V R(r1,r2) = δk′k±2C±Jk±1CJk

(
1

µ2r2
2
+

1
µ1r2

1

)(
2I(1)j′k′ jk− I(3)j′k′ jk

)
(2.24)

where

I(1)j′k′ jk = 〈 j
′k′| 1

1− cosθ
| jk〉 (2.25)

I(2)j′k′ jk = 〈 j
′k′|1+ cosθ

sinθ
| jk〉 (2.26)
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I(3)j′k′ jk = 〈 j
′k′| jk〉 (2.27)

Coming back to the general embedding, both operator matrices 2.15 and 2.16 are

diagonal in J, and the rotation-vibration coupling operator in eq. 2.16 have a strip-

pentadiagonal structure in k, meaning that it can have non-zero elements only two

rows or two columns away from the diagonal. Such structure allows for an effi-

cient computer implementation, which will be described in section 2.4. The final

form of the rotation-vibration operator depends on the embedding chosen, which

is reasonable, because individual moments of inertia and the magnitude of the

rotation-vibration coupling strongly depend on where the molecule-fixed axis is

placed. A common choice for the molecule-fixed embedding is the so called Eckart

frame [60], which by definition minimizes the coupling between rotations and vibra-

tions. Here however, only embeddings fixed to a chosen set of internal coordinates

will be used; these have been shown to be sufficient for highly accurate nuclear

motion calculations [32, 37–39, 67, 74–77]. Of course, one could be concerned that

a fixed embedding of the molecule-fixed frame will result in poor convergence of

energy level calculations. The Eckart embedding comes to mind naturally. How-

ever, first of all, with the Eckart embedding the form of the kinetic energy operator

becomes complicated [78–81]. Secondly, the Eckart frame is not suitable for very

floppy systems and no advantage could be gained over the fixed embeddings for

such systems [82, 83]. Finally, an efficient algorithm by Tennyson et al. [59], for

solution to the ro-vibrational SE, presented in the following sections, diminishes the

drawback of the non-minimal rotation-vibration coupling. All in all, a good level of

convergence can be achieved with the fixed embeddings too.

Having the effective vibrational Hamiltonian derived, the next step is to choose

a vibrational radial basis, for calculation of the matrix elements of the operators in

eqs. 2.21–2.24. The next section gives a brief description of available radial basis

sets in DVR3D, as well as summarizes on the total ro-vibrational basis. After the

choice of the vibrational radial basis, the resulting Hamiltonian matrix needs to be

diagonalised, to obtain expansion coefficients in eq. 2.11 and ro-vibrational energy
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levels. Details of the diagonalisation step are given in section 2.4.

From the computational perspective, the reduction in the number of degrees of

freedom, from 9 Cartesian degrees of freedom to three effective vibrational degrees

of freedom labelled by rotational quantum numbers is a huge improvement. This

improvement however comes at a cost of singularities arising in the ro-vibrational

Hamiltonian and the complicated form of the kinetic energy operator. On the other

hand, as we expected, in the internal coordinates framework it is easy to identify vi-

brational, rotational and rotational-vibrational parts of the Hamiltonian, thus physi-

cally motivated approximations can be made at hand.

2.2 Ro-vibrational basis set
Following the previous section (cf. eq. 2.11), the trial variational wavefunction for

DVR3D can be generally written as:

|Ψ(h)
rv 〉= ∑

i,l
c(h)i,l |Φrot,i〉|Φvib,l,i〉 (2.28)

For the rotational degrees of freedom the complete symmetric-top eigenbasis was

chosen |Φrot,i〉 = |J,k〉. Each vibrational basis wavefunction |Φvib,l,i〉 is factorized

into three independent sets of primitives, each depending on a single vibrational

coordinate: |Φvib,l,i〉= |m〉|n〉| jk〉. Then l = m,n, j, i = J,k. For the bending vibra-

tional motion the associated Legendre polynomial basis is used | jk〉= P(k)
j (cosθ).

The combined angular-bending basis set |Φrot−bend〉= |J,k〉| jk〉 is an eigenbasis for

the Ĵ2 and Ĵz operator. For the product radial-vibrational basis |m〉|n〉 (where |m〉

refers to the r1 coordinate and |n〉 refers to the r2 coordinate) two types of functions

will be considered: the Spherical oscillator basis [59, 84] and the Morse oscillator-

like basis [59, 84]. The Morse oscillator-like basis is defined as:

|n〉= Nnαβ
1
2 Lα

n (x(r))x(r)
α+1

2 e−
x(r)

2 (2.29)

with

x(r) = Ae−β (r−re) (2.30)
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where

A =
4De

β
β = ω0

(
µ

2De

) 1
2

; (2.31)

α has been defined by Tennyson and Sutcliffe as the integer part of A [59, 84, 85].

With this definition, the Morse oscillator-like functions |n〉 constitute a complete

orthonormal basis set, a property which is missing in the ’standard’ Morse oscillator

eigenbasis. Here NnαLα
n (x(r)) is a normalised associated Laguerre polynomial and

µ is the reduced mass related to a vibrational coordinate. ω0 and De are standard

Morse potential parameters, related to the width and depth of the potential well,

respectively. The number of bound states for the Morse oscillator is the integer part

of A−1
2 .

Note that the Morse oscillator and Morse oscillator-like basis do not vanish

at r = 0 (x(0) = Aeβ re), as one may expect. Nonetheless, in the r = 0 region the

Morse potential increases rapidly, making it almost un-explorable for the wavefun-

cion. Moreover, the value Aeβ re is typically large enough for the exponent factor

in eq.(2.29) to damp other factors almost to 0. Hence, without significant loss in

accuracy it is possible to replace the finite boundary value Aeβ re with +∞ in inte-

grations, making them analytically feasible. Thus, the Morse oscillator-like basis is

applicable for r 6= 0. Whenever a vibrational coordinate has a chance to penetrate

regions near r = 0, the Morse basis set can give inaccurate results; is it then more

suitable to use the Spherical oscillator basis set defined as:

|n〉= Nnα+ 1
2
2

1
2 β

3
4 L

α+ 1
2

n (x(r))x
α+1

2 e−
x(r)

2 (2.32)

with

x(r) = β r2 (2.33)

where

β = (µω0)
1
2 (2.34)

The Morse-like oscillator basis set depends on three parameters: De,ω0 and re

and the Spherical oscillator basis set depends on parameters: α,ω0. These pa-
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rameters can be considered as non-linear variational parameters, and should be

optimized. Such optimization is performed for CO2 in section 3.3.3 in chapter

3. At this stage, the full Hamiltonian matrix is labelled by the following indices:

J,k,m,n, j, meaning that for a chosen J, the Hamiltonian has the dimension of

(2J + 1)×Nr1 ×Nr2 ×Nθ , where Nr1,Nr2 and Nθ are sizes of 1D vibrational basis

sets associated with coordinates r1,r2 and θ , respectively. The size of the vibra-

tional basis set is system-specific and is chosen to ensure an appropriate level of

convergence of energy levels. Further reduction in the vibrational basis set size can

be made with the use of symmetries of the system.

2.3 Additional symmetries
From the perspective of computational efficiency one usually should utilize all rel-

evant physical symmetries of the system, so that the Hamiltonian operator acts

acts irreducibly in Hilbert space spanned by the ro-vibrational the basis functions:

|J,k〉|m〉|n〉| jk〉. In other words, we want to find a complete set of observables com-

muting with the Hamiltonian. Such an operation is also usable from the point of

view of spectroscopic assignments, which are based on all good quantum numbers

of the system. It is thus convenient to have the ro-vibrational wavefunctions labelled

by all good quantum numbers of the system. The variational basis set defined in the

previous section can be written as:

|J,h〉=
J

∑
k=−J

∑
m,n, j

cJ(h)
k,m,n, j|J,k〉|m〉|n〉| jk〉 (2.35)

The parity operation E∗, which is a feasible symmetry operation for all

molecules 2, can be used to construct a symmetry-adapted basis, which further fac-

torizes the Hamiltonian matrix and introduces spectroscopically an important sym-

metry label. The parity symmetry operation transforms states with k quantum num-

ber into states with−k, and vice versa: which in the classical picture means that the

clockwise and anti-clockwise rotation of the molecule around the molecule-fixed z-

axis is energetically equivalent. For this reason, it is convenient to symmetry-adapt

2if ’weak nuclear interactions’ are neglected.
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the rotational-bending basis, by means of the following unitary transformation:

|J,K, j, p〉= 1√
2(1+δk0)

| jk〉⊗ (|J,k〉+(−1)p|J,−k〉)∗ (2.36)

where the new quantum number p = 0,1 is associated with the parity symmetry of

the ro-vibrational state and determines the e/ f Wang labels (p = 0 for the e state

and p = 1 for the f state); now K = |k| takes integer values from p to J. In such

a basis, only positive values of k can be considered and the full Hamiltonian is

factorized into independent blocks with p = 0 and p = 1 of dimension J +1 and J,

respectively.

For triatomic symmetric XY2 molecules for which the molecule-fixed axis

system is chosen so that the x-axis (or z-axis) bisects the Y–X–Y angle [67], an

additional symmetry can be utilized to simplify the Hamiltonian matrix: the per-

mutation symmetry of identical nuclei P12. The permutation operator interchanges

r1 and r2 coordinates, hence effectively acts on radial vibrational basis functions.

For this reason, the radial-vibrational basis set can be unitarily transformed into its

symmetry-adapted form:

|m,n,q〉= 1√
2(1+δmn)

(|m〉⊗ |n〉+(−1)q|n〉⊗ |m〉) , m≥ n (2.37)

where |m〉⊗ |n〉 stands for the tensor product of vibrational basis states associated

with the first r1 and the second r2 stretching Radau coordinate, respectively. m and

n label the 1D basis states. The new vibrational parity quantum number takes two

values: q = 0 for ’even’ vibrational states and q = 1 for ’odd’ vibrational states.

Note that the character of the permutation P12 of identical nuclei acting on the basis

state in eq. (2.37) is (−1)q+k and the character of the parity E∗ operation acting on

the basis state in eq. (2.36) is (−1)p+J .

Utilization of the rotational parity and the vibrational parity decomposes the

Hilbert space of the problem into simple sum of four independent sub-spaces for

each J: H J
p,q
⊕

H J
p,1−q

⊕
H J

1−p,q
⊕

H J
1−p,1−q. This allows to run calculations in-
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dependently in each of these reduced subspaces. Mixing of these reduced Hilbert

spaces occurs when we consider the electronic dipole moment operator µ̂el in tran-

sition intensities calculations. Then, µ̂el mixes subspaces according to rigorous

selection rules: |∆q|= 1 and for ∆J = 0: |∆p|= 1 and ∆J =±1: |∆p|= 0 .

With the above transformations, the final ro-vibrational basis set used in the

present implementation of DVR3D is given by the expression:

|J,h, p,q〉=
J

∑
K=p

∑
m,n, j

CJ,(h),p,q
mn jK |m,n,q〉⊗ |J,K, j, p〉 (2.38)

This basis will be used to calculated matrix elements of the Hamiltonian in eq. 2.7.

2.4 Strategy for solution

As we could see in the preceding sections, the total ro-vibrational Hamiltonian

matrix is constructed gradually by integrating over rotational, bending and radial

stretching degrees of freedom. Direct calculation of the matrix elements of the

KEO and the PES in the basis presented in eq. 2.38 is impractical, and becomes pro-

hibitive for higher J values. For this reason Sutcliffe and Tennyson proposed a two-

step procedure of diagonalizing the ro-vibrational Hamiltonian matrix [67, 86, 87].

In the first step a Coriolis-decoupled Hamiltonian is considered:

ĤK = δK,K′K̂V +δK,K′K̂rv +δK,K′V (2.39)

and the respective SE is solved with K = |k|= p, p+1, ...,J as a good quantum num-

ber for each J separately. This approximation is valid for any system with negligible

Coriolis coupling, which mixes states with different K. With these assumptions, the

solutions to the SE in the first step can be written as:

|J, p,q,K,h〉= ∑
m,n, j

dJ,(h),K,p,q
mn j |m,n,q〉⊗ |J,K, j, p〉 (2.40)

with the corresponding energy levels εJ,(h),K,p,q. For a chosen J it is necessary to

solve only J+ p nuclear motion problems for K = p,1, ...,J.
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In the second step, solutions to the first step are used as the variational basis.

Typically, good convergence is achieved with even very contracted basis set from

the first step, because the Coriolis-decoupled basis captures the majority of physical

information about the vibrational motion, hence becomes an excellent basis. For

this reason, one can usually choose only a small percentage of solutions from the

first step to achieve a good convergence level. The final wavefunction mixes states

with different K’s, as suggested by the form of the KV R operators:

|J,h, p,q〉=
J

∑
K=p

f J,h,p,q
K |J, p,q,K,h〉=

J

∑
K=p

∑
m,n, j

CJ,(h),p,q
mn jK |m,n,q〉⊗ |J,K, j, p〉

(2.41)

where in the last equality we retained the form of the wavefunction from eq. 2.38.

The first step of solving the ro-vibrational SE sketched above is implemented

in the ”DVR3DRJZ” program [59, 67]. It uses a discrete variable representation

(DVR) to obtain values of the matrix elements of the Coriolis-decoupled Hamilto-

nian. Below, in a nutshell, we will therefore introduce the essential basics of the

DVR theory. Next, we shall discuss the second variational step implemented in

programs Rotlev3, Rotlev3b or Rotlev3z, depending on embedding used.

2.4.1 The DVR technique

The discrete variable representation (DVR) is a technique originally developed by

Harris et al. [88] which was later implemented by Light et al. [89, 90] to solve

quantum-mechanical problems in the nuclear motion theory. In this technique the

physical space is discritized and respective quantum-mechanical quantities are de-

fined on a finite grid of points.

The reason for using DVR, in a nutshell, is that the DVR technique produces

sparse matrices, which can be efficiently diagonalised by iterative algorithms. Al-

ternatively, if one utilizes a two-step procedure like the one proposed by Sutcliffe

and Tennyson [67, 86, 87], it has been shown by Lee et al. [91] and Bramley et

al. [92] that a DVR can provide an optimal contracted basis, such as the one pre-

sented in subsection 2.4. It is a matter of choice, whether to choose the former
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or the latter convenience coming from DVR [92]. Combining the DVR technique

with a two-step variational procedure gives much better convergence than in the

standard single-step variational approach. In addition to that, with DVR, there is

no need for calculating N(N +1)/2 matrix elements in the potential energy part of

the Hamiltonian matrix. Below, given is an introduction to the DVR, oriented for

the purposes of use in DVR3D. Here we shall not follow any textbook derivation of

DVR, but rather introduce a natural, in author’s opinion, way of defining it in terms

of quantum mechanical transformations.

Historically, the first discrete variable representations were based on orthogo-

nal polynomials used in solutions to the SE for model systems, e.g. Harmonic oscil-

lator (Hermite polynomials) [93], Hydrogen atom (Laguerre polynomials), Morse

oscillator (associated Laguerre polynomials) [94,95], particle in the square potential

well (Chebyszev polynomials) or Legendre Polynomials for problems with spher-

ical symmetry. Nonetheless, there are many more types of DVRs and their use

is currently much broader than molecular spectroscopy, see reviews by Light and

Bacic [89], and Light and Carrington [90] or Szalay [96].

In the variational basis representation (VBR), matrix elements of the potential

energy operator are given by

(
VVBR

)
i j
=
∫ b

a
φi(x)V (x)φ j(x)dx (2.42)

where an orthonormal basis set {φi}i=1,...,N was chosen. Let us transform this vari-

ational basis into a new basis, which we will be calling the ’Exact Discrete Variable

Representation’ (EDVR). The word exact suggests here complete equivalence of

EDVR to the original variational representation. The VBR-EDVR basis change is

defined as follows:

(d0(x),d1(x), ...,dN−1(x)) = (φ0(x),φ1(x), ...,φN−1(x))T (2.43)

where di(x) is the EDVR basis, which contains functions localized in space around

certain points. We are aiming at transformation from a usually diffuse variational
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basis to a basis which is highly localized around given points in space, and in the

limit of the complete basis set, these highly localized functions become Dirac deltas.

With this target in mind, now let us postulate a general form for the transformation

T , by means of some chosen N coordinate points, {xi}i=0,...,N−1:

Tik = tkφi(xk), i,k = 0,1, ...,N−1 (2.44)

where tk is yet to be determined and φi(xk) is the value of the basis function φi(x) at

point xk. Note that up to now all functions are defined over the continuous variable

space. A physical requirement of the equivalence of the EDVR and VBR basis sets

means that we demand quantum mechanical scalar products to be identical in both

representations. This is achieved by imposing the condition thath the transformation

2.44 is unitary:

TT† = 1⇒
(

TT†
)

i j
=

N−1

∑
k=0

t2
k φi(xk)φ j(xk) = δi j (2.45)

Because TT† = 1 and we assume a priori the existence of the inverse of T, we have

T† = T−1, hence the relation T†T = 1 appears as a corollary. In other words, if the

relation 2.45 holds, ’the other’ relation must be satisfied as well, for transformation

T to be unitary:

T†T = 1⇒
(

T†T
)

i j
=

N−1

∑
k=0

tit jφk(xi)φk(x j) = δi j (2.46)

The next step is to find a complete set of functions satisfying eq. 2.45. There

are probably infinitely many possible solutions to this equation. Historically, Gaus-

sian quadratures were first associated with DVR by Harris et al. [88], Dickinson et

al. [97] and Light et al. [98]. The DVR3D procedure uses only Gaussian quadrature-

based discretization schemes (DVRs), thus here we only discuss Gaussian-type

quadratures. For further reading refer to [89, 90]. In this light, it is useful to re-

gard the sum in eq. 2.46 as a Gaussian quadrature. The sum in eq. 2.46 a has

similar form to the Gaussian quadrature associated with integral
∫

φi(x)φ j(x)dx.
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Such N-point quadrature is exact for polynomials up to degree 2N− 1. Therefore,

it is natural to define φ as a product of some orthogonal polynomial p(x) and an

associated positive weight function ω(x), imposing the relations 2.45–2.46 to be

exact.

φi(x) =
√

ω(x)pi(x) (2.47)

The square root of the weight function ω(x) is to ensure the proper orthogonality

relations3 for φ . The form of ti can be now easily guessed: ti =
√

Ai
ω(xi)

, which

entails

(
TT†

)
i j
=

N−1

∑
k=0

Ai pi(xk)p j(xk) =
∫ b

a
ω(x)pi(x)p j(x)dx = δi j (2.48)

where Ai are weights associated with the N-point Gaussian quadrature based on

orthogonal polynomials p(x). The above sum represents a Gaussian quadrature for

the overlap integral (scalar product) of orthogonal polynomials, and is computed

exactly. The second orthogonality relation then reads

(
T†T

)
i j
=

N−1

∑
k=0

√
AiA j pk(xi)pk(x j) = δi j (2.49)

which yields the following sum rule:

N−1

∑
k=0

pk(xi)pk(x j) =
δi j√
AiA j

(2.50)

At this stage we have fully defined a unitary basis transformation in N-element

space over the continuous variable physical space (function space). Formally, for

a chosen operator V̂ the EDVR-VBR transformation can be written in the matrix

form 4:

VEDVR = TTVVBRT (2.51)

3Note that by definition
∫ b

a ω(x)pi(x)p j(x)dx = δi j
4Because the basis transformation is defined as di = ∑k φkTki and 〈di|V |d j〉 = V DV R

i j =

∑k,t Tki〈φi|V |φ j〉Tk j =
(
T TVV BRT

)
i j
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The EDVR basis functions are localized around the associated quadrature points.

The type of quadrature is dictated by the choice of the orthogonal polynomial p(x)

and the exact location of points is given by the order of the quadrature N. Local-

ization is more effective as the number of basis functions (quadrature points N)

increases, and in the limit of the infinite basis EDVR functions become Dirac delta

distributions [99]:

(
VEDVR

)
i j
=
∫

di(x)V (x)d j(x)dx−→
∫

δ (x− xi)V (x)δ (x− x j)dx =

=
∫

V (xi)δ (xi− x j)dx =V (xi)δi j

(2.52)

here the di(x) basis functions are defined over continuous domain, localized in dis-

crete points and packed infinitely densely one next to another. All above relations

between DVR and VBR are exact, since we operate within a limit of infinitely

dense quadrature nodes (i.e. continuous representation). Because the EDVR and

VBR basis sets are unitarily connected, they are quantum-mechanically equivalent

(i.e. all scalar products and expectation values of observables are equal in both basis

sets). Truncations in the VBR basis implies non-perfect-localization of the corre-

sponding EDVR basis. For this reason, in computational practice, when a finite

set of variational basis functions is used, eq. 2.52 is satisfied only approximately:(
VDVR)

i j ≈ V (xi)δi j. The matrix of the potential energy operator in ’finite basis

EDVR’, which is simply called ’DVR’, is not exactly diagonal, however the off-

diagonal elements are assumed to ’be small’ (smaller and smaller for larger basis

size). In computational practice, the physical space is always discretized. For this

reason, it is usually necessary to choose a discrete set of points in physical space

over which scalar products are computed. In DVR, for this purpose the set of Gaus-

sian quadrature nodes {xi}i=0,...,N−1 is used.

Recall the EDVR-VBR transformation:

di(x) =
N−1

∑
j=0

Tjiφ j(x) (2.53)
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In discrete coordinate space, for xk 6= xi we have

di(xk) =
N−1

∑
j=0

√
Aiω(xk)p j(xi)p j(xk) (2.54)

and on account of relation 2.49 we find

di(xk) =

√
ω(xk)

Ai
δik (2.55)

It means that the DVR basis vanish everywhere except in one quadrature node,

where it takes a non-zero value determined by the type and size of the quadrature.

We shall take advantage of this fact by defining the physical space spanned over

those quadrature points. In a continuous representation, basis functions generally

take non-zero values between discrete points, however they tend to be smaller with

increasing distance to the central point. Such choice of grid points justifies the

following approximation to the matrix elements of the potential energy function:

V EDV R
i j = 〈di(x)|V (x)|d j(x)〉=

∫ b

a
di(x)V (x)d j(x)dx≈V DV R

i j =

N−1

∑
k=0

Ak

ω(xk)
di(xk)V (xk)d j(xk) =

N−1

∑
k=0

Ak

ω(xk)

√
ω(xk)

Ai
δikV (xk)

√
ω(xk)

A j
δ jk =V (xi)δi j

(2.56)

Because the definition of DVR, given in eq. 2.44, mixes the coordinates space and

functions space, the discretization of space can be viewed from two perspectives.

One of them is to look at the VBR integrals as finite sums, exactly as the Gaussian

quadrature does. In this sense, the finite number of elements in the sum representing

the VBR integral is associated with discretization of space in the corresponding

DVR:

(
VVBR

)
i j
≈V FBR

i j =
N−1

∑
k=0

Ak

ω(xk)
φi(xk)V (xk)φ j(xk) =

N−1

∑
k=0

TikV (xk)TT
k j (2.57)
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and the last sum is equivalent to matrix element of product of three matrices:

(
VFBR

)
i j
=

N−1

∑
k=0

TikV (xk)T†
k j =

(
TVDVRT†

)
i j

(2.58)

Such a representation of the potential energy operator matrix is called Finite basis

representation - FBR. Finite basis representation changes integral representation of

the inner product into discrete inner product deified by corresponding quadrature

nodes. The FBR is totally equivalent to the DVR, because the two are related by a

unitary transformation, which preserves the inner product, hence do not change the

mean values of observables of a system. Of course, VDVR remains diagonal

VDVR = diag(V (x0), ...,V (xN−1)) (2.59)

hence T is a unitary transformation matrix from the finite basis representation to

the discrete variable representation basis, where the potential energy (and all local

operators) matrix is diagonal. Note that after diagonalization the quadrature points

often need to be scaled to represent physical quantities.

To sum up, we postulated the form of VBR – DVR basis transformation, with

the requirement of unitarity, which led to the appropriate transformation of operator

matrices. Orthogonal polynomials were chosen as trial VBR functions, for which

the Gaussian quadrature integration could be performed exactly. Thus, for functions

of the position operator which are in the form of sufficiently low order polynomial

(N or lower), the FBR integrals are exact, which entails that the DVR pointwise

representation of these operators will also give the exact result. When this condition

is fulfilled the DVR can be considered variational. However, matrix elements of

non-local operators and non-polynomial position operators can be evaluated only

approximately, which renders the DVR technique as non-variational. Whenever

the FBR or DVR matrix elements are non-exact, it is possible that the variational

principle (MacDonald’s theorem [100]) is not satisfied. A FBR usually uses extra

quadrature points to ensure variational behaviour. A summary of this section is

displayed in Figure 2.3, where a scheme is given relating EDVR, FBR, VBR and
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DVR.
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Local operators

diagonalDVR

FBR DVR TV TV T=

Figure 2.3: A general scheme for the VBR-DVR transformation.

2.4.2 Product approximation

The DVR-FBR transformation can be derived from yet another, more practical point

of view. This approach is called product approximation [90] and it provides a pro-

cedure for generating the DVR-FBR transformation matrices by means of diagonal-

isation of the position operator matrix.

In general, the position operator matrix is of infinite size, as the position oper-

ator X is unbounded and acts irreducibly on the Hilbert space (in other words the

largest invariant subspace of the Hilbert space for the position operator is the full

space). In the VBR the matrix elements of X are written as:

(
XVBR

)
i j
=
∫ b

a
φi(x)xφ j(x)dx≈

N−1

∑
k=0

Ak

ω(xk)
φi(xk)xkφ j(xk) = TikxkTT

k j (2.60)
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As long the
(
XVBR)

i j matrix is truncated to size N×N and the basis functions are

orthogonal polynomials of degree N − 1, the integrand is of degree 2N − 1, and

can be evaluated exactly by a Gaussian quadrature. It means that T matrix diago-

nalizes position operator matrix in the orthogonal polynomials basis. As a result,

eigenvalues of X in this basis correspond to quadrature points and the diagonalising

transformation matrix is related to the quadrature weights. Diagonalisation of XVBR

unambiguously defines the DVR.

XDVR = TTXVBRT (2.61)

The VBR representation of the position matrix in the orthogonal polynomials basis

is straightforward to derive, on account of three-term recurrence relations for or-

thogonal polynomials and the position operator matrix is tridiagonal. In practice,

diagonalising this matrix is the most efficient way of finding a DVR.

At this stage a few obvious questions arise: how does the Gaussian quadrature

(FBR) approximation refer to the present position operator derived basis? Are these

approaches equivalent? Is there any advantage of using one over another?

Following Harris et al. [88] VVBR can be approximated with:

VVBR ≈ V
(

XVBR
)

(2.62)

It is postulated that such approximation is equivalent to the FBR approximation:

V
(

XVBR
)
= VFBR (2.63)

In other words, we replace the matrix element of a function of the position operator

with the same function of the matrix element of the position operator:

〈ψi(x)|V (x)|ψ j(x)〉 ≈V
(
〈ψi(x)|X |ψ j(x)〉

)
(2.64)

If we assume that the potential energy function is expandable in a power series, then
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within a given radius of convergence we may write:

V (x) =
+∞

∑
n=0

cnxn (2.65)

and in the postulated FBR approximation matrix elements of potential energy read:

V (XVBR) =
+∞

∑
n=0

cn

(
XVBR

)n
(2.66)

On account of relation 2.61 the VBR monomials in the position operator take the

form: (
XVBR

)n
=
(

TXVBRTT
)n

= T
(

XDVR
)n

TT (2.67)

where orthogonality of T matrix was used. As long as XDVR is diagonal, so is its

n−th power. Finally,

V
(

XVBR
)
= T

(
+∞

∑
n=0

cn

(
XVBR

)n
)

TT (2.68)

proves the equivalence of the product approximation with the Gaussian quadrature

approach. The inherent error of DVR(FBR) approximation lies within the approxi-

mation from eq. 2.64. To show it more explicitly, let us point that matrix elements of

the potential energy function are built from terms containing powers of the position

operator. As the Hilbert space is complete (as well as our orthogonal polynomial ba-

sis set) it is possible to decompose the matrix elements of n-th power of the position

operator into a sum of products of n matrices:

〈ψi(x)|xn|ψ j(x)〉=
+∞

∑
k=0
〈ψi(x)|xn−1|αk(x)〉〈αk(x)|x|ψ j(x)〉= ...

+∞

∑
k1=0

...
+∞

∑
kn=0
〈ψi(x)|x|αkn(x)〉...〈αks(x)|x|αks(x)〉...〈αk1(x)|x|ψ j(x)〉

(2.69)

Now by truncating the resolutions of identity inserted in between the position oper-

ators we formally conduct an approximation equivalent to the Gaussian quadrature

approximation. Infinite matrices in eq. 2.69 are replaced with truncated matrices,
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and the product approximation is retrieved:

+∞

∑
ks=0
|αks(x)〉〈αks(x)| ≈

n

∑
ks=0
|αks(x)〉〈αks(x)|

〈ψi(x)|xn|ψ j(x)〉 ≈
n

∏
l=1

XVBR =
(

XVBR
)n

(2.70)

Note a close relation to eq. (2.57), where the infinite dimensional scalar product

(integral) is being replaced by a finite dimensional one.

To conclude, diagonalization of the position operator matrix is equivalent to

applying a Gaussian quadrature to VBR integrals. In other words Gaussian quadra-

tures and the product approach are operating at exactly the same level of approxi-

mation and can be used interchangeably.

2.5 The Hamiltonian operator

In an ideal case, the ro-vibrational Hamiltonian can be represented in the VBR, with

its matrix elements evaluated exactly. In computational practice, the error in varia-

tional calculations is due to truncation of the matrix and approximate calculation of

the matrix elements.

Diagonalisation of the VBR Hamiltonian gives energy levels and wavefunc-

tions in the form of expansion coefficients

HVBR
diag = β

THVBR
β (2.71)

where the transformation matrix β diagonalizes HV BR. The kinetic energy opera-

tor for a triatomic molecule, as discussed in section 2.1, contains first and second

derivatives with respect to internal coordinates, as well as functions of these coordi-

nates. In this case, matrix elements of the KEO can be calculated analytically in the

VBR, which is discussed in detail by Szalay [101]. Then why not to use the VBR

for solving the whole nuclear motion problem? First of all, a very efficient basis set

contraction is possible with combination of DVR and a two-step variational proce-

dure discussed in subsection 2.4. Secondly, in the VBR one is required to calculate



64 Chapter 2. Theoretical background

(N+1)N/2 matrix elements of the potential energy function, which is sometimes a

formidable task. In the DVR on the other hand, one needs to calculate the values of

the potential function at many different grid points.

With the above motivation, the VBR Hamiltonian is transformed into a DVR,

which can be formally written as

HDVR = TTKVBRT+VDVR (2.72)

where VDVR = diag(V (x0), ...,V (xN−1)). Thus, whenever the matrix elements of

the KEO can be computed analytically in the VBR, the only action needed is trans-

formation of this matrix into the DVR representation. Finally the DVR Hamiltonian

needs to be diagonalised. The procedure for multi-step construction of solutions to

the stationary SE and sequential diagonalisation in DVR3D is described in the next

two sections. We conclude this section with a sum-up equation relating the VBR,

FBR and DVR Hamiltonian:

HVBR ≈HFBR = TTHDVRT (2.73)

2.5.1 The DVR Hamiltonian

Purely vibrational energy levels (J = 0). In this section, we derive formally the

matrix elements of the effective vibrational Hamiltonian given in eq. 2.14, which is

used in the DVR3DRJZ program. First, we start with the J = 0 Hamiltonian in the

VBR. After that we are going to consider Coriolis-decoupled Hamiltonians for J > 0

also in VBR. Next, an appropriate FBR-DVR transformation will be exploited to

arrive in a pointwise representation for the Hamiltonian. With a DVR Hamiltonian

a three-step diagonalisation-truncation solution strategy is presented. The resulting

wavefunctions serve as a basis for the full Coriolis-coupled problem discussed in

section 2.5.2.

Matrix elements of J = 0 effective radial Hamiltonian are given by

〈m′,n′, j′|ĤJ=0(r1,r2,θ)|m,n, j〉 (2.74)
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The form of the effective vibrational Hamiltonian in eq. 2.14 indicates five types of

VBR matrix elements [59]

h(1)m′mn′n j′ j = 〈m
′|− 1

2µ1

∂ 2

∂ r2
1
|m〉δ j′ jδn′n

h(2)m′mn′n j′ j = 〈n
′|− 1

2µ2

∂ 2

∂ r2
2
|n〉δ j′ jδm′m

g(1)m′mn′n j′ j = 〈m
′| 1

2µ1r2
1
|m〉 j( j+1)δ j′ jδn′n

g(2)m′mn′n j′ j = 〈n
′| 1

2µ2r2
2
|n〉 j( j+1)δ j′ jδm′m

Vm′mn′n j′ j = 〈m′,n′, j′|V (r1,r2,θ)|m,n, j〉

(2.75)

in terms of which the Hamiltonian in eq. 2.74 reads:

〈m′,n′, j′|ĤJ=0(r1,r2,θ)|m,n, j〉= h(1)m′mn′n j′ j +h(2)m′mn′n j′ j +g(1)m′mn′n j′ j+

+g(2)m′mn′n j′ j +Vm′mn′n j′ j

(2.76)

Rotational excitation (J>0) in DVR. For J > 0, in the first step of the two-step

Sutcliffe-Tennyson procedure K is treated as a good quantum number. For this rea-

son all off-diagonal matrix elements in K′,K are neglected, which leaves the purely

vibrational Hamiltonian from eq.2.76 plus terms diagonal in K from the KV R oper-

ator given in eq. 2.21 and 2.22. Thus for J > 0 the Coriolis-decoupled Hamiltonian

in the VBR is given as

〈m′,n′, j′|δk′kĤJ
k′k(r1,r2,θ)|m,n, j〉= 〈m′,n′, j′|ĤJ=0(r1,r2,θ)|m,n, j〉+

+g(s)m′mn′n j′ j

(
J(J+1)−2k2) (2.77)

for bond embedding (s = 1 for the bond embedding along r1), and
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〈m′,n′, j′|δk′kĤJ
k′k(r1,r2,θ)|m,n, j〉= 〈m′,n′, j′|ĤJ=0(r1,r2,θ)|m,n, j〉+

+〈m′,n′|K(1)
V R(r1,r2)|m,n〉

(2.78)

for the bisector embedding. These Hamiltonians need to be transformed into the

DVR. Note that here the molecule-fixed z-axis is a quantization axis, thus for a

given J, a set of Hamiltonians for K = p, p+1, ...,J is considered.

The 3D VBR (FBR) to DVR transformation of the Hamiltonian, formally writ-

ten in eq. 2.73, can be expressed as a product of 1D transformation matrices:

T = T(r1)T(r2)T(θ); (2.79)

each 1D transformation refers to a single vibrational coordinate. In DVR3D [59],

Gauss-Laguerre quadrature scheme is used for DVR in radial coordinates r1,r2 and

Gauss-Legendre quadrature scheme for the bending coordinate θ :

T (r1)
mγ = N(1)

m

(
ω

(1)
m

) 1
2

Hm(r1γ)

T (r2)
nβ

= N(2)
n

(
ω

(2)
n

) 1
2

H̃n(r2β )

T (θ)
jkα

= N(θ)
m

(
ω

(θ)
jk

) 1
2

P(k)
j (θα)

(2.80)

where Hm(r1γ) are Hermite polynomials of degree m and P(k)
j (θα) are associated

Legendre polynomials. N(1)
m ,N(2)

n ,N(θ)
m are normalisation factors for respective

transformations. With these transformation matrices, the DVR Hamiltonian can

be written as:

Hα ′αβ ′βγ ′γ = K(1)
γ ′γ δα ′αδβ ′β +K(2)

β ′β δα ′αδγ ′γ +L(1)
α ′αδγ ′γδβ ′β +L(2)

α ′αδγ ′γδβ ′β+

+δk′kKV Rγ ′γβ ′βα ′α +V (r1γ ,r2β ,θα)δγ ′γδβ ′β δα ′α

(2.81)
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where K(1)
γ ′γ , K(2)

β ′β , L(1)
α ′α , L(2)

α ′α are matrix elements of respective parts of the VBR

Hamiltonian given in eq. 2.76 transformed into DVR by means of transformation

in eq. 2.79. For bond embedding KV Rγ ′γβ ′βα ′α then reads:

KV Rγ ′γβ ′βα ′α = L(1)
α ′αδγ ′γδβ ′β

(
J(J+1)−2k2) (2.82)

and for the bisector KV Rγ ′γβ ′βα ′α it is

KV Rγ ′γβ ′βα ′α = δγ ′γ
1
8

(
M(1)

γ ′γ +M(2)
β ′β

)(1
8
(
J(J+1)− k2)+δk1

)
, (2.83)

with M(1)
γ ′γ = δγ ′γ

1
2µ1r2

1γ

and M(2)
β ′β = δβ ′β

1
2µ2r2

2β

.

Solution strategy. Having the DVR matrix elements of the ro-vibrational Hamil-

tonian in hand, a diagonalisation scheme can be applied. For the largest saving in

the computer time, and for keeping as much information as possible in the form

of a contracted wavefunction, a three-step diagonalisation-truncation procedure has

been used by Tennyson et al. [59, 102]. From the DVR point of view there are

three independent variables: r1γ ,r2β ,θα . The order, in which solution to the SE is

constructed is important from the computational point of view. In general, the last

coordinate in the order, should be associated with the highest density of states [103].

For this reason, it has been decided that r2β → r1γ → θα ordering (θ comes last) is

the most appropriate.

In the first step, for each α and γ , 1D Hamiltonian matrices H1D are constructed

and indexed by β ′β :

(
H1D)(γ,α)

β ′β = K(2)
β ′β +V (r1γ ,r2β ,θα)δβ ′β (2.84)

where we used a general form of the DVR Coriolis-decoupled Hamiltonian from eq.

2.81. Diagonalisation of
(
H1D)(γ,α)

β ′β gives eigenvalues
(
E1D)(γ,α)

h and eigenvectors(
C1D)(γ,α)

hβ
. Then a user-controlled-truncated (parameter E1D

MAX ) 1D eigenbasis is

used in solution to the 2D problem, defined by the Hamiltonian:



68 Chapter 2. Theoretical background

(
H2D)(α)

β ′βγ ′γ =
(
H1D)(γ,α)

β ′β +K(1)
γ ′γ δβ ′β (2.85)

which is indexed by β ′β and γ ′γ and needs to be calculated for all α values. In the

eigenbasis of the 1D problem the 2D Hamiltonian can be rewritten as:

(
H2D)(α)

h′hγ ′γ =
(
E1D)(γ,α)

h δh′hδγ ′γ +K(1)
γ ′γ ∑

β

(
C1D)γα,h

β

(
C1D)γ ′α,h′

β
(2.86)

For Y–X–Y systems, for which r1 - r2 symmetrization is possible, the computer

time can be further reduced [59,102,104] by constructing and diagonalising the 2D

Hamiltonian matrices in one step. The memory and time requirements needed to

diagonalise all 2D matrices is usually negligible in comparison with the full 3D

problem [102]. After diagonalisation of these 2D Hamiltonian matrices, only solu-

tions
(
C2D)αl

γh with energies
(
E2D)α

l lower than E2D
MAX are chosen for the final step,

with the 3D Hamiltonian:

(
H3D)(α)

l′lγ ′γ =
(
E2D)(α)

l δl′lδα ′α+

+∑
γβ

(
L(1)

α ′α +L(2)
α ′α

)
∑
s

(
C2D)αl

γs

(
C1D)γαs

β ∑
s′

(
C2D)α ′l′

γs

(
C1D)γα ′s

β

(2.87)

The MAX3D and MAX2D parameters in the DVR program additionally con-

trol the size of the 2D and 3D Hamiltonians, respectively. Diagonalisation of the

Hamiltonian in eq. 2.87 yields final energy levels Eh and wavefunction coefficients(
C3D)

βhl . At the end of the day, the DVR output wavefunction is defined on a 3D

grid and labelled by J, k and h quantum numbers:

|J,h,k〉= ψ
Jkh
γβα

= ∑
l

(
C3D)

βhl ∑
s

(
C2D)αl

γs

(
C1D)γαs

β
(2.88)

Note that in DVR the K-dependence of solutions is encoded in both the Hamilto-

nian and the bending basis set. Note that any symmetries are here neglected for

simplicity. Extension to the p-symmetry labelled problem is straightforward. Fi-
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nally, the DVR wavefunctions and energy levels are passed to the second step of the

full solution procedure, where Coriolis-couplings are taken into account.

2.5.2 The Coriolis-coupled Hamiltonians: Rotlev3 and Rotlev3b

Rotlev3. In the bond embedding the Rotlev3 program is used for solving the

Coriolis-coupled nuclear motion problem. The Hamiltonian for this system in the

representation of eigenfunctions from the first step can be written as [59]:

〈h′,k′, p′|ĤJ
k′k|h,k, p〉= EJ,k

h δh′hδk′k+

−(1+δk0 +δk′0)
− 1

2 δk′,k±1 ∑
γ,β , j

ψ
Jk′h′
γβ j ψ

Jkh
γβ jC

±
J,k′C

±
j,k′M

(i)
ααββ

(2.89)

where a symmetry adapted form of the wavefunction from DVR is used, and the

DVR wavefunction has been transformed into FBR (ψJkh
γβ j = ∑α T α

j ψJkh
γβα

) where

the angular contribution to the full Hamiltonian is diagonal. Here k = p, p +

1, ...,J, p = 0,1. Similarly as in DVR, in Rotlev3 user is given control over the

size of the variational basis set (parameter IBASS). The p = 1 matrix is simply a

submatrix of the p = 0 matrix. For this reason only the p = 0 matrix needs to be

constructed.

Rotlev3b. In the bisector embedding the Rotlev3b program is used to solve the

Coriolis-coupled nuclear motion problem. Eigenbasis from the first step is used in

DVR in all three coordinates. With the vibrational and the parity symmetries used,

the full Hamiltonian reads:

〈h′,k′, p′,q′|ĤJ
k′k|h,k, p,q〉= EJ,k

h δh′hδk′k+

−(1+δk0 +δk′0)
− 1

2 δk′,k±1C±J,k′ ∑
γ,β , j

ψ
Jkh
γβα

ψ
Jkh
γβα ′

(
M(1)

ααββ
−M(2)

ααββ

)
J(1)k±1,k,α ′,α

−(1+δk0 +δk′0)
− 1

2 δk′,k±2C±J,k′±1C±J,k′ ∑
γ,β , j

ψ
Jk′h′
γβα

ψ
Jkh
γβα ′

(
M(1)

ααββ
+M(2)

ααββ

)
J(2)k±2,k,α ′,α

(2.90)

where,
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J(1)k′,k,α ′,α = ∑
j′ j

T α ′(k′)
j′

(
δ j′ j +

(
k′+ k

2

)
I(2)j′k′ jk

)
T α(k)

j

J(2)k′,k,α ′,α = ∑
j′ j

T α ′(k′)
j′

(
δ j′ j +

(
k′+ k

2

)
〈 j′k′|1+ cosθ

1− cosθ
| jk〉
)

T α(k)
j

(2.91)

Direct diagonalisation of this Hamiltonian generates final wavefunctions and energy

levels. Next, the final wavefunctions are transformed to FBR in the angular coordi-

nate and can be further passed to a program for transition intensity calculations:

|J,h, p,q〉= ψ
Jhpq
γβ j (2.92)

2.6 Line intensities
In this section we derive and inspect a general expression for the transition line

strength in terms of wavefunctions provided by the Rotlev programs. In the deriva-

tion, transitions between different Born-Oppenheimer electronic states will be con-

sidered, for the sake of generality and for future use in Chapter 4. Thus, in this

section we will be discussing rotational-vibrational-electronic or ro-vibronic transi-

tions. The effective formula for the line strength in the Franck-Condon approxima-

tion is also discussed below. The final expressions for the transition line strength

given below are used in the DIPOLE program, which is a part of the DVR3D suite

for calculating transition intensities. Following the theory developed in this section,

for the purposes of this work, the original version of the DIPOLE program [59] has

been adopted to include transitions between different electronic states within the

Born-Oppenheimer approximation.

First, we shall make an excursion to discuss the general form of the total in-

ternal wavefunction for a triatomic molecule. The total internal wavefunction of

the molecule must contain information about the electronic, nuclear and all spin

degrees of freedom. For the majority infrared spectroscopic purposes it is sufficient

to assume independence of the spin degrees of freedom from the dynamical degrees

of freedom. As a consequence, the total internal wavefunction for the molecule is
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separable into the nuclear spin part, the electronic part (Born-Oppenheimer approx-

imation) and the ro-vibrational part, as written below:

|Φint〉= |Φnspin〉|Φelec,(i)〉|J,h, p,q〉 (2.93)

where Φelec,(i) is the wavefunction for the i-th electronic state and can be ob-

tained from quantum chemistry calculations, Φnspin is easily construed in a finite-

dimensional Hilbert space with a chosen standard spin basis. The ro-vibrational

part of the wavefunction is provided in our case by the Rotlev routines. From now

on, we are going to focus on the ro-vibronic part of the total internal wavefunc-

tion : |Φelec,(i′)〉|J′,h′, p′,q′〉 ≡ |J′,h′, i′, p′,q′,~D′〉, where the additional label ~D′ has

been given to denote all quantum numbers which not affect the energy of the state

(degeneracy labels).

The quantum probability for the |i〉 ≡ |J′′,h′′, i′′, p′′,q′′,~D′′〉 → | f 〉 ≡

|J′,h′, i′, p′,q′,~D′〉 ro-vibronic transition is given in the dipole approximation by the

square modulus of the electric transition dipole moment vector ∑A=X ,Y,Z

∣∣∣T A,~D′′,~D′
i f

∣∣∣2
[60], where the summation is carried out over three Cartesian components of the

electric dipole moment of the molecule in the laboratory frame A = X ,Y,Z. Indi-

vidual transition probabilities are then summed over all degenerate states, labelled

by vector ~D:

Si f = ∑
A=X ,Y,Z

∑
~D′′,~D′

∣∣∣T A,~D′′,~D′
i f

∣∣∣2 (2.94)

giving a quantity called the line strength, which can be directly related to experi-

mentally measured integral line intensity [60]:

I(ṽi f ) =
8π2NA

12ε0hc
ṽi f

Q(T )
gns exp

(
−Ei

kbT

)[
1− exp

(
−

ṽi f

kbT

)]
Si f (2.95)

where ṽi f is the transition wavenumber between the i’th and f ’th ro-vibronic state

and Q(T ) is the partition function at temperature T . NA is the Avogadro number, kb

is the Boltzmann constant, h is the Planck constant, c is the speed of light in vacuum
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and ε0 is the permittivity of vacuum. gns is the spin statistical weight for the initial

state i resulting from summation over degenerate nuclear spin functions. The values

of spin statistical weights depend on the ro-vibronic symmetry of the state. Thus,

the measured transition line strength is directly related to the total internal state

of the molecule, including nuclear spin states. Units for integral line intensity are

cm/molecule.

The electric transition dipole moment is defined as

T A,~D′′,~D′
i f = 〈J′′,h′′, i′′, p′′,q′′,~D′′

∣∣∣µ̂A,space
el

∣∣∣J′,h′, i′, p′,q′,~D′〉 (2.96)

and its value is identical for all components of ~D except the projection M of the total

angular momentum on the space-fixed Z-axis. The space-fixed transition dipole

moment can be transformed into a spherical tensor form [105], which transforms

irreducibly in the 3D rotations group:

~µspace
el,sph = K~µspace

el (2.97)

where,

K =


− 1√

2
i√
2

0
1√
2

i√
2

0

0 0 1

 (2.98)

is a unitary (|det(K)| = 1, K†K = 1) transformation matrix between the Cartesian

operator and rank 1 spherical tensor operator [105]. The electric dipole moment

for a neutral molecule is invariant under translations in free space, so the ’LAB’

components (X ,Y,Z) of the transition dipole moments can be rewritten in terms of

Cartesian components in the space-fixed coordinate system (ξ ,η ,ζ ) with the origin

at the nuclear center of mass [60]. In what follows, the transition dipole moment

can be expressed as

T A
i f = ∑

A=ξ ,η ,ζ

1

∑
σ=−1

K†
Aσ ∑

~D,~D′
T̃ σ ,M,M′

i f (2.99)
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As a result of new transformation properties of the transition dipole vector, a

straightforward transformation to the molecule-fixed coordinate system can be

achieved with Wigner D-matrices:

~µspace
σ =

1

∑
σ ′=−1

D(1)
σσ ′(α,β ,γ)~µmol

σ ′ (2.100)

where α,β ,γ denote Euler angles and subscripts ’el’ and ’sph’ have been dropped

for clarity of presentation. After rather lengthy algebra with extensive use of prop-

erties of 3-j symbols, the line strength takes the form [106–108]:

Si f =
1
4
(
2S′′+1

)(
2S′+1

)(
2J′′+1

)(
2J′+1

)[
(−1)J′′+J′+1 +(−1)p′′+p′

]2

×

∣∣∣∣∣∣∣∣
+1

∑
σ=−1

J′,J′′

∑
K′=p′
K′′=p′′

(−1)K′′bσ

q′q′′

1 J′ J′′

σ K′ K′′

 ∑
m′,n′, j′

m′′,n′′, j′′

CJ′,i′,h′,p′,q′

m′n′ j′K′ CJ′′,i′′,h′′,p′′,q′′

m′′n′′ j′′K′′ Mσ ,i′′,i′
m′m′′n′n′′ j′ j′′K′K′′

∣∣∣∣∣∣∣∣
2

(2.101)

The (2S′+1)(2S′′+1) prefactor in eq. (2.101) comes from summation over all com-

binations of degenerate electron spin functions, as the electronic spin is preserved in

a transition within the present model, S′′= S′. Similarly, the (2J′+1)(2J′′+1) pref-

actor comes from summation over all combinations of degenerate rotational basis

functions, characterized by the M quantum number. bq′q′′ is a symmetry depen-

dent numerical factor defined in ref. [59]. The coefficients CJ′,i′,h′,p′,q′

m′n′ j′K′ denote varia-

tional coefficients for the ro-vibrational wavefunction in a given electronic state (i′).

Mσ ,i′′,i′
m′m′′n′n′′ j′ j′′K′K′′ is the matrix element of the electric dipole moment operator in the

primitive vibrational basis defined in section 2.3,

Mσ ,i′′,i′
m′m′′n′n′′ j′ j′′K′K′′ = 〈 j

′′K′′|〈m′′|〈n′′|µ i′′,i′
σ (r1,r2,θ) |n′〉|m′〉| j′K′〉, (2.102)

where

µ
i′′i′
σ (r1,r2,θ) = 〈Φelec,(i′′)

∣∣∣µ̂mol
σ

∣∣∣Φelec,(i′)〉 (2.103)
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is the σ -th spherical tensor component of the molecule-fixed electronic transition

dipole moment surface between electronic states i′′ and i′. In eq. (2.103) integration

is carried over electronic coordinates only, leaving dependence on three internal

(Radau) coordinates r1,r2,θ . This function is called the electronic transition dipole

moment surface (TDMS) and can be obtained, for example, by fitting a predefined

functional form to points calculated from a quantum chemistry package. For many

molecules, the dependence of TDMS on internal coordinates is weak, and it is often

replaced by a constant value of the transition dipole at equilibrium geometry µ
eq
σ ≡

µ
ge
σ

(
req

1 ,req
2 ,θ eq). In such case we talk about the Condon approximation [60] to the

electronic transition dipole moment:

Mσ ,i′′,i′
m′m′′n′n′′ j′ j′′K′K′′ = µ

i′′,i′
σ

(
req

1 ,req
2 ,θ eq)〈m′′|m′〉〈n′′|n′〉〈 j′′K′′| j′K′〉 (2.104)

due to the choice of the identical orthonormal basis in the ground and the excited

electronic state, the integrals in eq. (2.104) become Kronocker’s deltas:

Mσ ,i′′,i′
m′m′′n′n′′ j′ j′′K′K′′ = µ

i′′i′
σ

(
req

1 ,req
2 ,θ eq)

δm′′m′δn′′n′δ j′′ j′ (2.105)

which significantly reduces the number of summed terms in the expression for the

line strength, so that only the elements with the same indices in the coefficients

vectors CJ′′,M′′,i′′,h′′,p′′,q′′

m′n′ j′K′ are needed. This simplification compensates the extra com-

putational time needed for wavefunction calculations when using identical grid for

all electronic states. Note that identical basis sets are assumed for all electronic

states.

Si f =
1
4
(
2S′′+1

)2 (2J′′+1
)(

2J′+1
)[

(−1)J′′+J′+1 +(−1)p′′+p′
]2

×

∣∣∣∣∣∣∣∣
+1

∑
σ=−1

µ
eq
σ

J′,J′′

∑
K′=p′
K′′=p′′

(−1)K′′bσ

q′q′′

1 J′ J′′

σ k′ k′′

 ∑
m′′,n′′, j′′

CJ′,i′,h′,p′,q′

m′n′ j′K′ CJ′′,i′′,h′′,p′′,q′′

m′′n′′ j′′K′′

∣∣∣∣∣∣∣∣
2

(2.106)
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Expression given in eq. 2.106 comprises rotational and vibrational degrees of

freedom. Traditional vibrational Franck-Condon approximation operates only on

vibrational wavefunctions, with the Franck-Condon factors defined as the square

modulus of the overlap integral between two vibrational wavefunctions [109] Fi j =∣∣∣〈φ i
vib|φ

j
vib〉
∣∣∣2. Then the vibrational band strength is proportional to the vibrational

Franck-Condon factor. Here this definition is generalized onto ro-vibrational tran-

sitions.

The 3-j symbol [105] appearing in eq. (trans:strength) and (2.106) and the[
(−1)J′′+J′+1 +(−1)p′′+p′

]2
factor are responsible for selection rules. From the

former, it follows that in order for the line strength not to vanish the following con-

ditions must be satisfied: |J′′− J′| = 0,1, J′′+ J′ ≥ 1 and ∆K = 0,±1. Selection

rules for J quantum number define P,Q,R branches for ∆J = J′′−J′=+1,0,−1, re-

spectively. Selection rules for the K = |k| quantum number allow transitions of type

k→−k, which reflects the time-reversal symmetry of the system. For ∆K = 0 only

the z-component of the molecule-fixed electronic transition dipole moment con-

tributes to the overall line intensity, and because z-axis is chosen here as the axis of

quantization, we call these transitions parallel. Accordingly ∆K =±1 corresponds

to perpendicular transitions, as both x components of the electronic transition dipole

moment contribute to the total intensity. For the Q branch (∆J = 0) only transitions

which change the p quantum number are allowed, i.e. e↔ f ,e = e, f = f . Con-

versely, P and R branches allow transitions conserving p, i.e. e = f ,e↔ e, f ↔ f .

Neglecting the dependence of the TDMS on nuclear coordinates does not affect the

rotational selection rules, but it can however make the vibrational selection rules

stronger for example by forbidding vibrational overtone transitions.

The DIPOLE3 code, which we use for calculation of intensities in the present

work, uses a mixed DVR-FBR representation for ro-vibrational wavefunctions, as

given by eq. 2.92. Radial integrals in the ro-vibronic transition dipole moment

in eq. 2.102 are carried out in the DVR representation, but the integral over the

bending coordinate, which is formally in FBR, is evaluated using a Gauss-Legendre

quadrature scheme with k = 0. This means, that the final expression for the tran-
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sition line strength contains coefficients defined over a 3D DVR grid, however, the

angular grid is different than the original grid used in DVR program, due to back

transformation to FBR (in Rotlev) and re-transformation to DVR in DIPOLE:

CJ′′,i′′,h′′,p′′,q′′

m′′n′′ j′′k′′ = ∑
α,β ,γ

(T )k′′=0
jγ (T )mα

(T )nβ
CJ′′,i′′,h′′,p′′,q′′

αβγk′′ (2.107)

where the unitary transformation matrix for the bending coordinate (T )k=0
jγ is de-

fined on a Gauss-Legendre quadrature grid for k = 0 and the unitary transformation

matrices for stretching coordinates (T )mα
and (T )nβ

are defined over the Gauss-

Laguerre quadrature grid.

From the line strength, it is straightforward to calculate the integral transition

intensity I given in eq. 2.95, which is directly related to the intensity of the attenu-

ated incident radiation for a given wavelength, as in the Beer-Lambert law [60]

I
I0

= e−σ(ν̃)·N·L (2.108)

which relates the intensity of the absorbed radiation I, the reference radiation in-

tensity I0, the path length L and the the absorption cross-section σ(ν̃) to N - the

concentration of molecules. Absorption cross section depends on the wavenumber

ν̃ and is related to the integral line intensity by the relation:

σ(ν̃) =
∫

I(ν̃ ′− ν̃) f (ν̃ ′)dν̃ (2.109)

In order to obtain absorption cross sections [31, 110, 111] the integral line intensity

function (combined line intensities for a range of wavelengths) needs to be convo-

luted with a line shape function f (ν̃ ′). This aspect of producing molecular spectra

is particularly relevant for atmospheric science in determining concentrations of

molecules from remote sensing and ground based telescope measurements. In this

thesis, the main focus is on the step of accurate calculation of integral transition

intensities.



Chapter 3

Room temperature infrared

rotational-vibrational

line lists for 13 isotopologues of

carbon dioxide

This chapter discusses the theoretical procedure for generating infrared, ro-

vibrational line lists for 13 isotopologues of CO2. The importance of carbon dioxide

and its isotopologues is outlined the next section, which focuses particularly on the

need for accurate transition intensities required by remote sensing experiments.

This is followed by a description of the procedure for generating theoretical line

lists, which involved the use of the DVR3D suite and a sensitivity analysis of tran-

sition intensities. Finally, results of calculations are comprehensively compared

to recent accurate measurements, semi-empirical databases and other theoretical

approaches. The chapter is summarized in the context of meeting the requirements

for remote sensing measurements of CO2 in the Earth’s atmosphere.

3.1 Motivation
Carbon dioxide is an inert gas in the Earth’s atmosphere, therefore it can be rela-

tively easily traced for studying the atmospheric circulation. Monitoring the con-

centration of carbon dioxide in the Earth’s atmosphere remains a priority task for
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a constantly growing number of government funded projects. This greenhouse gas

has been a fingerprint of anthropogenic activity since the industrial revolution, by

which time its atmospheric concentration is estimated to have risen from 280 ppm

to over 380 ppm [112]. A 20% increase in the CO2 atmospheric concentration has

been observed over the past half-century - the most dramatic change in human his-

tory [113]. Mapping the circulation of the CO2 gas in the troposphere is clearly vital

to understanding and hopefully controlling the CO2 content and hence the climate

change [114, 115]. Several space missions are dedicated to explicitly monitor the

atmospheric CO2 molar fraction in high geographic resolution: GOSAT [2], AS-

CENDS [3], AIRS [4], CarbonSat [5] and recently launched NASA’s OCO-2 mis-

sion [6–9]. Remote sensing measurements are cross-compared with ground based

projects, such as Total Carbon Column Observing Network (TCCON) [10, 116]

or Network for Detection of Atmospheric Composition Change (NDACC) [11], to

look at the overall CO2 concentration and its time variation, but more importantly to

pinpoint where CO2 is being produced (sources) and where it is going (sinks). Fu-

ture missions, such as UK’s Twinkle [117], ARIEL [118] and NASA’s JWST [119],

are designed to probe atmospheres of exoplanets, many of which are believed to

have carbon dioxide as its major component [120–122].

Infrared absorption spectroscopy is the leading technique for precise determi-

nation of molar fractions of gases in atmospheres [3, 5, 10, 123, 124]. A major aim

of these measurements is to establish carbon dioxide concentration at 1 ppm level

or better [16, 27]. The uncertainty budget, which results from apparatus imper-

fections and random noise is estimated to be from 0.5 ppm to 1.5 ppm for the

OCO-2 mission [17]. A major source of the systematic error in CO2 concentration

retrievals are reference line intensities and line profiles provided from experiment

or theory [9, 31, 125, 126]. The accuracy requirement for transition intensities for

remote sensing experiments is 0.3 –1%, which translates into 1-3 ppm resolution

in CO2 concentration [16]. Because some level of control over this error is possi-

ble, significant efforts have been made to minimize the uncertainty of the reference

parameters, especially line intensities (see [27] and references therein). The CO2
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Figure 3.1: Schematic illustration of the working principle behind the OCO-2 mis-
sion (left panel). Global concentration maps (in ppm) of carbon dioxide from OCO-
2 measurements taken in April 2016 (upper map) and in February 2016 (lower map).
Courtesy of NASA/JPL-Caltech.

concentration retrieval process for the OCO-2 mission is currently (2017) under

way [6]. The need for accurate transition intensities for remote sensing, particularly

the OCO-2 mission, had prompted a number of theoretical and experimental studies

devoted to calculation or measurement of transition intensities for the CO2 ’weak

band’ (1.6 µm) and the ’strong band’ (2.06 µm), which are typically used in space-

based measurements [27,31,127–129]. Detailed comparisons given in the following

sections reveal that the present state-of-the-art measurements and calculations still

do not meet requirements for remote sensing. For this reason, the present study is a

response to the demand for more accurate models for transition intensities.

Other isotopologues. Up to 75% increase in the atmospheric CO2 over recent

decades have been associated with industrial fossil fuel combustion. For differenti-

ation between different CO2 pollution sources, a method for measuring isotopic ra-

tios 14C/13C/12C and 16O/17O/18O can be employed. These ratios remain crucial for

modelling Earth’s geophysical processes [130–134], but also for example, in inves-

tigating processes of formation of radiation fields in the Martian atmosphere [23],
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which is 96% rich in carbon dioxide [23]. Accurate knowledge of high resolu-

tion IR spectra for all isotopologues of carbon dioxide is essential in techniques

for real-time monitoring of 13C/12C isotope ratios [131, 135, 136]. Such measure-

ments are often used in identification of bio-geo-chemical origins of carbon dioxide

emissions from the soil-air interface [137]. Spectra of CO2 isotopologues are be-

ing increasingly considered for application in medical diagnosis, such as the recent

suggestion that observations of infrared absorptions by 13C16O2 in breath provides

a non-invasive means of diagnosing gastrointestinal cancers [138].

The low natural abundances (see Table 3.4) of 13C, 14C, 17O and 18O usually

inhibit high accuracy measurements of integral line intensities on minor CO2 iso-

topologues. Spectral congestion from more abundant carbon dioxide isotopologues

and other molecules is the main problem when attempting to integrate the area under

the peak, to obtain the integral intensity for a line. Therefore experimental accura-

cies of line intensities for trace abundant isotopologues of carbon dioxide are in

general lower than for the main isotopologue. Theoretical line lists come to rescue

in such cases.

The unstable 14C16O2 isotopologue is of special importance among other

isotopologues because of its usage in dating of bio-samples and, more recently,

in monitoring emissions, migrations and sinks of fossil fuel combustion prod-

ucts [20, 139, 140] as well as in assessment of contamination from nuclear power

plants [25]. Until recently, monitoring fossil fuel emission relied mostly on β -

decay count measurements [141] or mass spectrometry [142], both of which are

high cost, invasive methods. Despite its low natural atmospheric abundance, radio-

carbon dioxide has been probed via optical spectroscopy methods [26, 143–145].

Recent advances in absorption laser spectroscopy provided an unprecedented tool

for detection of species containing radiocarbon of ratios 14C/12C down to parts per

quadrillion. These measurements exploit a new spectroscopic technique called

saturated-absorption cavity ring down (SCAR) [146] for measurements of the

strongest lines in fundamental bands of 14CO2 [26,144]. The knowledge of accurate

line intensities for several isotopologues at the same time is therefore a necessity for
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eliminating the unwanted noise sourced in traces of different isotopic carbon diox-

ide representatives. For instance the P(20) line of the 00011 – 00001 band (00011

means ν1 = 0,ν2 = 0, l = 0,ν3 = 1,n = 1, i.e. asymmetric stretching fundamental

band) in 14CO2, which is used in radiocarbon measurements, above certain temper-

atures, interferes heavily with the Lorentzian tail of the P(19) line in the 05511 –

05501 band of the 13C16O2 (’636’) isotopologue [147]. This raises difficulties in re-

trieving unbiased concentrations of the radioactive isotopologue. Similar problems

occurred in measurements based on the P(40) line of the ν3 band of 14CO2 [148].

In both cases accurate values of line intensities are required. Otherwise, as shown

in [148], calculation of the fraction of 14C in measured samples that employed a

line strength taken from a theoretical approach, led to over 35 % error in retrieved

concentrations (as later confirmed by alternative experiments (AMS) [142]). These

observations were explained in terms of both inaccuracies of the line intensity and

drawbacks of the spectroscopic fit model used, which fuels the need for reliable

line intensity sources. Another successful technique further supporting this need

was recently introduced by Genoud et al. [143], cavity ring-down spectroscopy with

quantum cascade laser for monitoring of emissions from nuclear power plants.

One of the reasons for calculating a new set of infrared line lists for all im-

portant isotopologues of carbon dioxide was still the insufficient accuracy of the-

oretical approaches and experiments available at that time (three years ago). The

newly published dipole moment surface (DMS) of Huang et al. [149] from NASA

Ames Research Center (which was claimed to be the most accurate DMS available)

revealed some discrepancies in comparisons to experiment and the the HITRAN

2012 database, which led to a general conclusion that the ’Ames’ DMS still does

not meet the requirements for remote sensing measurements. In this chapter, we

show how present calculations meet the requirement of sub-percent accuracy in

transition intensities, proving to be more accurate than other theoretical models and

arguably some state-of-the art measurements.
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3.2 Review of theoretical works on high resolution IR

spectroscopy of CO2

This section reports on the most notable works aimed at computation of accurate

line lists for carbon dioxide. Apart from the most widespread method of fitting ex-

perimental data to a predefined quantum mechanical model for transition frequen-

cies and transition intensities, a number of first principles theoretical approaches

have been developed over the years, which were dedicated to calculating transition

frequencies, transition intensities and line shapes for small molecules. CO2 is one

of the best studied molecules in terms of molecular spectroscopy, yet still it presents

some unsolved issues.

3.2.1 Variational approaches

The variational method [60] is becoming more popular in solving the nuclear mo-

tion problem for triatomic molecules [150–154]. The main source of error in vari-

ational calculations is attributed to inaccuracies in the potential energy surface and

the dipole moment surface [152]. Line positions are influenced by the quality

of the PES. Ab initio PESs usually give energy levels with 1 cm−1 accuracy or

worse [65,75,155,156]. This is because a number of components contributes to the

overall uncertainty budget in ab initio calculations: finite basis set error, truncated

CI expansion, non-Born-Oppenheimer corrections, relativistic or even quantum-

electrodynamical effects for electrons [156]. Empirical refinement is one the most

straightforward way of improving this accuracy to the level of 0.01 – 0.5 cm−1 for

systems like CO2 [157] or H2O [75,158]. The situation is not the norm for transition

intensities [154]. It has been shown that a fully ab initio dipole moment surface is

capable of providing sub-percent accuracy in transition intensities [28]. Only spe-

cialist experiments are capable of providing parameters at this level of accuracy.

Early theoretical works on CO2 were however far from meeting requirements

for comparisons with high resolution measurements. In fact, spectroscopic accuracy

in line positions has not been hitherto reached by variational methods.

Wattson et al. [159,160] produced the first comprehensive line lists using vari-
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ational nuclear motion calculations with the use of a potential energy surface (PES).

A major step toward more accurate line positions and intensities was made by the

NASA Ames Research Center in a series of papers by Huang et al. [149, 157, 161].

Line lists from Huang et al. , called ”Ames-1”, provide both line positions and inten-

sities covering the infrared and visible spectral region (J = 0−150) for room tem-

perature (296 K) and 1000 K. Line positions, derived from a variational approach

and based on semi-empirical mass-independent potential energy surface (PES), are

accurate to 0.01 – 0.1 cm−1 for the main isotopologue of CO2. Line intensities cal-

culated with the ab initio Ames DMS are estimated to be 1-10% accurate for the

main isotopologue.

Although the Ames line lists have been proven to be very accurate for the main

isotopologue of carbon dioxide, a question remained about transferability of this

high accuracy into other isotopologues. For line positions the accuracy of Ames

line lists, based on a mass-independent PES, was shown nearly constant in all 13

isotopologues [157]. For line intensities however the limited experimental data

on rare isotopologues did not give a definite answer to whether or not non-Born-

Oppenheimer effects play any significant role in CO2’s infrared spectra. Very re-

cently new experimental studies shown that line intensities calculated from Ames

PES and Ames DMS are indeed reasonably accurate for both the symmetric and

asymmetric isotopologues of CO2 [31, 128, 162–164]. This important observa-

tion supports the thesis that line intensities can be computed variationally using

mass-independent PES for all isotopologues with little loss in accuracy. This means

that the non-Born-Oppenheimer corrections give negligible, possibly mutually can-

celling effects, which enter the stipulated uncertainty budget.

3.2.2 Effective Hamiltonians

A widely-used alternative theoretical approach to variational calculations is based

on effective operators for the Hamiltonian and the spectroscopic dipole moment

[165–167]. Currently, the effective Hamiltonian approach achieves at least one

order of magnitude better accuracy for 12C16O2 transition frequencies than the

best-available PES [157]. Within this framework, the calculation of intensities re-
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quires eigenfunctions of an effective Hamiltonian whose parameters were fitted to

observed positions of rotation-vibration lines as well as dipole moment operators

tuned to observed transition intensities. This approach has been used to create ded-

icated versions of the carbon dioxide spectroscopic databank (CDSD) for room-

temperature [168] and high-temperature [169,170] applications. On the other hand,

effective Hamiltonian models strongly depend on the quality of the input data, thus

the accuracy and completeness of this technique are limited by experiment.

3.2.3 Discrete Variable Representation

Since early 1990’s the discrete variable representation (DVR) schemes have begun

gaining growing attention [59,67,103,104,171,172], as holding potential for being

computationally more efficient [55, 67] than standard basis set variational imple-

mentations, which means savings in the CPU time, hence lowering the total compu-

tational cost. For large scale calculations, such as theoretical line lists for CO2, any

improvement in the computational efficiency is of great value. For these reasons, the

present project uses the DVR technique for calculating line lists for CO2. The DVR

methods are not strictly variational, but can give results very close to variational

ones, when appropriate convergence of integrals is maintained. It was reasonably

decided to use the Ames-1 PES in the present DVR calculations of energy levels and

ro-vibrational wavefunctions for all 13 isotopologues of CO2 considered. For tran-

sition intensities, isotopologue-independent ab initio dipole moment surfaces are

used, described in detail in section 3.3.2. It is believed that the error in neglecting

non-Born-Oppenheimer effects introduces uncertainty in line intensities very much

smaller than 1%. This assumption will be confirmed by comparisons with the latest

high accuracy infrared absorption measurements in section 3.8.

To summarize, the key advantage of theoretical approach to IR line lists lies in

its completeness within a given spectral region, as well as possible transferability

between different isotopologues of the same molecule. Low natural abundance of a

species is not a problem for a theoretical method, thus similar accuracy is expected

from line lists for all 13 isotopologues of CO2 considered in this work.
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3.3 Computational details

3.3.1 General procedure for DVR3D calculations

This section provides details of calculations of infrared line lists for 13 isotopo-

logues of CO2 using the DVR3D program [59]. Theoretical details were already

presented in chapter 2.

In a nutshell, the process of generation of theoretical line list is as follows: the

potential energy surface in an analytical form serves as an input function for the first

step of the ro-vibrational calculation with the DVR3DRJZ program, as displayed in

Figure 3.2. Coriolis-decoupled energy levels and ro-vibrational wavefunctions are

computed in the first step. In the second step a fully coupled ro-vibrational Hamil-

tonian is constructed in a truncated basis from the first step. Diagonalisation of this

Hamiltonian in the Rotlev3b (or Rotlev3 for asymmetric isotopologues) program

gives the final ro-vibrational energy levels and wavefunctions. The wavefunctions

are then passed into the DIPOLE3 program, which also takes the dipole moment

surface as an input. Calculated line strengths are then converted into transition in-

tensities given in cm/molecule units. Combined: lower energy levels, transition

frequencies, transition intensities and quantum numbers form a line list.

3.3.2 The potential energy and the dipole moment surfaces

In the first instance let us focus on details of the potential energy and the elec-

tric dipole moment surfaces used in the present work. The procedure proposed

by Tennyson and Sutcliffe [57, 58, 67, 173] implemented in the DVR3D suite [59]

requires a potential energy surface as an input function for the calculation (pro-

gram DVR3DRJZ) of energy levels and rotational-vibrational wavefunctions. Be-

cause an exact nuclear kinetic energy operator in the Born-Oppenheimer approxi-

mation is used, the only significant source of errors comes from the PES and non-

Born-Oppenheimer (NBO) effects. Errors introduced by non-Born-Oppenheimer

effects have been shown to be marginally small in the electronic ground state of

CO2 [157, 161]. Thus, the quality of the electronic PES provided is of primary

importance. Energy levels and rotational-vibrational wavefunctions obtained in the
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Figure 3.2: A general computational scheme for calculating ro-vibrational spectra
from first principles with the DVR3D suite.

two step DVR-variational procedure, described in sections 3.3.1 and 2.4, are further

used in intensity calculations, requiring additionally a DMS function as an input.

The transition dipole moment elements depend both on the ro-vibrational wave-

functions and the DMS, therefore the quality of line intensities depends both on the

PES and DMS. For this reason, in order to generate high accuracy line intensities,

it is necessary to provide those two essential functions with the highest possible

accuracy. The present state-of-the-art ab initio PESs are capable of reproducing ex-

perimental energy levels to 1 cm−1 accuracy [65, 75, 155, 156], which still remains

insufficient for high resolution spectroscopy purposes. Hence empirical fitting of

ab initio surfaces has become a standard procedure. This semi-empirical approach

is much less successful in the case of DMSs, partly due to technical difficulties in

obtaining accurate experimental data, suggesting the use of ab initio DMSs is a bet-

ter choice [174]. The forthcoming section gives a brief description of the PESs and
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DMSs used in the calculation of room temperature infrared line lists of CO2. The

most accurate PES and DMS were used to produce the final line list and the other

two PESs and the other DMS were employed in a sensitivity analysis of transition

intensities, a method for detecting resonance interactions between ro-vibrational

energy levels (see section 3.5).

Ames-1 PES

Probably the most accurate semi-empirical PES for the electronic ground state

of CO2 was provided by Huang et al. [157]. In their approach 528 ab initio points

were calculated with the CCSD(T) method. A three-point extrapolation of the ba-

sis set was based on cc-aug-pCVT/Q/5Z calculations. To account for higher-order

electron correlation the scaled averaged coupled-pair functional (ACPF) method

was used. Relativistic correction based on the Douglas-Kroll Hamiltonian was also

added. No non-Born-Oppenheimer effects were included, resulting in an isotope-

independent PES. The fit was performed to a functional form of Taylor expansion

in Morse coordinates (1− e−β ·(ri−re
i )) for the C–O stretching and cosθ for the O–

C–O angle. 297 coefficients were finally used in the fit. Next, a two-step empirical

refinement was performed: first using a subset of HITRAN2008 [175] J = 0−4 en-

ergy levels, second with the use of purely experimental energy levels compiled for

this purpose by Huang et al. [157], for chosen J’s up to 85. The resultant PES was

later rigorously tested against HITRAN2008 and HITRAN2012 databases as well

as against more recent experiments [157, 161]. The best fit gave root-mean-square-

deviation (RMSD) of 0.0156 cm−1 in J = 0− 117 range, with respect to purely

experimental energy levels for the final Ames-1 PES for the CO2 main isotopo-

logue. Comparison with line positions from the HITRAN2012 database [176] gave

an average shift of−0.0456 cm−1 and a spread (RMSD) of 0.0712 cm−1. As a con-

sistency test for the present calculations, energy levels computed with DVR3D and

the Ames-1 PES were compared to the published Ames energy levels [157], giving

excellent agreement (RMSD=0.04 cm−1 below 6000 cm−1and RMSD=0.08 cm−1

below 10000 cm−1).
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Ab initio PES

A fully ab initio CO2 PES was constructed by Polyansky et al. [28]. MOL-

PRO [177] multi-reference configuration interaction theory (MRCI) calculations

with the aug-cc-pCVQZ basis were augmented by relativistic corrections at the

one-electron mass-velocity Darwin (MVD1) level. The functional form was a Tay-

lor expansion of symmetry-adapted bond-length and bond angle coordinates. A fit

with 50 constants to the MRCI grid points gave an RMSD of 1.54 cm−1. The rela-

tivistic correction surface was fitted separately with 31 constants to yield a RMSD

of 0.56 cm−1. A comparison with the Ames-1 PES shows a 1.5 cm−1 average

discrepancy between the energy levels computed with the two surfaces for levels

below 4000 cm−1. Above this value some energy levels spoil this relatively good

agreement to give a RMSD of 6.2 cm−1 for states below 11 000 cm−1, with 200

(0.5% total) levels unmatched. However, for a fully ab initio procedure this PES

represents roughly the state-of-the-art for CO2. It was therefore used as part of the

theoretical error estimation procedure.

Fitted PES

In the course of the sensitivity analysis for transition intensities, presented in

section 3.5, it became clear that the ab initio PES is not accurate enough. The

sensitivity analysis measures the response in transition intensities to very small dis-

tortions in the PES. The differences between the ab initio and the Ames-1 PES were

sometimes too large to unambiguously match the corresponding energy levels. In

addition to that, the insufficient quality of the ab initio PES sporadically caused

detection of resonances, which turned out to be false positives. For this reason, a

more accurate surface was needed. Higher quality can be achieved by refining the

ab initio PES with Ames energy levels. This was done for levels with J = 0,1 and

2. This fit resulted in a RMSD of 0.2 cm−1 between respective low J energy levels

(Ames-1 PES vs. Fitted PES) and 1.4 cm−1 RMSD for states including all J’s (0-

129) below 11 000 cm−1, leaving only 30 levels above 10 000 cm−1 (0.1% total)

unmatched.
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Ames DMS

The Ames dipole moment surface ’DMS-N2’ of Huang et al. [149] was based

on 2531 CCSD(T)/aug-cc-pVQZ dipole vectors. The linear least-squares fits were

performed with 30 000 cm−1 energy cut-off and polynomial expansion up to 16-th

order with 969 coefficients, which gave a RMSD of 3.2×10−6 a.u. and

8.0× 10−6 a.u. for the parallel and the perpendicular components of the dipole

vector, respectively.

UCL DMS

UCL dipole moment surface was calculated by Polyansky et al. [28] using the

finite field method. In this method, the dipole moment is computed as first deriva-

tive of electronic energy with respect to a weak uniform external electric field. Both

positive and negative electric field vector directions were considered for the x (per-

pendicular to molecular long axis) and y (along molecular long axis) components of

the dipole moment, requiring 4 independent runs for each ab initio point. To eval-

uate the derivative of electronic energy with respect to the electric field a two-point

numerical finite difference approximation was used:

E ′(0) =
E(λ )−E(−λ )

2λ
+O(λ 2) (3.1)

where E ′(0) is the derivative of electronic energy with respect to electric field

strength λ taken at zero-field. Previous research [28, 55] suggests that in general

the derivative method yields more reliable dipole moments than those obtained from

simple expectation value evaluation. In the calculation of the present ab initio DMS

a two-point central difference formula from eq. 3.1 was used, with 3× 10−4 a.u.

electric field. Computationally more expensive four point finite difference formulas

did not improve noticeably the accuracy of the dipole.

Electronic structure calculations were performed in the range 1.1 Å< (r1, r2)

< 1.45 Å, for C-O bond-lengths and 135 ◦ < θ < 180 ◦ for the bond-angle co-

ordinate [28]. Multi-reference configuration-interaction (MRCI) calculations were

performed with the MOLPRO2012 package [177] in the aug-cc-pwCVQZ basis

with one-electron mass-velocity Darwin (MVD1) relativistic correction included.
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In the CASSCF calculations preceding the MRCI stage six core 1s electrons were

frozen and the remaining 16 were distributed in the active space amongst the 12 2s

and 2p orbitals.

Randomly distributed ab initio dipole moment points corresponding to geome-

tries with energies below 15 000 cm−1 were fitted to a Taylor expansion in symme-

try adapted bond-lengths (S1 = (r1+r2)/2−re, S2 = (r1−r2)/2−re) and bond an-

gle (S3 = 180−θ ) coordinates (Sm
1 Sn

2Sl
3). The expansion was truncated at fifth order

in S1, S2 and the x component of the dipole moment was fitted to 1963 points with

17 constants giving a RMSD of 2.25×10−5 a.u.; and 1433 points for the y compo-

nent fitted with 19 constants giving RMSD of 1.85×10−5 a.u. The low RMSD of

the fit and very high level of theory used to construct the UCL DMS allowed to as-

cribe an estimated 0.5% uncertainty to the DMS [28]. This high-accuracy DMS was

expected to provide transition intensities at sub-percent accuracy level and therefore

was the main reason for which the infrared line lists for CO2 were computed.

3.3.3 Parameters for nuclear motion calculations

The task of computing ro-vibrational line lists for 13 isotopologues of CO2, with

at least 4 line lists per isotopologue is a major computational challenge. For this

reason, it is desirable to pre-optimize the parameters of the DVR3D calculations, in

order to reduce the computational time, memory and achieve the highest possible

accuracy at lowest possible cost.

First, appropriate coordinates for the nuclear motion calculations need to be

chosen, as well as an embedding type of the molecule-fixed frame. DVR offers

two types of coordinates: Jacobi (scattering) coordinates and Radau coordinates

(see chapter 2). High convergence of energy levels required by the nuclear mo-

tion calculations should imply nearly no dependence of energy levels on the choice

of coordinates. Indeed, comparison of DVR3D calculated intensities with the Ja-

cobi [28] coordinates and Radau [37] coordinates for a band located near CO2’s

2µm showed less than 0.1% discrepancy between independent studies. The choice

of coordinates does however influence the convergence rate. After appropriate con-

vergence tests with DVR program, it was concluded that Radau coordinates are the
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most suitable for CO2.

There are three available choices of embedding of the molecule-fixed coordi-

nate frame in DVR3D: bisector (where, the z-axis bisects the angle between two

atoms), bond (where the z-axis is aligned with one of the bonds in the molecule)

and perpendicular (where the z-axis is embedded perpendicular to the plane of the

molecule). For symmetric isotopologues of CO2 the bisector embedding was cho-

sen, which reflects the natural symmetry of the molecule. Moreover, the bisector

embedding allows for symmetry factorisation of the Hamiltonian matrix, thus al-

lows for faster calculations [67]. For asymmetric isotopologues of CO2 the bond

embedding was chosen.

Following the choice of coordinates and embedding, the vibrational basis set

needs to be specified. DVR3D has two built-in radial basis set types: Morse

oscillator-like basis functions [59, 85] and 3D Spherical oscillator basis functions

[93]. Both basis set were tested for convergence of energy levels. The Morse-

Oscillator-like basis functions gave faster convergence of J = 0 energy levels than

the Spherical-Oscillator basis of the same size, thus the Morse-Oscillator basis was

chosen for calculations.

The next step was to optimize the parameters of the chosen vibrational basis.

By doing so, it is possible to significantly reduce the number of basis functions

needed to achieve a satisfactory convergence of energy levels. The Morse oscillator-

like basis function has three independent parameters: De - the dissociation energy of

the Morse potential, r0 - the equilibrium bond length and ω0 - the width of the Morse

potential. Preliminary tests showed that DVR energy levels only weakly depend on

the value of De, which was set to 0.3 Hartree (Eh) for further calculations. This

leaves a 2-dimensional parameters space, which needs to be optimized.

In the DVR program four parameters are relevant for energy levels calculation:

NPNT - the number of vibrational stretching basis functions, NALF - the number

of vibrational bending functions, MAX2D and MAX3D - truncation limits for the

2D and 3D DVR Hamiltonians, respectively. In practise, the MAX2D parameter

neither influence the computation time nor the accuracy of energy levels, provided
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that it is greater than MAX3D. MAX2D was therefore set to 10000. The NPNT,

NALF and MAX3D parameters were optimized independently.

In the first step of the optimization procedure, a grid of (r0,ω0) values was

created and for each grid point J = 0 DVR calculations were performed with

NPNT= 20,30,40,50,60,70,80,90. NALF= 120 and MAX3D= 9000 were kept

constant. Then, average deviation between respective energy levels calculated with

NPNT and NPNT+10 was calculated. Such comparison allows to find the number

of basis functions needed to assure a convenient level of convergence. Results of

this procedure are displayed in Figures 3.3 and 3.4.

A preliminary sparse scan over a wide range of r0 and ω0 parameters identified

the approximate region of ’quick convergence’ for r0 and ω0, as shown in Figure

3.3. After narrowing the set of acceptable parameters with the low-resolution scan,

a scan at a denser grid was performed, displayed in Figure 3.4. This allowed to

elucidate r0 and ω0 parameters, for which only 20 vibrational stretching basis func-

tions was needed to reach 0.001 cm−1 convergence of energy levels below 13000

cm−1 : r0 = 2.95 ,a0 ω0 = 0.0085 Eh. Similar analysis was performed with NALF

and MAX3D as a subject to convergence test. In both cases, the optimal r0 and ω0

parameters for NPNT occurred to be also optimal for NALF and MAX3D. With

these parameters, NALF = 120 and MAX3D= 1000 were found optimal and suffi-

cient for good convergence of energy levels below 13 000 cm−1 . This efficiently

contracted basis set reduced the memory and time cost, hence speeded up calcula-

tions. An identical set of basis set parameters was used for calculations with the ab

initio and the Fitted PESs.

Figure 3.5 presents the total DVR3DRJZ calculation time and the total

ROTLEV3b calculation time as a function of J quantum number. As expected,

the computation time in DVR scales linearly with J. This is because in DVR3DRJZ

|k| = p, p+ 1, ...,J is a good quantum number, and for a given J, the code must

solve J +2− p problems of identical size (see 2.2). Scaling laws presented in Fig-

ure 3.5 reveal the importance of basis set optimization. The maximum J value

considered (in the HITRAN2012 database) for a room temperature line list for the
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Figure 3.3: Low-resolution convergence map for DVR calculations. Colour code
denotes the number of vibrational stretching basis functions (NPNT) needed to
achieve mean convergence of energy J = 0 levels below 13 000 cm−1 better than the
given 1 cm−1 threshold value. Optimized are ω0 and r0 parameters of the Morse-
oscillator basis functions. The De parameter was set to 0.3 Hartree.

main isotopologue of CO2 is J = 130. As shown in Figure 3.5, this corresponds to

≈ 5000 seconds of computation time. For comparison, the corresponding compu-

tation time for an unoptimized basis set, which requires NPNT = 80, NALF = 120

and MAX3D = 9000, is a few hundred times longer, making high-J calculations

nearly prohibitive. To put things in perspective, for completion of fully converged

J = 0 calculations with an un-optimized basis set requires 2500 seconds, whereas

the J = 0 calculations with the optimized basis set are complete in 10 seconds. For

example, previous DVR3D calculations of CO2 energy levels and wavefunctions

with Jacobi coordinates reported in ref. [28], for a good level of convergence re-

quired 80 radial basis functions and 120 bending basis functions. With this basis set

size, computation of a single room temperature line list (J < 130) for CO2 would

take many months. With the basis set optimized here for Radau coordinates, this

time could be reduced to one week.

In nuclear motion calculations the choice of masses is dictated by the masses

used to fit the PES. In accordance with the NASA Ames-1 PES [157], in DVR

calculations nuclear masses were used [178] in Dalton units (Da) for isotopologues
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Figure 3.4: High-resolution convergence map for DVR calculations. Colour code
denotes the number of vibrational stretching basis functions (NPNT) needed to
achieve mean convergence of energy J = 0 levels below 13 000 cm−1 better than
the given 0.001 cm−1 threshold value. Optimized are ω0 and r0 parameters of the
Morse-oscillator basis functions. The De parameter was set to 0.3 Hartree.

of carbon dioxide: 11.996709 Da (12C), 13.000439 Da (13C), 15.990525 Da (16O),

16.995245 Da (17O) and 17.995275 Da (18O).

Previous research [179,180] shows however, that often a better agreement with

experiment is achieved when some intermediate mass between atomic and nuclear

is used in the Hamiltonian. In addition to that, different masses are sometimes used

for the rotational part of the Hamiltonian and the vibrational part of the Hamilto-

nian. Such a trick can account for non-adiabatic effects and reduce the observed

minus calculated difference by tenths of a cm−1 in H+
3 [179]. Although the present

study operates within the Born-Oppenheimer approximation, it should be checked

whether change from nuclear masses to atomic masses in the nuclear Hamiltonian

has any significant effect on energy levels. Let us take an example of the 12C atom,

for which the mass fraction of electrons to nucleus is the largest. The effect of

the nuclear-atomic mass interchange for other isotopes of carbon and oxygen atom

should be only smaller. In the two-body Harmonic approximation the mass shift of

the energy levels is inversely proportional to the reduced nuclear mass µ0. Thus,

the heavier the nuclei, the lower the energy levels should be. The effect of change
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Figure 3.5: Computation time for DVR3DRJZ and ROTLEV3b runs for 12C16O2
as a function of J quantum number. For the DVR3DRJZ runs the optimized basis
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sen (IBASS=100). Linear and quadratic fits are also displayed for DVR3DRJZ
and ROTLEV3b runs, respectively. Test computations were performed with UCL’s
high-performance computer facility ’Legion’.

from nuclear to atomic mass in the nuclear Hamiltonian can be estimated by ex-

panding the vibrational energy of the Harmonic oscillator in the mass difference

∆µ = µ−µ0, which is a small parameter:

E(µ) = E(µ0)

(
1− 1

2
∆µ

µ

)
+O

(
(∆µ)2) (3.2)

where µ is the atomic mass. By inserting for µ the atomic mass of 12C and for m0

the nuclear mass of 12C we can estimate that the energy shift due to electron mass

and electron-nucleus binding energy is 0.014%, which means that for energy levels

at 10000 cm−1 the shift will be around 1.4 cm−1 and at 5000 cm−1 will be around

0.7 cm−1. Full J = 0 DVR calculations for 626 CO2 with nuclear and atomic masses

for the same sets of other parameters show that: the lowest energy level (1285.398

cm−1) shifts by 0.17 cm−1, the energy level at 5022.328 cm−1 shifts by 0.67 cm−1

and the energy level at 10056.625 cm−1 shifts by 1.4 cm−1, which confirms the

estimates. Comparison to experimental energy levels shows that closer agreement
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to experiment is observed when using nuclear masses, as expected from theory. This

observation confirmed the choice of nuclear masses in DVR3DRJZ.

Prior to full scale calculations of line lists it is necessary to estimate ranges

for the rotational quantum number J, for which ro-vibrational states are signifi-

cantly populated at given temperature. This can be done in the first instance for the

main isotopologue, whereas approximate J ranges for other isotopologues can be

calculated by taking into account their abundances. First, a 10−30 cm/molecule in-

tensity cut-off is established, which is the standard value employed by the HITRAN

database. Then, informed by reliability limits of accuracy of the UCL DMS, the

spectral region of interest for transition frequencies is chosen: 0 – 8000 cm−1. From

an estimate based on the Boltzmann law we infer that at room temperature (296 K)

the highest initial ro-vibrational energy level that can be populated enough to give

a transition above the 10−30 cm/molecule intensity threshold is roughly 6000 cm−1

and J = 130. Therefore we could potentially be interested in upper energy levels

up to 14 000 cm−1 to cover the 0 – 8000 cm−1 wavenumber region. DVR3DRJZ

calculations show that keeping only energy levels below 11 500 cm−1 is enough

for the given frequency and intensity cut-off values. 70 lowest vibrational states are

located below 11 500 cm−1. For this reason, the Hamiltonian matrix in the first (vi-

brational) step of the calculation (program DVR3DRJZ) could be truncated at 1000

without the loss of accuracy in the energy levels of interest. Indeed, the J = 0 en-

ergy levels below 10 000 cm−1 were converged at the 10−6 cm−1 level and energy

levels around 12 000 cm−1 at the 10−5 cm−1 level with MAX3D= 1000.

The ro-vibrational part of the computation (program ROTLEV3b) uses the

Coriolis-decoupled ro-vibrational basis from the first step (program DVR3DRJZ).

The number of the basis functions used in this second step depends on J: at

600× (J + 1) for J = 0− 50, 300× (J + 1) for J = 51− 85 and 200× (J + 1)

for J = 86−130. Fortunately, for higher J’s smaller basis sets can be used, because

less energy levels are needed, due to the upper energy level 11 500 cm−1 cut-off. As

Figure 3.5 shows, the time cost of ROTLEV3b calculations depends quadratically

on J. As long as the number of needed energy levels decreases with J, the pre-factor
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in this quadratic dependence can be gradually reduced, which saves computational

time.

Transition line strength calculations with the DIPOLE program used all states

provided by ROTLEV3b. Separate calculations were performed for each J quantum

number and for each separable block of the transition dipole moment matrix dis-

played in Figure 3.6. The number of Gauss-Legendre quadrature points required for

integration over vibrational bending functions in the expression for the line strength

(cf. eq. 2.101) was set to 250, which guaranteed good convergence.

For each isotopologue and for each pair of PES and DMS, the calculations

were organized as shown in Figure 3.6. The figure represents a general scheme for

DVR3D calculations with the full use of symmetry: the permutation symmetry of

identical nuclei (even/odd) and the parity symmetry (e/f).

Parallel calculation of separable symmetry blocks in the transition dipole mo-

ment matrix for P,R and Q branches significantly speeds up the calculation. Se-

lection rules given in chapter 2 constrain allowed transitions between states with

different permutation parities and different p quantum numbers when J does not

change (Q branch) and identical p quantum numbers when J does change (P and R

branch). Transition frequencies and line strengths computed at the DIPOLE stage

serve as an input to the SPECTRA program [59], which calculates integral transition

intensities given by eq. 3.3.

I(ṽi f ) =
8π2NA

12ε0hc
ṽi f

Q(T )
gns exp

(
−Ei

kbT

)[
1− exp

(
−

ṽi f

kbT

)]
Si f (3.3)

where ṽi f is the transition wavenumber between the i’th and f ’th ro-vibronic state

and Q(T ) is the partition function at temperature T . NA is the Avogadro number,

kb is the Boltzmann constant, h is the Planck constant, c is the speed of light in

vacuum and ε0 is the permittivity of vacuum. Units for integral line intensity are

cm/molecule. Partition functions at 296 K given in table 3.4 were computed from

eq. (3.4) using DVR3D energy levels obtained with the Ames-1 PES,

Q(T ) = ∑
i

gie
− Ei

kbT (3.4)
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Figure 3.6: A general scheme for DVR3D calculations with the full use of symme-
try: the permutation symmetry of identical nuclei (even/odd) and the parity sym-
metry (e/f). The upper panel depicts generation of ro-vibrational energy levels and
wavefunctions with DVR3DRJZ and ROTLEV3b programs. The lower panel rep-
resents transition intensity calculations with DIPOLE. Each symmetry block of the
transition dipole moment matrix for P,R and Q branches is calculated separately.
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where Ei are ro-vibrational energy levels labelled by the general index i which rep-

resents all good quantum numbers: J, p,q and h - the index numbering consecutive

solutions; gi = (2J+1)gns is the state dependent degeneracy factor discussed below.

Nuclear spin statistical weights. The nuclear spin statistical weight gns in eq.

(3.3) can be calculated from the knowledge of individual nuclear spins of atoms in

a given isotopologue and the use of some group-theoretic techniques. In brief gns

is the number of spin states, which when combined in a product with a ro-vibronic

state of a given symmetry produces the total internal state of the molecule which has

the symmetry allowed by the Bose-Einstein or the Fermi-Dirac statistic [60, 181] 1.

This statement is based on the assumption that the nuclear spin does not interact

with spins of electrons in the molecule or the rotational motion of the molecule, so

that the total internal wavefunction of the molecule can be factorized into the nuclear

spin part and the ro-vibronic part: Φint =ΦnspinΦrve. This assumes that nuclear spin

energy levels are degenerate. The number of these degenerate nuclear spin states,

which for a given ro-vibronic symmetry of the wavefunction generate a represen-

tation allowed by the Bose-Einstein or Fermi-Dirac statistics, constitutes the spin

statistical weight. Hyperfine interactions, which are not considered here, remove

this nuclear spin degeneracy, which causes splitting in energies of spin-rovibronic

states. The total nuclear spins of carbon and oxygen atoms are: i(12C) = 0, i(13C)

= 1/2, i(14C) = 3, i(16O) = 0, i(17O) = 5/2, i(18O) = 0. This means that the nuclei

of 13C and 17O atoms are fermions and the remaining nuclei are bosons. Apart

from translational, time-reversal and rotational symmetries, which are irrelevant for

the present discussion, two fundamental symmetries are related to spin statistical

weights: permutation of identical nuclei and parity. The total internal wavefunc-

tion of the molecule can transform either symmetrically or anti-symmetrically with

respect to the parity transformation: E∗Φint = ±Φint . Odd permutation of identi-

cal nuclei in the molecule changes sign of the total internal wavefunction when the

permuted nuclei are fermions and does not change sign for boson nuclei. Even per-

mutation of identical nuclei preserves the sign of Φint , hence always has character

1Repetitions of these references are omitted in the reminder of this section.
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+1. In order to find spin statistical weights for isotopologues of CO2, it is first nec-

essary to choose a symmetry group in which the ro-vibronic, spin and total internal

states will be classified. Molecular states of the symmetric isotopologues of CO2

can be classified in the D∞h(M) molecular symmetry group, which is isomorphic

with the CNPI G4 group for this molecule. Asymmetric isotopologues, on the other

hand, have no permutation symmetry of identical nuclei and will be classified in the

C∞v(M) molecular symmetry group, which is isomorphic with the G2 CNPI group.

Let us choose two example isotopologues,16O12C16O and 17O12C17O, for which

the procedure of finding spin statistical weights will be presented.

Because the nucleus of the 17O is a fermion with spin 5/2, an odd permuta-

tion of oxygen atoms in 17O12C17O will cause a sign change in the total internal

molecular wavefunction. This fact is dictated by the Pauli Principle.

Character table for the D∞h(M) molecular symmetry group given in table 3.1

shows that only Σ+
u and Σ−g irreducible representations of this group are allowed for

the total internal wavefunction, because in these representations the (12) permuta-

tion of oxygen atoms has character -1. Ro-vibronic states of 17O12C17O can trans-

form as any of the four irreducible representations of D∞h(M). Thus, the question

is, which irreducible representations of the nuclear spin states can generate repre-

sentations of the total internal wavefunctions allowed by the Fermi-Dirac statistics?

The other question is: what is the degeneracy of these statistically allowed nuclear

spin states? To answer both questions, first let us classify the nuclear spin functions

Φspin in the D∞h(M) group. The total number of product spin functions of atoms in

Table 3.1: Part of the character table for the D∞h(M) molecular symmetry group
used in determination of nuclear spin statistical weights for CO2.

D∞h(M) E (12) E* (12)*
Σ+

g 1 1 1 1
Σ+

u 1 -1 1 -1
Σ−g 1 -1 -1 1
Σ−u 1 1 -1 -1

17O12C17O is (2i17O+1)2 = 62 = 36. For the nuclei of 17O there are 5 possible val-
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ues of the projection of the total nuclear spin i in the Z-axis of the LAB frame,

which corresponds to respective degenerate nuclear spin states: |52 ,+
5
2〉 ≡ δ+ 5

2
,

|52 ,+
3
2〉 ≡ δ+ 3

2
, |52 ,+

1
2〉 ≡ δ+ 1

2
, |52 ,−

1
2〉 ≡ δ− 1

2
, |52 ,−

3
2〉 ≡ δ− 3

2
, |52 ,−

5
2〉 ≡ δ− 5

2
. For

the 12C nucleus there is only one spin state: |0,0〉 ≡ γ . The product state of the

three states of individual nuclear spins corresponds to states with values of the

projection of the total nuclear spin on the Z-axis of the LAB frame in the range

mI = −|2 · i17O + i13C|, ...,+|2 · i17O + i13C| = −5,−4, ...,+4,+5. Product functions

of the three nuclear states form a reducible representation for each value of mI sep-

arately.

Table 3.2: Product nuclear spin states for 17O12C17O. mI is the projection of the
total nuclear spin on the Z-axis of the LAB frame. Shown are only positive values
of mI . Negative mI’s are generated in analogical way. The spin state γ of the 12C
nucleus is omitted. In the right column given are irreducible representations of the
D∞h(M) group generated by appropriate products of the nuclear spin functions.

mI nuclear spin states Γ
mI
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-1 δ− 5
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2
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2
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2
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2
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2
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2
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u

-2 δ− 5
2
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2
, δ+ 1

2
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2
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2
δ− 1

2
, δ− 1

2
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2
2Σ+

g ⊕2Σ+
u

-3 δ− 5
2
δ− 1

2
, δ− 1

2
δ− 5

2
, δ− 3
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δ− 3

2
2Σ+

g ⊕2Σ+
u

-4 δ− 5
2
δ− 3

2
, δ− 3

2
δ− 5

2
Σ+

g ⊕Σ+
u

-5 δ− 5
2
δ− 5

2
Σ+

g

The right column in Table 3.2 has been calculated with the use of the for-

mula for the number of irreducible representations of a group included in a given

reducible representation: ai =
1
h ∑R χ

Γ
mI
spin [R] · χΓi [R]∗, where h is the order of the

molecular symmetry group and R stands for symmetry operations in the group,

χ
Γ

mI
spin [R] is the character of the operation R in the reducible representation Γ

mI
spin and

χΓi [R] is the character of the operation R in the irreducible representation Γi. Let
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us choose an irreducible representation of the ro-vibronic state, say Σ+
u , and find

all irreducible representations of nuclear spin states, which if combined with Σ+
u

in a product, will give one of the two representations allowed by the Fermi-Dirac

statistics: Σ+
u and Σ−g . There are only two types of representations available for the

nuclear spin states: Σ+
g and Σ+

u . From the character Table 3.1 Σ+
u ⊗Σ+

g = Σ+
u and

from Table 3.2 we can see that there are 21 in total Σ+
g ’s which satisfy this equa-

tion. Thus, the spin statistical weight for the Σ+
u ro-vibronic symmetry species is

gns = 21. Weights for other ro-vibronic symmetry species can be calculated in a

similar way. All spin statistical weights for 17O12C17O are listed in Table 3.3.

Table 3.3: Spin statistical weights gns for the 17O12C17O molecule classified in the
D∞h(M) molecular symmetry group. Γrve, Γspin and Γint are the irreducible repre-
sentations of the ro-vibronic state, nuclear spin state and the total internal molecular
state, respectively.

Γrve Γspin Γint gns

Σ+
g 15Σ+

u Σ+
u 15

Σ+
u 21Σ+

g Σ+
u 21

Σ−g 21Σ+
g Σ−g 21

Σ−u 15Σ+
u Σ−g 15

For the 17O13C17O isotopologue, for which there are two available nuclear

spin functions for the 13C atom, all weights are simply multiplied by 2, as the single

carbon atom does not affects any properties associated with the permutation sym-

metry of identical nuclei, yet has two independent nuclear spin states, which need

to be accounted for. This gives a state independent factor (2), and a state dependent

factor: 15:21 (for Σ+
g , Σ−u and Σ+

u , Σ−g representations respectively). In the case

of the main 16O12C16O isotopologue, for which all nuclei are bosons with spin 0,

there exists only one nuclear spin state, which belongs to the Σ+
g representation. In

such case, the total internal wavefunctions can be generated only from ro-vibronic

states of Σ+
u and Σ−g symmetry. For these ro-vibronic representations, there is a

single corresponding spin state, hence the appropriate spin statistical factors are

gns = 1. For the other two ro-vibronic symmetry species: Σ+
g and Σ−u , there are

no available spin functions, which would generate representations of the total inter-
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nal wavefunction allowed by the Bose-Einstein statistics, hence the spin statistical

weights for these representations are gns = 0. Ro-vibrational states, for which no

nuclear spin function can be found to generate an allowed representation of the to-

tal internal wavefunction do not exist in nature and are called missing states. The

corresponding hypothetical energy levels are called missing levels. In the case of
16O12C16O the observable energy levels correspond to ro-vibrational states which

consist of sums of products ΦvibΦrot , which have the total symmetry either Σ+
u or

Σ−g (in the electronic ground state). With these requirements it can be shown that

observable ro-vibrational states with a symmetric vibrational part (nν1, the sym-

metric part of the irreducible representation for nν2 vibration, even quanta in the ν3

mode) have J-even and e-Wang symmetry ( Σ−g total symmetry). For odd number of

quanta in the asymmetric stretching ν3 mode, the allowed by statistics energy lev-

els have J-odd and e-Wang symmetry. The f -Wang symmetry is allowed only for

levels in the degenerate bending manifold and only for J-even when the vibrational

state has odd number of ν2 quanta and for J-odd when the vibrational state has even

number of ν2 quanta. These rules for observable energy levels are straightforwardly

derived from the character table for the D∞h(M) group and from the knowledge of

the classification of rotational and vibrational basis wavefunctions in this molecular

symmetry group.

Spin statistical weights for all 13 isotopologues are given in Table 3.4.
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3.4 Resonance interactions of energy levels
This section is dedicated to introducing the concept of resonance interaction be-

tween ro-vibrational states. A general theoretical formulation given below will be

further supported by two examples with CO2 in sections 3.4.3 and 3.4.4. Finally,

a simple theory for transition intensity borrowing, which accompanies resonance

interactions, is developed. This theory serves in section 3.4.6 to formulate a theoret-

ical descriptor, which aims in quantifying the sensitivity of line intensities to small

perturbations in the ro-vibrational wavefunction. Further on, this new descriptor

will be used in qualitative discussion of reliability of calculated line intensities in

CO2.

3.4.1 What is a resonance interaction?

A resonance interaction between two energy levels occurs when three conditions

are satisfied [181]: a) the levels have similar (identical) energies; b) quantum states

associated with the energy levels have identical symmetry; c) an interaction operator

exists, which mixes the interacting states.

In the variational formulation of the nuclear motion problem, the task of solv-

ing the SE reduces to diagonalisation of the ro-vibrational Hamiltonian, which is

represented by a square Hermitian matrix for a chosen basis. The choice of this

zero-order basis set determines which matrix elements of the Hamiltonian will be

large, which will be small and which will vanish by symmetry conditions. Typically,

a product basis set is used, with separate functions for vibrational and rotational de-

grees of freedom:

Φ
0
rv = ΦrotΦvib (3.5)

in which Φrot is a rigid-rotor eigenfunction and Φvib is an eigenfunction of the har-

monic oscillator. For the case of triatomic molecules, the most popular choice for

the rotational basis is Φrot = |J,k,M〉, that is symmetric-top eigenfunctions, charac-

terized by the total angular momentum quantum number J, the projection quantum

number k of the total angular momentum on the molecule-fixed z-axis and the pro-
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jection quantum number M of the total angular momentum on the Z-axis of the LAB

frame. Φvib is chosen to be either an eigenfunction of the 3D harmonic oscillator or

the 3D morse oscillator. Φvib can be typically written in the abstract bra-ket form as:

|ν1,ν2, l,ν3〉= |ν1〉|ν2, l〉|ν3〉, where ν1,ν2,ν3 are quantum numbers characterizing

the vibrational zero-order basis state. l is the vibrational angular momentum quan-

tum number, originating from a degenerate bending motion in a linear triatomic

molecule. The solution to the fully coupled ro-vibrational SE is then given by an

expansion in these chosen basis functions:

Φ
(n)
rv = ∑

ν1,ν2,l,ν3,k
C(n)

ν1,ν2,l,ν3,k
|J,k,M〉|ν1,ν2, l,ν3〉 (3.6)

The quantum numbers ν1,ν2, l,ν3 are good symmetry labels only for the Hamilto-

nian of the harmonic oscillator. Similarly, the k quantum number is a good quan-

tum number for a symmetric-top rigid rotor Hamiltonian, that is also for molecules

at linear geometries. Any small deviations from these model systems cause the

ν1,ν2, l,ν3 and k quantum numbers to be only near quantum numbers [60]. For

large deviations from harmonicity the vibrational labelling of the harmonic oscilla-

tor starts loosing its sense. Similarly, strong rotation-vibration interactions cause k

to be no longer even a near good quantum number. Such situation occurs predom-

inantly when two zero-order energy levels are involved in a resonance interaction.

Let us analyse such resonance interaction on a simple example. Consider a generic

two-level system with zero-order basis states having energies E0
S and E0

W perturbed

by an interaction C. The Hamiltonian matrix for this two-level system is written as:E0
S C

C E0
W

 (3.7)

The zero-order unperturbed basis will be also called the diabatic basis [182]. Di-

agonalisation of this matrix gives adiabatic energy levels, which exhibit an avoided

crossing, as depicted in Figure 3.7. Adiabatic energies then read:
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E± =
1
2
(
E0

S +E0
W
)
± 1

2

√
4|C|2 +∆E0 (3.8)

where ∆E0 =E0
W−E0

S is the separation of diabatic energy levels. The new adiabatic

states are mixtures of diabatic states:|W̃ 〉
|S̃〉

=

c1 −c2

c2 c1

|W 〉
|S〉

 (3.9)

where mixing coefficients are given as: c1 =

(√
4|C|2+∆E0+∆E0

2
√

4|C|2+∆E0

) 1
2

and c2 =(√
4|C|2+∆E0−∆E0

2
√

4|C|2+∆E0

) 1
2

. In the limit of no interaction (C = 0) the two diabatic states

remain unperturbed. In the limit of the exact resonance (∆E0 = 0) we get 50% /

50% mixtures (in-phase and anti-phase) of the two diabatic states.

�E
0

E
+/-

diabatic state

adiabatic state

adiabatic state

diabatic state

Figure 3.7: Schematic illustration of an avoided crossing of two states with the
same symmetry. The dashed black lines represent energies of bare (diabatic) non-
interacting states, whereas the blue and red thick curves are adiabatic states. In the
x-axis given is the energetic separation of the diabatic states ∆E0.

Thus adiabatic levels exhibit an avoided crossing at the point where the diabatic

levels intersect. According to standard textbooks [60], near the points of resonances,

that is near the crossing of diabatic energy levels, most of the standard variational

or perturbative formulas fail to accurately reproduce observations. In the following
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paragraph, we are going to take a closer look at problems which occur with reso-

nantly interacting energy levels and what consequences such interactions have for

observations, such as transition intensity measurements.

Knowing that the interaction operator Ĉ can mix different ro-vibrational states,

which manifests itself in a non-zero off diagonal matrix element C in eq. 3.7, the

next question to ask is: what is the necessary condition for a resonance interaction

in terms of symmetry of states? The interaction operator must have the symmetry

of the ro-vibrational Hamiltonian, which is totally symmetric under operations of

the molecular symmetry group. For this reason, the vanishing integral rule [60] al-

lows for rotation-vibration interaction of diabatic states with the same ro-vibrational

symmetry only, Γ1
rv = Γ2

rv, where Γi
rv = Γi

v⊗Γi
r. This argument can be also derived

intuitively: a coupled ro-vibrational wavefunction, which is not a single product of a

rotational and a vibrational states must have identical symmetries of its component

terms. This is because the whole ro-vibrational wavefunction must transform ac-

cording to one of the irreducible representations of the molecular symmetry group.

For further discussion, the harmonic oscillator basis is chosen for vibrations

and the symmetric-top basis for rotations. We are going to classify resonance inter-

actions, by the type of the perturbing operator Ĉ.

3.4.2 Types of resonance interactions

There are two basic types of perturbations of ro-vibrational energy levels caused

by interaction with other ro-vibrational energy levels: Fermi-type interactions and

Coriolis-type interactions. The former type of the resonance interaction occurs

when two vibrational levels have the same symmetry, Γ1
v = Γ2

v . This is a purely

vibrational anharmonic effect and leads to shifting of ro-vibrational energy levels

of the whole vibrational band involved in the interaction. The Coriolis-type interac-

tion is J-specific and depends on the symmetry of the vibrational and the rotational

part of the wavefunction. As we will show further on, the Coriolis-type resonance

is possible between states with ∆k =±1,±2, which for a linear triatomic molecule

means also ∆l =±1,±2. The ∆l =±2 interaction is often called l-type resonance or

l-doubling resonance. For future discussion it is useful to introduce the concept of
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the polyad number [60,183]. For the example of CO2, the polyad number is defined

as P= 2ν1+ν2+3ν3, where ν1,ν2,ν3 are the vibrational quantum numbers of sym-

metric stretching, bending and asymmetric stretching, respectively. The weights

standing by the vibrational quantum numbers in the polyad number formula are as-

sociated with relative energetics of vibrational fundamentals: ω3≈ 3ω2≈ 2ω1. The

majority of resonance interactions are enclosed within the space of states with the

same polyad number. However sometimes an interpolyad anharmonic interaction

can occur, which will be distinguished from the intra-polyad Fermi interaction.

3.4.3 Example: Fermi-type resonance in CO2

Anharmonic terms in the PES cause Fermi-interaction of vibrational levels of the

same symmetry, as shown in eq. 3.9. An example of the Fermi-resonance interac-

tion is mixing between the ν1ν2lν3n = 10001 and ν1ν2lν3n = 02001 energy levels in

CO2. Both states have identical Σ+
g symmetry and the perturbing operators here are

the cubic and quartic terms in the PES. Here n is defined as an index labelling vibra-

tional states which are subject to Fermi-mixing with some other vibrational states.

Interactions of energy levels carry consequences for transition intensities. If one

of the energy levels involved in a weak transition in the harmonic approximation is

in Fermi resonance with an energy level which participates in a strong transition,

then intensity borrowing due to mixing of the dark state with the bright state can

significantly increase the transition intensity of the weak (dark) vibrational band,

regardless of J value. As a result, intensity of the whole band is shifted by this type

of interaction.

3.4.4 Example: Coriolis-type resonance in CO2

Coriolis-type interactions are usually associated with operators, which are products

of vibrational coordinates, vibrational angular momentum and angular momentum

operators, e.g. ζ Qi piJ j. Here ζ is the scalar Coriolis-constant [60, 68]. Because Qi

and pi have the same symmetry, the non-vanishing rule for matrix elements gener-

ated by this type of perturber states that the product of irreducible representations of

two interacting energy levels must contain an irreducible representation of the j-th
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component of the total angular momentum operator ~J.

As an example of the Coriolis-type resonance let us consider two energy levels

in CO2: 11101 (ν1 = 1,ν2 = 1, l = 1,ν3 = 0) and 00011 (ν1 = 0,ν2 = 0, l = 0,ν3 =

1). Figure 3.8 displays these energy levels with their vibrational symmetries and

energies. It is clear that the 11101 and 00011 energy levels have different vibra-

tional symmetries, thus cannot interact by a pure vibrational-anharmonic mecha-

nism. However, when we list possible symmetries of ro-vibrational states generated

from these vibrational states, there are combinations of J and k quantum numbers

for which ro-vibrational energy levels in the 11101 and 00011 manifolds have the

same symmetry. For example, when the symmetry of the 11101 energy level (Πu)

is combined with the symmetry of k-odd rotational wavefunction Πg it produces

the following sum of irreducible representations: Πu×Πg = Σ+
g ⊕Σ−g ⊕∆g. At this

point it is convenient to move into the C2v(M) group with the classification. In this

group the D∞h’s Πu state correlates with A1⊕B1 symmetry and the Σ+
u correlates

with the B2 symmetry.

|00011>
|11101> C

2076.5 cm
2349.3 cm� �+

u-1
u

-1

Figure 3.8: Schematic illustration of a resonance interaction between two energy
levels in CO2 through operator the Coriolis operator Ĉ. Πu is the vibrational sym-
metry of the |11101〉 state and Σ+

u is the vibrational symmetry of the |00011〉 state.
Energies of respective states are given in wavenumbers.

One may ask a question: why did we move into the C2v(M) group? First of all,

it is subjectively more convenient to operate with a familiar group, which contains

no degenerate representations. Secondly, selection rules for interaction matrix ele-

ments derived in the less general C2v(M) group will also hold in the more general Cs

group. The implication in the opposite direction is not always true. The symmetry

of rotational wavefunctions in the C2v(M) group is A1⊕B1 for even values of k in

the |J,k〉 state and A2⊕B2 for odd values of k. The selection rule for the J quantum
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number is ∆J = 0. By combining the rotational and vibrational symmetries we ob-

tain for the 11101 vibrational state two possible ro-vibrational symmetries: A1⊕B1

for even values of k and A2⊕B2 for odd values of k. The 00011 vibrational state

also generates two possible ro-vibrational symmetries: A2⊕B2 for even values of

k and A1⊕B1 for odd values of k. We can see therefore, that only states with op-

posite parity of the k quantum number can be connected via a Coriolis interaction.

Indeed, as we will see in section 3.5 in Figure 3.20 the intensity of the R branch

of the 11101 – 00001 band is affected by J-localized resonance interaction between

the 11101 and the 00011 state. Although the whole 11101 – 00001 band is subject

to Coriolis interaction with the 00011 state only near a particular J value, where this

interaction grows rapidly to give a very noticeable intensity alternation.

3.4.5 A theory for ro-vibrational intensity borrowing

The goal of this section is to provide a theoretical method for assessing the ’re-

liability’ of the variationally calculated matrix elements of an arbitrary quantum-

mechanical operator. The accuracy of variational wavefunctions and energy levels

is determined by the accuracy of the underlying potential energy surface (PES).

For this reason, the term ’reliability’ of results correlates with ’the accuracy of the

PES used’. In this sense, we are aiming at finding a measure of how sensitive

are the variational matrix elements (e.g. the transition dipole moment) to small

changes in the PES. This measure will formally depend on the energetic separa-

tion of states involved in the interaction ∆Ei j = Ei− E j (not the states between

which a transition occurs) and on the deviation of the PES from a reference PES:

∆V (r1,r2,θ) = V (r1,r2,θ)−V 0(r1,r2,θ). With these assumptions, the term ’reli-

ability’ refers to the most accurate PES considered, rather then to the exact (exper-

imental) values. In other words, we assume the most accurate PES (reference PES

V 0) as the exact model for reality. Of course this does not mean that we are provid-

ing a method for estimating an uncertainty for matrix elements of operators, which

can be later compared to experimental values. Rather we aim to give a procedure

for stating how sensitive these matrix elements are when a different PES is used

from the reference PES. The reference PES may generate energy levels with some
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systematic shift with respect to experiment, thus the sensitivity measure can not be

directly related to the absolute error of the calculated matrix elements. Neverthe-

less, such multiple-PES-based procedure can deliver information about how strong

are the resonance interactions of energy levels, provided that we have control over

the deviation between the reference PES and the working PES. By this it can be

for example possible to estimate which variationally calculated transition intensi-

ties can be trusted and which of them are very sensitive to the quality of the PES

(accuracy of the wavefunction).

Matrix elements between interacting states. It has been already shown, that

the energy levels resonance is possible between states with the same ro-vibrational

symmetry. Coriolis operators are proportional to components of the total angular

momentum operator Ĵi, which in turn can be expressed by ladder operators (Ĵ±),

which mix states with different k quantum number (the projection of the total an-

gular momentum on the z-axis of the molecule-fixed frame). In general, a Coriolis

operator, which has the symmetry of the total ro-vibrational Hamiltonian, contains

also linear momentum and position operators, which can mix different vibrational

zero-order states, as well as squares of the total angular momentum operators, which

allow for mixing of states with ∆k =±1,±2.

The other necessary condition for a resonance is non-symmetry based, but re-

lated to the energetics of the two interacting energy levels. The strength of anhar-

monic and ro-vibrational interactions strongly depend on the energetic separation of

the zero-order energy levels. More precisely, the non-vanishing interaction matrix

element C from eq. (3.7) can be rewritten in the following form:

Ci j = 〈Φ0
i |Ĉ|Φ0

j〉=
〈Φ0

i |[Ĉ, Ĥ0
rv]|Φ0

j〉
E0

i −E0
j

(3.10)

which reveals a singularity at Ei = E j. Here the zero-order states Φ0
i are eigenstates

of the Coriolis-decoupled ro-vibrational Hamiltonian: H0
rvΦ0

i = E0
i Φ0

i . Matrix ele-

ments of the commutator [Ĉ, Ĥ0
rv] are finite and non-zero, thus the coupling matrix

element approaches infinity when the energy levels become degenerate. In reality,

ideal accidental degeneracies of two zero-order energy levels are never observed,
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hence the interaction matrix elements are always finite, although they can take very

large values and be very sensitive to small changes in the accuracy of the wavefunc-

tion. Because the denominator in eq. 3.10 is very small, any small perturbation

δΦ0
i to the wavefunction can cause a significant change to the value of the interac-

tion term Ci j. As a consequence, variational wavefunctions need to be calculated

with a very high accuracy, to properly reproduce the values of the interaction ma-

trix elements near resonances. This is obviously one of the drawbacks of variational

methodology.

|S >
|W >

|G >

C

SSGW GS

|W >

SGW

Figure 3.9: Schematic illustration of intensity borrowing caused by a resonance
interaction between two energy levels through operator Ĉ. The S← G transition
is from the ro-vibrational ground state |G〉 and the associated line strength is SGS.
W ← G transition is from the ro-vibrational ground state |G〉 and the associated
line strength is SGW . The interaction between |W 〉 and |S〉 energy levels leads to
intensity borrowing of the W ← G transition, which results in an altered transition
line strength SGW̃ .

Now, the question is: near a resonance, when E0
i −E0

j is small, how does a

small change in the wavefunction δΦ0
i affect the matrix element of the interaction

operator Ci j? In answering this question, we shall first follow an informal intuitive

picture and compare this to a more formal approach of perturbation theory.
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Infinitesimal perturbation approach. Assume that the full ro-vibrational Hamil-

tonian H0
rv = T +V 0, with the reference PES V 0, generates a set of eigenfunc-

tions {|ψ0
i 〉}i=1,2,.... In this eigenbasis the Coriolis operator Ĉ is diagonal, because

H0
rv|ψ0

i 〉= E0
i |ψ0

i 〉. The full ro-vibrational Hamiltonian Hrv = T +V , with the sec-

ond test-PES V , generates a set of slightly different eigenfunctions {|ψi〉}i=1,2,...,

which correspond to slightly different eigenvalues: Ĥrv|ψi〉= Ei|ψi〉. In both cases

the kinetic energy operator is the same. Nevertheless, a change in the PES (∆V ) will

result in a change to the wavefunction, so that H0
rv|ψi〉 6= E0

i |ψi〉. In the standard

variational formulation the reference wavefunction is expanded in a well defined

basis:

|ψ0
i 〉= ∑

j
d0

i j|Φ0
j〉 (3.11)

Basis sets are identical in both cases (reference and test); the only change is in the

variational expansion coefficients.

|ψi〉= ∑
j

di j|Φ0
j〉 (3.12)

Matrix elements of the Coriolis operator Ĉ in the reference eigenbasis can be written

as:

〈ψ0
i |Ĉ|ψ0

j 〉=C0
i jδi j (3.13)

This matrix is diagonal and the expectation values of the Coriolis operator in this

basis are considered as known reference values based on the highest quality PES.

Now assume analogous matrix elements in the test eigenbasis:

〈ψi|Ĉ|ψ j〉=Ci jδi j (3.14)

This matrix is also diagonal, but the expectation values are different with respect to

the reference case. After expanding matrix elements from eq. 3.14 in the variational

basis we get:
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Ci j = ∑
k,l

d∗ikd jl〈Φ0
k |Ĉ|Φ

0
l 〉 (3.15)

The change in values of the matrix elements of the Coriolis operator in the test

eigenbasis with respect to the reference values comes mainly from non-vanishing

elements 〈Φ0
k |Ĉ|Φ

0
l 〉, for which the zero-order basis states are energetically close.

Remaining terms in the sum will contribute negligibly if the PES distortion is small.

For this reason, let us focus on a particular matrix element which significantly con-

tributes to the change in value of Ci j. Because the new wavefunctions |ψi〉 (test

eigenfunctions) have slightly different expansion coefficients d jl than in the ref-

erence eigenfucntions |ψ0
i 〉, one can think of it as if the basis for the test set of

functions has been slightly changed (we incorporate the part of the value of the new

expansion coefficient, di j = d0
i j + δdi j, into the new basis function). Thus we may

write: |Φ j〉 := |Φ0
j〉+ |δΦ j〉. Working with variations in expansion coefficients

or variations of the basis function is equivalent, but for more compact notation it

was decided to vary the basis function. As a consequence, the chosen significant

Coriolis interaction matrix element in the sum in eq. 3.15 is given as

〈Φk|Ĉ|Φl〉= 〈Φ0
k |Ĉ|Φ

0
l 〉+ 〈δΦk|Ĉ|Φ0

l 〉+ 〈Φ
0
k |Ĉ|δΦl〉+ 〈δΦk|Ĉ|δΦl〉 (3.16)

The last term is of order of (δΦ0
k)

2 and can be neglected. The perturbed interaction

matrix elements are represented as a sum of the original interaction matrix elements

〈Φ0
k |Ĉ|Φ

0
l 〉 plus a correction term of type 〈δΦi|Ĉ|Φ0

j〉. The latter can be further

written as follows:

〈δΦ
0
i |Ĉ|Φ0

j〉=
〈δΦ0

i |[Ĉ, Ĥ0
rv]|Φ0

j〉
E0

i ′+(E0
i −E0

j )
(3.17)

where E0′
i = E0

i +δEi and E0
i −E0

j := ∆E0. This correction term contributes to the

change in value of the matrix elements of the Coriolis interaction operators. With

a constant, known distortion in the PES ∆V , the change in the value of the energy
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level is assumed to be known and small: δEi. Then one may write

δEi〈δΦ
0
i |Ĉ|Φ0

j〉=
〈δΦ0

i |[Ĉ, Ĥ0
rv]|Φ0

j〉

1+ ∆E0

δEi

(3.18)

As soon as δEi is non zero, the magnitude of the correction to the interaction matrix

element depends on ∆E0 as const
1+∆E0

δEi

, hence for ∆E0 = 0 takes the maximal value.

To summarize, we have shown above that separation of zero-order non-

interacting energy levels ∆E0 determines the magnitude of the resonance-induced

variation of the interaction matrix elements.

The present discussion over resonance interactions is primarily dedicated to

application in estimating reliability of calculated transition intensities. Henceforth,

the key question to answer is: how do resonance interactions of energy levels influ-

ence intensities of ro-vibrational transitions.

We are going to assume a typical (but not common) situation, when the up-

per energy level involved in a transition accidentally crosses near another energy

level and ro-vibrational symmetries of these two levels are identical. Such situation

is schematically depicted in Figure 3.9, where a weak transition from state |G〉 to

|W 〉 is accompanied by a strong transition from state |G〉 to |S〉. The energy levels

associated with states |W 〉 and |S〉 are nearly degenerate. Also, ro-vibrational sym-

metries of both states are identical (they have appropriate vibrational symmetries,

equal J quantum numbers and the approximate quantum number k differing by 1 or

2). In such case, we are interested in the transition line strength:

TGW = |SGW |2 = |〈G|µ̂(Q)|W 〉|2 (3.19)

where G and W labels ro-vibrational states between which the transition occurs.

µ̂(Q) is the transition dipole moment surface, which depends on nuclear coordinates

denoted as Q.

Perturbation theory approach. Until now we have been operating on ’small’ dis-

tortions of wavefunctions and surfaces in the configuration space. A more formal

way to approach the problem of sensitivity of transition intensities is by the use of
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perturbation theory. In the same way as the Herzberg-Teller effect [60] is responsi-

ble for intensity borrowing in vibronic transitions, the present formulation explains

the intensity borrowing in terms of resonance interactions of ro-vibrational energy

levels. Let us employ the interaction scheme from Figure 3.9. Assume that the

|W 〉= |φW
vib〉|φ

W
rot〉 state is perturbed by the |S〉= |φ S

vib〉|φ
S
rot〉 state via an interaction

described by operator Ĉ. In the first-order perturbation theory the |W 〉 state reads:

|W̃ 〉= |φ̃W
vib〉|φ̃

W
rot〉= |φW

vib〉|φ
W
rot〉+∑

I

〈φW
vib|〈φ

W
rot |Ĉ|φ I

rot〉|φ I
vib〉

E0
W −E0

I
|φ I

vib〉|φ I
rot〉 (3.20)

If the symmetry of the |S〉 state is appropriate, that is ΓW
v ⊗ΓW

r = ΓS
v ⊗ΓS

r , then

the matrix element 〈φW
vib|〈φ

W
rot |Ĉ|φ S

rot〉|φ S
vib〉 is non-vanishing. Contributions to the

perturbed wavefunction from other energy levels can be small if |S〉 and |W 〉 states

are well isolated from other states (as in the case of 00011 and 11101 states in CO2).

Then the perturbed wavefunction can be inserted in an expression for the transition

dipole moment:

〈G|µ̂(Q)|W̃ 〉 (3.21)

where |G〉 represent the lower energy level (the ground state) in Figure 3.9. Ex-

panding the bra-state in the above equation according to eq. 3.20 gives:

〈G|µ̂(Q)|W̃ 〉= 〈G|µ̂(Q)|W 〉+ 〈W |Ĉ|S〉
E0

W −E0
S
〈G|µ̂(Q)|S〉= SGW +λSW SGS (3.22)

The magnitude of the admixture of the |S〉 state to the |W 〉 state resulting in intensity

borrowing by the |W 〉 state depends on the value of the λGW parameter, which in

turn depends on the energetic separation of the two energy levels. The intensity of

the S← G transition is not significantly altered by interaction with the |W 〉 state

because the intensity carried by the W ← G is low.
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3.4.6 The concept of a scatter factor

The intensity borrowing effect quantified by eq. 3.22 gives an estimate for the

strength of resonance interaction between respective ro-vibrational energy levels.

This knowledge, in turn, can be utilized in quantifying how reliable are the calcu-

lated transition intensities. Transition intensities insensitive to small changes in the

PES are considered reliable, because no resonance interaction affects the energy

levels involved in a transition. Below, we introduce a descriptor which will serve as

a measure of reliability of calculated transition intensities. Let PES1 be a reference

PES for which the line strength for the W ← G transition is given by SGW . The

second PES2 generates the ro-vibrational wavefunction |ψ〉, which is very similar

to the wavefunction |ψ0〉 calculated with the PES1 . This variation in the wave-

function causes the change in the line strength according to eq. 3.22. The ratio of

intensities calculated with PES1 and PES2 and with identical DMS, which we will

be calling scatter factor, is given by

ρGW =
|SGW +λGW SGS|2

|SGW |2
$

∣∣∣∣1+λSW
SGS

SGW

∣∣∣∣2 (3.23)

where the last equality holds only when the expression in the bracket is real (a

special case of Schwartz inequality [184]). Eq. 3.23 provides a direct relation be-

tween the strength of the interaction of two energy levels λSW and the sensitivity

of the transition intensity to the PES change. It is assumed that the change in the

PES is small and controlled, meaning both surfaces are of similar quality, so that

∆PES(Q) = PES1(Q)−PES2(Q) is small for all Q’s. The value of the scatter fac-

tor should rapidly grow for transitions involving energy levels affected by resonance

interactions. Typically, the energetic condition for a resonance and the ∆J = 0 se-

lection rule lead to J-localized resonances. Such resonances occur when two energy

levels, with the same ro-vibrational symmetry and the same J become energetically

close. This observation cues into the idea of a method for detection of resonance

interactions of energy levels with ab initio calculations. If one calculates the ratio

of intensities for the same transition, but calculated with slightly different PESs, it
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can be possible to elucidate information about the strength of interactions of energy

levels involved in the transition with other energy level. This strategy has been ap-

plied for the CO2 line lists, for all 13 isotopologues, in which each line has a scatter

factor assigned.

MESM in a local domain? So far we have been considering the matrix elements

sensitivity measure (MESM) in terms of global distortion of the PES (∆PES(Q)).

It would be however interesting to explore the possibility of finding some corre-

spondence between local features of the PES, which directly affect the accuracy of

the calculated energy levels. Is it possible to relate specific regions of the PES, and

quantify how a local disturbance in this PES affects the energy levels? It is rather

intuitive that small localized perturbation to the PES in a high energy region, which

corresponds to a large amplitude distortion of the molecule, will have little effect on

some low lying energy levels. In this sense, it is interesting to find a geometrically

defined region in the configuration space, which can significantly contribute to the

accuracy of a calculated energy level. Finding such subspaces in the PES could

potentially help in indicating which local parts of the PES need to be modelled very

accurately in order to accurately reproduce energy levels involved in some type of

the resonance interaction. Alternatively, one could try a more straightforward ap-

proach, based on fitting the PES to experimental energy levels, with higher weights

imposed on energy levels affected by resonances. For this purpose, a MESM could

be a good guide for the values of the weighting function. Analysis of this problem

is dedicated for future study.

3.4.7 Coriolis interactions in the DVR3D formalism

DVR3D uses geometrically defined internal coordinates, in which the classic

normal-mode interaction picture is concealed in the complicated form of the kinetic

energy operator, given in eqs. (2.15, 2.16) in chapter 2. Nevertheless, by looking at

the effective vibrational Hamiltonian in eq. (2.19) and eq. (2.20), one can find terms

in the K̂rv part which couple states with ∆k =±1 and ∆k =±2. These terms are re-

sponsible for Coriolis-type interactions in DVR3D. Note that variational approaches

such as DVR3D, which use an exact kinetic energy operator, capture automatically
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all ro-vibrational resonance interactions. Any problems with the accuracy of com-

puted energy levels and wavefunctions near resonances can be attributed either to

convergence issues or inaccuracies in the PES.

3.5 Sensitivity analysis

The dominant source of uncertainty in line intensities in the absence of resonance

interactions is given by the ab initio DMS. For CO2, the accuracy of the UCL DMS

described in section 3.3.2 was considered in detail by Polyansky et al. [28] who

suggested that for the vast majority of transitions below 8000 cm−1 it should give

intensities accurate to better than 0.5 %. A characteristic of an ab initio DMS is

that entire vibrational bands are reproduced with very similar accuracy. This is

because to a significant extent ro-vibrational transitions in a molecule like CO2 can

be thought of as the product of a vibrational band intensity and a Hönl-London

factor [60]. Although DVR3D does not explicitly use Hönl-London factors, the use

of an effectively exact nuclear motion kinetic energy operator ensures that these

rotational motion effects are accounted for exactly.

As shown in section 3.4, the nuclear motion wavefunctions give a secondary

but, under certain circumstances, important contribution to the uncertainties. Vari-

ational nuclear motion programs yield very highly converged wavefunctions and

in situations where the PES is precise the intensities show little sensitivity to the

details of how they are calculated. For example, wavefunctions calculated using

Radau coordinates give intensities very similar (to within 0.1 %) to those computed

in the previous study [28] using Jacobi coordinates and different basis sets. As men-

tioned earlier, where the wavefunctions do play an important role is in capturing the

interaction between different ro-vibrational states. Such resonance interactions can

lead to intensity stealing and, particularly for so-called dark states, huge changes in

transition intensities.

The idea of using the scatter factor, explained in section 3.4.6, was originally

introduced by Lodi and Tennyson [56, 185] for water to capture accidental reso-

nances which were not fully characterized by the underlying PES. Under these cir-
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cumstances calculations with different procedures should give markedly different

results. The procedure does not yield an uncertainty as such, it simply establishes

which transition intensities are correctly characterized by the calculation and hence

have an uncertainty reflecting the underlying DMS, and which are not, in which

case the predictions were deemed as unreliable and alternative sources of intensity

information was recommended.

In other words, trustworthy lines should be stable under minor PES/DMS mod-

ifications. One problem with this strategy is that if the alternate PES (or DMS) dif-

fers too much from the reference (best) PES then large intensity variations can be

found which do not reflect problems with the best calculation, but rather inaccuracy

of the lower quality PES. This issue already arose in a study on HDO [186] where

the ab initio and fitted surfaces showed significant differences. For CO2 the ab ini-

tio PES is relatively inaccurate and hence far from the high quality semi-empirical

Ames-1 PES; it was for this reason a third PES was constructed, by performing

a light-touch fit of the ab initio PES to J = 0− 2 energy levels obtained with the

Ames-1 PES (see section 3.3.2).

Here therefore the Lodi-Tennyson strategy [56] is followed, but we constructed

and evaluated six line lists for the main isotopologue utilizing the three different

PESs and two different DMSs introduced in section 3.3.2. For each of the other iso-

topologues of CO2, after testing the main isotopologue, four line lists were created

using only Ames-1 and Fitted PESs.

Practically, the procedure for finding the scatter factor is as follows: two sets

of ro-vibrational wavefunctions are produced, with two different PESs (PES1 and

PES2). For each set of ro-vibrational wavefunctions transition intensities are then

calculated with two different DMSs (DMS1 and DMS2). This gives four line lists:

(PES1,DMS1), (PES1,DMS2), (PES2,DMS1) and (PES2,DMS2). Schematically

this is displayed in Figure 3.10. In the next step, transition lines are matched be-

tween the four line lists in a two-step algorithm. First, a straightforward match

between lines calculated with the same PES is made. This generates two sets of line

lists, which contain two transition intensities for each matched transition line. In the
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Figure 3.10: A general scheme for calculating the scatter factor ρ .

second stage, a match between the two sets of lines from stage 1 is made. The most

efficient way of doing so is by prior matching of energy levels through available

quantum numbers J and e/ f as well as energetic proximity criteria. Usually not

all lines between the two sets from stage one can be unambiguously matched. The

percentage of matched lines strongly depends on the difference in quality of the two

PESs. Having all 4 line lists matched line-by-line, for each ’matched’ line, the ratio

of strongest to weakest transition intensity is calculated, yielding a scatter factor ρ ,

as schematically depicted in Figure 3.11.
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Figure 3.11: Schematic illustration of the concept of the scatter factor ρ . Two
situations are given. Left: an unstable line; right: a stable line. Here, the critical
value for the scatter factor, dividing stable lines from unstable lines, was chosen to
be ρcrit = 2.

The magnitude of the scatter factor, determined by the ratio of the strongest to

the weakest transition intensity for a given line informs about the sensitivity of the

this transition line to minor PES and DMS changes.

3.6 Summary of line lists
With details given in sections 3.3.1 and 3.3.2, a total of 54 room-temperature line

lists for CO2 were calculated using UCL’s high-performance computing facility:

Legion. For the main isotopologue (16O12C16O,’626’) six line lists were calculated

and for each of the remaining 12 isotopologues four line lists were produced, in

order to assign a scatter factor to each line. The reference (highest quality) line list

for each isotopologue used Ames-1 PES and UCL DMS. Table 3.4 summarizes line

lists 2 computed for all 13 isotopologues of CO2. The total number of lines in the

HITRAN2012 database is usually lower than in remaining line lists, which suggests

several spectral gaps in HITRAN2012, especially for less abundant isotopologues.

These gaps are all covered by the present calculations, which shows one of the

advantages of ab initio calculations: complete spectral coverage. Also, there are

several bands missing in the CDSD-296 database [187], which are present in the

UCL line lists. The reason for missing bands in CDSD-296 is unavailability of

experimental data for some spectral regions in the 0–8000 cm−1 range, and CDSD-

2Calculated line lists are available as supplementary materials to refs. [37–39].
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296 heavily relies on empirical data to create its entries.

The procedure for matching lines between HITRAN2012 and present calcu-

lations was based on matching of energy levels, with rigorous restrictions on rota-

tional quantum numbers and e/ f parities as well as 0.3 cm−1 tolerance for energy

difference. The next step was to match transition lines between HITRAN2012 and

UCL line lists. The procedure relied on a simple algorithm, where corresponding

lines were matched using already matched energy levels list. As a result nearly all

lines for all isotopologues in the 0–8000 cm−1 region were mapped between the

UCL line lists and HITRAN2012. The RMSD in line positions was in range 0.08–

0.1 cm−1 for all isotopologues, which confirmed the claimed <0.1 cm−1 accuracy

of the Ames-1 PES.
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Table 3.4: Summary of 13 room temperature (T =296 K) line lists of carbon dioxide.

Isotopologue 626 636 646 727 737 828 838 628 627 637 638 728 738
ZPEa [cm−1] 2535.92 2483.08 2436.75 2500.75 2447.50 2469.05 2415.39 2502.61 2518.35 2465.33 2449.38 2484.93 2431.48
JMAX 129 119 130 99 50 101 50 118 112 99 102 99 84
SF(ortho:para)b 1:0 2:0 7:0 15:21 30:42 1:0 2:0 1 6 12 2 6 12
Q296(This work) 286.095 576.652 2033.395 10 902.24 21 758.08 323.438 644.754 607.855 3536.724 7129.752 1223.560 3760.428 7583.400
Q296(CDSD-296)c 286.098 576.652 N/A 10 971.90 22 129.96 323.418 652.234 607.828 3542.639 7141.561 1225.518 3766.689 7595.295
Q296(Ames-296)d 286.094 576.644 2033.353 10 971.91 22 129.96 323.424 652.242 607.713 3542.610 7140.024 1225.270 3766.044 7593.900
Q296(HITRAN)e 286.936 578.408 N/A 11 001.67 N/A 324.211 653.756 609.480 3552.678 7162.908 1229.084 3776.352 7615.248
Abundance f 0.9842 1.1057(-2) 1.0 1.3685(-7) 1.5375(-9) 3.9556(-6) 4.4440(-8) 3.9470(-3) 7.3399(-4) 8.2462(-6) 4.4345(-5) 1.4718(-6) 1.653(-8)
N(This work) g 162 010 68 635 41 610 6530 1501 10 441 2637 117 490 71 580 22 667 39 980 14 349 3573
N(CDSD-296) g 160 499 68 640 N/A 6530 1500 10 444 2635 113 122 70 692 23 815 39 979 15 140 3621
N(Ames-296) g 162 558 68 739 42 072 6545 1634 10 531 3050 117 744 71 639 22 704 40 034 14 529 3573
N(HITRAN2012) 160 292 68 856 N/A 5187 N/A 7070 121 114 023 71 182 2953 26 737 821 N/A
Matchedh 160 289 68 856 N/A 5187 N/A 7069 121 110 292 71 016 2736 26 713 816 N/A
a Zero point energy computed with DVR3D with the Ames-1 PES; b Nuclear spin statistical weights c 2015 Edition of CDSD [187]; d [157]; e TIPS-2011 [188]; f

HITRAN2012 abundances were taken from Ref. [157]; g For 10−27 cm/molecule intensity cut-off in 646 and 10−30 cm/molecule after scaling by the natural abundance
for the other isotopologues; h present line lists with 10−33 cm/molecule intensity cut-off were used in the comparison.
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The values of partition functions calculated with DVR3D and Ames-1 PES

were compared to the partition functions supplied by the HITRAN2012, Ames-

296 and CDSD-296 line lists. A systematic shift of 0.3 – 0.5% is observed for

all isotopologues for partition functions between the present calculation and HI-

TRAN2012. The latter values were calculated using TIPS method [188], which is

inherently approximate, as based on the product approximation to the respective

degrees of freedom. For this reason, the presently calculated partition functions

should be considered as more accurate. As a result, the partition functions for iso-

topologues of CO2 calculated with the Ames-1 PES have been included in the recent

(2016) release of HITRAN [189].

Support for this decision comes from comparison of values of the partition

functions from the CDSD-296 database, Ames-296 line lists and present calcula-

tions. All three approaches calculate partition functions explicitly from eq. 3.4.

The presently computed partition functions are usually somewhat lower than their

Ames-296 counterparts. This is because the former ones are computed using a

smaller set of energy levels than in the original Ames-296 line lists. Therefore, for

line intensity calculations the Ames-296 partition functions from Huang et al. [157]

were used (those included in HITRAN2016). Figure 3.12 gives a general overview

of the 296 K line list for the main CO2 isotopologue in the 0 – 8000 cm−1 spec-

tral region. The calculated transition intensities are compared to the HITRAN2012

database.

In order to relate results from the present study to data given by experiments

and databases, it is necessary to choose a measure for intensity deviation between

two data sets. As a primary measure of relative intensity deviation the following

standard formula was used:

S =

(
IUCL

IEXP
−1
)
·100% (3.24)

where IUCL stands for line intensity from UCL line list given in cm/molecule and

IEXP is experimental intensity.

This measure is adequate for small deviations but poorly illustrates highly dis-
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Figure 3.12: General comparison of the HITRAN2012 and UCL CO2 296 K line
lists for the 0 – 8000 cm−1 region for the main isotopologue.

crepant intensities, due to its asymmetric functional form. For larger deviation

spans, for example to show graphically a general overview, it was decided to use a

symmetrized measure:

Ssym =
1
2

(
IUCL

IEXP
− IEXP

IUCL

)
·100% (3.25)

This measure, in turn, yields far from intuitive numbers near 0% deviation. In

comparisons, these two measures will be used interchangeably, depending on the

span of intensity deviations.
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3.7 Error analysis: a method for detecting reso-

nances

This section presents details of the reliability analysis for line intensities for infrared

spectra of 13 isotopologues of CO2. Theoretical background for this analysis was

given in sections 3.4 and 3.5.

3.7.1 Scatter factor statistics

For the main isotopologue of CO2 six line lists were generated, which utilized the

three different PESs and two different DMSs introduced in section 3.3.2. For this

purpose three sets of nuclear-motion wavefunctions were produced: the first based

on the Ames-1 semi-empirical PES, second based on the UCL ab initio PES and

the third on the fitted PES. Those three sets of wavefunctions were combined with

the two ab initio DMSs (UCL DMS and Ames DMS), to give line intensities. Hav-

ing six line lists in hand, the next step was to match line-by-line pairs of respec-

tive line lists, as described in section 3.5: (Ames PES & Ames DMS, Ames PES

& UCL-DMS)=(AA,AU), (UCL-ab initio & Ames DMS, UCL-ab initio & UCL-

DMS)=(UA,UU), (fitted PES & Ames DMS, fitted PES & UCL-DMS)=(FA,FU).

This first stage was straightforward, yielding almost 100% match as the line lists

being compared differ only in DMS, which does not affect energy levels. The sec-

ond stage involved matching the Ames-PES based with UCL-PESs based line lists,

i.e. (AA,AU) vs. (UA,UU) and (AA,AU) vs. (FA,FU). In both cases line-by-line

matching was preceded by matching of energy levels. In the case of Ames vs. UCL

90% of lines stronger than 10−30 cm/molecule were matched, while the Ames vs.

Fitted resulted in high 99% matching percentage. This confirms that reducing the

RMSD between Ames-1 based energy levels and ab initio UCL PES based energy

levels from 6.2 cm−1 to Fitted PES based energy levels with RMSD = 1.4 cm−1

makes a significant difference. Note that since the (AU) line list provides the best

estimates of the intensities, there is no benefit in performing a (UA,UU,FA,FU)

scatter factor analysis.
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Figure 3.13: Scatter factor, ρ , statistics for two sets of PES-DMS combination
((AA,AU,FA,FU) and (AA,AU,UA,UU)) for the main isotopologue of CO2. Inset:
cumulative distribution function for ρ . See text for further details.

For each ’matched’ line, the ratio of strongest to weakest transition intensity

was calculated, yielding a scatter factor ρ . Figure 3.13 shows scatter factors statis-

tics for the two sets of interest. Such statistics aims in supporting the choice of

a critical value for the scatter factor. After carefully analysing Figure 3.13, there

were two reasons for abandoning the ab initio UCL PES: a) incomplete match with

Ames-1 based energy levels caused difficulties in assigning the scatter factor to

transitions. We can clearly see that (AA,AU,UA,UU) set has a more uniform and

compact distribution of ρ . However statistics for the ab initio UCL PES are based

on 90% of total lines, which is visible in the cumulative distribution function for

(AA,AU,UA,UU) in the inset of Figure 3.13; b) ab initio UCL PES as significantly

lower quality than the Ames-1 PES. As a result the ab initio PES gave a number

of false positive resonances, meaning that there were lines with large values of the

scatter factor, and no real perturbation was present in this energetic region. These

false positives were solely artifacts of the insufficient quality of the UCL ab initio

PES.



3.7. Error analysis: a method for detecting resonances 129

With the choice of the (AA,AU,FA,FU) as a working set of lines, Figure 3.13

suggests ρ = 2.5 is a reasonable value for the critical value of the scatter factor.

A more detailed analysis of individual bands, given below, suggests that this is

indeed an appropriate value. The plateau of the cumulative distribution function

for (AA,AU,FA,FU) is reached at ρ ≈ 4, at which around 99% of all lines having

a smaller value of the scatter factor. This potentially determines another critical

value, separating ’intermediate’ and ’unstable’ lines.

Below, vibrational bands were classified by means of this descriptor, which

serves as a measure of line stability. The line list (AU) was divided into three classes

of lines: stable, intermediate and unstable; following established arbitrary limits on

ρ for a line to be considered stable (1.0 ≤ ρ < 2.5), intermediate (2.5 ≤ ρ < 4.0)

and unstable (ρ ≥ 4.0). Similar analysis was repeated for each isotopologue of CO2.

Each transition in the primary line list (AU) received a scatter factor.

In Figure 3.14 the statistics for the scatter factor for all 13 isotopologues is

presented.

626 636   646   828  727   838  737

%

0

20

40

60

80

100

intermediatestable (strong lines, ier=8)
stable (weak lines, ier=6,7) unknownunstable

 628  627   637  638  728  738

Figure 3.14: Scatter factor statistics for all 13 isotopologues of carbon dioxide.
Respective colours denote percentages of lines classified to particular stability do-
main. The y axis corresponds to percentage of total lines present in UCL line lists.
Black regions give percentage of stable and strong lines (> 10−23 cm/molecule),
for which the highest HITRAN intensity accuracy code was assigned (ier = 8, see
www.hitran.org) meaning that the line intensity can be considered sub-percent accu-
rate. The assignment of uncertainties in line intensities to AU line lists is discussed
further below.
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All transition intensities in CO2 line lists were scaled by the their natural abun-

dance and the 10−23 cm/molecule intensity cut-off dividing the ’strong’ and ’weak

lines was kept constant for all isotopologues. This resulted in much fewer lines in-

cluded in line lists for the less abundant isotopologues, explaining why for example

for the 737 and 738 isotopologues nearly all lines are stable. These lines correspond

to the strongest lines in the 626 isotopologue, which are mostly stable.

In order to appreciate the landscape of scatter factor distributions, it is instruc-

tive to introduce scatter factor maps as a function of lower and upper energy level.

Figure 3.15 shows a map where color codes represent values of the scatter factor

for a given transition. The advantage of this particular representation is that one

gains a full overview of all energetic regions, where transition intensities appear to

be sensitive to minor inaccuracies of the PES. These lines are marked as red dots in

Figure 3.15.

Figure 3.15: Scatter factor map for the main isotopologue (626) as a function of
lower and upper energy level for transitions stronger than 10−30 cm/molecule. The
color code represents the values of scatter factor, ρ . Three regions of line stability
were determined: blue-stable, orange-intermediate and red-unstable. See text for
further details
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The fundamental bands are easily identified as straight lines originating at 0

cm−1 lower energy in Figure 3.15. The lowest hot bands originate at around 668

cm−1, complicating the whole picture. A general conclusion from Figure 3.15 is

that the higher energy of a level involved in a transition, the higher tendency for

the transition to be unstable. The color coding in the figure divides scatter factor

space into 3 regions of increasing instability, marked blue, orange and red, respec-

tively. The blue region is considered to be stable and corresponding intensities are

reliable. The orange region is intermediate between stable and unstable, hence tran-

sitions marked orange need careful consideration. The red region contains highly

unstable lines whose computed line intensities should not be trusted. There are a

few super-unstable transitions (ρ > 10) which are not shown on the plots; these

lines are usually associated with a strong resonance interaction with some other

energetically-close level. Analysis of scatter factors for individual bands can yield

insight. By zooming in an energetic region of interest, as done in Figure 3.16, it is

straightforward to pick up entirely unstable bands or single transitions which hap-

pen to fall into resonance.

Figure 3.16 illustrates the general trend of decreasing stability of lines with

increasing energy of states involved in a transition. This has been already observed

for the main 626 isotopologue in Figure 3.15. In general, the scatter factor pat-

tern does not change significantly over different symmetric isotopologues, which

means that resonance interactions are mostly common for all symmetric isotopo-

logues. This is because changing nuclear masses in symmetric isotopologues of

CO2 shifts vibrational energy levels by a few wavenumbers, and resonance inter-

actions of vibrational energy levels present for the main isotopologue persist for

other isotopologues too. For asymmetric isotopologues, a qualitatively different sit-

uation with broken symmetry of identical nuclei leads to appearance of some new

resonances and disappearance of others, which is captured by scatter factor maps

displayed in Figure 3.17. Sporadic red points localized in small energetic areas are

indicative of J-localized resonances, while long chains of unstable points suggest

instability of whole bands. The latter effect can be associated with combination of
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Figure 3.16: Scatter factor map for the 828 isotopologue. Colour coding denotes
respective classification of lines: blue stands for stable lines, orange for intermediate
lines and red for unstable lines. The arrows indicate selected bands for which a J-
localized peak in the scatter factor is observed. The zoomed inset in right bottom
corner shows the peak region of the scatter factor for the 12212 – 02201 band. Both
P and R branches are affected by the interaction around J = 30.

Fermi-type resonance and limited accuracy of the Fitted PES, especially for higher

energies.

It is instructive to give a more detailed insight into resonances by plotting scat-

ter factor as a function of m quantum number for each band separately within a

given polyad number change (∆P). m is the rotationally-derived quantum num-

ber defined as equal to -J(lower energy level) for the P branch, J(lower energy

level) for the Q branch, and J(lower energy level)+1 for the R branch, and J is

the rotational quantum number. The polyad number for carbon dioxide is defined

as P = 2ν1 + ν2 + 3ν3, where ν1,ν2,ν3 are the vibrational quantum numbers of

symmetric stretching, bending and asymmetric stretching, respectively. Figure 3.18

displays scatter factor analysis of several bands with ∆P = 3 in the 828 isotopo-

logue.

For ∆P = 3 three unstable bands were found: 23301 – 12202 , 11101 – 00001

and 11102 – 00001, as shown in Figure 3.18. The first of the three bands contain
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Figure 3.17: Scatter factor maps for all six asymmetric isotopologues of CO2.
Colour coding classifies transitions as: stable(blue), intermediate(orange) and
red(unstable). The arrows indicate examples of bands involved in a resonance in-
teractions.

transitions for which upper energy levels (localized around a particular J value)

become energetically close to rotational states of some other vibrational state; in this

case to levels from the 12212 state. This may lead to a strong resonance interaction

between states. In the case of the last two bands, an intensity borrowing mechanism

from the strong asymmetric stretching fundamental is responsible for the instability

of line intensities around a particular J. For ∆P = 5, both 12212 – 02201 and 23301

– 02201 bands are subject to a J-localized resonance, as also depicted further in

Figure 3.22. This is due to mutual interaction of the upper levels of these bands,

which are energetically close. For ∆P = 7, the 22213 – 02201 band exhibits a weak

J-localised peak in the scatter factor around J = 34. The 31101 – 00001 band is
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weakly perturbed by interaction between the 31101 and 20012 states in the vicinity

of J = 68. Bands with higher polyad change number (∆P = 9,11) are in general

less stable, following uniform distribution of the scatter factor. From the above

analysis it follows that a more appropriate spectroscopic label, by means of which

the absorption bands affected by resonance intensity borrowing are characterised, is

the upper state polyad number Pupper.

Resonances occur when ro-vibrational energy levels of two or more states cross

or nearly cross in the vicinity of a single J value. A prominent example of near

crossing situation is the 11101 – 00001 band, which is perturbed by the 00011 state

(intrapolyad interaction). Because the 00011 – 00001 fundamental is very strong

and the perturbed band is relatively weak, significant intensity stealing is observed.

This case is depicted in Figure 3.19, where relative intensity between HITRAN

and UCL are drawn against the m quantum number. In Figure 3.19 colour coding

quantifies the stability of the transition intensity. A J-localized resonance is visible

around m =+36, clearly correlating with both high instability of lines (marked by
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red points) and large deviations of UCL line intensities from HITRAN2012 line

intensities. For this reason, UCL transition intensities near m = 36 are unreliable.

Figure 3.19: Relative intensities plotted against HITRAN2012 line intensities for
the 11101–00001 band for the 828 isotopologue. This is an example of a band
involved in resonant Coriolis interaction. Blue, orange and red points denote stable,
intermediate and unstable lines, respectively.

This quasi-singularity in line intensity occurs due to the Coriolis interaction

with the strong 00011–00001 band, which equally perturbs P and R branches of the

11101–00001 band, and manifests itself by intensity borrowing, which in turn leads

to the strengthening of the P-branch and to suppression of the R-branch.

A view of the 636 isotopologue in Figure 3.20 supports the thesis that reso-

nance interactions may affect only selected rotational branches. Here the scatter

factor for the P,Q and R branches of the 11101 – 00001 band in 636 is plotted as a

function of m. Only the R branch is affected by intensity borrowing. Similar pic-

ture emerges from Figure 3.21, where the scatter factor for P,Q and R branches of

the 11102 – 00001 band in 626 is plotted as a function of the upper energy level;

showing energetic localization of the resonance. Analogical behaviour is observed

for resonance-affected bands in other CO2 isotopologues.

Thus, to summarize this part, the scatter factor analysis is capable of detecting
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resonance interactions of ro-vibrational energy levels, which are branch-specific

and J-specific.
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Figure 3.20: Relative intensities plotted against HITRAN2012 line intensities for
11101–00001 band for the 636 isotopologue. This is an example of a band involved
in resonant Coriolis interaction.

Figure 3.21: Scatter factor as a function of lower energy level for the 11102 – 00001
band in 626. The purple line denotes critical value of the scatter factor (ρ = 2.5).
Different colouring was used for the P, Q and R branches.

Another interesting example, this time of the intrapolyad interaction, is the
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pair: 23301 (perturber) and 12212 – 02201 (perturbed band), for which the intensi-

ties scheme is depicted in Figure 3.22.
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Figure 3.22: Multidimensional graph characterising the 12212 – 02201 band of
12C18O2. The base plane depicts m dependence of line intensities with bar height
and color code measuring the value of the scatter factor. The far right plane rep-
resents m dependence of energy levels of the perturbed state (12212) and perturber
(23301), which happen to nearly overlap around m = ±36. Left plane gives inten-
sity ratios of lines taken from the present line list and CDSD-296 database [187].

Figure 3.22 shows perfect correlation between line stability measured by the

scatter factor and agreement with CDSD-296 line intensities, where large discrep-

ancies surround the region of elevated scatter factor (marked with red filled triangles

in Figure 3.22). Very similar behaviour for line positions of the 12212 – 02201 band

was noted by Borkov et al. for 727 [190], whose simple polynomial fit of the line

positions resulted in a J-localised quasi-singularity in deviation of line positions.

One would expect that at least some of the large deviations in line intensities

(see Figures 3.20 and 3.22) can be assigned to the influence of a resonance. Indeed,

the correlation between high deviations in intensity and high scatter factor values

is strikingly pronounced. Therefore we may consider the scatter factors used as

a legitimate measure of reliability of a theoretical line list. Effective reproduction
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of experimental line intensities for ’resonance bands’ is a challenge for variational

calculations. As the transition dipole moment is very sensitive to small inaccura-

cies of the ro-vibrational wavefunction, and requires almost perfect reproduction of

the PES in this region, which is currently beyond reach of the variational method-

ology (electronic structure calculations). For the time being, the best that can be

done is to identify these sensitive transitions and use other sources of transition in-

tensities, such as the Effective Hamiltonian calculations, which have proven to be

very successful for reproduction of resonance affected bands [162, 191]. However,

the main drawback of the Effective Hamiltonians is a necessity of a very detailed

semi-empirical parametrisation of these resonance affected bands, which requires a

lot of experimental data. For this reason a list of bands, which may be perturbed

by resonance interactions would be a helpful handout for both experimentalists and

theorists working with CO2. Below are listed selected strongest bands for different

isotopologues of CO2, for which the scatter factor analysis was performed indi-

vidually. In Table 3.5 classification of bands of 626 is given as stable, stable with

J-localized resonance, and as sensitive in the rightmost column.
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Table 3.5: Characterization of selected CO2 bands for the main 626 isotopologue. Given for each
band are the band centre in cm−1, the total band strength in cm/molecule, the total number of lines
in the band, the number of stable lines with scatter factor ρ < 2.5, the number of intermediate lines
with 2.5≥ ρ < 4.0, the median of the scatter factor distribution ρ̃ , and the maximum and minimum
value of ρ .

Band Centre Strength Total Stable Inter. ρ̃ ρmax ρmin Type
00011-00001 2349.949 9.20×10−17 129 129 0 1.0 1.0 1.0 stable
01101-00001 668.159 7.97×10−18 183 183 0 1.0 1.0 1.0 stable
01111-01101 2335.133 7.09×10−18 341 341 0 1.0 1.0 1.0 stable
10011-00001 3715.622 1.53×10−18 119 119 0 1.1 1.1 1.1 stable
10012-00001 3613.662 1.01×10−18 119 119 0 1.1 1.1 1.1 stable
02201-01101 669.309 6.15×10−19 340 340 0 1.0 1.0 1.0 stable
02211-02201 2321.865 2.71×10−19 317 317 0 1.0 1.0 1.0 stable
10012-10002 2328.264 1.73×10−19 115 115 0 1.0 1.0 1.0 stable
10001-01101 720.044 1.57×10−19 169 169 0 1.0 1.0 1.0 stable
10002-01101 617.239 1.46×10−19 169 169 0 1.0 1.0 1.0 stable
11111-01101 3721.742 1.21×10−19 310 310 0 1.1 1.1 1.0 stable
10011-10001 2327.419 1.04×10−19 113 113 0 1.0 1.0 1.0 stable
11112-01101 3578.816 7.58×10−20 309 309 0 1.1 2.2 1.0 stable
03301-02201 670.458 3.54×10−20 316 316 0 1.0 1.0 1.0 stable
20012-00001 4978.659 3.40×10−20 110 110 0 1.4 1.5 1.3 stable
11102-10002 647.831 2.16×10−20 162 162 0 1.0 1.0 1.0 stable
11112-11102 2313.744 1.47×10−20 294 292 2 1.0 3.2 1.0 stable, J-local
11101-10001 689.438 1.36×10−20 159 159 0 1.0 1.0 1.0 stable
20011-00001 5100.494 1.10×10−20 107 107 0 1.4 1.5 1.3 stable
03311-03301 2308.597 1.03×10−20 291 291 0 1.0 1.0 1.0 stable
11111-11101 2312.260 7.23×10−21 290 290 0 1.0 1.0 1.0 stable
20013-00001 4854.447 7.13×10−21 109 109 0 1.5 1.5 1.5 stable
11101-02201 740.173 6.14×10−21 308 308 0 1.0 1.0 1.0 stable
11102-02201 595.761 5.33×10−21 304 304 0 1.0 1.0 1.0 stable
11101-00001 2077.641 5.17×10−21 107 97 3 1.9 1500 1.4 stable, J-local
12212-02201 3724.349 4.75×10−21 284 284 0 1.1 1.1 1.1 stable
20012-10002 3693.261 3.69×10−21 104 104 0 1.1 1.1 1.0 stable
20013-10002 3569.048 3.12×10−21 104 104 0 1.1 1.1 1.0 stable
20011-10001 3712.291 2.96×10−21 102 102 0 1.1 1.1 1.0 stable
04401-03301 671.607 1.80×10−21 290 290 0 1.0 1.0 1.0 stable
12202-11102 654.112 1.57×10−21 294 294 0 1.0 1.0 1.0 stable
00031-00001 6973.378 1.38×10−21 101 101 0 2.1 2.2 2.0 stable
00011-10001 961.746 9.01×10−22 99 99 0 1.2 1.2 1.2 stable
12201-11101 685.423 8.03×10−22 291 291 0 1.0 1.0 1.0 stable
11102-00001 1933.229 6.19×10−22 156 146 3 1.4 37 1.2 stable, J-local
30011-00001 6503.913 5.17×10−23 24 0 24 2.6 2.6 2.6 sensitive
12201-01101 2094.904 5.01×10−22 300 271 7 1.3 1200 1.1 stable, J-local
30013-00001 6228.740 4.54×10−22 99 99 0 2.3 2.3 2.3 stable
30012-00001 6348.693 4.54×10−22 99 99 0 2.2 2.3 2.1 stable
20001-11101 719.501 3.89×10−22 146 146 0 1.0 1.0 1.0 stable
13311-13302 2490.039 9.13×10−24 75 10 65 2.5 3.5 2.4 sensitive
40012-00001 7735.305 3.19×10−24 24 0 24 2.6 2.6 2.6 sensitive
40011-00001 7921.693 2.10×10−25 24 0 24 2.6 2.6 2.6 sensitive
23302-22201 481.776 9.92×10−26 90 90 0 1.0 1.0 1.0 stable
30004-11102 1859.407 6.77×10−26 24 0 24 2.6 2.6 2.6 stable, J-local
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For the 626 isotopologue 108 out of 116 bands stronger than 10−25

cm/molecule are stable. Bands involving bending excitations are also very stable.

For some bands, such as 32203–03301 and 42201–03301 J-localized instabilities

appear only weakly, generating peaks in ρ which do not exceed the critical value.

For other isotopologues the situation is qualitatively similar. Table 3.6 gathers in-

formation about vibrational bands perturbed by a resonance interaction with other

vibrational state for the 16O12C18O (628) isotopologue. Data on other isotopologues

can be found in Table 3.9 and in UCL ab initio line lists published in refs. [37–39]

also available as a part of the ExoMol database (www.exomol.com).

Table 3.6: List of selected 16O12C18O vibrational bands perturbed by a resonance
interaction. The columns give: vibrational quantum numbers of the perturbed
band, vibrational assignment of the perturbing state, type of interaction: Inter-
polyad or Coriolis, band centre, total band strength, the total number of lines in
the band in UCL line list, the number of stable lines, the number of intermediate
lines, median of the scatter factor in the band ρ̃ , maximum scatter factor in the
band ρmax, minimum scatter factor in the band ρmin and instability classification:
J-localized(branch) or diffuse.

Vibrational band Perturber Type Centre Strength Total Stable Inter. ρ̃ ρmax ρmin Stability

11111 – 00001 31104 Inter-pol. 4346.974 3.88E-27 154 153 1 1.2 3.1 1.1 J-local
31112 – 01101 51105 Inter-pol. 6263.825 1.02E-25 332 312 4 2.2 422.5 2.2 J-local
11101 – 00001 00011 Coriolis 2050.068 1.69E-23 277 261 9 1.2 2124.0 1.1 J-local(R)
11102 – 00001 00011 Coriolis 1902.447 2.95E-24 266 251 9 1.2 2599.0 1.2 J-local(R)
12212 – 00001 23301 Coriolis 4838.085 1.52E-26 148 138 0 1.5 15.2 1.4 J-local
23301 – 00001 12212 Coriolis 4825.853 1.46E-27 61 24 15 1.1 8.0 1.1 sensitive
21112 – 01101 41105 Inter-pol. 4894.770 9.37E-24 448 422 2 1.5 7843.0 1.4 J-local
21102 – 00001 10012 Coriolis 3281.717 3.76E-25 239 138 0 1.2 115.2 1.2 sensitive
21111 – 01101 41104 Inter-pol. 5063.241 2.92E-24 410 363 0 1.4 3.1×105 1.4 sensitive
40014 – 00001 60007 Inter-pol. 7338.180 2.95E-26 134 0 123 3.6 3480.0 3.6 J-local
31113 – 01101 42202 Coriolis 6098.911 1.56E-25 345 326 0 2.3 7.6×105 2.2 sensitive
22212 – 22202 25501 Cor.+l-type 2262.766 3.07E-27 227 207 0 1.0 3444.0 1.0 J-local
30003 – 00001 14402 Anh.+l-type 3855.968 1.43E-24 162 158 0 1.2 1.1×107 1.2 J-local
30013 – 00001 50006 Inter-pol. 6127.111 2.24E-24 165 160 0 2.3 4.6×105 1.3 J-local
41113 – 01101 61106 Inter-pol. 7459.917 2.45E-27 199 5 8 4.1 114.2 1.7 sensitive
05521 – 00001 33314 Inter-pol. 7851.812 3.98E-29 14 0 0 102.2 1436.0 94.5 sensitive
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3.8 The story of the 2 µm band
In this section, we are going to focus on one particular important vibrational ab-

sorption band in the main isotopologue of CO2, which has been used to measure

the quantity of this greenhouse gas in the Earth’s atmosphere. It will be shown how

the accuracy of experiments and theoretical calculations improved over the years

and how a subtle interplay between theory and experiment can push the state of

the art. Establishing new standards involves mutual validation of the most accu-

rate theoretical calculations and measurements. On the example of a band located

in the 2 µm absorption region in CO2 we are going to show why ab initio results

are an essential part in the validation of measurements and in re-assessment of true

experimental uncertainties.

3.8.1 Why is the 2 µm band so important?

The quantity of carbon dioxide in Earths atmosphere, its role in climate change

as well as possible sources, migration mechanisms and reservoirs of this gas have

become a vividly discussed topic both in scientific and non-scientific circles over

the past decades. A number of space missions have been launched in the past to

search for answers to fundamental questions about CO2, in particular where CO2 is

being produced (sources) and where it is going (sinks). This activity is clearly vital

to monitoring and hopefully controlling CO2 and hence climate change [114].

Orbiting Carbon Observatory-2 (OCO-2) satellite launched on 2 July 2014 and

the Japanese Greenhouse Gases Observing Satellite (GOSAT) launched on 23 Jan-

uary 2009 are dedicated to accurately measure the column-averaged dry air molar

fraction of CO2 in the Earth’s atmosphere. Specifically, the OCO-2 mission aims to

provide maps of CO2 in a high, few km2, spatial resolution to pinpoint variations of

CO2 concentration at the 1 part per-million (ppm) level. Such remote sensing mea-

surement must be supported with an appropriate spectroscopic model for successful

retrieval of concentrations from measured absorption intensities. The measurements

essentially utilize the Lambert-Beer law: I
I0
= e−σ(ν̃)·N·L, in which the intensity of

the absorbed radiation I and the reference radiation intensity I0 are directly mea-

sure in the on-board instrument. The path length L is accurately estimated from
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the distance the light must cross between the Earth’s surface and the detector in the

satellite. For calculation of N - the concentration of CO2 the absorption cross sec-

tion σ(ν̃) is required. Absorption cross section depends on the wavenumber ν̃ and

is related to the integral line intensity by the relation: σ(ν̃) =
∫

I(ν̃ ′− ν̃) f (ν̃ ′)dν̃ ′.

Absorption cross sections can be obtained either from laboratory experiments or

theoretical calculations. The latter require calculation of integral line intensities

and line shapes. The 1 ppm variation of the CO2 concentration N near the present

global atmospheric CO2 level (≈ 400 ppm), corresponds to 0.3% relative variation

in integral transition intensity. Thus ideally, reference transition intensities provided

by experiment or theory should be 0.3% accurate [16].

At the start of the present work, the best experimentally derived models for

transition intensities and line shapes were capable of providing 1%–3% accuracy,

which translates into certainty of CO2 concentration from the satellite measure-

ments of 1.5 – 3.5 ppm over land and 1.5–2.5 ppm over ocean [17]. In OCO-2

instruments, the determination of CO2’s concentration is based on measurements of

the absorption of the sunlight reflected from the Earth’s surface in the 1.61 µm and

2.06 µm spectral regions.

These two CO2 absorption regions are called the ’weak’ and the ’strong’ CO2

absorption bands, respectively. The reason for the choice of these particular spectral

regions is their relatively high absorption intensity and little spectral congestion

from other CO2 bands and lines from other molecules. For a number of years,

there have been attempts to raise the sensitivity of experimental apparatus to achieve

the goal of 0.3% accuracy in intensity measurements. The HITRAN database is

specifically dedicated for this type of purposes, and since its early days, a particular

effort has been put to accurately model the ’weak’ and the ’strong’ CO2 bands.

Several independent groups, both theoretical and experimental, competed to provide

the most accurate line intensities for the 1.61 µm and 2.06 µm CO2 bands.

Below are listed selected studies from the past years, which were considered

the-state-of-the-art at their publication times. The earliest very high precision and

accuracy experiments were reported by Castrillo et al. in 2003 [192], followed by
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Casa et al. [193] in 2007 and in 2009 [194] from the same group. NASA’s JPL

(Toth et al. [195]) performed their independent measurements in 2008 dedicated to

the OCO mission (which failed at launch in 2009). Soon after, Wuebbeler et al. [29]

reported a high accuracy measurement of a single line in the 20012 – 00001 band

(which is the main band located near 2 µm). In 2014 a highly accurate theoreti-

cal line list from NASA Ames research center (Huang et al. [149, 157, 161]) was

published. In the following year the UCL DMS was constructed by Polyansky et

al. [28, 37] and measurements by Bielska et al. [28] confirmed the quality of UCL

DMS, which was later used in calculation of the UCL line list for the main CO2

isotopologue [37], released in late 2015. A few months later, NASA’s collaborative

experimental study by Benner et al. [128] and Devi et al. [31] reported measure-

ments of the 1.61 µm and 2.06 µm CO2 bands, specifically dedicated for the OCO-2

data retrieval process. Finally, very recently (2016/2017), three independent exper-

iments, with newly developed ultra-high accuracy spectroscopic techniques, were

performed by Hodges et al. from NIST (USA) [30, 196], Brunzendorf et al. [33]

from PTB in Berlin (Germany) and Odintsova et al. [32] from Napoli (Italy). Given

below is a short story, a summary of the debate over the 1% discrepancy between

theory and some experiments for the ’weak’ and the ’strong’ CO2 bands. In the

end, this debate helped to establish new standards in high-resolution molecular

spectroscopy, especially in the interplay between computation and measurements

of line intensities.

3.8.2 Issues with HITRAN 2012

Figure 3.23 presents a general comparison of the 20012 – 00001 band intensities for

the main isotopologue of CO2 between the present calculation (named ExoMol) and

the HITRAN 2012 database [176]. In Figure 3.23 the atmospherically relevant band

is the strongest band located in the 4800–4900 cm−1 spectral region and consists

of P and R branches, as expected from parallel bands. Visually, the agreement

between the present calculations and the HITRAN 2012 database is excellent. For

this reason, a more accurate representation for intensities is here suitable.

Accordingly, Figure 3.24 gives an intensity comparison between the present
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Figure 3.23: General comparison of the 20012 – 00001 band in the main isotopo-
logue of CO2 between the present calculation (named ExoMol) and the HITRAN
2012 database [176].

line list and the HITRAN 2012 database for the 20012 – 00001 CO2 band. HITRAN

2012 used two separate data sources for this band: NASA JPL (Toth et al. [195]) and

an unpublished version of CDSD-296 database [170]. The point of source switch

is clearly visible near J = 64, where a jump in relative deviation from the present

calculations is observed. This is the point where the experimental data ended and

the database had to rely on results from semi-empirical effective Hamiltonian cal-

culations included later in the CDSD-296 database. A nearly 4% discontinuity in

the intensity pattern indicates serious inconsistency between the two sources used

in the HITRAN 2012 database. In addition to that, an arc-like structure is observed

in the relative deviation pattern for the Toth’s et al. measurement. This was an un-

usual feature, which required explanation, because both Toth et al. and the present

calculation claimed near 1% accuracy. One of these claims must have been too op-

timistic. In such form, transition intensities provided by HITRAN 2012 could not

be reliably used in atmospheric CO2 concentration retrieval models. Further insight
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into origins of arc-like structures observed in HITRAN2012 intensity patterns are

given in the following subsections. It is there shown that such features are a com-

mon artifact of a certain type of spectroscopic retrieval procedure, which relies on

Herman-Wallis factors.

Figure 3.24: HITRAN 2012 vs. UCL line intensities comparison for the 20012
– 00001 band in the main isotopologue of CO2. Two HITRAN data sources are
marked with red (CDSD-296: semi-empirical calculations [170]) and blue (Toth et
al. - experimental [195]) circles.

3.8.3 2000’s, first ’sub-percent’ measurements

High accuracy measurements of transition intensities for the 2 µm band began in

early 2000’s. In Figure 3.25, where several accurate intensity measurements are

compared to the present calculations for the 20012 – 00001 band in the main iso-

topologue of CO2, there are two panels: the upper panel displays situation before

year 2015, and the lower panel gives an update with three independent experiments

reported very recently (since 2015). For lines R(2) to R(18), there have been two

consecutive measurements performed by the same group (denoted UniNa2), as il-

lustrated with red and black diamonds in the upper panel of Figure 3.25. The

uncertainties of both measurements were claimed to be an unprecedented 0.2%

level, indicated by the errorbars. However, not only does these data not pass a

self-consistency test, showing discrepancies in intensities for two respective mea-
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surements of the same lines, but also does not agree with the UCL’s theoretical

calculations (1% –3% disagreement). The internal discrepancy between the two

UniNa2 experiments was more than 1%, which suggested the need for revision of

the claimed 0.2% accuracy of Casa et al. ’s measurements. In 2011 another tenta-

tive indication of problems with the UniNa2 data came from Wuebbeler et al. [29],

who reported very accurate measurement of intensity of a single R(12) line, which

agreed with UCL line list within 0.1%. In the meantime the HITRAN 2012 database

has been issued and NASA Ames Research Center published a theoretical line list

with high quality transition intensities. Both data sets are compared to the present

calculations in Figure 3.25. The JPL data (Toth et al. ) used in HITRAN 2012, as

shown in the previous section, exhibits an arc-like structure, which corresponds to

≈ 2.5% deviation from the present calculations. Despite the systematic deviation

and the arc structure, these JPL data, which was included in the HITRAN 2012

database, exhibits a very low statistical noise, which suggests high precision of the

measurement. The Ames-1 intensities [149, 157, 161] do not have such arc pattern,

which is suggested, that the arc-like structures are artifacts of the experimental re-

trieval procedure. Although Ames-1 transition intensities agree to 0.5% –1% with

the present calculations, they feature a non-physical jump in intensity at J = 0, that

is between P and R branches. This discontinuity is probably caused by problems

with the nuclear motion program used by the authors and features in several bands.

For sub-percent accuracy, this discontinuity issue must be resolved. Before 2015,

the problem of reliable estimation of true accuracy both for theoretical intensity

calculations and UniNA2 experiments remained unresolved.
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Figure 3.25: Comparison of line intensities between the present study, HITRAN
2012 and other accurate experimental and theoretical sources for the 20012 – 00001
band of 12C16O2. Zero relative deviation line corresponds to UCL line intensities.
m is defined as equal to -J(lower energy level) for the P branch, J(lower energy
level) for the Q branch, and J(lower energy level)+1 for the R branch. Respective
data sources were used in the comparison: UniNA2 2003 (Castrillo et al. [192]),
UniNA2 2007 (Casa et al. [193]), UniNA2 2009 (Casa et al. [194]), JPL - HITRAN
2012 (Toth et al. [195]), PTB 2011 (Wuebbeler et al. [29]), Present study 2016 (Zak
et al. [37]), Ames-1 2014 (Huang et al. [149,157,161]), PTB 2015 (Brunzendorf et
al. [33] ), UniNA2 2016 (Odintsova et al. [32]), NIST 2016 (Hodges et al. [30]).

3.8.4 A debate over the 1% - NIST comes to rescue

A definitive conclusion to the debate over whose data is the most accurate has

been supplied by recent measurements done independently in the National Institute
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of Standards and Technology (NIST) [30], Physikalisch-Technische Bundesanstalt

(PTB) in Berlin [33] and Second University of Naples (UniNa2) [32]. The lower

panel in Figure 3.25 displays intensity comparison between UCL and very recent

high accuracy measurements of the 20012 – 00001 band in CO2: PTB 2015 (Brun-

zendorf et al. [33]), UniNA2 2016 (Odintsova et al. [32]) and NIST 2016 (Hodges

et al. [30]). Excellent agreement is visible between UCL predictions and PTB and

NIST measurements (0.2% – 0.5 %). The 0.1% – 0.2% consistency of measured

intensities between NIST and PTB provides also a definitive proof of reliability for

the UCL’s ab initio results. Further support for this statement was delivered with

UniNA2’s 2016 measurements of three lines in the 20012 – 00001 band (R(2),R(4)

and R(6)). The discrepancy between the experiment and UCL calculation was again

0.3%. Further validation for a wider J range would be valuable, but not necessary,

because the theoretical procedure used to calculate UCL line lists gives fundamen-

tally uniform accuracy of intensities for the whole vibrational band, i.e. is almost

independent of J value. Similar quality of transition intensities was anticipated for

several other strong absroption bands in isotopologues of CO2. Indeed, further con-

firmations for sub-percent accuracy of UCL ab initio computed intensities came

from comparisons to new measurements for 20013 – 00001 and 30013 – 00001

bands in the main isotopologue.

Figure 3.26 gives a comparison between UCL intensities for the 30013 – 00001

band, HITRAN 2012 database, Ames-1 line list [149, 157, 161] and measurements

by Devi et al. [128] and Hodges et al. (NIST) [30]. For some time after publication

of results by Devi et al. there was an ongoing debate about the accuracy of the UCL

calculations, due to 1% difference with respect to Devi’s measurements (see red

filled circles in Figure 3.26). One particular concern about this experiment were the

high |m| intensity tails in the 30013 – 00001 band, which appear to be systematically

and consistently overestimated in experiment, as can be seen in Figure 3.26. In the

Figure, the UCL, Ames-1 and HITRAN 2012 transition intensities deviate from

the measurement in the same direction of negative relative deviations. In addition,

again, HITRAN 2012 had some problems with discontinuities due to multiple data



3.8. The story of the 2 µm band 149

sources and Ames-1 showed an intensity jump at the joint of the P and R branches.

Nevertheless, the 1% systematic shift between UCL and experimental intensities

visible for low |m| values required reconciliation.

Again, a definitive conclusion to the debate over whose data is the most accu-

rate has been supplied by measurements done in the National Institute of Standards

and Technology (NIST) [28]. Points marked with black crosses in Figure 3.26 are

on average 0.5% stronger than the UCL calculated values, but the systematic shift is

in opposite direction from measurements by Devi et al. . Because of the low 0.3%

uncertainty of the NIST measurements, it was highly probable that Devi’s measure-

ments were less accurate than claimed by the authors. Indeed, later re-analysis of

raw experimental data and an appropriate refit of the optical path length as well as

correction of the model by fitting of the J-dependence to our data eliminated the

1% discrepancy between UCL and Devi’s transition intensities [27, 197]. Not sur-

prisingly, the the arc-like intensity patterns in integral intensities from experiment

vanished after the refit [27, 197].

Figure 3.26: Comparison of line intensities of the 30013 – 00001 band of 12C16O2
between the present study, HITRAN 2012, Ames-1 line list [149, 157, 161] and
measurements by Devi et al. [128] and Hodges et al. (NIST) [30].
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3.8.5 Herman-Wallis factors

In this subsection, a brief explanation of the concept of Herman-Wallis factors is

given, with the aim to demystify the arc-like structures appearing in intensity pat-

terns of experiments described in the previous subsection.

In the majority of high accuracy transition intensity measurements the integral

ro-vibrational line intensities are fitted to the following expression [31, 128]:

I(ν̃i f ) =
Sν ν̃i f LiF
ν̃0Q(T )

exp
(
−Ei

kbT

)[
1− exp

(
−

ṽi f

kbT

)]
(3.26)

where Sν is the vibrational band strength, ν̃i f is the transition wavenumber, ν̃0 is

the band centre, Li is the Hönl-London factor [60] and F is the Herman-Wallis

factor [198], often represented in the following general form:

F =
(
1+a1m+a2m2 +a3m3 +a4m4J(J+1)

)2
(3.27)

where a1,a2,a3,a4 are experimentally fitted parameters. Other quantities appear as

in eq. 3.3.

The type of expression in eq. 3.26 assumes separation of contributions to

transition intensity from rotations (Hönl-London factor Li ) and vibrations (vibra-

tional band strength Sν ) corrected with a term called the Herman-Wallis (H-W)

factor [198]. This term, originally derived from perturbation theory accounts for

contribution to transition intensity from the rotation-vibration interaction. Because

eq. 3.26 is a phenomenological one, it is vulnerable to inadequate choices of the

functional form of the H-W factor. If this functional form is not flexible enough, it

can result in overestimating or underestimating of transition intensities with high J

values, making high J extrapolation difficult. This is a consequence of the polyno-

mial form of the H-W factor, which may grow uncontrollably for large |m| values.

It is therefore sometimes a difficult task to supply an accurate fit in a wide J range

within a single H-W model. An example of inaccuracies in retrieved transition

intensities is given in Figure 3.27, where experimental line intensities with large

positive m values deviate from UCL ab initio results. The ab initio expression for
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integral line intensity does not require any assumption on the form of the contri-

bution from rotation-vibration interaction. Thus, first principles derived theoretical

line intensities can serve as reliability guards capable of capturing defects in exper-

imental retrieval models for high J quantum numbers.

Although H-W factors have been widely used in many data reduction proce-

dures, they are likely to malfunction when sub-percent accuracy is required. Un-

til recently the ±10% margin of error associated with experimental accuracy did

not uncover the possible issues with H-W factors. For this reason it is recom-

mended to cross-compare experimentally reduced transition intensities against ab

initio calculations, which account for the rotation-vibration interaction exactly, such

as DVR3D.

Figure 3.27: Line intensity comparison for the 20013 – 00001 band of 12C16O2 be-
tween the present study, the HITRAN 2012 database and a measurement by Benner
et al. [31]. The error-bars in HITRAN data denote 1-σ uncertainty.

Apart from high m divergence between experiment and UCL results due to in-

adequate form of the H-W factor, the agreement observed for the 20013 – 00001

band (2.00 µm band) is indeed very good. An average systematic shift by about

0.5% from measurements by Benner et al. [31] is observed. A bit worse, but still

very satisfactory agreement, with less accurate HITRAN 2012 intensities is also vis-

ible. At m± 60 there is a discontinuity in the relative deviations (UCL-HITRAN)
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due to source change from NASA JPL intensities from Toth et al. to CDSD-296

intensities. It is also plausible that JPL intensities have their high |m| tails inade-

quately retrieved due to a choice of the H-W model.

To summarize, independent high accuracy measurements of transition intensi-

ties for three crucial CO2 absorption bands in the infrared confirmed sub-percent

accuracy of UCL calculated transition intensities for these bands. This was a prece-

dence case, when ab initio calculations could compete with state-of-the-art mea-

surements and even in some cases have been proven more accurate than experiment.

Moreover, in the course of analysis of experimental data, problems with Herman-

Wallis factor models were detected, which triggered corrections to experimental

reduction models and eventually lead to tentative reweighing of community’s trust

for high J transition intensities onto the ab initio side.

3.9 Comparison with experiment and databases

This section gives comparisons of the theoretical line lists for carbon dioxide calcu-

lated with Ames-1 PES and UCL ab initio DMS (’AU’ line list) to high-resolution

spectral databases (HITRAN 2012, CDSD-296), a theoretical line list from Ames

NASA research center and recent accurate measurements. It has been already

shown in section 3.8, that three bands in the main CO2 isotopologue have inten-

sities modelled with sub-percent accuracy. Here, further tests are given in a broader

spectral range and for other isotopologues, to provide a critical and comprehensive

assessment of UCL line lists. In the next section 3.10, the focus is specifically on the
16O12C16O isotopologue (”626”), which is by far the most abundant (98.4%) of all

CO2 isotopologues. Then in section 3.11 five symmetric stable isotopologues of car-

bon dioxide are analysed: 13C16O2 (626) 12C17O2 (727), 12C18O2 (828), 13C17O2

(737) and 13C18O2 (838). In section 3.12 asymmetric isotopologues 16O12C18O

(628), 16O12C17O (627), 16O13C18O (638),16O13C17O (637), 17O12C18O (728) and
17O13C18O (738) are compared. The reason for separation of the symmetric and

the asymmetric isotopologues is broken permutation symmetry of identical nuclei

in the latter group, which results in a non-zero permanent dipole moment. This, in
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turn, causes qualitative differences in infrared spectra of symmetric and asymmet-

ric isotopologues (such as existence of purely rotational transitions in asymmetric

isotopologues). Finally in section 3.13 the radioactive 14C16O2 (646) isotopologue

is analysed, with a discussion of potential uses in remote sensing, carbon-dating

procedures or even in medical diagnosis.

3.10 The main isotopologue (626)
In this section, the main isotopologue of carbon dioxide 16O12C16O (”626”) is anal-

ysed. In particular, the calculated theoretical line list for this isotopologue is com-

pared with several data sources, such as HITRAN 2012 and CDSD-296 databases.

The aim of these comparisons is to verify the accuracy of calculated transition in-

tensities at the level offered by the databases and experiments, which is typically

2-20%. Unlike in section 3.8 on the 2µm band only, this section targets a much

broader frequency range, to give a comprehensive global validation of the line list.

3.10.1 Comparison with high-accuracy measurements

First, let us focus on the state-of-the-art intensity measurements for 626. Line po-

sitions in the AU line list (UCL line list), as based on the Ames-1 PES, can be

considered identical to those computed and analysed in a series of papers by Huang

et al. [149, 157, 161]. The majority of high accuracy intensity measurements were

performed for the 1.6 µm and 2 µm bands. These measurements already served as

a proof of sub-percent accuracy of UCL transition intensities presented in section

3.8. Below, in Figure 3.28, yet another confirmation of sub-percent accuracy for

the 30014 – 00001 band is given. The UCL and Ames line lists agree almost per-

fectly for the P branch of this band, and a 0.8% discontinuity in Ames intensities

is visible for the R branch. Nevertheless, the agreement is very good. HITRAN

2012 transition intensities also agree to 0.5% with UCL intensities for low m values

and systematically drift to ±2% for higher |m|’s. This essentially minor discrep-

ancy could be only resolved in favour of either line lists by an additional, ultra-high

accuracy measurement. Such measurement was provided by Kiseleva et al. [199],

where the intensity of the R(52) line of the 30014 – 00001 band was determined
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with 1% accuracy. The agreement between UCL and Kiseleva et al. is 0.2%, which

adds significant confidence to the transition intensities provided in the UCL line

list for this band. Such excellent agreement between experiment and the present

theoretical calculations also suggest that HITRAN 2012 intensities are not accurate

enough, and require updating.
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Figure 3.28: Comparison of transition intensities between the present line list for the
626 isotopologue and three accurate data sources: HITRAN 2012 database [200],
Ames-1 line list [161] and measurement by Kiseleva et al. [199].

Another two lines in ν1 + ν3 band (P(34), P(36)) were measured by Pogany

et al. [201] with reported 1.1 and 1.3 % uncertainty. The corresponding UCL in-

tensities deviate by 2.0% and 2.5% respectively from line intensities provided by

Pogany et al. . Nevertheless the UCL intensities are on average 1% closer to the ex-

perimental values than the intensities obtained from either Ames-1 or CDSD-296,

which suggests that the accuracy of measurements by Pogany et al. was plausibly

overestimated.

To conclude, the available experimental evidence, which covers a limited num-

ber of lines, indicates a very high, probably sub-percent accuracy of transition in-
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tensities calculated with the present model for the 626 isotopologue. The accuracy

of HITRAN2012 and CDSD-296 database as well as other available experimental

data has stated uncertainty in intensities below 1%. Thus, comparison to these data

sources allow to establish uncertainty of UCL intensities at best few-percent level.

Nonetheless, comprehensive and spectrally broad comparisons to databases need to

be made, to provide a possibly complete benchmark.

3.10.2 Comparison with other line lists

In this section a line-by-line comparison to three data sources is given: the theoreti-

cal Ames-296 line list [161], HITRAN 2012 [200] and CDSD-296 [187] databases.

Such comparison will allow one to draw conclusions about the global accuracy of

the UCL line list. Because the stated accuracy of these three data sources is no

higher than 2%–20%, the level of validation achieved by comparing to them cannot

be lower than this value. Nonetheless, such comparison provides a benchmark, and

may allow to select candidate bands which are poorly modelled in the UCL line list.

As we will see, there is one series of unreliable bands in the UCL line lists.

Ames-296

Huang et al. [161] published infrared line lists for 12 stable and 1 radioactive

isotopologues of CO2. These line lists were calculated with Ames-1 PES [157] and

DMS-N2 [149], or (AA) in our notation.

From Ames data a 12C16O2 line list was generated for its natural abundance,

T = 296 K and with an intensity cut-off of 10−30 cm/molecule, which we refer to

as Ames-296. Ames-296 contains 162 558 lines in the 0 - 8000 cm−1 range. To

facilitate comparison with other line lists a spectroscopic assignment of this line

list was performed. As a first step, for the sake of consistency, it was necessary

to compare energy levels from original Ames-296 line list with the DVR3D re-

calculation. Accordingly, energy levels up to 6000 cm−1 gave a RMSD of 0.05

cm−1 and 0.06 cm−1 up to 10 000 cm−1. This is slightly more than one would

have expected on the basis of previous comparisons [155] and appears to be due a

slightly non-optimal choice integration grids in Huang et al.’s calculations (Huang

and Lee, 2015, private communication).
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CDSD-296

The effective operator approach enables one to reproduce all published ob-

served positions and intensities with accuracies compatible with measurement un-

certainties. Based on a fitted effective Hamiltonian Heff and effective dipole moment

Deff models Tashkun et al. [187] created a high resolution spectroscopic databank

”CDSD-296” aimed at atmospheric applications. The databank contains the calcu-

lated line parameters (positions, intensities, air-and self-broadened half-widths, co-

efficients of temperature dependence of air-broadened half-widths and air pressure-

induced lineshifts) of the twelve stable isotopic species of CO2. The reference tem-

perature is 296 K and the intensity cut-off is 10−30 cm/molecule.

Figure 3.29 compares Ames-296 and UCL line intensities with the semi-empirical

CDSD-296 results. For the sake of clarity only strong bands with intensities greater

than 10−23 cm/molecule are plotted.

Figure 3.29: Root mean square deviation for band intensities of Ames-296 (red
triangles) and the present results (UCL, blue circles) with respect to CDSD-296.
This figure was prepared by S. Tashkun [37].

For the strongest bands the UCL line-list agrees much more closely with



3.10. The main isotopologue (626) 157

CDSD-296 than Ames-296 does. The only real exception to this are the 00031–

00001 and 01131–01101 bands. For this family of bands, whose intensity derives

from the same dipole moment derivative, the deviations from Ames-296 are three

times less than UCL ones. In the final UCL’s recommended line lists included in the

2016 edition of the HITRAN database, all absorption intensities of bands including

3ν3 vibrational quanta were replaced with CDSD-296 intensities. 3170 transitions

belonging to this family of unreliable bands were identified in the UCL line list.

3.10.3 HITRAN2012

This section gives a comparison of UCL’s line list for 12C16O2 with the HITRAN

2012 database [200], which contains 160 292 absorption lines in 0 – 8000 cm−1

region for the main isotopologue. First of all, a matching procedure was conducted

between the UCL calculated energy levels and HITRAN 2012 energy levels. This

was done by imposing rigorous restrictions on rotational quantum numbers and

Wang e/ f parities as well as 0.3 cm−1 tolerance to energy difference. This scheme

resulted in a match for all 16 777 unique energy levels present in HITRAN 2012

covering J values from 0 to 129 with RMSD of 0.07 cm−1. The largest deviation

found between two levels was roughly 0.2 cm−1. This result confirms the high

quality of the Ames-1 PES.

The next step was to match transition lines between HITRAN 2012 and UCL

line lists. The procedure relied on a simple algorithm, where corresponding lines

were matched using already matched energy levels list. As a result all 160 292 lines

up to 8000 cm−1 were matched with a RMSD of 0.08 cm−1 .

There are two main sources of HITRAN2012 data for CO2 main isotopologue:

a small set of 605 lines in 4800-6989 cm−1 range originating from experiment

(NASA JPL line list) by Toth et al. [195] and the majority of transitions from a

previous version of the CDSD-296 database. In general, data from the latest ver-

sion of CDSD-296 [187] are very close to line positions and intensities given in

HITRAN 2012.

The estimated uncertainties for all CDSD-296 intensities is given as 20 % or

worse in HITRAN (uncertainty code 3, or ier=3). On the other hand, Toth et al.’s
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intensities are supposed be accurate to better than 2% (uncertainty code 7) or 5%

(code 6). For explanation of the HITRAN uncertainty codes see HITRAN website:

www.hitran.org.

This reveals two issues with current version of HITRAN:

a) The stated uncertainty estimate of all current entries are insufficiently accurate for

remote sensing applications. Comparisons and discussion from section 3.8 already

showed that for a number of important bands the actual accuracy of the intensities

in HITRAN is much higher than suggested by their estimated uncertainties.

b) line intensity accuracies are not uniform throughout the spectral region, as ex-

emplified in Figures 3.24, 3.27 and 3.26. The ratio of observed to variational line

intensities should be roughly constant for a given band, unless there is an isolated

resonance. This is because the DVR3D calculations use the complete rotational ba-

sis set, exact kinetic energy operator and the exact expression for the line strength.

The only major source of inaccuracy in line intensity is the DMS, which affect in-

tensities of the whole bands, rather than individual rotational transitions.

All HITRAN2012 entries taken from a pre-release version of CDSD have been

tagged with uncertainty code 3 (20% or worse). However, this number does not

reflect actual uncertainties of the intensities. Most of the HITRAN intensities appear

to have uncertainties much better than 20%. More detailed information about the

actual uncertainties can be found in the official release of CDSD-296 [187].

Intensities of all assigned UCL lines relative to HITRAN 2012 are depicted in

Figure 3.30. As expected, discrepancies between the two line lists grow as lines

get weaker, which results in a funnel-like shape in the plot which is characteristic

of such comparisons (e.g. [202]). The stability of the UCL lines on the scatter

factors are also shown; as could be anticipated stable lines predominate at higher

intensities.

It is instructive to divide HITRAN 2012 data into subsets of a given intensity

accuracy code. Each of those sets can be then compared to the present results sepa-

rately to provide an estimate for compatibility of two line lists at different levels of

accuracy.
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Figure 3.30: Comparison of HITRAN 2012 and UCL line intensities for the main
CO2 isotopologue: UCL to HITRAN intensity ratio as a function of HITRAN line
intensity. Blue points stand for unstable lines according to our sensitivity analysis,
while red points are considered to be stable. There are 147 000 stable, 7000 inter-
mediate, 4400 unstable and 1 400 unknown lines which are too weak for a scatter
factor to be determined reliably.

To achieve that HITRAN intensities with the accuracy code found for CO2

which is 7 (2 % or better uncertainty) were plotted in Figure 3.31 against the UCL

ones. This set of lines encompass the important 20011, 20012, 20013, 30011,

30012, 30013 and 30014 bands (absorption from the vibrational ground state) as

well as the asymmetric stretching second overtone 00031. All bands except ’inter-

mediate’ 30011 band are stable. Comparisons with high accuracy measurements

above have already shown that the present UCL intensities for the 30013 – 00001,

20012 – 00001 and 20013 – 00001 bands are accurate to about 1 % or better.

Again one can see characteristic bow-like structures corresponding to particu-

lar rotational transitions within a vibrational band, with the peak of an arc refers to

most intense, low J transition. These structures are artifacts which originate from

the semi-empirical treatment of the intensities (see section 3.8.4).

A similar situation occurs for bands with HITRAN uncertainty code 6 (accu-
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Figure 3.31: Comparison of HITRAN2012 most accurate intensities and UCL line
intensities. The dashed line indicates the stated HITRAN uncertainty, i.e. 2% .
Arrows label vibrational bands, which all start from the ground 00001 state.

racy of 2% – 5% ), see Figure 3.32; here very good agreement is spoiled by 01131

– 01101 band.

Overall, the agreement between HITRAN 2012 and UCL line lists is good.

The strongest and the most accurate bands in HITRAN 2012 match UCL bands to

within few %, which agrees with the stated accuracy of HITRAN intensities. The

only exception is the family of bands involving the ν3 vibrational quanta, for which

the UCL line lists gives markedly less reliable transition intensities. Sporadic large

discrepancies between HITRAN and UCL for very weak lines are probably caused

by inaccuracy of the effective dipole moment models used to generate HITRAN

intensities. These models heavily rely on availability and quality of experimental

data, which is often poor for weak bands.

3.11 Other symmetric isotopologues
The key hypothesis which is to be tested in this and following sections is the claim

of transferability of accuracy of line intensities from the main CO2 isotopologue
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Figure 3.32: Comparison of HITRAN2012 medium-accuracy intensities and UCL
line intensities. The dashed line indicates the stated HITRAN uncertainty, i.e. 5%.
Arrows label vibrational bands.

onto other symmetric and non-symmetric isotopologues. The Ames-1 PES, which

is used throughout this thesis for calculation of line lists was originally generated

for the 626 isotopologue and is assumed isotopologue-independent. The magnitude

of non-Born-Oppenheimer corrections to the Ames-1 PES is expected to be very

small, typically affecting line positions by less than 0.1 cm−1 , which was confirmed

by comparisons of Ames-1 PES derived energy levels with experimental values

[157]. The question about the independence of the UCL DMS on nuclear masses is

another, yet even more important concern. A straightforward test to the hypothesis

of the independence of the DMS on nuclear masses comes from comparison of

transition intensities for isotopologues other than the main 626 with high accuracy

experiments. Unfortunately, very few such experiments are available, mainly due to

low natural abundance of isotopologues containing 17O,18O or 13C. The next section

provides comparisons of calculated UCL intensities to available experimental data

for several symmetric CO2 isotopologues.
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3.11.1 Isotopologue 636

Three high accuracy measurements of line intensities are analysed in this section:

Devi et al. [128], Kiseleva et al. [199] and Durry et al. [203].

Recently Devi et al. [128] performed precise measurements of line intensities

of the 626, 636 and 628 isotopologues of carbon dioxide in the 1.6 µm region.

Figure 3.33 compares the present calculations and HITRAN 2012 line intensities to

these new experimental results. The HITRAN 2012 data comes from the CDSD-

296 database. A significant systematic shift of 5% and 10% with respect to Devi’s

measurement toward higher intensities is observed in Figure 3.33 for both the 30012

– 00001 and 30013 – 00001 band. An almost identical relative deviation pattern is

followed by UCL line intensities and the effective Hamiltonian calculations from

HITRAN 2012. Possible problems in measured line intensities were also found at

m = +38 and m = −40. These transitions clearly stand out in the comparison pat-

tern for both HITRAN and the present study. High J tails of both bands are bent in a

arc-like structure, behaviour which has been already observed for the main isotopo-

logue. Again, such phenomenon can be attributed to limited flexibility of functional

form assumed for the Herman-Wallis factors, when reducing the experimental data.

In Figure 3.33, with blue and red filled triangles, compared are also UCL and

HITRAN2012 intensities for the 30013 – 00001 band in the main isotopologues

with measurements by Benner et al. [31]. Comparison shows 0.5% agreement be-

tween the experiment and UCL line intensities for the 20013 – 00001 band for the

main isotopologue [31], and systematic increase in intensity deviation from m = 60

onwards to reach 1.5% deviation at m= 84. Both experiments (Devi et al. [128] and

Benner et al. [31]) utilized the same multispectrum nonlinear least squares curve

fitting technique to retrieve line profiles and intensities. This similarity in high J

behaviour supports the thesis of potential problems with retrieval model used in

experimental post processing.
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Figure 3.33: Relative deviations (PS/Experiment) of line intensities from measure-
ments by Devi et al. [128] plotted against m quantum number. Blue and red triangles
denote the 30013 – 00001 band of the 626 isotopologue taken from HITRAN 2012
and present study, respectively. Purple and green squares stand for line intensities
of the 30012 – 00001 band of the 636 isotopologue taken from HITRAN 2012 and
present study, respectively. Orange and grey circles give the line intensities of the
30013 – 00001 band of the 636 isotopologue taken from HITRAN 2012 and present
study, respectively. Zero relative deviation means 100% agreement with Devi et al.
.

The quite worrying 10% discrepancy between the measurement by Devi et al.

and the UCL line intensities for the 30013 – 00001 band for 636 visible in Figure

3.33 requires a closer investigation. In Figure 3.34 the accuracy of experiments

by Devi et al. and present calculations has been verified by comparison with very

recent Cavity Ring-Down Spectroscopy measurements of CO2 lines by Kiseleva et

al. [199]. Their observed intensity of the P(6) line in the 30013 – 00001 band of

the 636 isotopologue was found to be within 0.4% of both UCL and HITRAN line

intensities. This result is consistent with the comparison between the experiment by

Kiseleva et al. and the present study for the R(52) line of the 30014 – 00001 band

of the main isotopologue (626), for which the discrepancy was only 0.2% from
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the UCL theoretically predicted value (see Figure 3.28). Both lines were measured

with stated <1% uncertainty budget. This suggests that a similar, presumably sub-

percent, accuracy for the line intensities provided here and by HITRAN 2012 for

the 30013 – 00001 band of the 636 isotopologue.

Figure 3.34: Relative deviations (relative to CDSD-296) of line intensities from
the UCL line list, Ames-296 line list and a single line measurement by Kiseleva et
al. [199] plotted against m quantum number for the 30013 – 00001 band of the 636
isotopologue.

Measurements from Durry et al. [203] deserve special attention, as in their

study intensity uncertainties for measured bands of the 636 isotopologue are

claimed at the 1% level. Figure 3.35 compares experimental line intensities from

Durry et al. with HITRAN 2004 [204], HITRAN 2008 [205] and 2008 release of the

CDSD database [167,170], as well as with UCL calculated values. A characteristic

wave-like pattern is visible. As all four sources follow this envelope, but with dif-

ferent systematic shifts, the tentative conclusion is that this pattern is an artifact of

the Durry et al.’s measurements. The results of the present work are shifted toward

most negative values of relative deviation, with average systematic shift of 2%.

However, intensity comparison for this band for the main 626 isotopologue [31],
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given in section 3.8 supports the 1% accuracy UCL theoretical intensities. There-

fore it would seem that the stated 1% uncertainty of Durry et al.’s measurements

may be too optimistic.
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Figure 3.35: Relative deviations of line intensities of the 20012 – 00001 band of the
636 isotopologue from measurements by Durry et al. [203] plotted against J quan-
tum number for several databases. Sources considered are HITRAN2004 [204],
HITRAN2008 [205], the 2008 release of CDSD [167] and the present work. The
1% deviation region is represented by green edge-blurred strip.

3.11.2 Isotopologue 727

In recent experiments performed on 17O and 18O enriched samples, Jacquemart

et al. [162] measured several bands for the 727 isotopologue. The authors ar-

gue that only lines stronger than 10−25 cm/molecule are retrieved with ’good ac-

curacy’ and this accuracy is also strongly dependent on the knowledge of iso-

topic abundances. Figure 3.36 compares intensities of different bands measured

by Jacquemart et al. with present predictions. It is evident that lines weaker than

1.0× 10−25 cm/molecule give reduced accuracy, as statistical spread appears an

order-of-magnitude larger than for the strong bands measured in this experiment.

Hence the experimental results ( [162]) for the 30011 – 00001, 31112 – 01101 and
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31113 – 01101 band should be considered with caution.
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Figure 3.36: Relative intensities (vs. UCL) for several bands of the 727 isotopo-
logue measured by Jacquemart et al. [162].

The calculated intensities of the two strongest bands in the 2 µm region, that is

30012 – 00001 and 30013 – 00001, are uniformly shifted by +10% with respect to

experiment. As indicated by Jacquemart et al. [162], intensities of whole bands are

strongly dependent on isotopologue abundance (reported as 22.27%), and this factor

is considered to be the main source of possible systematic shifts with respect to other

studies. Comparisons with previous measurements by Karlovets et al. [191] were

made, revealing the new measurements by Jacquemart et al. [162] to be on average 3

– 4% stronger. However, samples used by Karlovets et al. had very low abundance

of 727 (0.04%), which resulted in large statistical error (15%) in the intensities.

Therefore with the current level of experimental control over systematic errors it is

difficult to reliably refer to measurements better than 10% accuracy. Nonetheless,

because theoretical line intensities have constant accuracy for whole bands (except

resonances), they can be used to assess the precision of measurements. Small scatter

of line intensities throughout these bands (marked red and cyan in Figure 3.36)
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confirms the claimed high precision (1%) of the measurement from Ref. [162] above

2.5× 10−24 cm/molecule, 2% between 5× 10−25 and 2.5× 10−24, 5% between

1×10−25 and 5×10−25, and 20% below 1.0×10−25.
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Figure 3.37: Relative intensities (vs. UCL) for several bands of the 727 isotopo-
logue measured by Karlovets et al. [191]. Intensities were scaled to unit abundance.

Figure 3.37 compares UCL line intensities to the experimental data from

Karlovets et al. [191]. The low isotopic abundance of samples used in experiments

and large stated uncertainty (15%) means that the comparison despite its large scat-

ter is satisfactory. As for other isotopologues, the 00031 – 00001 band computed

by us has an underestimated intensity (grey squares in Figure 3.37). Cyan and red

points correspond to 30013 – 00001 and 30012 – 00001 bands, and these experi-

mental points were used to relate the line intensities of these bands in the study by

Jacquemert et al..

3.11.3 Isotopologue 828

Recent CW-Cavity Ring Down experiments for enriched sample of the 12C18O2

isotopologue by Karlovets et al. [206] cover the spectral range of all previous mea-
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surements for ∆P = 9 transitions. The study comprises 2870 lines from 59 bands in

the 5851 – 6990 cm−1 region and was recorded for 25.45 % abundance. Raw exper-

imental data was fitted with an effective operator model to take into account another

accurate experimental dataset from Toth et al. [207], which has been also included

in the 2012 release of the HITRAN database. The estimated 10% uncertainty of the

line intensities is the most accurate claim up-to-date. For a detailed review of previ-

ous measurements for this isotopologue see Refs. [187,206] and references therein.

Here, highly enriched sample allowed for more precise measurements than in the

727 isotopologue case. Figure 3.38 compares line intensities of the three strongest

bands measured by Karlovets et al. to present study. The 30012 – 00001 and 30003

– 00001 bands remain within ±2% deviation range, which suggest that the stated

experimental uncertainty of 10 % is actually too pessimistic. UCL intensities for

the 00031 – 00001 band are shifted down by 14 %, similar to other isotopologues.
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Figure 3.38: Relative intensities (vs. UCL) for several bands of the 828 isotopo-
logue measured by Karlovets et al. [206]. Intensities were scaled to unit abundance.

The above results for 636, 727 and 828 isotopologues are summarized in Table

3.7.
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Table 3.7: Characterization of selected vibrational bands of three symmetric CO2
isotopologues. Given for each band and each reference are the number of lines
in the band, accuracy declared in the reference, average systematic shift (∆sys =
S̄: average residual with respect to present study), average statistical dispersion (

∆stat =
√

1
Nlin

∑
Nlin
i=1
(
Si− S̄

)2
, Si =

∣∣∣ IUCL,(i)
Iexp,(i)

−1
∣∣∣ ·100%) and the total band strength

in cm/molecule. The last column (marked UCL-IAO) contains the data from the
present study, the total number of lines in the band, suggested accuracy for the band
(in %) and the total band strength in cm/molecule.

Iso. Band Nlin Strength acc. (%) ∆sys(%) ∆stat (%) Ntot Strength acc. (%)

Karlovets et al. (2013) [208] UCL-IAO

727 30012–00001 64 2.13×10−22 3-20 +17 13 64 2.22×10−22 1
30013–00001 58 3.48×10−22 3-20 +13 12 58 3.71×10−22 1

Jacquemart et al. (2015) [162]

727 30012–00001 85 6.85×10−23 20 +11 2 85 7.59×10−23 1
30013–00001 93 1.37×10−22 20 +9 2 93 1.50×10−22 1
31113–01101 130 8.84×10−24 >20 +17 15 130 9.21×10−24 3

Karlovets et al. (2013) [208]

828 30012–00001 64 1.86×10−22 10 -2 2 64 1.83×10−22 1
30013–00001 81 6.05×10−22 10 -2 3 81 6.16×10−22 1
00031–00001 80 1.33×10−21 10 -13 5 80 1.13×10−21 20

Devi et al. (2016) [128]

636 30012–00001 55 5.41×10−24 10 +4 3 55 5.67×10−24 1
30013–00001 47 2.03×10−24 10 +8 15 47 2.18×10−24 1

3.11.4 Comparison with HITRAN2012, Ames and CDSD-296

The HITRAN2012 database contains line lists for five symmetric isotopologues:

626, 636, 727, 828 and 838. Uncertainty indices of line positions range from 2 ( ≥

0.01 cm−1 and < 0.1 cm−1) to 9 (≥ 10−9 cm−1and < 10−8 cm−1) for these line

lists. In general, line positions from the latest version of CDSD-296 are very close

to the line positions given in HITRAN 2012 and have uncertainties corresponding

to indices ranging from 3 to 9 depending on spectral region and quality of underly-

ing experimental entries. Intensities provided by the current release of HITRAN for

symmetric isotopologues of carbon dioxide come from two main sources: experi-

ment (NASA JPL line list) by Toth et al. [195] and the majority of transitions from

a previous version of CDSD. The estimated uncertainties for all CDSD intensities

is given as 20 % or worse in HITRAN (uncertainty code 3). However, this number

does not reflect the actual uncertainties of the intensities. Most of the HITRAN

intensities have the uncertainties much better than 20%. More detailed information
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about the actual uncertainties can be found in the official release of CDSD [187],

which can be used to get more realistic information about the uncertainties of the

line parameters. Intensities from Toth et al. are supposed to be accurate to better

than 2% (uncertainty code 7) or 5% (code 6). Below are given bulk comparisons

between UCL line lists and HITRAN 2012 and CDSD-296 databases, as well as

Ames-296 line lists.

3.11.4.1 Isotopologue 636

The HITRAN2012 line list for the second most abundant 636 isotopologue contains

68 856 lines below 8000 cm−1. There are two sources of line intensities: the major-

ity of lines taken from the 2008 version of the CDSD-296 database [167] and two

bands (20012–00001 and 20013–00001) from high precision measurements by Toth

et al. [195]. All lines present in the HITRAN2012 database for this isotopologue

were matched to UCL line list with a root mean squared deviation (RMSD) of 0.04

cm−1. Lines that lay far in intensity from theoretical predictions (vide infra) were

double checked by manual investigation.
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Figure 3.39: Left panel represents symmetric relative deviation for the 636 isotopo-
logue for the two different sources (Perevalov et al. [167] and Toth et al. [195])
from the HITRAN 2012 database. Right panel is a zoomed image in the region of
high accuracy (ier = 6) measurement by Toth et al. . Dashed green line indicates
5% limit of deviation tolerance associated with ier = 6. Two bands measured by
Toth et al. are marked with arrow.

An overview from Figure 3.39 reveals the rather typical situation of funnel-

shaped relative deviation plot. By zooming into the region of high accuracy mea-
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surement by Toth et al., one can clearly see that all lines (marked with blue filled

triangles in the right panel of Figure 3.39) remain within the claimed 5% uncer-

tainty, additionally exhibiting a very narrow spread.

3.11.4.2 Isotopologue 727

HITRAN 2012 line list for the 727 isotopologue contains 5187 lines below 8000

cm−1, all of which were taken from the effective Hamiltonian calculations by

Tashkun and Perevalov [209]. Figure 3.40 compares UCL line intensities (all stable)

to HITRAN 2012; we observe the majority of line intensities display a systematic

shift of -6% with respect to those recommended by HITRAN. Here again, notice-

able arc structures appear. Similar behaviour was observed for the main 626 and

the 636 isotopologues. Although most of the arcs are rather flat, there are a few

bands which arc structure extends over a wide deviation range. Such occurrences

are caused by insufficiently flexible functional form of the Herman-Wallis factors

employed to reduce experimental data for those bands, resulting in inaccurately re-

trieved experimental line intensities, especially for high Js. These serve as an input

to the effective Hamiltonian calculations (CDSD, hence HITRAN), thus artifacts of

experimental analysis are likely to be propagated within the EH approach.

It has already been shown that inaccuracies of UCL line intensities are largely

reflected in systematic shifts of whole bands, rather than statistical scatter, which

is assumed to remain almost constant as a function of J. Two bands in Figure 3.40

lie outside the tolerance given by the HITRAN 2012 uncertainty code 3. These are:

the 00031 – 00001 band and the 30013 – 00001 band (both indicated with arrows in

Figure 3.40). The discrepancy for the former band has been explained in terms of

rather poor reproduction of the 3ν3 series of bands by UCL DMS. The behaviour of

the latter band however is not clearly understood at this stage and requires further

investigation. The working hypothesis is that the −6% systematic shift applies to

all bands, hence the 30013 – 00001 band when shifted by +6%, should match the

20% tolerance region, which is also regarded as provisional.
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Figure 3.40: Relative intensities (cf. eq. (3.25)) plotted against HITRAN 2012
line intensities for the 727 isotopologue. Green dashed horizontal line represents
deviation from HITRAN2012 data equal to ±20%.

3.11.4.3 Isotopologue 828

HITRAN 2012 line list for the 828 isotopologue contains 7071 lines below 8000

cm−1. There are three sources of line intensities: 6280 lines taken from CDSD-

296 [167] with ier (uncertainty index) equal to 3 and 4, 722 lines taken from a 1994

update to older variational calculations [210] with ier equal to 2, and finally 69 lines

taken from measurements by Toth et al. [195] with ier assigned to 3. Figure 3.41

compares intensities from the present study to HITRAN 2012 data. Despite the

low uncertainty index, line intensities originating from Rothman et al. [210] agree

within ±20% with UCL results. Transitions around 2.06 µm measured by Toth et

al. [195] are enclosed in 10% region reflecting the ier value for this set. Data points

originating from CDSD-296 are divided into two sets with differing uncertainty

index. The more accurate subset (marked with orange rotated crosses) is clearly

squeezed along the relative deviation axis and exhibits almost no systematic shift.

In contrast, the lower accuracy subset from CDSD spreads over a large region in
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relative deviation space. This suggests that both sets were calculated with separate

input parameters of different quality. The 30013 – 00001 band (ier = 4) deviates

around +2% from CDSD predictions, while the relatively strong 00031 – 00001

band (ier = 4) lies 11% below the zero deviation line (visible in Figure 3.41). It

should be noted that large deviations of the lower accuracy CDSD-296 data (ier =

3) occur for very weak lines, for each the respective experimental data to fit the

effective dipole moment parameters are absent. In these cases the parameters of the

principal isotopologue were used in CDSD-296.
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Figure 3.41: Relative intensities from the present study plotted against HITRAN
2012 line intensities for the 828 isotopologue. Only ±50% region is depicted.
Dashed grey and green lines correspond to 10% and 20% deviation, respectively.
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purple filled squares stand for the small set of lines provided by Toth et al. [195].
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Figure 3.42: Symmetric relative intensities (cf. eq. (3.25)) plotted against HITRAN
2012 line intensities for the 828 isotopologue. Only ±500% region is depicted.
Blue crosses correspond to a subset of lines taken from Perevalov et al. [167] which
has been assigned to ier = 4. Consequently, rotated orange crosses represent ier = 3
from the same reference. Red filled triangles refer to Rothman et al. [210], while
purple filled squares stand for the small set of lines provided by Toth et al. [195].

Figure 3.42 shows that all strong lines (> 10−28 cm/molecule) follow a funnel

shape envelope, thereby reflecting the typical relation between intensity and accu-

racy of lines. However several weaker lines, which constitute whole bands, align in

wide arc structures with large systematic shift. This is particularly visible for low-

ered accuracy lines from HITRAN 2012 (blue crosses in Figure 3.42). These lines

were directly incorporated from HITRAN 2008. The current release of the CDSD

database improved on accuracy of these weak lines.

3.11.4.4 Isotopologue 838

Only limited data are available for the 838 isotopologue in the 2012 edition of HI-

TRAN. 121 lines measured by Toth et al. [195] have uncertainty code 3 and cover

three bands in the 2 µm region: 20011 – 00001, 20012 – 00001 and 20013 – 0000.

All lines present in this set are matched to UCL line list with a RMSD = 0.04
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cm−1. Here, similar to the 727 case, a systematic shift of around 10% is visible.

This causes three transitions to breach the stipulated accuracy tolerance. Neverthe-

less, this should be considered as rather illusory due to the systematic shift of lines

coming from all three bands. Figure 3.43 shows calculated intensities relative to

HITRAN 2012, where all computed lines are classified as stable.
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Figure 3.43: Relative intensities plotted against HITRAN 2012 line intensities for
the 838 isotopologue. The triangles represent the 121 lines measured by Toth et
al. [195] and included in the current version of HITRAN.

3.11.4.5 Overview

A rather naive attempt to find the answer to the question if accuracy of the presently

employed computational scheme based on ab initio DMS holds at the same level

for all symmetric isotopologues is presented in Figure 3.44. In the Figure the 20012

– 00001 band for the five symmetric CO2 isotopologues is compared between HI-

TRAN 2012 and UCL line lists. Clearly, the uncertainty of HITRAN intensities,

which ranges here from 2% to over 20% (marked with uncertainty coded in Figure

3.44), is unsatisfactory to give a definitive answer to the posed question. In the

meantime let us formulate a weaker query: do UCL theoretical line intensities for a
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chosen band (here 20012 – 00001) maintain similar relative deviation from consis-

tent, highly accurate experimental data source for all symmetric isotopologues? By

analysing Figure 3.44 the short answer ppears to be no.
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Figure 3.44: Relative intensities plotted against HITRAN 2012 line intensities for
the 20012 – 00001 band for four symmetric isotopologues. Red filled squares repre-
sent lines (636) measured by Toth et al. [195] appearing with ier = 6. The remaining
lines have code ier = 3.

All lines compared above match the stipulated HITRAN uncertainty, that is

lines with ier = 6 fit the 5% tolerance, and the rest of the lines are 20% or less

away from HITRAN 2012 values. Minor discontinuity related to change of source

of data is seen for the 636 isotopologue. Relatively good overall agreement between

UCL line list and HITRAN 2012, revealing only sporadic deviations that exceed the

claimed HITRAN accuracy, but yet justified and facilitated with comparisons with

recent and highly accurate measurements, allow to draw a conclusion that replacing

current HITRAN line intensities with UCL computed values would significantly

increase the accuracy, reliability and consistency of the database.
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3.11.4.6 Ames-296

Table 3.8 presents a comparison of RMSD of intensities between Ames-296 line

list, UCL line list and CDSD-296 line list for 14 strongest bands of CO2 for six

symmetric isotopologues. By looking at a given isotopologue, a general trend for

both UCL and Ames is that the perpendicular bands (∆l =+1,+2, ...) are in worse

agreement with CDSD than the parallel bands. On average, UCL based band in-

tensities are in better agreement with CDSD than Ames for 626 and 636. The 828

isotopologue exhibits a similar level of agreement for UCL and Ames, and larger

deviations from CDSD-296 for UCL calculated bands than Ames calculated bands

are observed for 727, 838 and 737. It is difficult to indicate a single reason for

this particular pattern of deviations. For the time being it is safe to say that CDSD

entries, as experimentally tuned, are less accurate for less abundant isotopologues,

thus derived uncertainties do not allow us to judge in favour of either DMS.

Table 3.8: DMS statistics for 14 strongest carbon dioxide bands for six symmetric
isotopologues. Numbers in columns correspond to root-mean-square-deviations of
band intensities from the CDSD-296 database.

Isotopologue 626 636 828 727 838 737
Band Stability UCL Ames UCL Ames UCL Ames UCL Ames UCL Ames UCL Ames

00011 – 00001 Stable 0.2 2.1 0.8 2.5 1.9 0.5 4.6 2.3 5.7 3.4 4.9 1.8
01101 – 00001 Stable 1.9 1.7 2.9 2.6 2.3 2.4 5.9 1.4 4.9 4.7 5.0 4.0
01111 – 01101 Stable 0.2 2.2 0.7 2.5 1.8 0.8 4.6 2.2 5.6 3.7 4.9 1.7
02201 – 01101 Stable 2.2 2.1 7.3 7.0 2.7 2.5 6.3 1.6 5.4 5.0 5.3 4.2
02211 – 02201 Stable 0.2 2.2 0.7 2.6 1.8 0.6 4.5 2.3 5.7 3.3 4.9 1.7
03301 – 01101 Stable 2.5 2.2 11.2 10.9 3.1 2.9 6.6 2.0 5.8 5.5 - -
10001 – 01101 Stable 2.0 1.7 0.5 0.9 2.5 2.2 6.1 1.2 5.0 4.3 4.9 3.4
10002 – 01101 Stable 1.7 1.9 1.9 2.1 2.4 2.5 5.9 1.5 5.3 5.3 5.2 4.3
10011 – 00001 Stable 0.7 0.8 4.3 4.1 6.9 7.1 4.9 9.4 3.1 3.0 4.7 3.7
10011 – 10001 Stable 0.3 2.1 0.7 2.7 1.9 0.5 4.6 2.2 5.7 3.3 4.9 1.7
10012 – 00001 Stable 1.6 1.9 1.6 1.6 8.3 9.1 5.4 10.4 3.5 2.8 6.4 4.8
10012 – 10002 Stable 0.3 2.1 0.7 2.6 1.9 0.5 4.6 2.2 5.7 3.3 4.8 1.7
11111 – 01101 Stable 0.9 0.9 4.4 4.3 3.6 3.6 5.0 9.4 2.3 2.3 3.8 2.9
11112 – 01101 Stable 2.1 2.5 2.4 3.0 3.6 4.5 5.2 10.3 3.2 2.4 6.3 4.6
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3.12 Asymmetric isotopologues

3.12.1 Comparison with high accuracy measurements

Experimental knowledge of intensities for the asymmetric isotopologues of CO2

has been significantly improved recently by measurements on isotopically enriched

samples. This is particularly important for atmospherically relevant bands in the 1.6

µm and 2 µm spectral regions. Space missions [7] and ground-based observations

dedicated to detection and quantification of the total carbon dioxide content in the

Earth’s atmosphere are based on simultaneous measurements on these two regions.

Thus, due to their practical importance, the 20012 – 00001, 20013 – 00001 and

30013 – 00001 bands should be assessed carefully for all abundant isotopololgues,

as lines from different species are likely to interfere. A line-by-line comparison of

UCL calculated intensities with recent measurements of these three bands for the

628 isotopolgue is given below.

In Figure 3.45, the four panels represent comparisons between Ames, CDSD,

UCL line intensities and high-quality experiments by Toth et al. [207], Jacquemart

et al. [211], Benner et al. [31] and Borkov et al. [190]. The three studies (Ames,

CDSD and UCL) are denoted with black squares, red dots and blue triangles, re-

spectively. All graphs show provisional sub-10% agreement between theory and

experiment. Another common observation for all four panels is that for the 20012

– 00001 band line intensities are ordered as UCL < Ames < CDSD, and differ-

ences between the studies usually do not exceed 1%. This suggests similar quality

of the line lists for this band. Toth et al. provides ±2% systematic uncertainty and

J-dependent 0.5-7 % statistical uncertainty on line intensities (marked with green

error bars in the upper left panel of Figure 3.45). UCL intensities match the stated

experimental error bar, showing 2-3% systematic shift for m ∈ (−30,30) and char-

acteristic, arc-like behavior for higher absolute values of m. Comparisons to Jacque-

mart et al. and Borkov et al. reveal small, 1-4 % systematic shift with respect to all

three line lists. A markedly different situation is depicted in the left lower panel, in

the study by Benner et al. . Here an arc pattern of residual intensity is observed.

Similar artifact has been also found (and discussed in previous sections) in measure-
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Figure 3.45: Ames, CDSD-296 and UCL line intensities for the 20012 – 00001 band
of 16O12C18O compared to four recent experimental works by: Toth et al. [207] (up-
per left panel), Jacquemart et al. [211] (upper right panel), Benner et al. [31] (lower
left panel) and Borkov et al. [190] (lower right panel). Blue triangles, red dots and
black squares denote relative deviations from the measurement (in % ) of UCL,
CDSD-296 and Ames line intensities respectively. m labels rotational transitions
and corresponds to J(lower)+1 for the R branch and -J(lower) for the P branch. For
the left uppermost panel experimental error bars were added together with horizon-
tal orange dashed lines indicating experimental uncertainty for the systematic shift
in the transition intensity.

ments on the main isotopologue of CO2, and can be attributed to issue connected to

the Herman-Wallis factors used in the retrieval procedure.
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Figure 3.46: Ames, CDSD-296 and UCL line intensities for the 20013 – 00001 band
of 16O12C18O compared to four recent experimental works by: Toth et al. [207] (up-
per left panel), Jacquemart et al. [211] (upper right panel), Benner et al. [31] (lower
left panel) and Borkov et al. [190] (lower right panel). Blue triangles, red dots and
black squares denote relative deviations from the measurement (in % ) of UCL,
CDSD-296 and Ames line intensities respectively. m labels rotational transitions
and corresponds to J(lower)+1 for the R branch and -J(lower) for the P branch. For
the left uppermost panel experimental error bars were added together with horizon-
tal orange dashed lines indicating experimental uncertainty for the systematic shift
in the transition intensity.

Analogous conclusions can be drawn from Figure 3.46, where the UCl, CDSD

and Ames line lists are compared to measurements on the 20013 – 00001 band.

Note that all three line lists give an average negative systematic shift with respect

to the experimental values. Line intensities of the 20012 – 00001 and 20013 –

00001 bands together with the line intensities of other five bands published by Toth

et al. [207] were used for the determination of the concentration of the 16O12C18O

isotopologue in the sample used by Jacquemart et al. [211] and Borkov et al. [190].

This may indicate that the experimental studies underestimate the concentration of

the 628 isotopologue, causing the intensities of individual lines to be systematically
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overestimated.
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Figure 3.47: Ames, CDSD-296 and UCL line intensities for the 30013 – 00001 band
of 16O12C18O compared to three recent experimental works by: Toth et al. [207]
(uppermost panel), Devi et al. [128] (middle panel) and Karlovets et al. [206] (low-
est panel). Blue triangles, red dots and black squares denote relative deviations from
the measurement (in % ) of UCL, CDSD-296 and Ames line intensities respectively.
m labels rotational transitions and corresponds to J(lower)+1 for the R branch and
-J(lower) for the P branch. For the uppermost panel experimental error bars were
added together with horizontal orange dashed lines indicating experimental uncer-
tainty for the systematic shift in the transition intensity.
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Intensities for the 30013 – 00001 band of 16O12C18O (called ’the weak CO2

band’) have been accurately determined in three studies. The uppermost panel in the

Figure 3.47 compares UCL, CDSD and Ames line intensities for this band to mea-

surements by Toth et al. [207]. All three theoretical studies match the experimental

error bars. UCL intensities (blue triangles) provide an almost zero systematic shift

for this band. The J-dependent scatter of relative deviations between theory and

experiment is most likely caused by the statistical fluctuations of the experiment.

Very similar picture emerges from the middle graph in Figure 3.47. Here the ex-

perimental scatter (Devi et al. ) reaches 20%, whereas the systematic shift is again

close to 0%. One possible explanation for this is a lower signal-to-noise ratio in the

experiment of Devi et al., although inconsistent retrievals from crude data could be

also the cause. To lowest panel in Figure 3.47 depicts measurements by Karlovets

et al. on 18O-enriched samples. Except for two points with large discrepancies at

m =−44 and m =+8, the comparison gives an overall very good agreement Ames,

CDSD and UCL, with average systematic shift of 1-2%. The 30013 – 00001 band

has been previously verified to be reproduced at sub-percent accuracy for the main

626 isotpologue [37], and less abundant symmetric 636 isotopologue [199]. Results

shown and discussed above support the thesis, that UCL DMS is capable of repro-

ducing the true line intensities in the 1.6 µm region with accuracy not worse than 1-

3% for the asymmetric isotopologues and 1% or better for the symmetric ones. For

the 2.06 µm region, containing the ’the strong CO2 bands’ a thorough investigation

of line intensities was made in section 3.8, concluding that sub-percent accuracy is

given by the UCL calculated intensities for the 20013 – 00001 and 20012 – 00001

bands. The essential question to ask is, whether this high accuracy is transferable to

the asymmetric isotopologues.
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Figure 3.48: Experimental line intensities measured by Durry et al. [203] for the P
branch of the 20012 – 00001 band of 16O12C18O depicted against respective transi-
tion intensities taken from Ames, CDSD-296 and UCL line lists. m labels rotational
transitions and corresponds to J(lower)+1 for the R branch and -J(lower) for the P
branch.

Durry et al. [203] performed intensity measurements with a near-infrared tun-

able diode laser spectrometer providing 1% stated accuracy and sub-percent preci-

sion on a sample containing 16O12C18O in the 2.06 µm spectral region. Results of

this experiment are compared to the Ames, CDSD-296 and UCL line intensities in

Figure 3.48. To the best of author’s knowledge, this is the most accurate intensity

measurement reported on an asymmetric isotopologue of carbon dioxide. From the

Figure 3.48 it is readily seen that only the UCL line intensities for P(7), P(8) and

P(9) lines match the experimental error bar. An average systematic shift of +1%

is observed for the UCL intensities, +1.5% for Ames and +2.0% for CDSD-296.

Thus, one can tentatively conclude on plausible sub-percent accuracy of UCL line

intensities for this band.
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Figure 3.49: Ames, CDSD-296 and UCL line intensities for the 00011 – 00001 band
of 16O12C17O compared to three experimental works by: Jacquemart et al. [211]
(uppermost panel), Claveau et al. [212] (middle panel) and Johns et al. [213](lowest
panel). Blue triangles, red dots and black squares denote relative deviations from
the measurement (in % ) of UCL, CDSD-296 and Ames line intensities respectively.
m labels rotational transitions and corresponds to J(lower)+1 for the R branch and
-J(lower) for the P branch.

Figure 3.49 compares transition intensities from different measurements for
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the asymmetric stretching fundamental (00011 – 00001 band) of the 627 isotopo-

logue. Experiments by Jacquemart et al. [211] (uppermost panel in Figure 3.49),

Claveau et al. [212] (middle panel in Figure 3.49) have stated 5% systematic un-

certainty and undetermined statistical uncertainty, while measurements by Johns et

al. [213] (lowest panel in Figure 3.49) have 2% stated systematic uncertainty and 2-

3% statistical uncertainty. Ames, CDSD and UCL line lists give similar deviations

from experiments, showing systematic shifts smaller than 5%. For all three panels

in Figure 3.49, Ames transition intensities are usually weaker than UCL intensities,

whereas CDSD intensities are usually stronger than UCL intensities. At the same

time UCL lines give the smallest systematic deviation from experiments.
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Figure 3.50: Ames, CDSD-296 and UCL line intensities for the 20011 – 00001 band
of 16O13C17O compared to two experimental works by: Toth et al. [214] (left panel)
and Borkov et al. [190] (right panel). Blue triangles, red dots and black squares
denote relative deviations from the measurement (in % ) of UCL, CDSD-296 and
Ames line intensities respectively. m labels rotational transitions and corresponds
to J(lower)+1 for the R branch and -J(lower) for the P branch.

Figure 3.50 displays comparison between two experimental studies by Toth et

al. [214] (left panel) and Borkov et al. [190] (right panel) respectively, and three

line lists: Ames, CDSD and UCL. The former experiment has stated 2.5% sys-

tematic uncertainty and 10% statistical uncertainty, while the latter experiment has

4% systematic uncertainty and 0.5 - 7% statistical uncertainty. The agreement be-

tween measurements and line lists reflects the relatively high uncertainties, showing

similar statistical scatter for all three line lists, but essentially smaller systematic de-

viation for the CDSD line list, which was constructed by fitting to measurements
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by Toth et al. Systematic deviation from experiment is again very similar (around

1%) for UCL and Ames intensities. Also, CDSD, Ames and UCL follow the same

pattern, indicating that the statistical scatter visible in Figure 3.50 is of experimental

origin.
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Figure 3.51: Ames, CDSD-296 and UCL line intensities for the 10011 – 00001
band of 16O13C18O compared to two experimental works by: Toth et al. [214] (left
panel) and Borkov et al. [215] (right panel). Blue triangles, red dots and black
squares denote relative deviations from the measurement (in % ) of UCL, CDSD-
296 and Ames line intensities respectively. m labels rotational transitions and cor-
responds to J(lower)+1 for the R branch and -J(lower) for the P branch. In the left
panel experimental error bars were added together with horizontal orange dashed
lines indicating experimental uncertainty for the systematic shift in the transition
intensity.

In Figure 3.51, which compares Ames, CDSD and UCL line lists to experi-

ments by Toth et al. [214] (left panel) and Borkov et al. [215] (right panel), large

deviations of Ames and UCL from measured line intensities are visible for several

lines of the P branch of the 10011 – 00001 band in 16O13C18O. Ames and UCL

line list provide similar values of transition intensities for these lines (agree within

2%), whereas CDSD intensities do not exhibit any unusual deviation. This obser-

vation can be rationalized by the fact that effective operators used to construct the

CDSD database were parametrized by experimental intensities from ref. [214]. The

statistical scatter of the measured line intensities indicates insufficient experimental

precision. Average systematic shift from measurements is within 1% from experi-

ment for CDSD, Ames and UCL line lists.

Another problem to address is how intensities of lines transfer between iso-
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topologues for the Ames and UCL line lists, and how do they relate to CDSD-296.

It is eye-catching in Figure 3.52 that Ames and UCL intensities for the 00011 –

00001 and 01101 – 00001 bands are very similar, showing agreement at < 0.5%

level for the majority of lines. In contrast, line intensities from CDSD give signif-

icant systematic shifts and noticeable arc structures, characteristic for the empiri-

cally determined quantities. Therefore, we may expect Ames and UCL to exhibit

similar behavior with isotopic substitution. Here, no discontinuity in intensity pat-

tern around J = 0 is observed for the Ames line lists, unlike for the main isotopo-

logue [161].
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Figure 3.52: Comparison of intensities of two fundamental bands for all six asym-
metric isotopologues of CO2, between UCL, Ames and CDSD line lists. m labels
rotational transitions and corresponds to J(lower)+1 for the R branch and -J(lower)
for the P branch.
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3.12.2 Comparison with other line lists

Table 3.9 compares measured band intensities for six asymmetric isotopologues of

CO2 to the calculated values from the Ames-1, UCL and CDSD-296 line lists.

Table 3.9: Band statistics for the asymmetric isotopologues of CO2:

628,627,637,638,728,738. Selected are the strongest bands of each isotopologue,

that have high quality experimental intensities available. The strongest bands of each

isotopologue are compared between Ames-1, CDSD-296 and UCL line lists and most

accurate experiments. Given for each band are the band center in cm−1, the total number

of measured lines in the band, J(minimum), J(maximum), the total band strength in

cm/molecule, symmetric relative deviation Sa in %, root-mean square deviation (RMSD)b

of intensity in %, the polyad numberc change , the stability of the band based on the scatter

factor analysis, reference to experimental data.

J J UCL Ames CDSD

Band Center Total min max unc.e Strength Sa RMSDb S RMSD S RMSD ∆P c T.d Source

628

00011 – 00001 2328.373 19 4 37 3–7 9.26×10−20 0.9 2.3 -1.4 2.6 0.8 2.3 3 s [213]

01101 – 00001 660.902 45 1 46 4–6 1.07×10−20 1.3 3.3 1.0 3.3 -1.0 3.4 1 s [216]

01101 – 00001 660.902 37 43 66 5–7 5.74×10−22 3.9 7.0 3.7 6.9 0.9 5.0 1 s [217]

10011 – 00001 3674.396 81 0 75 4 2.24×10−21 -1.3 3.0 -1.4 3.1 0.5 2.9 5 s [215]

10011 – 00001 3674.396 68 0 58 3 2.72×10−21 -2.4 2.7 -2.5 2.7 -0.7 1.3 5 s [211]

10012 – 00001 3569.661 78 1 76 4 2.97×10−21 -2.2 3.7 -2.9 4.1 -0.3 3.1 5 s [215]

02201 – 01101 665.733 121 3 52 3–7 9.36×10−22 2.9 7.1 2.7 7.0 1.4 6.5 1 s [217]

11111 – 01101 3685.269 102 2 62 4–5 1.99×10−22 -1.8 4.5 -1.8 4.5 -0.5 4.1 5 s [215]

11111 – 01101 3685.269 139 1 64 3–10 2.69×10−22 0.8 23.2 -1.1 3.1 -0.0 2.9 5 s [207]

11111 – 01101 3685.269 265 9 31 3 7.62×10−23 -1.3 1.8 -1.3 1.8 -0.1 1.3 5 s [211]

11112 – 01101 3540.235 109 1 69 4–5 1.65×10−22 -0.6 4.4 -1.4 4.6 -0.1 4.3 5 s [215]

11112 – 01101 3540.235 150 1 61 3–10 2.53×10−22 -1.0 2.9 -1.8 3.3 -0.5 2.8 5 s [207]

11112 – 01101 3540.235 19 9 36 3 5.36×10−23 -1.5 1.8 -2.3 2.5 -0.7 1.4 5 s [211]

10001 – 01101 701.257 78 2 52 3–7 4.52×10−22 -1.8 3.8 -2.3 4.1 0.1 3.1 1 s [217]

20012 – 00001 4904.123 106 0 62 3–10 1.13×10−22 -1.7 3.1 -1.0 2.8 -0.2 2.8 7 s [207]

20012 – 00001 4904.123 3 7 9 1 4.91×10−24 0.9 1.1 1.6 1.7 2.1 2.2 7 s [203]

20012 – 00001 4904.123 51 1 45 3 7.50×10−23 -3.2 3.3 -2.5 2.6 -1.8 1.9 7 s [211]

20012 – 00001 4904.123 116 0 67 1–2 1.28×10−22 -0.2 1.4 0.5 1.5 1.4 2.2 7 s [31]

20012 – 00001 4904.123 117 0 67 4–6 1.23×10−22 -2.2 3.7 -1.5 3.4 -0.6 3.1 7 s [190]

10002 – 01101 594.837 48 2 41 5–7 2.46×10−22 17.5 19.5 17.6 19.5 1.5 8.1 1 s [217]

20013 – 00001 4790.523 103 0 67 3–10 4.40×10−23 -0.7 2.7 -0.3 2.6 0.4 2.8 7 s [207]

20013 – 00001 4790.523 60 0 43 3 3.61×10−23 -1.9 2.4 -1.5 2.2 -0.9 1.8 7 s [211]

20013 – 00001 4790.523 129 0 65 1–2 4.94×10−23 -1.6 3.1 -1.2 3.0 -0.4 2.5 7 s [31]

20013 – 00001 4790.523 114 0 63 4–5 4.77×10−23 -1.9 4.2 -1.6 4.0 -0.8 3.8 7 s [190]

20011 – 00001 5041.845 82 0 48 3–10 2.29×10−23 -0.5 3.4 0.9 3.5 1.3 3.8 7 s [207]

20011 – 00001 5041.845 40 2 57 3–5 1.18×10−23 -2.6 3.3 -1.2 2.4 -0.8 2.0 7 s [211]
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20011 – 00001 5041.845 110 0 58 4–6 2.39×10−23 -3.7 5.7 2.3 4.9 -1.7 4.6 7 s [190]

00021 – 00001 4640.227 69 0 47 3–10 1.08×10−23 -2.4 3.1 -1.9 2.8 -1.1 2.3 6 s [218]

00021 – 00001 4640.227 94 0 62 4–10 1.12×10−23 -2.0 4.6 -1.6 4.4 -0.6 4.2 6 s [207]

00021 – 00001 4640.227 97 0 56 3–10 1.29×10−23 -0.1 2.4 0.3 2.4 1.2 2.9 6 s [215]

00021 – 00001 4640.227 119 0 62 4–10 1.43×10−23 -2.5 4.9 -2.1 4.7 -1.1 4.2 6 s [190]

11102 – 10002 642.338 41 4 33 5–7 4.05×10−23 3.8 6.3 3.6 6.2 -3.5 6.0 1 s [217]

20002 – 00001 2613.511 102 0 57 3–10 1.98×10−23 -0.9 3.2 -2.6 4.0 0.1 3.3 4 s [207]

20002 – 00001 2613.511 73 0 47 3 1.80×10−23 -0.6 1.0 -2.3 2.5 0.2 0.8 4 s [211]

10001 – 00001 1365.107 92 0 64 5 3.05×10−23 1.8 3.1 -0.4 2.5 0.3 2.8 2 s [219]

10002 – 00001 1260.161 99 0 62 5 2.90×10−23 0.4 3.0 - - -0.8 3.0 2 s [219]

11101 – 10001 683.566 35 8 35 5–7 2.37×10−23 2.0 4.4 1.6 4.2 2.3 4.5 1 s [217]

20003 – 00001 2500.024 104 0 61 3–11 1.27×10−23 -1.1 3.9 -3.3 5.0 -0.7 3.2 4 s [207]

20003 – 00001 2500.024 62 3 42 3 1.00×10−23 -0.2 0.8 -2.3 2.4 0.5 1.3 4 s [211]

01111 – 01101 2318.568 20 18 69 3–7 1.96×10−23 -2.6 4.4 -4.9 6.1 -2.5 4.4 3 s [220]

21112 – 01101 4898.372 146 2 53 3–10 7.66×10−24 3.6 4.6 4.2 5.1 0.5 3.1 7 u [207]

21112 – 01101 4898.372 46 2 35 3–23 3.38×10−24 13.0 44.6 13.7 44.9 9.6 43.2 7 u [190]

21112 – 01101 4898.372 127 2 49 4–11 6.52×10−24 -3.2 9.2 -2.6 9.0 -6.3 10.7 7 u [31]

20013 – 10002 3531.097 32 0 47 4 6.70×10−24 0.0 5.1 -0.8 5.2 -1.0 5.3 5 s [207]

20013 – 10002 3531.097 49 0 49 3–8 1.05×10−23 1.6 2.7 0.8 2.4 0.5 2.4 5 s [215]

11101 – 00001 2047.133 62 2 63 3–33 9.79×10−24 1.8 6.6 11.1 18.6 1.2 4.8 3 u [221]

11101 – 00001 2047.133 25 11 41 3 5.38×10−24 -2.1 2.8 8.0 9.6 -3.3 3.7 3 u [211]

20012 – 10002 3648.313 26 4 45 4 4.92×10−24 -0.2 4.2 -0.4 4.2 -1.8 4.6 5 s [207]

20012 – 10002 3648.313 37 3 46 3–11 7.19×10−24 0.7 2.4 0.5 2.3 -0.9 2.4 5 s [215]

627

00011 – 00001 2345.147 7 6 30 2–4 6.24×10−21 -1.0 2.7 -3.3 4.1 0.7 2.6 3 s [213]

00011 – 00001 2345.147 15 58 68 5 9.09×10−23 -3.2 4.2 -5.5 6.1 -1.1 2.7 3 s [212]

00011 – 00001 2345.147 15 58 68 3 9.09×10−23 -3.1 4.2 -5.5 6.1 -1.1 2.8 3 s [222]

00011 – 00001 2345.147 23 6 68 5 8.45×10−21 -0.8 3.2 -3.1 4.4 1.2 3.4 3 s [211]

01101 – 00001 667.005 35 3 39 4–8 1.44×10−21 0.5 3.4 0.3 3.4 -2.9 4.9 1 s [212]

01101 – 00001 667.005 38 2 56 5 1.24×10−21 4.5 7.5 4.3 7.4 1.4 5.4 1 s [216]

01111 – 01101 2331.998 60 5 53 3 1.48×10−21 -2.1 3.4 -4.4 5.1 -0.2 2.6 3 s [212]

01111 – 01101 2331.998 41 9 53 5 9.37×10−22 -3.0 3.8 -5.3 5.8 -1.0 2.8 3 s [211]

10011 – 00001 3694.108 87 0 59 5 7.70×10−22 -2.2 2.4 -2.3 2.5 -2.1 2.3 5 s [211]

10011 – 00001 3694.108 95 0 80 4 5.86×10−22 -1.5 3.2 -1.6 3.3 -1.2 3.3 5 s [215]

10012 – 00001 3590.512 70 0 80 4 4.44×10−22 -1.5 3.5 - -1.2 3.3 5.0 3 s [215]

02201 – 01101 661.326 80 4 46 5 1.48×10−22 3.4 5.4 3.1 5.2 -0.2 4.2 1 s [212]

10001 – 01101 709.023 61 2 37 5 7.78×10−23 -2.7 4.5 -3.2 4.8 -0.2 3.5 1 s [212]

20012 – 00001 4938.605 71 0 60 5 1.55×10−23 -2.6 2.7 -1.9 2.1 -0.3 0.9 7 s [211]

20012 – 00001 4938.605 28 12 47 1–11 9.01×10−24 -0.0 23.7 0.7 23.7 2.3 23.6 7 s [31]

20012 – 00001 4938.605 134 0 73 4–6 2.39×10−23 -1.6 3.4 -0.9 3.2 0.8 3.2 7 s [190]

20012 – 00001 4938.605 83 0 62 2 1.54×10−23 -0.2 1.9 0.4 1.9 2.1 3.0 7 s [223]

10002 – 01101 604.522 43 3 35 5 4.73×10−23 11.6 13.5 11.7 13.5 -0.2 6.5 1 s [212]

11111 – 01101 3704.311 150 2 72 4–10 4.03×10−23 -0.8 3.5 -0.8 3.6 -0.4 3.5 5 s [215]

11112 – 01101 3560.198 133 1 66 4–10 3.10×10−23 -0.5 3.9 -1.3 4.1 -0.5 4.0 5 s [215]
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20013 – 00001 4820.757 43 0 60 5 3.02×10−24 -2.0 2.4 -1.7 2.2 -0.3 1.3 7 s [211]

20013 – 00001 4820.757 123 0 68 4–7 7.06×10−24 -0.6 2.6 -0.3 2.5 1.3 2.8 7 s [190]

20013 – 00001 4820.757 38 4 47 2–13 3.86×10−24 7.9 18.3 8.2 18.5 9.6 19.2 7 s [31]

20013 – 00001 4820.757 80 0 55 2 5.53×10−24 0.2 1.6 0.5 1.7 1.9 2.5 7 s [223]

20011 – 00001 5069.677 75 0 62 5 4.01×10−24 -2.9 3.1 -1.6 1.9 -0.3 1.1 7 s [211]

20011 – 00001 5069.677 131 0 67 4–7 6.07×10−24 -2.0 3.5 -0.7 2.9 0.7 3.0 7 s [190]

20011 – 00001 5069.677 82 0 61 2 4.21×10−24 3.4 3.7 4.7 4.9 6.0 6.2 7 s [223]

21112 – 01101 4930.435 296 1 59 4–7 2.67×10−24 0.5 4.1 1.2 5.0 2.4 4.7 7 u [190]

00021 – 00001 4654.446 280 0 62 4–7 2.11×10−24 - 0.8 4.3 0.1 4.2 6.0 2 s [190]

20012 – 10002 3665.553 48 1 52 4 1.49×10−24 -0.0 3.1 -0.2 3.1 1.0 3.2 5 s [215]

10001 – 00001 1377.543 52 1 43 5 1.35×10−24 1.7 4.7 -0.5 4.4 -0.3 4.3 2 s [219]

637

00011 – 00001 2270.243 18 4 43 5 1.45×10−22 1.9 2.6 -0.4 1.8 -0.3 1.8 3 s [222]

10011 – 00001 3607.792 55 0 62 4 7.03×10−24 5.6 6.6 5.5 6.5 -0.6 3.6 5 s [215]

10011 – 00001 3607.792 28 1 48 3–10 4.96×10−24 4.7 7.1 4.6 7.0 -1.6 5.7 5 s [214]

10012 – 00001 3506.855 56 1 61 4 2.98×10−24 5.3 6.1 4.5 5.4 -0.9 3.2 5 s [215]

10012 – 00001 3506.855 12 1 38 3–13 9.00×10−25 6.9 10.2 6.1 9.7 0.4 7.6 5 s [214]

11111 – 01101 3620.197 51 5 53 4–7 3.85×10−25 6.4 8.7 6.3 8.7 0.6 5.9 5 s [215]

20012 – 00001 4848.635 75 0 50 4–9 1.91×10−25 5.1 7.2 5.8 7.7 -0.8 5.1 7 s [190]

20012 – 00001 4848.635 65 2 47 4–10 3.63×10−25 5.1 7.1 5.7 7.6 -0.9 5.0 7 s [214]

11112 – 01101 3482.365 66 4 55 4–27 1.73×10−25 5.0 7.0 5.6 7.4 -1.0 4.9 5 s [215]

20011 – 00001 4956.342 48 1 40 10 7.97×10−26 5.8 7.6 7.1 8.6 1.1 5.0 7 s [214]

20011 – 00001 4956.342 69 0 47 4–9 9.89×10−26 3.4 7.5 4.6 8.1 -1.2 6.8 7 s [190]

20013 – 00001 4722.116 49 3 44 4–9 1.93×10−26 3.9 8.5 4.1 8.6 -0.3 7.5 7 s [190]

00031 – 00001 6753.152 86 0 55 10 1.01×10−26 5.9 7.6 -2.2 5.3 2.0 5.1 9 s [191]

00021 – 00001 4528.497 45 4 38 4–12 5.86×10−27 2.5 10.3 2.9 10.4 0.7 10.3 6 s [215]

30012 – 00001 6185.757 43 2 43 10 1.99×10−27 -6.1 10.7 -3.8 9.6 -0.2 8.9 9 s [191]

20013 – 10002 3451.176 5 15 34 4 1.42×10−27 3.7 5.4 2.8 4.9 -1.6 4.4 5 s [215]

20011 – 10001 3609.826 2 12 14 4 1.22×10−27 7.7 7.7 7.6 7.7 2.2 2.5 5 s [215]

30013 – 00001 6074.545 28 3 33 10 7.97×10−28 -7.2 11.6 -5.8 10.8 -0.3 9.1 9 u [191]

01131 – 01101 6715.988 80 1 39 10 5.20×10−28 0.7 9.0 -7.5 11.7 -2.8 9.3 9 s [191]

21112 – 01101 4820.294 2 17 23 5–8 3.20×10−28 11.3 13.5 11.9 13.9 4.6 8.6 7 u [190]

30011 – 00001 6320.672 31 2 40 10 2.19×10−28 -19.4 21.6 -14.4 17.2 -0.4 9.5 9 s [191]

10031 – 00001 8040.610 6 6 31 10 4.56×10−29 - - -0.4 10.4 -8.2 13.3 11 s [191]

40013 – 00001 7417.626 25 4 31 10 2.22×10−29 -14.4 29.4 -12.0 28.3 -40.6 48.4 11 s [224]

10032 – 00001 7917.301 10 27 46 10 1.78×10−29 21.7 31.4 24.5 33.4 23.9 29.0 11 s [224]

638

10011 – 00001 3588.279 51 0 54 4 3.13×10−23 0.1 4.4 -0.1 4.4 -1.8 4.7 5 s [215]

10011 – 00001 3588.279 76 0 61 3–10 4.79×10−23 1.7 2.8 1.6 2.7 -0.0 2.2 5 s [214]

01111 – 01101 2249.097 63 6 68 3–10 7.07×10−23 7.9 9.3 5.5 7.4 -3.3 5.9 3 s [214]

10012 – 00001 3491.854 40 2 56 4 1.32×10−23 2.2 4.2 1.5 3.8 -0.8 3.9 5 s [215]

10012 – 00001 3491.854 82 1 60 3–21 2.74×10−23 3.0 4.3 2.2 3.9 0.0 2.9 5 s [214]
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10012 – 10002 2242.514 30 3 51 3–10 2.97×10−24 10.0 10.4 7.7 8.2 -1.1 3.0 3 s [214]

20012 – 00001 4815.291 94 0 55 3–10 1.44×10−24 19.0 19.1 19.7 19.7 -0.1 1.7 7 s [214]

20012 – 00001 4815.291 58 2 40 4–10 9.72×10−25 0.6 21.0 1.3 21.1 -19.0 28.6 7 s [190]

20012 – 00001 4815.291 1 17 18 5 5.78×10−26 114.4 23.8 115.3 24.0 87.0 18.1 7 s [31]

11112 – 01101 3457.958 46 5 46 4 8.69×10−25 3.1 7.3 2.2 7.0 0.0 6.6 5 s [215]

11112 – 01101 3457.958 63 2 40 10 1.28×10−24 5.9 7.2 5.0 6.5 3.0 4.9 5 s [214]

11111 – 01101 3597.621 10 16 27 4–7 4.87×10−25 3.0 10.4 2.9 10.4 2.0 10.3 5 s [215]

11111 – 01101 3597.621 37 2 37 10 1.60×10−24 8.3 9.2 8.3 9.1 7.3 8.3 5 s [214]

10011 – 10001 2240.770 19 5 48 3–11 1.30×10−24 12.0 12.8 9.6 10.6 0.8 4.6 3 s [214]

20011 – 00001 4925.749 121 0 48 3–14 1.09×10−24 31.4 106.3 32.8 107.7 8.3 86.6 2 s [190]

02211 – 02201 2231.148 8 14 52 3–10 6.02×10−25 16.8 18.3 14.4 16.2 5.6 9.2 3 s [214]

20013 – 00001 4690.702 69 1 47 3–10 2.09×10−25 19.9 20.1 20.1 20.3 -1.1 2.9 7 s [214]

20013 – 00001 4690.702 12 7 27 5–17 4.63×10−26 5.4 27.2 5.6 27.2 -16.4 31.7 7 s [190]

10001 – 00001 1336.378 28 7 37 5 2.36×10−25 -4.1 7.7 -6.4 9.2 -0.3 6.3 2 s [219]

00021 – 00001 4507.263 74 1 43 11 1.85×10−25 20.8 21.0 21.2 21.3 -0.3 2.7 6 s [214]

20002 – 00001 2583.005 22 6 33 15 7.86×10−26 9.0 17.2 7.3 16.4 -0.2 14.6 4 s [225]

00031 – 00001 6727.618 135 0 74 10 6.65×10−26 17.8 18.7 9.4 11.1 0.0 5.0 9 s [191]

10002 – 00001 1238.299 14 8 26 5 5.78×10−26 -9.5 10.7 -12.0 13.0 -0.3 4.8 2 s [219]

11101 – 00001 2005.545 20 10 36 20 4.98×10−26 -3.9 25.6 10.6 27.6 -1.7 25.8 3 u [226]

21112 – 01101 4797.940 50 4 33 11 4.28×10−26 19.3 19.7 19.8 20.2 0.3 4.1 7 u [214]

30012 – 00001 6139.386 106 0 65 10 1.72×10−26 6.6 11.6 9.0 13.1 -0.8 9.4 9 s [191]

30013 – 00001 6025.888 108 0 61 10 1.42×10−26 8.7 12.7 10.1 13.8 -0.8 9.3 9 u [191]

01131 – 01101 6692.165 211 1 64 10 5.57×10−27 17.0 19.4 8.7 12.6 -0.1 8.1 9 s [191]

30011 – 00001 6278.752 74 0 61 10 1.87×10−27 1.5 11.5 8.2 17.0 1.1 10.9 9 s [191]

10031 – 00001 8007.762 60 1 42 5–10 1.85×10−27 3.4 12.1 5.4 13.0 -0.4 11.8 11 s [227]

31113 – 01101 5994.504 112 1 47 10 8.80×10−28 12.5 18.8 18.5 43.8 0.1 12.3 9 u [191]

10032 – 00001 7910.834 63 0 62 5–10 8.49×10−28 19.4 20.1 21.9 22.5 22.6 23.2 11 s [224]

31112 – 01101 6145.467 86 1 47 10 8.32×10−28 7.6 15.4 9.8 16.6 -0.5 13.3 9 u [191]

30014 – 00001 5875.121 42 1 46 10 6.23×10−28 3.9 12.5 5.1 12.9 -0.1 11.8 9 s [191]

02231 – 02201 6658.965 121 2 42 10 1.93×10−28 18.5 20.9 10.1 13.9 0.9 9.2 9 s [191]

40013 – 00001 7350.955 42 0 52 5–10 1.72×10−28 -2.7 12.4 -0.3 12.1 -24.5 27.5 11 s [224]

31111 – 01101 6307.493 76 5 44 10 1.57×10−28 -0.7 13.6 5.0 14.5 -1.1 13.6 9 s [191]

11132 – 01101 7862.551 119 4 44 5–10 1.25×10−28 24.5 26.9 26.9 29.2 29.4 30.5 11 s [224]

10032 – 10002 6665.932 51 0 42 10 8.38×10−29 10.2 15.1 1.5 11.2 -1.3 10.9 9 s [191]

20022 – 00001 7019.329 51 1 47 5–10 8.03×10−29 10.8 20.2 13.6 21.9 17.8 23.3 10 s [224]

40012 – 00001 7480.795 49 2 49 5–10 7.96×10−29 4.8 12.7 9.6 15.4 -14.4 17.6 11 s [224]

40014 – 00001 7219.259 35 1 32 5–10 6.50×10−29 10.6 13.7 12.0 14.9 -12.8 15.5 11 u [224]

11121 – 00001 6446.108 47 3 46 10 6.47×10−29 7.1 16.9 7.9 17.1 -1.0 15.0 9 s [191]

10031 – 10001 6669.082 39 2 40 10 3.79×10−29 13.2 18.7 4.0 13.8 -8.2 15.4 9 s [191]

20021 – 00001 7123.107 39 2 46 5–10 2.86×10−29 10.0 24.4 14.8 26.9 23.0 23.0 10 s [224]

11122 – 00001 6316.706 38 2 44 10 2.78×10−29 7.4 16.6 -4.3 15.3 -3.5 13.6 9 s [191]

40013 – 10002 6110.334 16 4 33 10 2.39×10−29 9.3 16.5 11.4 17.8 1.3 12.9 9 s [191]

40011 – 00001 7651.175 13 4 30 10–30 2.36×10−30 17.2 30.3 30.1 39.6 - - 11 s [224]

20033 – 10002 7832.367 13 7 28 10–30 1.48×10−30 26.7 35.7 23.5 32.0 - - 11 s [224]

728
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10012 – 00001 3546.567 83 0 62 3–10 1.74×10−24 10.2 11.0 9.5 10.4 -1.5 4.6 5 s [207]

10012 – 00001 3546.567 227 0 62 3 1.35×10−24 8.5 8.7 7.9 8.0 -3.1 3.5 5 s [211]

10012 – 00001 3546.567 75 0 83 4 1.33×10−24 9.2 9.5 8.5 8.8 -2.4 3.6 5 s [215]

00011 – 00001 2291.385 17 37 68 3 4.15×10−24 2.3 3.8 -0.0 3.0 -0.3 3.0 3 s [211]

10011 – 00001 3655.831 67 0 60 3–10 1.14×10−24 7.9 8.3 7.8 8.2 -3.3 4.1 5 s [207]

10011 – 00001 3655.831 64 0 59 3 9.22×10−25 8.8 8.9 8.8 9.8 -2.3 2.5 5 s [211]

10011 – 00001 3655.831 65 1 72 4 8.15×10−25 10.0 10.3 9.9 10.3 -1.0 2.9 5 s [215]

11112 – 01101 3516.783 105 3 51 3–10 1.12×10−25 16.1 16.5 15.3 15.7 4.6 5.8 5 s [207]

11112 – 01101 3516.783 65 3 51 3 6.95×10−26 10.5 10.7 9.7 9.9 -1.2 2.3 5 s [211]

11112 – 01101 3516.783 122 1 68 4 8.27×10−26 11.8 12.1 11.0 11.3 0.4 2.6 5 s [215]

11111 – 01101 3665.648 55 3 43 3–25 5.78×10−26 15.1 16.0 15.1 16.0 4.3 6.9 5 s [207]

11111 – 01101 3665.648 23 9 33 3 2.70×10−26 10.8 10.9 10.9 10.9 0.1 1.1 5 s [211]

11111 – 01101 3665.648 96 2 65 4 7.25×10−26 11.3 11.8 11.3 11.8 0.7 3.5 5 s [215]

20012 – 00001 4867.609 81 2 54 3–11 4.26×10−26 10.6 10.9 11.2 11.5 -0.2 2.3 7 s [207]

20012 – 00001 4867.609 51 0 60 3 2.36×10−26 10.6 10.7 11.3 11.3 -0.2 1.1 7 s [211]

20012 – 00001 4867.609 125 0 68 4–6 5.01×10−26 11.1 11.7 11.8 12.4 0.4 3.8 7 s [190]

20013 – 00001 4754.845 83 0 51 3–10 2.28×10−26 10.7 11.1 11.0 11.4 -1.3 3.1 7 s [207]

20013 – 00001 4754.845 54 1 57 3 1.50×10−26 12.0 12.0 12.3 12.3 -0.1 0.8 7 s [211]

20013 – 00001 4754.845 122 0 67 4–6 2.63×10−26 11.7 12.2 12.0 12.5 -0.3 3.6 7 s [190]

20011 – 00001 5013.232 49 2 42 3–14 5.03×10−27 5.5 7.6 6.9 8.6 -5.7 7.6 7 s [207]

20011 – 00001 5013.232 56 1 47 3 4.83×10−27 11.8 11.9 13.2 13.2 0.7 1.2 7 s [211]

20011 – 00001 5013.232 106 0 59 4–6 7.94×10−27 10.0 11.2 11.4 12.5 -1.1 5.2 7 s [190]

21112 – 01101 4861.905 58 5 31 3–30 1.65×10−27 9.6 11.1 10.2 11.6 -1.5 5.8 7 u [207]

21112 – 01101 4861.905 157 2 51 4–8 3.10×10−27 11.3 13.1 11.8 13.6 0.3 6.6 7 u [190]

20013 – 10002 3509.533 35 1 60 4 3.56×10−27 13.3 13.8 12.5 13.0 2.3 4.4 5 s [215]

20012 – 10002 3623.717 35 1 38 4 2.69×10−27 12.9 13.5 12.7 13.3 1.9 4.4 5 s [215]

00021 – 00001 4621.032 103 0 60 4–6 1.38×10−27 15.0 21.9 15.5 22.2 2.2 15.5 6 s [190]

00021 – 00001 4621.032 84 0 52 4–5 1.13×10−27 12.2 12.7 12.7 13.1 -0.5 3.3 6 s [215]

00031 – 00001 6894.409 118 0 69 10 2.06×10−27 15.1 16.1 6.2 8.2 -0.1 3.9 9 s [191]

21113 – 01101 4709.841 141 2 53 4–6 1.65×10−27 13.7 15.0 13.9 15.2 1.5 6.1 7 s [190]

21113 – 01101 4709.841 14 34 49 4–6 6.01×10−29 12.4 13.0 12.7 13.2 0.2 3.7 7 s [215]

20011 – 10001 3662.486 24 5 50 4–6 1.30×10−27 16.6 17.7 16.7 17.7 6.2 8.7 5 s [215]

20012 – 10001 3511.956 29 0 50 4–6 1.04×10−27 14.1 14.8 13.5 14.2 2.5 4.9 5 s [215]

00011 – 10002 1073.481 39 5 41 5 1.02×10−27 -11.1 12.0 -15.1 15.7 -0.2 4.4 1 s [222]

30013 – 00001 6073.047 121 0 68 10 8.58×10−28 2.8 16.5 3.7 9.5 1.4 5.4 9 u [191]

21111 – 01101 5037.195 115 2 40 4–6 7.38×10−28 9.8 11.8 11.1 13.0 -2.6 7.1 7 u [190]

12211 – 02201 3645.173 10 27 42 4–6 2.85×10−28 14.2 15.3 14.3 15.4 4.1 7.0 5 s [215]

30012 – 00001 6207.046 101 0 68 10 2.85×10−28 -0.6 6.6 2.3 6.9 0.2 4.2 9 s [191]

12212 – 02201 3463.565 24 30 53 4–6 2.83×10−28 11.6 13.4 12.6 14.7 0.3 4.8 5 s [215]

30014 – 00001 5946.265 103 0 65 10 1.93×10−28 1.3 5.9 2.5 6.2 2.7 5.2 9 s [191]

30013 – 10002 4826.273 37 3 37 10 1.46×10−28 15.4 33.7 12.6 18.5 -2.1 10.0 7 s [190]

00011 – 10001 961.639 15 6 28 5 1.40×10−28 -6.2 7.9 -10.8 11.8 -0.3 5.0 1 s [222]

01131 – 01101 6855.418 141 1 67 10 1.25×10−28 14.9 16.7 6.0 9.6 1.1 5.9 9 s [191]

30003 – 00001 3809.903 57 1 41 4–6 1.21×10−28 11.9 13.7 11.4 13.2 0.1 5.4 6 u [215]
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21102 – 00001 3256.129 63 6 54 4–6 1.08×10−28 14.6 17.2 13.8 16.2 -0.7 5.5 5 u [215]

21113 – 11102 3473.795 16 11 32 4–6 9.87×10−29 11.7 13.6 10.8 12.8 0.9 7.0 5 s [215]

30014 – 10002 4696.570 26 7 35 5–7 5.64×10−29 11.6 14.5 11.8 14.7 -1.4 8.8 7 s [190]

30014 – 10002 4696.570 3 28 30 4 4.78×10−30 13.1 15.5 14.3 15.6 1.1 6.4 7 s [215]

31113 – 01101 6047.520 140 1 60 10 4.78×10−29 2.0 7.6 3.3 8.0 - - 9 u [191]

01121 – 00001 5255.181 32 7 35 5–7 3.54×10−29 12.1 15.3 2.1 10.0 24.7 25.9 7 s [190]

30012 – 10001 4860.218 14 11 24 6–8 2.75×10−29 7.7 16.3 8.4 16.6 -2.6 14.5 7 s [190]

30002 – 00001 3954.525 31 5 33 5–11 2.45×10−29 17.3 19.8 17.3 19.8 - - 6 s [215]

31112 – 01101 6217.194 129 1 53 10 2.42×10−29 -0.4 8.5 2.3 8.8 - - 9 s [191]

30011 – 00001 6391.247 86 0 51 10 2.39×10−29 -2.2 6.2 4.6 7.4 - - 9 s [191]

738

10011 – 00001 3566.725 39 2 51 4 8.24×10−27 1.8 4.5 1.7 4.5 -1.7 4.5 5 s [215]

10012 – 00001 3469.362 62 0 66 4 7.67×10−27 2.5 3.7 1.7 3.2 -0.0 2.8 5 s [215]

11112 – 01101 3441.685 81 4 49 4 6.00×10−28 1.3 4.1 0.4 3.9 -0.5 3.9 5 s [215]

20012 – 00001 4773.323 56 2 43 4–11 3.36×10−28 -0.6 6.9 0.0 6.9 -3.2 7.5 7 s [190]

11111 – 01101 3564.013 15 11 34 4 2.25×10−28 6.0 8.4 6.0 8.4 2.8 6.5 5 s [215]

20013 – 00001 4663.710 38 4 32 5–9 6.25×10−29 2.4 11.5 2.6 11.5 1.1 11.3 7 s [190]

20013 – 00001 4663.710 20 7 31 4–5 3.31×10−29 1.1 6.3 1.3 6.3 -0.3 6.2 7 s [215]

20011 – 00001 4887.298 20 6 29 5–17 4.22×10−29 -4.5 12.7 -3.2 12.3 -8.9 14.9 7 s [190]

00031 – 00001 6698.146 91 0 63 10 2.15×10−29 23.5 24.5 14.9 16.4 - - 9 s [191]

30013 – 00001 5972.284 39 3 41 10 3.59×10−30 10.8 16.5 12.3 17.5 - - 9 s [191]

30012 – 00001 6085.038 34 4 39 10 3.08×10−30 13.0 18.3 15.5 20.1 - - 9 s [191]

01131 – 01101 6662.913 66 1 45 10 8.80×10−31 15.1 18.6 6.3 12.4 - - 9 s [191]

10032 – 00001 7869.363 67 2 47 5–10 5.86×10−31 31.0 33.2 33.5 35.6 - - 11 s [224]

a see eq. 3.25
b rmsr: root-mean square residual
c The polyad number for CO2 is defined as: P = 2ν1 +ν2 +3ν3, where ν1,ν2,ν3 are the vibrational

quantum numbers of the symmetric stretching, bending and the asymmetric stretching, respectively.
dType of band: Stable(’s’), unstable(’u’)
e Uncertainty interval of the measurement (in %), defined as root-mean square

of statistical uncertainty plus systematic uncertainty of the measurement.

In general, by looking at Table 3.9, the dipole moment surfaces of Ames and

UCL appear to be of similar quality, generating band intensities that differ by few

percent. A more detailed analysis reveals that both line lists follow similar intensity

trends within a single band as well as between bands. A more detailed investigation

of small discrepancies between Ames-1 and UCL has been alredy done in section

3.12.1. For less abundant isotopologues, such as 638 and 728, deviations of theo-

retical line intensities from experimental values often exceed stated uncertainty of

measurements [190, 191, 211, 215], which suggests inaccuracies in retrieval proce-
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dure or in isotopic abundances in measured samples. Band intensities given by the

CDSD-296 database match more closely the experimentally determined values than

the remaining two line lists. The effective dipole moment calculations, on which the

CDSD-296 database relies, are supplied with experimental entries, some of which

have been taken from the references listed in Table 3.9. For this reason, CDSD-296

generates smaller overall deviations from experiment. Unfortunately, none of these

measurements provide sub-percent uncertainty budget for intensities. This means

one can conclude only approximately on the mutual relation between the experi-

ments and theoretical studies (most of the measurements give 5-20% uncertainty

for the line intensities). Therefore, a comparison to a preferably sub-percent accu-

rate study is needed. Only one such measurement has been performed by Durry et

al. [203] on three ro-vibrational lines of 628 (see Figure 3.48).
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Figure 3.53 gives an overview of the relative agreement of the Ames and UCL

line lists to CDSD-296.

627 628

637 638

728 738

Figure 3.53: Comparison of Ames and UCL line lists with the CDSD-296 database
for six isotopologues of CO2. Red and blue points denote relative percent deviation
of UCL and Ames intensities from CDSD intensity, respectively. Symmetric rela-
tive deviation (see eq.3.25) is plotted against line intensity (in cm/molecule) from
CDSD-296 scaled by the natural abundance.

For strong lines, both Ames and UCL line lists give a good overall match to

CDSD-296. For weaker lines, intensity discrepancies between the line lists and

CDSD become more visible, reaching several hundreds percent. If Ames and UCL

intensities do not nearly coincide, then usually the UCL intensity is much closer

to the corresponding CDSD-296 value. A few bands for the 637 and 728 isotopo-
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logue are systematically shifted toward large negative deviations in intensity both

for Ames and UCL, hence may demand closer attention, and perhaps a re-evaluation

in future editions of CDSD.

Figure 3.54 gives an overview comparison between UCL and HITRAN2012

intensities for all six asymmetric isotopologues of CO2. The characteristic funnel-

like shape is followed by the majority of lines. The 728, 637 and 638 isotopologues

however, contain few moderately strong bands, exhibiting suspiciously high sys-

tematic deviations from the UCL line list. For this reason, is may be believed that

intensities of these CDSD-296 bands cannot be trusted, and require refinement by

additional experimental data or a theoretical approach. It should be noted that the

majority of lines in HITRAN 2012 comes from the effective Hamiltonian calcula-

tion also enclosed in the CDSD-296 database.

Figure 3.54: General comparison of the UCL and HITRAN 2012 line lists for all six
asymmetric isotopologues of CO2. Symmetric relative deviation is plotted against
line intensity (in cm/molecule) from HITRAN 2012 scaled by the natural abun-
dance.
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3.13 The radioactive isotopologue (646)

Due to its trace atmospheric abundance, 1.234(14)×10−12 [139], only the strongest

ro-vibrational absorption lines of radiocarbon dioxide (14C16O2, 646) are accessible

to accurate measurements. There are only 36 lines (all belonging to the 00011–

00001 band) which have intensities above 10−30 cm/molecule at room temperature.

However, a growing number of experiments reaches for ever higher abundances

of 646 in measured samples, which creates access to weaker transitions. For this

reason, the present line list for 646 was calculated in a wide J = 0, ...,130 range in

the 0–8000 cm−1 transition wavenumber region, assuming unit abundance.

Out of the strongest lines present in the infrared spectrum of 646, only the

P(20) line of the asymmetric stretching fundamental (2209.10 cm−1) is located in

a spectral region essentially free of major interferences from other abundant atmo-

spheric species like H2O or CH4. For this reason, this line is most commonly chosen

as a reference for determination of radioactive carbon concentrations. Therefore,

the P(20) line of the asymmetric stretching fundamental plays a distinct role in

monitoring of carbon dioxide emission caused by fossil fuel combustion. Although

knowledge of the absolute value of the line strength to obtain the 14C concentra-

tions in SCAR measurements performed on fossil samples [147] can be avoided

by using a more convoluted experimental procedure, encouraged by a successful

retrieval of natural abundance of 646 by utilizing theoretically calculated line inten-

sity (claimed 5% accurate) by Galli et al. [26], with the hope that the updated and

plausibly sub-percent accurate intensities will be utilized in future experiments as

a reference or calibration data. Usually, a sample to be analysed is cooled down to

195 K or 170 K in order to diminish interference effects from the nearby (separated

by 230 MHz) line of the 636 isotopologue (P(19) line of the 05511 – 05501 band).

For this reason attention is also paid to line intensities at low temperature for this

particular transition. Table 3.10 compares intensities of the P(20) and P(40) lines

obtained from several measurements and theoretical calculations together with their

respective uncertainties.
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Table 3.10: Intensities of the P(20) and P(40) lines of the 00011 – 00001 band for
14CO2 taken from different experimental sources.
Reference Temperature K Strength(uncertainty) ×10−18 cm/molecule
P(20) Galli et al. [26] 195 3.10(15)
P(20) Present study 195 3.07(3)
P(20) Genoud et al. [143] 295 2.52(26)
P(20) Present study 295 2.82(3)
P(20) Present study 170 2.97(3)
P(40) McCartt et al. [148] 300 0.627(30)
P(40) Present study 300 0.572(6)

Both P(20) and P(40) lines are considered stable according to the transition

intensity sensitivity analysis (ρ = 1.026). Line intensity given by Galli et al. agree

to 1% with the UCL value for T = 195 K. Genoud et al. gives room temperature line

intensity flagged with 10% uncertainty, which lies 11% below the UCL prediction.

The P(20) line is 5 times stronger than P(40), however the latter one is located in

a less crowded spectral region. From this reason McCartt et al. used the P(40) line

to produce calibration curve for concentration of radioactive carbon in the SCAR

technique, where reference concentrations were determined by accelerator mass

spectrometry. In their spectroscopic model, McCartt et al. use a line intensity at

300 K taken from measurements by Galli et al. [26] (9% above UCL intensity)

and line intensities of interfering isotopologues from the HITRAN 2012 database.

This leads to negative concentrations resulting from fitted calibration curve. One

of the possible reason for that could be inaccurate line strength used in the retrieval

model. Of equal importance are however: the accuracy of 14C abundance in samples

and the intensities of the satellite lines of other carbon dioxide isotopologues. Line

intensities provided by UCL line lists are internally consistent and have been proven

to agree within experimental uncertainty to state-of-the-art measurements. Table

3.10 also lists UCL prediction for the line intensity at T = 170 K, a temperature

which is commonly used for intensity measurements for the P(20) line.

Vibrational assignments of the UCL line list for 646 were based on isotopic

shifts of energy levels and respective assignments for the 626 and 636 isotopo-

logues. For this purpose energy levels for the 626 and 636 isotopologues were
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extrapolated and matched to 646 calculated energy levels. Next, the DVR3D calcu-

lated line positions for 646 were compared to experimental frequencies by Dobos

et al. [228]. The tunable diode laser measurements supplied accuracy of 0.001

cm−1 or better in the 2229 – 2259 cm−1 spectral range of the asymmetric stretch-

ing fundamental; this yields an RMSD = 0.004 cm−1. This result shows that cal-

culated line positions deviate from experiment just above the stated experimental

accuracy, hence may be considered as highly reliable for the 00011 – 00001 band.

For this band the average deviation from the EH calculations for 5 symmetric iso-

topologue levels is 0.018 cm−1, which could probably be reduced by treatment of

mass-dependent non-Born-Oppenheimer effects. A more recent study performed

by Galli et al. [144], where high-resolution optical-frequency-comb-assisted cav-

ity ring-down technique was used to measure ro-vibrational line positions in 2190

– 2250 cm−1 region with accuracy of few MHz. Comparison with this study re-

sulted in 0.005 cm−1 RMSD, thereby establishing the provisional uncertainty of the

DVR3D line positions to 0.005 cm−1 for the asymmetric stretching fundamental.

The study by Galli et al. awaits accurate intensity evaluation. This creates an op-

portunity for further utilization of present results and comparison with experiments,

when done.

3.14 HITRAN 2016 recommended UCL line lists

For each of 13 isotopologues of CO2 two types of line lists were prepared. The

first type named ’UCL’ contains line positions calculated using Ames-1 PES with

DVR3D program and line intensities using UCL DMS (’AU’ line list). Each line

is supplemented with the appropriate scatter factor ρ , given in the last column.

The second type named ’recommended UCL-IAO line list’ contains line positions

from the effective Hamiltonian calculations by Tashkun and Pervalov [37–39]. In

both types of line lists the vibrational assignments are taken from the newest ver-

sion of the CDSD-296 database, although for a few lines manual reassignments of

the CDSD-296 vibrational quantum numbers were necessary. For the radiocarbon

isotopologue (646), which is not included in the CDSD-296 database, an isotope
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extrapolation procedure (as described in section 3.13) was applied to obtain vibra-

tional assignments.

The recommended UCL-IAO line lists were incorporated as a part of the HI-

TRAN2016 database [196] (www.hitran.org), after minor modifications summa-

rized below.

First of all, a small number of line positions was taken directly from exper-

iment. This was the case whenever lines were affected by the interpolyad anhar-

monic resonance interactions, for which the effective Hamiltonian model is not ac-

curate enough. Appropriate source codes for experimental data used in the UCL-

IAO recommended line lists are:

• 627: ”3” source code stands for data taken from [229]

• 628: ”4” source code stands for data taken from [208];”5” source code stands

for line positions corrected with differences between EH calculated and ob-

served line positions for 31112-01101 or 41113-01101 bands taken from

Karlovets et al. [208]

• 638: ”3” source code stands for data taken from [206];”5” source code

stands for line positions corrected with differences between EH calculated

and observed line positions for the 31113-01101 band taken from Karlovets

et al. [206]

• 728: ”3” source code stands for data taken from [208]

The majority of lines in the recommended line lists have their source code

”1” for transition intensities, which stands for UCL-calculated data. On the other

hand, the majority of line positions come from the effective operator calculations

by Tashkun and Perevalov [37–39], with ”2” source code assigned.

The uncertainty-code assignment was based on the following criteria. Intensi-

ties of stable lines (ρ < 2.5) belonging to bands stronger than 10−23 cm/molecule

(for unit abundance) were taken from UCL DMS calculations and assigned HI-

TRAN uncertainty code 8 (i.e. accuracy of 1% or better). Stable lines belonging
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to parallel bands weaker than 10−23 cm/molecule also come from UCL DMS com-

putation and were given uncertainty code 7 (i.e. accuracy 1 – 2 %). Intermediate

lines (4.0 > ρ ≥ 2.5) and stable lines belonging to perpendicular bands weaker than

10−23 cm/molecule feature HITRAN uncertainty code 6 (i.e. accuracy 2 – 5%).

Line intensities of bands containing the 3ν3 vibrational excitation as well as unsta-

ble lines (ρ ≥ 4.0) were taken from the effective Hamiltonian calculations [37–39].

Before publishing as a part of the HITRAN2016 database, all line lists were care-

fully evaluated band-by-band, which resulted in a number of vibrational reassign-

ments.

All line positions and line intensities for which a scatter factor was not as-

signed were taken from the effective Hamiltonian computation. This was the case

for only for a very small fraction of lines (see Figure 3.14). Abundances for each

isotopologue were taken from the HITRAN2012 database and the final line lists

used an abundance-scaled intensity cut-off 10−30 cm/molecule. For the radiocarbon

isotopologue (646) unit abundance was assumed and 10−27 cm/molecule intensity

cut-off cm/molecule.

3.15 Concluding remarks on CO2

Results of comparisons discussed in this chapter suggest that the present UCL line

lists for all 13 isotopologues of CO2 represent the theoretical and experimental

state-of-the-art accuracy in transition intensities. Spectral completeness, unifor-

mity of errors within a single band and sub-percent accuracy of the most important

bands resulted in inclusion of present line lists in the 2016 edition of the HITRAN

database. Below, Figure 3.55 presents a chart showing how the HITRAN uncer-

tainty index for line intensities has changed with the update from UCL line lists.

With the UCL entries, the uncertainty in line intensities in the HITRAN database

lowered significantly, with the most atmospherically and astrophysically relevant

transitions modelled with sub-percent accuracy, which fulfilled the working goal of

the CO2 project.



3.15. Concluding remarks on CO2 203

30000

>20%
10%-20%
5%-10%

2%-5%
1%-2%

<1%20000

10000

1000 2000 3000 4000 5000 6000 7000 8000

10000

20000

30000

N
. l

in
e

s

HITRAN 2012

wavenumber / cm -1

HITRAN 2016
(with UCL line lists included)

Uncertainty in line intensities
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topologue in the 2012 and 2016 editions of the HITRAN database.



Chapter 4

Room temperature

Born-Oppenheimer ro-vibronic UV

line lists for SO2 and CaOCa

molecules

4.1 Introduction

A considerable number of triatomic species are of great importance in studies of

Earth’s and exoplanetary atmospheres: H2O, CO2, SO2, O3, H2S, NO2, HCN, etc.

[230, 231]. All these molecules absorb ultraviolet (UV) light, which is associated

with an electronic transition. This fact can be utilized in qualitative and quantita-

tive characterisation of atmospheres, by comparing measured spectra to theoretical

predictions. Qualitative molecular fingerprint studies with low-resolution remote-

sensing instruments need only approximate band shapes and intensities which can

be provided by theory. On the other hand, quantitative analysis of concentrations of

molecules from the UV absorption spectroscopy require high quality modelling of

ro-vibronic line positions, line intensities as well as line shapes.

Line-by-line data, which is the most useful for remote sensing is currently

mainly supplied from spectroscopic databases such as HITRAN [196], HITEMP

[34] and GEISA [35]. In the UV spectral region however, due to limited availabil-
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ity and quality of experimental studies, these databases often contain only cross-

sections. This is the case also for the SO2 molecule, even though SO2 retrievals

are generally based on absorption measurements in the UV. For successful retrieval

of molar fractions of molecules in the atmospheric measurements, all absorption

lines in a given spectral region have to be characterized, requiring high-resolution

supporting data and this currently represents a major challenge. In addition to that,

reference spectra taken directly from experiment show issues with completeness of

the data as well as insufficient quality of line intensities. This creates a demand for

a systematic scheme for producing low-uncertainty spectroscopic parameters for

ro-vibronic transitions. When proven accurate enough, results of such calculations

could be potentially included in the above mentioned spectroscopic databases. This

was already the case in the infrared absorption region, where theoretical calculations

with the DVR3D suite by Tennyson et al. [59] were shown to provide high accuracy

line intensities for molecules such as CO2 [32, 37–39] (discussed in chapter 3) and

H2O [75, 232–235].

In this chapter we implement and test a theoretical procedure, outlined in chap-

ter 2, which can be used to generate UV absorption line positions and transition in-

tensities for triatomic molecules. This is achieved by extending the existing DVR3D

code for ro-vibrational infrared calculations to electronic transitions. The resulting

calculated parameters of ro-vibronic transitions are supposed to serve as a theoreti-

cal reference model for measured line positions and transition intensities, for further

utilization in the atmospheric science.

There are a number of theoretical methods and their computer implementations

for calculation of UV absorption spectra of triatomic molecules. Transition frequen-

cies are often directly determined from measurements or indirectly from effective

Hamiltonian models [236–238], which give much higher accuracy than variational

calculations. On the other hand, transition intensity calculations often require sup-

port from ab initio models [239]. These models, in order to meet the high accuracy

requirement, need to be derived from appropriately high level electronic structure

calculations and nuclear motion theory. Resolution of rotational lines is thus neces-
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sary which means that couplings between the rotational, vibrational and sometimes

electronic motion must be considered.

Electronic transitions triggered by UV photons can be modelled quantum-

mechanically from a range of perspectives. The most common approach uses

empirically-tuned effective Hamiltonians supported by Franck-Condon transition

intensities [240]. Effective Hamiltonians rely heavily on experimental data which

is often of limited availability and quality. Thus, although accurate, the effective

Hamiltonian approach has a drawback of limited robustness, as for example typi-

cally a separate quantum mechanical model is needed for every molecule and every

isotopologue [241–243]. For this reason, ab initio methodologies for calculating ro-

vibronic transition frequencies and intensities are usually employed, serving as the

first stage in the modelling process [37–39,244]. Furthermore, the ab initio method

can be extended to consider highly excited states which are important for high tem-

perature studies such as those needed for exoplanets. Exotic or poisonous chemical

species, such as TiO, VO, HCN, PH3 or H2F+, some of which exist in the inter-

stellar medium [245], whereas some are believed to be present in cool stars [246],

are prominent examples of systems for which ab initio theory is the only viable

approach to prediction of infrared (IR) or UV spectra [247–249]. Experimental

characterization of this type of molecules is largely inhibited by problems with syn-

thesis and stability of compounds, as well as temperature limitations in laboratory

measurements.

A number of programs for solving the ro-vibronic Schrödinger equation are

available, such as RENNER [250–252] by Odaka et al. which is dedicated to linear

Renner-type triatomic molecules, or more general variational codes for solving the

triatomic spin-ro-vibronic problem based on MORBID by Jensen et al., [253–256]

which uses an approximate kinetic energy operator for nuclei, RVIB3 [257–259]

by Carter, Handy et al. is designed only for semi-rigid triatomic molecules with

three or less interacting electronic states. A bottleneck in the variational method-

ology is diagonalising the large matrices required for calculations of highly excited

rotational states; thus its applicability is limited by computing power. This limita-
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tion can be partially overcome with the use of the discrete variable representation

(DVR) [89,90,260], which is presently well known for its computational efficiency.

The DVR3D suite by Tennyson et al. [59, 261] used in chapter 3 to generate ro-

vibrational line lists for isotopologues of CO2 uses exact kinetic energy (EKE) op-

erator in the Born-Oppenheimer approximation. The computationally efficient two-

step procedure [86] for solving ro-vibrational Schrödinger equation (DVR3D code)

allowed for generation of 54 room temperature line lists for CO2 in a relatively short

time. The DVR3D computer code has been used to generate a considerable number

of ro-vibrational line lists [37–39,56,76,262], with wavefunctions and energy levels

calculated in several cases up to values of the rotational quantum number J > 100.

The accuracy of these wavefunctions and energy levels is largely determined by

the quality of the potential energy surface (PES) and the dipole moment surface

(DMS). The accuracy of transition intensities of ro-vibrational line lists generated

for isotopologues of CO2 with ab initio DMS has reached and arguably exceeded

experimental accuracy [28, 32, 37–39]. As a result, for 12 isotopologues of carbon

dioxide in the 0 – 8000 cm−1 wavenumber range, the theoretical transition intensi-

ties calculated with DVR3D have been included in the HITRAN2016 spectroscopic

database [196]. In this chapter, we extend the thoroughly tested DVR3D computer

code to electronic excitations.

Time-dependent methods have also been used to simulate IR and UV molecu-

lar spectra. Although primarily designed for larger systems, time-dependent meth-

ods, such as Multiconfiguration time-dependent Hartree (MCTDH) [263–266] or

molecular dynamics, are applicable to triatomics too [267]. The main issue with

current application MCTDH and molecular dynamics approaches is the absence of

detailed modelling of J > 0 transitions, and that no rotation-vibration couplings are

reflected in wavefunctions. The effect of Coriolis couplings is, for instance, visible

in the UV spectrum of SO2 (C̃ 1B2← X̃ 1A1 electronic transition) [240, 268]. An-

other serious disadvantage of MCTDH methods in high accuracy spectra modelling

are the approximate Hamiltonians used, which limits the accuracy of calculations

for highly anharmonic systems. For this reason the EKE operator, with complete
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description of rotational motion as well as rotation-vibration couplings remains the

best option for high accuracy calculations. For example, some remote-sensing ex-

periments rely on measurements of a single rotational line, hence after the iden-

tification stage, based on the recognition of a fingerprint for a given molecule, a

quantitative study based on absolute and accurate ro-vibronic intensities is needed.

Many models based on Franck-Condon calculations often provide only relative in-

tensities of bands, calculated from overlaps of the vibrational wavefunctions, which

is of limited use in quantitative spectroscopy [269, 270].

The primary objective of the present chapter is to test the procedure (described

in chapter 2) for solving the Schrödinger equation for any triatomic molecule,

for two un-coupled electronic states in the Born-Oppenheimer approximation, and

subsequent computation of transition intensities between the stationary states ob-

tained. This theoretical scheme is tested on the SO2 molecule. Here, we explore

the possibility of extending DVR3D to calculation of ro-vibronic spectra of tri-

atomic molecules within the Born-Oppenheimer approximation and with transition

dipole moment surface (TDMS) between two electronic states. DVR3D has already

been successfully applied in ro-vibrational calculations of energy levels and wave-

functions in electronically excited states of FeCO [271]. The next procedural step

is to enable computation of transition intensities between two Born-Oppenheimer

electronic states. Here, this is done at two levels of approximation: the Franck-

Condon (FC) approximation [272] with ro-vibrationally coupled wavefunctions,

and the transition dipole moment surface approach, which fully accounts for the

dependence of the electronic transition dipole moment on internal coordinates of

the molecule.

As a case study for the new procedure, the UV absorption spectrum for the

C̃ 1B2 ← X̃ 1A1 electronic transition in SO2 is calculated. Sulphur dioxide plays

a substantial role in atmospheric chemistry. Detailed understanding of vibronic

absorption properties of all major isotopologues of sulphur dioxide is essential for

explaining the mass-independent isotope fractionation effect observed for SO2 in

the Earth’s atmosphere [273]. SO2 is a major component of Venus’ atmosphere,
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it also accompanies Earth’s volcanic activity and industrial activities. Sources and

migrations can be monitored by detecting hazes of SO2 [44].

The infrared absorption spectra of atmospheric sulphur dioxide are often con-

gested with absorption bands from other molecules, especially water. For this rea-

son measurements of SO2 in the UV region have gained a growing attention over the

years, and a few satellite instruments are currently operating in the UV, for example

GOME-2 [42] and OMI [43], reviewed in ref. [41]. These measurements require

high accuracy spectroscopic models to support assignment of lines and to provide

reference line strengths for concentration retrieval. In addition to that, cross sec-

tions at different temperatures and pressures for several molecules need to be pro-

vided prior to the measurement, in order to retrieve accurate concentrations of the

molecule of interest in the atmosphere; here SO2. Currently, such parameters can

be obtained consistently only from theoretical calculations. Thus, along with the

development of experimental instrumentation and methodology, a parallel progress

is needed in the accurate description and understanding of the nuclear dynamics in

excited electronic states of SO2 and other atmosphere-present compounds.

The most popular choice for the UV absorbing bands are the A and B bands

of SO2 located in the 270–400 nm wavelength region [274, 275], for which a the-

oretical description has been given by Xie et al. [276]. The strongest absorption

in the UV is however attributed to the dipole allowed C̃ 1B2 state. This electronic

state, chosen here as a case study, has a highly anharmonic potential energy sur-

face with a double-well structure [51]. Although the strongest absorption for the

C̃ 1B2 ← X̃ 1A1 transition is located near 200 nm [277], for the present purposes,

the longer wavelength 220–235 nm absorption region is selected. This spectral re-

gion involves transitions to the lowest vibrational states of the C̃ 1B2 electronic state,

and has been chosen due to limitations of the ab initio potential energy surface used

here.

High resolution spectra for the C̃ 1B2← X̃ 1A1 electronic transition in the 220–

235 nm region were recorded by Yamanouchi et al. [270], Rufus et al. [278] and

more recently by Blackie et al. [279], where a review on past measurements is pre-
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sented. Other lower resolution measurements were published by several authors,

see for example Danielache et al. [280] and Sako et al. [281]. There are a number

of theoretical studies on spectroscopy of the C̃ 1B2 state. Early papers by Xie et

al. [282] and Bludský et al. [283] paved the way for more accurate descriptions,

recently provided by Kłos et al. [284] and Kumar et al. [285]. High quality ab

initio spectra for the transition to the C̃ 1B2 state, do not so far however include

rotational structure. Results from Kłos et al. [284] will serve as a benchmark for

J = 0 calculations with the present procedure. Particularly for non-symmetric tri-

atomic molecules, the present approach can provide information on the so called

axis-switching effect [286–290], which is inherently accounted for in the model.

Section 4.2 discusses the electronic structure calculations for the C̃ 1B2 and the

X̃ 1A1 state in SO2. Section 4.3 gives details of the nuclear motion calculations.

Results of line position and transition intensity calculations are given in section 4.4,

where transition intensities are compared against other theoretical calculations as

well as experimental data, and the significance of the TDMS is discussed. Finally in

section 4.5, the CaOCa molecule is investigated. In the same way as for SO2 a Born-

Oppenheimer ro-vibronic low-J (J <10) line list is generated for this molecule.

4.2 The potential energy surface and the transition

dipole moment surface
The potential energy surface for the C̃ 1B2 electronic state was generated from 3000

geometries in bond length – bond angle coordinates. Stretching coordinates were

chosen in the range: r1,r2 ∈ [1.2;1.9] Å, with 0.05 Å increments. Angles between

the S−O bonds were sampled from 60◦ to 180◦ with 5◦ increments.

Electronic structure calculations were performed with the explicitly correlated

multi-reference internally contracted configuration interaction method with David-

son correction (ic-MRCI-F12+Q) in the aug-cc-pVTZ basis set, as implemented in

the MOLPRO2015 package [177]. The reference wavefunctions were calculated

with the state-averaged CASSCF method, with equal weight averaging over two

singlet states. For 18 electrons occupying 19 orbitals, 12 orbitals were used (9a’,
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3a’) for the active space and 7 as core orbitals (6a’, 1a”). The PES was fitted with

the least-squares method to the functional form:

V (y1,y2,y3) = ∑
j,k,l

C jkly
j
1yk

2yl
3 (4.1)

where y1 = 1
2(x1 + x2), y2 = 1

2(x1− x2) and y3 = θ − θeq. Here x1,x2 are Morse

coordinates x1 = 1− e−a1(r1−req
1 ), x2 = 1− e−a2(r2−req

2 ). The functional form and

coefficients were chosen to secure the correct shape of the PES at C2v geometries.

For a fixed angle θ = θ0, the PES V (r1,r2,θ0) has a saddle point when r1 = r2, and

two non-C2v minima in the r1–r2 plane, which are symmetry connected, as shown

in Figure 4.1. A non-uniformly weighted fit to 623 ab initio points with energies

below 5000 cm−1 in θ ∈ [90◦;130◦], gave σ =12 cm−1 root-mean square residual

(RMSR) between the fitted surface and ab initio points.

5000

4000

3000

2000

1000

0

Figure 4.1: Potential energy surface for the C̃ 1B2 electronic state calculated at
θ = 120.0◦. Ab initio points are marked in red.

The global Cs equilibrium geometry for the C̃ 1B2 is located at req
1 = 1.640 Å,
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req
2 = 1.496 Å, θ eq = 104.3◦. There are two other local minima near θ = 80◦ and

θ = 165◦. The latter is a C2v symmetric minimum with energy 400 cm−1 above the

global minimum. This well, displayed in Figure 4.9, generates additional low lying

energy levels, which have not been yet characterized by spectroscopy. A separate

fit for the second well near linearity gave RMSR= 17 cm−1.

For the electronic X̃ 1A1 state we used a highly accurate potential energy sur-

face of Huang et al. [291,292]. This is a semi-empirical PES based on CCSD(T)/cc-

pVQZ-DK calculations and refinement to experimental energy levels in the J=0–80

range. The RMSR of the fit to ab initio points was 0.21 cm−1 below 30 000 cm−1

and the root-mean square deviation from experimental levels was 0.013 cm−1. The

equilibrium geometry of the electronic ground state req
1 = 1.431Å, req

2 = 1.431Å,

θ eq = 119.32◦ corresponds to C2v symmetry.

The transition dipole moment surface between X̃ 1A1 and C̃ 1B2 electronic

states was calculated as the expectation value of the electric dipole moment opera-

tor, at the same level of theory as the C̃ 1B2 PES. A fit to the functional form from

eq. (4.1) was performed with 1852 ab initio points in the [85◦:140◦] angle range.

The RMSR for the x-component of the surface (x-axis chosen to bisect the angle be-

tween S–O bonds) was 0.03 a.u., and the RMSR for the z-component of the surface

was 0.02 a.u. High accuracy is not the aim of the present study, thus these values for

residuals were acceptable. At equilibrium geometry the z-component of the transi-

tion dipole moment vanishes, as shown in Figure 4.2. The transition dipole moment

depends on the nuclear coordinates relatively weakly, nevertheless the non-constant

TDMS may significantly influence transition intensities; this is discussed in section

4.4.

The PES and TDMS are available for use in the form of FORTRAN95 routines

as supplementary materials to ref. [293].
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Figure 4.2: Two components of the transition dipole moment function between
X̃ 1A1 and C̃ 1B2 electronic states for θ = 120.0◦. The upper surface is the y-
component and the lower surface is the x-component, which vanishes for C2v ge-
ometries. Ab initio points are marked with red.

4.3 Nuclear motion calculations

4.3.1 Wavefunctions and energy levels

Born-Oppenheimer ro-vibrational wavefunctions and energy levels were obtained

separately for the X̃ 1A1 and the C̃ 1B2 electronic states. For each electronic state,

a two step procedure described in chapter 2 for solving the nuclear Schrödinger

equation was applied. The DVR representation of matrix elements of the Hamilto-

nian, as implemented in DVR3D, carries the advantage of diagonal potential energy

matrix in any chosen basis. A Morse-like oscillator basis set [59, 85] was used for

the S–O stretching coordinates and associated Legendre functions for the bending

motion. The parameters of the stretching basis set were optimized to ensure the

fastest convergence of J = 0 energy levels in the C̃ 1B2 electronic state. The final

set of optimized parameters, basis set size and other parameters for nuclear motion

calculations are listed in Table 4.1. The vibrational energy levels are insensitive to

the value of the dissociation energy De in the Morse-like oscillator basis functions,

hence De was set to 0.3Eh in all cases. The equilibrium bond length re and width

α of the Morse-like basis was scanned in the re ∈ [2.8;3.5]a0, α ∈ [0.008;0.030]Eh
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region for different sizes of the stretching basis (the NPNT parameter in DVR3D

in the 30 – 90 range). The number of angular basis functions was independently

optimized, and the corresponding NALF parameter was set to 60. As a result, the

optimal set of basis set parameters was: re = 2.9 a0, De = 0.30 Eh, α = 0.012 Eh

and NPNT= 90. With this basis optimal basis set the accuracy of vibrational en-

ergy levels in the electronic ground state was controlled by comparison with the

ExoAmes line list [76]. In the light of the main idea of the present work, we do not

require spectroscopic accuracy for present calculations. For this reason, we estab-

lished convergence criteria at 2 cm−1 and tolerance for deviation from experiment

at 20 cm−1 for the lowest J = 0 energy level of the C̃ 1B2 electronic state .

The final size of the DVR3DRJZ Hamiltonian was truncated at 1000, which

was sufficient to provide good convergence for the lowest 100 energy levels. Di-

agonalisation of this matrix leads to ro-vibrational energy levels and wavefunctions

labelled by the J-rotational quantum number and the e/ f Wang symmetries. Nu-

clear masses in Dalton units (Da) for sulphur and oxygen were used: 31.963294 Da

(32S), 15.990525 Da (16O) [178]. For evaluation of integrals a DVR scheme based

on 90-point Gauss-Laguerre and a 60-point Gauss-Legendre quadratures was used,

for stretching and bending coordinates respectively. With this choice the range of

quadrature points for stretching coordinates is ri ∈ [1.13;1.86]Å, thus this range is

contained in the domain of applicability of the present fit. With this basis set the

zero-point energies for the X̃ 1A1 and C̃ 1B2 electronic states are ZPEg = 1538.19

cm−1 and ZPEe = 776.45 cm−1 respectively. In the second variational step (pro-

gram ROTLEV3), for each J value separately 200 ro-vibrational basis functions

were used to solve the full Coriolis-coupled nuclear motion problem.
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Figure 4.3: Schematic picture of the molecule-fixed frame embedding used in nu-
clear motion calculations for SO2. r1 and r2 are Radau stretching coordinates.

Coordinates: Radau (r1,r2,θ )
BF frame embedding: z-axis along r1

Basis set identical for both el. states
’Stretching’ r1,r2: 90 Morse-like oscillator functions
Morse-like oscillator basis parameters: re = 2.9 a0, De = 0.30 Eh, α = 0.012 Eh

Number of DVR points for stretching: 90 (Gauss-Laguerre quadrature)
Bending θ : 60 (Associated Legendre Polynomials)
Number of DVR points for bending: 60 (Gauss-Legendre quadrature)
Rotations Complete basis set of symmetric-top wavefunc.
Truncated Hamiltonian size in the first step: 1000
Truncated Hamiltonian size in the second step: 500
Computation timea (J = 0) 10 min.
Scaling with J (computation time) ∼ J (first step), ∼ J2 (second step)
Intensity calculations
Common DVR grid for both electronic states
Computation time (J′′ = 0→ J′ = 1) 15 min.
Scaling with J′′ (computation time) ∼ J2

Table 4.1: Summary of the parameters of the nuclear motion calculations for the
X̃ 1A1 and the C̃ 1B2 electronic states of SO2. In the table given are: the type of
coordinates used, the type of molecule-fixed frame embedding, basis set parameters
and some technical details of the computation. a Test computations were performed
on a stationary PC with Intel(R) Core(TM) i5-2500@3.30 GHz processor and 8 GB
of RAM.

Identical embeddings (see Figure 4.3), coordinates and DVR grids were chosen

for both electronic states. The criterion for this choice was to optimize the accuracy

of the electronic excited state. The simple shape of the ground state PES gives

weaker dependence on the choice of embedding and basis set parameters, when
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an appropriately large basis set is used. Radau internal coordinates were chosen

for description of vibrational degrees of freedom. The z-axis of the molecule-fixed

frame was chosen along one of the Radau coordinates (r1), which nearly overlaps

with one of the the S–O bonds (’bond embedding’). The bond embedding was

observed to give significantly better convergence than the bisector embedding for

the C̃ 1B2 electronic state, which has its equilibrium geometry at two non-equivalent

S–O bond lengths, that is at Cs symmetry. The fit of the PES for the C̃ 1B2 state

necessitated adding walls at large internuclear distances, to avoid potential dropping

to non-physical values. The positions of these walls were adjusted so as not to

influence the values of energy levels for the present basis size. For larger basis

sizes, the range of quadrature points for stretching coordinates can sample regions

of the PES, which are beyond the range of applicability of the present fit. These

regions have high energy, thus adding walls with energy 0.1Eh to the present fit

assures the correct asymptotics for all r1 and r2 values. The potential walls were

added at r = 1.3 Å, r = 2.0 Å and θ = 85◦, θ = 130◦.

4.3.2 Axis-switching effect

Not only does the equilibrium geometry of the molecule change upon the electronic

transition, but also an additional rotation of the molecule-fixed coordinate system

is required [286]. The former effect can be directly attributed to the difference in

shapes of the potential energy surfaces for the two electronic states that causes the

vibrational basis set optimized for the electronic excited state to be no longer opti-

mal for the electronic ground state. In the terminology of normal modes it means

that normal coordinates in the electronic excited states are rotated (leading to the

so-called Duschinsky effect [288, 289, 294]) with respect to normal coordinates in

the electronic ground state. The effect of rotation of the molecule-fixed coordinate

system affects the Euler angles, causing rotation of the rotational basis set. Al-

though in many systems these artifacts of the electronic transition are marginal, they

sometimes significantly soften rotational selection rules, allowing for appearance of

whole vibrational ”forbidden” bands, as observed in HCN [287] and SiHD [290].

For example, in the HCN molecule, for the (π∗ ← π) electronic transition only
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∆K =±1 sub-bands are allowed by rotational selection rules. However stimulated-

emission-pumping (SEP) experiments [295] observed weak ∆K = 0 transitions to

levels with non-zero vibrational angular momentum (l = 1). This type of transi-

tion is forbidden by rotational selection rules and has been convincingly attributed

to non-rigidity of the molecule during the transition between linear X̃ electronic

ground state and bent Ã electronic state [286, 287]. In calculations, the magnitude

of the axis-switching effect depends on the choice of the molecule-fixed frame, the

choice of coordinates and the basis set. Axis-switching is strongly pronounced in

the Eckart frame, the molecule-fixed coordinate system which needs to be rotated

when changing the electronic state, in order to satisfy the conditions of the minimal

rotational-vibrational coupling in both states separately.

The axis-switching effect suggests that the rotational basis functions should be

labelled with the quantum numbers for electronic states too. However, the com-

pleteness of the rotational basis used in the present model guarantees that the ro-

tational part is accounted for exactly regardless of the electronic states. Therefore,

rotational states in the electronic excited state, which are nominally functions of

rotated Euler angles can be modelled with the un-rotated rotational basis of the

electronic ground state (or vice-versa). An appropriately large vibrational basis set

can also eliminate any inaccuracies resulting from the Duschinsky effect, meaning

that the vibrational basis is nearly complete hence does not depend on the electronic

state. For the reasons discussed above we can drop the electronic index i for the ro-

tational and vibrational basis states and use them as given in eq. (2.36) and (2.37).

As a result, at the cost of extra computational time, the geometric effects associated

with the electronic transition are fully modelled. Thus, ro-vibronic transitions for-

bidden by rotational selection rules, which appear in line lists calculated with the

present model, may be attributed to the axis-switching effect.

The present approach utilizes an identical basis set to calculate ro-vibrational

energies and wavefunctions in the ground and the excited state of the molecule

(we assume a system with two electronic states). In DVR, this means that the ro-

vibrational wavefunctions for both electronic states are defined on the same grid,
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which provides the advantage of straightforward integration over internal coordi-

nates of the molecule. For this reason, matrix elements between ro-vibrational states

of the electronic ground and excited state can be evaluated as a sum of products of

respective functions at given grid points.

4.4 Results and discussion

J = 0 energy levels calculated with the present ab initio PES for the C̃ 1B2 electronic

state are listed in Table 4.2, where a comparison with literature calculations based

on two different ab initio surfaces is made. The ab initio MRCI+Q/aug-cc-pVTZ

PES by Tokue et al. [296] was based on 6300 geometries and was interpolated by

the moving least-squares method combined with the Shepard method [297]. The ab

initio ic-MRCI-F12+Q/aug-cc-pVTZ PES of Kłos et al. [284] was interpolated with

spline functions. Table 4.2 also gives the semi-empirical energy levels from Jiang et

al. [240] and measured energies of Yamanouchi et al. [270]. The present calculated

values for vibrational energy levels are in a good agreement with experiment and

semi-empirical calculations by Jiang et al. [240]. Clearly the present PES is more

accurate than the one given by Tokue et al. [296]. The root-mean square deviation

(RMSD) between the experimentally tuned energy levels from Jiang et al. [240]

and the present calculation for J = 0 energy levels is 13 cm−1 below 1500 cm−1

which practically equals the RMSD for the ab initio calculations by Kłos et al..

The level of the present PES is comparable to the PES of Kłos et al. [284], as both

surfaces were calculated with the same ab initio method. The advantage of the

present approach, which is based on a fit to a functional form, manifests in savings

in the number of ab initio points necessary. This way of producing a PES would be

thus recommended, when a higher level of theory is used for the electronic structure

calculations.
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Table 4.2: Comparison of the J = 0 energy levels (cm−1) calculated with the present
ab initio PES for the C̃ 1B2 electronic state to theoretical values from Kłos et
al. [284], Tokue et al. [296], semi-empirical calculations by Jiang et al. [240] and
measured energies [270]. In the first column a vibrational assignment is given; the
second column gives the symmetry of the state in the C2v group. The b2 levels are
dipole forbidden from the vibrational ground state of the X̃ 1A1 electronic state. En-
ergy levels from the second potential well localized around θ = 165◦ were excluded
from the table.
(ν1 ν2 ν3) Sym. Present Kłos et al. [284] Tokue et al. [296] Jiang et al. [240] Exp. [270]
(001) b2 195 223 212
(010) a1 368 375 394 377 377
(002) a1 544 575 598 561 561
(011) b2 560 590 582
(020) a1 734 748 772 751 752
(003) b2 880 912 890
(012) a1 916 943 979 929
(021) b2 924 956 949
(100) a1 960 960 935 960 960
(030) a1 1101 1118 1122 1122
(004) a1 1246 1264 1245 1245
(013) b2 1258 1271 1252
(101) b2 1258 1275 1261
(022) a1 1289 1309 1299 1300
(031) b2 1291 1313
(110) a1 1330 1337 1337
(005) b2 1465 1595
(014) a1 1609 1604 1604
(023) b2 1631 1611
(102) a1 1641 1653 1654
(032) a1 1647 1662

Analysis of Table 4.2 suggests that the present ab initio PES for the C̃ 1B2 state

is applicable in the 0–1700 cm−1 range above the zero-point vibrational energy.

This range covers vibrational energy levels involved in strong vibronic progressions,

thus is sufficient for comparisons to experimental room temperature electronic spec-

tra below the dissociation threshold (≈ 3000 cm−1) of the C̃ 1B2 state. To conclude,

the present PES is the most accurate ab initio potential energy surface for the C̃ 1B2

state in SO2, which has been fitted to a predefined functional form. A previous fit to

ab initio points performed below 5000 cm−1 by Bludský et al. [283] gave 55 cm−1

rmsd with respect to measurement.

Note that at room temperature (296 K) only the lowest vibrational state of

the electronic ground states is significantly populated. Population of the asymmet-
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ric stretching fundamental X̃ 1A1(0,0,ν3) (≈ 1362 cm−1 ) is barely 0.1% at that

temperature. Therefore in practical calculations, the number of vibrational states

needed for the X̃ 1A1 electronic state is limited to the lowest few. The variational

methodology means that these lowest energy levels are calculated more accurately

than higher lying states. For this reason, if the PES is accurate, as the Ames-1 PES

is, satisfactory convergence can be easily achieved, even with a non-optimized basis

set.

With the common basis set used in nuclear motion calculations for both elec-

tronic states, the DVR3D calculated vibrational zero-point energies for the X̃ 1A1

and C̃ 1B2 states are ZPEg = 1538.19 cm−1 and ZPEe = 776.45 cm−1 , respectively.

The former value is consistent with the 1535.63 cm−1 ZPE reported by Huang et

al. and the latter value is somewhat lower than 785.75 cm−1 calculated by Kłos et

al. . The vertical excitation energy for the C̃ 1B2← X̃ 1A1 transition was taken from

the experiment [240]: Te = 42573 cm−1 . The partition function at 296 K, used for

intensity calculations was taken from Huang et al. [291] (Q(296) = 6336.789). The

temperature range for which calculated vibronic spectra are reliable is determined

by the accuracy of the ground state PES. Here, the Ames-1 PES, as very accurate,

provides an opportunity for accurate modelling of vibronic hot bands. Room tem-

perature spectra are certainly within the applicability range of the Ames-1 PES.

4.4.1 Vibronic spectra

Ab initio vibronic spectra were calculated using eq. (2.95) for two cases: the

Franck-Condon approximation (eq. (2.105)), and with the use of the transition

dipole moment surface (eq. (2.101)). The resulting transition intensities are com-

pared in Figure 4.4.
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Figure 4.4: Comparison of ab initio calculated transition intensities for the C̃ 1B2←
X̃ 1A1(ν = 0) electronic transition (J′ = 1← J′′ = 0) between the Franck-Condon
and the transition dipole moment surface levels of theory. The upper panel repre-
sents the relative deviation in intensities in the 10−18 – 10−24 cm/molecule intensity
range. The lower panel displays transitions to 40 lowest J′ = 1 energy levels of the
C̃ 1B2 state. Transitions to states with a1 and b2 symmetries are distinguished.

Figure 4.4 shows no significant difference in strong transition intensities when

the FC spectrum is compared to the TDMS spectrum. In general, for strong transi-

tions, which contribute to the overall shape of the absorption band, the difference in

transition intensity between the FC and TDMS approach is usually less than 10%,

typically 4–6 %. However, as displayed in the lower panel in Figure 4.4, allow-

ing for the dependence of the electronic transition dipole moment on nuclear coor-

dinates can noticeably increase certain transition intensities, which are nominally
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very weak in the FC approximation.

Transitions from the a1 symmetry states in the electronic ground state to the

b2 states in the electronic excited state are forbidden by vibrational dipole selection

rules. However rotation-vibration interactions, especially c-axis Coriolis-type in-

teractions can mix states of different vibrational symmetries. The ro-vibrational se-

lection rules require only that the irreducible representations of ro-vibrational states

are identical: Γrv = Γ′rv, where Γrv = Γvib⊗ Γrot . In the C2ν group, vibrational

and rotational selection rules for the X̃ 1A1→ C̃ 1B2 electronic transition allow for

transitions (a1,eo)B2 ← (a1,ee)A1 or (a1,oe)B2 ← (a1,oo)A1 in the notation where

ka,kb - even is denoted as ee and ka,kb - odd is denoted as oo. Ro-vibrational se-

lection rules, which apply when states are vibrationally forbidden, but are mixed by

Coriolis interactions give the following ro-vibrationally allowed transitions from a1

states: (b2,oo)B2 ← (a1,ee)A1 or (b2,ee)B2 ← (a1,oo)A1 .

Indeed, such transitions forbidden by vibrational selection rules but allowed by

ro-vibrational selection rules have been observed in the C̃ 1B2← X̃ 1A1 ro-vibronic

spectrum [268, 298, 299]. The lower panel in Figure 4.4 shows several transitions

to ”b2” states. The rotation-vibration interaction feeds such transitions with inten-

sity, which is nonetheless usually of 1–3 orders of magnitude weaker than typical

vibrationally allowed transitions. A large number of ro-vibrationally allowed and

vibrationally forbidden transitions were found in the present line list, for example

transitions in the X̃ 1A1(0,0,0)→ C̃ 1B2(0,1,1) and X̃ 1A1(0,0,0)→ C̃ 1B2(0,0,3)

manifold. Intensity calculations with Coriolis-decoupled wavefunctions do not re-

veal any vibrationally forbidden transitions, thereby proving that the rotational-

vibrational coupling is responsible for softening of the selection rules for transi-

tions to b2 states in the C̃ 1B2 electronic state. The strongest transition to a b2 state

X̃ 1A1(0,0,0)→ C̃ 1B2(0,1,3), has comparable intensity to many moderately weak

vibrationally allowed transitions. In this particular case, the large intensity borrow-

ing can be rationalized by strong Coriolis interaction between the (0,1,3) states of

b2 symmetry and the (0,0,4) states of a1 symmetry, which are only separated by

12 cm−1 and this leads to strong mixing. A comprehensive discussion of Coriolis
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interaction between ro-vibrational energy levels of the C̃ 1B2 electronic state was

given by Park et al. [268].

Comparison of the FC and TDMS spectrum with semi-empirical FC calcula-

tions of Yamanouchi et al. [270] is given in Figure 4.5. The assumption of marginal

difference between the FC and TDMS spectra is further confirmed in the upper

panel in Figure 4.5. Line positions in the lower panel correspond to measured val-

ues. The agreement between the present study and semi-empirical calculations is

satisfying. As previously asserted, the contribution from the TDMS to the spectrum

is negligible in this spectral region. Thus for qualitative UV spectrum modelling

purposes, the Franck-Condon approximation is sufficient. For higher accuracy,

which is required for example by remote sensing experiments, the full transition

dipole moment surface may be necessary.
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Figure 4.5: Comparison of three calculated vibronic spectra: semi-empirical calcu-
lations from Yamanouchi et al. [270] in the lower panel; FC and TDMS ab initio
calculations from the present study in the upper panel. Line positions are given in
the 42500 – 44500 cm−1 range.

Figure 4.6 gives a comparison between experimental laser-induced fluores-
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cence spectrum by Yamanouchi et al. [270] (upper panel), semi-empirical Franck-

Condon vibronic spectra calculated by Xie et al. [282] (middle panel), and present

Franck-Condon and TDMS calculations (lowest panel). The overall agreement be-

tween the two theoretical studies in the middle and lowest panels is good, with

relative intensities following a similar pattern. Changes in intensity caused by the

breakdown of the Condon approximation are small in this spectral region. In con-

trast to emission, the initial wavefunction for room-temperature absorption is well

localized around the equilibrium geometry of the vibronic ground state, which sup-

presses transitions to states with largely distorted geometries (cf. Figure 4.2). In

the 225 nm – 235 nm range line positions and intensities agree well between the

present theory and experiment. This agreement however becomes worse for shorter

wavelengths. Therefore, below 225 nm the present C̃ 1B2 state PES is not accurate

enough even for qualitative studies.



4.4. Results and discussion 225

220225230

FC
TDMS

235

wavelength / nm

Yamanouchi et al. 

Xie et al. 

Calc.

(0
,0

,0
)

(0
,1

,0
)

(0
,0

,2
)

(0
,2

,0
)

(0
,1

,2
)

(1
,0

,0
)

(0
,3

,0
)

(0
,0

,4
)

(1
,1

,0
)

(0
,2

,2
)

Figure 4.6: Comparison of calculated vibronic spectra with measurement by Ya-
manouchi et al. [270] and semi-empirical calculations of Xie et al. [282]. Vibra-
tional assignments were given for 10 lowest calculated transitions. These transi-
tions can be considered as modelled reliably with the present PES and TDMS. The
experimental and theoretical spectra were reprinted from Xie et al. , Chem. Phys.
Lett. 329, 503-510 Copyright (2000), with permission from Elsevier.
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Based on the new PES and TDMS a room temperature (295 K) UV line list for

the X̃ 1A1→ C̃ 1B2 electronic transition was calculated in the J = 0−40 range. The

partition function for the electronic ground state was taken from Huang et al. [291].

This line list is designed for the 225 nm – 235 nm wavelength range, where it

can be considered reliable. A qualitative comparison of the present line list with

low-resolution measurements by Wu et al. [300] is given in Figure 4.7. Dashed

lines correspond to experimental cross section (in cm2) measured at 295 K with 0.5

Å resolution. Ab initio absorption cross sections are marked in red and green in

Figure 4.7 and were obtained from integral line intensities by convolution with the

Gaussian profile function with full-width at half-maximum (FWHM) of 0.3 cm−1

and 8 cm−1 respectively; no scaling of line intensities or line positions was made.

Figure 4.7: Comparison of the ab initio and measured absorption cross sections.
The ab initio cross sections were calculated from the room temperature (295 K) ro-
vibronic line list for the X̃ 1A1→ C̃ 1B2 electronic transition in SO2 in the J = 0−40
range. Gaussian line shapes were used with FWHM of 0.3 cm−1 (red thin stick
spectrum) and 8 cm−1 (green thick line spectrum). Measurements were made by
Wu et al. [300] at 295 K. The experimental spectrum was reprinted from C.Y.R. Wu
et al. , Icarus 145, 289–296 Copyright (2001), with permission from Elsevier.
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The low-resolution theoretical cross section depicted by a thick green line in

Figure 4.7 qualitatively reproduces the band centers measured by Wu et al. . Com-

parison of line intensities is however less straightforward due to the non-uniform

baseline in the measurements. Hot bands, assigned by Wu et al. [300] are also vis-

ible in the ab initio spectrum, as expected. Qualitatively, the calculated spectrum

reproduces the features of the measured spectrum, however for a more detailed in-

sight, the accuracy of the present model should be tested on a higher resolution

experimental data.

High-resolution measurements of the X̃ 1A1 → C̃ 1B2 electronic band were

reported by Rufus et al. [278] (at 295 K) and Blackie et al. [279] (at 198 K). Cross-

sections from Blackie et al. [279] are compared with cross-sections calculated at

198 K from the present ab initio line list in Figure 4.8. The FWHM of the ex-

perimental rotationally-resolved cross-sections was 0.3 cm−1. In calculations, the

Gaussian line shape profile with FWHM = 0.3 cm−1 was used and the partition

function at 198 K (3246.3) was calculated from ro-vibrational energy levels avail-

able from Underwood et al. [262]. The shape of the cross-section spectrum is nearly

insensitive to addition of transitions with J > 40, thus no higher J energy levels need

to be calculated for the present comparison. Nonetheless, it is technically possible

to obtain a line list with J > 100, with the present implementation of the DVR3DUV

code.

The uncertainty in the cross-sections measured by Blackie et al. was estimated

9–15% for the strongest bands σ ∈ (10−17 cm2, 10−18 cm2) and more than 20% for

bands weaker than 10−18 cm2. Overall agreement between the unassigned measured

cross-sections in Figure 4.8 and theoretical cross-sections is very good though. Vi-

bronic assignments are also given in Figure 4.8. These assignments agree with

experimental assignments of Danielache et al. [280]. Unfortunately, no ro-vibronic

assignments for the experimental spectrum are available, which makes a line by line

comparison difficult. A major reason for which the spectrum measured by Blackie

et al. cannot be presently assigned in the rotational resolution is the 10–20 cm−1

uncertainty in ab initio line positions. Future studies should focus on obtaining
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Figure 4.8: Comparison of the ab initio and measured absorption cross-sections.
The ab initio cross-sections were calculated at 198 K from ro-vibronic line list for
the X̃ 1A1→ C̃ 1B2 electronic transition of SO2 in the J = 0−40 range. Measure-
ments were made by Blackie et al. [279] at 198 K. Vibrational assignments found
manually are indicated with dashed lines. All marked transitions are from the vi-
bronic ground state to vibrational states of C̃ 1B2.

a higher quality, more global PES for the C̃ 1B2 state. Then, with the use of the

present procedure, a purely ab initio based ro-vibronic assignment of experimental

spectra could be become possible.
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4.4.2 Franck-Condon intensities for a large geometry displace-

ment

The wavefunction for the vibrational ground state in the electronic ground state

X̃ 1A1 of SO2 is very compact, and most of its amplitude is localized near the C2v

equilibrium geometry req
1 = 1.431 Å, req

2 = 1.431 Å, θ eq = 119.32◦, as displayed

in Figure 4.9. For this reason, the vibrational wavefunction overlap between the

vibrational ground state of X̃ 1A1 and vibrational states localized in the second well

of the C̃ 1B2 state, located near θ = 165◦, is likely to be very small. Indeed, Table

4.3 shows that calculated overlap integrals for transitions to the second well are 5–8

orders of magnitude smaller than the respective factors to the main well, where the

global minimum for the C̃ 1B2 state is located.

Figure 4.9: Potential energy surfaces for X̃ 1A1 electronic state (purple/grey) and
C̃ 1B2 electronic state (green/blue) of SO2. The other bond length is fixed at r2 =
1.7Å . Wavefunctions for the vibrational ground state of each well are added, with
arrows marking Franck-Condon vertical transitions from the electronic ground state.
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Table 4.3: Comparison of vibrational overlap integrals calculated between J = 0
wavefunctions of the vibronic ground state and vibrational states of the C̃ 1B2 state.
Given in columns are respectively: ID of the vibrational state belonging to the elec-
tronic excited state, overlap integral calculated for the 1st well located at θ = 104◦,
overlap integral calculated for the 2nd well located at θ = 165◦.

State ID overlap integral (1st well) overlap integral (2nd well)
1 8.48×10−3 2.92×10−10

2 1.41×10−2 1.12×10−10

3 1.73×10−2 -1.41×10−11

4 -2.28×10−2 -2.14×10−9

5 1.67×10−4 -1.84×10−9

6 1.71×10−2 1.12×10−9

It is thus justified to neglect the second well completely in the theoretical in-

tensity calculations. This conclusion is expected to be general, applicable to other

molecules and other electronic states.

4.5 Ro-vibronic line list for CaOCa
Another molecule studied in this thesis as a test system in the procedure for calcu-

lating Born-Oppenheimer ro-vibronic spectra of triatomic molecules is di-Calcium

oxide Ca2O (CaOCa), or Calcium suboxide. This molecule is very challenging

to produce in the gas phase in the laboratory and so far there has been no pub-

lished high-resolution UV or visible spectrum for this system. A single theoretical

study was reported on infrared absorption spectra of calcium suboxide by Ostojic et

al. [301]. These authors also analysed the IR spectrum of the Sr2O molecule [256].

The hyper-metallic Ca2O molecule is an example of a class of exotic molecular

species, which suffer from lack of experimental characterisation, either due to their

toxicity or due to technical difficulties in synthesising and maintaining them. In

such instances ab initio calculations are a very good predecessor to experiment,

providing high-resolution ro-vibronic absorption line positions, giving ro-vibronic

assignments of absorption lines and transition intensities. This study on CaOCa

was initiated with a request from an experimental group [302] to provide pilot ro-

vibronic spectra for this molecule.

In this section we follow analogical procedure to the scheme outlined in the
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sections regarding SO2. We focus here on the electronic ground state 11A′ of Ca2O

and the first excited singlet electronic state 11A′′ (classification in the Cs molecu-

lar symmetry group). To produce ro-vibronic spectra for the transition between the

electronic ground state 11A′ of Ca2O and the first singlet electronic excited state

11A′′, potential energy surfaces for these electronic states were generated. For this

purpose ab initio electronic energy points were taken from calculations by Fawzy

and Heaven [302]. They used multireference configuration interaction (MRCISD)

method with state-averaged, full-valence complete active space self-consistent field

(SA-FV-CASSCF) wavefunctions. The active space consisted 12 orbitals occupied

with 10 valence electrons, where all the valence electrons were correlated. Con-

tributions of higher excitations and relativistic effects were taken into account us-

ing the Davidson correction and the Douglas-Kroll (DK) Hamiltonian, respectively.

The correlation-consistent polarized weighed core-valence quadruple-zeta basis set

(cc-pwCVQZ-DK) was used for all three atoms.

The PES for the 11A′ state was least-squares fitted with 30 parameters to 1253

ab initio electronic energy points with the following functional form:

V11A′ (y1,y2,y3) = ∑
j,k,l

C jkly
j
1yk

2yl
3 (4.2)

where y1 = 1
2(x1 + x2), y2 = 1

2(x1− x2) and y3 = θeq− θ . Here x1,x2 are Morse

coordinates x1 = 1− e−a1(r1−req
1 ), x2 = 1− e−a2(r2−req

2 ). The electronic energies for

the X̃ 1A1 electronic state of Ca2O were generated for 1253 geometries in bond–

length, bond–angle coordinates (r1,r2,θ ). Stretching coordinates were chosen in

the range: r1,r2 ∈ [1.85;2.21] Å. Angles between the Ca−O bonds were sampled

from 95◦ to 180◦ with 2.5◦ increment. The uniformly weighted fit gave RMSR

= 1.8 cm−1 with respect to all used ab initio points, and is applicable in the 0 –

5000 cm−1 energy range. The equilibrium geometry of the Ca2O molecule in the

electronic ground state corresponds to C2v symmetry with req
1 = req

2 = 2.03 Å and

θ eq = 180◦. The PES for the electronic ground state of Ca2O has a relatively simple,

nearly harmonic shape.

The PES fit for the electronic excited 11A′′ state turned out to be more challeng-
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ing, because of a complicated shape of the PES. The fitted function was divided into

two regions: a low angle region (85 – 120◦) and a high angle region (120 – 180 ◦).

At low angles the functional form of the PES is identical with that from eq. 4.2. In

this angle range the least-squares fit to 420 ab initio electronic energy points with 40

parameters was straightforward and resulted in 5 cm−1 RMSR. At higher angles, the

PES for the 11A′′ state morphs into a non-C2v double-minimum form, and reaches

a deep double-well structure when the bending angle goes towards molecule’s lin-

earity. This situation is depicted in Figured 4.10–4.5. For this reason the functional

form for the fit had to be modified:

V11A′′ (y1,y2,y3) = ∑
j,k,l

C jkly
j
1yk

2yl
3 + fcusp(r1,r2,θ) (4.3)

where y1 =
1
2(r1 + r2), y2 =

1
2(r1− r2) and y3 = cosθeq−cosθ . Here r1,r2 are Ca–

O bond lengths. The extra correction function fcusp(r1,r2,θ) =
acos2 θ

(r1−r2)2+b2 e−a(d−θ)

is used to properly shape the region near the C2v geometry (r1 ≈ r2), where a saddle

point connecting two the local minima is located. This saddle point has a very

sharp ridge, behaving nearly as a cusp. The standard functional form from eq.

4.2 was incapable of reproducing the ab initio energies in this region. The final

form of the correcting function fcusp was a result of intuition and try-and-error, but

eventually resulted in 29 cm−1 RMSR of the fit in the 120 – 180 degrees angles

region. The a,b,c,d parameters in the cusp-correction function were optimized

using the least-square method together with other parameters of the fit (89 total).

The fit was non-uniformly weighted with weights of near-cusp points set to two-

times the values for other points. All points above 3000 cm−1 were weighted half

the weight of points below this energy. The functional form and fit coefficients

were chosen to secure the correct shape of the PES at C2v geometries. For a fixed

angle θ = θ0, the PES V (r1,r2,θ0) has a saddle point when r1 = r2, and two non-

C2v minima in the r1–r2 plane, which are symmetry connected, as shown in Figure

4.10. The global minimum for the first singlet electronic excited state is located at

linear geometry, with non-equal Ca–O bond lengths. This broken-symmetry can be

probably attributed to a vibronic interaction with a higher lying singlet electronic
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state.

Figure 4.10: 2D-slice at fixed θ = 180◦ of the PES for the electronic excited 11A′′

state of Ca2O. ab initio points (in red) are overlaid on top of the fitted continuous
funcitonal form. A deep double-minimum structure is visible, which suggests non-
equal Ca–O bond lengths at linearity.

Figure 4.11: 2D-slice at fixed θ = 95◦ of the PES for the electronic excited 11A′′

state of Ca2O. ab initio points (in red) are overlaid on top of the fitted continuous
funcitonal form.
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Figure 4.12: 2D-slice at fixed r1 = 2.0 Å of the PES for the electronic excited 11A′′

state of Ca2O. ab initio points (in red) are overlaid on top of the fitted continuous
funcitonal form. A switching point between the low angle PES and the high ange
PES is visible at 120◦.

DVR calculations were performed for both electronic states separately with

the PESs described above. For this purpose the Morse-like oscillator basis was

chosen and optimized using the method described in section 3.2 in chapter 3. The

DVR calculations used Radau coordinates in r1-bond embedding of the molecule-

fixed coordinate frame. The optimized parameters of the Morse-like basis read:

r0 = 4.2a0, De = 0.3Eh, ω = 0.012Eh. With these parameters a satisfactory level

(<2 cm−1 at the energy of 3000 cm−1) of convergence of J = 0 energy levels for

the electronic excited state was achieved with 80 basis functions for the stretch-

ing motion (NPNT=80) and 80 basis functions for the bending motion (NALF=80).

The 3D DVR Hamiltonian was truncated at 1000 (MAX3D = 1000). The nuclear

masses for Calcium and oxygen were mCa = 40.078 Da and mO = 15.990 Da, re-

spectively. The fitted potential energy functions were given extra potential walls, to

prevent from non-physical (negative) values of the potential function for large val-

ues of r1,r2 or small angles θ . The walls were placed at rmin = 1.75 Å rmax = 2.45

Å and θmin = 90◦. The height of the wall was 0.1Eh and the energy levels were

tested for independence of the height of these walls. The calculated zero-point vi-

brational energies (ZPE) for the electronic ground state was 392.4 cm−1 and for the
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electronic excited state was 1256.6 cm−1 . Rotlev calculations were performed with

the IBASS parameter equal to 100. Ro-vibrational energy levels and wavefuncitons

were calculated in the 0–10 J range for both electronic states using identical basis

set parameters. Transition intensity calculations were performed with the use of

the DIPOLE program in the Franck-Condon approximation. The vertical excitation

energy used for this purpose was taken from experiment [302]: Te = 14535.0 cm−1

. The transition intensities were calculated at 295 K and the partition function for

the electronic ground state was calculated set to a dummy value Q(295)=1, due to

lack of reliable source of data for this quantity. The spin-statistical factor was set

to 1 for even and odd states. As a result, a generic room temperature line list in the

0–10 J range was produced.

Table 4.4 summarizes on J = 0 DVR3D-calculated energy levels of the

electronic ground state and the first singlet electronic excited state of the Ca2O

molecule.

Table 4.4: Comparison of vibrational energy levels calculated with DVR3D for the
11A′ and 11A′′ states of Ca2O. In the rightmost column vibrational assignments of
the energy levels are given.

vib. energy: 11A′ vib. energy: 11A′ assignment
132.81 11.54 ν2 (bending)
251.29 333.93 2ν2 / ν1 (symmetric stretch)
362.20 652.72 3ν2 / 2ν1
467.06 766.54
527.85 863.06
567.52 939.58
635.29 1114.96
672.18 1228.09
682.96 1295.30
763.12 1448.24
785.06 1504.14
816.14 1557.88
877.94 1562.10
901.11 1715.48
938.22 1734.71
993.92 1766.01

1014.00 1894.65
1055.86 1912.34

In Figure 4.5 a cross-section spectrum is displayed, calculated from the present

line list at room temperature. The cross-sections were calculated via convolution of
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transition intensities with the Gaussian profile function with FWHM = 0.1 cm−1 .
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Figure 4.13: Ro-vibronic cross-sections for the 11A′′ ← 11A′ electronic transition
in Ca2O. The cross-sections were obtained from room-temperature line list in the
0–10 J range calculated with the DVR3D program. The line shape function used in
production of the cross-section spectrum was Gaussian profile with FWHM = 0.1
cm−1 .

Future measurements of the electronic spectrum of Ca2O can benefit from

comparisons with the present line list. The accuracy of line positions in the present

line list is dictated by the accuracy of the PESs and can be estimated in the 10-40

cm−1 range, which suggests that further improvements to the PES fits are neces-

sary. However due to unusual geometry of the upper electronic state PES, this task

is currently difficult to complete and may require construction of a diabatic model

with two vibronically interacting electronic states included.
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4.6 Summary

The theoretical scheme presented in this chapter is based on accurate calculations of

ro-vibrational energy levels and wavefunctions for isolated electronic states of SO2

and Ca2O in the Born-Oppenheimer approximation, followed by ro-vibronic tran-

sition intensity calculations between two electronic states. The scheme presented

here give absolute integral intensities, thus is advantageous to traditional approaches

based on the Franck-Condon approximation, for which only relative intensities are

theoretically available. Utilization of rotation-vibration coupled wavefunctions ren-

ders calculated intensities as inherently more accurate than the standard vibrational

Franck-Condon calculations. Inclusion of the transition dipole moment surface al-

ternates intensities of the strongest bands by less than 10%, hence may be consid-

ered only in quantitative studies. The accuracy of calculated transition intensities

depends strongly on the quality of potential energy surfaces, especially for the elec-

tronic excited state, for which many vibrational states are required, and which is

normally more challenging to generate. This aspect is particularly important for at-

mospheric science. For example, in the case of SO2 the high resolution modelling of

the strongest absorption region associated with the C̃ 1B2← X̃ 1A1 electronic tran-

sition is still troublesome with the model presented here. However, this is solely be-

cause the location of the strongest absorption in this band near 50 000 cm−1 requires

calculation of highly excited ro-vibrational states of the C̃ 1B2 electronic state, and

for this reason an accurate and global PES for this state is needed. With high qual-

ity potential energy surfaces provided, the theoretical framework presented in this

work can be readily applied to other ro-vibronic bands of SO2 and other molecules,

such as ozone.

An aspect of the ro-vibronic problem which is not addressed here is extending

beyond the single state approximation. As shown by Yurchenko and co-workers

for diatomic molecules [248, 303, 304], often a significant number of electronic

states contribute to the vibronic spectrum; this number is typically larger than three.

The computer program DUO due to Yurchenko et al. [305] treats full ro-vibronic

calculations, allowing for interaction of an arbitrary number of electronic states
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in diatomic molecules. A triatomic analogue of DUO is the ultimate aim of this

project. For this reason in the next chapter, we are going to discuss the possibility

of extending the DVR3D methodology onto a fully coupled non-Born-Oppenheimer

ro-vibronic grounds.



Chapter 5

Ro-vibronic transitions beyond the

Born-Oppenheimer approximation

5.1 A spin-rotational-vibrational-electronic theory

for triatomic molecules. A perspective for ex-

tension of DVR3D.

With the DVR3D program [59, 261], which is based on the theory presented in the

previous chapters it is possible to produce ro-vibrational line lists (line positions and

line intensities) within a single electronic state, or ro-vibronic line lists in the Born-

Oppenheimer approximation between different electronic states (no spin-orbit or

other vibronic couplings). In this section, we attempt to develop a theory, within the

framework of the Sutcliffe’s and Tennyson approach to nuclear motion [58, 59, 61,

86], which aims at creating a solution scheme to the fully-coupled (spin-rotational-

vibrational-electronic coupling) Schrödinger equation. This equation, when solved,

generate non-adiabatic spin-ro-vibronic energy levels and wavefunctions, which can

be further used in transition intensities calculations.

As already mentioned in the previous chapter, a number of programs for solv-

ing the ro-vibronic Schrödinger equation are available, such as RENNER [250–252]

by Odaka et al. , which is designed for linear Renner-type triatomic molecules, or

more general variational codes for solving the triatomic spin-ro-vibronic problem
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based on MORBID by Jensen et al. [253–256] which uses an approximate kinetic

energy operator for nuclei, RVIB3 [257–259] by Carter, Handy et al. is designed

only for semi-rigid triatomic molecules with three or less interacting electronic

states. In the light of limitations of each of these computer codes, it seems natu-

ral to search for a general robust code, which does not carry any significant inherent

approximation. No such program has been yet developed, to the best of author’s

knowledge. Thus, it is reasonable to attempt to extend the existing DVR3D program

to satisfy this so far elusive goal. Computationally, a solution to a strongly coupled

system with many highly excited states is difficult to marry. Usually either a com-

puter code is based on essentially very accurate quantum-mechanical model (e.g.

RVIB3 or a code by Schwenke [49] or Alijah et al. [306]), but due to the bottleneck

in the variational methodology, which is diagonalising the large matrices required

for calculations of highly excited rotational states, has limited use, or an approxi-

mate model provides highly excited energy levels and wavefunctions [265–267].

The issue with the computing power needed in purely variational calcula-

tions can be partially overcome with the use of the discrete variable representation

(DVR) [89,90,260], which is presently well known for its computational efficiency.

In addition to that, the DVR3D suite by Tennyson et al. [59, 261] uses an exact

kinetic energy (EKE) operator, and hence operates at a very high level of theory.

The DVR3D computer code has been used to generate a considerable number of

ro-vibrational line lists [37–39, 56, 76, 262], with wavefunctions and energy levels

calculated in several cases up to values of the rotational quantum number J > 100.

The accuracy of these wavefunctions and energy levels is largely determined by

the quality of the potential energy surface (PES) and the dipole moment surface

(DMS). The accuracy of transition intensities in our recent ro-vibrational line lists

generated with ab initio DMS has reached and arguably exceeded experimental ac-

curacy [28, 37–39], and as a result has been used to replace experimental entries in

compilations of spectroscopic databases, such as the HITRAN2016 database [196].

For diatomics, the DUO computer code of Yurchenko and co-workers [248,

303–305] solves the fully coupled ro-vibronic SE using an EKE operator. A propo-
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sition for a triatomic analogue of DUO is the goal this chapter. This is done below

by extending the theory used by the current version of DVR3D to take into ac-

count rotational-vibrational-electronic couplings in the form of an exact quantum-

mechanical operator. Next, a tentative proposal is outlined for utilization of the

existing DVR3D architecture to implement the newly developed theory.

5.1.1 The Hamiltonian

The general space-fixed nuclear Hamiltonian given in eq. 2.3 can be extended to

take into account simultaneously electronic and nuclear degrees of freedom. With

such extension, following Sutcliffe [61] the body-fixed molecular Hamiltonian can

be written as:

Ĥ(φ ,q,ξ ) = K̂(φ ,q,ξ )+ Ĥel.(ξ ;q) (5.1)

where the KEO is explicitly given as

K̂(φ ,q,ξ ) =
1
2

[
∑
α,β

Mα,β N̂α N̂β +∑
α

(
λα +2

(
ML̂
)

α

)
N̂α

]
+

−1
2

[
3Nnuc−6

∑
µ,ν=1

Gµν

∂ 2

∂qµ∂qν

+
3Nnuc−6

∑
µ=1

τµ

∂

∂qµ

]
+

+
1
2

[
∑
α,β

Mα,β L̂α L̂β +∑
α

λα L̂α

] (5.2)

The quantities appearing in the above equation are defined as in eq. 2.7, 2.8, 2.9

and 2.10. φ := (α,β ,γ) denotes the three Euler angles describing the rotational mo-

tion, q stands for a general vector (q1,q2,q3) of vibrational coordinates, denoted in

previous chapters as (r1,r2,θ). ξ is a vector of 3Ne electronic position coordinates.

The electronic Hamiltonian is a sum of the following terms:

Ĥel.(ξ ;q) = T̂e(ξ )+Vne(ξ ;q)+Vee(ξ )+Vnn(q) (5.3)

where T̂e(ξ ) denotes the kinetic energy operator for electrons, Vne(ξ ;q) is the

electron-nuclei attraction potential energy, Vee(ξ ) is the electron-electron repulsion

energy and Vnn(q) is the nucleus-nucleus repulsion potential energy. Here, it was
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decided to operate in the Hund’s case (b) [307] (DUO uses Hund’s case (a) [305]),

with the rotational energy operator proportional to N̂− L̂, that is the difference be-

tween the ro-vibronic angular momentum and the electronic angular momentum. In

such non-relativistic scheme it is a custom to include extra terms, which account

for the ’spin-orbit’ and ’spin-rotation’ interactions. These operators are usually

parametrized empirically. Here all nuclear spin related interactions are neglected.

With these spin-relativistic add-ons the total Hamiltonian can be written as:

Ĥ(φ ,q,ξ ) = K̂V (q)+ K̂SRV (φ ,q)+ K̂SRV E(φ ,q,ξ )+ Ĥel.(ξ ;q)+ ĤSO(q,ξ )+ ĤSR(φ ,q)

(5.4)

where the KEO was divided into the vibrational part:

K̂V (q) =−
1
2

[
3Nnuc−6

∑
µ,ν=1

Gµν

∂ 2

∂qµ∂qν

+
3Nnuc−6

∑
µ=1

τµ

∂

∂qµ

]
(5.5)

the spin-ro-vibrational part:

K̂SRV (φ ,q) =
1
2

[
∑
α,β

Mα,β N̂α N̂β +∑
α

λα N̂α

]
(5.6)

and the spin-ro-vibronic part:

K̂SRV (φ ,q) =
1
2

[
∑
α,β

Mα,β L̂α L̂β +∑
α

(
λα L̂α +2

(
ML̂
)

α

)
N̂α

]
(5.7)

The spin-orbit Hamiltonian can be written in a general form as:

ĤSO(q,ξ ) = ∑
µν

ASO
µν(q)L̂µ(ξ )Ŝν (5.8)
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and the spin-rotation Hamiltonian is given by:

ĤSR(q) = ∑
µν

γ
SR
µν(q)N̂µ Ŝν (5.9)

The spin-orbit coupling and spin-rotation coupling operators are often ap-

proximated by effective operators [307]: ĤSR(q) ≈ γSR(q)∑µ N̂µ Ŝµ , ĤSO(q) ≈

ASO(q)∑µ L̂µ Ŝµ .

In the above equations Mαβ denotes the generalised inverse moment of inertia

introduced and explained by Sutcliffe in [61]. λα = −i
(

vα +2∑
3Nnuc−6
µ=1 Wµα

∂

∂qµ

)
and quantities vα and Wµα depend on vibrational coordinates only and are defined in

ref. [61]. λα is related to Coriolis-couplings and cannot be eliminated by a choice of

embedding. The molecule-fixed embedding of the coordinate frame is not specified

at this point, but the form of λα depends on the choice of the embedding. In the

vibrational part of the kinetic energy operator KV (q) the tensor Gµν and vector τµ

are functions of coordinates, independent of embedding, and are defined in ref. [61].

All internal-coordinate dependent quantities presented above can be calculated with

a little use of algebra when a choice of particular internal coordinates in made. Here

we only specify that the internal coordinates are orthogonal (µi j = 0, see eq. 2.7).

With the total Hamiltonian defined, the next step is to choose a spin-ro-vibronic

basis set.

5.1.2 Basis set

We shall follow the standard approach to the vibronic-coupling problem, where a

Born-Huang (BH) [182] type expansion is assumed for the ro-vibronic wavefunc-

tion. This approach however is not the only one [182, 308], and perhaps is not

the best one. Unfortunately, no better representation of the ro-vibronic wavefunc-

tion has been given so far, to the best of author’s knowledge. The problem with

the BH representation is that whenever the space of electronic states is narrowed

to few states, non-removable singularities appear in the ro-vibronic Hamiltonian,

in regions of the configuration space where two adiabatic electronic states inter-

sect. These singularities are stacked on top of singularities related to space-fixed→
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molecule-fixed transformation. The latter case can be efficiently dealt with an ap-

propriate choice of the basis set and embedding of the molecule-fixed coordinates

frame [58]. The former problem however is non-resolvable in the present frame-

work, where the electronic wavefunctions are eigenfunctions of a clamped-nuclei

electronic Hamiltonian [182, 308]. Approximate diabatisation schemes are possi-

ble, which eliminate singularities in the non-adiabatic coupling terms (NACT) and

diagonal Born-Oppenheimer correction (DBOC). Yet, an open challenge is to find

an alternative procedure for defining ro-vibronic matrix elements in terms of some

new, neither adiabatic nor diabatic representation.

The general anzatz for the spin-rovibronic wavefunction is assumed similar to

the Born-Huang expansion. By this we mean an expansion of the wavefunction as

a sum of products of an ’electronic wavefunction’ and a ’spin-ro-vibrational wave-

function’:

|Ψ(φ ,q,ξ )〉= ∑
i
|ψel.,i(ξ ;q)〉|Φsrv,i(φ ,q)〉 (5.10)

Effectively the expansion in eq. 5.10 is truncated at few electronic states,

which couple substantially. The electronic part of the wavefunction is obtained

from electronic structure calculations, in a solution to the eigenproblem for the elec-

tronic Hamiltonian Ĥel.(ξ ;q)|ψel.,i(ξ ;q)〉=Vi(q)|ψel.,i(ξ ;q)〉. The electronic basis

forms a complete orthonormal set of functions with the standard scalar product:

〈ψel.,i′(ξ ;q)|ψel.,i(ξ ;q)〉=
∫

ψ∗el.,i′(ξ ;q)ψel.,i(ξ ;q)dξ = δi′i. Although it should be

noted, that this is not the only possibility for the representation of the electronic

wavefunction, as we will discuss further on. For the primitive rotational basis a

complete set of symmetric-top Hamiltonian eigenvectors |N,k,M〉 is used. Here N

stands for the ro-vibronic angular momentum quantum number, k is the projection

of the total angular momentum J on the molecule-fixed z-axis and M is the projec-

tion of the total angular momentum J on the space-fixed z-axis. A set of commuting

observables for this eigenbasis is N̂2, N̂z, Ĵ2, Ĵz, Ŝ2. These operators correspond to

the following eigenvalue problems1

1written in atomic units
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N̂2|N,k,M〉= N(N +1)|N,k,M〉

N̂z|N,k,M〉= k|N,k,M〉

Ĵ2|N,k,M〉= J(J+1)|N,k,M〉

Ĵz|N,k,M〉= MJ|N,k,M〉

Ŝ2|N,k,M〉= S(S+1)|N,k,M〉

(5.11)

This basis can be further symmetry-adapted with the use of the parity transformation

Ê∗:

|N,K,M, p〉= 1√
2

[
|N,k,M〉+(−1)N+k+p|N,−k,M〉

]
, K = |k|> 0

|N,K,M, p〉= |N,0,M〉, K = 0
(5.12)

This rotational basis is then coupled and symmetry adapted with a spin basis [60]:

|ΨJ,K,S,p
spinrot 〉=

J+S

∑
N=|J−S|

N

∑
M=−N

S

∑
Ms=−S

(−1)N−S+MJ
√

2J+1

N S J

M Ms −MJ

×
×|S,Ms〉|N,K,M, p〉

(5.13)

where |S,Ms〉 is the spin standard basis: Ŝ2|S,Ms〉 = S(S + 1)|S,Ms〉, Ŝz|S,Ms〉 =

Ms|S,Ms〉 and 〈S′,M′s|S,Ms〉 = δS′SδM′s,Ms . The total spin quantum number S is as-

sociated with a given isolated electronic state. The energy of the molecule in free

space is independent of any space-fixed defined quantum number, that is: M,MJ,Ms.

Finally, having defined the electronic and spin-rotational basis, we are ready to write

the full basis set adopted to represent the molecular Hamiltonian in eq. 5.4:
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|ΨJ,p,h〉= ∑
S

J+S

∑
N=|J−S|

N

∑
M=−N

S

∑
Ms=−S

N

∑
K=p

vib.states

∑
m,n, j

el.states

∑
i

(−1)N−S+MJ
√

2J+1

N S J

M Ms −MJ

×
×CJ,p,h

i,N,K,m,n, j|i〉|S,Ms〉|N,K,M, p〉|m(i)〉|n(i)〉| jK(i)〉

(5.14)

where |i〉 is a shorthand notation for an i-th eigenfunction of the electronic Hamilto-

nian Hel.(ξ ;q), |S,Ms〉 is the standard spin basis function defined above, |N,K,M, p〉

is the parity-adapted symmetric-top Hamiltonian eigenvector, |m(i)〉, |n(i)〉 are vi-

brational basis functions for the r1 and r2 stretching, respectively and | jK(i)〉 is a

basis function for the bending motion (θ coordinate). Note that the vibrational ba-

sis in general depends on the electronic state i as indicated with the superscript (i).

Summation over the S quantum number accounts for mixing of electronic states

with different spin multiplicity through spin-orbit coupling or spin-rotation cou-

pling. Additionally the bending vibrational basis state is assumed to depend on K,

which as discussed in chapter 2, brings the benefit of eliminating spurious singulari-

ties in the Hamiltonian, which result from the vanishing Jacobian of the space-fixed

to molecule-fixed transformation. Such regularisation of the Hamiltonian is possi-

ble when an associated Legendre polynomial basis is used | jK〉= P(K)
j (cosθ). The

superscript in the basis set notation is reserved for good quantum numbers which

in the present case are J and p, while h enumerates the final spin-rovibronic energy

states.

Because in this work we are using the complete rotational basis set spanned by

eigenvectors of the symmetric-top Hamiltonian: {|N,k,M〉}k=−N,−N+1,...,N−1,N , the

total Hamiltonian given in eq. 5.4, can be represented in the spectral representation

of the symmetric-top Hamiltonian. Such a trick allows to integrate out rotational

degrees of freedom of the molecule in an exact, formal way. The matrix of the total

Hamiltonian in this basis can be evaluated analytically. Similarly, it is feasible to

formally integrate out over all electronic and spin degrees of freedom to yield an

effective vibrational Hamiltonian in the following form:
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Ĥ(q) = K̂V (q)+ K̂SRV (q)+ K̂SRV E(q)+ Ĥel.(q)+ ĤSO(q)+ ĤSR(q) (5.15)

where

2K̂V (q) = δK′Kδs′s

[
δi′iK̂V (q)+ G̃i′i + τ̃

i′i
]

(5.16)

2K̂SRV (q) = δK′Kδs′s

[
δi′i
(
2b
(
N(N +1)−K2)−K2b0 + kλ0

)
+ Λ̂

i′i
0

]
+

δK′K+1δs′s
1
2

C+
NK

[
δi′i (b+1(2K +1)+λ+)+ Λ̂

i′i
+

]
+

+δK′K−1δs′s
1
2

C−NK

[
δi′i (b−1(2K−1)+λ−)+ Λ̂

i′i
−

]
+

+
1
2

δK′K+2δs′sδi′ib+2C+
NKC+

NK+1+

+
1
2

δK′K−2δs′sδi′ib−2C−NKC−NK−1

(5.17)

2K̂SRV E(q) = δK′Kδs′s

[
∑
αβ

Mαβ Li′i
αβ

+∑
α

λαLi′i
α −K〈i′|(ML̂)z|i〉+ Ô i′i

]
+

+δK′K+1C+
NK〈i

′|(ML̂)+|i〉+δK′K−1C+
NK〈i

′|(ML̂)−|i〉

(5.18)

Ĥel.(q) = δs′sδK′Kδi′iVi′i(q) (5.19)

ĤSO(q) = ASO(q)
[

1
2

[
δs′s+1δK′KC+

SMS
Li′i
+ +δs′s−1δK′KC−SMS

Li′i
−

]
+δs′sδK′KLi′i

z

]
(5.20)
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ĤSR(q) = γ
SR(q)

[
1
2

[
δs′s+1δK′K+1C+

SMS
C+

NK +δs′s−1δK′K−1C−SMS
C−NK

]
+δs′sδK′KK

]
(5.21)

where C±NK = (N(N +1)∓K(K +1))
1
2 . Here, for clarity of presentation the inte-

gration was performed with the use of the primitive spin-rotational-electronic basis:

|i〉|s,Ms〉|N,K,M〉. Symmetry adaptation, as a linear unitary operation is rather

straightforward and can be applied at the implementation stage.

All operators are labelled by the quantum numbers, which define the spin-

electronic-rotational basis: J,K, i,S, p. We omit the space-fixed defined quantum

numbers as irrelevant to the dynamics in free space. Each operator written above

is defined for a given set of good quantum numbers J and p, which are assumed

implicit and not denoted for the clarity of presentation. Thus, there are three sets of

indices, which define the Hamiltonian hyper-matrix: K′K, i′i and S′S. The quantities

appearing in the above equations for the effective operators are as follows:

G̃i′i =−1
2

3Nnuc.−6

∑
µ,ν=1

[
Gµνβ

i′i
µν + τµα

i′i
µ

]
β

i′i
µν = 〈i′| ∂ 2

∂qµ∂qν

|i〉, α
i′i
µ = 〈i′| ∂

∂qµ

|i〉

τ̃
i′i =−1

2

3Nnuc.−6

∑
µ,ν=1

Gµν

(
α

i′i
µ

∂

∂qµ

+α
i′i
ν

∂

∂qν

)

Λ̂
i′i
γ =−2i

3Nnuc−6

∑
µ=1

Wµγα
i′i
µ γ = x,y,z

Λ̂
i′i
0 = Λ̂

i′i
z , Λ̂

i′i
± = Λ̂

i′i
x ∓ iΛ̂i′i

y

Li′i
αβ

= 〈i′|L̂α L̂β |i〉

Li′i
α = 〈i′|L̂α |i〉

O i′i =−2i
3Nnuc−6

∑
µ=1

〈i′|(WL̂)µ

∂

∂qµ

|i〉

Vi′i(q) = 〈i′|Ĥel.(ξ ;q)|i〉

(5.22)
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and all ± sub-scripted operators appearing in eqs. 5.16 – 5.21 are defined as A± =

Ax∓ iAy. There are essentially two types of operators, which act on the vibrational

basis: functions of vibrational coordinates and differential operators. In the above

Hamiltonian there are two types of differential operators enclosed in τ̃ i′i and λα .

The former one is associated with derivative couplings of different electronic states

(NACT) and the latter is associated with the Coriolis-coupling of ro-vibrational

states.

5.1.3 Input functions

To summarize, the fully coupled spin-ro-vibronic procedure (working name:

DVR3D-UV) requires the following input functions for solving the stationary

Schrödinger equation:

1. Vi(q) - potential energy surfaces (PES) for each adiabatic electronic state of

interest.

2. α i′i
µ (q) - non-adiabatic coupling matrix elements (NACT) between electronic

states i and i′ and for vibrational coordinate µ .

3. β i′i
µν(q) - diagonal Born-Oppenheimer correction (DBOC) terms and pseudo-

potential off-diagonal non-adiabatic terms.

4. ASO(q) - spin-orbit coupling surface(s). Note that in general the spin-orbit

coupling operator is proportional to a tensor quantity ASO
i′i (q) which mixes

different spin states.

5. Li′i
α (q),L

i′i
αβ

(q) - L-coupling and L2-coupling surfaces, respectively.

6. O i′i(q) - L-vibronic coupling surfaces.

7. γSR(q) -spin-rotation coupling surface(s). Note that in general the spin-

rotation coupling operator is proportional to a tensor quantity γSR
i′i (q) which

mixes different spin states.
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5.1.4 Solution strategy

The solution strategy for the spin-ro-vibronic Schrödinger equation with the effec-

tive Hamiltonian from eq. 5.15 consists of a multi-step diagonalisation-truncation

procedure. The idea of two-step diagonalisation-truncation originates from Ten-

nyson and Sutcliffe [67,86,87] has been proven very efficient, especially in compu-

tation of high-J states. In order to maintain this high efficiency and feasibility for

highly excited rotational states we shall follow here a similar procedure.

Figure 5.1 depicts a suggestion for the implementation scheme, which can be

followed in the future computer implementation of DVR3D-UV. In the first step,

we focus on the electronic index of the Hamiltonian, more specifically on its diago-

nal blocks (marked in purple in the uppermost matrix in Figure 5.1). Each of these

blocks is indexed by the K,K′ approximate quantum numbers. For clarity of presen-

tation, the uppermost matrix in Figure 5.1 corresponds to a two-dimensional elec-

tronic states space. For each electronic diagonal block an appropriate ro-vibrational

problem needs to be solved. This ro-vibrational problem is however different from

the problem solved in the original ro-vibrational version of DVR3D. Now, some

new operators are included into the Hamiltonian, which requires calculation of some

additional matrix elements. These matrix elements arise due to vibronic coupling,

which is diagonal in the electronic index: the DBOC terms and any diagonal con-

tributions from the operators listed in the previous paragraph. Fortunately, these

modified ro-vibrational problems can be separated into the old ro-vibratinal prob-

lem solved by the original DVR3D plus additional matrix elements, which can be

calculated using quadrature schemes already implemented in DVR3D.

There are more than one possibilities for order in which the total Hamiltonian

is diagonalised. Below given are propositions for sequential diagonalisation of the

total Hamiltonian and comparison of their approximate computational cost, so the

best option can be chosen.

Scenario 1: a) for each diagonal block of the total Hamiltonian (in the elec-

tronic index) diagonalise the Coriolis-decoupled problem, as in DVR3DRJZ, but

with additional matrix elements, which result from vibronic couplings. Form a com-
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posite basis from combined eigenbases of the just diagonalised electronic blocks;

b) diagonalise the full Coriolis-coupled problem in this composite basis.

Scenario 2: a) diagonalise separately Coriolis-decoupled problems for each

block of the full Hamiltonian indexed by electronic quantum numbers; b) for each

of these blocks diagonalise the full Coriolis-coupled problem using a contracted

basis from step a); c) diagonalise the full Hamiltonian, which consists of already

pre-diagonalised blocks.

We are going to assume the computational complexity for diagonalisation

as approximately proportional to the cube of the size of the diagonalised matrix

(O(N3), denoted for simplicity as N3) [309]. The vibrational basis for each sce-

nario is assumed of the same size Nv, so that for a given J and p the size of a single

electronic block matrix is Ni = Nv× (J− p+ 1). Index i labels electronic states.

Solutions the the Coriolis-decoupled problem form a basis, which can be truncated

before utilizing in the next stage. Let the truncation parameter be 0≤ γ ≤ 1, so that

the Coriolis-coupled matrix for the i-th electronic block to be diagonalised is of size

γ×Ni. The computational time for scenarios 1–3 can be estimated as follows:

Scenario 1). In step a) we diagonalise separately the Coriolis-decoupled prob-

lem inside each of Nel independent diagonal electronic blocks of the full Hamilto-

nian, which gives the cost of Nel ×N3
i . Step b), which involves diagonalisation in

the full electronic-ro-vibrational Hilbert space generates cost:
(

∑
Nel
i=1 γNi

)3
where

Ni denotes ro-vibrational basis which in general could be different size for differ-

ent electronic states. In this fashion the total computational cost in scenario 1 is

T (1) =Nel×N3
i +
(

∑
Nel
i=1 γNi

)3
=Nel

(
1+N2

elγ
3)N3, where in the last equality iden-

tical basis size for all electronic states was assumed (Ni = N).

Scenario 2). In step a) we diagonalise separately the Coriolis-decoupled prob-

lem inside each of Nel(Nel +1)/2 independent diagonal electronic blocks of the full

Hamiltonian, which gives the cost of Nel(Nel + 1)/2×N3
i . In step b) we solve the

Coriolis-coupled problem for each electronic block separately which gives the cost:

Nel(Nel + 1)/2× γ3N3
i ; assuming that identical ro-vibrational basis size is chosen

for each block. Finally in step c) the full electronic-ro-vibrational Hamiltonian ma-
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trix is diagonalised. This matrix consists of electronic blocks which are diagonal in

K. Diagonalisation of the final Hamiltonian costs N3
elγ

3N3. The overall cost then

reads: T (2) = Nel
(1

2(Nel +1)(1+ γ3)+N2
elγ

3)×N3.

Comparison of the computational costs for both scenarios considered indicates

that scenario 1 has the lowest computational requirements: T (2) > T (1). For this

reason the scheme from scenario 1 is recommended for implementation.

With the choice of scenario 1, the (vibronically modified) ro-vibrational prob-

lem for each adiabatic electronic state is solved in a two-step scheme. In the first

step, K is considered a good quantum number and for each K value a separate

vibrational problem is solved, by diagonalising an appropriate Hamiltonian. This

situation corresponds to neglecting the off-diagonal terms in K in the big middle ma-

trix in Figure 5.1 and diagonalising each orange Hamiltonian block independently.

The resulting Coriolis-decoupled eigenfunctions contain already much information

about the nuclear dynamics, thus serve as an excellent basis for the second step, in

which terms off-diagonal in K are included. The situation corresponds to diagonal-

ising the full big middle matrix in Figure 5.1, that is including the green and purple

blocks of the Hamiltonian.

The variational coefficients of the wavefunction calculated in the first stage are

given as

|v1, i,S,K,J, p〉= ∑
j,m,n

(1)CJ,p,K,i,v1,S
m,n, j |m(i)〉|n(i)〉| jK p(i)〉 (5.23)

where v1 is an index enumerating solutions to the Coriolis-decoupled problem. S

indexes the total spin of a given electronic state i. The number of solutions vmax =

γ ×N passed to the next stage is essential for the total computational cost. In step

2, for each diagonal electronic block separately, the Coriolis-coupled problem is

solved, meaning that the wavefunction after the second stage can be written as:

|v2, i,S,J, p〉=
J

∑
K=p

γ×N

∑
v1=1

(2)CJ,p,i,S,v2
v1,K |v1, i,S,K,J, p〉 (5.24)

From the eigenbases generated by diagonalisation of each electronic diagonal block
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with "eDvr"
with "eRotlev"

Step 1:
Step 2: Truncated basis

Step 3: with "vibron" Truncated basis

diagonal ro-vibronic Hamiltonian

Step 4: with "spin" diagonal spin-ro-vibronic 
Hamiltonian

Figure 5.1: A scheme for the representation of the total Hamiltonian on the
electronic-rotational manifold. See text for further details.

separately a composite basis is formed:

|v3,S,J, p〉v3=1,...,γ×N×Nel
= |v2, i,S,J, p〉v2=1,...γ×N;i=1,..,Nel

(5.25)

meaning that v3 = (v2, i) is now a combined index enumerating elements of the

Hamiltonian.

In step 3, a routine called ’vibron’ receives the composite basis from step 2.

Step two has to be performed for every diagonal block in the electronic coordinate.

Depending on the system, the off-diagonal blocks in the electronic Hamiltonian

could be treated as some kind of not-too-large perturbation. For this reason, efficient

diagonalisation schemes for sparse matrices with small off-diagonal elements could

be utilized here.
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|S,J, p, h̃〉=
γ×N×Nel

∑
v3=1

(3)CJ,p,S,h̃
v3

|v3,S,J, p〉 (5.26)

In the last step, if needed, mixing between different spin states is considered.

Such mixing can originate from the spin-rotation coupling terms or off-diagonal

terms in the spin-orbit coupling operator. The structure of matrices at this stage

should be simple, due to the ∆S = ±1 selection rule dictated by the spin-rotation

and spin-orbit interactions. Direct diagonalisation of this matrix leads to the final

spin-ro-vibronic energy levels and wavefunctions

|J, p,h〉=
Nspin

∑
S=1

∑
h̃

(4)CS,J,p,h
s,h̃

|J, p, h̃〉. (5.27)

The approach to solution of the nuclear motion problem based on the Born-

Huang-type expansion of the wavefunction with electronic basis functions chosen

as the eigenbasis of the electronic Hamiltonian inherently fails in the vicinity of

conical intersections between different adiabatic electronic states. When two elec-

tronic states become degenerate, it is straightforward to show, that non-adiabatic

coupling matrix elements diverge, producing infinite quantities [310]. Even though

in the standard Born-Oppenheimer picture the nuclear wavfunction must have a

node at the point of the CI, and in this manner if one assumes that the molecule is

not allowed in some way to occupy this particular point in the configuration space

(which is by the way a rather ridiculous artifact) then the values of NACTs are very

sensitive to small inaccuracies in the electronic wavefunction. This situation can be

viewed as some kind of a resonance interaction between two adiabatic electronic

states.

From numerical point of view, solving the nuclear motion problem in the adi-

abatic representation near the CI is a suicidal task. For this reason a number of

techniques have been developed, in which the KEO is diagonalised in the electronic

coordinate, all under a common label of ’diabatisation’ schemes. In the simple

space of two interacting electronic states such diabatisation can be performed ex-

actly. However, as shown by Mead and Truhlar [311], solutions to differential equa-



5.1. A spin-rotational-vibrational-electronic theory for triatomic molecules 255

tions defining the diabatic representation for more than two interacting electronic

states is ambiguous and cannot be found in the exact way. Several approximate

diabatisation schemes have been therefore developed over the years. In the dia-

batic representation singularities related to NACTs vanish making the requirement

of strongly vanishing nuclear wavefunciton at the CI no longer necessary. This

clearly indicates that the singularities in the Hamiltonian at the point of CI in the

adiabatic representation are artifacts of the method and have little to do with physi-

cal reality, especially because the adiabatic and diabatic representation are formally

connected by an unitary transformation, which preserves the scalar product. This

cognitive dissonance has been a subject to numerous papers [312–314].

Another problem with the existence of CIs is the phase of the electronic wave-

function. Electronic structure programs generally provide the electronic wavefuc-

ntion with an arbitrary phase, which depends on the instantaneous configuration

of nuclei. Whenever a CI is present and the ro-vibrational wavepacket can en-

circle this CI, the adiabatic electronic wavefunction becomes double valued, i.e.

gains a geometric phase when encircling the CI [315–318]. In order to account for

this double-valueless of the electronic wavefunciton, the nuclear wavefunction also

needs to be double valued. Alternatively one may think of transforming the elec-

tronic and nuclear wavefunctions so that they are single valued. In such case the

nuclear motion Hamiltonian needs to be also transformed with a similarity transfor-

mation, and this in general affect the nuclear dynamics [319, 320]. In order to find

this transformation, again a diabatisation scheme needs to be employed.

Clearly, from this perspective the geometric phase (or Berry phase) is an arti-

fact of the Born-Oppenheimer approximation; but without inclusion of this phase,

under some circumstances the dynamics can be simply wrongly modelled [321].

The geometric phase effect then can be regarded at a similar level as the Jahn-Teller

effect or the Renner-Teller effect [60], all of which are a consequence of the Born-

Huang expansion, the parametric dependence of the electronic wavefunction on the

nuclear coordinates and the spectral representation of the electronic Hamiltonian for

the electronic wavefunctions. The ’effect’ of distortion of the high-symmetry geom-
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etry of the molecule due to ’vibronic interaction’ between PESs in the Jahn-Teller

effect occurs only because we divide the solution scheme into the ’clamped-nuclei’

stage (Born-Oppenheimer) and ’correction’ (vibronic interactions). The problems

mentioned above in the context of the DVR3D-UV methodology should be a subject

of future studies.



Chapter 6

Conclusions

This thesis addresses a number of problems in modern molecular spectroscopy.

From the nuclear motion theory point of view, the main focus was on quantum-

mechanical description of the rotational-vibrational and rotational-vibrational-

electronic motion of triatomic molecules. In chapter 3, rotational-vibrational line

lists for 13 isotopologues of carbon dioxide were calculated, together with a theo-

retical analysis of reliability of computed transition intensities. Completeness and

accuracy of these line lists were evaluated against a range of experimental and the-

oretical studies, providing a comprehensive benchmark, which indicated that the

accuracy of calculated transition intensities constitutes a new state-of-the-art for

CO2. For this reason 12 line lists for stable isotopologues of carbon dioxide were

included as a part of the HITRAN 2016 spectroscopic database. This fulfilled the

working goal of the CO2 project. The line lists are available for use on the website

of the ExoMol project (www.exomol.com), as well as in the newest edition of HI-

TRAN [196]. Transition intensities calculated for two important absorption bands

(near 1.6 µm and 2.06 µm) of the main isotopologue of CO2 have been shown to

meet the sub-percent accuracy requirements for remote sensing and can be used

in retrieval models for concentration measurements of this greenhouse gas in the

Earth’s atmosphere, e.g. in NASA’s OCO-2 mission.

A theory of Coriolis-type and Fermi-type interactions between ro-vibrational

energy levels was presented and later utilized as a background for a method for esti-

mating sensitivity of transition intensities to minor inaccuracies in the wavefunction
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(hence in the PES). Application of this method to 13 isotopologues of CO2 required

computation of 54 room-temperature infrared line lists. As a result, each transi-

tion intensity was assigned a reliability factor, which has also been found to be a

simple descriptor for detecting resonance interactions between energy levels, and a

good measure quantifying the strength of such interactions. Information about the

strength of interactions between ro-vibrational energy levels was elucidated only by

analysing the sensitivity of transition intensities to imperfections in the PES. This

technique is believed to be applicable to other molecules as well.

Rotational-vibrational-electronic line lists in the Born-Oppenheimer approx-

imation were calculated for the SO2 molecule in the UV absorption region and

for the CaOCa molecule in the visible region. For this purpose appropriate ab

initio PESs and a TDMS were generated. These were the first reported ab initio

ro-vibronic line lists for triatomic molecules, generated with an exact kinetic en-

ergy operator. The influence of the nuclear coordinate dependence of the electronic

transition dipole moment was discussed with the conclusion, that for low energy ex-

citations intensity difference due to this dependence is rather weak, usually below

10%. By this observation, the Franck-Condon approximation for transition inten-

sities gained a rigorously founded justification. The DVR3D code for electronic

transitions thus awaits further applications to other triatomic molecules. The only

essential requirement for this purpose is availability of PESs for electronic states of

interest.

It appears essential to derive a theoretical procedure implemented in a com-

puter code, which is capable of accurately solving the rotational-vibrational-

electronic Schrödinger equation beyond the Born-Oppenheimer approximation.

Such scheme would be a natural continuation to the Born-Oppenheimer DVR3D

code used for calculation of ro-vibronic line lists for SO2 and CaOCa. Chapter 5

discussed one possible approach to this problem by derivation of the exact non-

relativistic rotational-vibrational-electronic Hamiltonian for a triatomic molecule.

Matrix elements of this Hamiltonian in a chosen variational basis were evaluated

and a prospective implementation scheme was outlined.
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Going beyond the present 0–8000 cm−1 spectral applicability region for the

UCL line lists is a future challenge. An update to the Ames-1 PES (named Ames-

2) published [322] just before submission of this thesis is believed to be applica-

ble at least up to 25 000 cm−1(upper energy level), but the present ab initio UCL

DMS must be improved. Such improvement would require calculation of additional

dipole moment points, which correspond to geometries located at higher electronic

energies. Future studies concerning CO2 should be thus aimed at construction of a

global DMS for the electronic ground state of the CO2 molecule. This would allow

for computation of high accuracy high-temperature CO2 line lists reaching visible

and possibly UV absorption region.

Implementation of non-adiabatic effects into DVR3D is another important ob-

jective for future research. Almost all triatomic molecules have their electronic

excited states significantly affected by vibronic interactions, thus for genuine mod-

elling of rotational-vibrational-electronic spectra of triatomic molecules, a high-

quality ro-vibronic model is an absolute necessity. A first step to circumvent this

problem was presented in Chapter 5, but further work is obviously needed. Finally,

the large amount of data generated for CO2, SO2 and Ca2O is expected to be fur-

ther utilized, beside remote sensing procedures, in modelling of radiative cooling

of molecules in atmospheres, ro-vibrational relaxation models, or monitoring of

industrial emissions (14CO2) and volcanic hazes (SO2).
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