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Abstract

The major part of this work is construction of 54 room-temperature infrared absorp-
tion line lists for isotopologues of carbon dioxide. In accurate nuclear motion cal-
culations an exact nuclear kinetic energy operator is used in the Born-Oppenheimer
approximation and three ab initio and semi-empirical potential energy surfaces for
generation of rotational-vibrational wavefunctions and energy levels. Transition
intensities are calculated with two different high quality ab initio dipole moment
surfaces. The generated line lists are comprehensively compared to state-of-the-art
measurements, spectroscopic databases and other theoretical studies. As a result,
uncertainties in calculated transition intensities in several vibrational CO; bands
are shown below 1%, which is sufficient for use in remote sensing measurements
of carbon dioxide in the Earth’s atmosphere. Results of the present calculations set
a new state-of-the-art and have been included in the 2016 release of the HITRAN

database.

A theoretical procedure for estimating reliability of computed transition inten-
sities is presented and applied to CO; line lists. As a result, each transition intensity
received a reliability factor, a particularly useful descriptor for detecting resonance
interactions between rotational-vibrational energy levels, as well as a good measure

quantifying the strength of such interactions.

The theoretical procedure used for CO, is extended to electronic transitions
in the Born-Oppenheimer approximation. In this extended framework rotational-
vibrational-electronic line lists for SO, and CaOCa molecules are generated. For
this purpose appropriate ab initio potential energy surfaces and a transition dipole

moment surface are generated. Absolute transition intensities are then calculated
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both in the Franck-Condon approximation and with a full transition dipole moment
surface. Resulting line lists are compared with available experimental and theoret-
ical data. The unprecedented accuracy of the model used in these calculations and
the rotational resolution of transition lines renders the present approach as promis-
ing for future uses in atmospheric science.

Finally a theoretical framework for fully non-adiabatically coupled Hamilto-
nian is derived and discussed. A proposition for computer implementation of this

theoretical scheme is also given.
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Chapter 1

Introduction

Monitoring of the Earth’s atmospheric composition has been one of the grand chal-
lenges since the early days of molecular spectroscopy. In fact, understanding the
processes in the Earth’s atmosphere and the impact of humans on it, represents a
fundamental motivation on which modern science is founded. Thus undeniably,
it is of vital importance for us, humans, to understand and responsibly asses our

impact on the environment. This thesis is an attempt to propagate towards this goal.

Among a number of molecules detected in the Earth’s atmosphere, the tri-
atomic molecules represent a major group containing primarily water, carbon diox-
ide, sulphur dioxide, nitrous oxide and ozone [1]]. Identifying sources, sinks and
migration mechanisms of these gases is the key to understanding the processes
observed in the Earth’s atmosphere. This, in turn, requires acquisition of highly
accurate molecular absorption spectra from ground based or remote sensing mea-
surements. Carbon dioxide (CO,) is one of the main greenhouse gases and has been
monitored over the years by several government and private funded projects [2-11].
For determination of the concentration of CO; in the Earth’s atmosphere, both satel-
lite and ground based measurements use infrared transitions between rotational-
vibrational states of this molecule [6}/12-15]]. Very often, the measured spectrum is
compared against a laboratory measurement convolved with a supporting spectro-
scopic model, by means of which the information about the concentration is gained.
The accuracy of such schemes relies on the accuracy of the reference data, and the

transition intensities in particular.
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For responsible conclusions on the impact of human activity on the CO, levels
in the Earth’s atmosphere 1-ppm resolution in retrieved concentration is needed
[16,/17]. This concentration could be determined in the laboratory from atmo-
spheric samples [18,/19]. Such an approach however is incapable of providing the
global maps of CO; concentration, whereas understanding mechanisms for migra-
tion and depletion of carbon dioxide on the global scale is essential for climate
science [20-23]]. For this reason, a number of continuous detection methods on the
global scale have been developed, one of which is remote sensing [2-6]. In such
measurements, it would be ideal to have several isotopologues of carbon dioxide
quantified simultaneously, to learn about the sources of this gas [23]]. For example,
the unstable '*CO, isotopologue containing radioactive '“C is a key trace species
used as a marker for industrial activities [21,24-26]. Thus, maps of this isotopo-

logue of CO; could deliver information about pollution sources.

At the end of the day, all remote sensing measurements require accurate tran-
sition intensities and line shapes for several isotopologues, which can be used in
the retrieval procedure [6,|16]. The 1-ppm resolution requirement imposes levels
of accuracy on reference spectra (0.3% for transition intensities [16]) which have
been, until recently, beyond the reach of the experiment [27,28]], mainly due to low
natural abundance of isotopologues of CO5 containing '*C, 170 or '30. Even for
the main isotopologue '2C'0,, the very recent highly sophisticated measurements

reached 0.3%—1% accuracy for a limited number of transitions [28-33]].

Spectroscopic databases such as HITRAN [196], HITEMP [34] and GEISA
[35]] are partly dedicated for use in the atmospheric retrieval models. These
databases contain mainly, but not only, line-by-line spectra with quantum number
assignments and a number of other spectroscopic parameters, which together are
called a line list. However, for successful ppm-level retrieval of molar fractions of
molecules in the atmospheric measurements, all absorption lines in a given spectral
region have to be characterized, requiring high-resolution supporting data and this
currently represents a major challenge. In fact, for some molecules, such as SO, in

the ultraviolet region, only cross-sections at few given temperatures and pressures
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are supplied by the present versions of spectroscopic databases. In addition to that,
these databases still have issues with completeness of the data as well as insufficient

quality of line intensities, which have been so far taken only from measurements.

Thus, a significant portion of the results presented in this thesis is motivated
by the need for high accuracy CO; infrared transition intensities for remote sens-
ing purposes. For this reason, in the first instance, this thesis presents theoretical
line lists for 13 isotopologues of carbon dioxide, which are dedicated to meet the
requirements by the remote sensing, thereby designed to redefine the old paradigm
of solely empirical sourcing of reference data in the atmospheric science. The line
lists are generated by large scale first principles quantum mechanical calculations.
In the first step the rotational-vibrational Schrodinger equation is solved to provide
energy levels and nuclear wavefunctions, and subsequently the transition intensi-
ties between different rotational-vibrational (ro-vibrational) states of the molecule
are calculated. The final calculated transition line positions, transition intensities,
energy levels and appropriate quantum numbers are stored in the form of a line
list, which serves as a comprehensive data source for various purposes [36]. The
accuracy of transition intensities in these line lists for carbon dioxide, which were
generated with an ab initio dipole moment surface (DMS), has reached and arguably
exceeded experimental accuracy [28,32,37-39]. As aresult, for 12 isotopologues of
carbon dioxide in the 0 — 8000 cm~! wavenumber range, the theoretical transition
intensities calculated and presented in this thesis were included in the 2016 release

of the HITRAN spectroscopic database [196]].

Detection and quantification of other very important, but less abundant
molecules in the Earth’s atmosphere, such as SO, or O3 relies on absorption of
ultraviolet (UV) radiation [40-43|], which is accompanied by transition between
rotational-vibrational-electronic (ro-vibronic) states of the molecule. For this rea-
son, as a logical follow up to modelling the infrared spectra of carbon dioxide,
we focus on molecular spectra in the UV, associated with ro-vibronic transitions.
The SO, molecule is chosen as a case study, mainly because of the relatively rich

experimental data available, but also due to its role in measurements of volcanic
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activity [44,45]]. Again, similar to the case of CO,, a molecular line list for SO,
in the UV is calculated, analysed and compared with experiment. The computa-
tion is done within the Born-Oppenheimer (BO) approximation in the ro-vibronic
resolution, which is the first reported high-accuracy ab initio line list of this type.
From the theoretical point of view a major problem with the calculation of accurate
UV spectra of molecules, associated with an electronic transition, is the breakdown
of the Born-Oppenheimer approximation [46,47]. In many cases, line lists gener-
ated using the BO approximation are of little use [48-53], especially when crossing
between electronic states occurs. On such occasions, an appropriate ro-vibronic
model needs to be constructed. Thus, to continue from the Born-Oppenheimer UV
absorption calculations presented for SO,, we present a general ro-vibronic theory
for the nuclear motion of triatomic molecules, which if implemented, can be used to
generate accurate spectra for any triatomic molecule, regardless of the complexity
of its electronic structure. The thesis concludes on perspective applications of the
methodology used for the calculation of ro-vibrational CO, and ro-vibronic SO,

spectra to other triatomic molecules.

Chapter 2 gives a theoretical background for calculations of ro-vibrational and
ro-vibronic line lists for triatomic molecules based on methodology given by Ten-

nyson et al. [54,55]].

Chapter 3 presents 54 theoretical infrared line lists calculated for 13 isotopo-
logues of carbon dioxide. This chapter opens with a discussion of the motivation
for calculations on CO; in the context of atmospheric science. Next, computational
details and a summary of all line lists are given, which is followed by comparisons
of the calculated line lists (line positions and line intensities) to recent high accu-
racy measurements. Two CO, absorption bands, which are currently used in remote
sensing measurements are selected and analysed in detail in section 3.3. This anal-
ysis, which is done against the most recent and the most accurate intensity measure-
ments available serves as a quality check for the calculations and indicates the very
high accuracy of calculated transition intensities. As a benchmark supporting the

findings of section 3.3, a more comprehensive comparison to popular spectroscopic
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databases is given for all isotopologues. Although each isotopologue of carbon
dioxide is treated in this thesis separately, all isotopologues can be grouped into
the symmetric ones (*O’C*O) and asymmetric ones (*OYC*0), which explains the
organisation of chapter 3. The isotopologue containing the radioactive nuclei '*C
is discussed separately, because of its special role in monitoring of the industrial
activity and extremely low natural abundance.

Along with calculations of ro-vibrational line lists for isotopologues of CO;,
in chapter 3, we present a theoretical procedure for estimation of uncertainty of
calculated transition intensities. This procedure has been found useful in detection
and quantification of the strength of resonance interactions between ro-vibrational
energy levels. In section 3.4 in chapter 3, a theory for ro-vibrational resonance
interactions is developed and utilized to derive the quantities on which the the-
oretical transition intensity reliability analysis, originally introduced by Lodi and
Tennyson [56]], operates.

Chapter 4 contains the description of the theoretical procedure, the potential
energy surface and the transition dipole moment surface used to produce the Born-
Oppenheimer line list for the C 'B, + X 'A; electronic transition in SO,. The
computed line list is then compared against other theoretical approaches as well as
available state-of-the-art measurements, with a perspective for further developments
beyond the Born-Oppenheimer approximation.

Finally, following the demands sparked in chapter 4, the fifth chapter aims at
formulation of the nuclear motion theory for triatomic molecules, which accounts
for all ro-vibronic interactions. This theory builds upon the general nuclear motion
formalism introduced by Sutcliffe and Tennyson [57,58]. A tentative proposition
for the computational implementation of this theory is also presented, with listing

of necessary molecular input functions.
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Chapter 2

Theoretical background

The aim of this section is to introduce key elements of the theory implemented in the
DVR3D program [59] used in generation of the infrared line lists for carbon diox-
ide and the ultraviolet line list for sulphur dioxide. First, a general ro-vibrational
Hamiltonian for a triatomic molecule is derived and expressed in the chosen ro-
vibrational basis set. Next in section [2.4] details of a solution strategy to the station-
ary Schrodinger equation (SE) are given. This strategy mainly relies on a multi-step
diagonalisation-truncation procedure with the use of the discrete variable represen-
tation technique, details of which are also outlined in subsection Finally, we
show how solutions to the ro-vibrational SE obtained with DVR3D can be used in
transition line strength and transition intensity calculations, for which appropriate

expressions are derived in section

2.1 General ro-vibrational Hamiltonian for a tri-

atomic molecule

A general Hamiltonian for the motion of nuclei of a triatomic molecule within the

Born-Oppenheimer approximation is given (in atomic units) by:

3
1
z —V3(x;) + V(x1,X2,X3) (2.1
i—1 Mi

l\.)l*—‘

H(X]7X27X3

where X; is a vector representing three Cartesian coordinates of nucleus i with mass

m; and V(X,Xp,X3) is the potential energy of the system. In computational prac-
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tice, a direct solution to the stationary Schrodinger equation with the Hamiltonian
from eq. is very inconvenient, especially when a large number of solutions is
needed. This is because the Cartesian representation of the Hamiltonian does not
make any use of symmetries of the system. For this reason, it is more convenient to
use a coordinate system in which the internal energy of the system can be at least
approximately decomposed into contributions from individual translational, vibra-
tional and rotational degrees of freedom. Here, this goal is achieved in a number of

steps.

In the first step, the translational motion of the centre-of-mass of the system
is separated. Such separation is possible because of the translational symmetry
of the system in free 3D space, which corresponds to the conservation of linear
momentum [60]. Following Sutcliffe [61]], and Sutcliffe and Tennyson [57], the
Cartesian coordinates of nuclei can be transformed into a translationally-invariant

form, by means of relations:
3
ti= Z X;Vii i=1,2 (2.2)
j=1

where Vj; is a transformation matrix element satisfying the condition: Z;Zl Vii=
0 for i = 1,2. This condition ensures the translational invariance in the set of t;
coordinates, which can now be called the space-fixed coordinate system, i.e. the
coordinate system which moves along with the centre-of-mass of the molecule. In
this new frame, the three translational degrees of freedom of the centre of mass
are fixed and the corresponding kinetic energy operator can be removed, thus one
can focus on the remaining six internal degrees of freedom only. The transformed
Hamiltonian expressed in terms of the t; coordinates reads:

. 1 & 1o, 2

H(t, ty) = -5 Z FV(t,-) V(t) +V(t,t) (2.3)

ij=111]

where %(ti) is simply the Nabla operator in t; coordinate and /.Li;l =¥, my WiiVi j-

Transformation can be uniquely characterized by two independent parameters,
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g1 and g3 in the following way:

V= 1 —21 (2.4)
g—1 gi—1
which are determined from the geometric definition of the internal coordinate sys-

tem [57]], as displayed in Figure 2.1]

A A,

3 P

Figure 2.1: A generalized coordinate system for a triatomic system introduced by
Sutcliffe and Tennyson [57]. A; represents the point at which atom i is positioned.

With this definition, the geometric parameters g; and g, can be written as:

 AsP AR
T AA, 2T aA,

81 (2.5)

and 0 < g1,g> < 1. A3P stands for length of the segment connecting points A3 and

P. Different choices of g; and g; yield different popular types of internal coordi-

mj
mp+m3’

nates: g = g2 = 0 gives Jacobi (scattering) coordinates [59]], g1 =0,g, =0

gives bond-length-bond-angle coordinates and g; = 1 — m,gz =1- %

1
. . _ ’n3 7 _ m2
defines Radau coordinates [62]], with o¢ = (—ml T +m3) and f = s
The choice of internal nuclear coordinates is primarily dictated by the geome-
try, mass distribution and perhaps symmetries of the system. Appropriately chosen
internal coordinates can significantly reduce the computational cost of calculations,

by ensuring fast convergence of the variational procedure [58,63-66]. However, an-
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other yet equally important factor which has to be taken into account when choosing
internal coordinates is the location of singularities, which appear inevitably [58]] in
the ro-vibrational Hamiltonian for any choice of the internal curvilinear coordi-
nates. Thus, it is reasonable to choose coordinates for which these singularities can
be appropriately dealt with or occur at geometries with very high internal potential
energy, so that the wavefunction can be considered as vanishing in these regions.
Otherwise, expectation values of observables and scalar products can be obscured
by a large magnitude numerical noise originating from the singular regions. In
this work we use Radau coordinates [62]], which are suitable for a tightly bonded,
semi-rigid triatomic molecule, such as the CO; molecule. In these coordinates, it
is possible to restrict the singularities in the Hamiltonian to the very high energetic
C-0-O0 configuration or even, in some cases, eliminate these singularities with an
appropriate choice of the basis set [67].

The length and the mutual orientation of the t; and t; vectors determine the

three internal coordinates of the system, whereas directions of t;,t; in space de-

fine the orientation of the molecule with respect to the laboratory (LAB) frame.

The internal coordinates will be denoted as follows: r; = [tj|, » = |tp| and
0 = arccos (ﬁ) Then, the translation-free Hamiltonian from eq. can

be transformed into a Hamiltonian, which is a function of r{,r,,60 and three an-
gles (a,3,7) determining the orientation of the t;,t, vectors with respect to the
space-fixed coordinate system. This can be achieved by means of embedding of the
molecule-fixed coordinate frame, which is mathematically realised by an orthogonal
transformation C of vectors in the space-fixed coordinate frame to a molecule-fixed

coordinate frame:

ti:C~Z,' i:1,2. (26)

The transformation matrix C(a, 8, ) can be expressed in terms of Euler angles only
[60,68,69], which define the three rotational degrees of freedom of the molecule.

Here the zy7’ convention for the choice of Euler angles is used [60].

With the transformation in eq. it is possible to express the Hamiltonian
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from eq. in a form which depends on the internal coordinates ry,r;,0 and
the total angular momentum operators fx,fy,fz. These operators generate rota-
tions associated with the x,y and z axis of the molecule-fixed coordinate frame,
respectively, and can be expressed analytically in terms of the three Euler angles:
o, B,y [60,68,/69]. Now, with the use of the chain-rule the space-fixed Hamiltonian
(eq. can be transformed into the molecule-fixed Hamiltonian, with algebraic
methods presented in refs. [57,58,61]]. The final molecule-fixed Hamiltonian is

given by:

H(ry,r,0,a,B,7)= A\(/U(rl,rzv9)+u1}113‘(/2)(71,”2,9)+13VR(r1,r279705713,}’)+V(r1,r279)

2.7
where:

~(1) __1 1 J 2 d 1 i i
v (r,r,0) = Z[Ltlr] <8r1 8r1+sm9808m039 - )3
b 1 o 3 J +—1 is1n9i -

'uzrz 8r2 8r2 sin® 00 a6

) - 92 cos@ [/ 1 0 dJ
y (r1,m2,0) = cosGar18r2+ rir (st 20 Sm099 * 2.9)
+sin@ Lo -I-li'i‘L i |

r18r2 rpdry  riry) 06

KVR(”l r2,9 o ﬁ ’}/)

! M
2 XX
+1 l—a d Cot 2a—1 cosB 0 N 1 n
I ulrl ‘u2r2 26 [,lerlrz 00 2sin6 (2.10)

+S1n9 (ﬁi_(l—a)i)}fy

Hi2 \720r; r dnr

here J; are the molecule-fixed angular momentum operators, obeying the standard

commutation relations [f,, JA]] =g jkfk (where €; j 1s the totally antisymmetric Levi-
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Civita tensor). Mg are the elements of the inverse generalized moment of inertia
tensor, given explicitly in ref. [70]. In derivation of eqs. [2.§]- it was assumed
that the molecule is located in the x—z plane of the right-handed (det(C) = +1)
molecule-fixed coordinate system. The Jacobian associated with the space-fixed to
molecule-fixed transformation is given by r2r3sin 6. Here a € [0, 1] determines the
orientation of the molecule-fixed z-axis with respect to the direction of r; (more
specifically r; makes an af angle with the z-axis). In this work, we are using
orthogonal coordinates only, which by definition give u1_21 =0 [57]. This causes
the second term in eq. to vanish. The last term in eq. V(ri,r,0) is
the potential energy surface (PES) for a given electronic state, defined as the total
electronic energy in this state for a given configuration of clamped-nuclei.

With the ro-vibrational Hamiltonian in hand, let us write down an Ansatz for

the eigenfunction of the ro-vibrational SE:

|‘P%)> = ZC,(,}? D yor,i) | Prib,1.i) (2.11)
il

where index h enumerates solutions to the stationary SE and i,/ stand for general
indices characterizing the rotational and vibrational basis states, respectively. Note
that in the DVR3D procedure the vibrational wavefunction is also indexed with
quantum numbers referring to rotational basis states. Such a rotation-vibration cou-
pling scheme was chosen to ensure proper handling of singularities appearing in the
ro-vibrational Hamiltonian. Below, we are going to show how DVR3D solves the
stationary SE with the Hamiltonian given in eq. and the variational wavefunc-
tion given in eq. First, let us inspect the rotational degrees of freedom in the
wavefunction.

In general, the rotational degrees of freedom cannot be separated out from the
internal degrees of freedom of the molecule, as shown in eq. [2.10} But because the
angular momentum operators J; depend on the Euler angles alone [71]), it is feasible
to employ a spectral representation of the symmetric-top model Hamiltonian [60]
for the rotational degrees of freedom (eigenfunctions of J? and J>). In the position

representation of the Euler angles the symmetric-top Hamiltonian eigenvectors can
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be expressed as followﬂ

2J+1
812

[k, M) = (=1 D31, B,7) (2.12)

where .@1{4’]((06 ,B,7) is the Wigner rotation matrix [72]. Here J stands for the total
angular momentum quantum number, k = —J,—J+1,...,J — 1,J is the projection
of the total angular momentum on the z-axis in the molecule-fixed coordinate frame
and M is the projection of the total angular momentum on the z-axis in the space-
fixed coordinate frame. The rotational symmetry ( O(3), which with the choice of
orientation of the coordinate system becomes SO(3) ) of the ro-vibrational Hamil-
tonian guarantees independence of the ro-vibrational energy levels of the M quan-
tum number. For this reason, a shorthand notation for the rotational basis func-
tion will be used |J,k,M) = |J,k). The complete basis set of 2J + 1 functions:
{|J,k) }k=—s,... s is used to perform analytical integration over the rotational degrees
of freedom a,f3,7 in the ro-vibrational Hamiltonian given in eq. yielding a
set of effective Hamiltonians depending only on three internal coordinates describ-
ing the vibrational degrees of freedom, and parametrized by the J and k quantum

numbers:

Bl (r,r2,0)80; = (J K |A(r,r,0,0,B,9).k) 05y (2.13)

here J is a good quantum number associated with the invariance of the ro-vibrational
Hamiltonian to 3D-space rotations, but k in general is not a good quantum number
for a triatomic molecule. k only becomes a good quantum number, associated with
the J. operator, when the molecule is in its linear geometry (symmetric-top) or all
Coriolis-couplings (Kyg) are neglected. Without utilizing any further symmetries,

one arrives with the effective vibrational Hamiltonian in the form:

FI]}]’k(rh’Q?e) = 8k/k (I%V(rer;e)_'—V(rler;e)) +[€VR(rl7r279> (214)

Inote that the ”=" in equation is informal, as we are equating an object from the Hilbert
vector space . to a function from .#2. These distinct spaces are are isomorphic, and in this sense
equation2.12]should be understood.
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where
Ro(rmoy— L[ L2 L (1 1N 19,0
V\Fr,r2, - 2 .u,lr%ar% uzr%al’% ‘uIr% ‘LLZI’% sin@ 00 a0
(2.15)
. 1 1 1
Kyg(ri,r,0) = Sk’kiZZCﬁi1Cﬁb* +6k/ki1§Cﬁ;Li +5k’k§ (b+(.](]+ 1)— kz) +b()k2)
(2.16)
with
1 d cotb I\ zwzp
AT = l—a)| ==+ )+(kﬂ:—) 4
/.Llr% F )(89 2 2 r%sinze 217
1 d coth I\ zxza .
+— |Fa | ==+ + |kt '
Hz”%[ (ag 2 ) ( 2) r%sinze
and
CE = [J(J+1)—k(k=£1)]?, (2.18)

Mo +M
bi=¥, bo = M,

the z, type terms are elements of the molecule-fixed coordinates matrix defined
in eq. The ro-vibrational Hamiltonian in the present form takes infinite
values for 8 = 0,7, due to ﬁ terms appearing in both its vibrational and ro-
vibrational part. Sutcliffe and Tennyson suggested [58]] that these singularities can
be, at least partially, eliminated with the use of the associated Legendre polyno-
mial basis | jk) = P}‘kD (cos 0) for the bending motion. Additionally, this basis cou-
ples the rotational motion through the & quantum number. Indeed, such effectively
rotation-vibration coupled basis results in cancelling of the singular terms in the ro-
vibrational Hamiltonian for certain embedding types. Integration over the bending
coordinate, with the chosen basis in the phase convention of Condon and Short-

ley [73]] further simplifies the effective operators to the radial-vibrational form:
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ﬁ(l”] , rz) = 5ka <KV(F1,F2) —|—VJZ§J~(}’],I’2)> —i—I%VR(r] , I’z) (2.19)

[e(r r)__5._|:_ia_2_ia_2+l‘(‘+])( +L):|_
Vithia TT 2 ar? 2y dr3 2/ wri pors (2.20)
5 () Vg
2 \ w2 wr? T 20
bisector bond

Figure 2.2: Two types of embedding of the molecule-fixed coordinate frame used
in DVR3D calculations. Aj,A;, A3 stand for labels of atom 1, 2 and 3, respectively.
r1,r2, 0 are Radau coordinates. The molecule-fixed axis system is centred at the
nuclear centre of mass of the triatomic system. However the point at which Radau
coordinates originate is a geometric mean between the distance from atom A3 and
the centre of mass for atoms A; and A, and the distance from the nuclear centre
of mass to the centre of mass for atoms A; and A;. In the bisector embedding the
x-axis bisects the 0 angle, whereas in bond embeddings the z-axis is parallel to the
r1 or rp coordinate.

The form of the rotation-vibration operator Kyz(ri,r2) depends on the em-
bedding chosen. Here two cases are considered: bond embedding (a = 0,1) and
bisector embedding (a = %). Both types of embeddings are depicted in Figure
From now on we are going to use Radau internal coordinates [62]], which are also
displayed in Figure [2.2] The bisector embedding of the molecule-fixed frame will

be used to calculate ro-vibrational line lists for the symmetric isotopologues of CO;
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whereas the bond embedding will be used for the asymmetric isotopologues of CO,

and for calculation of ro-vibronic spectra for SO,.

Bond embedding. In bond embedding the z-axis in the molecule-fixed coordinate
frame lies along t| (a = 0) or t; (a = 1). The vibration-rotation part of the KEO is

then given by

1 1

2 — 2 + ~t
KVR(I"],VZ) = —Sj/Jak/km(J(J“f— 1) —2k ) — 6j/j5k/kilmclkcjk (221)

Bisector embedding. In the bisector embedding the x-axis of the molecule-fixed
coordinate frame bisects the angle between t; and t; (a = %). In such case, the
rotation-vibration KEO couples states with ¥’ = k41 and k¥’ = k42 and can be
split into three parts:
o(1) 1 2 (L L\,
ri,r) = Ou=(J(J+1)—3k <—+— I, .+

1 1 1
§uibyi—JUI+1)—k) [ — +—
+Op'k jj16< ( + ) )<.LL1F%+.U2F%>

(2.22)

+
2(2) _s Cir (1 1 5,05+ (k+ 1)@ 2.23
VR(rl,rz)— k’kilT uzrﬁ_m_r% i'J jk+ 5 JK jk (2.23)

o (3) _ - 1 1 () 40
vr(r1,72) = Oui2Crrs 1 Crk <,u2_r% + ,LLlr%> (ZIj’k’jk _Ij’k’jk) (2.24)
where
10— (R — i) (2.25)
J'K jk 1—cos@
2 . 1+cos6
I]("k)’ =¥ ng |jk) (2.26)
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I = (%K) (2.27)

Coming back to the general embedding, both operator matrices [2.15| and [2.16] are
diagonal in J, and the rotation-vibration coupling operator in eq. have a strip-
pentadiagonal structure in k, meaning that it can have non-zero elements only two
rows or two columns away from the diagonal. Such structure allows for an effi-
cient computer implementation, which will be described in section 2.4 The final
form of the rotation-vibration operator depends on the embedding chosen, which
is reasonable, because individual moments of inertia and the magnitude of the
rotation-vibration coupling strongly depend on where the molecule-fixed axis is
placed. A common choice for the molecule-fixed embedding is the so called Eckart
frame [60]], which by definition minimizes the coupling between rotations and vibra-
tions. Here however, only embeddings fixed to a chosen set of internal coordinates
will be used; these have been shown to be sufficient for highly accurate nuclear
motion calculations [32,/37-39,67,74-77]. Of course, one could be concerned that
a fixed embedding of the molecule-fixed frame will result in poor convergence of
energy level calculations. The Eckart embedding comes to mind naturally. How-
ever, first of all, with the Eckart embedding the form of the kinetic energy operator
becomes complicated [78-81]. Secondly, the Eckart frame is not suitable for very
floppy systems and no advantage could be gained over the fixed embeddings for
such systems [82,[83]]. Finally, an efficient algorithm by Tennyson et al. [59], for
solution to the ro-vibrational SE, presented in the following sections, diminishes the
drawback of the non-minimal rotation-vibration coupling. All in all, a good level of

convergence can be achieved with the fixed embeddings too.

Having the effective vibrational Hamiltonian derived, the next step is to choose
a vibrational radial basis, for calculation of the matrix elements of the operators in
eqs. [2.21H2.24] The next section gives a brief description of available radial basis
sets in DVR3D, as well as summarizes on the total ro-vibrational basis. After the
choice of the vibrational radial basis, the resulting Hamiltonian matrix needs to be

diagonalised, to obtain expansion coefficients in eq. and ro-vibrational energy
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levels. Details of the diagonalisation step are given in section [2.4]

From the computational perspective, the reduction in the number of degrees of
freedom, from 9 Cartesian degrees of freedom to three effective vibrational degrees
of freedom labelled by rotational quantum numbers is a huge improvement. This
improvement however comes at a cost of singularities arising in the ro-vibrational
Hamiltonian and the complicated form of the kinetic energy operator. On the other
hand, as we expected, in the internal coordinates framework it is easy to identify vi-
brational, rotational and rotational-vibrational parts of the Hamiltonian, thus physi-

cally motivated approximations can be made at hand.

2.2 Ro-vibrational basis set

Following the previous section (cf. eq. 2.11]), the trial variational wavefunction for

DVR3D can be generally written as:
} h
W) =Y ) |@on, ) [Py 1.i) (2.28)
il

For the rotational degrees of freedom the complete symmetric-top eigenbasis was
chosen |®,, ;) = |J,k). Each vibrational basis wavefunction |®,;,; ;) is factorized
into three independent sets of primitives, each depending on a single vibrational
coordinate: |®,;,; ;) = |m)|n)|jk). Then | =m,n, j,i = J, k. For the bending vibra-
tional motion the associated Legendre polynomial basis is used | jk) = P](k) (cosB).
The combined angular-bending basis set | P,y pend) = |/, k)| jk) is an eigenbasis for
the J? and J; operator. For the product radial-vibrational basis |m)|n) (where |m)
refers to the r| coordinate and |n) refers to the r, coordinate) two types of functions
will be considered: the Spherical oscillator basis [59,84] and the Morse oscillator-
like basis [59,84]. The Morse oscillator-like basis is defined as:

a+l x(r)
2

In) = NuaB2LE(x(r))x(r) T e™ (2.29)

with
x(r) = Ae Plr=re) (2.30)
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where 1

_4De g (Y
N pea(a) @

o has been defined by Tennyson and Sutcliffe as the integer part of A [[59,84,85].

With this definition, the Morse oscillator-like functions |n) constitute a complete
orthonormal basis set, a property which is missing in the ’standard” Morse oscillator
eigenbasis. Here N, L% (x(r)) is a normalised associated Laguerre polynomial and
u is the reduced mass related to a vibrational coordinate. @y and D, are standard
Morse potential parameters, related to the width and depth of the potential well,
respectively. The number of bound states for the Morse oscillator is the integer part

A—1
of 5 -

Note that the Morse oscillator and Morse oscillator-like basis do not vanish
at r =0 (x(0) = AePre), as one may expect. Nonetheless, in the r = 0 region the
Morse potential increases rapidly, making it almost un-explorable for the wavefun-
cion. Moreover, the value AeP’ is typically large enough for the exponent factor
in eq.(2.29) to damp other factors almost to 0. Hence, without significant loss in
accuracy it is possible to replace the finite boundary value AePre with 40 in inte-
grations, making them analytically feasible. Thus, the Morse oscillator-like basis is
applicable for r # 0. Whenever a vibrational coordinate has a chance to penetrate
regions near » = 0, the Morse basis set can give inaccurate results; is it then more

suitable to use the Spherical oscillator basis set defined as:

1 o x(r
n)y=N,,, +%2% BILY 2 (x())xF e P (2.32)
with
x(r) = Br? (2.33)
where
1
B = (nay)? (2.34)

The Morse-like oscillator basis set depends on three parameters: D., @y and r,

and the Spherical oscillator basis set depends on parameters: o, . These pa-
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rameters can be considered as non-linear variational parameters, and should be
optimized. Such optimization is performed for CO; in section [3.3.3] in chapter
3. At this stage, the full Hamiltonian matrix is labelled by the following indices:
J,k,m,n, j, meaning that for a chosen J, the Hamiltonian has the dimension of
(2J4+1) x Ny, X Ny, x Ng, where N, ,N;, and Ny are sizes of 1D vibrational basis
sets associated with coordinates ry,r, and 0, respectively. The size of the vibra-
tional basis set is system-specific and is chosen to ensure an appropriate level of
convergence of energy levels. Further reduction in the vibrational basis set size can

be made with the use of symmetries of the system.

2.3 Additional symmetries

From the perspective of computational efficiency one usually should utilize all rel-
evant physical symmetries of the system, so that the Hamiltonian operator acts
acts irreducibly in Hilbert space spanned by the ro-vibrational the basis functions:
|J,k)|m)|n)|jk). In other words, we want to find a complete set of observables com-
muting with the Hamiltonian. Such an operation is also usable from the point of
view of spectroscopic assignments, which are based on all good quantum numbers
of the system. It is thus convenient to have the ro-vibrational wavefunctions labelled
by all good quantum numbers of the system. The variational basis set defined in the

previous section can be written as:

J
=Y Y ¢ 11K |m)[n)] k) (2.35)
k=—Jm,n,j

The parity operation E*, which is a feasible symmetry operation for all
molecules EI, can be used to construct a symmetry-adapted basis, which further fac-
torizes the Hamiltonian matrix and introduces spectroscopically an important sym-
metry label. The parity symmetry operation transforms states with k quantum num-
ber into states with —k, and vice versa: which in the classical picture means that the
clockwise and anti-clockwise rotation of the molecule around the molecule-fixed z-

axis is energetically equivalent. For this reason, it is convenient to symmetry-adapt

%if *weak nuclear interactions’ are neglected.
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the rotational-bending basis, by means of the following unitary transformation:

9KoJip) = e M @ (L0 + (PR @36
where the new quantum number p = 0, 1 is associated with the parity symmetry of
the ro-vibrational state and determines the e¢/f Wang labels (p = O for the e state
and p = 1 for the f state); now K = |k| takes integer values from p to J. In such
a basis, only positive values of k can be considered and the full Hamiltonian is

factorized into independent blocks with p =0 and p = 1 of dimension J + 1 and J,

respectively.

For triatomic symmetric XY, molecules for which the molecule-fixed axis
system is chosen so that the x-axis (or z-axis) bisects the Y-X-Y angle [[67]], an
additional symmetry can be utilized to simplify the Hamiltonian matrix: the per-
mutation symmetry of identical nuclei Pj,. The permutation operator interchanges
r1 and rp coordinates, hence effectively acts on radial vibrational basis functions.
For this reason, the radial-vibrational basis set can be unitarily transformed into its

symmetry-adapted form:

1
m,n,q) = N ) (Im) @|n) + (=1)m) @|m)), ~ m=n  (2.37)
where |m) ® |n) stands for the tensor product of vibrational basis states associated
with the first 7; and the second r; stretching Radau coordinate, respectively. m and
n label the 1D basis states. The new vibrational parity quantum number takes two
values: g = 0 for ’even’ vibrational states and g = 1 for ’odd’ vibrational states.
Note that the character of the permutation P, of identical nuclei acting on the basis

state in eq. 1i 1s (—l)q“‘ and the character of the parity E* operation acting on
the basis state in eq. (2.36) is (—1)7*/.

Utilization of the rotational parity and the vibrational parity decomposes the
Hilbert space of the problem into simple sum of four independent sub-spaces for

each J: %’;,{q ®<%i7{1—q @Q%ﬂlj_p’q @%ﬁj_m_q. This allows to run calculations in-
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dependently in each of these reduced subspaces. Mixing of these reduced Hilbert
spaces occurs when we consider the electronic dipole moment operator fl,; in tran-
sition intensities calculations. Then, [l,; mixes subspaces according to rigorous

selection rules: |Ag| =1 and for A7 = 0: |Ap| = 1 and AJ = £1: |Ap| =

With the above transformations, the final ro-vibrational basis set used in the

present implementation of DVR3D is given by the expression:

/. h,p,q) Z Y, CPm,n,q) @ |J,K. j, p) (2.38)
=pm,n,j

This basis will be used to calculated matrix elements of the Hamiltonian in eq.

2.4 Strategy for solution

As we could see in the preceding sections, the total ro-vibrational Hamiltonian
matrix is constructed gradually by integrating over rotational, bending and radial
stretching degrees of freedom. Direct calculation of the matrix elements of the
KEO and the PES in the basis presented in eq. [2.38]is impractical, and becomes pro-
hibitive for higher J values. For this reason Sutcliffe and Tennyson proposed a two-
step procedure of diagonalizing the ro-vibrational Hamiltonian matrix [67},86,87]].

In the first step a Coriolis-decoupled Hamiltonian is considered:

Hy = 8k g Kv + Sk g Koy + S 'V (2.39)

and the respective SE is solved with K = |k| = p, p+1,...,J as a good quantum num-
ber for each J separately. This approximation is valid for any system with negligible
Coriolis coupling, which mixes states with different K. With these assumptions, the

solutions to the SE in the first step can be written as:

Kby =Y, P, g) @ \1,K, j,p) (2.40)

m,n,j

h).K

with the corresponding energy levels £/-()-K-P-4_ For a chosen J it is necessary to

solve only J + p nuclear motion problems for K = p,1,....J.
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In the second step, solutions to the first step are used as the variational basis.
Typically, good convergence is achieved with even very contracted basis set from
the first step, because the Coriolis-decoupled basis captures the majority of physical
information about the vibrational motion, hence becomes an excellent basis. For
this reason, one can usually choose only a small percentage of solutions from the
first step to achieve a good convergence level. The final wavefunction mixes states

with different K’’s, as suggested by the form of the Kyr operators:

J J
7h7 ? ’ h W .
Jhp.g)= Y KN pa Kn)y = Y Y Gl mong) 910K, j.p)
K

K=p =pmn,j
(2.41)
where in the last equality we retained the form of the wavefunction from eq. [2.38]
The first step of solving the ro-vibrational SE sketched above is implemented
in the "DVR3DRIJZ” program [59,67]. It uses a discrete variable representation
(DVR) to obtain values of the matrix elements of the Coriolis-decoupled Hamilto-
nian. Below, in a nutshell, we will therefore introduce the essential basics of the

DVR theory. Next, we shall discuss the second variational step implemented in

programs Rotlev3, Rotlev3b or Rotlev3z, depending on embedding used.

2.4.1 The DVR technique

The discrete variable representation (DVR) is a technique originally developed by
Harris et al. [88] which was later implemented by Light er al. [89,90] to solve
quantum-mechanical problems in the nuclear motion theory. In this technique the
physical space is discritized and respective quantum-mechanical quantities are de-
fined on a finite grid of points.

The reason for using DVR, in a nutshell, is that the DVR technique produces
sparse matrices, which can be efficiently diagonalised by iterative algorithms. Al-
ternatively, if one utilizes a two-step procedure like the one proposed by Sutcliffe
and Tennyson [67,[86}87], it has been shown by Lee ef al. [91] and Bramley et
al. [92]] that a DVR can provide an optimal contracted basis, such as the one pre-

sented in subsection It is a matter of choice, whether to choose the former
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or the latter convenience coming from DVR [92]. Combining the DVR technique
with a two-step variational procedure gives much better convergence than in the
standard single-step variational approach. In addition to that, with DVR, there is
no need for calculating N(N + 1)/2 matrix elements in the potential energy part of
the Hamiltonian matrix. Below, given is an introduction to the DVR, oriented for
the purposes of use in DVR3D. Here we shall not follow any textbook derivation of
DVR, but rather introduce a natural, in author’s opinion, way of defining it in terms

of quantum mechanical transformations.

Historically, the first discrete variable representations were based on orthogo-
nal polynomials used in solutions to the SE for model systems, e.g. Harmonic oscil-
lator (Hermite polynomials) [93]], Hydrogen atom (Laguerre polynomials), Morse
oscillator (associated Laguerre polynomials) [94,95], particle in the square potential
well (Chebyszev polynomials) or Legendre Polynomials for problems with spher-
ical symmetry. Nonetheless, there are many more types of DVRs and their use
is currently much broader than molecular spectroscopy, see reviews by Light and

Bacic [89]], and Light and Carrington [90] or Szalay [96].

In the variational basis representation (VBR), matrix elements of the potential

energy operator are given by

)~ [ vt

where an orthonormal basis set {¢;};—1 ..y was chosen. Let us transform this vari-
ational basis into a new basis, which we will be calling the Exact Discrete Variable
Representation’” (EDVR). The word exact suggests here complete equivalence of
EDVR to the original variational representation. The VBR-EDVR basis change is

defined as follows:

(do(x),d1 (x), s dn—1(x)) = (90(x), B (x), e, o_1 (x)) T (2.43)

where d;(x) is the EDVR basis, which contains functions localized in space around

certain points. We are aiming at transformation from a usually diffuse variational
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basis to a basis which is highly localized around given points in space, and in the
limit of the complete basis set, these highly localized functions become Dirac deltas.
With this target in mind, now let us postulate a general form for the transformation

T, by means of some chosen N coordinate points, {x;}i—o . N—1:
Tik:tk(Pi(xk)» i,k=0,1,....N—1 (2.44)

where #; is yet to be determined and ¢;(xy) is the value of the basis function ¢;(x) at
point x;. Note that up to now all functions are defined over the continuous variable
space. A physical requirement of the equivalence of the EDVR and VBR basis sets
means that we demand quantum mechanical scalar products to be identical in both

representations. This is achieved by imposing the condition thath the transformation

[2.44]is unitary:

N—1
T =1= (TTT) =X 120:(x0) 0 (x) = 67 (2.45)
! k=0

Because TT' = 1 and we assume a priori the existence of the inverse of T, we have
T' = T, hence the relation T'T = 1 appears as a corollary. In other words, if the
relation [2.45] holds, ’the other’ relation must be satisfied as well, for transformation

T to be unitary:

T'T=1= (T'T) = Zzgmjm(xi)q;k(xj) =& (2.46)

The next step is to find a complete set of functions satisfying eq. There
are probably infinitely many possible solutions to this equation. Historically, Gaus-
sian quadratures were first associated with DVR by Harris et al. [88], Dickinson et
al. [97]] and Light et al. [98]. The DVR3D procedure uses only Gaussian quadrature-
based discretization schemes (DVRs), thus here we only discuss Gaussian-type
quadratures. For further reading refer to [89,90]]. In this light, it is useful to re-
gard the sum in eq. [2.46]as a Gaussian quadrature. The sum in eq. [2.46] a has

similar form to the Gaussian quadrature associated with integral [ ¢;(x)¢;(x)dx.
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Such N-point quadrature is exact for polynomials up to degree 2N — 1. Therefore,
it is natural to define ¢ as a product of some orthogonal polynomial p(x) and an
associated positive weight function ®(x), imposing the relations to be

exact.

=V o(x)pi(x) (2.47)

The square root of the weight function @(x) is to ensure the proper orthogonality
relation for ¢. The form of #; can be now easily guessed: t; = , /%, which

entails

N—1 b
<TTT>U~ = ) Aipix)pj(xe) = /a o (x)pi(x)pj(x)dx = & (2.48)

where A; are weights associated with the N-point Gaussian quadrature based on
orthogonal polynomials p(x). The above sum represents a Gaussian quadrature for
the overlap integral (scalar product) of orthogonal polynomials, and is computed

exactly. The second orthogonality relation then reads

(TTT> Z A () pic () = 8 (2.49)

which yields the following sum rule:

() pi(x) = —= (2.50)
k=0 ! AA;

At this stage we have fully defined a unitary basis transformation in N-element
space over the continuous variable physical space (function space). Formally, for
a chosen operator V the EDVR-VBR transformation can be written in the matrix
form [}

VEDVR — TTyVBRT (2.51)

3Note that by definition [, ab 0(x)pi(x)pj(x)dx = &;
“Because the basis transformation is defined as d; = Y, T and (d;|V|d;) = Vl.jDVR =

Y T 9V [9) Thj = (TTVYPRT)
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The EDVR basis functions are localized around the associated quadrature points.
The type of quadrature is dictated by the choice of the orthogonal polynomial p(x)
and the exact location of points is given by the order of the quadrature N. Local-
ization is more effective as the number of basis functions (quadrature points N)
increases, and in the limit of the infinite basis EDVR functions become Dirac delta

distributions [99]:
VEDVR /d x)dx — /5 x—x;)V(x)8(x—xj)dx =

here the d;(x) basis functions are defined over continuous domain, localized in dis-
crete points and packed infinitely densely one next to another. All above relations
between DVR and VBR are exact, since we operate within a limit of infinitely
dense quadrature nodes (i.e. continuous representation). Because the EDVR and
VBR basis sets are unitarily connected, they are quantum-mechanically equivalent
(i.e. all scalar products and expectation values of observables are equal in both basis
sets). Truncations in the VBR basis implies non-perfect-localization of the corre-
sponding EDVR basis. For this reason, in computational practice, when a finite
set of variational basis functions is used, eq. is satisfied only approximately:
(VPVR) ; & V(x1)0;j. The matrix of the potential energy operator in ’finite basis
EDVR’, which is simply called 'DVR’, is not exactly diagonal, however the off-
diagonal elements are assumed to "be small’ (smaller and smaller for larger basis
size). In computational practice, the physical space is always discretized. For this
reason, it is usually necessary to choose a discrete set of points in physical space
over which scalar products are computed. In DVR, for this purpose the set of Gaus-

sian quadrature nodes {x;};—o_.y—1 is used.

Recall the EDVR-VBR transformation:

N—1
x) =Y Tjig;(x) (2.53)
j=0
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In discrete coordinate space, for x; # x; we have

N—1
xe) = Y, VAo () pj(x)pj(x) (2.54)
j=0
and on account of relation we find

ik (2.55)

It means that the DVR basis vanish everywhere except in one quadrature node,
where it takes a non-zero value determined by the type and size of the quadrature.
We shall take advantage of this fact by defining the physical space spanned over
those quadrature points. In a continuous representation, basis functions generally
take non-zero values between discrete points, however they tend to be smaller with
increasing distance to the central point. Such choice of grid points justifies the

following approximation to the matrix elements of the potential energy function:

b
VEDVR <d (X) dx ~ VDVR

Ap — Xk
6 V Jk_ xl l]

(2.56)

Because the definition of DVR, given in eq. mixes the coordinates space and
functions space, the discretization of space can be viewed from two perspectives.
One of them is to look at the VBR integrals as finite sums, exactly as the Gaussian
quadrature does. In this sense, the finite number of elements in the sum representing
the VBR integral is associated with discretization of space in the corresponding

DVR:

N-1 N-1

(vVBR) VR = k;) — ()’;w o)V (1) 9 () kg TV (x)Tf;  (2.57)
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and the last sum is equivalent to matrix element of product of three matrices:

(VFBR) = NZI TyV (w)T], = (TVDVRTT) (2.58)

k=0 ij
Such a representation of the potential energy operator matrix is called Finite basis
representation - FBR. Finite basis representation changes integral representation of
the inner product into discrete inner product deified by corresponding quadrature
nodes. The FBR is totally equivalent to the DVR, because the two are related by a
unitary transformation, which preserves the inner product, hence do not change the

mean values of observables of a system. Of course, VPVR remains diagonal
VPR — diag(V(x0),...,V(xy_1)) (2.59)

hence T is a unitary transformation matrix from the finite basis representation to
the discrete variable representation basis, where the potential energy (and all local
operators) matrix is diagonal. Note that after diagonalization the quadrature points

often need to be scaled to represent physical quantities.

To sum up, we postulated the form of VBR — DVR basis transformation, with
the requirement of unitarity, which led to the appropriate transformation of operator
matrices. Orthogonal polynomials were chosen as trial VBR functions, for which
the Gaussian quadrature integration could be performed exactly. Thus, for functions
of the position operator which are in the form of sufficiently low order polynomial
(N or lower), the FBR integrals are exact, which entails that the DVR pointwise
representation of these operators will also give the exact result. When this condition
1s fulfilled the DVR can be considered variational. However, matrix elements of
non-local operators and non-polynomial position operators can be evaluated only
approximately, which renders the DVR technique as non-variational. Whenever
the FBR or DVR matrix elements are non-exact, it is possible that the variational
principle (MacDonald’s theorem [100]) is not satisfied. A FBR usually uses extra
quadrature points to ensure variational behaviour. A summary of this section is

displayed in Figure where a scheme is given relating EDVR, FBR, VBR and
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DVR.

{ VBR } Gaussian o
@ quadratures 8 8
EDVR T VB Unitary basis g3
V =TV RT change 83
Orthogonal LS
polynomials S
| EDVR |
| Almost perfectly | Almostiexact @
localized basis
Zeros in quadrature
points
N — 400
Discretization of space:
grid points = quadrature nodes
{ Dirac Delta } [ Exact ]
FBR

@ VFBR =TVDVRTT

‘ Local operators
DVR |:> diagonal

Figure 2.3: A general scheme for the VBR-DVR transformation.

2.4.2 Product approximation

The DVR-FBR transformation can be derived from yet another, more practical point
of view. This approach is called product approximation [90] and it provides a pro-
cedure for generating the DVR-FBR transformation matrices by means of diagonal-
isation of the position operator matrix.

In general, the position operator matrix is of infinite size, as the position oper-
ator X is unbounded and acts irreducibly on the Hilbert space (in other words the
largest invariant subspace of the Hilbert space for the position operator is the full

space). In the VBR the matrix elements of X are written as:

@WR /@ ) (x)dx ~ Z 0155 () = Ty T, (2.60)
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As long the (XVBR)I.J. matrix is truncated to size N x N and the basis functions are
orthogonal polynomials of degree N — 1, the integrand is of degree 2N — 1, and
can be evaluated exactly by a Gaussian quadrature. It means that T matrix diago-
nalizes position operator matrix in the orthogonal polynomials basis. As a result,
eigenvalues of X in this basis correspond to quadrature points and the diagonalising
x VBR

transformation matrix is related to the quadrature weights. Diagonalisation of

unambiguously defines the DVR.
XPVR _ pTXVBR (2.61)

The VBR representation of the position matrix in the orthogonal polynomials basis
is straightforward to derive, on account of three-term recurrence relations for or-
thogonal polynomials and the position operator matrix is tridiagonal. In practice,

diagonalising this matrix is the most efficient way of finding a DVR.

At this stage a few obvious questions arise: how does the Gaussian quadrature
(FBR) approximation refer to the present position operator derived basis? Are these

approaches equivalent? Is there any advantage of using one over another?

Following Harris et al. [88] VVBR can be approximated with:
VVBR Ly (XVBR> (2.62)
It is postulated that such approximation is equivalent to the FBR approximation:

v (XVBR) — VFBR (2.63)

In other words, we replace the matrix element of a function of the position operator

with the same function of the matrix element of the position operator:

(W) IV () [y (x)) = V ({yi(x) X T (x)) (2.64)

If we assume that the potential energy function is expandable in a power series, then
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within a given radius of convergence we may write:

~+o0
=) " (2.65)

n=0
and in the postulated FBR approximation matrix elements of potential energy read:

foo n
V(XVBR) = V¢, <XVBR) (2.66)
n=0

On account of relation the VBR monomials in the position operator take the

form:
<XVBR> <TXVBRTT> —T (XDVR> T (2.67)

where orthogonality of T matrix was used. As long as XPVR is diagonal, so is its

n—th power. Finally,

\ (XVBR> —T (f cn (XVBR>"> Tt (2.68)
n=0
proves the equivalence of the product approximation with the Gaussian quadrature
approach. The inherent error of DVR(FBR) approximation lies within the approxi-
mation from eq. To show it more explicitly, let us point that matrix elements of
the potential energy function are built from terms containing powers of the position
operator. As the Hilbert space is complete (as well as our orthogonal polynomial ba-
sis set) it is possible to decompose the matrix elements of n-th power of the position

operator into a sum of products of n matrices:

~+oo

(W) " |y;(x)) = Z<Vf:( ) o () (o (x) x| W () =

k=

oo (2.69)
Z Z Wi (x) x| o, (%)) (o, (x) x| ot () - (ot () x| (x))

Now by truncating the resolutions of identity inserted in between the position oper-
ators we formally conduct an approximation equivalent to the Gaussian quadrature

approximation. Infinite matrices in eq. [2.69] are replaced with truncated matrices,
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and the product approximation is retrieved:

+oo n
Y Jou, (0) (o, (x)| = Y o (x)) (o, (x)]
ks=0 k=0 (2.70)

(W) [y () ~ [TXVPR = (xVBR)”

=1

Note a close relation to eq. (2.57), where the infinite dimensional scalar product

(integral) is being replaced by a finite dimensional one.

To conclude, diagonalization of the position operator matrix is equivalent to
applying a Gaussian quadrature to VBR integrals. In other words Gaussian quadra-
tures and the product approach are operating at exactly the same level of approxi-

mation and can be used interchangeably.

2.5 The Hamiltonian operator

In an ideal case, the ro-vibrational Hamiltonian can be represented in the VBR, with
its matrix elements evaluated exactly. In computational practice, the error in varia-
tional calculations is due to truncation of the matrix and approximate calculation of

the matrix elements.
Diagonalisation of the VBR Hamiltonian gives energy levels and wavefunc-
tions in the form of expansion coefficients
Hio® = BTHYPRB (2.71)
where the transformation matrix B diagonalizes H"2R. The kinetic energy opera-
tor for a triatomic molecule, as discussed in section contains first and second
derivatives with respect to internal coordinates, as well as functions of these coordi-
nates. In this case, matrix elements of the KEO can be calculated analytically in the
VBR, which is discussed in detail by Szalay [101]. Then why not to use the VBR
for solving the whole nuclear motion problem? First of all, a very efficient basis set
contraction is possible with combination of DVR and a two-step variational proce-

dure discussed in subsection Secondly, in the VBR one is required to calculate
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(N + 1)N /2 matrix elements of the potential energy function, which is sometimes a
formidable task. In the DVR on the other hand, one needs to calculate the values of
the potential function at many different grid points.

With the above motivation, the VBR Hamiltonian is transformed into a DVR,

which can be formally written as
HPVR — TTKVBRT | yDVR (2.72)

where VPVR — digg(V (xg),...,V(xy_1)). Thus, whenever the matrix elements of
the KEO can be computed analytically in the VBR, the only action needed is trans-
formation of this matrix into the DVR representation. Finally the DVR Hamiltonian
needs to be diagonalised. The procedure for multi-step construction of solutions to
the stationary SE and sequential diagonalisation in DVR3D is described in the next
two sections. We conclude this section with a sum-up equation relating the VBR,

FBR and DVR Hamiltonian:

HYER ~ H'PR = TTHPYRT (2.73)

2.5.1 The DVR Hamiltonian

Purely vibrational energy levels (/ = 0). In this section, we derive formally the
matrix elements of the effective vibrational Hamiltonian given in eq. which is
used in the DVR3DRIJZ program. First, we start with the / = 0 Hamiltonian in the
VBR. After that we are going to consider Coriolis-decoupled Hamiltonians for J > 0
also in VBR. Next, an appropriate FBR-DVR transformation will be exploited to
arrive in a pointwise representation for the Hamiltonian. With a DVR Hamiltonian
a three-step diagonalisation-truncation solution strategy is presented. The resulting
wavefunctions serve as a basis for the full Coriolis-coupled problem discussed in

section

Matrix elements of J = 0 effective radial Hamiltonian are given by

(m' .1, j|B=0(r1,72,0)|m,n, j) (2.74)



2.5. The Hamiltonian operator 65

The form of the effective vibrational Hamiltonian in eq. [2.14]indicates five types of

VBR matrix elements [|59]

hl(nl)mn/n]’] = (m'| - %;—Zlmﬁ”&,n

iy = 1 s 521103780
gfilm/n,/ﬁ(m’Ilel )G+ 1)85 8 (275)
g,(nz)mnn,] (| u12r§| n)j(j+1)8 i 8pim

Vm’mn’nj’j = <m’,n’,j'|V(r1,r2, 9)‘m7n7]>

in terms of which the Hamiltonian in eq. 2.74]reads:

(m’,n',j']ﬁjzo(rl,rz,9)\m,n,j> h(l) —I—h( ) +g( ) +

m'mn'nj' j m'mn'nj' j m'mn'nj' j

+g(l) 1ol 7 +men/n]/]

m'mn'nj' j

(2.76)

Rotational excitation (J>0) in DVR. For J > 0, in the first step of the two-step
Sutcliffe-Tennyson procedure K is treated as a good quantum number. For this rea-
son all off-diagonal matrix elements in K’, K are neglected, which leaves the purely
vibrational Hamiltonian from eq[2.76| plus terms diagonal in K from the Ky oper-
ator given in eq. and Thus for J > 0 the Coriolis-decoupled Hamiltonian
in the VBR is given as

<mlan,7j/|5k/kﬁl‘c,’k(r17r25 9)|m,n,]) = <m/7n/7j/|ﬁ1:0(r17r27 6)|m7n7.]>+ (2 77)

+e) L (JTH1) =22

m'mn'nj’ j

for bond embedding (s = 1 for the bond embedding along r{), and
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<m/7n/7j/’5k’kﬂl‘<,’k<rl7r27 9)‘m7n;.]> = <mlvnl7j/’ﬁjzo(r17r27 9)‘m,l’l,j>+
(2.78)

(1 |Ky (r1.r2) )
for the bisector embedding. These Hamiltonians need to be transformed into the

DVR. Note that here the molecule-fixed z-axis is a quantization axis, thus for a

given J, a set of Hamiltonians for K = p,p+1,...,J is considered.

The 3D VBR (FBR) to DVR transformation of the Hamiltonian, formally writ-

ten in eq. [2.73] can be expressed as a product of 1D transformation matrices:

T = T2 7(6). (2.79)

each 1D transformation refers to a single vibrational coordinate. In DVR3D [59],
Gauss-Laguerre quadrature scheme is used for DVR in radial coordinates ry,r, and

Gauss-Legendre quadrature scheme for the bending coordinate 6:

T(”Z) :Nr(lZ) <(1),(12)> EHn(rZﬁ) (280)

1
(8) _ (0) [ ()2 p(k)
T =N (@) P(8a)
where H,,(r1y) are Hermite polynomials of degree m and P}k)(ea) are associated
Legendre polynomials. N,SP,N,SZ),N,(,?) are normalisation factors for respective
transformations. With these transformation matrices, the DVR Hamiltonian can

be written as:

_ gD ) (1) )
Horaprpyy = KyyOaaOpp + Kpip Soadyy + LyiqOyyOpp + Lo Oy yOpp+

+3k'kKVR'}/7ﬁ'ﬁOt'OC + V(I"ly, 1’2[3 y 9(1)57/}/6[;/[3 606’0(
(2.81)
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where K;l}z, Ké%, fol,)a, foz,)a are matrix elements of respective parts of the VBR

Hamiltonian given in eq. transformed into DVR by means of transformation
in eq. For bond embedding Ky gy yp/q/o then reads:

Ky ryyppoa = LunSpySpip (J(J+1) — 242) (2.82)

and for the bisector Ky gy yp/gara 1t 18

1 (1 (2) 1
Kyryyprpara = Oyyg (Myy) +Mﬁ’ﬁ> (g (JI+1)-&)+ 5k1) : (2.83)

with M;I; = 67”’2/~tllr%y and M[gz,z3 = 5[,’/[; m.
Solution strategy. Having the DVR matrix elements of the ro-vibrational Hamil-
tonian in hand, a diagonalisation scheme can be applied. For the largest saving in
the computer time, and for keeping as much information as possible in the form
of a contracted wavefunction, a three-step diagonalisation-truncation procedure has
been used by Tennyson et al. [59,]102]. From the DVR point of view there are
three independent variables: riy, 7, 0. The order, in which solution to the SE is
constructed is important from the computational point of view. In general, the last
coordinate in the order, should be associated with the highest density of states [103]].

For this reason, it has been decided that rag = iy = 0y ordering (6 comes last) is

the most appropriate.

In the first step, for each & and 7, 1D Hamiltonian matrices H'? are constructed

and indexed by B'S:

(r,@)
(H'P) BB Ké}; +V(riy,r2p,6a)0pp (2.84)
where we used a general form of the DVR Coriolis-decoupled Hamiltonian from eq.

(r,)
h

2.81| Diagonalisation of (H'P )g;) gives eigenvalues (E'P)

. Then a user-controlled-truncated (parameter E 1{,}3\,{) 1D eigenbasis is

and eigenvectors

g

used in solution to the 2D problem, defined by the Hamiltonian:
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(@ (ra)
() gy = () + Ky Syrp (2.85)

which is indexed by B’ and ¥’y and needs to be calculated for all o values. In the

eigenbasis of the 1D problem the 2D Hamiltonian can be rewritten as:

(HZD)}(z’h)y’y (EID) (1,0) SOy + 7(/;%‘ (Cw)ga,h (ClD)ga,h/ (2.86)

For Y-X-Y systems, for which r| - r, symmetrization is possible, the computer
time can be further reduced [59}/102, 104] by constructing and diagonalising the 2D
Hamiltonian matrices in one step. The memory and time requirements needed to
diagonalise all 2D matrices is usually negligible in comparison with the full 3D
problem [[102]]. After diagonalisation of these 2D Hamiltonian matrices, only solu-
tions (CZD ) with energies (E 2D ) lower than Efﬁx are chosen for the final step,

with the 3D Hamiltonian:

(H3D) l(’l))/y (EZD) ) 611180/ o+

s 'y 's
+zﬁ(L$,L 2 ) L (€)Y ()5 ()
Y s/

N

(2.87)

The MAX3D and MAX2D parameters in the DVR program additionally con-
trol the size of the 2D and 3D Hamiltonians, respectively. Diagonalisation of the
Hamiltonian in eq. yields final energy levels Ej, and wavefunction coefficients

(C3D)ﬁhl'

grid and labelled by J, k and & quantum numbers:

At the end of the day, the DVR output wavefunction is defined on a 3D

k) = ; (c3P) MZ (C?) 7 (c'P) (2.88)

Note that in DVR the K-dependence of solutions is encoded in both the Hamilto-

nian and the bending basis set. Note that any symmetries are here neglected for

simplicity. Extension to the p-symmetry labelled problem is straightforward. Fi-
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nally, the DVR wavefunctions and energy levels are passed to the second step of the

full solution procedure, where Coriolis-couplings are taken into account.

2.5.2 The Coriolis-coupled Hamiltonians: Rotlev3 and Rotlev3b

Rotlev3. In the bond embedding the Rotlev3 program is used for solving the
Coriolis-coupled nuclear motion problem. The Hamiltonian for this system in the

representation of eigenfunctions from the first step can be written as [S9]:

(WK, p'|Hy|h,k, p) = E;{’k5h/h5k'k+

1 i '
— (14 80+ 6w0) 2 8k yar Y, ygjh ‘V;E}}kafcjfk/MgLﬁﬁ
v.B.J

(2.89)

where a symmetry adapted form of the wavefunction from DVR is used, and the
DVR wavefunction has been transformed into FBR (III)J,E}]’. =Y 7}“1//{/%) where
the angular contribution to the full Hamiltonian is diagonal. Here k = p,p +
1,....J, p=0,1. Similarly as in DVR, in Rotlev3 user is given control over the
size of the variational basis set (parameter IBASS). The p = 1 matrix is simply a
submatrix of the p = 0 matrix. For this reason only the p = 0 matrix needs to be

constructed.

Rotlev3b. In the bisector embedding the Rotlev3b program is used to solve the
Coriolis-coupled nuclear motion problem. Eigenbasis from the first step is used in
DVR in all three coordinates. With the vibrational and the parity symmetries used,

the full Hamiltonian reads:

y k
<h/>k,7p,7q/|Hl‘<]’k|h’ k7p>q> = EZ 6h’h6k’k+

1 1 2
— (14 6o+ o) 2 5k/,k:tlcji7k/ % /é’& ‘ijléiéd (M((xo);ﬁﬁ —M(();(iﬁ/;) IVt ko
/)/‘, 7.]

-1 g% 1 2
— (1480 + 8r0) 2 8k 422C5 1011 Cp %, Yyho Vyper (M((x())égﬁ +Mé;g;;) J(2)is2400,0
Y‘r 7j
(2.90)

where,
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n ') K+k\ )
Jk/,k,a/,a = Z Tj(’x (51"]' + ( D) 4 J'K jk Tja
7

(2.91)
2) . ol (k) K+k\,,, , 1+cosO . a(k)

T kot = ]Z/;.T/ (5j’j + (—2 (J'k |m!]k> T,
Direct diagonalisation of this Hamiltonian generates final wavefunctions and energy

levels. Next, the final wavefunctions are transformed to FBR in the angular coordi-

nate and can be further passed to a program for transition intensity calculations:

.k, p, @) = yrgh? (2.92)

2.6 Line intensities

In this section we derive and inspect a general expression for the transition line
strength in terms of wavefunctions provided by the Rotlev programs. In the deriva-
tion, transitions between different Born-Oppenheimer electronic states will be con-
sidered, for the sake of generality and for future use in Chapter 4. Thus, in this
section we will be discussing rotational-vibrational-electronic or ro-vibronic transi-
tions. The effective formula for the line strength in the Franck-Condon approxima-
tion is also discussed below. The final expressions for the transition line strength
given below are used in the DIPOLE program, which is a part of the DVR3D suite
for calculating transition intensities. Following the theory developed in this section,
for the purposes of this work, the original version of the DIPOLE program [59]] has
been adopted to include transitions between different electronic states within the
Born-Oppenheimer approximation.

First, we shall make an excursion to discuss the general form of the total in-
ternal wavefunction for a triatomic molecule. The total internal wavefunction of
the molecule must contain information about the electronic, nuclear and all spin
degrees of freedom. For the majority infrared spectroscopic purposes it is sufficient
to assume independence of the spin degrees of freedom from the dynamical degrees

of freedom. As a consequence, the total internal wavefunction for the molecule is
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separable into the nuclear spin part, the electronic part (Born-Oppenheimer approx-

imation) and the ro-vibrational part, as written below:

‘ mt> |q)nvpm>|q)elec >‘JhPCI> (2.93)

where @, ;) 1s the wavefunction for the i-th electronic state and can be ob-
tained from quantum chemistry calculations, ®y;;, is easily construed in a finite-
dimensional Hilbert space with a chosen standard spin basis. The ro-vibrational
part of the wavefunction is provided in our case by the Rotlev routines. From now
on, we are going to focus on the ro-vibronic part of the total internal wavefunc-
tion : @ (1)) [V W P, q) = \J' Wi, p',q,D'), where the additional label D' has
been given to denote all quantum numbers which not affect the energy of the state

(degeneracy labels).

The quantum probability for the |i) = [J7.h",i" p",q".D") — |f) =

7,0, p',q,D') ro-vibronic transition is given in the dipole approximation by the
ap" |
if
[60]], where the summation is carried out over three Cartesian components of the

square modulus of the electric transition dipole moment vector } 4y y z

electric dipole moment of the molecule in the laboratory frame A = X,Y,Z. Indi-
vidual transition probabilities are then summed over all degenerate states, labelled

by vector D:

=0 312
TAD".D

;) (2.94)

Sif =
A=XY.Z P [y

giving a quantity called the line strength, which can be directly related to experi-

mentally measured integral line intensity [60]:

87'L'2NA Vif E; Vif
1(5; g€ 1— : 2.
Vi) = Taeghe o(1)® p(k T) { exp( k Tﬂsf (293

where V;s is the transition wavenumber between the i’th and f’th ro-vibronic state
and Q(T) is the partition function at temperature 7. Ny is the Avogadro number, kj

is the Boltzmann constant, / is the Planck constant, c is the speed of light in vacuum
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and & is the permittivity of vacuum. g, is the spin statistical weight for the initial
state i resulting from summation over degenerate nuclear spin functions. The values
of spin statistical weights depend on the ro-vibronic symmetry of the state. Thus,
the measured transition line strength is directly related to the total internal state
of the molecule, including nuclear spin states. Units for integral line intensity are

cm/molecule.

The electric transition dipole moment is defined as

~ A space

]}?’D”’D/ _ <J”,h”, i”,p",q”,ﬁ" il J/,h/, i’,p',q',5’> (2.96)

and its value is identical for all components of D except the projection M of the total
angular momentum on the space-fixed Z-axis. The space-fixed transition dipole
moment can be transformed into a spherical tensor form [105], which transforms

irreducibly in the 3D rotations group:

ﬁjﬁj;; =K (2.97)
where,
1 i
v w0
_ 1 i
K= 5 7 0 (2.98)
0 0 1

is a unitary (| det(K)| = 1, K'K = 1) transformation matrix between the Cartesian
operator and rank 1 spherical tensor operator [105]. The electric dipole moment
for a neutral molecule is invariant under translations in free space, so the "LAB’
components (X,Y,Z) of the transition dipole moments can be rewritten in terms of
Cartesian components in the space-fixed coordinate system (&, 1, {) with the origin
at the nuclear center of mass [60]. In what follows, the transition dipole moment

can be expressed as

1
A _ t o.M M
=) ; K, Y 77 (2.99)
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As a result of new transformation properties of the transition dipole vector, a
straightforward transformation to the molecule-fixed coordinate system can be

achieved with Wigner D-matrices:

_,space Z D a I’)) /J/)‘LL:’;/OI (2100)

o/'=-1
where o, 3, v denote Euler angles and subscripts "el’ and *sph’ have been dropped
for clarity of presentation. After rather lengthy algebra with extensive use of prop-

erties of 3-j symbols, the line strength takes the form [[106-108]]:
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(2.101)

The (28'+1)(2S” +1) prefactor in eq. comes from summation over all com-
binations of degenerate electron spin functions, as the electronic spin is preserved in
a transition within the present model, §” = §'. Similarly, the (2J'+1)(2J” +1) pref-
actor comes from summation over all combinations of degenerate rotational basis
functions, characterized by the M quantum number. b, is a symmetry depen-

! / o)
dent numerical factor defined in ref. [|59]. The coefficients C}; i~ j}i K’f l" denote varia-

tional coefficients for the ro-vibrational wavefunction in a given electronic state (i’).
/s

o,
Mmm 'n'n j' j"K'K"

primitive vibrational basis defined in section2.3]

is the matrix element of the electric dipole moment operator in the

Mo = (J'K"|(m"|(n" " (r1,72,0) |0) )| /K'Y,  (2.102)

m'm"n'n" j' j"K'K"

where
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is the o-th spherical tensor component of the molecule-fixed electronic transition
dipole moment surface between electronic states i and /’. In eq. integration
is carried over electronic coordinates only, leaving dependence on three internal
(Radau) coordinates ry,r,, 6. This function is called the electronic transition dipole
moment surface (TDMS) and can be obtained, for example, by fitting a predefined
functional form to points calculated from a quantum chemistry package. For many
molecules, the dependence of TDMS on internal coordinates is weak, and it is often
replaced by a constant value of the transition dipole at equilibrium geometry pg! =
uss (rfq, rgq, 01 ) In such case we talk about the Condon approximation [60]] to the

electronic transition dipole moment:

/e /)
MZ/;/’/ln,nuj/j,,K/Kﬁ =" (K%, r51,6%) (m"|m") (n"|n) (j"K"|j'K) (2.104)
due to the choice of the identical orthonormal basis in the ground and the excited

electronic state, the integrals in eq. (2.104) become Kronocker’s deltas:
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which significantly reduces the number of summed terms in the expression for the

line strength, so that only the elements with the same indices in the coefficients

”,M”,i”,l’l”.p”,q”
vectors C’]n ik

are needed. This simplification compensates the extra com-
putational time needed for wavefunction calculations when using identical grid for

all electronic states. Note that identical basis sets are assumed for all electronic

states.
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Expression given in eq. [2.106] comprises rotational and vibrational degrees of
freedom. Traditional vibrational Franck-Condon approximation operates only on
vibrational wavefunctions, with the Franck-Condon factors defined as the square
modulus of the overlap integral between two vibrational wavefunctions [109] F;; =
‘( ol Vjib) )2. Then the vibrational band strength is proportional to the vibrational
Franck-Condon factor. Here this definition is generalized onto ro-vibrational tran-

sitions.

The 3-j symbol [[105] appearing in eq. (trans:strength) and (2.106) and the

(=) ()P ’ factor are responsible for selection rules. From the
former, it follows that in order for the line strength not to vanish the following con-
ditions must be satisfied: |[J” —J'| =0,1,J"+J > 1 and AK = 0,£1. Selection
rules for J quantum number define P, Q, R branches for AJ =J" —J = +1,0,—1, re-
spectively. Selection rules for the K = |k| quantum number allow transitions of type
k — —k, which reflects the time-reversal symmetry of the system. For AK = 0 only
the z-component of the molecule-fixed electronic transition dipole moment con-
tributes to the overall line intensity, and because z-axis is chosen here as the axis of
quantization, we call these transitions parallel. Accordingly AK = £1 corresponds
to perpendicular transitions, as both x components of the electronic transition dipole
moment contribute to the total intensity. For the Q branch (AJ = 0) only transitions
which change the p quantum number are allowed, i.e. e <> f,e «» e, f <» f. Con-
versely, P and R branches allow transitions conserving p, i.e. e «» f,e <> e, f <> f.
Neglecting the dependence of the TDMS on nuclear coordinates does not affect the
rotational selection rules, but it can however make the vibrational selection rules

stronger for example by forbidding vibrational overtone transitions.

The DIPOLE3 code, which we use for calculation of intensities in the present
work, uses a mixed DVR-FBR representation for ro-vibrational wavefunctions, as
given by eq. Radial integrals in the ro-vibronic transition dipole moment
in eq. are carried out in the DVR representation, but the integral over the
bending coordinate, which is formally in FBR, is evaluated using a Gauss-Legendre

quadrature scheme with k = 0. This means, that the final expression for the tran-
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sition line strength contains coefficients defined over a 3D DVR grid, however, the
angular grid is different than the original grid used in DVR program, due to back

transformation to FBR (in Rotlev) and re-transformation to DVR in DIPOLE:

J”7l.”,h”7p”,q// . k”:() ”.}’”,h”,p”,q”
Cm”n”j”k” - Z (T)jy (T)ma (T)nﬁ Céﬁyk” (2.107)
o.B.y
where the unitary transformation matrix for the bending coordinate (T)I;; % is de-

fined on a Gauss-Legendre quadrature grid for kK = 0 and the unitary transformation
matrices for stretching coordinates (7'),,, and (T'), are defined over the Gauss-
Laguerre quadrature grid.

From the line strength, it is straightforward to calculate the integral transition
intensity / given in eq. which is directly related to the intensity of the attenu-

ated incident radiation for a given wavelength, as in the Beer-Lambert law [60]

I o@nL (2.108)

which relates the intensity of the absorbed radiation /, the reference radiation in-
tensity Iy, the path length L and the the absorption cross-section (V) to N - the
concentration of molecules. Absorption cross section depends on the wavenumber

v and is related to the integral line intensity by the relation:
o(7) = / 1V — ) f(7)dV (2.109)

In order to obtain absorption cross sections 31, 110,/111]] the integral line intensity
function (combined line intensities for a range of wavelengths) needs to be convo-
luted with a line shape function f(¥'). This aspect of producing molecular spectra
is particularly relevant for atmospheric science in determining concentrations of
molecules from remote sensing and ground based telescope measurements. In this
thesis, the main focus is on the step of accurate calculation of integral transition

intensities.



Chapter 3

Room temperature infrared
rotational-vibrational
line lists for 13 isotopologues of

carbon dioxide

This chapter discusses the theoretical procedure for generating infrared, ro-
vibrational line lists for 13 isotopologues of CO,. The importance of carbon dioxide
and its isotopologues is outlined the next section, which focuses particularly on the
need for accurate transition intensities required by remote sensing experiments.
This is followed by a description of the procedure for generating theoretical line
lists, which involved the use of the DVR3D suite and a sensitivity analysis of tran-
sition intensities. Finally, results of calculations are comprehensively compared
to recent accurate measurements, semi-empirical databases and other theoretical
approaches. The chapter is summarized in the context of meeting the requirements

for remote sensing measurements of CO; in the Earth’s atmosphere.

3.1 Motivation

Carbon dioxide is an inert gas in the Earth’s atmosphere, therefore it can be rela-
tively easily traced for studying the atmospheric circulation. Monitoring the con-

centration of carbon dioxide in the Earth’s atmosphere remains a priority task for
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a constantly growing number of government funded projects. This greenhouse gas
has been a fingerprint of anthropogenic activity since the industrial revolution, by
which time its atmospheric concentration is estimated to have risen from 280 ppm
to over 380 ppm [112]. A 20% increase in the CO, atmospheric concentration has
been observed over the past half-century - the most dramatic change in human his-
tory [[113]]. Mapping the circulation of the CO, gas in the troposphere is clearly vital
to understanding and hopefully controlling the CO, content and hence the climate
change [[114,/115]. Several space missions are dedicated to explicitly monitor the
atmospheric CO; molar fraction in high geographic resolution: GOSAT [2], AS-
CENDS [3]], AIRS [4], CarbonSat [5] and recently launched NASA’s OCO-2 mis-
sion [6-9]]. Remote sensing measurements are cross-compared with ground based
projects, such as Total Carbon Column Observing Network (TCCON) [[10,/116]
or Network for Detection of Atmospheric Composition Change (NDACC) [[11]], to
look at the overall CO, concentration and its time variation, but more importantly to
pinpoint where CO; is being produced (sources) and where it is going (sinks). Fu-
ture missions, such as UK’s Twinkle [[117]], ARIEL [118]] and NASA’s JWST [[119],
are designed to probe atmospheres of exoplanets, many of which are believed to

have carbon dioxide as its major component [120-122].

Infrared absorption spectroscopy is the leading technique for precise determi-
nation of molar fractions of gases in atmospheres [3,5,/10,/123,/124]. A major aim
of these measurements is to establish carbon dioxide concentration at 1 ppm level
or better [16,27]. The uncertainty budget, which results from apparatus imper-
fections and random noise is estimated to be from 0.5 ppm to 1.5 ppm for the
OCO-2 mission [17]. A major source of the systematic error in CO, concentration
retrievals are reference line intensities and line profiles provided from experiment
or theory [9,31,/125,/126]. The accuracy requirement for transition intensities for
remote sensing experiments is 0.3 —1%, which translates into 1-3 ppm resolution
in CO; concentration [16]. Because some level of control over this error is possi-
ble, significant efforts have been made to minimize the uncertainty of the reference

parameters, especially line intensities (see [27] and references therein). The CO,
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Figure 3.1: Schematic illustration of the working principle behind the OCO-2 mis-
sion (left panel). Global concentration maps (in ppm) of carbon dioxide from OCO-
2 measurements taken in April 2016 (upper map) and in February 2016 (lower map).
Courtesy of NASA/JPL-Caltech.

concentration retrieval process for the OCO-2 mission is currently (2017) under
way [6]. The need for accurate transition intensities for remote sensing, particularly
the OCO-2 mission, had prompted a number of theoretical and experimental studies
devoted to calculation or measurement of transition intensities for the CO, *weak
band’ (1.6 tm) and the ’strong band’ (2.06 tm), which are typically used in space-
based measurements [27,31,127-129]]. Detailed comparisons given in the following
sections reveal that the present state-of-the-art measurements and calculations still
do not meet requirements for remote sensing. For this reason, the present study is a

response to the demand for more accurate models for transition intensities.

Other isotopologues. Up to 75% increase in the atmospheric CO; over recent
decades have been associated with industrial fossil fuel combustion. For differenti-
ation between different CO, pollution sources, a method for measuring isotopic ra-
tios 14C/13C/12C and '°0/'70/'80 can be employed. These ratios remain crucial for
modelling Earth’s geophysical processes [130H134], but also for example, in inves-

tigating processes of formation of radiation fields in the Martian atmosphere [23],
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which is 96% rich in carbon dioxide [23|]. Accurate knowledge of high resolu-
tion IR spectra for all isotopologues of carbon dioxide is essential in techniques
for real-time monitoring of '*C/!2C isotope ratios [131,/135,/136]. Such measure-
ments are often used in identification of bio-geo-chemical origins of carbon dioxide
emissions from the soil-air interface [137]. Spectra of CO, isotopologues are be-
ing increasingly considered for application in medical diagnosis, such as the recent
suggestion that observations of infrared absorptions by '3C'0, in breath provides

a non-invasive means of diagnosing gastrointestinal cancers [ 138]].

The low natural abundances (see Table of 3C, 14C, 170 and 130 usually
inhibit high accuracy measurements of integral line intensities on minor CO; iso-
topologues. Spectral congestion from more abundant carbon dioxide isotopologues
and other molecules is the main problem when attempting to integrate the area under
the peak, to obtain the integral intensity for a line. Therefore experimental accura-
cies of line intensities for trace abundant isotopologues of carbon dioxide are in
general lower than for the main isotopologue. Theoretical line lists come to rescue

in such cases.

The unstable '“C!60, isotopologue is of special importance among other
isotopologues because of its usage in dating of bio-samples and, more recently,
in monitoring emissions, migrations and sinks of fossil fuel combustion prod-
ucts [20,/139,/140]] as well as in assessment of contamination from nuclear power
plants [25]. Until recently, monitoring fossil fuel emission relied mostly on -
decay count measurements [141] or mass spectrometry [[142]], both of which are
high cost, invasive methods. Despite its low natural atmospheric abundance, radio-
carbon dioxide has been probed via optical spectroscopy methods [26}|143-145].
Recent advances in absorption laser spectroscopy provided an unprecedented tool
for detection of species containing radiocarbon of ratios '*C/!?C down to parts per
quadrillion. These measurements exploit a new spectroscopic technique called
saturated-absorption cavity ring down (SCAR) [146] for measurements of the
strongest lines in fundamental bands of 14C0O, [26,144]. The knowledge of accurate

line intensities for several isotopologues at the same time is therefore a necessity for
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eliminating the unwanted noise sourced in traces of different isotopic carbon diox-
ide representatives. For instance the P(20) line of the 00011 — 00001 band (00011
means V| =0,v, =0,/ =0,v3 = 1,n =1, i.e. asymmetric stretching fundamental
band) in 14C0,, which is used in radiocarbon measurements, above certain temper-
atures, interferes heavily with the Lorentzian tail of the P(19) line in the 05511 —
05501 band of the 13C'°0, (°636°) isotopologue [[147]. This raises difficulties in re-
trieving unbiased concentrations of the radioactive isotopologue. Similar problems
occurred in measurements based on the P(40) line of the v3 band of 140, [148].
In both cases accurate values of line intensities are required. Otherwise, as shown
in [148], calculation of the fraction of '*C in measured samples that employed a
line strength taken from a theoretical approach, led to over 35 % error in retrieved
concentrations (as later confirmed by alternative experiments (AMS) [142]]). These
observations were explained in terms of both inaccuracies of the line intensity and
drawbacks of the spectroscopic fit model used, which fuels the need for reliable
line intensity sources. Another successful technique further supporting this need
was recently introduced by Genoud et al. [[143]], cavity ring-down spectroscopy with

quantum cascade laser for monitoring of emissions from nuclear power plants.

One of the reasons for calculating a new set of infrared line lists for all im-
portant isotopologues of carbon dioxide was still the insufficient accuracy of the-
oretical approaches and experiments available at that time (three years ago). The
newly published dipole moment surface (DMS) of Huang et al. [[149] from NASA
Ames Research Center (which was claimed to be the most accurate DMS available)
revealed some discrepancies in comparisons to experiment and the the HITRAN
2012 database, which led to a general conclusion that the ’Ames’ DMS still does
not meet the requirements for remote sensing measurements. In this chapter, we
show how present calculations meet the requirement of sub-percent accuracy in
transition intensities, proving to be more accurate than other theoretical models and

arguably some state-of-the art measurements.
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3.2 Review of theoretical works on high resolution IR

spectroscopy of CO,

This section reports on the most notable works aimed at computation of accurate
line lists for carbon dioxide. Apart from the most widespread method of fitting ex-
perimental data to a predefined quantum mechanical model for transition frequen-
cies and transition intensities, a number of first principles theoretical approaches
have been developed over the years, which were dedicated to calculating transition
frequencies, transition intensities and line shapes for small molecules. CO; is one
of the best studied molecules in terms of molecular spectroscopy, yet still it presents

some unsolved issues.

3.2.1 Variational approaches

The variational method [60]] is becoming more popular in solving the nuclear mo-
tion problem for triatomic molecules [150-154]. The main source of error in vari-
ational calculations is attributed to inaccuracies in the potential energy surface and
the dipole moment surface [152]]. Line positions are influenced by the quality
of the PES. Ab initio PESs usually give energy levels with 1 cm™! accuracy or
worse [[63}75,155,/156]. This is because a number of components contributes to the
overall uncertainty budget in ab initio calculations: finite basis set error, truncated
CI expansion, non-Born-Oppenheimer corrections, relativistic or even quantum-
electrodynamical effects for electrons [156]. Empirical refinement is one the most
straightforward way of improving this accuracy to the level of 0.01 — 0.5 cm™! for
systems like CO, [157] or H,O [[75,158]]. The situation is not the norm for transition
intensities [[154]. It has been shown that a fully ab initio dipole moment surface is
capable of providing sub-percent accuracy in transition intensities [28]]. Only spe-
cialist experiments are capable of providing parameters at this level of accuracy.
Early theoretical works on CO, were however far from meeting requirements
for comparisons with high resolution measurements. In fact, spectroscopic accuracy

in line positions has not been hitherto reached by variational methods.

Wattson et al. [[159,/160] produced the first comprehensive line lists using vari-
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ational nuclear motion calculations with the use of a potential energy surface (PES).
A major step toward more accurate line positions and intensities was made by the
NASA Ames Research Center in a series of papers by Huang et al. [149,/157,/161].
Line lists from Huang et al. , called ”Ames-1", provide both line positions and inten-
sities covering the infrared and visible spectral region (J/ = 0 — 150) for room tem-
perature (296 K) and 1000 K. Line positions, derived from a variational approach
and based on semi-empirical mass-independent potential energy surface (PES), are
accurate to 0.01 — 0.1 cm™~! for the main isotopologue of CO». Line intensities cal-
culated with the ab initio Ames DMS are estimated to be 1-10% accurate for the
main isotopologue.

Although the Ames line lists have been proven to be very accurate for the main
isotopologue of carbon dioxide, a question remained about transferability of this
high accuracy into other isotopologues. For line positions the accuracy of Ames
line lists, based on a mass-independent PES, was shown nearly constant in all 13
isotopologues [157]. For line intensities however the limited experimental data
on rare isotopologues did not give a definite answer to whether or not non-Born-
Oppenheimer effects play any significant role in CO,’s infrared spectra. Very re-
cently new experimental studies shown that line intensities calculated from Ames
PES and Ames DMS are indeed reasonably accurate for both the symmetric and
asymmetric isotopologues of CO, [31,128],162-164]]. This important observa-
tion supports the thesis that line intensities can be computed variationally using
mass-independent PES for all isotopologues with little loss in accuracy. This means
that the non-Born-Oppenheimer corrections give negligible, possibly mutually can-

celling effects, which enter the stipulated uncertainty budget.

3.2.2 Effective Hamiltonians

A widely-used alternative theoretical approach to variational calculations is based
on effective operators for the Hamiltonian and the spectroscopic dipole moment
[165-167]]. Currently, the effective Hamiltonian approach achieves at least one
order of magnitude better accuracy for '>2C'®0, transition frequencies than the

best-available PES [157]]. Within this framework, the calculation of intensities re-
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quires eigenfunctions of an effective Hamiltonian whose parameters were fitted to
observed positions of rotation-vibration lines as well as dipole moment operators
tuned to observed transition intensities. This approach has been used to create ded-
icated versions of the carbon dioxide spectroscopic databank (CDSD) for room-
temperature [[168] and high-temperature [[169.|170] applications. On the other hand,
effective Hamiltonian models strongly depend on the quality of the input data, thus

the accuracy and completeness of this technique are limited by experiment.

3.2.3 Discrete Variable Representation

Since early 1990’s the discrete variable representation (DVR) schemes have begun
gaining growing attention [59,67,103,/104,|171},/172], as holding potential for being
computationally more efficient [55,|67]] than standard basis set variational imple-
mentations, which means savings in the CPU time, hence lowering the total compu-
tational cost. For large scale calculations, such as theoretical line lists for CO;, any
improvement in the computational efficiency is of great value. For these reasons, the
present project uses the DVR technique for calculating line lists for CO,. The DVR
methods are not strictly variational, but can give results very close to variational
ones, when appropriate convergence of integrals is maintained. It was reasonably
decided to use the Ames-1 PES in the present DVR calculations of energy levels and
ro-vibrational wavefunctions for all 13 isotopologues of CO, considered. For tran-
sition intensities, isotopologue-independent ab initio dipole moment surfaces are
used, described in detail in section It is believed that the error in neglecting
non-Born-Oppenheimer effects introduces uncertainty in line intensities very much
smaller than 1%. This assumption will be confirmed by comparisons with the latest

high accuracy infrared absorption measurements in section [3.8]

To summarize, the key advantage of theoretical approach to IR line lists lies in
its completeness within a given spectral region, as well as possible transferability
between different isotopologues of the same molecule. Low natural abundance of a
species is not a problem for a theoretical method, thus similar accuracy is expected

from line lists for all 13 isotopologues of CO; considered in this work.



3.3. Computational details 85

3.3 Computational details

3.3.1 General procedure for DVR3D calculations

This section provides details of calculations of infrared line lists for 13 isotopo-
logues of CO; using the DVR3D program [59]. Theoretical details were already

presented in chapter 2.

In a nutshell, the process of generation of theoretical line list is as follows: the
potential energy surface in an analytical form serves as an input function for the first
step of the ro-vibrational calculation with the DVR3DRIJZ program, as displayed in
Figure [3.2] Coriolis-decoupled energy levels and ro-vibrational wavefunctions are
computed in the first step. In the second step a fully coupled ro-vibrational Hamil-
tonian is constructed in a truncated basis from the first step. Diagonalisation of this
Hamiltonian in the Rotlev3b (or Rotlev3 for asymmetric isotopologues) program
gives the final ro-vibrational energy levels and wavefunctions. The wavefunctions
are then passed into the DIPOLE3 program, which also takes the dipole moment
surface as an input. Calculated line strengths are then converted into transition in-
tensities given in cm/molecule units. Combined: lower energy levels, transition

frequencies, transition intensities and quantum numbers form a line list.

3.3.2 The potential energy and the dipole moment surfaces

In the first instance let us focus on details of the potential energy and the elec-
tric dipole moment surfaces used in the present work. The procedure proposed
by Tennyson and Sutcliffe 57,5867,/ 173] implemented in the DVR3D suite [59]
requires a potential energy surface as an input function for the calculation (pro-
gram DVR3DRIJZ) of energy levels and rotational-vibrational wavefunctions. Be-
cause an exact nuclear kinetic energy operator in the Born-Oppenheimer approxi-
mation is used, the only significant source of errors comes from the PES and non-
Born-Oppenheimer (NBO) effects. Errors introduced by non-Born-Oppenheimer
effects have been shown to be marginally small in the electronic ground state of
CO, [157,]161]. Thus, the quality of the electronic PES provided is of primary

importance. Energy levels and rotational-vibrational wavefunctions obtained in the
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Figure 3.2: A general computational scheme for calculating ro-vibrational spectra
from first principles with the DVR3D suite.

two step DVR-variational procedure, described in sections [3.3.1|and [2.4] are further
used in intensity calculations, requiring additionally a DMS function as an input.
The transition dipole moment elements depend both on the ro-vibrational wave-
functions and the DMS, therefore the quality of line intensities depends both on the
PES and DMS. For this reason, in order to generate high accuracy line intensities,
it is necessary to provide those two essential functions with the highest possible
accuracy. The present state-of-the-art ab initio PESs are capable of reproducing ex-
perimental energy levels to 1 cm~! accuracy [65,(75}/155,/156]], which still remains
insufficient for high resolution spectroscopy purposes. Hence empirical fitting of
ab initio surfaces has become a standard procedure. This semi-empirical approach
is much less successful in the case of DMSs, partly due to technical difficulties in
obtaining accurate experimental data, suggesting the use of ab initio DMSs is a bet-

ter choice [174]. The forthcoming section gives a brief description of the PESs and
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DMSs used in the calculation of room temperature infrared line lists of CO,. The
most accurate PES and DMS were used to produce the final line list and the other
two PESs and the other DMS were employed in a sensitivity analysis of transition
intensities, a method for detecting resonance interactions between ro-vibrational
energy levels (see section [3.9).

Ames-1 PES

Probably the most accurate semi-empirical PES for the electronic ground state
of CO, was provided by Huang et al. [157]]. In their approach 528 ab initio points
were calculated with the CCSD(T) method. A three-point extrapolation of the ba-
sis set was based on cc-aug-pCVT/Q/5Z calculations. To account for higher-order
electron correlation the scaled averaged coupled-pair functional (ACPF) method
was used. Relativistic correction based on the Douglas-Kroll Hamiltonian was also
added. No non-Born-Oppenheimer effects were included, resulting in an isotope-
independent PES. The fit was performed to a functional form of Taylor expansion
in Morse coordinates (1 — e =7 for the C-O stretching and cos 6 for the O—
C-0 angle. 297 coefficients were finally used in the fit. Next, a two-step empirical
refinement was performed: first using a subset of HITRAN2008 [175] J =0 —4 en-
ergy levels, second with the use of purely experimental energy levels compiled for
this purpose by Huang et al. [[157], for chosen J’s up to 85. The resultant PES was
later rigorously tested against HITRAN2008 and HITRAN2012 databases as well
as against more recent experiments [[157,161]]. The best fit gave root-mean-square-
deviation (RMSD) of 0.0156 cm™! in J = 0 — 117 range, with respect to purely
experimental energy levels for the final Ames-1 PES for the CO; main isotopo-
logue. Comparison with line positions from the HITRAN2012 database [176] gave
an average shift of —0.0456 cm~! and a spread (RMSD) of 0.0712 cm™!. As a con-
sistency test for the present calculations, energy levels computed with DVR3D and
the Ames-1 PES were compared to the published Ames energy levels [157], giving
excellent agreement (RMSD=0.04 cm~! below 6000 cm~'and RMSD=0.08 cm~!
below 10000 cm ™).
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Ab initio PES

A fully ab initio CO, PES was constructed by Polyansky et al. [28]. MOL-
PRO [177] multi-reference configuration interaction theory (MRCI) calculations
with the aug-cc-pCVQZ basis were augmented by relativistic corrections at the
one-electron mass-velocity Darwin (MVD1) level. The functional form was a Tay-
lor expansion of symmetry-adapted bond-length and bond angle coordinates. A fit
with 50 constants to the MRCI grid points gave an RMSD of 1.54 cm~!. The rela-
tivistic correction surface was fitted separately with 31 constants to yield a RMSD
of 0.56 cm™!. A comparison with the Ames-1 PES shows a 1.5 cm™! average
discrepancy between the energy levels computed with the two surfaces for levels
below 4000 cm™!. Above this value some energy levels spoil this relatively good
agreement to give a RMSD of 6.2 cm™! for states below 11 000 cm™!, with 200
(0.5% total) levels unmatched. However, for a fully ab initio procedure this PES

represents roughly the state-of-the-art for CO;. It was therefore used as part of the

theoretical error estimation procedure.

Fitted PES

In the course of the sensitivity analysis for transition intensities, presented in
section [3.5] it became clear that the ab initio PES is not accurate enough. The
sensitivity analysis measures the response in transition intensities to very small dis-
tortions in the PES. The differences between the ab initio and the Ames-1 PES were
sometimes too large to unambiguously match the corresponding energy levels. In
addition to that, the insufficient quality of the ab initio PES sporadically caused
detection of resonances, which turned out to be false positives. For this reason, a
more accurate surface was needed. Higher quality can be achieved by refining the
ab initio PES with Ames energy levels. This was done for levels with J = 0,1 and
2. This fit resulted in a RMSD of 0.2 cm~! between respective low J energy levels
(Ames-1 PES vs. Fitted PES) and 1.4 cm~! RMSD for states including all J’s (0-
129) below 11 000 cm™!, leaving only 30 levels above 10 000 cm™! (0.1% total)

unmatched.
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Ames DMS

The Ames dipole moment surface ’DMS-N2’ of Huang et al. [149] was based
on 2531 CCSD(T)/aug-cc-pVQZ dipole vectors. The linear least-squares fits were
performed with 30 000 cm™! energy cut-off and polynomial expansion up to 16-th
order with 969 coefficients, which gave a RMSD of 3.2 x 107% a.u. and
8.0 x 107% a.u. for the parallel and the perpendicular components of the dipole
vector, respectively.

UCL DMS

UCL dipole moment surface was calculated by Polyansky et al. [28] using the
finite field method. In this method, the dipole moment is computed as first deriva-
tive of electronic energy with respect to a weak uniform external electric field. Both
positive and negative electric field vector directions were considered for the x (per-
pendicular to molecular long axis) and y (along molecular long axis) components of
the dipole moment, requiring 4 independent runs for each ab initio point. To eval-
uate the derivative of electronic energy with respect to the electric field a two-point

numerical finite difference approximation was used:

E'(0) = ER) ;f(_l) +0(A?) (3.1)

where E’(0) is the derivative of electronic energy with respect to electric field
strength A taken at zero-field. Previous research [28,/55] suggests that in general
the derivative method yields more reliable dipole moments than those obtained from
simple expectation value evaluation. In the calculation of the present ab initio DMS
a two-point central difference formula from eq. was used, with 3 x 107 a.u.
electric field. Computationally more expensive four point finite difference formulas
did not improve noticeably the accuracy of the dipole.

Electronic structure calculations were performed in the range 1.1 A< (r(, r2)
< 1.45 A, for C-O bond-lengths and 135 © < 6 < 180 ° for the bond-angle co-
ordinate [28]. Multi-reference configuration-interaction (MRCI) calculations were
performed with the MOLPRO2012 package [177] in the aug-cc-pwCVQZ basis

with one-electron mass-velocity Darwin (MVD1) relativistic correction included.
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In the CASSCEF calculations preceding the MRCI stage six core 1s electrons were
frozen and the remaining 16 were distributed in the active space amongst the 12 2s
and 2p orbitals.

Randomly distributed ab initio dipole moment points corresponding to geome-

tries with energies below 15 000 cm™!

were fitted to a Taylor expansion in symme-
try adapted bond-lengths (S} = (r1 +1r2)/2 —re, Sy = (r1 — r2) /2 — 1) and bond an-
gle (S3 = 180 — 0) coordinates (S’]"S’zlSé). The expansion was truncated at fifth order
in S, S7 and the x component of the dipole moment was fitted to 1963 points with
17 constants giving a RMSD of 2.25 x 107> a.u.; and 1433 points for the y compo-
nent fitted with 19 constants giving RMSD of 1.85 x 10~ a.u. The low RMSD of
the fit and very high level of theory used to construct the UCL DMS allowed to as-
cribe an estimated 0.5% uncertainty to the DMS [28]]. This high-accuracy DMS was

expected to provide transition intensities at sub-percent accuracy level and therefore

was the main reason for which the infrared line lists for CO, were computed.

3.3.3 Parameters for nuclear motion calculations

The task of computing ro-vibrational line lists for 13 isotopologues of CO,, with
at least 4 line lists per isotopologue is a major computational challenge. For this
reason, it is desirable to pre-optimize the parameters of the DVR3D calculations, in
order to reduce the computational time, memory and achieve the highest possible
accuracy at lowest possible cost.

First, appropriate coordinates for the nuclear motion calculations need to be
chosen, as well as an embedding type of the molecule-fixed frame. DVR offers
two types of coordinates: Jacobi (scattering) coordinates and Radau coordinates
(see chapter 2). High convergence of energy levels required by the nuclear mo-
tion calculations should imply nearly no dependence of energy levels on the choice
of coordinates. Indeed, comparison of DVR3D calculated intensities with the Ja-
cobi [28]] coordinates and Radau [37/]] coordinates for a band located near CO;’s
2um showed less than 0.1% discrepancy between independent studies. The choice
of coordinates does however influence the convergence rate. After appropriate con-

vergence tests with DVR program, it was concluded that Radau coordinates are the
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most suitable for CO».

There are three available choices of embedding of the molecule-fixed coordi-
nate frame in DVR3D: bisector (where, the z-axis bisects the angle between two
atoms), bond (where the z-axis is aligned with one of the bonds in the molecule)
and perpendicular (where the z-axis is embedded perpendicular to the plane of the
molecule). For symmetric isotopologues of CO, the bisector embedding was cho-
sen, which reflects the natural symmetry of the molecule. Moreover, the bisector
embedding allows for symmetry factorisation of the Hamiltonian matrix, thus al-
lows for faster calculations [67]]. For asymmetric isotopologues of CO, the bond

embedding was chosen.

Following the choice of coordinates and embedding, the vibrational basis set
needs to be specified. DVR3D has two built-in radial basis set types: Morse
oscillator-like basis functions [59,85] and 3D Spherical oscillator basis functions
[93]]. Both basis set were tested for convergence of energy levels. The Morse-
Oscillator-like basis functions gave faster convergence of J = 0 energy levels than
the Spherical-Oscillator basis of the same size, thus the Morse-Oscillator basis was

chosen for calculations.

The next step was to optimize the parameters of the chosen vibrational basis.
By doing so, it is possible to significantly reduce the number of basis functions
needed to achieve a satisfactory convergence of energy levels. The Morse oscillator-
like basis function has three independent parameters: D, - the dissociation energy of
the Morse potential, r - the equilibrium bond length and @y - the width of the Morse
potential. Preliminary tests showed that DVR energy levels only weakly depend on
the value of D,, which was set to 0.3 Hartree (E},) for further calculations. This

leaves a 2-dimensional parameters space, which needs to be optimized.

In the DVR program four parameters are relevant for energy levels calculation:
NPNT - the number of vibrational stretching basis functions, NALF - the number
of vibrational bending functions, MAX2D and MAX3D - truncation limits for the
2D and 3D DVR Hamiltonians, respectively. In practise, the MAX2D parameter

neither influence the computation time nor the accuracy of energy levels, provided
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that it is greater than MAX3D. MAX2D was therefore set to 10000. The NPNT,

NALF and MAX3D parameters were optimized independently.

In the first step of the optimization procedure, a grid of (rp, wy) values was
created and for each grid point J = 0 DVR calculations were performed with
NPNT= 20,30,40,50,60,70,80,90. NALF= 120 and MAX3D= 9000 were kept
constant. Then, average deviation between respective energy levels calculated with
NPNT and NPNT+10 was calculated. Such comparison allows to find the number
of basis functions needed to assure a convenient level of convergence. Results of

this procedure are displayed in Figures [3.3]and [3.4]

A preliminary sparse scan over a wide range of ro and @y parameters identified
the approximate region of ’quick convergence’ for ro and @y, as shown in Figure
[3.3] After narrowing the set of acceptable parameters with the low-resolution scan,
a scan at a denser grid was performed, displayed in Figure This allowed to
elucidate rp and @y parameters, for which only 20 vibrational stretching basis func-

1

tions was needed to reach 0.001 cm™" convergence of energy levels below 13000

ecm ™! g =295 ,ap @y = 0.0085 Ej,. Similar analysis was performed with NALF
and MAX3D as a subject to convergence test. In both cases, the optimal ry and @y
parameters for NPNT occurred to be also optimal for NALF and MAX3D. With
these parameters, NALF = 120 and MAX3D= 1000 were found optimal and suffi-
cient for good convergence of energy levels below 13 000 cm™~! . This efficiently
contracted basis set reduced the memory and time cost, hence speeded up calcula-

tions. An identical set of basis set parameters was used for calculations with the ab

initio and the Fitted PESs.

Figure presents the total DVR3DRJZ calculation time and the total
ROTLEV3b calculation time as a function of J quantum number. As expected,
the computation time in DVR scales linearly with J. This is because in DVR3DRIJZ
k| = p,p+1,...,J is a good quantum number, and for a given J, the code must
solve J +2 — p problems of identical size (see[2.2)). Scaling laws presented in Fig-
ure [3.5] reveal the importance of basis set optimization. The maximum J value

considered (in the HITRAN2012 database) for a room temperature line list for the
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Figure 3.3: Low-resolution convergence map for DVR calculations. Colour code
denotes the number of vibrational stretching basis functions (NPNT) needed to
achieve mean convergence of energy J = 0 levels below 13 000 cm™! better than the
given 1 cm™! threshold value. Optimized are @y and ry parameters of the Morse-
oscillator basis functions. The D, parameter was set to 0.3 Hartree.

main isotopologue of CO; 1s J = 130. As shown in Figure this corresponds to
~ 5000 seconds of computation time. For comparison, the corresponding compu-
tation time for an unoptimized basis set, which requires NPNT = 80, NALF = 120
and MAX3D = 9000, is a few hundred times longer, making high-J calculations
nearly prohibitive. To put things in perspective, for completion of fully converged
J = 0 calculations with an un-optimized basis set requires 2500 seconds, whereas
the J = 0 calculations with the optimized basis set are complete in 10 seconds. For
example, previous DVR3D calculations of CO, energy levels and wavefunctions
with Jacobi coordinates reported in ref. [28]], for a good level of convergence re-
quired 80 radial basis functions and 120 bending basis functions. With this basis set
size, computation of a single room temperature line list (/ < 130) for CO, would
take many months. With the basis set optimized here for Radau coordinates, this

time could be reduced to one week.

In nuclear motion calculations the choice of masses is dictated by the masses
used to fit the PES. In accordance with the NASA Ames-1 PES [157]], in DVR

calculations nuclear masses were used [[178] in Dalton units (Da) for isotopologues
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Figure 3.4: High-resolution convergence map for DVR calculations. Colour code
denotes the number of vibrational stretching basis functions (NPNT) needed to
achieve mean convergence of energy J = 0 levels below 13 000 cm™' better than
the given 0.001 cm™! threshold value. Optimized are @y and ry parameters of the
Morse-oscillator basis functions. The D, parameter was set to 0.3 Hartree.

of carbon dioxide: 11.996709 Da (12C), 13.000439 Da (*3C), 15.990525 Da (1°0),
16.995245 Da (*70) and 17.995275 Da ('80).

Previous research [[179,180] shows however, that often a better agreement with
experiment is achieved when some intermediate mass between atomic and nuclear
is used in the Hamiltonian. In addition to that, different masses are sometimes used
for the rotational part of the Hamiltonian and the vibrational part of the Hamilto-
nian. Such a trick can account for non-adiabatic effects and reduce the observed
minus calculated difference by tenths of a cm™! in H;r [179]. Although the present
study operates within the Born-Oppenheimer approximation, it should be checked
whether change from nuclear masses to atomic masses in the nuclear Hamiltonian
has any significant effect on energy levels. Let us take an example of the '?C atom,
for which the mass fraction of electrons to nucleus is the largest. The effect of
the nuclear-atomic mass interchange for other isotopes of carbon and oxygen atom
should be only smaller. In the two-body Harmonic approximation the mass shift of
the energy levels is inversely proportional to the reduced nuclear mass y. Thus,

the heavier the nuclei, the lower the energy levels should be. The effect of change
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Figure 3.5: Computation time for DVR3DRJZ and ROTLEV3b runs for 12C'°0,
as a function of J quantum number. For the DVR3DRIJZ runs the optimized basis
set was chosen and for ROTLEV3b a 100 element ro-vibrational basis was cho-
sen (IBASS=100). Linear and quadratic fits are also displayed for DVR3DRIJZ
and ROTLEV3Db runs, respectively. Test computations were performed with UCL’s
high-performance computer facility "Legion’.

from nuclear to atomic mass in the nuclear Hamiltonian can be estimated by ex-
panding the vibrational energy of the Harmonic oscillator in the mass difference

AU = U — Up, which is a small parameter:

B =B (1- 324 ) + 0 (aw?) 62)

where u is the atomic mass. By inserting for i the atomic mass of 'C and for my
the nuclear mass of '>C we can estimate that the energy shift due to electron mass
and electron-nucleus binding energy is 0.014%, which means that for energy levels
at 10000 cm™! the shift will be around 1.4 cm™! and at 5000 cm™! will be around
0.7 cm~!. Full / = 0 DVR calculations for 626 CO5 with nuclear and atomic masses
for the same sets of other parameters show that: the lowest energy level (1285.398
cm™!) shifts by 0.17 cm™!, the energy level at 5022.328 cm ™! shifts by 0.67 cm™!
and the energy level at 10056.625 cm™! shifts by 1.4 cm™!, which confirms the

estimates. Comparison to experimental energy levels shows that closer agreement
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to experiment is observed when using nuclear masses, as expected from theory. This

observation confirmed the choice of nuclear masses in DVR3DRIJZ.

Prior to full scale calculations of line lists it is necessary to estimate ranges
for the rotational quantum number J, for which ro-vibrational states are signifi-
cantly populated at given temperature. This can be done in the first instance for the
main isotopologue, whereas approximate J ranges for other isotopologues can be
calculated by taking into account their abundances. First, a 1073° cm/molecule in-
tensity cut-off is established, which is the standard value employed by the HITRAN
database. Then, informed by reliability limits of accuracy of the UCL DMS, the
spectral region of interest for transition frequencies is chosen: 0 — 8000 cm~!. From
an estimate based on the Boltzmann law we infer that at room temperature (296 K)
the highest initial ro-vibrational energy level that can be populated enough to give
a transition above the 10730 cm/molecule intensity threshold is roughly 6000 cm™!
and J = 130. Therefore we could potentially be interested in upper energy levels
up to 14 000 cm™! to cover the 0 — 8000 cm~! wavenumber region. DVR3DRIJZ

calculations show that keeping only energy levels below 11 500 cm™!

is enough
for the given frequency and intensity cut-off values. 70 lowest vibrational states are
located below 11 500 cm . For this reason, the Hamiltonian matrix in the first (vi-
brational) step of the calculation (program DVR3DRJZ) could be truncated at 1000
without the loss of accuracy in the energy levels of interest. Indeed, the J = 0 en-

ergy levels below 10 000 cm~! were converged at the 107 cm™! level and energy

levels around 12 000 cm ! at the 1073 cm~! level with MAX3D= 1000.

The ro-vibrational part of the computation (program ROTLEV3b) uses the
Coriolis-decoupled ro-vibrational basis from the first step (program DVR3DRJZ).
The number of the basis functions used in this second step depends on J: at
600 x (J+ 1) for J =0—50, 300 x (J+ 1) for J =51 —85 and 200 x (J + 1)
for J = 86 — 130. Fortunately, for higher J’s smaller basis sets can be used, because
less energy levels are needed, due to the upper energy level 11 500 cm™! cut-off. As
Figure [3.5] shows, the time cost of ROTLEV3b calculations depends quadratically

on J. As long as the number of needed energy levels decreases with J, the pre-factor
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in this quadratic dependence can be gradually reduced, which saves computational
time.

Transition line strength calculations with the DIPOLE program used all states
provided by ROTLEV3b. Separate calculations were performed for each J quantum
number and for each separable block of the transition dipole moment matrix dis-
played in Figure The number of Gauss-Legendre quadrature points required for
integration over vibrational bending functions in the expression for the line strength
(cf. eq. [2.10T)) was set to 250, which guaranteed good convergence.

For each isotopologue and for each pair of PES and DMS, the calculations
were organized as shown in Figure The figure represents a general scheme for
DVR3D calculations with the full use of symmetry: the permutation symmetry of
identical nuclei (even/odd) and the parity symmetry (e/f).

Parallel calculation of separable symmetry blocks in the transition dipole mo-
ment matrix for PR and Q branches significantly speeds up the calculation. Se-
lection rules given in chapter 2 constrain allowed transitions between states with
different permutation parities and different p quantum numbers when J does not
change (Q branch) and identical p quantum numbers when J does change (P and R
branch). Transition frequencies and line strengths computed at the DIPOLE stage
serve as an input to the SPECTRA program [59], which calculates integral transition

intensities given by eq.

_ 8Ny v,f —E; ﬁf
I(V 1— S; 33

where V;s is the transition wavenumber between the i’th and f’th ro-vibronic state

and Q(T) is the partition function at temperature 7. N4 is the Avogadro number,
kp is the Boltzmann constant, 4 is the Planck constant, c is the speed of light in
vacuum and & is the permittivity of vacuum. Units for integral line intensity are
cm/molecule. Partition functions at 296 K given in table [3.4] were computed from

eq. (3.4) using DVR3D energy levels obtained with the Ames-1 PES,

Ej
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Figure 3.6: A general scheme for DVR3D calculations with the full use of symme-
try: the permutation symmetry of identical nuclei (even/odd) and the parity sym-
metry (e/f). The upper panel depicts generation of ro-vibrational energy levels and
wavefunctions with DVR3DRJZ and ROTLEV3b programs. The lower panel rep-
resents transition intensity calculations with DIPOLE. Each symmetry block of the
transition dipole moment matrix for P,R and Q branches is calculated separately.
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where E; are ro-vibrational energy levels labelled by the general index i which rep-
resents all good quantum numbers: J, p,q and h - the index numbering consecutive

solutions; g; = (2J 4 1)gy; is the state dependent degeneracy factor discussed below.

Nuclear spin statistical weights. The nuclear spin statistical weight g, in eq.
(3.3) can be calculated from the knowledge of individual nuclear spins of atoms in
a given isotopologue and the use of some group-theoretic techniques. In brief g,
is the number of spin states, which when combined in a product with a ro-vibronic
state of a given symmetry produces the total internal state of the molecule which has
the symmetry allowed by the Bose-Einstein or the Fermi-Dirac statistic [60,/181]]
This statement is based on the assumption that the nuclear spin does not interact
with spins of electrons in the molecule or the rotational motion of the molecule, so
that the total internal wavefunction of the molecule can be factorized into the nuclear
spin part and the ro-vibronic part: ®;,; = Py;pinP;ve. This assumes that nuclear spin
energy levels are degenerate. The number of these degenerate nuclear spin states,
which for a given ro-vibronic symmetry of the wavefunction generate a represen-
tation allowed by the Bose-Einstein or Fermi-Dirac statistics, constitutes the spin
statistical weight. Hyperfine interactions, which are not considered here, remove
this nuclear spin degeneracy, which causes splitting in energies of spin-rovibronic
states. The total nuclear spins of carbon and oxygen atoms are: i2C) =0, i(3C)
= 12, i(**C) = 3, i(1°0) = 0, i(70) = 5/2, i('80) = 0. This means that the nuclei
of 13C and 70O atoms are fermions and the remaining nuclei are bosons. Apart
from translational, time-reversal and rotational symmetries, which are irrelevant for
the present discussion, two fundamental symmetries are related to spin statistical
weights: permutation of identical nuclei and parity. The total internal wavefunc-
tion of the molecule can transform either symmetrically or anti-symmetrically with
respect to the parity transformation: E*®;,, = +£®;,,. Odd permutation of identi-
cal nuclei in the molecule changes sign of the total internal wavefunction when the
permuted nuclei are fermions and does not change sign for boson nuclei. Even per-

mutation of identical nuclei preserves the sign of ®;,;, hence always has character

IRepetitions of these references are omitted in the reminder of this section.
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+1. In order to find spin statistical weights for isotopologues of CO», it is first nec-
essary to choose a symmetry group in which the ro-vibronic, spin and total internal
states will be classified. Molecular states of the symmetric isotopologues of CO,
can be classified in the D..;(M) molecular symmetry group, which is isomorphic
with the CNPI G4 group for this molecule. Asymmetric isotopologues, on the other
hand, have no permutation symmetry of identical nuclei and will be classified in the
Ceoy (M) molecular symmetry group, which is isomorphic with the G, CNPI group.
Let us choose two example isotopologues,'®0'2C!'°0 and 70'>C!70, for which
the procedure of finding spin statistical weights will be presented.

Because the nucleus of the 7O is a fermion with spin 5/2, an odd permuta-
tion of oxygen atoms in '0O'2C!70 will cause a sign change in the total internal
molecular wavefunction. This fact is dictated by the Pauli Principle.

Character table for the D..,(M) molecular symmetry group given in table
shows that only X, and L, irreducible representations of this group are allowed for
the total internal wavefunction, because in these representations the (12) permuta-
tion of oxygen atoms has character -1. Ro-vibronic states of !’0'?C!70 can trans-
form as any of the four irreducible representations of D..;,(M). Thus, the question
is, which irreducible representations of the nuclear spin states can generate repre-
sentations of the total internal wavefunctions allowed by the Fermi-Dirac statistics?
The other question is: what is the degeneracy of these statistically allowed nuclear
spin states? To answer both questions, first let us classify the nuclear spin functions

Dy iy in the Do.,(M) group. The total number of product spin functions of atoms in

Table 3.1: Part of the character table for the D..,(M) molecular symmetry group
used in determination of nuclear spin statistical weights for CO,.

Dox(M) E (12) E* (12)*
51 1 1 1

>, NS IR S N |
Sl B S
> 1 1 -1 -

17012C70 is (2i175 + 1)? = 6% = 36. For the nuclei of '7O there are 5 possible val-
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ues of the projection of the total nuclear spin i in the Z-axis of the LAB frame,
which corresponds to respective degenerate nuclear spin states: |%, §> = 5 3
]2, ) o 3,|2, >_ 1,|2, —> o 1,|2, > o 3,|2, —) o_ 5 For
the '2C nucleus there is only one spin state: |0,0) = 7. The product state of the
three states of individual nuclear spins corresponds to states with values of the
projection of the total nuclear spin on the Z-axis of the LAB frame in the range
mp=—|2-ig+ivel,....+2 iy +ine| = —5,—4,...,+4,+5. Product functions
of the three nuclear states form a reducible representation for each value of m; sep-

arately.

Table 3.2: Product nuclear spin states for 7O12C!70. my; is the projection of the
total nuclear spin on the Z-axis of the LAB frame. Shown are only positive values
of my. Negative m;’s are generated in analogical way. The spin state y of the '>C
nucleus is omitted. In the right column given are irreducible representations of the
D..;,(M) group generated by appropriate products of the nuclear spin functions.

my nuclear spin states Ll
+55 5_‘_3 Z+
+4 5 38,3, 8,38,5, 2;6923
+ oyt
+35 %5 Ly 5+%5+%,5+%5+% 22g DL
+ +
+2 6 %5 Ly 5_%5_’_%,64_%54_%,3_‘_%5_‘_% 22g ©2%)
+ +
+1 6 %5 %,5_%5+%,5+%5+%,5+%5_%,5_%6+% 3Zg EBZZM
+ +
-1 67%6_._%, 5_._%57%,5_%5_% , 5_%5_’_%,5_’_%6_% 3Zg o2X)
26 56,1,6,10 5,6 30 1,6 10 3 25 @28t
7 t37 ta 3 2 72 2 72 8 u
-3 67;3 1,5_1575,5_38_3 22;@22;_
2 2 2 72 2 T2
-4 6 5573,5736_§ ZZ,F@Z;
2 T2 2 72
5656 st
2

The right column in Table [3.2] has been calculated with the use of the for-
mula for the number of irreducible representations of a group included in a given
reducible representation: a; = 3 ¥ r xrﬁ,’m [R] - x"i [R]*, where h is the order of the

molecular symmetry group and R stands for symmetry operations in the group,

TII
xrﬂpm [R] is the character of the operation R in the reducible representation I', / pin @ and

2L [R] is the character of the operation R in the irreducible representation I';. Let
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us choose an irreducible representation of the ro-vibronic state, say X", and find
all irreducible representations of nuclear spin states, which if combined with X
in a product, will give one of the two representations allowed by the Fermi-Dirac
statistics: X" and X, . There are only two types of representations available for the
nuclear spin states: X3 and 7. From the character Table 3.1| X7 ® X = X" and
from Table we can see that there are 21 in total Z;’s which satisfy this equa-
tion. Thus, the spin statistical weight for the X ro-vibronic symmetry species is
gns = 21. Weights for other ro-vibronic symmetry species can be calculated in a

similar way. All spin statistical weights for !70'>C!70O are listed in Table

Table 3.3: Spin statistical weights g, for the 70!2C!70 molecule classified in the
D..;,(M) molecular symmetry group. Iy, I'spin and ', are the irreducible repre-
sentations of the ro-vibronic state, nuclear spin state and the total internal molecular
state, respectively.

Frve 1—‘spin 1—‘int 8ns
I, 15T & 15
T 2185F T 21
— + —

r, 21¥; x, 21
Y, 15Z) X, 15

For the 170'3C!70 isotopologue, for which there are two available nuclear
spin functions for the '>C atom, all weights are simply multiplied by 2, as the single
carbon atom does not affects any properties associated with the permutation sym-
metry of identical nuclei, yet has two independent nuclear spin states, which need
to be accounted for. This gives a state independent factor (2), and a state dependent
factor: 15:21 (for £}, X and X, L, representations respectively). In the case
of the main '°0'?C!60 isotopologue, for which all nuclei are bosons with spin 0,
there exists only one nuclear spin state, which belongs to the Z; representation. In
such case, the total internal wavefunctions can be generated only from ro-vibronic
states of ¥ and X, symmetry. For these ro-vibronic representations, there is a
single corresponding spin state, hence the appropriate spin statistical factors are

gns = 1. For the other two ro-vibronic symmetry species: Z; and X, there are

no available spin functions, which would generate representations of the total inter-
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nal wavefunction allowed by the Bose-Einstein statistics, hence the spin statistical
weights for these representations are g,; = 0. Ro-vibrational states, for which no
nuclear spin function can be found to generate an allowed representation of the to-
tal internal wavefunction do not exist in nature and are called missing states. The
corresponding hypothetical energy levels are called missing levels. In the case of
16012C16Q the observable energy levels correspond to ro-vibrational states which
consist of sums of products ®,;,P,,;, which have the total symmetry either ¥ or
X, (in the electronic ground state). With these requirements it can be shown that
observable ro-vibrational states with a symmetric vibrational part (nv;, the sym-
metric part of the irreducible representation for nv, vibration, even quanta in the v3
mode) have J-even and e-Wang symmetry (X, total symmetry). For odd number of
quanta in the asymmetric stretching vz mode, the allowed by statistics energy lev-
els have J-odd and e-Wang symmetry. The f-Wang symmetry is allowed only for
levels in the degenerate bending manifold and only for J-even when the vibrational
state has odd number of v, quanta and for J-odd when the vibrational state has even
number of v, quanta. These rules for observable energy levels are straightforwardly
derived from the character table for the D..,(M) group and from the knowledge of
the classification of rotational and vibrational basis wavefunctions in this molecular
symmetry group.

Spin statistical weights for all 13 isotopologues are given in Table
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3.4 Resonance interactions of energy levels

This section is dedicated to introducing the concept of resonance interaction be-
tween ro-vibrational states. A general theoretical formulation given below will be

further supported by two examples with CO; in sections [3.4.3| and [3.4.4] Finally,

a simple theory for transition intensity borrowing, which accompanies resonance
interactions, is developed. This theory serves in section[3.4.6|to formulate a theoret-
ical descriptor, which aims in quantifying the sensitivity of line intensities to small
perturbations in the ro-vibrational wavefunction. Further on, this new descriptor
will be used in qualitative discussion of reliability of calculated line intensities in

CO,.

3.4.1 Whatis a resonance interaction?

A resonance interaction between two energy levels occurs when three conditions
are satisfied [181]]: a) the levels have similar (identical) energies; b) quantum states
associated with the energy levels have identical symmetry; c) an interaction operator

exists, which mixes the interacting states.

In the variational formulation of the nuclear motion problem, the task of solv-
ing the SE reduces to diagonalisation of the ro-vibrational Hamiltonian, which is
represented by a square Hermitian matrix for a chosen basis. The choice of this
zero-order basis set determines which matrix elements of the Hamiltonian will be
large, which will be small and which will vanish by symmetry conditions. Typically,
a product basis set is used, with separate functions for vibrational and rotational de-

grees of freedom:

P =D, P, (3.5)

in which ®,,, is a rigid-rotor eigenfunction and ®,;;, is an eigenfunction of the har-
monic oscillator. For the case of triatomic molecules, the most popular choice for
the rotational basis is ®,,, = |J,k, M), that is symmetric-top eigenfunctions, charac-
terized by the total angular momentum quantum number J, the projection quantum

number k of the total angular momentum on the molecule-fixed z-axis and the pro-



3.4. Resonance interactions of energy levels 105

jection quantum number M of the total angular momentum on the Z-axis of the LAB
frame. ®,;;, is chosen to be either an eigenfunction of the 3D harmonic oscillator or
the 3D morse oscillator. ®,;;, can be typically written in the abstract bra-ket form as:
Vi, V2,1, v3) = |v1)|Va,1)|V3), where vy, vy, V3 are quantum numbers characterizing
the vibrational zero-order basis state. [ is the vibrational angular momentum quan-
tum number, originating from a degenerate bending motion in a linear triatomic
molecule. The solution to the fully coupled ro-vibrational SE is then given by an

expansion in these chosen basis functions:

o= Yy W 7.k, M) | Vi, V2,1, v3) (3.6)

Vlav27lvv37k
v17v27lvv37k

The quantum numbers vy, 2,1, v3 are good symmetry labels only for the Hamilto-
nian of the harmonic oscillator. Similarly, the £ quantum number is a good quan-
tum number for a symmetric-top rigid rotor Hamiltonian, that is also for molecules
at linear geometries. Any small deviations from these model systems cause the
Vi, V2,1, v3 and k quantum numbers to be only near quantum numbers [60]. For
large deviations from harmonicity the vibrational labelling of the harmonic oscilla-
tor starts loosing its sense. Similarly, strong rotation-vibration interactions cause k
to be no longer even a near good quantum number. Such situation occurs predom-
inantly when two zero-order energy levels are involved in a resonance interaction.
Let us analyse such resonance interaction on a simple example. Consider a generic
two-level system with zero-order basis states having energies Eg and E‘(,)V perturbed

by an interaction C. The Hamiltonian matrix for this two-level system is written as:

0

(3.7)
C Ey

The zero-order unperturbed basis will be also called the diabatic basis [182]. Di-
agonalisation of this matrix gives adiabatic energy levels, which exhibit an avoided

crossing, as depicted in Figure Adiabatic energies then read:
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1
(E9+Ey) iz,/4|cyz+AE0 (3.8)

where AEY = ESV — Eg is the separation of diabatic energy levels. The new adiabatic

Ey =

| =

states are mixtures of diabatic states:

W)\ [e —c2) [IW) (3.9)
) ¢ c |S)
%
/ 2 0 0
where mixing coefficients are given as: c¢; = 4CI AT AR and ¢; =
24/4|C|2+AE®

4|C|2+AEO—AE?
24/4|C]2+AE0
remain unperturbed. In the limit of the exact resonance (AEY = 0) we get 50% /

2
) . In the limit of no interaction (C = 0) the two diabatic states

50% mixtures (in-phase and anti-phase) of the two diabatic states.

AE

+/-

adiabatic|state

adiabatic|state

Figure 3.7: Schematic illustration of an avoided crossing of two states with the
same symmetry. The dashed black lines represent energies of bare (diabatic) non-
interacting states, whereas the blue and red thick curves are adiabatic states. In the
x-axis given is the energetic separation of the diabatic states AE?.

Thus adiabatic levels exhibit an avoided crossing at the point where the diabatic
levels intersect. According to standard textbooks [60]], near the points of resonances,
that is near the crossing of diabatic energy levels, most of the standard variational

or perturbative formulas fail to accurately reproduce observations. In the following
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paragraph, we are going to take a closer look at problems which occur with reso-
nantly interacting energy levels and what consequences such interactions have for
observations, such as transition intensity measurements.

Knowing that the interaction operator C can mix different ro-vibrational states,
which manifests itself in a non-zero off diagonal matrix element C in eq. the
next question to ask is: what is the necessary condition for a resonance interaction
in terms of symmetry of states? The interaction operator must have the symmetry
of the ro-vibrational Hamiltonian, which is totally symmetric under operations of
the molecular symmetry group. For this reason, the vanishing integral rule [60] al-
lows for rotation-vibration interaction of diabatic states with the same ro-vibrational
symmetry only, [}, =2, where I, = I, @ I".. This argument can be also derived
intuitively: a coupled ro-vibrational wavefunction, which is not a single product of a
rotational and a vibrational states must have identical symmetries of its component
terms. This is because the whole ro-vibrational wavefunction must transform ac-
cording to one of the irreducible representations of the molecular symmetry group.

For further discussion, the harmonic oscillator basis is chosen for vibrations
and the symmetric-top basis for rotations. We are going to classify resonance inter-

actions, by the type of the perturbing operator C.

3.4.2 Types of resonance interactions

There are two basic types of perturbations of ro-vibrational energy levels caused
by interaction with other ro-vibrational energy levels: Fermi-type interactions and
Coriolis-type interactions. The former type of the resonance interaction occurs
when two vibrational levels have the same symmetry, Fi = 1“%. This is a purely
vibrational anharmonic effect and leads to shifting of ro-vibrational energy levels
of the whole vibrational band involved in the interaction. The Coriolis-type interac-
tion is J-specific and depends on the symmetry of the vibrational and the rotational
part of the wavefunction. As we will show further on, the Coriolis-type resonance
is possible between states with Ak = 41, £2, which for a linear triatomic molecule
means also Al = 41, 42. The Al = £2 interaction is often called [-type resonance or

[-doubling resonance. For future discussion it is useful to introduce the concept of
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the polyad number [60,183]]. For the example of CO,, the polyad number is defined
as P =2v;+ v, +3v3, where vy, v;, v3 are the vibrational quantum numbers of sym-
metric stretching, bending and asymmetric stretching, respectively. The weights
standing by the vibrational quantum numbers in the polyad number formula are as-
sociated with relative energetics of vibrational fundamentals: w3 ~ 3w, ~2®;. The
majority of resonance interactions are enclosed within the space of states with the
same polyad number. However sometimes an interpolyad anharmonic interaction

can occur, which will be distinguished from the intra-polyad Fermi interaction.

3.4.3 Example: Fermi-type resonance in CO,

Anharmonic terms in the PES cause Fermi-interaction of vibrational levels of the
same symmetry, as shown in eq. 3.9 An example of the Fermi-resonance interac-
tion is mixing between the vy volv3n = 10001 and vy v,/v3n = 02001 energy levels in
CO,. Both states have identical Z; symmetry and the perturbing operators here are
the cubic and quartic terms in the PES. Here n is defined as an index labelling vibra-
tional states which are subject to Fermi-mixing with some other vibrational states.
Interactions of energy levels carry consequences for transition intensities. If one
of the energy levels involved in a weak transition in the harmonic approximation is
in Fermi resonance with an energy level which participates in a strong transition,
then intensity borrowing due to mixing of the dark state with the bright state can
significantly increase the transition intensity of the weak (dark) vibrational band,
regardless of J value. As a result, intensity of the whole band is shifted by this type

of interaction.

3.4.4 Example: Coriolis-type resonance in CO,

Coriolis-type interactions are usually associated with operators, which are products
of vibrational coordinates, vibrational angular momentum and angular momentum
operators, e.g. {QipiJ ;. Here { is the scalar Coriolis-constant [60,68]]. Because Q;
and p; have the same symmetry, the non-vanishing rule for matrix elements gener-
ated by this type of perturber states that the product of irreducible representations of

two interacting energy levels must contain an irreducible representation of the j-th



3.4. Resonance interactions of energy levels 109

component of the total angular momentum operator J.

As an example of the Coriolis-type resonance let us consider two energy levels
inCO,: 11101 (vi=1,vo =1,l=1,v3=0)and 00011 (v =0,v, =0,/ =0,v3 =
1). Figure [3.§] displays these energy levels with their vibrational symmetries and
energies. It is clear that the 11101 and 00011 energy levels have different vibra-
tional symmetries, thus cannot interact by a pure vibrational-anharmonic mecha-
nism. However, when we list possible symmetries of ro-vibrational states generated
from these vibrational states, there are combinations of J and k quantum numbers
for which ro-vibrational energy levels in the 11101 and 00011 manifolds have the
same symmetry. For example, when the symmetry of the 11101 energy level (I1,)
is combined with the symmetry of k-odd rotational wavefunction II, it produces
the following sum of irreducible representations: II, X I, = Z; ©L, BAg. Atthis
point it is convenient to move into the C,,,(M) group with the classification. In this
group the D..;’s T1,, state correlates with A; & By symmetry and the £ correlates

with the B, symmetry.

& |ooo1l>

11101> -

et -1

I1, 20765 cm! 2y 23493 cm
u .

Figure 3.8: Schematic illustration of a resonance interaction between two energy
levels in CO, through operator the Coriolis operator C. IT, is the vibrational sym-
metry of the [11101) state and X, is the vibrational symmetry of the [00011) state.
Energies of respective states are given in wavenumbers.

One may ask a question: why did we move into the C,,,(M) group? First of all,
it is subjectively more convenient to operate with a familiar group, which contains
no degenerate representations. Secondly, selection rules for interaction matrix ele-
ments derived in the less general C,, (M) group will also hold in the more general C;
group. The implication in the opposite direction is not always true. The symmetry
of rotational wavefunctions in the Cy,(M) group is A; & B for even values of k in

the |J, k) state and A, @ B; for odd values of k. The selection rule for the J quantum
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number is AJ = 0. By combining the rotational and vibrational symmetries we ob-
tain for the 11101 vibrational state two possible ro-vibrational symmetries: A| & B
for even values of k and A, @ B, for odd values of k. The 00011 vibrational state
also generates two possible ro-vibrational symmetries: A, & B; for even values of
k and A & By for odd values of k. We can see therefore, that only states with op-
posite parity of the k quantum number can be connected via a Coriolis interaction.
Indeed, as we will see in section in Figure the intensity of the R branch
of the 11101 — 00001 band is affected by J-localized resonance interaction between
the 11101 and the 00011 state. Although the whole 11101 — 00001 band is subject
to Coriolis interaction with the 00011 state only near a particular J value, where this

interaction grows rapidly to give a very noticeable intensity alternation.

3.4.5 A theory for ro-vibrational intensity borrowing

The goal of this section is to provide a theoretical method for assessing the ’re-
liability’ of the variationally calculated matrix elements of an arbitrary quantum-
mechanical operator. The accuracy of variational wavefunctions and energy levels
is determined by the accuracy of the underlying potential energy surface (PES).
For this reason, the term ’reliability’ of results correlates with "the accuracy of the
PES used’. In this sense, we are aiming at finding a measure of how sensitive
are the variational matrix elements (e.g. the transition dipole moment) to small
changes in the PES. This measure will formally depend on the energetic separa-
tion of states involved in the interaction AE;; = E; — E; (not the states between
which a transition occurs) and on the deviation of the PES from a reference PES:
AV (r1,r2,0) =V(r,r2,0) —VO(ry,r2,0). With these assumptions, the term ’reli-
ability’ refers to the most accurate PES considered, rather then to the exact (exper-
imental) values. In other words, we assume the most accurate PES (reference PES
V9 as the exact model for reality. Of course this does not mean that we are provid-
ing a method for estimating an uncertainty for matrix elements of operators, which
can be later compared to experimental values. Rather we aim to give a procedure
for stating how sensitive these matrix elements are when a different PES is used

from the reference PES. The reference PES may generate energy levels with some
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systematic shift with respect to experiment, thus the sensitivity measure can not be
directly related to the absolute error of the calculated matrix elements. Neverthe-
less, such multiple-PES-based procedure can deliver information about how strong
are the resonance interactions of energy levels, provided that we have control over
the deviation between the reference PES and the working PES. By this it can be
for example possible to estimate which variationally calculated transition intensi-
ties can be trusted and which of them are very sensitive to the quality of the PES

(accuracy of the wavefunction).

Matrix elements between interacting states. It has been already shown, that
the energy levels resonance is possible between states with the same ro-vibrational
symmetry. Coriolis operators are proportional to components of the total angular
momentum operator J;, which in turn can be expressed by ladder operators (J7),
which mix states with different kK quantum number (the projection of the total an-
gular momentum on the z-axis of the molecule-fixed frame). In general, a Coriolis
operator, which has the symmetry of the total ro-vibrational Hamiltonian, contains
also linear momentum and position operators, which can mix different vibrational
zero-order states, as well as squares of the total angular momentum operators, which
allow for mixing of states with Ak = +1,42.

The other necessary condition for a resonance is non-symmetry based, but re-
lated to the energetics of the two interacting energy levels. The strength of anhar-
monic and ro-vibrational interactions strongly depend on the energetic separation of
the zero-order energy levels. More precisely, the non-vanishing interaction matrix

element C from eq. (3.7) can be rewritten in the following form:

(@Y[[C. A ]| PH)

\%
E?—E;)

Cij = (@7|C|®Y) = (3.10)

which reveals a singularity at E; = E;. Here the zero-order states CID? are eigenstates
of the Coriolis-decoupled ro-vibrational Hamiltonian: H?VCD? = E?CID?. Matrix ele-
ments of the commutator [C, H9] are finite and non-zero, thus the coupling matrix
element approaches infinity when the energy levels become degenerate. In reality,

ideal accidental degeneracies of two zero-order energy levels are never observed,
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hence the interaction matrix elements are always finite, although they can take very
large values and be very sensitive to small changes in the accuracy of the wavefunc-
tion. Because the denominator in eq. is very small, any small perturbation
6(13? to the wavefunction can cause a significant change to the value of the interac-
tion term C;;. As a consequence, variational wavefunctions need to be calculated
with a very high accuracy, to properly reproduce the values of the interaction ma-
trix elements near resonances. This is obviously one of the drawbacks of variational

methodology.

Figure 3.9: Schematic illustration of intensity borrowing caused by a resonance
interaction between two energy levels through operator C. The S < G transition
is from the ro-vibrational ground state |G) and the associated line strength is Sgs.
W < G transition is from the ro-vibrational ground state |G) and the associated
line strength is Sgw. The interaction between |W) and |S) energy levels leads to
intensity borrowing of the W <— G transition, which results in an altered transition
line strength Sgy.

Now, the question is: near a resonance, when E? — E;’ 1s small, how does a
small change in the wavefunction 5613? affect the matrix element of the interaction
operator C;;? In answering this question, we shall first follow an informal intuitive

picture and compare this to a more formal approach of perturbation theory.
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Infinitesimal perturbation approach. Assume that the full ro-vibrational Hamil-
tonian HPV = T + VY, with the reference PES VY, generates a set of eigenfunc-
tions {|l//lo>},~:1727m. In this eigenbasis the Coriolis operator Cis diagonal, because
HY |y?) = E?|y?). The full ro-vibrational Hamiltonian H,, = T +V, with the sec-
ond test-PES V, generates a set of slightly different eigenfunctions {|y;)}i=12,. .,
which correspond to slightly different eigenvalues: H,,|y;) = E;|y;). In both cases
the kinetic energy operator is the same. Nevertheless, a change in the PES (AV) will
result in a change to the wavefunction, so that HS,|y;) # E?|y;). In the standard

variational formulation the reference wavefunction is expanded in a well defined

basis:

vi') = Y. dij| @) (3.11)
J

Basis sets are identical in both cases (reference and test); the only change is in the

variational expansion coefficients.
i) =Y dij| DY) (3.12)
J

Matrix elements of the Coriolis operator C in the reference eigenbasis can be written
as:

(WICly}) = C&; (3.13)

This matrix is diagonal and the expectation values of the Coriolis operator in this
basis are considered as known reference values based on the highest quality PES.

Now assume analogous matrix elements in the test eigenbasis:
(wilCly;) = Cij;j (3.14)

This matrix is also diagonal, but the expectation values are different with respect to
the reference case. After expanding matrix elements from eq. in the variational

basis we get:
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Cij =Y did;i (D}|C|®Y) (3.15)
k.l

The change in values of the matrix elements of the Coriolis operator in the test
eigenbasis with respect to the reference values comes mainly from non-vanishing
elements (PY|C|®Y), for which the zero-order basis states are energetically close.
Remaining terms in the sum will contribute negligibly if the PES distortion is small.
For this reason, let us focus on a particular matrix element which significantly con-
tributes to the change in value of C;;. Because the new wavefunctions |y;) (test
eigenfunctions) have slightly different expansion coefficients dj; than in the ref-
erence eigenfucntions |l//lQ>, one can think of it as if the basis for the test set of
functions has been slightly changed (we incorporate the part of the value of the new
expansion coefficient, d;; = d?j + 8d; j» into the new basis function). Thus we may
write: |®;) 1= |CI>(}> +|6®;). Working with variations in expansion coefficients
or variations of the basis function is equivalent, but for more compact notation it
was decided to vary the basis function. As a consequence, the chosen significant

Coriolis interaction matrix element in the sum in eq. [3.15]is given as

(| C|Dr) = (BRICIPY) + (S|C|DY) + (BLIC|5Py) + (5Pk|C|6P;)  (3.16)

The last term is of order of (54)2)2 and can be neglected. The perturbed interaction
matrix elements are represented as a sum of the original interaction matrix elements
(®9|C|@Y) plus a correction term of type (§®;|C |CI>9>. The latter can be further

written as follows:

(89P(C, A7)|2F)
E{1+ (E) - EY)

(607|C|9Y) = (3.17)

where EY = E? + §E; and E? — E? := AEY. This correction term contributes to the
change in value of the matrix elements of the Coriolis interaction operators. With

a constant, known distortion in the PES AV, the change in the value of the energy
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level is assumed to be known and small: §E;. Then one may write

(607(C,A7)|®Y)

SE(80)|C|DY) = (3.18)

As soon as O E; is non zero, the magnitude of the correction to the interaction matrix

const
AEQ >

SE;
To summarize, we have shown above that separation of zero-order non-

element depends on AE as hence for AE? = 0 takes the maximal value.

interacting energy levels AEY determines the magnitude of the resonance-induced

variation of the interaction matrix elements.

The present discussion over resonance interactions is primarily dedicated to
application in estimating reliability of calculated transition intensities. Henceforth,
the key question to answer is: how do resonance interactions of energy levels influ-
ence intensities of ro-vibrational transitions.

We are going to assume a typical (but not common) situation, when the up-
per energy level involved in a transition accidentally crosses near another energy
level and ro-vibrational symmetries of these two levels are identical. Such situation
is schematically depicted in Figure where a weak transition from state |G) to
|W) is accompanied by a strong transition from state |G) to |S). The energy levels
associated with states |W) and |S) are nearly degenerate. Also, ro-vibrational sym-
metries of both states are identical (they have appropriate vibrational symmetries,
equal J quantum numbers and the approximate quantum number k differing by 1 or

2). In such case, we are interested in the transition line strength:

Tow = |Sow|* = [(G|2(Q)|W)[? (3.19)

where G and W labels ro-vibrational states between which the transition occurs.
[1(Q) is the transition dipole moment surface, which depends on nuclear coordinates

denoted as Q.

Perturbation theory approach. Until now we have been operating on ’small’ dis-
tortions of wavefunctions and surfaces in the configuration space. A more formal

way to approach the problem of sensitivity of transition intensities is by the use of
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perturbation theory. In the same way as the Herzberg-Teller effect [60] is responsi-
ble for intensity borrowing in vibronic transitions, the present formulation explains
the intensity borrowing in terms of resonance interactions of ro-vibrational energy
levels. Let us employ the interaction scheme from Figure 3.9] Assume that the
(W) =19 )|g",) state is perturbed by the |S) = |95, )|@5,) state via an interaction

described by operator C. In the first-order perturbation theory the |W) state reads:

vip (Bror | C1970r ) |933,)
E), —E)

W) = 1635 Bror) = 19yi) [ Br0r) +Z;, 0 [0 9r0r)  (3:20)
If the symmetry of the |S) state is appropriate, that is IV @ IV =TS @ I'>, then
the matrix element (¢ |(9!,|C|¢3,)|#S,) is non-vanishing. Contributions to the
perturbed wavefunction from other energy levels can be small if |S) and |W) states
are well isolated from other states (as in the case of 00011 and 11101 states in CO»).
Then the perturbed wavefunction can be inserted in an expression for the transition

dipole moment:

(Glp(Q)Iw) (3.21)

where |G) represent the lower energy level (the ground state) in Figure Ex-
panding the bra-state in the above equation according to eq. gives:

N A w|C|S) , .
(GIR(Q)I) = (GIRQ@IW) + 195 (Gl (0)IS) = Sew +AwSas (322)
w s
The magnitude of the admixture of the |S) state to the |W) state resulting in intensity
borrowing by the |W) state depends on the value of the Agy parameter, which in
turn depends on the energetic separation of the two energy levels. The intensity of

the S <— G transition is not significantly altered by interaction with the |W) state

because the intensity carried by the W < G is low.
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3.4.6 The concept of a scatter factor

The intensity borrowing effect quantified by eq. [3.22] gives an estimate for the
strength of resonance interaction between respective ro-vibrational energy levels.
This knowledge, in turn, can be utilized in quantifying how reliable are the calcu-
lated transition intensities. Transition intensities insensitive to small changes in the
PES are considered reliable, because no resonance interaction affects the energy
levels involved in a transition. Below, we introduce a descriptor which will serve as
a measure of reliability of calculated transition intensities. Let PES1 be a reference
PES for which the line strength for the W <— G transition is given by Sgw. The
second PES2 generates the ro-vibrational wavefunction |y), which is very similar
to the wavefunction |y°) calculated with the PES1 . This variation in the wave-
function causes the change in the line strength according to eq. [3.22] The ratio of
intensities calculated with PES1 and PES2 and with identical DMS, which we will

be calling scatter factor, is given by

2
S
1 +A‘SWLS

Sew

_ ISew + AewSgs|*
Neds

o

pPGw (3.23)

where the last equality holds only when the expression in the bracket is real (a
special case of Schwartz inequality [184]). Eq. [3.23] provides a direct relation be-
tween the strength of the interaction of two energy levels Agy and the sensitivity
of the transition intensity to the PES change. It is assumed that the change in the
PES is small and controlled, meaning both surfaces are of similar quality, so that
APES(Q) = PES1(Q) — PES2(Q) is small for all Q’s. The value of the scatter fac-
tor should rapidly grow for transitions involving energy levels affected by resonance
interactions. Typically, the energetic condition for a resonance and the AJ = 0 se-
lection rule lead to J-localized resonances. Such resonances occur when two energy
levels, with the same ro-vibrational symmetry and the same J become energetically
close. This observation cues into the idea of a method for detection of resonance
interactions of energy levels with ab initio calculations. If one calculates the ratio

of intensities for the same transition, but calculated with slightly different PESs, it
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can be possible to elucidate information about the strength of interactions of energy
levels involved in the transition with other energy level. This strategy has been ap-
plied for the CO» line lists, for all 13 isotopologues, in which each line has a scatter

factor assigned.

MESM in a local domain? So far we have been considering the matrix elements
sensitivity measure (MESM) in terms of global distortion of the PES (APES(Q)).
It would be however interesting to explore the possibility of finding some corre-
spondence between local features of the PES, which directly affect the accuracy of
the calculated energy levels. Is it possible to relate specific regions of the PES, and
quantify how a local disturbance in this PES affects the energy levels? It is rather
intuitive that small localized perturbation to the PES in a high energy region, which
corresponds to a large amplitude distortion of the molecule, will have little effect on
some low lying energy levels. In this sense, it is interesting to find a geometrically
defined region in the configuration space, which can significantly contribute to the
accuracy of a calculated energy level. Finding such subspaces in the PES could
potentially help in indicating which local parts of the PES need to be modelled very
accurately in order to accurately reproduce energy levels involved in some type of
the resonance interaction. Alternatively, one could try a more straightforward ap-
proach, based on fitting the PES to experimental energy levels, with higher weights
imposed on energy levels affected by resonances. For this purpose, a MESM could
be a good guide for the values of the weighting function. Analysis of this problem

is dedicated for future study.

3.4.7 Coriolis interactions in the DVR3D formalism

DVR3D uses geometrically defined internal coordinates, in which the classic
normal-mode interaction picture is concealed in the complicated form of the kinetic
energy operator, given in eqs. (2.15] [2.16)) in chapter 2. Nevertheless, by looking at
the effective vibrational Hamiltonian in eq. and eq. (2.20), one can find terms
in the K, part which couple states with Ak = +1 and Ak = £2. These terms are re-
sponsible for Coriolis-type interactions in DVR3D. Note that variational approaches

such as DVR3D, which use an exact kinetic energy operator, capture automatically
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all ro-vibrational resonance interactions. Any problems with the accuracy of com-
puted energy levels and wavefunctions near resonances can be attributed either to

convergence issues or inaccuracies in the PES.

3.5 Sensitivity analysis

The dominant source of uncertainty in line intensities in the absence of resonance
interactions is given by the ab initio DMS. For CO,, the accuracy of the UCL DMS
described in section [3.3.2] was considered in detail by Polyansky et al. [28] who
suggested that for the vast majority of transitions below 8000 cm~! it should give
intensities accurate to better than 0.5 %. A characteristic of an ab initio DMS is
that entire vibrational bands are reproduced with very similar accuracy. This is
because to a significant extent ro-vibrational transitions in a molecule like CO, can
be thought of as the product of a vibrational band intensity and a Honl-London
factor [60]. Although DVR3D does not explicitly use Honl-London factors, the use
of an effectively exact nuclear motion kinetic energy operator ensures that these

rotational motion effects are accounted for exactly.

As shown in section the nuclear motion wavefunctions give a secondary
but, under certain circumstances, important contribution to the uncertainties. Vari-
ational nuclear motion programs yield very highly converged wavefunctions and
in situations where the PES is precise the intensities show little sensitivity to the
details of how they are calculated. For example, wavefunctions calculated using
Radau coordinates give intensities very similar (to within 0.1 %) to those computed
in the previous study [28] using Jacobi coordinates and different basis sets. As men-
tioned earlier, where the wavefunctions do play an important role is in capturing the
interaction between different ro-vibrational states. Such resonance interactions can
lead to intensity stealing and, particularly for so-called dark states, huge changes in

transition intensities.

The idea of using the scatter factor, explained in section [3.4.6, was originally
introduced by Lodi and Tennyson [56,/185] for water to capture accidental reso-

nances which were not fully characterized by the underlying PES. Under these cir-
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cumstances calculations with different procedures should give markedly different
results. The procedure does not yield an uncertainty as such, it simply establishes
which transition intensities are correctly characterized by the calculation and hence
have an uncertainty reflecting the underlying DMS, and which are not, in which
case the predictions were deemed as unreliable and alternative sources of intensity

information was recommended.

In other words, trustworthy lines should be stable under minor PES/DMS mod-
ifications. One problem with this strategy is that if the alternate PES (or DMS) dif-
fers too much from the reference (best) PES then large intensity variations can be
found which do not reflect problems with the best calculation, but rather inaccuracy
of the lower quality PES. This issue already arose in a study on HDO [186] where
the ab initio and fitted surfaces showed significant differences. For CO, the ab ini-
tio PES is relatively inaccurate and hence far from the high quality semi-empirical
Ames-1 PES; it was for this reason a third PES was constructed, by performing
a light-touch fit of the ab initio PES to J = 0 — 2 energy levels obtained with the
Ames-1 PES (see section[3.3.2).

Here therefore the Lodi-Tennyson strategy [56] is followed, but we constructed
and evaluated six line lists for the main isotopologue utilizing the three different
PESs and two different DMSs introduced in section[3.3.2] For each of the other iso-
topologues of CO», after testing the main isotopologue, four line lists were created

using only Ames-1 and Fitted PESs.

Practically, the procedure for finding the scatter factor is as follows: two sets
of ro-vibrational wavefunctions are produced, with two different PESs (PES1 and
PES2). For each set of ro-vibrational wavefunctions transition intensities are then
calculated with two different DMSs (DMS1 and DMS2). This gives four line lists:
(PES1,DMS1), (PES1,DMS2), (PES2,DMS1) and (PES2,DMS2). Schematically
this is displayed in Figure In the next step, transition lines are matched be-
tween the four line lists in a two-step algorithm. First, a straightforward match
between lines calculated with the same PES is made. This generates two sets of line

lists, which contain two transition intensities for each matched transition line. In the
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Figure 3.10: A general scheme for calculating the scatter factor p.

second stage, a match between the two sets of lines from stage 1 is made. The most
efficient way of doing so is by prior matching of energy levels through available
quantum numbers J and e/f as well as energetic proximity criteria. Usually not
all lines between the two sets from stage one can be unambiguously matched. The
percentage of matched lines strongly depends on the difference in quality of the two
PESs. Having all 4 line lists matched line-by-line, for each 'matched’ line, the ratio
of strongest to weakest transition intensity is calculated, yielding a scatter factor p,

as schematically depicted in Figure[3.11]
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Figure 3.11: Schematic illustration of the concept of the scatter factor p. Two
situations are given. Left: an unstable line; right: a stable line. Here, the critical
value for the scatter factor, dividing stable lines from unstable lines, was chosen to
be Perit = 2.

The magnitude of the scatter factor, determined by the ratio of the strongest to
the weakest transition intensity for a given line informs about the sensitivity of the

this transition line to minor PES and DMS changes.

3.6 Summary of line lists

With details given in sections [3.3.1] and [3.3.2] a total of 54 room-temperature line

lists for CO, were calculated using UCL’s high-performance computing facility:
Legion. For the main isotopologue (1°0'2C!60,626") six line lists were calculated
and for each of the remaining 12 isotopologues four line lists were produced, in
order to assign a scatter factor to each line. The reference (highest quality) line list
for each isotopologue used Ames-1 PES and UCL DMS. Table [3.4] summarizes line
lists [/| computed for all 13 isotopologues of CO;. The total number of lines in the
HITRAN2012 database is usually lower than in remaining line lists, which suggests
several spectral gaps in HITRAN2012, especially for less abundant isotopologues.
These gaps are all covered by the present calculations, which shows one of the
advantages of ab initio calculations: complete spectral coverage. Also, there are
several bands missing in the CDSD-296 database [187], which are present in the
UCL line lists. The reason for missing bands in CDSD-296 is unavailability of

experimental data for some spectral regions in the 0-8000 cm™~! range, and CDSD-

2Calculated line lists are available as supplementary materials to refs. [37H39].
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296 heavily relies on empirical data to create its entries.

The procedure for matching lines between HITRAN2012 and present calcu-
lations was based on matching of energy levels, with rigorous restrictions on rota-
tional quantum numbers and e/f parities as well as 0.3 cm~! tolerance for energy
difference. The next step was to match transition lines between HITRAN2012 and
UCL line lists. The procedure relied on a simple algorithm, where corresponding
lines were matched using already matched energy levels list. As a result nearly all
lines for all isotopologues in the 0-8000 cm™! region were mapped between the
UCL line lists and HITRAN2012. The RMSD in line positions was in range 0.08—

1

0.1 cm~! for all isotopologues, which confirmed the claimed <0.1 cm™! accuracy

of the Ames-1 PES.



Table 3.4: Summary of 13 room temperature (7'=296 K) line lists of carbon dioxide.

Isotopologue 626 636 646 727 737 828 838 628 627 637 638 728 738
ZPE? [cm™ 1] 2535.922483.08 2436.75 2500.75 2447.50 2469.05 2415.39 2502.61 2518.35 2465.33 2449.38 248493 2431.48
Tyax 129 119 130 99 50 101 50 118 112 99 102 99 84
SF(ortho:para)®  1:0 2:0 7:0 15:21 30:42 1:0 2:0 1 6 12 2 6 12
Q296(This work) 286.095576.652 2033.395 10 902.24 21 758.08 323.438 644.754 607.855 3536.724 7129.752 1223.560 3760.428 7583.400
Q296(CDSD-296)° 286.098 576.652 N/A 10971.90 22 129.96 323.418 652.234 607.828 3542.639 7141.561 1225.518 3766.689 7595.295
Q206(Ames-296) 286.094 576.644 2033.35310971.91 22 129.96 323.424 652242 607.713 3542.610 7140.024 1225270 3766.044 7593.900
Q296(HITRAN)® 286.936578.408 N/A 11 001.67 N/A 324211 653.756 609.480 3552.678 7162.908 1229.084 3776.352 7615.248
Abundance / 0.9842 1.1057(-2) 1.0 1.3685(-7) 1.5375(-9) 3.9556(-6) 4.4440(-8) 3.9470(-3) 7.3399(-4) 8.2462(-6) 4.4345(-5) 1.4718(-6) 1.653(-8)
N(This work) 8 16201068 635 41610 6530 1501 10 441 2637 117490 71580 22667 39980 14349 3573
N(CDSD-296) ¢ 16049968 640  N/A 6530 1500 10444 2635 113122 70692 23815 39979 15140 3621
N(Ames-296) 8 16255868 739 42072 6545 1634 10 531 3050 117744 71639 22704 40034 14529 3573
N(HITRAN2012) 16029268 856  N/A 5187 N/A 7070 121 114023 71182 2953 26737 821 N/A
Matched” 160 28968 856  N/A 5187 N/A 7069 121 110292 71016 2736 26 713 816 N/A

¢ Zero point energy computed with DVR3D with the Ames-1 PES; b Nuclear spin statistical weights ¢ 2015 Edition of CDSD [187]; 4 11157]; ¢ TIPS-2011 [188]; /
HITRAN2012 abundances were taken from Ref. [[157]; ¢ For 10~27 cm/molecule intensity cut-off in 646 and 10~3° cm/molecule after scaling by the natural abundance
for the other isotopologues; " present line lists with 10733 cm/molecule intensity cut-off were used in the comparison.

el
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The values of partition functions calculated with DVR3D and Ames-1 PES
were compared to the partition functions supplied by the HITRAN2012, Ames-
296 and CDSD-296 line lists. A systematic shift of 0.3 — 0.5% is observed for
all isotopologues for partition functions between the present calculation and HI-
TRAN2012. The latter values were calculated using TIPS method [188]], which is
inherently approximate, as based on the product approximation to the respective
degrees of freedom. For this reason, the presently calculated partition functions
should be considered as more accurate. As a result, the partition functions for iso-
topologues of CO; calculated with the Ames-1 PES have been included in the recent
(2016 ) release of HITRAN [[189].

Support for this decision comes from comparison of values of the partition
functions from the CDSD-296 database, Ames-296 line lists and present calcula-
tions. All three approaches calculate partition functions explicitly from eq.
The presently computed partition functions are usually somewhat lower than their
Ames-296 counterparts. This is because the former ones are computed using a
smaller set of energy levels than in the original Ames-296 line lists. Therefore, for
line intensity calculations the Ames-296 partition functions from Huang et al. [157]]
were used (those included in HITRAN2016). Figure [3.12] gives a general overview
of the 296 K line list for the main CO, isotopologue in the 0 — 8000 cm~! spec-
tral region. The calculated transition intensities are compared to the HITRAN2012
database.

In order to relate results from the present study to data given by experiments
and databases, it is necessary to choose a measure for intensity deviation between
two data sets. As a primary measure of relative intensity deviation the following

standard formula was used:

i
S = (U—CL — 1) -100% (3.24)
Iexp

where Iy, stands for line intensity from UCL line list given in cm/molecule and
Ipxp is experimental intensity.

This measure is adequate for small deviations but poorly illustrates highly dis-
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Figure 3.12: General comparison of the HITRAN2012 and UCL CO; 296 K line
lists for the 0 — 8000 cm ™" region for the main isotopologue.

crepant intensities, due to its asymmetric functional form. For larger deviation
spans, for example to show graphically a general overview, it was decided to use a
symmetrized measure:

1 (Iycr 1
Sm = 5 (U—CL - ﬂ) -100% (3.25)

Iexp  lyce
This measure, in turn, yields far from intuitive numbers near 0% deviation. In
comparisons, these two measures will be used interchangeably, depending on the

span of intensity deviations.
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3.7 Error analysis: a method for detecting reso-

nances

This section presents details of the reliability analysis for line intensities for infrared

spectra of 13 isotopologues of CO;. Theoretical background for this analysis was

given in sections [3.4and

3.7.1 Scatter factor statistics

For the main isotopologue of CO; six line lists were generated, which utilized the
three different PESs and two different DMSs introduced in section For this
purpose three sets of nuclear-motion wavefunctions were produced: the first based
on the Ames-1 semi-empirical PES, second based on the UCL ab initio PES and
the third on the fitted PES. Those three sets of wavefunctions were combined with
the two ab initio DMSs (UCL DMS and Ames DMS), to give line intensities. Hav-
ing six line lists in hand, the next step was to match line-by-line pairs of respec-
tive line lists, as described in section (Ames PES & Ames DMS, Ames PES
& UCL-DMS)=(AA,AU), (UCL-ab initio & Ames DMS, UCL-ab initio & UCL-
DMS)=(UA,UU), (fitted PES & Ames DMS, fitted PES & UCL-DMS)=(FA,FU).
This first stage was straightforward, yielding almost 100% match as the line lists
being compared differ only in DMS, which does not affect energy levels. The sec-
ond stage involved matching the Ames-PES based with UCL-PESs based line lists,
i.e. (AA,AU) vs. (UA,UU) and (AA,AU) vs. (FA,FU). In both cases line-by-line
matching was preceded by matching of energy levels. In the case of Ames vs. UCL
90% of lines stronger than 1073° cm/molecule were matched, while the Ames vs.
Fitted resulted in high 99% matching percentage. This confirms that reducing the
RMSD between Ames-1 based energy levels and ab initio UCL PES based energy
levels from 6.2 cm~! to Fitted PES based energy levels with RMSD = 1.4 cm™!
makes a significant difference. Note that since the (AU) line list provides the best
estimates of the intensities, there is no benefit in performing a (UA,UU,FA FU)

scatter factor analysis.
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Figure 3.13: Scatter factor, p, statistics for two sets of PES-DMS combination
((AA,AU,FA ,FU) and (AA,AU,UA,UU)) for the main isotopologue of CO;. Inset:
cumulative distribution function for p. See text for further details.

For each 'matched’ line, the ratio of strongest to weakest transition intensity
was calculated, yielding a scatter factor p. Figure[3.13|shows scatter factors statis-
tics for the two sets of interest. Such statistics aims in supporting the choice of
a critical value for the scatter factor. After carefully analysing Figure [3.13] there
were two reasons for abandoning the ab initio UCL PES: a) incomplete match with
Ames-1 based energy levels caused difficulties in assigning the scatter factor to
transitions. We can clearly see that (AA,AU,UA,UU) set has a more uniform and
compact distribution of p. However statistics for the ab initio UCL PES are based
on 90% of total lines, which is visible in the cumulative distribution function for
(AA,AU,UA,UU) in the inset of Figure[3.13} b) ab initio UCL PES as significantly
lower quality than the Ames-1 PES. As a result the ab initio PES gave a number
of false positive resonances, meaning that there were lines with large values of the
scatter factor, and no real perturbation was present in this energetic region. These
false positives were solely artifacts of the insufficient quality of the UCL ab initio
PES.
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With the choice of the (AA,AU,FA,FU) as a working set of lines, Figure @
suggests p = 2.5 is a reasonable value for the critical value of the scatter factor.
A more detailed analysis of individual bands, given below, suggests that this is
indeed an appropriate value. The plateau of the cumulative distribution function
for (AA,AU,FA,FU) is reached at p ~ 4, at which around 99% of all lines having
a smaller value of the scatter factor. This potentially determines another critical
value, separating ’intermediate’ and "unstable’ lines.

Below, vibrational bands were classified by means of this descriptor, which
serves as a measure of line stability. The line list (AU) was divided into three classes
of lines: stable, intermediate and unstable; following established arbitrary limits on
p for a line to be considered stable (1.0 < p < 2.5), intermediate (2.5 < p < 4.0)
and unstable (p > 4.0). Similar analysis was repeated for each isotopologue of CO;.
Each transition in the primary line list (AU) received a scatter factor.

In Figure the statistics for the scatter factor for all 13 isotopologues is

presented.

mmm Stable (strong lines, ier=8) === intermediate
% mmm stable (weak lines, ier=6,7) === unstable === unknown

80r
60;
401

20

626 636 646 828 727 838 737 628 627 637 638 728 738

Figure 3.14: Scatter factor statistics for all 13 isotopologues of carbon dioxide.
Respective colours denote percentages of lines classified to particular stability do-
main. The y axis corresponds to percentage of total lines present in UCL line lists.
Black regions give percentage of stable and strong lines (> 10723 cm/molecule),
for which the highest HITRAN intensity accuracy code was assigned (ier = 8, see
www.hitran.org) meaning that the line intensity can be considered sub-percent accu-
rate. The assignment of uncertainties in line intensities to AU line lists is discussed
further below.
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All transition intensities in CO; line lists were scaled by the their natural abun-
dance and the 10~23 cm/molecule intensity cut-off dividing the ’strong’ and ’weak
lines was kept constant for all isotopologues. This resulted in much fewer lines in-
cluded in line lists for the less abundant isotopologues, explaining why for example
for the 737 and 738 isotopologues nearly all lines are stable. These lines correspond

to the strongest lines in the 626 isotopologue, which are mostly stable.

In order to appreciate the landscape of scatter factor distributions, it is instruc-
tive to introduce scatter factor maps as a function of lower and upper energy level.
Figure [3.15] shows a map where color codes represent values of the scatter factor
for a given transition. The advantage of this particular representation is that one
gains a full overview of all energetic regions, where transition intensities appear to

be sensitive to minor inaccuracies of the PES. These lines are marked as red dots in

Figure[3.13]
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Figure 3.15: Scatter factor map for the main isotopologue (626) as a function of
lower and upper energy level for transitions stronger than 1073 cm/molecule. The
color code represents the values of scatter factor, p. Three regions of line stability
were determined: blue-stable, orange-intermediate and red-unstable. See text for
further details
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The fundamental bands are easily identified as straight lines originating at 0
cm™! lower energy in Figure The lowest hot bands originate at around 668
cm~!, complicating the whole picture. A general conclusion from Figure is
that the higher energy of a level involved in a transition, the higher tendency for
the transition to be unstable. The color coding in the figure divides scatter factor
space into 3 regions of increasing instability, marked blue, orange and red, respec-
tively. The blue region is considered to be stable and corresponding intensities are
reliable. The orange region is intermediate between stable and unstable, hence tran-
sitions marked orange need careful consideration. The red region contains highly
unstable lines whose computed line intensities should not be trusted. There are a
few super-unstable transitions (p > 10) which are not shown on the plots; these
lines are usually associated with a strong resonance interaction with some other
energetically-close level. Analysis of scatter factors for individual bands can yield
insight. By zooming in an energetic region of interest, as done in Figure [3.16] it is

straightforward to pick up entirely unstable bands or single transitions which hap-

pen to fall into resonance.

Figure illustrates the general trend of decreasing stability of lines with
increasing energy of states involved in a transition. This has been already observed
for the main 626 isotopologue in Figure [3.15] In general, the scatter factor pat-
tern does not change significantly over different symmetric isotopologues, which
means that resonance interactions are mostly common for all symmetric isotopo-
logues. This is because changing nuclear masses in symmetric isotopologues of
CO; shifts vibrational energy levels by a few wavenumbers, and resonance inter-
actions of vibrational energy levels present for the main isotopologue persist for
other isotopologues too. For asymmetric isotopologues, a qualitatively different sit-
uation with broken symmetry of identical nuclei leads to appearance of some new
resonances and disappearance of others, which is captured by scatter factor maps
displayed in Figure Sporadic red points localized in small energetic areas are
indicative of J-localized resonances, while long chains of unstable points suggest

instability of whole bands. The latter effect can be associated with combination of
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Figure 3.16: Scatter factor map for the 828 isotopologue. Colour coding denotes
respective classification of lines: blue stands for stable lines, orange for intermediate
lines and red for unstable lines. The arrows indicate selected bands for which a J-
localized peak in the scatter factor is observed. The zoomed inset in right bottom
corner shows the peak region of the scatter factor for the 12212 — 02201 band. Both
P and R branches are affected by the interaction around J = 30.

Fermi-type resonance and limited accuracy of the Fitted PES, especially for higher

energies.

It is instructive to give a more detailed insight into resonances by plotting scat-
ter factor as a function of m quantum number for each band separately within a
given polyad number change (AP). m is the rotationally-derived quantum num-
ber defined as equal to -J(lower energy level) for the P branch, J(lower energy
level) for the Q branch, and J(lower energy level)+1 for the R branch, and J is
the rotational quantum number. The polyad number for carbon dioxide is defined
as P = 2v; + v, 4+ 3v3, where vy, V;, v3 are the vibrational quantum numbers of
symmetric stretching, bending and asymmetric stretching, respectively. Figure (3.18
displays scatter factor analysis of several bands with AP = 3 in the 828 isotopo-

logue.

For AP = 3 three unstable bands were found: 23301 — 12202, 11101 — 00001
and 11102 — 00001, as shown in Figure The first of the three bands contain
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Figure 3.17: Scatter factor maps for all six asymmetric isotopologues of CO,.
Colour coding classifies transitions as: stable(blue), intermediate(orange) and

red(unstable). The arrows indicate examples of bands involved in a resonance in-
teractions.

transitions for which upper energy levels (localized around a particular J value)
become energetically close to rotational states of some other vibrational state; in this
case to levels from the 12212 state. This may lead to a strong resonance interaction
between states. In the case of the last two bands, an intensity borrowing mechanism
from the strong asymmetric stretching fundamental is responsible for the instability
of line intensities around a particular J. For AP = 5, both 12212 — 02201 and 23301
— 02201 bands are subject to a J-localized resonance, as also depicted further in
Figure [3.22] This is due to mutual interaction of the upper levels of these bands,
which are energetically close. For AP =7, the 22213 — 02201 band exhibits a weak
J-localised peak in the scatter factor around J = 34. The 31101 — 00001 band is
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30

Scatter factor

Figure 3.18: Scatter factor distribution for selected bands of 828 with polyad change
AP = 3. Colour code denotes classification of transition as stable (blue), orange
(intermediate) or unstable (red), measured by the scatter factor.

weakly perturbed by interaction between the 31101 and 20012 states in the vicinity
of J = 68. Bands with higher polyad change number (AP = 9,11) are in general
less stable, following uniform distribution of the scatter factor. From the above
analysis it follows that a more appropriate spectroscopic label, by means of which
the absorption bands affected by resonance intensity borrowing are characterised, is

the upper state polyad number P, e/

Resonances occur when ro-vibrational energy levels of two or more states cross
or nearly cross in the vicinity of a single J value. A prominent example of near
crossing situation is the 11101 — 00001 band, which is perturbed by the 00011 state
(intrapolyad interaction). Because the 00011 — 00001 fundamental is very strong
and the perturbed band is relatively weak, significant intensity stealing is observed.
This case is depicted in Figure [3.19] where relative intensity between HITRAN
and UCL are drawn against the m quantum number. In Figure colour coding
quantifies the stability of the transition intensity. A J-localized resonance is visible

around m = +36, clearly correlating with both high instability of lines (marked by
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red points) and large deviations of UCL line intensities from HITRAN2012 line

intensities. For this reason, UCL transition intensities near m = 36 are unreliable.

>F 107 11101 -00001 _ Stable mmm
o band intermediate

% 2 unstable
cC

O}

)

£

100

%0 50001
Figure 3.19: Relative intensities plotted against HITRAN2012 line intensities for
the 11101-00001 band for the 828 isotopologue. This is an example of a band
involved in resonant Coriolis interaction. Blue, orange and red points denote stable,
intermediate and unstable lines, respectively.

This quasi-singularity in line intensity occurs due to the Coriolis interaction
with the strong 00011-00001 band, which equally perturbs P and R branches of the
11101-00001 band, and manifests itself by intensity borrowing, which in turn leads
to the strengthening of the P-branch and to suppression of the R-branch.

A view of the 636 isotopologue in Figure [3.20] supports the thesis that reso-
nance interactions may affect only selected rotational branches. Here the scatter
factor for the P,Q and R branches of the 11101 — 00001 band in 636 is plotted as a
function of m. Only the R branch is affected by intensity borrowing. Similar pic-
ture emerges from Figure [3.21] where the scatter factor for P,Q and R branches of
the 11102 — 00001 band in 626 is plotted as a function of the upper energy level;
showing energetic localization of the resonance. Analogical behaviour is observed
for resonance-affected bands in other CO; isotopologues.

Thus, to summarize this part, the scatter factor analysis is capable of detecting
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resonance interactions of ro-vibrational energy levels, which are branch-specific

and J-specific.
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Figure 3.20: Relative intensities plotted against HITRAN2012 line intensities for
11101-00001 band for the 636 isotopologue. This is an example of a band involved
in resonant Coriolis interaction.
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Figure 3.21: Scatter factor as a function of lower energy level for the 11102 — 00001
band in 626. The purple line denotes critical value of the scatter factor (p = 2.5).
Different colouring was used for the P, Q and R branches.

Another interesting example, this time of the intrapolyad interaction, is the
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pair: 23301 (perturber) and 12212 — 02201 (perturbed band), for which the intensi-
ties scheme is depicted in Figure[3.22]

I(UCL)/I(CDSD)

-8

o
1

Figure 3.22: Multidimensional graph characterising the 12212 — 02201 band of
12C180,. The base plane depicts m dependence of line intensities with bar height
and color code measuring the value of the scatter factor. The far right plane rep-
resents m dependence of energy levels of the perturbed state (12212) and perturber
(23301), which happen to nearly overlap around m = 436. Left plane gives inten-
sity ratios of lines taken from the present line list and CDSD-296 database [[187]].

Figure [3.22] shows perfect correlation between line stability measured by the
scatter factor and agreement with CDSD-296 line intensities, where large discrep-
ancies surround the region of elevated scatter factor (marked with red filled triangles
in Figure[3.22). Very similar behaviour for line positions of the 12212 — 02201 band
was noted by Borkov et al. for 727 [190]], whose simple polynomial fit of the line
positions resulted in a J-localised quasi-singularity in deviation of line positions.

One would expect that at least some of the large deviations in line intensities
(see Figures[3.20]and [3.22)) can be assigned to the influence of a resonance. Indeed,
the correlation between high deviations in intensity and high scatter factor values
is strikingly pronounced. Therefore we may consider the scatter factors used as

a legitimate measure of reliability of a theoretical line list. Effective reproduction
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of experimental line intensities for resonance bands’ is a challenge for variational
calculations. As the transition dipole moment is very sensitive to small inaccura-
cies of the ro-vibrational wavefunction, and requires almost perfect reproduction of
the PES in this region, which is currently beyond reach of the variational method-
ology (electronic structure calculations). For the time being, the best that can be
done is to identify these sensitive transitions and use other sources of transition in-
tensities, such as the Effective Hamiltonian calculations, which have proven to be
very successful for reproduction of resonance affected bands [[162,/191]. However,
the main drawback of the Effective Hamiltonians is a necessity of a very detailed
semi-empirical parametrisation of these resonance affected bands, which requires a
lot of experimental data. For this reason a list of bands, which may be perturbed
by resonance interactions would be a helpful handout for both experimentalists and
theorists working with CO,. Below are listed selected strongest bands for different
isotopologues of CO,, for which the scatter factor analysis was performed indi-
vidually. In Table [3.5] classification of bands of 626 is given as stable, stable with

J-localized resonance, and as sensitive in the rightmost column.
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Table 3.5: Characterization of selected CO, bands for the main 626 isotopologue. Given for each
band are the band centre in cm™!, the total band strength in cm/molecule, the total number of lines
in the band, the number of stable lines with scatter factor p < 2.5, the number of intermediate lines
with 2.5 > p < 4.0, the median of the scatter factor distribution p, and the maximum and minimum

value of p.

Band Centre Strength Total Stable Inter. p  Pmax Pmin Type
00011-00001 2349.949 9.20x 107 129 129 0 1.0 1.0 1.0 stable
01101-00001  668.159 7.97 x 10~'® 183 183 0 1.0 1.0 1.0 stable
01111-01101 2335.133 7.09x 107'® 341 341 0 1.0 1.0 1.0 stable
10011-00001 3715.622 1.53x107'® 119 119 0 1.1 1.1 1.1 stable
10012-00001 3613.662 1.01 x 10~'® 119 119 0 1.1 1.1 1.1 stable
02201-01101  669.309 6.15x 1071 340 340 0 1.0 1.0 1.0 stable
02211-02201 2321.865 2.71x 107" 317 317 0 1.0 1.0 1.0 stable
10012-10002 2328.264 1.73x 1079 115 115 0 1.0 1.0 1.0 stable
10001-01101  720.044 1.57x 1079 169 169 0 1.0 1.0 1.0 stable
10002-01101  617.239 1.46x 1071 169 169 0 1.0 1.0 1.0 stable
11111-01101 3721.742 1.21x107"° 310 310 0 1.1 1.1 1.0 stable
10011-10001 2327.419 1.04x107'2 113 113 0 1.0 1.0 1.0 stable
11112-01101 3578.816 7.58x 10720 309 309 0 1.1 22 1.0 stable
03301-02201 670.458 3.54x 1072 316 316 0 1.0 1.0 1.0 stable
20012-00001 4978.659 3.40x 1072 110 110 0 14 1.5 1.3 stable
11102-10002 647.831 2.16x1072 162 162 0 1.0 1.0 1.0 stable
11112-11102 2313.744 1.47x1072 294 292 2 1.0 32 1.0 stable, J-local
11101-10001 689.438 1.36x 10720 159 159 0 1.0 1.0 1.0 stable
20011-00001 5100.494 1.10x1072° 107 107 0 14 15 1.3 stable
03311-03301 2308.597 1.03x10720 291 291 0 1.0 1.0 1.0 stable
I1111-11101 2312260 7.23x 10721 290 290 0 1.0 1.0 1.0 stable
20013-00001 4854.447 7.13x 1072 109 109 0 1.5 1.5 1.5 stable
11101-02201  740.173 6.14x 10721 308 308 0 1.0 1.0 1.0 stable
11102-02201 595.761 5.33x1072! 304 304 0 1.0 1.0 1.0 stable
11101-00001 2077.641 5.17 x 1072 107 97 3 1.9 1500 1.4 stable, J-local
12212-02201 3724.349 4.75x 10721 284 284 0 1.1 1.1 1.1 stable
20012-10002 3693.261 3.69x 1072' 104 104 0 1.1 1.1 1.0 stable
20013-10002 3569.048 3.12x1072! 104 104 0 1.1 1.1 1.0 stable
20011-10001 3712.291 2.96x 1072 102 102 0 1.1 1.1 1.0 stable
04401-03301  671.607 1.80x 1072 290 290 0 1.0 1.0 1.0 stable
12202-11102  654.112 1.57x 102" 294 294 0 1.0 1.0 1.0 stable
00031-00001 6973.378 1.38x 102! 101 101 0 2.1 22 2.0 stable
00011-10001  961.746 9.01 x 10722 99 99 0 1.2 1.2 1.2 stable
12201-11101  685.423 8.03x 1072 291 291 0 1.0 1.0 1.0 stable
11102-00001 1933.229 6.19x 1072 156 146 3 1.4 37 1.2 stable, J-local
30011-00001 6503.913 5.17x 1073 24 0 24 26 26 2.6 sensitive
12201-01101 2094.904 5.01x 10722 300 271 7 1.3 1200 1.1 stable, J-local
30013-00001 6228.740 4.54x107%2 99 99 0 23 23 2.3 stable
30012-00001 6348.693 4.54x 10722 99 99 0 22 23 2.1 stable
20001-11101  719.501 3.89x 1072 146 146 0 1.0 1.0 1.0 stable
13311-13302 2490.039 9.13x 102 75 10 65 25 3.5 24 sensitive
40012-00001 7735.305 3.19x 10~ 24 0 24 26 26 2.6 sensitive
40011-00001 7921.693 2.10x 107> 24 0 24 26 26 2.6 sensitive
23302-22201 481.776 9.92x 1072 90 90 0 1.0 1.0 1.0 stable
30004-11102 1859.407 6.77x 10726 24 0 24 26 26 2.6 stable, J-local




140 Chapter 3. Rotational-vibrational line lists for isotopologues of CO,

For the 626 isotopologue 108 out of 116 bands stronger than 10723
cm/molecule are stable. Bands involving bending excitations are also very stable.
For some bands, such as 32203-03301 and 42201-03301 J-localized instabilities
appear only weakly, generating peaks in p which do not exceed the critical value.
For other isotopologues the situation is qualitatively similar. Table [3.6] gathers in-
formation about vibrational bands perturbed by a resonance interaction with other
vibrational state for the '°0'>C!80 (628) isotopologue. Data on other isotopologues
can be found in Table [3.9)and in UCL ab initio line lists published in refs. [37-39]

also available as a part of the ExoMol database (www.exomol.com).

Table 3.6: List of selected '°0'>C'80 vibrational bands perturbed by a resonance
interaction. The columns give: vibrational quantum numbers of the perturbed
band, vibrational assignment of the perturbing state, type of interaction: Inter-
polyad or Coriolis, band centre, total band strength, the total number of lines in
the band in UCL line list, the number of stable lines, the number of intermediate
lines, median of the scatter factor in the band p , maximum scatter factor in the
band P4y, minimum scatter factor in the band p,,;,;, and instability classification:
J-localized(branch) or diffuse.

Vibrational band Perturber Type Centre  Strength Total Stable Inter. p Pmax Pmin Stability
11111 -00001 31104  Inter-pol.  4346.974 3.88E-27 154 153 1 12 3.1 1.1 J-local
31112-01101 51105  Inter-pol.  6263.825 1.02E-25 332 312 4 22 4225 2.2 J-local
11101 — 00001 00011  Coriolis 2050.068 1.69E-23 277 261 9 12 2124.0 1.1 J-local(R)
11102 - 00001 00011  Coriolis 1902.447 2.95E-24 266 251 9 1.2 2599.0 1.2 J-local(R)
12212 - 00001 23301 Coriolis 4838.085 1.52E-26 148 138 0 1.5 15.2 1.4 J-local
23301 — 00001 12212  Coriolis 4825.853 1.46E-27 61 24 15 1.1 8.0 1.1 sensitive
21112-01101 41105  Inter-pol.  4894.770 9.37E-24 448 422 2 1.5 7843.0 1.4 J-local
21102 - 00001 10012  Coriolis 3281.717 3.76E-25 239 138 0 12 1152 1.2 sensitive
21111 -01101 41104  Inter-pol.  5063.241 2.92E-24 410 363 0 1.4 3.1x10° 1.4 sensitive
40014 - 00001 60007  Inter-pol.  7338.180 2.95E-26 134 0 123 3.6 3480.0 3.6 J-local
31113 -01101 42202  Coriolis 6098911 1.56E-25 345 326 0 23 7.6x10° 2.2 sensitive
22212 —-22202 25501 Cor.+l-type 2262.766 3.07E-27 227 207 0 1.0 3444.0 1.0 J-local
30003 — 00001 14402  Anh.+l-type 3855.968 1.43E-24 162 158 0 1.2 1.1x107 1.2 J-local
30013 - 00001 50006  Inter-pol.  6127.111 2.24E-24 165 160 0 234.6x10° 1.3 J-local
41113-01101 61106  Inter-pol.  7459.917 2.45E-27 199 5 8 41 114.2 1.7 sensitive
05521 - 00001 33314  Inter-pol.  7851.812 3.98E-29 14 0 0 102.2 1436.0 94.5 sensitive
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3.8 The story of the 2 um band

In this section, we are going to focus on one particular important vibrational ab-
sorption band in the main isotopologue of CO,, which has been used to measure
the quantity of this greenhouse gas in the Earth’s atmosphere. It will be shown how
the accuracy of experiments and theoretical calculations improved over the years
and how a subtle interplay between theory and experiment can push the state of
the art. Establishing new standards involves mutual validation of the most accu-
rate theoretical calculations and measurements. On the example of a band located
in the 2 um absorption region in CO, we are going to show why ab initio results
are an essential part in the validation of measurements and in re-assessment of true

experimental uncertainties.

3.8.1 Why is the 2 uym band so important?

The quantity of carbon dioxide in Earths atmosphere, its role in climate change
as well as possible sources, migration mechanisms and reservoirs of this gas have
become a vividly discussed topic both in scientific and non-scientific circles over
the past decades. A number of space missions have been launched in the past to
search for answers to fundamental questions about CO», in particular where CO is
being produced (sources) and where it is going (sinks). This activity is clearly vital
to monitoring and hopefully controlling CO; and hence climate change [|114].
Orbiting Carbon Observatory-2 (OCO-2) satellite launched on 2 July 2014 and
the Japanese Greenhouse Gases Observing Satellite (GOSAT) launched on 23 Jan-
uary 2009 are dedicated to accurately measure the column-averaged dry air molar
fraction of CO; in the Earth’s atmosphere. Specifically, the OCO-2 mission aims to
provide maps of CO, in a high, few km?, spatial resolution to pinpoint variations of
CO; concentration at the 1 part per-million (ppm) level. Such remote sensing mea-
surement must be supported with an appropriate spectroscopic model for successful
retrieval of concentrations from measured absorption intensities. The measurements

essentially utilize the Lambert-Beer law: % = ¢ O(V)NL

, in which the intensity of
the absorbed radiation 7 and the reference radiation intensity [y are directly mea-

sure in the on-board instrument. The path length L is accurately estimated from
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the distance the light must cross between the Earth’s surface and the detector in the
satellite. For calculation of N - the concentration of CO; the absorption cross sec-
tion o (V) is required. Absorption cross section depends on the wavenumber V and
is related to the integral line intensity by the relation: o (V) = [I(V — V) f(V)dV'.
Absorption cross sections can be obtained either from laboratory experiments or
theoretical calculations. The latter require calculation of integral line intensities
and line shapes. The 1 ppm variation of the CO, concentration N near the present
global atmospheric CO; level (= 400 ppm), corresponds to 0.3% relative variation
in integral transition intensity. Thus ideally, reference transition intensities provided

by experiment or theory should be 0.3% accurate [[16].

At the start of the present work, the best experimentally derived models for
transition intensities and line shapes were capable of providing 1%—-3% accuracy,
which translates into certainty of CO, concentration from the satellite measure-
ments of 1.5 — 3.5 ppm over land and 1.5-2.5 ppm over ocean [17]. In OCO-2
instruments, the determination of CO»’s concentration is based on measurements of
the absorption of the sunlight reflected from the Earth’s surface in the 1.61 um and

2.06 um spectral regions.

These two CO, absorption regions are called the *weak’ and the ’strong” CO,
absorption bands, respectively. The reason for the choice of these particular spectral
regions 1is their relatively high absorption intensity and little spectral congestion
from other CO, bands and lines from other molecules. For a number of years,
there have been attempts to raise the sensitivity of experimental apparatus to achieve
the goal of 0.3% accuracy in intensity measurements. The HITRAN database is
specifically dedicated for this type of purposes, and since its early days, a particular
effort has been put to accurately model the weak’ and the ’strong’ CO, bands.
Several independent groups, both theoretical and experimental, competed to provide

the most accurate line intensities for the 1.61 um and 2.06 um CO; bands.

Below are listed selected studies from the past years, which were considered
the-state-of-the-art at their publication times. The earliest very high precision and

accuracy experiments were reported by Castrillo et al. in 2003 [192], followed by
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Casa et al. [[193] in 2007 and in 2009 [194] from the same group. NASA’s JPL
(Toth et al. [195]) performed their independent measurements in 2008 dedicated to
the OCO mission (which failed at launch in 2009). Soon after, Wuebbeler ef al. [29]]
reported a high accuracy measurement of a single line in the 20012 — 00001 band
(which is the main band located near 2 um). In 2014 a highly accurate theoreti-
cal line list from NASA Ames research center (Huang et al. [149,/157,/161]) was
published. In the following year the UCL DMS was constructed by Polyansky et
al. [28,37] and measurements by Bielska et al. [28]] confirmed the quality of UCL
DMS, which was later used in calculation of the UCL line list for the main CO,
isotopologue [37]], released in late 2015. A few months later, NASA’s collaborative
experimental study by Benner ef al. [[128]] and Devi et al. [31] reported measure-
ments of the 1.61 um and 2.06 um CO, bands, specifically dedicated for the OCO-2
data retrieval process. Finally, very recently (2016/2017), three independent exper-
iments, with newly developed ultra-high accuracy spectroscopic techniques, were
performed by Hodges et al. from NIST (USA) [30.|196], Brunzendorf et al. [33]]
from PTB in Berlin (Germany) and Odintsova et al. [32] from Napoli (Italy). Given
below is a short story, a summary of the debate over the 1% discrepancy between
theory and some experiments for the weak’ and the ’strong’ CO; bands. In the
end, this debate helped to establish new standards in high-resolution molecular
spectroscopy, especially in the interplay between computation and measurements

of line intensities.

3.8.2 Issues with HITRAN 2012

Figure[3.23|presents a general comparison of the 20012 — 00001 band intensities for
the main isotopologue of CO, between the present calculation (named ExoMol) and
the HITRAN 2012 database [[176]]. In Figure[3.23|the atmospherically relevant band
is the strongest band located in the 4800-4900 cm™! spectral region and consists
of P and R branches, as expected from parallel bands. Visually, the agreement
between the present calculations and the HITRAN 2012 database is excellent. For

this reason, a more accurate representation for intensities is here suitable.

Accordingly, Figure gives an intensity comparison between the present
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Figure 3.23: General comparison of the 20012 — 00001 band in the main isotopo-
logue of CO, between the present calculation (named ExoMol) and the HITRAN
2012 database [[176].

line list and the HITRAN 2012 database for the 20012 — 00001 CO, band. HITRAN
2012 used two separate data sources for this band: NASA JPL (Toth et al. [[195]]) and
an unpublished version of CDSD-296 database [[170]. The point of source switch
is clearly visible near J = 64, where a jump in relative deviation from the present
calculations is observed. This is the point where the experimental data ended and
the database had to rely on results from semi-empirical effective Hamiltonian cal-
culations included later in the CDSD-296 database. A nearly 4% discontinuity in
the intensity pattern indicates serious inconsistency between the two sources used
in the HITRAN 2012 database. In addition to that, an arc-like structure is observed
in the relative deviation pattern for the Toth’s ef al. measurement. This was an un-
usual feature, which required explanation, because both Toth ef al. and the present
calculation claimed near 1% accuracy. One of these claims must have been too op-
timistic. In such form, transition intensities provided by HITRAN 2012 could not

be reliably used in atmospheric CO, concentration retrieval models. Further insight
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into origins of arc-like structures observed in HITRAN2012 intensity patterns are
given in the following subsections. It is there shown that such features are a com-
mon artifact of a certain type of spectroscopic retrieval procedure, which relies on

Herman-Wallis factors.
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Figure 3.24: HITRAN 2012 vs. UCL line intensities comparison for the 20012
— 00001 band in the main isotopologue of CO;. Two HITRAN data sources are
marked with red (CDSD-296: semi-empirical calculations [170]) and blue (Toth et
al. - experimental [[1935]]) circles.

3.8.3 2000’s, first ’sub-percent’ measurements

High accuracy measurements of transition intensities for the 2 um band began in
early 2000’s. In Figure where several accurate intensity measurements are
compared to the present calculations for the 20012 — 00001 band in the main iso-
topologue of CO,, there are two panels: the upper panel displays situation before
year 2015, and the lower panel gives an update with three independent experiments
reported very recently (since 2015). For lines R(2) to R(18), there have been two
consecutive measurements performed by the same group (denoted UniNa2), as il-
lustrated with red and black diamonds in the upper panel of Figure [3.25| The
uncertainties of both measurements were claimed to be an unprecedented 0.2%
level, indicated by the errorbars. However, not only does these data not pass a

self-consistency test, showing discrepancies in intensities for two respective mea-
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surements of the same lines, but also does not agree with the UCL’s theoretical
calculations (1% —3% disagreement). The internal discrepancy between the two
UniNa2 experiments was more than 1%, which suggested the need for revision of
the claimed 0.2% accuracy of Casa et al. ’s measurements. In 2011 another tenta-
tive indication of problems with the UniNa2 data came from Wuebbeler et al. [29],
who reported very accurate measurement of intensity of a single R(12) line, which
agreed with UCL line list within 0.1%. In the meantime the HITRAN 2012 database
has been issued and NASA Ames Research Center published a theoretical line list
with high quality transition intensities. Both data sets are compared to the present
calculations in Figure The JPL data (Toth et al. ) used in HITRAN 2012, as
shown in the previous section, exhibits an arc-like structure, which corresponds to
~ 2.5% deviation from the present calculations. Despite the systematic deviation
and the arc structure, these JPL data, which was included in the HITRAN 2012
database, exhibits a very low statistical noise, which suggests high precision of the
measurement. The Ames-1 intensities [[149,/157,161] do not have such arc pattern,
which is suggested, that the arc-like structures are artifacts of the experimental re-
trieval procedure. Although Ames-1 transition intensities agree to 0.5% —1% with
the present calculations, they feature a non-physical jump in intensity at J = 0, that
is between P and R branches. This discontinuity is probably caused by problems
with the nuclear motion program used by the authors and features in several bands.
For sub-percent accuracy, this discontinuity issue must be resolved. Before 2015,
the problem of reliable estimation of true accuracy both for theoretical intensity

calculations and UniNA?2 experiments remained unresolved.
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Figure 3.25: Comparison of line intensities between the present study, HITRAN
2012 and other accurate experimental and theoretical sources for the 20012 — 00001
band of '2C'0,. Zero relative deviation line corresponds to UCL line intensities.
m is defined as equal to -J(lower energy level) for the P branch, J(lower energy
level) for the Q branch, and J(lower energy level)+1 for the R branch. Respective
data sources were used in the comparison: UniNA2 2003 (Castrillo et al. [[192]),
UniNA2 2007 (Casa et al. [[193]]), UniNA2 2009 (Casa et al. [|194]), JPL - HITRAN
2012 (Toth et al. [195]), PTB 2011 (Wuebbeler et al. [29]), Present study 2016 (Zak
etal. [37]), Ames-1 2014 (Huang et al. [[149,/157,161]), PTB 2015 (Brunzendorf et
al. [33] ), UniNA2 2016 (Odintsova et al. [32]]), NIST 2016 (Hodges et al. [30]]).

3.8.4 A debate over the 1% - NIST comes to rescue

A definitive conclusion to the debate over whose data is the most accurate has

been supplied by recent measurements done independently in the National Institute



148 Chapter 3. Rotational-vibrational line lists for isotopologues of CO,

of Standards and Technology (NIST) [30], Physikalisch-Technische Bundesanstalt
(PTB) in Berlin [33]] and Second University of Naples (UniNa2) [32]. The lower
panel in Figure displays intensity comparison between UCL and very recent
high accuracy measurements of the 20012 — 00001 band in CO;: PTB 2015 (Brun-
zendorf et al. [33]]), UniNA2 2016 (Odintsova et al. [32]) and NIST 2016 (Hodges
et al. [30]). Excellent agreement is visible between UCL predictions and PTB and
NIST measurements (0.2% — 0.5 %). The 0.1% — 0.2% consistency of measured
intensities between NIST and PTB provides also a definitive proof of reliability for
the UCL’s ab initio results. Further support for this statement was delivered with
UniNA2’s 2016 measurements of three lines in the 20012 — 00001 band (R(2),R(4)
and R(6)). The discrepancy between the experiment and UCL calculation was again
0.3%. Further validation for a wider J range would be valuable, but not necessary,
because the theoretical procedure used to calculate UCL line lists gives fundamen-
tally uniform accuracy of intensities for the whole vibrational band, i.e. is almost
independent of J value. Similar quality of transition intensities was anticipated for
several other strong absroption bands in isotopologues of CO;. Indeed, further con-
firmations for sub-percent accuracy of UCL ab initio computed intensities came
from comparisons to new measurements for 20013 — 00001 and 30013 — 00001

bands in the main isotopologue.

Figure[3.26|gives a comparison between UCL intensities for the 30013 — 00001
band, HITRAN 2012 database, Ames-1 line list [[149,(157,/161]] and measurements
by Devi et al. [[128]] and Hodges et al. (NIST) [30]. For some time after publication
of results by Devi et al. there was an ongoing debate about the accuracy of the UCL
calculations, due to 1% difference with respect to Devi’s measurements (see red
filled circles in Figure [3.26). One particular concern about this experiment were the
high |m| intensity tails in the 30013 — 00001 band, which appear to be systematically
and consistently overestimated in experiment, as can be seen in Figure In the
Figure, the UCL, Ames-1 and HITRAN 2012 transition intensities deviate from
the measurement in the same direction of negative relative deviations. In addition,

again, HITRAN 2012 had some problems with discontinuities due to multiple data
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sources and Ames-1 showed an intensity jump at the joint of the P and R branches.
Nevertheless, the 1% systematic shift between UCL and experimental intensities

visible for low |m| values required reconciliation.

Again, a definitive conclusion to the debate over whose data is the most accu-
rate has been supplied by measurements done in the National Institute of Standards
and Technology (NIST) [28]. Points marked with black crosses in Figure @ are
on average 0.5% stronger than the UCL calculated values, but the systematic shift is
in opposite direction from measurements by Devi ef al. . Because of the low 0.3%
uncertainty of the NIST measurements, it was highly probable that Devi’s measure-
ments were less accurate than claimed by the authors. Indeed, later re-analysis of
raw experimental data and an appropriate refit of the optical path length as well as
correction of the model by fitting of the J-dependence to our data eliminated the
1% discrepancy between UCL and Devi’s transition intensities [27,197]. Not sur-
prisingly, the the arc-like intensity patterns in integral intensities from experiment

vanished after the refit [[27,(197].

' ' L HITRAN2012"

. NIST |
Ames-1 =
UCL e

Relative deviation (Devi et al) %

Figure 3.26: Comparison of line intensities of the 30013 — 00001 band of '>C'°0,
between the present study, HITRAN 2012, Ames-1 line list [149,157,|161] and
measurements by Devi ef al. [128] and Hodges et al. (NIST) [30].
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3.8.5 Herman-Wallis factors

In this subsection, a brief explanation of the concept of Herman-Wallis factors is
given, with the aim to demystify the arc-like structures appearing in intensity pat-

terns of experiments described in the previous subsection.

In the majority of high accuracy transition intensity measurements the integral

ro-vibrational line intensities are fitted to the following expression [31}/128]:

o\ SyVirLiF —_El B _ﬁi
I(Viy) = \”/OQ(T—) eXp<kb > [1 exp( ka)] (3.26)

where Sy is the vibrational band strength, V;; is the transition wavenumber, Vj is
the band centre, L; is the Honl-London factor [60] and F is the Herman-Wallis

factor [[198], often represented in the following general form:

F = (1+aim+am? + aym’ + azm*J(J + 1)) (3.27)

where a1,a;,a3,a4 are experimentally fitted parameters. Other quantities appear as
ineq.[3.3

The type of expression in eq. assumes separation of contributions to
transition intensity from rotations (Honl-London factor L; ) and vibrations (vibra-
tional band strength S,) corrected with a term called the Herman-Wallis (H-W)
factor [[198]. This term, originally derived from perturbation theory accounts for
contribution to transition intensity from the rotation-vibration interaction. Because
eq. [3.26]is a phenomenological one, it is vulnerable to inadequate choices of the
functional form of the H-W factor. If this functional form is not flexible enough, it
can result in overestimating or underestimating of transition intensities with high J
values, making high J extrapolation difficult. This is a consequence of the polyno-
mial form of the H-W factor, which may grow uncontrollably for large |m| values.
It is therefore sometimes a difficult task to supply an accurate fit in a wide J range
within a single H-W model. An example of inaccuracies in retrieved transition
intensities is given in Figure where experimental line intensities with large

positive m values deviate from UCL ab initio results. The ab initio expression for
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integral line intensity does not require any assumption on the form of the contri-
bution from rotation-vibration interaction. Thus, first principles derived theoretical
line intensities can serve as reliability guards capable of capturing defects in exper-
imental retrieval models for high J quantum numbers.

Although H-W factors have been widely used in many data reduction proce-
dures, they are likely to malfunction when sub-percent accuracy is required. Un-
til recently the +10% margin of error associated with experimental accuracy did
not uncover the possible issues with H-W factors. For this reason it is recom-
mended to cross-compare experimentally reduced transition intensities against ab
initio calculations, which account for the rotation-vibration interaction exactly, such

as DVR3D.
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Figure 3.27: Line intensity comparison for the 20013 — 00001 band of '>C!60, be-
tween the present study, the HITRAN 2012 database and a measurement by Benner
et al. [31]]. The error-bars in HITRAN data denote 1-0 uncertainty.

Apart from high m divergence between experiment and UCL results due to in-
adequate form of the H-W factor, the agreement observed for the 20013 — 00001
band (2.00 um band) is indeed very good. An average systematic shift by about
0.5% from measurements by Benner et al. [31] is observed. A bit worse, but still
very satisfactory agreement, with less accurate HITRAN 2012 intensities is also vis-

ible. At m =4 60 there is a discontinuity in the relative deviations (UCL-HITRAN)
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due to source change from NASA JPL intensities from Toth et al. to CDSD-296
intensities. It is also plausible that JPL intensities have their high |m| tails inade-

quately retrieved due to a choice of the H-W model.

To summarize, independent high accuracy measurements of transition intensi-
ties for three crucial CO, absorption bands in the infrared confirmed sub-percent
accuracy of UCL calculated transition intensities for these bands. This was a prece-
dence case, when ab initio calculations could compete with state-of-the-art mea-
surements and even in some cases have been proven more accurate than experiment.
Moreover, in the course of analysis of experimental data, problems with Herman-
Wallis factor models were detected, which triggered corrections to experimental
reduction models and eventually lead to tentative reweighing of community’s trust

for high J transition intensities onto the ab initio side.

3.9 Comparison with experiment and databases

This section gives comparisons of the theoretical line lists for carbon dioxide calcu-
lated with Ames-1 PES and UCL ab initio DMS (" AU’ line list) to high-resolution
spectral databases (HITRAN 2012, CDSD-296), a theoretical line list from Ames
NASA research center and recent accurate measurements. It has been already
shown in section [3.8] that three bands in the main CO, isotopologue have inten-
sities modelled with sub-percent accuracy. Here, further tests are given in a broader
spectral range and for other isotopologues, to provide a critical and comprehensive
assessment of UCL line lists. In the next section[3.10] the focus is specifically on the
16012C16Q isotopologue (626™), which is by far the most abundant (98.4%) of all
CO, isotopologues. Then in section[3.11]five symmetric stable isotopologues of car-
bon dioxide are analysed: 3C'0, (626) 1>C!70, (727), 12C'80, (828), 13C!"0,
(737) and 3C!80, (838). In section asymmetric isotopologues 16p12ctép
(628), 15012C170 (627), 19013C!80 (638),1°03C!70 (637), 17012C!80 (728) and
17013¢180 (738) are compared. The reason for separation of the symmetric and
the asymmetric isotopologues is broken permutation symmetry of identical nuclei

in the latter group, which results in a non-zero permanent dipole moment. This, in
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turn, causes qualitative differences in infrared spectra of symmetric and asymmet-
ric isotopologues (such as existence of purely rotational transitions in asymmetric
isotopologues). Finally in sectionmthe radioactive 14C!°0, (646) isotopologue
is analysed, with a discussion of potential uses in remote sensing, carbon-dating

procedures or even in medical diagnosis.

3.10 The main isotopologue (626)

In this section, the main isotopologue of carbon dioxide '°0'2C!60 (*6267) is anal-
ysed. In particular, the calculated theoretical line list for this isotopologue is com-
pared with several data sources, such as HITRAN 2012 and CDSD-296 databases.
The aim of these comparisons is to verify the accuracy of calculated transition in-
tensities at the level offered by the databases and experiments, which is typically
2-20%. Unlike in section (3.8 on the 2um band only, this section targets a much

broader frequency range, to give a comprehensive global validation of the line list.

3.10.1 Comparison with high-accuracy measurements

First, let us focus on the state-of-the-art intensity measurements for 626. Line po-
sitions in the AU line list (UCL line list), as based on the Ames-1 PES, can be
considered identical to those computed and analysed in a series of papers by Huang
et al. [149,/157,/161]. The majority of high accuracy intensity measurements were
performed for the 1.6 um and 2 um bands. These measurements already served as
a proof of sub-percent accuracy of UCL transition intensities presented in section
[3.8] Below, in Figure [3.28] yet another confirmation of sub-percent accuracy for
the 30014 — 00001 band is given. The UCL and Ames line lists agree almost per-
fectly for the P branch of this band, and a 0.8% discontinuity in Ames intensities
is visible for the R branch. Nevertheless, the agreement is very good. HITRAN
2012 transition intensities also agree to 0.5% with UCL intensities for low m values
and systematically drift to 2% for higher |m|’s. This essentially minor discrep-
ancy could be only resolved in favour of either line lists by an additional, ultra-high
accuracy measurement. Such measurement was provided by Kiseleva et al. [199],

where the intensity of the R(52) line of the 30014 — 00001 band was determined
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with 1% accuracy. The agreement between UCL and Kiseleva et al. is 0.2%, which
adds significant confidence to the transition intensities provided in the UCL line
list for this band. Such excellent agreement between experiment and the present
theoretical calculations also suggest that HITRAN 2012 intensities are not accurate

enough, and require updating.
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Figure 3.28: Comparison of transition intensities between the present line list for the
626 isotopologue and three accurate data sources: HITRAN 2012 database [200],
Ames-1 line list [161] and measurement by Kiseleva et al. [199].

Another two lines in v| 4 v3 band (P(34), P(36)) were measured by Pogany
et al. [201]] with reported 1.1 and 1.3 % uncertainty. The corresponding UCL in-
tensities deviate by 2.0% and 2.5% respectively from line intensities provided by
Pogany et al. . Nevertheless the UCL intensities are on average 1% closer to the ex-
perimental values than the intensities obtained from either Ames-1 or CDSD-296,
which suggests that the accuracy of measurements by Pogany et al. was plausibly
overestimated.

To conclude, the available experimental evidence, which covers a limited num-

ber of lines, indicates a very high, probably sub-percent accuracy of transition in-
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tensities calculated with the present model for the 626 isotopologue. The accuracy
of HITRAN2012 and CDSD-296 database as well as other available experimental
data has stated uncertainty in intensities below 1%. Thus, comparison to these data
sources allow to establish uncertainty of UCL intensities at best few-percent level.
Nonetheless, comprehensive and spectrally broad comparisons to databases need to

be made, to provide a possibly complete benchmark.

3.10.2 Comparison with other line lists

In this section a line-by-line comparison to three data sources is given: the theoreti-
cal Ames-296 line list [[161], HITRAN 2012 [200]] and CDSD-296 [187/]] databases.
Such comparison will allow one to draw conclusions about the global accuracy of
the UCL line list. Because the stated accuracy of these three data sources is no
higher than 2%-20%, the level of validation achieved by comparing to them cannot
be lower than this value. Nonetheless, such comparison provides a benchmark, and
may allow to select candidate bands which are poorly modelled in the UCL line list.
As we will see, there is one series of unreliable bands in the UCL line lists.

Ames-296

Huang et al. [161]] published infrared line lists for 12 stable and 1 radioactive
isotopologues of CO;. These line lists were calculated with Ames-1 PES [157]] and
DMS-N2 [149]], or (AA) in our notation.

From Ames data a 12C16Oz line list was generated for its natural abundance,
T =296 K and with an intensity cut-off of 10739 cm/molecule, which we refer to
as Ames-296. Ames-296 contains 162 558 lines in the 0 - 8000 cm™~! range. To
facilitate comparison with other line lists a spectroscopic assignment of this line
list was performed. As a first step, for the sake of consistency, it was necessary
to compare energy levels from original Ames-296 line list with the DVR3D re-
calculation. Accordingly, energy levels up to 6000 cm™! gave a RMSD of 0.05
cm~! and 0.06 cm™! up to 10 000 cm~!. This is slightly more than one would
have expected on the basis of previous comparisons [[155] and appears to be due a
slightly non-optimal choice integration grids in Huang et al.’s calculations (Huang

and Lee, 2015, private communication).
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CDSD-296

The effective operator approach enables one to reproduce all published ob-
served positions and intensities with accuracies compatible with measurement un-
certainties. Based on a fitted effective Hamiltonian H.¢ and effective dipole moment
De¢r models Tashkun ef al. [187] created a high resolution spectroscopic databank
”CDSD-296” aimed at atmospheric applications. The databank contains the calcu-
lated line parameters (positions, intensities, air-and self-broadened half-widths, co-
efficients of temperature dependence of air-broadened half-widths and air pressure-
induced lineshifts) of the twelve stable isotopic species of CO,. The reference tem-
perature is 296 K and the intensity cut-off is 1073° cm/molecule.
Figure [3.29 compares Ames-296 and UCL line intensities with the semi-empirical
CDSD-296 results. For the sake of clarity only strong bands with intensities greater

than 10~23 cm/molecule are plotted.
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Figure 3.29: Root mean square deviation for band intensities of Ames-296 (red
triangles) and the present results (UCL, blue circles) with respect to CDSD-296.
This figure was prepared by S. Tashkun [37].

For the strongest bands the UCL line-list agrees much more closely with
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CDSD-296 than Ames-296 does. The only real exception to this are the 00031—
00001 and 01131-01101 bands. For this family of bands, whose intensity derives
from the same dipole moment derivative, the deviations from Ames-296 are three
times less than UCL ones. In the final UCL’s recommended line lists included in the
2016 edition of the HITRAN database, all absorption intensities of bands including
3v3 vibrational quanta were replaced with CDSD-296 intensities. 3170 transitions

belonging to this family of unreliable bands were identified in the UCL line list.

3.10.3 HITRAN2012

This section gives a comparison of UCL’s line list for 2C'®0, with the HITRAN
2012 database [200], which contains 160 292 absorption lines in 0 — 8000 cm™!
region for the main isotopologue. First of all, a matching procedure was conducted
between the UCL calculated energy levels and HITRAN 2012 energy levels. This
was done by imposing rigorous restrictions on rotational quantum numbers and
Wang e/ f parities as well as 0.3 cm™! tolerance to energy difference. This scheme
resulted in a match for all 16 777 unique energy levels present in HITRAN 2012
covering J values from 0 to 129 with RMSD of 0.07 cm™~!. The largest deviation

found between two levels was roughly 0.2 cm~!.

This result confirms the high
quality of the Ames-1 PES.

The next step was to match transition lines between HITRAN 2012 and UCL
line lists. The procedure relied on a simple algorithm, where corresponding lines
were matched using already matched energy levels list. As a result all 160 292 lines
up to 8000 cm~! were matched with a RMSD of 0.08 cm™! .

There are two main sources of HITRAN2012 data for CO, main isotopologue:
a small set of 605 lines in 4800-6989 cm~! range originating from experiment
(NASA JPL line list) by Toth et al. [[195] and the majority of transitions from a
previous version of the CDSD-296 database. In general, data from the latest ver-
sion of CDSD-296 [187]] are very close to line positions and intensities given in
HITRAN 2012.

The estimated uncertainties for all CDSD-296 intensities is given as 20 % or

worse in HITRAN (uncertainty code 3, or ier=3). On the other hand, Toth ef al.’s
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intensities are supposed be accurate to better than 2% (uncertainty code 7) or 5%
(code 6). For explanation of the HITRAN uncertainty codes see HITRAN website:

www.hitran.org.

This reveals two issues with current version of HITRAN:
a) The stated uncertainty estimate of all current entries are insufficiently accurate for
remote sensing applications. Comparisons and discussion from section (3.8|already
showed that for a number of important bands the actual accuracy of the intensities
in HITRAN is much higher than suggested by their estimated uncertainties.
b) line intensity accuracies are not uniform throughout the spectral region, as ex-

emplified in Figures [3.24] [3.27 and [3.26] The ratio of observed to variational line

intensities should be roughly constant for a given band, unless there is an isolated
resonance. This is because the DVR3D calculations use the complete rotational ba-
sis set, exact kinetic energy operator and the exact expression for the line strength.
The only major source of inaccuracy in line intensity is the DMS, which affect in-

tensities of the whole bands, rather than individual rotational transitions.

All HITRAN2012 entries taken from a pre-release version of CDSD have been
tagged with uncertainty code 3 (20% or worse). However, this number does not
reflect actual uncertainties of the intensities. Most of the HITRAN intensities appear
to have uncertainties much better than 20%. More detailed information about the

actual uncertainties can be found in the official release of CDSD-296 [|187]].

Intensities of all assigned UCL lines relative to HITRAN 2012 are depicted in
Figure [3.30f As expected, discrepancies between the two line lists grow as lines
get weaker, which results in a funnel-like shape in the plot which is characteristic
of such comparisons (e.g. [202]). The stability of the UCL lines on the scatter
factors are also shown; as could be anticipated stable lines predominate at higher

intensities.

It is instructive to divide HITRAN 2012 data into subsets of a given intensity
accuracy code. Each of those sets can be then compared to the present results sepa-
rately to provide an estimate for compatibility of two line lists at different levels of

accuracy.
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Figure 3.30: Comparison of HITRAN 2012 and UCL line intensities for the main
CO, isotopologue: UCL to HITRAN intensity ratio as a function of HITRAN line
intensity. Blue points stand for unstable lines according to our sensitivity analysis,
while red points are considered to be stable. There are 147 000 stable, 7000 inter-
mediate, 4400 unstable and 1 400 unknown lines which are too weak for a scatter
factor to be determined reliably.

To achieve that HITRAN intensities with the accuracy code found for CO,
which is 7 (2 % or better uncertainty) were plotted in Figure [3.31] against the UCL
ones. This set of lines encompass the important 20011, 20012, 20013, 30011,
30012, 30013 and 30014 bands (absorption from the vibrational ground state) as
well as the asymmetric stretching second overtone 00031. All bands except ’inter-
mediate’ 30011 band are stable. Comparisons with high accuracy measurements
above have already shown that the present UCL intensities for the 30013 — 00001,
20012 - 00001 and 20013 — 00001 bands are accurate to about 1 % or better.

Again one can see characteristic bow-like structures corresponding to particu-
lar rotational transitions within a vibrational band, with the peak of an arc refers to
most intense, low J transition. These structures are artifacts which originate from

the semi-empirical treatment of the intensities (see section [3.8.4).

A similar situation occurs for bands with HITRAN uncertainty code 6 (accu-
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Figure 3.31: Comparison of HITRAN2012 most accurate intensities and UCL line
intensities. The dashed line indicates the stated HITRAN uncertainty, i.e. 2% .
Arrows label vibrational bands, which all start from the ground 00001 state.

racy of 2% — 5% ), see Figure here very good agreement is spoiled by 01131
— 01101 band.

Overall, the agreement between HITRAN 2012 and UCL line lists is good.
The strongest and the most accurate bands in HITRAN 2012 match UCL bands to
within few %, which agrees with the stated accuracy of HITRAN intensities. The
only exception is the family of bands involving the v3 vibrational quanta, for which
the UCL line lists gives markedly less reliable transition intensities. Sporadic large
discrepancies between HITRAN and UCL for very weak lines are probably caused
by inaccuracy of the effective dipole moment models used to generate HITRAN
intensities. These models heavily rely on availability and quality of experimental

data, which is often poor for weak bands.

3.11 Other symmetric isotopologues

The key hypothesis which is to be tested in this and following sections is the claim

of transferability of accuracy of line intensities from the main CO, isotopologue
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Figure 3.32: Comparison of HITRAN2012 medium-accuracy intensities and UCL
line intensities. The dashed line indicates the stated HITRAN uncertainty, i.e. 5%.
Arrows label vibrational bands.

onto other symmetric and non-symmetric isotopologues. The Ames-1 PES, which
is used throughout this thesis for calculation of line lists was originally generated
for the 626 isotopologue and is assumed isotopologue-independent. The magnitude
of non-Born-Oppenheimer corrections to the Ames-1 PES is expected to be very
small, typically affecting line positions by less than 0.1 cm~! , which was confirmed
by comparisons of Ames-1 PES derived energy levels with experimental values
[157]]. The question about the independence of the UCL DMS on nuclear masses is
another, yet even more important concern. A straightforward test to the hypothesis
of the independence of the DMS on nuclear masses comes from comparison of
transition intensities for isotopologues other than the main 626 with high accuracy
experiments. Unfortunately, very few such experiments are available, mainly due to
low natural abundance of isotopologues containing 170,80 or 3C. The next section
provides comparisons of calculated UCL intensities to available experimental data

for several symmetric CO, isotopologues.
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3.11.1 Isotopologue 636

Three high accuracy measurements of line intensities are analysed in this section:

Devi et al. [128]], Kiseleva et al. [199] and Durry et al. [203].

Recently Devi et al. [128]] performed precise measurements of line intensities
of the 626, 636 and 628 isotopologues of carbon dioxide in the 1.6 um region.
Figure [3.33|compares the present calculations and HITRAN 2012 line intensities to
these new experimental results. The HITRAN 2012 data comes from the CDSD-
296 database. A significant systematic shift of 5% and 10% with respect to Devi’s
measurement toward higher intensities is observed in Figure[3.33|for both the 30012
— 00001 and 30013 — 00001 band. An almost identical relative deviation pattern is
followed by UCL line intensities and the effective Hamiltonian calculations from
HITRAN 2012. Possible problems in measured line intensities were also found at
m = +38 and m = —40. These transitions clearly stand out in the comparison pat-
tern for both HITRAN and the present study. High J tails of both bands are bent in a
arc-like structure, behaviour which has been already observed for the main isotopo-
logue. Again, such phenomenon can be attributed to limited flexibility of functional

form assumed for the Herman-Wallis factors, when reducing the experimental data.

In Figure with blue and red filled triangles, compared are also UCL and
HITRAN2012 intensities for the 30013 — 00001 band in the main isotopologues
with measurements by Benner et al. [31]]. Comparison shows 0.5% agreement be-
tween the experiment and UCL line intensities for the 20013 — 00001 band for the
main isotopologue [31]], and systematic increase in intensity deviation from m = 60
onwards to reach 1.5% deviation at m = 84. Both experiments (Devi et al. [128] and
Benner et al. [31]) utilized the same multispectrum nonlinear least squares curve
fitting technique to retrieve line profiles and intensities. This similarity in high J
behaviour supports the thesis of potential problems with retrieval model used in

experimental post processing.
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Figure 3.33: Relative deviations (PS/Experiment) of line intensities from measure-
ments by Devi et al. [|128]] plotted against m quantum number. Blue and red triangles
denote the 30013 — 00001 band of the 626 isotopologue taken from HITRAN 2012
and present study, respectively. Purple and green squares stand for line intensities
of the 30012 — 00001 band of the 636 isotopologue taken from HITRAN 2012 and
present study, respectively. Orange and grey circles give the line intensities of the
30013 — 00001 band of the 636 isotopologue taken from HITRAN 2012 and present
study, respectively. Zero relative deviation means 100% agreement with Devi et al.

The quite worrying 10% discrepancy between the measurement by Devi et al.
and the UCL line intensities for the 30013 — 00001 band for 636 visible in Figure
[3.33] requires a closer investigation. In Figure [3.34] the accuracy of experiments
by Devi et al. and present calculations has been verified by comparison with very
recent Cavity Ring-Down Spectroscopy measurements of CO, lines by Kiseleva et
al. [[199]. Their observed intensity of the P(6) line in the 30013 — 00001 band of
the 636 isotopologue was found to be within 0.4% of both UCL and HITRAN line
intensities. This result is consistent with the comparison between the experiment by
Kiseleva et al. and the present study for the R(52) line of the 30014 — 00001 band

of the main isotopologue (626), for which the discrepancy was only 0.2% from
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the UCL theoretically predicted value (see Figure [3.28). Both lines were measured
with stated <1% uncertainty budget. This suggests that a similar, presumably sub-
percent, accuracy for the line intensities provided here and by HITRAN 2012 for
the 30013 — 00001 band of the 636 isotopologue.
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Figure 3.34: Relative deviations (relative to CDSD-296) of line intensities from
the UCL line list, Ames-296 line list and a single line measurement by Kiseleva et
al. [[199] plotted against m quantum number for the 30013 — 00001 band of the 636
isotopologue.

Measurements from Durry et al. [203]] deserve special attention, as in their
study intensity uncertainties for measured bands of the 636 isotopologue are
claimed at the 1% level. Figure 3.35| compares experimental line intensities from
Durry et al. with HITRAN 2004 [204], HITRAN 2008 [205] and 2008 release of the
CDSD database [167,/170], as well as with UCL calculated values. A characteristic
wave-like pattern is visible. As all four sources follow this envelope, but with dif-
ferent systematic shifts, the tentative conclusion is that this pattern is an artifact of
the Durry et al.’s measurements. The results of the present work are shifted toward
most negative values of relative deviation, with average systematic shift of 2%.

However, intensity comparison for this band for the main 626 isotopologue [31],
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given in section [3.8] supports the 1% accuracy UCL theoretical intensities. There-
fore it would seem that the stated 1% uncertainty of Durry et al.’s measurements

may be too optimistic.
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Figure 3.35: Relative deviations of line intensities of the 20012 — 00001 band of the
636 1sotopologue from measurements by Durry et al. [203] plotted against J quan-
tum number for several databases. Sources considered are HITRAN2004 [204]],
HITRAN2008 [205]], the 2008 release of CDSD [167] and the present work. The
1% deviation region is represented by green edge-blurred strip.

3.11.2 Isotopologue 727

In recent experiments performed on 'O and '80 enriched samples, Jacquemart
et al. [162] measured several bands for the 727 isotopologue. The authors ar-
gue that only lines stronger than 10723 cm/molecule are retrieved with *good ac-
curacy’ and this accuracy is also strongly dependent on the knowledge of iso-
topic abundances. Figure [3.36] compares intensities of different bands measured
by Jacquemart et al. with present predictions. It is evident that lines weaker than
1.0 x 1072 cm/molecule give reduced accuracy, as statistical spread appears an
order-of-magnitude larger than for the strong bands measured in this experiment.

Hence the experimental results ( [162]) for the 30011 — 00001, 31112 - 01101 and
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31113 - 01101 band should be considered with caution.
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Figure 3.36: Relative intensities (vs. UCL) for several bands of the 727 isotopo-
logue measured by Jacquemart et al. [162].

The calculated intensities of the two strongest bands in the 2 ttm region, that is
30012 — 00001 and 30013 — 00001, are uniformly shifted by +10% with respect to
experiment. As indicated by Jacquemart et al. [|162], intensities of whole bands are
strongly dependent on isotopologue abundance (reported as 22.27%), and this factor
is considered to be the main source of possible systematic shifts with respect to other
studies. Comparisons with previous measurements by Karlovets et al. [191] were
made, revealing the new measurements by Jacquemart et al. [162] to be on average 3
— 4% stronger. However, samples used by Karlovets ef al. had very low abundance
of 727 (0.04%), which resulted in large statistical error (15%) in the intensities.
Therefore with the current level of experimental control over systematic errors it is
difficult to reliably refer to measurements better than 10% accuracy. Nonetheless,
because theoretical line intensities have constant accuracy for whole bands (except
resonances), they can be used to assess the precision of measurements. Small scatter

of line intensities throughout these bands (marked red and cyan in Figure |3.36))
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confirms the claimed high precision (1%) of the measurement from Ref. [162]] above
2.5 x 1072 cm/molecule, 2% between 5 x 1072 and 2.5 x 10~2*, 5% between
1 %1072 and 5 x 10723, and 20% below 1.0 x 1072,
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Figure 3.37: Relative intensities (vs. UCL) for several bands of the 727 isotopo-
logue measured by Karlovets et al. [191]. Intensities were scaled to unit abundance.

Figure compares UCL line intensities to the experimental data from
Karlovets et al. [[191]. The low isotopic abundance of samples used in experiments
and large stated uncertainty (15%) means that the comparison despite its large scat-
ter is satisfactory. As for other isotopologues, the 00031 — 00001 band computed
by us has an underestimated intensity (grey squares in Figure[3.37). Cyan and red
points correspond to 30013 — 00001 and 30012 — 00001 bands, and these experi-
mental points were used to relate the line intensities of these bands in the study by

Jacquemert et al..

3.11.3 Isotopologue 828

Recent CW-Cavity Ring Down experiments for enriched sample of the '2C!80,

isotopologue by Karlovets et al. [206] cover the spectral range of all previous mea-
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surements for AP = 9 transitions. The study comprises 2870 lines from 59 bands in
the 5851 — 6990 cm~! region and was recorded for 25.45 % abundance. Raw exper-
imental data was fitted with an effective operator model to take into account another
accurate experimental dataset from Toth et al. [207]], which has been also included
in the 2012 release of the HITRAN database. The estimated 10% uncertainty of the
line intensities is the most accurate claim up-to-date. For a detailed review of previ-
ous measurements for this isotopologue see Refs. [187,206] and references therein.
Here, highly enriched sample allowed for more precise measurements than in the
727 isotopologue case. Figure [3.38] compares line intensities of the three strongest
bands measured by Karlovets et al. to present study. The 30012 — 00001 and 30003
— 00001 bands remain within +£2% deviation range, which suggest that the stated
experimental uncertainty of 10 % is actually too pessimistic. UCL intensities for

the 00031 — 00001 band are shifted down by 14 %, similar to other isotopologues.
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Figure 3.38: Relative intensities (vs. UCL) for several bands of the 828 isotopo-
logue measured by Karlovets et al. [206]. Intensities were scaled to unit abundance.

The above results for 636, 727 and 828 isotopologues are summarized in Table
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Table 3.7: Characterization of selected vibrational bands of three symmetric CO;
isotopologues. Given for each band and each reference are the number of lines
in the band, accuracy declared in the reference, average systematic shift (Asyy =
S: average residual with respect to present study), average statistical dispersion (

Astar = \/ Ny ZN[’" )2 Si = IIUCL 1‘ 100%) and the total band strength

ex

in cm/molecule. The last column (marked UCL-IAO) contains the data from the
present study, the total number of lines in the band, suggested accuracy for the band
(in %) and the total band strength in cm/molecule.

Iso. Band Njin  Strength acc. (%) Agys(%)  Astar (%) Niot  Strength acc. (%)
Karlovets et al. (2013) [208]] UCL-IAO

727 3001200001 64 2.13x 10722 3-20 +17 13 64 222x107%2 1

30013-00001 58  3.48x 10722 3-20 +13 12 58  371x107%2 1
Jacquemart et al. (2015) [[162]

727 30012-00001 85 6.85x10°2 20 +11 2 85 7.59x10738 1
30013-00001 93  1.37x10722 20 +9 2 93  1.50x 10722
31113-01101 130 8.84x 10724 >20 +17 15 130 921x107%# 3

Karlovets et al. (2013) [208]

828 30012-00001 64 1.86x10722 10 2 2 64 1.83x107%2 1
30013-00001 81  6.05x10°22 10 2 3 81 6.16x107%2 1
00031-00001 80 1.33x 1072 10 -13 5 80 1.13x1072' 20

Devi et al. (2016) [128])

636 30012-00001 55 5.41x107%* 10 +4 3 55 5.67x107%# 1

30013-00001 47 2.03x1072* 10 +8 15 47 218x107%# 1

3.11.4 Comparison with HITRAN2012, Ames and CDSD-296

The HITRAN2012 database contains line lists for five symmetric isotopologues:
626, 636, 727, 828 and 838. Uncertainty indices of line positions range from 2 ( >
0.0l cm 'and < 0.1 ecm ") t0 9 (> 1072 cm 'and < 1078 cm™) for these line
lists. In general, line positions from the latest version of CDSD-296 are very close
to the line positions given in HITRAN 2012 and have uncertainties corresponding
to indices ranging from 3 to 9 depending on spectral region and quality of underly-
ing experimental entries. Intensities provided by the current release of HITRAN for
symmetric isotopologues of carbon dioxide come from two main sources: experi-
ment (NASA JPL line list) by Toth et al. [195]] and the majority of transitions from
a previous version of CDSD. The estimated uncertainties for all CDSD intensities
is given as 20 % or worse in HITRAN (uncertainty code 3). However, this number
does not reflect the actual uncertainties of the intensities. Most of the HITRAN

intensities have the uncertainties much better than 20%. More detailed information
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about the actual uncertainties can be found in the official release of CDSD [187],
which can be used to get more realistic information about the uncertainties of the
line parameters. Intensities from Toth ez al. are supposed to be accurate to better
than 2% (uncertainty code 7) or 5% (code 6). Below are given bulk comparisons
between UCL line lists and HITRAN 2012 and CDSD-296 databases, as well as

Ames-296 line lists.

3.11.4.1 Isotopologue 636

The HITRAN2012 line list for the second most abundant 636 isotopologue contains
68 856 lines below 8000 cm™~!. There are two sources of line intensities: the major-
ity of lines taken from the 2008 version of the CDSD-296 database [[167] and two
bands (20012-00001 and 20013-00001) from high precision measurements by Toth
et al. [195]]. All lines present in the HITRAN2012 database for this isotopologue
were matched to UCL line list with a root mean squared deviation (RMSD) of 0.04
cm~!. Lines that lay far in intensity from theoretical predictions (vide infra) were

double checked by manual investigation.

Stable 4 Perevalov etal., ier=3  a
Perevalov et al., ier = 3 Intermediate Toth etal., ier=6 a
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Figure 3.39: Left panel represents symmetric relative deviation for the 636 isotopo-
logue for the two different sources (Perevalov et al. [167] and Toth et al. [195])
from the HITRAN 2012 database. Right panel is a zoomed image in the region of
high accuracy (ier = 6) measurement by Toth ez al. . Dashed green line indicates
5% limit of deviation tolerance associated with ier = 6. Two bands measured by
Toth et al. are marked with arrow.

An overview from Figure [3.39| reveals the rather typical situation of funnel-

shaped relative deviation plot. By zooming into the region of high accuracy mea-
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surement by Toth et al., one can clearly see that all lines (marked with blue filled
triangles in the right panel of Figure [3.39) remain within the claimed 5% uncer-

tainty, additionally exhibiting a very narrow spread.

3.11.4.2 Isotopologue 727

HITRAN 2012 line list for the 727 isotopologue contains 5187 lines below 8000
cm™!, all of which were taken from the effective Hamiltonian calculations by
Tashkun and Perevalov [209]. Figure[3.40]compares UCL line intensities (all stable)
to HITRAN 2012; we observe the majority of line intensities display a systematic
shift of -6% with respect to those recommended by HITRAN. Here again, notice-
able arc structures appear. Similar behaviour was observed for the main 626 and
the 636 isotopologues. Although most of the arcs are rather flat, there are a few
bands which arc structure extends over a wide deviation range. Such occurrences
are caused by insufficiently flexible functional form of the Herman-Wallis factors
employed to reduce experimental data for those bands, resulting in inaccurately re-
trieved experimental line intensities, especially for high Js. These serve as an input
to the effective Hamiltonian calculations (CDSD, hence HITRAN), thus artifacts of

experimental analysis are likely to be propagated within the EH approach.

It has already been shown that inaccuracies of UCL line intensities are largely
reflected in systematic shifts of whole bands, rather than statistical scatter, which
is assumed to remain almost constant as a function of J. Two bands in Figure [3.40]
lie outside the tolerance given by the HITRAN 2012 uncertainty code 3. These are:
the 00031 — 00001 band and the 30013 — 00001 band (both indicated with arrows in
Figure [3.40). The discrepancy for the former band has been explained in terms of
rather poor reproduction of the 3v;3 series of bands by UCL DMS. The behaviour of
the latter band however is not clearly understood at this stage and requires further
investigation. The working hypothesis is that the —6% systematic shift applies to
all bands, hence the 30013 — 00001 band when shifted by +6%, should match the

20% tolerance region, which is also regarded as provisional.
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Figure 3.40: Relative intensities (cf. eq. (3.25)) plotted against HITRAN 2012
line intensities for the 727 isotopologue. Green dashed horizontal line represents
deviation from HITRAN2012 data equal to £20%.

3.11.4.3 Isotopologue 828
HITRAN 2012 line list for the 828 isotopologue contains 7071 lines below 8000

cm~!. There are three sources of line intensities: 6280 lines taken from CDSD-
296 [167] with ier (uncertainty index) equal to 3 and 4, 722 lines taken from a 1994
update to older variational calculations [210]] with ier equal to 2, and finally 69 lines
taken from measurements by Toth et al. [195] with ier assigned to 3. Figure [3.41]
compares intensities from the present study to HITRAN 2012 data. Despite the
low uncertainty index, line intensities originating from Rothman et al. [210] agree
within +20% with UCL results. Transitions around 2.06 ym measured by Toth et
al. [195] are enclosed in 10% region reflecting the ier value for this set. Data points
originating from CDSD-296 are divided into two sets with differing uncertainty
index. The more accurate subset (marked with orange rotated crosses) is clearly
squeezed along the relative deviation axis and exhibits almost no systematic shift.

In contrast, the lower accuracy subset from CDSD spreads over a large region in
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relative deviation space. This suggests that both sets were calculated with separate
input parameters of different quality. The 30013 — 00001 band (ier = 4) deviates
around +2% from CDSD predictions, while the relatively strong 00031 — 00001
band (ier = 4) lies 11% below the zero deviation line (visible in Figure [3.41). It
should be noted that large deviations of the lower accuracy CDSD-296 data (ier =
3) occur for very weak lines, for each the respective experimental data to fit the
effective dipole moment parameters are absent. In these cases the parameters of the

principal isotopologue were used in CDSD-296.
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Figure 3.41: Relative intensities from the present study plotted against HITRAN
2012 line intensities for the 828 isotopologue. Only +50% region is depicted.
Dashed grey and green lines correspond to 10% and 20% deviation, respectively.
Blue crosses correspond to a subset of lines taken from Perevalov et al. which
has been assigned to ier = 4. Consequently, rotated orange crosses represent ier = 3
from the same reference. Red filled triangles refer to Rothman ez al. [210]], while
purple filled squares stand for the small set of lines provided by Toth et al. [195]].
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Figure 3.42: Symmetric relative intensities (cf. eq. (3.25)) plotted against HITRAN
2012 line intensities for the 828 isotopologue. Only £500% region is depicted.
Blue crosses correspond to a subset of lines taken from Perevalov et al. [167] which
has been assigned to ier = 4. Consequently, rotated orange crosses represent ier = 3
from the same reference. Red filled triangles refer to Rothman et al. [210]], while
purple filled squares stand for the small set of lines provided by Toth et al. [[195]).

Figure shows that all strong lines (> 10~2% cm/molecule) follow a funnel
shape envelope, thereby reflecting the typical relation between intensity and accu-
racy of lines. However several weaker lines, which constitute whole bands, align in
wide arc structures with large systematic shift. This is particularly visible for low-
ered accuracy lines from HITRAN 2012 (blue crosses in Figure [3.42)). These lines
were directly incorporated from HITRAN 2008. The current release of the CDSD

database improved on accuracy of these weak lines.

3.11.4.4 Isotopologue 838

Only limited data are available for the 838 isotopologue in the 2012 edition of HI-
TRAN. 121 lines measured by Toth et al. [[195] have uncertainty code 3 and cover
three bands in the 2 um region: 20011 — 00001, 20012 — 00001 and 20013 — 0000.
All lines present in this set are matched to UCL line list with a RMSD = 0.04
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cm~!. Here, similar to the 727 case, a systematic shift of around 10% is visible.
This causes three transitions to breach the stipulated accuracy tolerance. Neverthe-
less, this should be considered as rather illusory due to the systematic shift of lines
coming from all three bands. Figure [3.43] shows calculated intensities relative to

HITRAN 2012, where all computed lines are classified as stable.
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Figure 3.43: Relative intensities plotted against HITRAN 2012 line intensities for
the 838 isotopologue. The triangles represent the 121 lines measured by Toth et
al. [195]] and included in the current version of HITRAN.

3.11.4.5 Overview

A rather naive attempt to find the answer to the question if accuracy of the presently
employed computational scheme based on ab initio DMS holds at the same level
for all symmetric isotopologues is presented in Figure [3.44] In the Figure the 20012
— 00001 band for the five symmetric CO, isotopologues is compared between HI-
TRAN 2012 and UCL line lists. Clearly, the uncertainty of HITRAN intensities,
which ranges here from 2% to over 20% (marked with uncertainty coded in Figure
[3.44), is unsatisfactory to give a definitive answer to the posed question. In the

meantime let us formulate a weaker query: do UCL theoretical line intensities for a



176 Chapter 3. Rotational-vibrational line lists for isotopologues of CO,

chosen band (here 20012 — 00001) maintain similar relative deviation from consis-
tent, highly accurate experimental data source for all symmetric isotopologues? By

analysing Figure the short answer ppears to be no.

15 T T T T T

>

636, ier=3
636, ier=6 =
727, ier=3
10 828, ier=3 4
838, ier=3 4
5% (ier=6)

[ a Aiﬁ“
oY ey o . VYV, o

Relative deviation %
o

A A%
-10 |

_1 5 1 1 1 1 1 1 1
0% 102 102 10% 102 102 102 102 102
I(HITRAN) / cm/molecule

Figure 3.44: Relative intensities plotted against HITRAN 2012 line intensities for
the 20012 — 00001 band for four symmetric isotopologues. Red filled squares repre-
sent lines (636) measured by Toth et al. [195]] appearing with ier = 6. The remaining
lines have code ier = 3.

All lines compared above match the stipulated HITRAN uncertainty, that is
lines with ier = 6 fit the 5% tolerance, and the rest of the lines are 20% or less
away from HITRAN 2012 values. Minor discontinuity related to change of source
of data is seen for the 636 isotopologue. Relatively good overall agreement between
UCL line list and HITRAN 2012, revealing only sporadic deviations that exceed the
claimed HITRAN accuracy, but yet justified and facilitated with comparisons with
recent and highly accurate measurements, allow to draw a conclusion that replacing
current HITRAN line intensities with UCL computed values would significantly

increase the accuracy, reliability and consistency of the database.
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3.11.4.6 Ames-296

Table presents a comparison of RMSD of intensities between Ames-296 line
list, UCL line list and CDSD-296 line list for 14 strongest bands of CO, for six
symmetric isotopologues. By looking at a given isotopologue, a general trend for
both UCL and Ames is that the perpendicular bands (Al = +1,+2,...) are in worse
agreement with CDSD than the parallel bands. On average, UCL based band in-
tensities are in better agreement with CDSD than Ames for 626 and 636. The 828
isotopologue exhibits a similar level of agreement for UCL and Ames, and larger
deviations from CDSD-296 for UCL calculated bands than Ames calculated bands
are observed for 727, 838 and 737. It is difficult to indicate a single reason for
this particular pattern of deviations. For the time being it is safe to say that CDSD
entries, as experimentally tuned, are less accurate for less abundant isotopologues,

thus derived uncertainties do not allow us to judge in favour of either DMS.

Table 3.8: DMS statistics for 14 strongest carbon dioxide bands for six symmetric
isotopologues. Numbers in columns correspond to root-mean-square-deviations of
band intensities from the CDSD-296 database.

Isotopologue 626 636 828 727 838 737
Band Stability UCL Ames UCL Ames UCL Ames UCL Ames UCL Ames UCL Ames

00011 - 00001  Stable 02 21 0.8 2.5 19 05 46 23 5.7 34 4.9 1.8
01101 — 00001  Stable 1.9 1.7 29 2.6 2.3 2.4 59 1.4 49 47 50 40
01111 -01101 Stable 02 22 0.7 2.5 1.8 038 46 22 56 37 4.9 1.7
02201 - 01101 Stable 22 21 73 7.0 27 25 6.3 1.6 54 50 53 42
02211 -02201 Stable 02 22 0.7 2.6 1.8 0.6 45 2.3 5.7 33 4.9 1.7
03301 -01101 Stable 2.5 2.2 1.2 109 3.1 29 66 20 5.8 55 - -

10001 — 01101  Stable 2.0 1.7 0.5 0.9 2.5 2.2 6.1 1.2 50 43 4.9 3.4
10002 - 01101  Stable 1.7 1.9 1.9 2.1 24 25 59 L5 53 53 52 43
10011 — 00001  Stable 0.7 0.8 43 4.1 69 7.1 49 94 3.1 3.0 4.7 3.7
10011 — 10001  Stable 0.3 2.1 0.7 2.7 19 05 46 22 5.7 33 4.9 1.7
10012 — 00001  Stable 1.6 1.9 1.6 1.6 8.3 9.1 5.4 104 35 2.8 64 48
10012 — 10002  Stable 0.3 2.1 0.7 2.6 19 05 46 22 5.7 33 4.8 1.7
11111 -01101 Stable 09 09 44 43 3.6 3.6 50 94 2.3 2.3 3.8 29
11112 -01101 Stable 2.1 2.5 24 30 36 45 52 103 32 24 63 4.6
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3.12 Asymmetric isotopologues

3.12.1 Comparison with high accuracy measurements

Experimental knowledge of intensities for the asymmetric isotopologues of CO,
has been significantly improved recently by measurements on isotopically enriched
samples. This is particularly important for atmospherically relevant bands in the 1.6
um and 2 um spectral regions. Space missions [[7] and ground-based observations
dedicated to detection and quantification of the total carbon dioxide content in the
Earth’s atmosphere are based on simultaneous measurements on these two regions.
Thus, due to their practical importance, the 20012 — 00001, 20013 — 00001 and
30013 — 00001 bands should be assessed carefully for all abundant isotopololgues,
as lines from different species are likely to interfere. A line-by-line comparison of
UCL calculated intensities with recent measurements of these three bands for the

628 isotopolgue is given below.

In Figure the four panels represent comparisons between Ames, CDSD,
UCL line intensities and high-quality experiments by Toth et al. [207]], Jacquemart
et al. [211]], Benner et al. [31] and Borkov et al. [190]. The three studies (Ames,
CDSD and UCL) are denoted with black squares, red dots and blue triangles, re-
spectively. All graphs show provisional sub-10% agreement between theory and
experiment. Another common observation for all four panels is that for the 20012
— 00001 band line intensities are ordered as UCL < Ames < CDSD, and differ-
ences between the studies usually do not exceed 1%. This suggests similar quality
of the line lists for this band. Toth et al. provides +2% systematic uncertainty and
J-dependent 0.5-7 % statistical uncertainty on line intensities (marked with green
error bars in the upper left panel of Figure [3.45)). UCL intensities match the stated
experimental error bar, showing 2-3% systematic shift for m € (—30,30) and char-
acteristic, arc-like behavior for higher absolute values of m. Comparisons to Jacque-
mart et al. and Borkov et al. reveal small, 1-4 % systematic shift with respect to all
three line lists. A markedly different situation is depicted in the left lower panel, in
the study by Benner ef al. . Here an arc pattern of residual intensity is observed.

Similar artifact has been also found (and discussed in previous sections) in measure-
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Figure 3.45: Ames, CDSD-296 and UCL line intensities for the 20012 — 00001 band
of 18012C180 compared to four recent experimental works by: Toth et al. [207] (up-
per left panel), Jacquemart et al. [211]] (upper right panel), Benner et al. [31] (lower
left panel) and Borkov et al. [[190] (lower right panel). Blue triangles, red dots and
black squares denote relative deviations from the measurement (in % ) of UCL,
CDSD-296 and Ames line intensities respectively. m labels rotational transitions
and corresponds to J(lower)+1 for the R branch and -J(lower) for the P branch. For
the left uppermost panel experimental error bars were added together with horizon-
tal orange dashed lines indicating experimental uncertainty for the systematic shift

in the transition intensity.

ments on the main isotopologue of CO;, and can be attributed to issue connected to

the Herman-Wallis factors used in the retrieval procedure.
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Figure 3.46: Ames, CDSD-296 and UCL line intensities for the 20013 — 00001 band
of 160'2C'80 compared to four recent experimental works by: Toth et al. [207] (up-
per left panel), Jacquemart et al. [211]] (upper right panel), Benner et al. [31] (lower
left panel) and Borkov et al. [190] (lower right panel). Blue triangles, red dots and
black squares denote relative deviations from the measurement (in % ) of UCL,
CDSD-296 and Ames line intensities respectively. m labels rotational transitions
and corresponds to J(lower)+1 for the R branch and -J(lower) for the P branch. For
the left uppermost panel experimental error bars were added together with horizon-
tal orange dashed lines indicating experimental uncertainty for the systematic shift
in the transition intensity.

Analogous conclusions can be drawn from Figure [3.46] where the UCI, CDSD
and Ames line lists are compared to measurements on the 20013 — 00001 band.
Note that all three line lists give an average negative systematic shift with respect
to the experimental values. Line intensities of the 20012 — 00001 and 20013 —
00001 bands together with the line intensities of other five bands published by Toth
et al. [207] were used for the determination of the concentration of the 1°Q2C!80
isotopologue in the sample used by Jacquemart et al. [211]] and Borkov et al. [[190].
This may indicate that the experimental studies underestimate the concentration of

the 628 isotopologue, causing the intensities of individual lines to be systematically
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Figure 3.47: Ames, CDSD-296 and UCL line intensities for the 30013 — 00001 band
of 1°012C180 compared to three recent experimental works by: Toth et al. [207]
(uppermost panel), Devi et al. [[128] (middle panel) and Karlovets et al. [206] (low-
est panel). Blue triangles, red dots and black squares denote relative deviations from
the measurement (in % ) of UCL, CDSD-296 and Ames line intensities respectively.
m labels rotational transitions and corresponds to J(lower)+1 for the R branch and
-J(lower) for the P branch. For the uppermost panel experimental error bars were
added together with horizontal orange dashed lines indicating experimental uncer-

tainty for the systematic shift in the transition intensity.
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Intensities for the 30013 — 00001 band of '°0'2C'80 (called ’the weak CO,
band’) have been accurately determined in three studies. The uppermost panel in the
Figure |3.47| compares UCL, CDSD and Ames line intensities for this band to mea-
surements by Toth et al. [207]]. All three theoretical studies match the experimental
error bars. UCL intensities (blue triangles) provide an almost zero systematic shift
for this band. The J-dependent scatter of relative deviations between theory and
experiment is most likely caused by the statistical fluctuations of the experiment.
Very similar picture emerges from the middle graph in Figure Here the ex-
perimental scatter (Devi et al. ) reaches 20%, whereas the systematic shift is again
close to 0%. One possible explanation for this is a lower signal-to-noise ratio in the
experiment of Devi et al., although inconsistent retrievals from crude data could be
also the cause. To lowest panel in Figure depicts measurements by Karlovets
et al. on '80-enriched samples. Except for two points with large discrepancies at
m = —44 and m = +8, the comparison gives an overall very good agreement Ames,
CDSD and UCL, with average systematic shift of 1-2%. The 30013 — 00001 band
has been previously verified to be reproduced at sub-percent accuracy for the main
626 1sotpologue [37]], and less abundant symmetric 636 isotopologue [[199]. Results
shown and discussed above support the thesis, that UCL DMS is capable of repro-
ducing the true line intensities in the 1.6 um region with accuracy not worse than 1-
3% for the asymmetric isotopologues and 1% or better for the symmetric ones. For
the 2.06 um region, containing the ’the strong CO, bands’ a thorough investigation
of line intensities was made in section [3.8] concluding that sub-percent accuracy is
given by the UCL calculated intensities for the 20013 — 00001 and 20012 — 00001
bands. The essential question to ask is, whether this high accuracy is transferable to

the asymmetric isotopologues.
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Figure 3.48: Experimental line intensities measured by Durry et al. [203]] for the P
branch of the 20012 — 00001 band of '0'?C!30 depicted against respective transi-
tion intensities taken from Ames, CDSD-296 and UCL line lists. m labels rotational
transitions and corresponds to J(lower)+1 for the R branch and -J(lower) for the P
branch.

Durry et al. [203]] performed intensity measurements with a near-infrared tun-
able diode laser spectrometer providing 1% stated accuracy and sub-percent preci-
sion on a sample containing '°0'2C'80 in the 2.06 um spectral region. Results of
this experiment are compared to the Ames, CDSD-296 and UCL line intensities in
Figure To the best of author’s knowledge, this is the most accurate intensity
measurement reported on an asymmetric isotopologue of carbon dioxide. From the
Figure [3.4§] it is readily seen that only the UCL line intensities for P(7), P(8) and
P(9) lines match the experimental error bar. An average systematic shift of +1%
1s observed for the UCL intensities, +1.5% for Ames and +2.0% for CDSD-296.
Thus, one can tentatively conclude on plausible sub-percent accuracy of UCL line

intensities for this band.
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Figure 3.49: Ames, CDSD-296 and UCL line intensities for the 00011 — 00001 band
of 1°0!2C!70 compared to three experimental works by: Jacquemart et al. [211]]
(uppermost panel), Claveau et al. [212] (middle panel) and Johns et al. [213]](lowest
panel). Blue triangles, red dots and black squares denote relative deviations from
the measurement (in % ) of UCL, CDSD-296 and Ames line intensities respectively.
m labels rotational transitions and corresponds to J(lower)+1 for the R branch and

-J(lower) for the P branch.

Figure [3.49| compares transition intensities from different measurements for
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the asymmetric stretching fundamental (00011 — 00001 band) of the 627 isotopo-
logue. Experiments by Jacquemart et al. [211] (uppermost panel in Figure [3.49),
Claveau et al. [212] (middle panel in Figure have stated 5% systematic un-
certainty and undetermined statistical uncertainty, while measurements by Johns et
al. [213]] (lowest panel in Figure [3.49) have 2% stated systematic uncertainty and 2-
3% statistical uncertainty. Ames, CDSD and UCL line lists give similar deviations
from experiments, showing systematic shifts smaller than 5%. For all three panels
in Figure [3.49] Ames transition intensities are usually weaker than UCL intensities,
whereas CDSD intensities are usually stronger than UCL intensities. At the same

time UCL lines give the smallest systematic deviation from experiments.
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Figure 3.50: Ames, CDSD-296 and UCL line intensities for the 20011 — 00001 band
of 16013C!'70 compared to two experimental works by: Toth et al. [214] (left panel)
and Borkov et al. [190] (right panel). Blue triangles, red dots and black squares
denote relative deviations from the measurement (in % ) of UCL, CDSD-296 and
Ames line intensities respectively. m labels rotational transitions and corresponds
to J(lower)+1 for the R branch and -J(lower) for the P branch.

Figure displays comparison between two experimental studies by Toth et
al. [214] (left panel) and Borkov et al. [190] (right panel) respectively, and three
line lists: Ames, CDSD and UCL. The former experiment has stated 2.5% sys-
tematic uncertainty and 10% statistical uncertainty, while the latter experiment has
4% systematic uncertainty and 0.5 - 7% statistical uncertainty. The agreement be-
tween measurements and line lists reflects the relatively high uncertainties, showing
similar statistical scatter for all three line lists, but essentially smaller systematic de-

viation for the CDSD line list, which was constructed by fitting to measurements
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by Toth et al. Systematic deviation from experiment is again very similar (around
1%) for UCL and Ames intensities. Also, CDSD, Ames and UCL follow the same

pattern, indicating that the statistical scatter visible in Figure|3.50|is of experimental

origin.
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Figure 3.51: Ames, CDSD-296 and UCL line intensities for the 10011 — 00001
band of '603C!80 compared to two experimental works by: Toth ez al. [214] (left
panel) and Borkov et al. [215] (right panel). Blue triangles, red dots and black
squares denote relative deviations from the measurement (in % ) of UCL, CDSD-
296 and Ames line intensities respectively. m labels rotational transitions and cor-
responds to J(lower)+1 for the R branch and -J(lower) for the P branch. In the left
panel experimental error bars were added together with horizontal orange dashed
lines indicating experimental uncertainty for the systematic shift in the transition
intensity.

In Figure 3.51] which compares Ames, CDSD and UCL line lists to experi-
ments by Toth et al. [214] (left panel) and Borkov et al. [215] (right panel), large
deviations of Ames and UCL from measured line intensities are visible for several
lines of the P branch of the 10011 — 00001 band in '°0'*C!80. Ames and UCL
line list provide similar values of transition intensities for these lines (agree within
2%), whereas CDSD intensities do not exhibit any unusual deviation. This obser-
vation can be rationalized by the fact that effective operators used to construct the
CDSD database were parametrized by experimental intensities from ref. [214]]. The
statistical scatter of the measured line intensities indicates insufficient experimental
precision. Average systematic shift from measurements is within 1% from experi-
ment for CDSD, Ames and UCL line lists.

Another problem to address is how intensities of lines transfer between iso-
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topologues for the Ames and UCL line lists, and how do they relate to CDSD-296.
It is eye-catching in Figure [3.52] that Ames and UCL intensities for the 00011 —
00001 and 01101 — 00001 bands are very similar, showing agreement at < 0.5%
level for the majority of lines. In contrast, line intensities from CDSD give signif-
icant systematic shifts and noticeable arc structures, characteristic for the empiri-
cally determined quantities. Therefore, we may expect Ames and UCL to exhibit
similar behavior with isotopic substitution. Here, no discontinuity in intensity pat-
tern around J = 0 is observed for the Ames line lists, unlike for the main isotopo-

logue [[161]].
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Figure 3.52: Comparison of intensities of two fundamental bands for all six asym-
metric isotopologues of CO,, between UCL, Ames and CDSD line lists. m labels
rotational transitions and corresponds to J(lower)+1 for the R branch and -J(lower)
for the P branch.
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3.12.2 Comparison with other line lists

Table [3.9] compares measured band intensities for six asymmetric isotopologues of

CO,, to the calculated values from the Ames-1, UCL and CDSD-296 line lists.

Table 3.9: Band statistics for the asymmetric isotopologues of CO;:
628,627,637,638,728,738.  Selected are the strongest bands of each isotopologue,
that have high quality experimental intensities available. The strongest bands of each
isotopologue are compared between Ames-1, CDSD-296 and UCL line lists and most
accurate experiments. Given for each band are the band center in cm™!, the total number
of measured lines in the band, J(minimum), J(maximum), the total band strength in
cm/molecule, symmetric relative deviation S in %, root-mean square deviation (RMSD)”
of intensity in %, the polyad number® change , the stability of the band based on the scatter

factor analysis, reference to experimental data.

7] UCL Ames CDSD
Band Center Total min max unc.® Strength S RMSD? S RMSD S RMSD AP ¢ T.4 Source
628
00011 - 00001 2328373 19 4 373-7 926x107° 09 23 -14 26 08 233 s [213]
01101 — 00001 660.902 45 1 464-6 1.07x1072° 13 33 1.0 33 -1.0 341 s [216]
01101 — 00001 660.902 37 43 66 5-7 5.74x107* 39 70 3.7 69 09 501 s [217]
10011 - 00001 3674396 81 0 754 224x10721 1.3 3.0 -14 3.1 0.5 295 s [215]
10011 - 00001 3674396 68 0 583 2.72x10721 24 27 25 27 -07 135 s [211]
10012 - 00001 3569.661 78 1 764 297x10721 22 37 -29 41 -03 315 s [215]
02201 - 01101 665733 121 3 523-7 936x1072 29 7.1 27 7.0 1.4 651 s [217]
11111 -01101 3685269 102 2 6245 199x10722 -1.8 45 -1.8 45 -05 415 s [215]
11111 -01101 3685269 139 1 64 3-10 2.69x10722 0.8 232 -1.1 3.1 -0.0 295 s [207]
11111 -01101 3685.269 265 9 313 7.62x1073 .13 1.8 -1.3 1.8 -0.1 135 s [211]
11112 -01101 3540235 109 1 6945 1.65x10722 -0.6 44 -14 46 -0.1 435 s [215]
11112 -01101 3540235 150 1 61 3-10 2.53x1072% -1.0 29 -1.8 33 05 285 s [207]
11112 -01101 3540235 19 9 363 536x1072 -1.5 1.8 -23 25 -07 145 s [211]
10001 - 01101 701257 78 2 523-7 4.52x107%2 -1.8 38 -23 4.1 0.1 311 s [217]
20012 - 00001 4904.123 106 0 623-10 1.13x1072> -1.7 3.1 -1.0 2.8 -02 287 s [207]
20012 - 00001 4904.123 37 91 491x107* 0.9 1.1 1.6 1.7 21 227 s [203]
20012 - 00001 4904.123 51 1 453 7.50x1072 3.2 33 -25 26 -1.8 197 s [211]
20012 - 00001 4904.123 116 0 67 1-2 1.28x10722 -0.2 1.4 05 1.5 14 227 s [31]
20012 - 00001 4904.123 117 0 6746 123x10722 22 37 -15 34 -0.6 317 s [190]
10002 - 01101 594.837 48 2 415-7 246x1072 175 195 176 195 L5 811 s [217]
20013 - 00001 4790.523 103 0 67 3-10 4.40x10723 0.7 27 -03 26 04 287 s [207]
20013 — 00001 4790523 60 0 433 3611072 -1.9 24 -15 22 -09 1.87 s [211]
20013 — 00001 4790523 129 0 651-2 494x10°3 -1.6 31 -1.2 3.0 -04 257 s [31]
20013 — 00001 4790.523 114 0 6345 477x10723 -1.9 42 -1.6 40 -0.8 387 s [190]
20011 — 00001 5041.845 82 0 483-10 229x1072 -0.5 34 09 3.5 1.3 387 s [207]
20011 — 00001 5041.845 40 2 573-5 1.18x1072 2.6 33 -1.2 24  -0.8 207 s [211]
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20011 — 00001 5041.845 110 0 5846 239x10°3 -37 57 23 49 -17 467 [190]
00021 — 00001 4640227 69 0 473-10 1.08x10°3 24 3.1 -1.9 28 -1 236 [218]
00021 — 00001 4640227 94 0 624-10 1.12x10°3 20 46 -16 44 06 426 [207]
00021 — 00001 4640227 97 0 563-10 1.29x10°%3 -0.1 24 03 24 12 296 [215]
00021 — 00001 4640227 119 0 62 4-10 143x1073 25 49 21 47 -11 426 [190]
11102 — 10002 642338 41 4 3357 405x10°3 38 63 36 62 35 601 [217]
20002 — 00001 2613.511 102 0 57 3-10 1.98x10°2 -09 32 26 40 01 334 [207)
20002 — 00001 2613511 73 0 473 1.80x10°2  -0.6 1.0 23 25 02 084 [211]
10001 — 00001 1365107 92 0 645 3.05x1073 1.8 3.1 04 25 03 282 [219]
10002 — 00001 1260.161 99 0 625 290x10°3 04 3.0 - - 08 302 [219]
11101 — 10001 683.566 35 8 355-7 237x1073 20 44 16 42 23 451 [217]
20003 — 00001 2500.024 104 0 613-11 127x107%3 -1.1 39 33 50 -07 324 [207]
20003 — 00001 2500.024 62 3 423 1.00x107%3 02 08 -23 24 05 134 [211]
01111 -01101 2318.568 20 18 69 3-7 1.96x1072 2.6 44 49 61 25 443 [220]
21112-01101 4898372 146 2 53 3-10 7.66x10°* 36 46 42 51 05 317 [207]
21112 -01101 4898372 46 2 353-23 338x10°%* 130 446 137 449 96 4327 [190]
21112 -01101 4898372 127 2 49 4-11 6.52x10°2* -32 92 26 90 -63 1077 131]
20013 — 10002 3531097 32 0 474 6.70x1072* 0.0 51 08 52 -10 535 [207]
20013 — 10002 3531.097 49 0 493-8 1.05x1072 16 27 08 24 05 245 [215]
11101 — 00001 2047.133 62 2 63 3-33 9.79x10°* 18 66 11.1 186 12 483 [221]
11101 — 00001 2047.133 25 11 413 538x1072*4 2.1 28 80 96 33 373 [211]
20012 — 10002 3648313 26 4 454 492x107%* 0.2 42 04 42 -18 465 [207]
20012 — 10002 3648.313 37 3 46 3-11 7.19x10°%* 07 24 05 23 09 245 [215]
627

00011 — 00001 2345147 7 6 3024 624x10721 -1.0 27 33 41 07 263 [213]
00011 - 00001 2345147 15 58 685 9.09x10723 .32 42 55 61 -1.1 273 [212]
00011 — 00001 2345147 15 58 683 9.090x10°3  -3.1 42 55 61 -11 283 [222]
00011 — 00001 2345147 23 6 685 8.45x10721 0.8 32 31 44 12 343 [211]
01101 — 00001 667.005 35 3 394-8 1.44x1072' 05 34 03 34 29 491 [212]
01101 — 00001 667.005 38 2 565 1.24x10720 45 75 43 74 14 541 [216]
01111 -01101 2331998 60 5 533 1.48x1072" 2.1 34 -44 51 -02 263 [212]
01111 -01101 2331998 41 9 535 9.37x10722 3.0 38 -53 58 -10 283 [211]
10011 - 00001 3694.108 87 0 595 7.70x10722 2.2 24 23 25 21 235 [211)
10011 — 00001 3694.108 95 0 804 5.86x10°2 -1.5 32 -1.6 33 -12 335 [215]
10012 - 00001 3590512 70 0 804 444x1072 15 35 - 12 33 503 [215]
02201 - 01101 661326 80 4 465 1.48x1072 34 54 31 52 02 421 [212]
10001 - 01101 709023 61 2 375 778x10°3 27 45 32 48 02 351 [212]
20012 — 00001 4938605 71 0 605 1.55x107%3 2.6 27 -19 21 03 097 [211]
20012 — 00001 4938.605 28 12 47 1-11 9.01x107%* -00 237 07 237 23 2367 [31]
20012 — 00001 4938.605 134 0 7346 239x10°3 -16 34 09 32 08 327 [190]
20012 — 00001 4938.605 83 0 622 1.54x10°2 02 19 04 19 21 307 [223]
10002 - 01101 604522 43 3 355 473x107%3 116 135 117 135 02 651 [212]
11111 -01101 3704311 150 2 724-10 4.03x10°2 -08 35 08 36 04 355 [215]
11112-01101 3560.198 133 1 66 4-10 3.10x1072 -05 39 -13 41 05 405 [215]



3.12. Asymmetric isotopologues

191

20013 — 00001 4820757 43 0 605 3.02x107* 2.0 24 -17 22 03 137 s E
20013 — 00001 4820757 123 0 68 4-7 7.06x10°* -0.6 26 03 25 13 287 s [190
20013 — 00001 4820757 38 4 472-13 386x10°2* 79 183 82 185 96 1927 s E[
20013 — 00001 4820757 80 0 552 553x1072% 0.2 16 05 17 19 257 s [223
20011 — 00001 5069.677 75 0 625 4.01x1072* 29 31 -6 19 03 117 s 11
20011 — 00001 5069.677 131 0 6747 6.07x10°%* 2.0 35 07 29 07 307 s (19
20011 - 00001 5069.677 82 0 612 421x107% 34 37 47 49 60 627 s [223
21112-01101 4930435 296 1 5947 267x107%* 05 41 12 50 24 477 u (19
00021 — 00001 4654.446 280 0 624-7 2.11x107% - 08 43 01 42 602 s (19
20012 — 10002 3665.553 48 1 524 1.49x10°2  -0.0 3102 31 10 325 s [1s
10001 — 00001 1377543 52 1 435 135107 17 47 05 44 03 432 s [219
637

00011 — 00001 2270243 18 4 435 14510722 1.9 26 -04 18 -03 183 s

10011 — 00001 3607792 55 0 624 7.03x10°%* 56 66 55 65 06 365 s

10011 - 00001 3607.792 28 1 483-10 4.96x1072* 47 71 46 70 -1.6 575 s

10012 — 00001 3506.855 56 1 614 2.98x1072* 53 6.1 45 54 09 325 s

10012 — 00001 3506.855 12 1 383-13 9.00x107% 69 102 61 97 04 765 s

11111 -01101 3620.197 51 5 534-7 385x10°% 6.4 87 63 87 06 595 s

20012 — 00001 4848635 75 0 5049 191x107% 5.1 72 58 717 -08 517 s

20012 — 00001 4848.635 65 2 474-10 3.63x10°% 5.1 71 57 76 09 507 s
11112-01101 3482365 66 4 55427 1.73x10°% 50 70 56 74 -1.0 495 s

20011 — 00001 4956.342 48 1 4010  7.97x107% 58 76 71 86 11 507 s

20011 — 00001 4956342 69 0 4749 9.89x1072° 34 75 46 81 -12 687 s

20013 — 00001 4722.116 49 3 4449 193x1072° 39 85 41 86 -03 7157 s

00031 — 00001 6753.152 86 0 5510 1.01x107% 59 76 22 53 20 519 s

00021 — 00001 4528497 45 4 384-12 586x107% 25 103 29 104 07 1036 s

30012 — 00001 6185757 43 2 4310 1.99x10°¥ -61 107 -38 96 -02 899 s
20013 — 10002 3451.176 5 15 344 1.42x107% 37 54 28 49 -6 445 s [21s
20011 — 10001 3609.826 2 12 144 1.22x107% 77 77 76 17 22 255 s [21s
30013 — 00001 6074545 28 3 3310  797x10°3 72 116 -58 108 -03 919 u (191
01131 -01101 6715988 80 1 3910  520x10°% 0.7 90 75 117 28 939 s (191
21112-01101 4820204 2 17 235-8 320x10°% 113 135 119 139 46 867 u (190
30011 — 00001 6320672 31 2 4010  2.19x107%% -19.4 216 -144 172 -04 959 s ;
10031 — 00001 8040610 6 6 3110  4.56x107%° - . 04 104 82 13311 s (191
40013 - 00001 7417.626 25 4 3110 222x102 -144 294 -120 283 -40.6 484 11 s (224
10032 — 00001 7917.301 10 27 46 10  1.78x107% 217 314 245 334 239 29011 s [224
638

10011 — 00001 3588279 51 0 544 3.13x1072 0.1 44 -01 44 -18 475 s

10011 — 00001 3588279 76 0 61 3-10 479x1072 1.7 28 1.6 27 -00 225 s

01111 -01101 2249.097 63 6 683-10 7.07x1072 7.9 93 55 74 33 593 s

10012 — 00001 3491.854 40 2 564 1.32x10°%3 22 42 15 38 -08 395 s

10012 — 00001 3491.854 82 1 60321 2.74x1072 3.0 43 22 39 00 295 s
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10012 - 10002
20012 - 00001
20012 - 00001
20012 - 00001
11112 -01101
11112 - 01101
11111 -01101
11111 -01101
10011 - 10001
20011 - 00001
02211 - 02201
20013 - 00001
20013 - 00001
10001 - 00001
00021 — 00001
20002 - 00001
00031 - 00001
10002 - 00001
11101 - 00001
21112 -01101
30012 - 00001
30013 - 00001
01131 -01101
30011 - 00001
10031 — 00001
31113 -01101
10032 - 00001
31112-01101
30014 - 00001
02231 - 02201
40013 - 00001
31111-01101
11132 -01101
10032 - 10002
20022 - 00001
40012 - 00001
40014 - 00001
11121 - 00001
10031 - 10001
20021 - 00001
11122 - 00001
40013 - 10002
40011 - 00001
20033 - 10002

728

2242.514
4815.291
4815.291
4815.291
3457.958
3457.958
3597.621
3597.621
2240.770
4925.749
2231.148
4690.702
4690.702
1336.378
4507.263
2583.005
6727.618
1238.299
2005.545
4797.940
6139.386
6025.888
6692.165
6278.752
8007.762
5994.504
7910.834
6145.467
5875.121
6658.965
7350.955
6307.493
7862.551
6665.932
7019.329
7480.795
7219.259
6446.108
6669.082
7123.107
6316.706
6110.334
7651.175
7832.367

30
94
58
1
46
63
10
37
19
121

69
12
28
74
22
135
14
20
50
106
108
211
74
60
112
63
86
42
121
42
76
119
51
51
49
35
47
39
39
38
16
13
13

3
0
2
17
5
2
16
2
5
0
14

- 9 49 -

o O O

- O A W O N

—_

I L I ST OS)

51 3-10
55 3-10
40 4-10
185

46 4

40 10
27 4-7
37 10
48 3-11
48 3-14
52 3-10
47 3-10
27 5-17
375
4311
3315
74 10
265

36 20
3311
65 10
61 10
64 10
61 10
42 5-10
47 10
62 5-10
4710
46 10
42 10
52 5-10
44 10
44 5-10
4210
47 5-10
49 5-10
32 5-10
46 10
40 10
46 5-10
4410
33 10

2.97x10%
1.44%10~2%
9.72x1072
5.78x 10726
8.69x107%
1.28x1072*
4.87x107%
1.60x 102
1.30x 10724
1.09x 10724
6.02x1072
2.09x 1072
4.63x10726
2.36x1072
1.85x10~%
7.86x 10726
6.65x 10726
5.78x1072¢
4.98x10726
4.28x10726
1.72x10726
1.42x10726
5.57x10727
1.87x1072%7
1.85x 10727
8.80x 10728
8.49x 1028
8.32x10~28
6.23x10728
1.93x10728
1.72x10728
1.57x10728
1.25x10728
8.38x 102
8.03x10%°
7.96x 1072
6.50x1072°
6.47x1072°
3.79x107%°
2.86x 102
2.78x1072°
2.39x 1072

30 10-30 2.36x 1030
28 10-30 1.48x10-3

10.0
19.0
0.6
114.4
3.1
59
3.0
8.3
12.0
31.4
16.8
19.9
5.4
-4.1
20.8
9.0
17.8
-9.5
-3.9
19.3
6.6
8.7
17.0
L5
34
12.5
19.4
7.6
39
18.5
-2.7
-0.7
24.5
10.2
10.8
4.8
10.6
7.1
13.2
10.0
7.4
9.3
17.2
26.7

10.4
19.1
21.0
23.8
73
7.2
10.4
9.2
12.8
106.3
18.3
20.1
27.2
7.7
21.0
17.2
18.7
10.7
25.6
19.7
11.6
12.7
19.4
11.5
12.1
18.8
20.1
15.4
12.5
20.9
124
13.6
26.9
15.1
20.2
12.7
13.7
16.9
18.7
24.4
16.6
16.5
30.3
35.7

7.7
19.7
1.3
115.3
22
5.0
29
8.3
9.6
32.8
14.4
20.1
5.6
-6.4
21.2
73
9.4
-12.0
10.6
19.8
9.0
10.1
8.7
8.2
54
18.5
21.9
9.8
5.1
10.1
-0.3
5.0
26.9
1.5
13.6
9.6
12.0
79
4.0
14.8
-4.3
11.4
30.1
235

8.2
19.7
21.1
24.0

7.0

6.5
10.4

9.1
10.6

107.7
16.2
20.3
272

9.2
21.3
16.4
11.1
13.0
27.6
20.2
13.1
13.8
12.6
17.0
13.0
43.8
22.5
16.6
12.9
13.9
12.1
14.5
29.2
11.2
219
15.4
14.9
17.1
13.8
26.9
15.3
17.8
39.6
32.0

L1
0.1
-19.0
87.0
0.0
3.0
2.0
73
0.8
8.3
56
-1
-16.4
03
03
0.2
0.0
03
1.7
03
0.8
0.8
-0.1
1.1
0.4
0.1
2.6
0.5
0.1
0.9
245
-1.1
294
1.3
17.8
-14.4
-12.8
-1.0
8.2
23.0
35
1.3

303
1.77
28.6 7
18.1 7
6.6 5
495
103 5
835
463
86.6 2
923
297
31.77
632
276
14.6 4
509
482
2583
4.17
949
939
819
109 9
11.8 11
1239
232 11
1339
11.89
929
27511
13.6 9
30.5 11
109 9
233 10
17.6 11
155 11
15.09
1549
23.0 10
136 9
1299
- 11
- 11

214]
214]
1190]
[31)

215]
214]
215]
214)
214]
1190]
214]
214]
1190]
219]
214)
[225]
1191]
219]
1226]
214]
l191]
l191]
l191]
l1o1]
1227
l1o1]
[224]
l191]
l191]
l191]
1224]
l1o1]
[224]
l191]
[224]
[224]
1224]
l1o1]
l1o1]
[224]
l191]
(191]
1224]
1224]
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10012 - 00001
10012 - 00001
10012 - 00001
00011 - 00001
10011 - 00001
10011 - 00001
10011 - 00001
11112 -01101
11112 -01101
11112 -01101
11111 -01101
11111 -01101
11111 -01101
20012 - 00001
20012 - 00001
20012 - 00001
20013 - 00001
20013 - 00001
20013 - 00001
20011 - 00001
20011 - 00001
20011 - 00001
21112 -01101
21112 -01101
20013 - 10002
20012 - 10002
00021 - 00001
00021 - 00001
00031 - 00001
21113 -01101
21113 - 01101
20011 - 10001
20012 - 10001
00011 - 10002
30013 - 00001
21111 -01101
12211 - 02201
30012 - 00001
12212 - 02201
30014 - 00001
30013 - 10002
00011 - 10001
01131 -01101
30003 - 00001

3546.567
3546.567
3546.567
2291.385
3655.831
3655.831
3655.831
3516.783
3516.783
3516.783
3665.648
3665.648
3665.648
4867.609
4867.609
4867.609
4754.845
4754.845
4754.845
5013.232
5013.232
5013.232
4861.905
4861.905
3509.533
3623.717
4621.032
4621.032
6894.409
4709.841
4709.841
3662.486
3511.956
1073.481
6073.047
5037.195
3645.173
6207.046
3463.565
5946.265
4826.273

961.639
6855.418
3809.903

83
227
75

67
64
65

105
65

122
55
23
96
81
51

125
83
54

122
49
56

106
58

157
35
35

103
84

118

141
14
24
29
39

121

115
10

101
24

103
37

141
57

_N o = O OO NN O W= W W

N O

N O O O

34

N O L O W

27

30

AN W O

62 3-10
623

83 4

68 3

60 3-10
593

72 4

51 3-10
513

68 4

43 3-25
333

65 4

54 3-11
60 3

68 4-6
51 3-10
573

67 4-6
42 3-14
473

59 4-6
31 3-30
51 4-8
60 4

38 4

60 4-6
52 4-5
69 10
53 4-6
49 4-6
50 4-6
50 4-6
415

68 10
40 4-6
42 4-6
68 10
53 4-6
65 10
37 10
28 5

67 10
41 4-6

1.74x 10724
1.35x 10724
1.33x102*
4.15x102
1.14x 10724
9.22x10~%
8.15x107%
1.12x 1072
6.95% 10726
8.27x 10726
5.78x 10726
2.70x10726
7.25%x 10726
4.26x10726
2.36x 10726
5.01x1072°
2.28x10726
1.50x 10726
2.63x10726
5.03x107%7
4.83x107%
7.94x10727
1.65x 10727
3.10x 10727
3.56x 10727
2.69x 10727
1.38x 10727
1.13x 10727
2.06x 10727
1.65x 10727
6.01x102°
1.30x 10727
1.04x 10727
1.02x 10727
8.58x 10728
7.38x 10728
2.85x 10728
2.85x10728
2.83x10728
1.93x 10728
1.46x 10728
1.40x 10728
1.25x10728
1.21x10728

10.2
8.5
9.2
2.3
79
8.8

10.0

16.1

10.5

11.8

15.1

10.8

11.3

10.6

10.6

10.7
12.0
11.7
5.5
11.8
10.0
9.6
11.3
133
12.9
15.0
12.2
15.1
13.7
12.4
16.6
14.1
-11.1
2.8
9.8
14.2
-0.6
11.6
1.3
154
-6.2
14.9
11.9

11.0
8.7
9.5
3.8
8.3
8.9

10.3

16.5

10.7

12.1

16.0

10.9

11.8

10.9

10.7

11.7

12.0
12.2

7.6
11.9
11.2
11.1
13.1
13.8
135
219
12.7
16.1
15.0
13.0
17.7
14.8
12.0
16.5
11.8
15.3

6.6
134

59
33.7

79
16.7
13.7

9.5
79
8.5
-0.0
7.8
8.8
9.9
153
9.7
11.0
15.1
10.9
11.3
11.2
11.3
11.8
11.0
12.3
12.0
6.9
132
114
10.2
11.8
12.5
12.7
155
12.7
6.2
13.9
12.7
16.7
135
-15.1
3.7

14.3
2.3
12.6
2.5
12.6
-10.8
6.0
11.4

10.4
8.0
8.8
3.0
8.2
9.8

10.3

15.7
9.9

11.3

16.0

10.9

11.8

11.5

11.3

124

11.4

12.3

12.5
8.6

132

12.5

11.6

13.6

13.0

133

222

13.1
8.2

15.2

13.2

17.7

14.2

15.7
9.5

13.0

15.4
6.9

14.7
6.2

18.5

11.8
9.6

13.2

15
3.1
24
03
33
23
-1.0
4.6
1.2
0.4
43
0.1
0.7
0.2
0.2
04
13
0.1
03
5.7
0.7
1.1
-15
0.3
23
1.9
22
0.5
0.1
15
02
62
25
0.2
14
2.6
4.1
02
0.3
27
2.1
03

0.1

465
355
365
303
415
255
295
585
235
265
695
115
355
237
117
387
317
087
367
767
127
527
587
6.67
445
445

1556
336
399
6.17
377
875
495
441
549
717
705
429
485
529

10.0 7
501
599
546

1207]
211]
215]
211]
1207]
211]
1215]
1207]
211]
215]
[207]
211]
[215]
1207]
211]
1190]
[207]
211]
1190]
1207]
211]
1190
1207]
190]
[215]
[215]
1190]
1215]
e
190]
215]
[215]
[215]
1222]
1o1j
1190]
215]
l191]
[215]
1o1j
1190]
1222]
lo1j
215]
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21102 — 00001 3256.129 63 6 5446 1.08x10°2% 146 172 138 162 -07 555 u [215]
21113 - 11102 3473795 16 11 324-6 9.87x107% 117 13.6 108 128 09 705 s [215]
30014 — 10002 4696570 26 7 355-7 5.64x107% 11.6 145 118 147 -14 887 s [190]
30014 — 10002 4696570 3 28 304 478x107% 131 155 143 156 1.1 647 s [215]
31113 -01101 6047.520 140 1 6010  4.78x1072° 20 76 33 80 - -9 u [191]
01121 - 00001 5255181 32 7 355-7 354x107% 121 153 21 100 247 2597 s [190]
30012 — 10001 4860218 14 11 246-8 275x107% 7.7 163 84 166 -26 1457 s [190]
30002 — 00001 3954525 31 5 335-11 245x107%° 173 198 173 198 - -6 s [215)
31112 -01101 6217.194 129 1 5310 242x107%° -04 85 23 88 - -9 s [191)
30011 — 00001 6391247 86 0 5110 239x1072° 22 62 46 14 - -9 s [191]
738

10011 — 00001 3566.725 39 2 514 824x10727 1.8 45 17 45 -17 455 s [215]
10012 — 00001 3469362 62 0 664 7.67x107%7 2.5 37 17 32 -00 285 s [215]
11112 - 01101 3441685 81 4 494 6.00x10728 13 41 04 39 05 395 s [215)]
20012 — 00001 4773323 56 2 43 4-11 3.36x10°% -06 69 00 69 32 757 s [190]
11111 -01101 3564013 15 11 344 22510728 6.0 84 60 84 28 655 s [215]
20013 — 00001 4663.710 38 4 325-9 625x10°%® 24 115 26 115 1.1 1137 s [190]
20013 — 00001 4663710 20 7 314-5 331x107% 1.1 63 13 63 03 627 s [215]
20011 — 00001 4887298 20 6 295-17 4.22x107% 45 127 -32 123 -89 1497 s [190]
00031 — 00001 6698.146 91 0 6310 215x10°% 235 245 149 164 - -9 s [191)
30013 — 00001 5972.284 39 3 4110 3.59x107° 108 165 123 175 - -9 s [191)
30012 — 00001 6085.038 34 4 3910 3.08x107° 130 183 155 20.1 - -9 s [191)
01131 -01101 6662913 66 1 4510  8.80x1073' 151 186 63 124 - -9 s [191)
10032 — 00001 7869.363 67 2 475-10 5.86x1073' 31.0 332 335 356 - 11 s [224]

¢ see eq.

b rmsr: root-mean square residual

¢ The polyad number for CO; is defined as: P = 2v; + v, + 33, where vy, V5, v3 are the vibrational
quantum numbers of the symmetric stretching, bending and the asymmetric stretching, respectively.

dType of band: Stable(’s’), unstable(’u’)

¢ Uncertainty interval of the measurement (in %), defined as root-mean square

of statistical uncertainty plus systematic uncertainty of the measurement.

In general, by looking at Table [3.9] the dipole moment surfaces of Ames and
UCL appear to be of similar quality, generating band intensities that differ by few
percent. A more detailed analysis reveals that both line lists follow similar intensity
trends within a single band as well as between bands. A more detailed investigation
of small discrepancies between Ames-1 and UCL has been alredy done in section
For less abundant isotopologues, such as 638 and 728, deviations of theo-
retical line intensities from experimental values often exceed stated uncertainty of

measurements [[190,191,211,215]], which suggests inaccuracies in retrieval proce-
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dure or in isotopic abundances in measured samples. Band intensities given by the
CDSD-296 database match more closely the experimentally determined values than
the remaining two line lists. The effective dipole moment calculations, on which the
CDSD-296 database relies, are supplied with experimental entries, some of which
have been taken from the references listed in Table[3.9] For this reason, CDSD-296
generates smaller overall deviations from experiment. Unfortunately, none of these
measurements provide sub-percent uncertainty budget for intensities. This means
one can conclude only approximately on the mutual relation between the experi-
ments and theoretical studies (most of the measurements give 5-20% uncertainty
for the line intensities). Therefore, a comparison to a preferably sub-percent accu-
rate study is needed. Only one such measurement has been performed by Durry et

al. [203] on three ro-vibrational lines of 628 (see Figure [3.48).
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Figure [3.53| gives an overview of the relative agreement of the Ames and UCL

line lists to CDSD-296.
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Figure 3.53: Comparison of Ames and UCL line lists with the CDSD-296 database
for six isotopologues of CO,. Red and blue points denote relative percent deviation
of UCL and Ames intensities from CDSD intensity, respectively. Symmetric rela-

tive deviation (see eq3.29) is plotted against line intensity (in cm/molecule) from
CDSD-296 scaled by the natural abundance.

For strong lines, both Ames and UCL line lists give a good overall match to
CDSD-296. For weaker lines, intensity discrepancies between the line lists and
CDSD become more visible, reaching several hundreds percent. If Ames and UCL
intensities do not nearly coincide, then usually the UCL intensity is much closer

to the corresponding CDSD-296 value. A few bands for the 637 and 728 isotopo-



3.12. Asymmetric isotopologues 197

logue are systematically shifted toward large negative deviations in intensity both
for Ames and UCL, hence may demand closer attention, and perhaps a re-evaluation

in future editions of CDSD.

Figure [3.54] gives an overview comparison between UCL and HITRAN2012
intensities for all six asymmetric isotopologues of CO,. The characteristic funnel-
like shape is followed by the majority of lines. The 728, 637 and 638 isotopologues
however, contain few moderately strong bands, exhibiting suspiciously high sys-
tematic deviations from the UCL line list. For this reason, is may be believed that
intensities of these CDSD-296 bands cannot be trusted, and require refinement by
additional experimental data or a theoretical approach. It should be noted that the
majority of lines in HITRAN 2012 comes from the effective Hamiltonian calcula-

tion also enclosed in the CDSD-296 database.
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Figure 3.54: General comparison of the UCL and HITRAN 2012 line lists for all six
asymmetric isotopologues of CO,. Symmetric relative deviation is plotted against
line intensity (in cm/molecule) from HITRAN 2012 scaled by the natural abun-
dance.
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3.13 The radioactive isotopologue (646)

Due to its trace atmospheric abundance, 1.234(14) x 10~!2 [[139], only the strongest
ro-vibrational absorption lines of radiocarbon dioxide (14C10,, 646) are accessible
to accurate measurements. There are only 36 lines (all belonging to the 00011—
00001 band) which have intensities above 103° cm/molecule at room temperature.
However, a growing number of experiments reaches for ever higher abundances
of 646 in measured samples, which creates access to weaker transitions. For this
reason, the present line list for 646 was calculated in a wide J = 0, ..., 130 range in

the 0-8000 cm~! transition wavenumber region, assuming unit abundance.

Out of the strongest lines present in the infrared spectrum of 646, only the
P(20) line of the asymmetric stretching fundamental (2209.10 cm™!) is located in
a spectral region essentially free of major interferences from other abundant atmo-
spheric species like H>O or CHy4. For this reason, this line is most commonly chosen
as a reference for determination of radioactive carbon concentrations. Therefore,
the P(20) line of the asymmetric stretching fundamental plays a distinct role in
monitoring of carbon dioxide emission caused by fossil fuel combustion. Although
knowledge of the absolute value of the line strength to obtain the '*C concentra-
tions in SCAR measurements performed on fossil samples [147] can be avoided
by using a more convoluted experimental procedure, encouraged by a successful
retrieval of natural abundance of 646 by utilizing theoretically calculated line inten-
sity (claimed 5% accurate) by Galli et al. [26], with the hope that the updated and
plausibly sub-percent accurate intensities will be utilized in future experiments as
a reference or calibration data. Usually, a sample to be analysed is cooled down to
195 K or 170 K in order to diminish interference effects from the nearby (separated
by 230 MHz) line of the 636 isotopologue (P(19) line of the 05511 — 05501 band).
For this reason attention is also paid to line intensities at low temperature for this
particular transition. Table compares intensities of the P(20) and P(40) lines
obtained from several measurements and theoretical calculations together with their

respective uncertainties.
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Table 3.10: Intensities of the P(20) and P(40) lines of the 00011 — 00001 band for
14CO, taken from different experimental sources.

Reference Temperature K Strength(uncertainty) x 10~'® cm/molecule
P(20) Galli et al. [26] 195 3.10(15)

P(20) Present study 195 3.07(3)

P(20) Genoud et al. [|143] 295 2.52(26)

P(20) Present study 295 2.82(3)

P(20) Present study 170 2.97(3)

P(40) McCartt et al. [148] 300 0.627(30)

P(40) Present study 300 0.572(6)

Both P(20) and P(40) lines are considered stable according to the transition
intensity sensitivity analysis (p = 1.026). Line intensity given by Galli et al. agree
to 1% with the UCL value for T = 195 K. Genoud et al. gives room temperature line
intensity flagged with 10% uncertainty, which lies 11% below the UCL prediction.
The P(20) line is 5 times stronger than P(40), however the latter one is located in
a less crowded spectral region. From this reason McCartt ez al. used the P(40) line
to produce calibration curve for concentration of radioactive carbon in the SCAR
technique, where reference concentrations were determined by accelerator mass
spectrometry. In their spectroscopic model, McCartt et al. use a line intensity at
300 K taken from measurements by Galli et al. [26] (9% above UCL intensity)
and line intensities of interfering isotopologues from the HITRAN 2012 database.
This leads to negative concentrations resulting from fitted calibration curve. One
of the possible reason for that could be inaccurate line strength used in the retrieval
model. Of equal importance are however: the accuracy of '#C abundance in samples
and the intensities of the satellite lines of other carbon dioxide isotopologues. Line
intensities provided by UCL line lists are internally consistent and have been proven
to agree within experimental uncertainty to state-of-the-art measurements. Table
[3.10] also lists UCL prediction for the line intensity at 7 = 170 K, a temperature
which is commonly used for intensity measurements for the P(20) line.

Vibrational assignments of the UCL line list for 646 were based on isotopic
shifts of energy levels and respective assignments for the 626 and 636 isotopo-

logues. For this purpose energy levels for the 626 and 636 isotopologues were
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extrapolated and matched to 646 calculated energy levels. Next, the DVR3D calcu-
lated line positions for 646 were compared to experimental frequencies by Dobos
et al. [228]]. The tunable diode laser measurements supplied accuracy of 0.001
cm™! or better in the 2229 — 2259 cm~! spectral range of the asymmetric stretch-
ing fundamental; this yields an RMSD = 0.004 cm~!. This result shows that cal-
culated line positions deviate from experiment just above the stated experimental
accuracy, hence may be considered as highly reliable for the 00011 — 00001 band.
For this band the average deviation from the EH calculations for 5 symmetric iso-
topologue levels is 0.018 cm™!, which could probably be reduced by treatment of
mass-dependent non-Born-Oppenheimer effects. A more recent study performed
by Galli et al. [144], where high-resolution optical-frequency-comb-assisted cav-
ity ring-down technique was used to measure ro-vibrational line positions in 2190
— 2250 cm™! region with accuracy of few MHz. Comparison with this study re-
sulted in 0.005 cm~! RMSD, thereby establishing the provisional uncertainty of the
DVR3D line positions to 0.005 cm™! for the asymmetric stretching fundamental.
The study by Galli et al. awaits accurate intensity evaluation. This creates an op-
portunity for further utilization of present results and comparison with experiments,

when done.

3.14 HITRAN 2016 recommended UCL line lists

For each of 13 isotopologues of CO, two types of line lists were prepared. The
first type named *UCL’ contains line positions calculated using Ames-1 PES with
DVR3D program and line intensities using UCL DMS (CAU’ line list). Each line
is supplemented with the appropriate scatter factor p, given in the last column.
The second type named 'recommended UCL-IAO line list’ contains line positions
from the effective Hamiltonian calculations by Tashkun and Pervalov [37-39]. In
both types of line lists the vibrational assignments are taken from the newest ver-
sion of the CDSD-296 database, although for a few lines manual reassignments of
the CDSD-296 vibrational quantum numbers were necessary. For the radiocarbon

1sotopologue (646), which is not included in the CDSD-296 database, an isotope
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extrapolation procedure (as described in section [3.13) was applied to obtain vibra-
tional assignments.

The recommended UCL-IAO line lists were incorporated as a part of the HI-
TRAN2016 database [196] (www.hitran.org), after minor modifications summa-
rized below.

First of all, a small number of line positions was taken directly from exper-
iment. This was the case whenever lines were affected by the interpolyad anhar-
monic resonance interactions, for which the effective Hamiltonian model is not ac-
curate enough. Appropriate source codes for experimental data used in the UCL-

IAO recommended line lists are:
e 627: ’3” source code stands for data taken from [229]]

e 028: "4 source code stands for data taken from [208]];’5” source code stands
for line positions corrected with differences between EH calculated and ob-
served line positions for 31112-01101 or 41113-01101 bands taken from
Karlovets et al. [208]]

e 638: 73” source code stands for data taken from [206];”5” source code
stands for line positions corrected with differences between EH calculated
and observed line positions for the 31113-01101 band taken from Karlovets
et al. [206]

e 728: ’3” source code stands for data taken from [208]]

The majority of lines in the recommended line lists have their source code
”1” for transition intensities, which stands for UCL-calculated data. On the other
hand, the majority of line positions come from the effective operator calculations
by Tashkun and Perevalov [37-39]], with 2" source code assigned.

The uncertainty-code assignment was based on the following criteria. Intensi-
ties of stable lines (p < 2.5) belonging to bands stronger than 102> cm/molecule
(for unit abundance) were taken from UCL DMS calculations and assigned HI-

TRAN uncertainty code 8 (i.e. accuracy of 1% or better). Stable lines belonging
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to parallel bands weaker than 10~23 cm/molecule also come from UCL DMS com-
putation and were given uncertainty code 7 (i.e. accuracy 1 — 2 %). Intermediate
lines (4.0 > p > 2.5) and stable lines belonging to perpendicular bands weaker than
1023 cm/molecule feature HITRAN uncertainty code 6 (i.e. accuracy 2 — 5%).
Line intensities of bands containing the 3v3 vibrational excitation as well as unsta-
ble lines (p > 4.0) were taken from the effective Hamiltonian calculations [37-39].
Before publishing as a part of the HITRAN2016 database, all line lists were care-
fully evaluated band-by-band, which resulted in a number of vibrational reassign-

ments.

All line positions and line intensities for which a scatter factor was not as-
signed were taken from the effective Hamiltonian computation. This was the case
for only for a very small fraction of lines (see Figure [3.14). Abundances for each
isotopologue were taken from the HITRAN2012 database and the final line lists
used an abundance-scaled intensity cut-off 1073 cm/molecule. For the radiocarbon
isotopologue (646) unit abundance was assumed and 10727 cm/molecule intensity

cut-off cm/molecule.

3.15 Concluding remarks on CO,

Results of comparisons discussed in this chapter suggest that the present UCL line
lists for all 13 isotopologues of CO, represent the theoretical and experimental
state-of-the-art accuracy in transition intensities. Spectral completeness, unifor-
mity of errors within a single band and sub-percent accuracy of the most important
bands resulted in inclusion of present line lists in the 2016 edition of the HITRAN
database. Below, Figure [3.55| presents a chart showing how the HITRAN uncer-
tainty index for line intensities has changed with the update from UCL line lists.
With the UCL entries, the uncertainty in line intensities in the HITRAN database
lowered significantly, with the most atmospherically and astrophysically relevant
transitions modelled with sub-percent accuracy, which fulfilled the working goal of

the CO; project.
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Figure 3.55: Bar chart comparing uncertainties in line intensities for the 626 iso-
topologue in the 2012 and 2016 editions of the HITRAN database.



Chapter 4

Room temperature
Born-Oppenheimer ro-vibronic UV

line lists for SO, and CaOCa

molecules

4.1 Introduction

A considerable number of triatomic species are of great importance in studies of
Earth’s and exoplanetary atmospheres: H,O, CO,, SO,, O3, H;S, NO,, HCN, etc.
[230,231]]. All these molecules absorb ultraviolet (UV) light, which is associated
with an electronic transition. This fact can be utilized in qualitative and quantita-
tive characterisation of atmospheres, by comparing measured spectra to theoretical
predictions. Qualitative molecular fingerprint studies with low-resolution remote-
sensing instruments need only approximate band shapes and intensities which can
be provided by theory. On the other hand, quantitative analysis of concentrations of
molecules from the UV absorption spectroscopy require high quality modelling of
ro-vibronic line positions, line intensities as well as line shapes.

Line-by-line data, which is the most useful for remote sensing is currently
mainly supplied from spectroscopic databases such as HITRAN [196]], HITEMP
[34] and GEISA [35]]. In the UV spectral region however, due to limited availabil-
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ity and quality of experimental studies, these databases often contain only cross-
sections. This is the case also for the SO; molecule, even though SO, retrievals
are generally based on absorption measurements in the UV. For successful retrieval
of molar fractions of molecules in the atmospheric measurements, all absorption
lines in a given spectral region have to be characterized, requiring high-resolution
supporting data and this currently represents a major challenge. In addition to that,
reference spectra taken directly from experiment show issues with completeness of
the data as well as insufficient quality of line intensities. This creates a demand for
a systematic scheme for producing low-uncertainty spectroscopic parameters for
ro-vibronic transitions. When proven accurate enough, results of such calculations
could be potentially included in the above mentioned spectroscopic databases. This
was already the case in the infrared absorption region, where theoretical calculations
with the DVR3D suite by Tennyson ef al. [59] were shown to provide high accuracy
line intensities for molecules such as CO, [32,37-39] (discussed in chapter 3) and

H,O [750232235].

In this chapter we implement and test a theoretical procedure, outlined in chap-
ter 2, which can be used to generate UV absorption line positions and transition in-
tensities for triatomic molecules. This is achieved by extending the existing DVR3D
code for ro-vibrational infrared calculations to electronic transitions. The resulting
calculated parameters of ro-vibronic transitions are supposed to serve as a theoreti-
cal reference model for measured line positions and transition intensities, for further

utilization in the atmospheric science.

There are a number of theoretical methods and their computer implementations
for calculation of UV absorption spectra of triatomic molecules. Transition frequen-
cies are often directly determined from measurements or indirectly from effective
Hamiltonian models [236-238]], which give much higher accuracy than variational
calculations. On the other hand, transition intensity calculations often require sup-
port from ab initio models [239]. These models, in order to meet the high accuracy
requirement, need to be derived from appropriately high level electronic structure

calculations and nuclear motion theory. Resolution of rotational lines is thus neces-
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sary which means that couplings between the rotational, vibrational and sometimes

electronic motion must be considered.

Electronic transitions triggered by UV photons can be modelled quantum-
mechanically from a range of perspectives. The most common approach uses
empirically-tuned effective Hamiltonians supported by Franck-Condon transition
intensities [240]. Effective Hamiltonians rely heavily on experimental data which
is often of limited availability and quality. Thus, although accurate, the effective
Hamiltonian approach has a drawback of limited robustness, as for example typi-
cally a separate quantum mechanical model is needed for every molecule and every
isotopologue [241-243]]. For this reason, ab initio methodologies for calculating ro-
vibronic transition frequencies and intensities are usually employed, serving as the
first stage in the modelling process [37-39,244]. Furthermore, the ab initio method
can be extended to consider highly excited states which are important for high tem-
perature studies such as those needed for exoplanets. Exotic or poisonous chemical
species, such as TiO, VO, HCN, PH3; or H,F", some of which exist in the inter-
stellar medium [245]], whereas some are believed to be present in cool stars [246]],
are prominent examples of systems for which ab initio theory is the only viable
approach to prediction of infrared (IR) or UV spectra [247-249]. Experimental
characterization of this type of molecules is largely inhibited by problems with syn-
thesis and stability of compounds, as well as temperature limitations in laboratory

measurements.

A number of programs for solving the ro-vibronic Schrodinger equation are
available, such as RENNER [250-252] by Odaka et al. which is dedicated to linear
Renner-type triatomic molecules, or more general variational codes for solving the
triatomic spin-ro-vibronic problem based on MORBID by Jensen et al., [253H256]
which uses an approximate kinetic energy operator for nuclei, RVIB3 [257-259]
by Carter, Handy er al. is designed only for semi-rigid triatomic molecules with
three or less interacting electronic states. A bottleneck in the variational method-
ology is diagonalising the large matrices required for calculations of highly excited

rotational states; thus its applicability is limited by computing power. This limita-



4.1. Introduction 207

tion can be partially overcome with the use of the discrete variable representation
(DVR) [89,90,260], which is presently well known for its computational efficiency.
The DVR3D suite by Tennyson et al. [59,261] used in chapter 3 to generate ro-
vibrational line lists for isotopologues of CO; uses exact kinetic energy (EKE) op-
erator in the Born-Oppenheimer approximation. The computationally efficient two-
step procedure [[86]] for solving ro-vibrational Schrodinger equation (DVR3D code)
allowed for generation of 54 room temperature line lists for CO; in a relatively short
time. The DVR3D computer code has been used to generate a considerable number
of ro-vibrational line lists [37H39,/56,(76,262], with wavefunctions and energy levels
calculated in several cases up to values of the rotational quantum number J > 100.
The accuracy of these wavefunctions and energy levels is largely determined by
the quality of the potential energy surface (PES) and the dipole moment surface
(DMS). The accuracy of transition intensities of ro-vibrational line lists generated
for isotopologues of CO, with ab initio DMS has reached and arguably exceeded
experimental accuracy [28,32,37-H39]]. As a result, for 12 isotopologues of carbon
dioxide in the 0 — 8000 cm~—! wavenumber range, the theoretical transition intensi-
ties calculated with DVR3D have been included in the HITRAN2016 spectroscopic
database [196]]. In this chapter, we extend the thoroughly tested DVR3D computer

code to electronic excitations.

Time-dependent methods have also been used to simulate IR and UV molecu-
lar spectra. Although primarily designed for larger systems, time-dependent meth-
ods, such as Multiconfiguration time-dependent Hartree (MCTDH) [263-266] or
molecular dynamics, are applicable to triatomics too [267]]. The main issue with
current application MCTDH and molecular dynamics approaches is the absence of
detailed modelling of J > 0 transitions, and that no rotation-vibration couplings are
reflected in wavefunctions. The effect of Coriolis couplings is, for instance, visible
in the UV spectrum of SO, (C 'B, « X 'A; electronic transition) [240,268]. An-
other serious disadvantage of MCTDH methods in high accuracy spectra modelling
are the approximate Hamiltonians used, which limits the accuracy of calculations

for highly anharmonic systems. For this reason the EKE operator, with complete
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description of rotational motion as well as rotation-vibration couplings remains the
best option for high accuracy calculations. For example, some remote-sensing ex-
periments rely on measurements of a single rotational line, hence after the iden-
tification stage, based on the recognition of a fingerprint for a given molecule, a
quantitative study based on absolute and accurate ro-vibronic intensities is needed.
Many models based on Franck-Condon calculations often provide only relative in-
tensities of bands, calculated from overlaps of the vibrational wavefunctions, which

is of limited use in quantitative spectroscopy [269,270].

The primary objective of the present chapter is to test the procedure (described
in chapter 2) for solving the Schrodinger equation for any triatomic molecule,
for two un-coupled electronic states in the Born-Oppenheimer approximation, and
subsequent computation of transition intensities between the stationary states ob-
tained. This theoretical scheme is tested on the SO, molecule. Here, we explore
the possibility of extending DVR3D to calculation of ro-vibronic spectra of tri-
atomic molecules within the Born-Oppenheimer approximation and with transition
dipole moment surface (TDMS) between two electronic states. DVR3D has already
been successfully applied in ro-vibrational calculations of energy levels and wave-
functions in electronically excited states of FeCO [271]. The next procedural step
is to enable computation of transition intensities between two Born-Oppenheimer
electronic states. Here, this is done at two levels of approximation: the Franck-
Condon (FC) approximation [272] with ro-vibrationally coupled wavefunctions,
and the transition dipole moment surface approach, which fully accounts for the
dependence of the electronic transition dipole moment on internal coordinates of

the molecule.

As a case study for the new procedure, the UV absorption spectrum for the
C 'B, + X 'A; electronic transition in SO, is calculated. Sulphur dioxide plays
a substantial role in atmospheric chemistry. Detailed understanding of vibronic
absorption properties of all major isotopologues of sulphur dioxide is essential for
explaining the mass-independent isotope fractionation effect observed for SO, in

the Earth’s atmosphere [273]. SO, is a major component of Venus’ atmosphere,
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it also accompanies Earth’s volcanic activity and industrial activities. Sources and

migrations can be monitored by detecting hazes of SO, [44]].

The infrared absorption spectra of atmospheric sulphur dioxide are often con-
gested with absorption bands from other molecules, especially water. For this rea-
son measurements of SO, in the UV region have gained a growing attention over the
years, and a few satellite instruments are currently operating in the UV, for example
GOME-2 [42] and OMI [43]], reviewed in ref. [41]. These measurements require
high accuracy spectroscopic models to support assignment of lines and to provide
reference line strengths for concentration retrieval. In addition to that, cross sec-
tions at different temperatures and pressures for several molecules need to be pro-
vided prior to the measurement, in order to retrieve accurate concentrations of the
molecule of interest in the atmosphere; here SO,. Currently, such parameters can
be obtained consistently only from theoretical calculations. Thus, along with the
development of experimental instrumentation and methodology, a parallel progress
is needed in the accurate description and understanding of the nuclear dynamics in

excited electronic states of SO, and other atmosphere-present compounds.

The most popular choice for the UV absorbing bands are the A and B bands
of SO, located in the 270-400 nm wavelength region [274,275]], for which a the-
oretical description has been given by Xie et al. [276]. The strongest absorption
in the UV is however attributed to the dipole allowed C !B, state. This electronic
state, chosen here as a case study, has a highly anharmonic potential energy sur-
face with a double-well structure [51]. Although the strongest absorption for the
C 'B, < X 'A; transition is located near 200 nm [277], for the present purposes,
the longer wavelength 220-235 nm absorption region is selected. This spectral re-
gion involves transitions to the lowest vibrational states of the C ' B, electronic state,
and has been chosen due to limitations of the ab initio potential energy surface used

here.

High resolution spectra for the C 'B, <~ X 'A; electronic transition in the 220~
235 nm region were recorded by Yamanouchi et al. [270], Rufus et al. [278] and

more recently by Blackie et al. [279], where a review on past measurements is pre-
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sented. Other lower resolution measurements were published by several authors,
see for example Danielache et al. [280] and Sako et al. [281]]. There are a number
of theoretical studies on spectroscopy of the C !B, state. Early papers by Xie et
al. [282] and Bludsky et al. [283]] paved the way for more accurate descriptions,
recently provided by Klos er al. [284]] and Kumar et al. [285]. High quality ab
initio spectra for the transition to the C le state, do not so far however include
rotational structure. Results from Klos et al. [284]] will serve as a benchmark for
J = 0 calculations with the present procedure. Particularly for non-symmetric tri-
atomic molecules, the present approach can provide information on the so called
axis-switching effect [286-290]], which is inherently accounted for in the model.
Section 4.2 discusses the electronic structure calculations for the C !B, and the
X 'A; state in SO,. Section gives details of the nuclear motion calculations.
Results of line position and transition intensity calculations are given in section 4.4}
where transition intensities are compared against other theoretical calculations as
well as experimental data, and the significance of the TDMS is discussed. Finally in
section[d.5] the CaOCa molecule is investigated. In the same way as for SO, a Born-

Oppenheimer ro-vibronic low-J (J <10) line list is generated for this molecule.

4.2 The potential energy surface and the transition

dipole moment surface

The potential energy surface for the C ! B, electronic state was generated from 3000
geometries in bond length — bond angle coordinates. Stretching coordinates were
chosen in the range: r,r € [1.2;1.9] A, with 0.05 A increments. Angles between
the S — O bonds were sampled from 60° to 180° with 5° increments.

Electronic structure calculations were performed with the explicitly correlated
multi-reference internally contracted configuration interaction method with David-
son correction (ic-MRCI-F12+Q) in the aug-cc-pVTZ basis set, as implemented in
the MOLPRO2015 package [[177]. The reference wavefunctions were calculated
with the state-averaged CASSCF method, with equal weight averaging over two

singlet states. For 18 electrons occupying 19 orbitals, 12 orbitals were used (9a’,
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3a’) for the active space and 7 as core orbitals (6a’, 1a”"). The PES was fitted with

the least-squares method to the functional form:

V(31,y2.53) = Y Cirayiyhvh 4.1)
jl

where y; = %(xl +x2), y2 = %(xl —x2) and y3 = 6 — 6,,. Here x{,x, are Morse
coordinates x; = 1 —e ! (”*’Tq), x=1-— ¢=@(2=75")  The functional form and
coefficients were chosen to secure the correct shape of the PES at C,, geometries.
For a fixed angle 6 = 6y, the PES V (ry, 1, 6p) has a saddle point when r| = r;, and
two non-C,, minima in the r{—r, plane, which are symmetry connected, as shown
in Figure d.1] A non-uniformly weighted fit to 623 ab initio points with energies
below 5000 cm~! in 6 € [90°;130°], gave 0 =12 cm~! root-mean square residual

(RMSR) between the fitted surface and ab initio points.
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Figure 4.1: Potential energy surface for the C 'B, electronic state calculated at
0 = 120.0°. Ab initio points are marked in red.

The global C; equilibrium geometry for the C !B, is located at riq = 1.640 A,
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ry1 =1.496 A, 699 = 104.3°. There are two other local minima near 6 = 80° and
6 = 165°. The latter is a C,, symmetric minimum with energy 400 cm™~! above the
global minimum. This well, displayed in Figure generates additional low lying
energy levels, which have not been yet characterized by spectroscopy. A separate

fit for the second well near linearity gave RMSR= 17 cm ™!,

For the electronic X 'A; state we used a highly accurate potential energy sur-
face of Huang et al. [291,292]. This is a semi-empirical PES based on CCSD(T)/cc-
pVQZ-DK calculations and refinement to experimental energy levels in the J=0-80
range. The RMSR of the fit to ab initio points was 0.21 cm~! below 30 000 cm™!
and the root-mean square deviation from experimental levels was 0.013 cm~'. The
equilibrium geometry of the electronic ground state rfq = 1.431A, riq = 1.431A,

0¢? = 119.32° corresponds to Cy,, symmetry.

The transition dipole moment surface between X 1A, and C 'B, electronic
states was calculated as the expectation value of the electric dipole moment opera-
tor, at the same level of theory as the C !B, PES. A fit to the functional form from
eq. was performed with 1852 ab initio points in the [85°:140°] angle range.
The RMSR for the x-component of the surface (x-axis chosen to bisect the angle be-
tween S—O bonds) was 0.03 a.u., and the RMSR for the z-component of the surface
was 0.02 a.u. High accuracy is not the aim of the present study, thus these values for
residuals were acceptable. At equilibrium geometry the z-component of the transi-
tion dipole moment vanishes, as shown in Figure[4.2] The transition dipole moment
depends on the nuclear coordinates relatively weakly, nevertheless the non-constant

TDMS may significantly influence transition intensities; this is discussed in section

The PES and TDMS are available for use in the form of FORTRANO95 routines

as supplementary materials to ref. [293]].
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Figure 4.2: Two components of the transition dipole moment function between
X 'A; and C 'B, electronic states for @ = 120.0°. The upper surface is the y-
component and the lower surface is the x-component, which vanishes for C,, ge-
ometries. Ab initio points are marked with red.

4.3 Nuclear motion calculations

4.3.1 Wavefunctions and energy levels

Born-Oppenheimer ro-vibrational wavefunctions and energy levels were obtained
separately for the X 'A; and the C !B, electronic states. For each electronic state,
a two step procedure described in chapter 2 for solving the nuclear Schrodinger
equation was applied. The DVR representation of matrix elements of the Hamilto-
nian, as implemented in DVR3D, carries the advantage of diagonal potential energy
matrix in any chosen basis. A Morse-like oscillator basis set [[59}85]] was used for
the S—O stretching coordinates and associated Legendre functions for the bending
motion. The parameters of the stretching basis set were optimized to ensure the
fastest convergence of J = 0 energy levels in the C ' B, electronic state. The final
set of optimized parameters, basis set size and other parameters for nuclear motion
calculations are listed in Table 4.1} The vibrational energy levels are insensitive to
the value of the dissociation energy D, in the Morse-like oscillator basis functions,
hence D, was set to 0.3E}, in all cases. The equilibrium bond length r, and width

o of the Morse-like basis was scanned in the r, € [2.8;3.5]ayp, o € [0.008;0.030]E),
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region for different sizes of the stretching basis (the NPNT parameter in DVR3D
in the 30 — 90 range). The number of angular basis functions was independently
optimized, and the corresponding NALF parameter was set to 60. As a result, the
optimal set of basis set parameters was: r, = 2.9 ag, D, = 0.30 E;,, a = 0.012 E},
and NPNT= 90. With this basis optimal basis set the accuracy of vibrational en-
ergy levels in the electronic ground state was controlled by comparison with the
ExoAmes line list [76]. In the light of the main idea of the present work, we do not
require spectroscopic accuracy for present calculations. For this reason, we estab-
lished convergence criteria at 2 cm™! and tolerance for deviation from experiment

at 20 cm ™! for the lowest J = 0 energy level of the C ' B, electronic state .

The final size of the DVR3DRIJZ Hamiltonian was truncated at 1000, which
was sufficient to provide good convergence for the lowest 100 energy levels. Di-
agonalisation of this matrix leads to ro-vibrational energy levels and wavefunctions
labelled by the J-rotational quantum number and the e/f Wang symmetries. Nu-
clear masses in Dalton units (Da) for sulphur and oxygen were used: 31.963294 Da
(328), 15.990525 Da (160) [178]. For evaluation of integrals a DVR scheme based
on 90-point Gauss-Laguerre and a 60-point Gauss-Legendre quadratures was used,
for stretching and bending coordinates respectively. With this choice the range of
quadrature points for stretching coordinates is r; € [1.13;1.86]A, thus this range is
contained in the domain of applicability of the present fit. With this basis set the
zero-point energies for the X 'A; and C !B, electronic states are ZPE, = 1538.19
cm~! and ZPE, = 776.45 cm™~! respectively. In the second variational step (pro-
gram ROTLEV3), for each J value separately 200 ro-vibrational basis functions

were used to solve the full Coriolis-coupled nuclear motion problem.
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Figure 4.3: Schematic picture of the molecule-fixed frame embedding used in nu-
clear motion calculations for SO,. r| and r; are Radau stretching coordinates.

Coordinates: Radau (r,17,0)

BF frame embedding: z-axis along 1

Basis set identical for both el. states

*Stretching’ rq,1;: 90 Morse-like oscillator functions
Morse-like oscillator basis parameters: re =2.9ag, D, =0.30E, oo =0.012 E},
Number of DVR points for stretching: 90 (Gauss-Laguerre quadrature)
Bending 6: 60 (Associated Legendre Polynomials)
Number of DVR points for bending: 60 (Gauss-Legendre quadrature)
Rotations Complete basis set of symmetric-top wavefunc.
Truncated Hamiltonian size in the first step: 1000

Truncated Hamiltonian size in the second step: 500

Computation time? (J = 0) 10 min.

Scaling with J (computation time) ~ J (first step), ~ J? (second step)

Intensity calculations

Common DVR grid for both electronic states
Computation time (J” =0 —J = 1) 15 min.
Scaling with J” (computation time) ~ J?

Table 4.1: Summary of the parameters of the nuclear motion calculations for the
X 'A; and the C !B, electronic states of SO,. In the table given are: the type of
coordinates used, the type of molecule-fixed frame embedding, basis set parameters
and some technical details of the computation. ¢ Test computations were performed
on a stationary PC with Intel(R) Core(TM) 15-2500@3.30 GHz processor and 8 GB
of RAM.

Identical embeddings (see Figured.3), coordinates and DVR grids were chosen
for both electronic states. The criterion for this choice was to optimize the accuracy
of the electronic excited state. The simple shape of the ground state PES gives

weaker dependence on the choice of embedding and basis set parameters, when
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an appropriately large basis set is used. Radau internal coordinates were chosen
for description of vibrational degrees of freedom. The z-axis of the molecule-fixed
frame was chosen along one of the Radau coordinates (1), which nearly overlaps
with one of the the S—O bonds (’bond embedding’). The bond embedding was
observed to give significantly better convergence than the bisector embedding for
the C ' B, electronic state, which has its equilibrium geometry at two non-equivalent
S—O bond lengths, that is at C; symmetry. The fit of the PES for the C !B, state
necessitated adding walls at large internuclear distances, to avoid potential dropping
to non-physical values. The positions of these walls were adjusted so as not to
influence the values of energy levels for the present basis size. For larger basis
sizes, the range of quadrature points for stretching coordinates can sample regions
of the PES, which are beyond the range of applicability of the present fit. These
regions have high energy, thus adding walls with energy 0.1E}, to the present fit
assures the correct asymptotics for all r; and r, values. The potential walls were

addedatr=13 A, r=2.0A and 6 = 85°, 6 = 130°.

4.3.2 Axis-switching effect

Not only does the equilibrium geometry of the molecule change upon the electronic
transition, but also an additional rotation of the molecule-fixed coordinate system
is required [286]. The former effect can be directly attributed to the difference in
shapes of the potential energy surfaces for the two electronic states that causes the
vibrational basis set optimized for the electronic excited state to be no longer opti-
mal for the electronic ground state. In the terminology of normal modes it means
that normal coordinates in the electronic excited states are rotated (leading to the
so-called Duschinsky effect [288,[289,294]) with respect to normal coordinates in
the electronic ground state. The effect of rotation of the molecule-fixed coordinate
system affects the Euler angles, causing rotation of the rotational basis set. Al-
though in many systems these artifacts of the electronic transition are marginal, they
sometimes significantly soften rotational selection rules, allowing for appearance of
whole vibrational “forbidden” bands, as observed in HCN [287]] and SiHD [290].

For example, in the HCN molecule, for the (7% <— 7) electronic transition only
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AK = +1 sub-bands are allowed by rotational selection rules. However stimulated-
emission-pumping (SEP) experiments [295]] observed weak AK = 0 transitions to
levels with non-zero vibrational angular momentum (/ = 1). This type of transi-
tion is forbidden by rotational selection rules and has been convincingly attributed
to non-rigidity of the molecule during the transition between linear X electronic
ground state and bent A electronic state [286,287]]. In calculations, the magnitude
of the axis-switching effect depends on the choice of the molecule-fixed frame, the
choice of coordinates and the basis set. Axis-switching is strongly pronounced in
the Eckart frame, the molecule-fixed coordinate system which needs to be rotated
when changing the electronic state, in order to satisfy the conditions of the minimal

rotational-vibrational coupling in both states separately.

The axis-switching effect suggests that the rotational basis functions should be
labelled with the quantum numbers for electronic states too. However, the com-
pleteness of the rotational basis used in the present model guarantees that the ro-
tational part is accounted for exactly regardless of the electronic states. Therefore,
rotational states in the electronic excited state, which are nominally functions of
rotated Euler angles can be modelled with the un-rotated rotational basis of the
electronic ground state (or vice-versa). An appropriately large vibrational basis set
can also eliminate any inaccuracies resulting from the Duschinsky effect, meaning
that the vibrational basis is nearly complete hence does not depend on the electronic
state. For the reasons discussed above we can drop the electronic index i for the ro-

tational and vibrational basis states and use them as given in eq. (2.36) and (2.37).

As aresult, at the cost of extra computational time, the geometric effects associated
with the electronic transition are fully modelled. Thus, ro-vibronic transitions for-
bidden by rotational selection rules, which appear in line lists calculated with the

present model, may be attributed to the axis-switching effect.

The present approach utilizes an identical basis set to calculate ro-vibrational
energies and wavefunctions in the ground and the excited state of the molecule
(we assume a system with two electronic states). In DVR, this means that the ro-

vibrational wavefunctions for both electronic states are defined on the same grid,
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which provides the advantage of straightforward integration over internal coordi-
nates of the molecule. For this reason, matrix elements between ro-vibrational states
of the electronic ground and excited state can be evaluated as a sum of products of

respective functions at given grid points.

4.4 Results and discussion

J =0 energy levels calculated with the present ab initio PES for the C ' B electronic
state are listed in Table [4.2] where a comparison with literature calculations based
on two different ab initio surfaces is made. The ab initio MRCI+Q/aug-cc-pVTZ
PES by Tokue et al. [296] was based on 6300 geometries and was interpolated by
the moving least-squares method combined with the Shepard method [297]. The ab
initio ic-MRCI-F12+Q/aug-cc-pVTZ PES of Klos et al. [284] was interpolated with
spline functions. Table 4.2|also gives the semi-empirical energy levels from Jiang et
al. [240] and measured energies of Yamanouchi et al. [270]]. The present calculated
values for vibrational energy levels are in a good agreement with experiment and
semi-empirical calculations by Jiang et al. [240]]. Clearly the present PES is more
accurate than the one given by Tokue et al. [296]. The root-mean square deviation
(RMSD) between the experimentally tuned energy levels from Jiang et al. [240]
and the present calculation for J = 0 energy levels is 13 cm~! below 1500 cm™!
which practically equals the RMSD for the ab initio calculations by Ktlos et al..
The level of the present PES is comparable to the PES of Ktos et al. [284], as both
surfaces were calculated with the same ab initio method. The advantage of the
present approach, which is based on a fit to a functional form, manifests in savings
in the number of ab initio points necessary. This way of producing a PES would be
thus recommended, when a higher level of theory is used for the electronic structure

calculations.
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Table 4.2: Comparison of the J = 0 energy levels (cm~!) calculated with the present
ab initio PES for the C 'B, electronic state to theoretical values from Klos et
al. [284], Tokue et al. [296], semi-empirical calculations by Jiang et al. [240]] and
measured energies [270]]. In the first column a vibrational assignment is given; the
second column gives the symmetry of the state in the C,,, group. The b, levels are
dipole forbidden from the vibrational ground state of the X 'A; electronic state. En-
ergy levels from the second potential well localized around 6 = 165° were excluded
from the table.

(vi v2 v3) Sym. Present Klos et al. [284] Tokue et al. [296] Jiang et al. [240] Exp. 701

(001) b, 195 223 212
(010) a 368 375 394 377 377
(002) aj 544 575 598 561 561
(011) b, 560 590 582
(020) a 734 748 772 751 752
(003) b, 880 912 890
(012) a 916 943 979 929
021) b, 924 956 949
(100) aj 960 960 935 960 960
(030) a 1101 1118 1122 1122
(004) a 1246 1264 1245 1245
(013) by 1258 1271 1252
(101) b, 1258 1275 1261
(022) aj 1289 1309 1299 1300
(031) by 1291 1313
(110) a 1330 1337 1337
(005) b, 1465 1595
(014) a 1609 1604 1604
(023) b, 1631 1611
(102) a 1641 1653 1654
(032) a 1647 1662

Analysis of Table4.2|suggests that the present ab initio PES for the C ' B, state
is applicable in the 0-1700 cm™' range above the zero-point vibrational energy.
This range covers vibrational energy levels involved in strong vibronic progressions,
thus is sufficient for comparisons to experimental room temperature electronic spec-
tra below the dissociation threshold (= 3000 cm ™) of the C ' B, state. To conclude,
the present PES is the most accurate ab initio potential energy surface for the C !B,
state in SO,, which has been fitted to a predefined functional form. A previous fit to
ab initio points performed below 5000 cm™! by Bludsky et al. [283] gave 55 cm™!
rmsd with respect to measurement.

Note that at room temperature (296 K) only the lowest vibrational state of

the electronic ground states is significantly populated. Population of the asymmet-
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ric stretching fundamental X 'A;(0,0,v3) (= 1362 cm™! ) is barely 0.1% at that
temperature. Therefore in practical calculations, the number of vibrational states
needed for the X 'A; electronic state is limited to the lowest few. The variational
methodology means that these lowest energy levels are calculated more accurately
than higher lying states. For this reason, if the PES is accurate, as the Ames-1 PES
is, satisfactory convergence can be easily achieved, even with a non-optimized basis

set.

With the common basis set used in nuclear motion calculations for both elec-
tronic states, the DVR3D calculated vibrational zero-point energies for the X 'A;
and C !B, states are ZPE, = 1538.19 cm~ ! and ZPE, = 776.45 cm ™! , respectively.
The former value is consistent with the 1535.63 cm™—! ZPE reported by Huang et
al. and the latter value is somewhat lower than 785.75 cm~! calculated by Ktos et
al. . The vertical excitation energy for the C !B, «— X A transition was taken from
the experiment [240]: T, = 42573 cm~!. The partition function at 296 K, used for
intensity calculations was taken from Huang ez al. [291] (Q(296) = 6336.789). The
temperature range for which calculated vibronic spectra are reliable is determined
by the accuracy of the ground state PES. Here, the Ames-1 PES, as very accurate,
provides an opportunity for accurate modelling of vibronic hot bands. Room tem-

perature spectra are certainly within the applicability range of the Ames-1 PES.

4.4.1 Vibronic spectra

Ab initio vibronic spectra were calculated using eq. (2.95) for two cases: the
Franck-Condon approximation (eq. (2.105)), and with the use of the transition

dipole moment surface (eq. (2.10I))). The resulting transition intensities are com-

pared in Figure
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Figure 4.4: Comparison of ab initio calculated transition intensities for the € !B,
X 'A;(v = 0) electronic transition (J' = 1 < J” = 0) between the Franck-Condon
and the transition dipole moment surface levels of theory. The upper panel repre-
sents the relative deviation in intensities in the 10~® — 1072* cm/molecule intensity
range. The lower panel displays transitions to 40 lowest J' = 1 energy levels of the
C B, state. Transitions to states with a; and b, symmetries are distinguished.

Figure [4.4] shows no significant difference in strong transition intensities when
the FC spectrum is compared to the TDMS spectrum. In general, for strong transi-
tions, which contribute to the overall shape of the absorption band, the difference in
transition intensity between the FC and TDMS approach is usually less than 10%,
typically 4-6 %. However, as displayed in the lower panel in Figure 4.4] allow-
ing for the dependence of the electronic transition dipole moment on nuclear coor-

dinates can noticeably increase certain transition intensities, which are nominally
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very weak in the FC approximation.

Transitions from the a; symmetry states in the electronic ground state to the
by states in the electronic excited state are forbidden by vibrational dipole selection
rules. However rotation-vibration interactions, especially c-axis Coriolis-type in-
teractions can mix states of different vibrational symmetries. The ro-vibrational se-

lection rules require only that the irreducible representations of ro-vibrational states

/

are identical: I',, =17,

where 'y, =1, @ [';oy. In the Cyy group, vibrational
and rotational selection rules for the X 'A; — C !B, electronic transition allow for
transitions (aj,e0)p, <— (ai1,ee)a, or (a1,0e)p, < (ai,00)4, in the notation where
kq,kp, - even is denoted as ee and k,, k;, - odd is denoted as oo. Ro-vibrational se-
lection rules, which apply when states are vibrationally forbidden, but are mixed by

Coriolis interactions give the following ro-vibrationally allowed transitions from a;

states: (bp,00)p, < (ay,ee)a, or (by,ee)p, < (a1,00)4,.

Indeed, such transitions forbidden by vibrational selection rules but allowed by
ro-vibrational selection rules have been observed in the C !B, < X 'A; ro-vibronic
spectrum [268]298]299]]. The lower panel in Figure 4.4] shows several transitions
to ”’b,” states. The rotation-vibration interaction feeds such transitions with inten-
sity, which is nonetheless usually of 1-3 orders of magnitude weaker than typical
vibrationally allowed transitions. A large number of ro-vibrationally allowed and
vibrationally forbidden transitions were found in the present line list, for example
transitions in the X '4(0,0,0) — C 'B5(0,1,1) and X 'A{(0,0,0) — C 'B,(0,0,3)
manifold. Intensity calculations with Coriolis-decoupled wavefunctions do not re-
veal any vibrationally forbidden transitions, thereby proving that the rotational-
vibrational coupling is responsible for softening of the selection rules for transi-
tions to b, states in the C !B, electronic state. The strongest transition to a b, state
X 1A1(0,0,0) — C 'B»(0,1,3), has comparable intensity to many moderately weak
vibrationally allowed transitions. In this particular case, the large intensity borrow-
ing can be rationalized by strong Coriolis interaction between the (0, 1,3) states of
by symmetry and the (0,0,4) states of a; symmetry, which are only separated by

12 cm~! and this leads to strong mixing. A comprehensive discussion of Coriolis
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interaction between ro-vibrational energy levels of the C !B, electronic state was
given by Park et al. [268]].

Comparison of the FC and TDMS spectrum with semi-empirical FC calcula-
tions of Yamanouchi et al. [270] is given in Figure4.5] The assumption of marginal
difference between the FC and TDMS spectra is further confirmed in the upper
panel in Figure 4.5] Line positions in the lower panel correspond to measured val-
ues. The agreement between the present study and semi-empirical calculations is
satisfying. As previously asserted, the contribution from the TDMS to the spectrum
is negligible in this spectral region. Thus for qualitative UV spectrum modelling
purposes, the Franck-Condon approximation is sufficient. For higher accuracy,
which is required for example by remote sensing experiments, the full transition

dipole moment surface may be necessary.
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Figure 4.5: Comparison of three calculated vibronic spectra: semi-empirical calcu-
lations from Yamanouchi et al. [270] in the lower panel; FC and TDMS ab initio
calculations from the present study in the upper panel. Line positions are given in
the 42500 — 44500 cm ™! range.

Figure [4.6] gives a comparison between experimental laser-induced fluores-
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cence spectrum by Yamanouchi et al. [270] (upper panel), semi-empirical Franck-
Condon vibronic spectra calculated by Xie et al. [282] (middle panel), and present
Franck-Condon and TDMS calculations (lowest panel). The overall agreement be-
tween the two theoretical studies in the middle and lowest panels is good, with
relative intensities following a similar pattern. Changes in intensity caused by the
breakdown of the Condon approximation are small in this spectral region. In con-
trast to emission, the initial wavefunction for room-temperature absorption is well
localized around the equilibrium geometry of the vibronic ground state, which sup-
presses transitions to states with largely distorted geometries (cf. Figure d.2). In
the 225 nm — 235 nm range line positions and intensities agree well between the
present theory and experiment. This agreement however becomes worse for shorter
wavelengths. Therefore, below 225 nm the present C !B, state PES is not accurate

enough even for qualitative studies.
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Figure 4.6: Comparison of calculated vibronic spectra with measurement by Ya-
manouchi et al. and semi-empirical calculations of Xie et al. [282]. Vibra-
tional assignments were given for 10 lowest calculated transitions. These transi-
tions can be considered as modelled reliably with the present PES and TDMS. The
experimental and theoretical spectra were reprinted from Xie et al. , Chem. Phys.
Lett. 329, 503-510 Copyright (2000), with permission from Elsevier.
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Based on the new PES and TDMS a room temperature (295 K) UV line list for
the X 'A; — C !B, electronic transition was calculated in the J = 0 — 40 range. The
partition function for the electronic ground state was taken from Huang ez al. [291]].
This line list is designed for the 225 nm — 235 nm wavelength range, where it
can be considered reliable. A qualitative comparison of the present line list with
low-resolution measurements by Wu et al. is given in Figure Dashed
lines correspond to experimental cross section (in cm?) measured at 295 K with 0.5
A resolution. Ab initio absorption cross sections are marked in red and green in
Figure and were obtained from integral line intensities by convolution with the
Gaussian profile function with full-width at half-maximum (FWHM) of 0.3 cm™!

and 8 cm™! respectively; no scaling of line intensities or line positions was made.
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Figure 4.7: Comparison of the ab initio and measured absorption cross sections.
The ab initio cross sections were calculated from the room temperature (295 K) ro-
vibronic line list for the X 'A; — C ' B, electronic transition in SO5 in the J = 0—40
range. Gaussian line shapes were used with FWHM of 0.3 cm™! (red thin stick
spectrum) and 8 cm™~! (green thick line spectrum). Measurements were made by
Wu et al. at 295 K. The experimental spectrum was reprinted from C.Y.R. Wu
et al. , Icarus 145, 289-296 Copyright (2001), with permission from Elsevier.
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The low-resolution theoretical cross section depicted by a thick green line in
Figure qualitatively reproduces the band centers measured by Wu et al. . Com-
parison of line intensities is however less straightforward due to the non-uniform
baseline in the measurements. Hot bands, assigned by Wu et al. [300] are also vis-
ible in the ab initio spectrum, as expected. Qualitatively, the calculated spectrum
reproduces the features of the measured spectrum, however for a more detailed in-
sight, the accuracy of the present model should be tested on a higher resolution

experimental data.

High-resolution measurements of the X A, — € !B, electronic band were
reported by Rufus et al. [278]] (at 295 K) and Blackie et al. [279] (at 198 K). Cross-
sections from Blackie et al. [279] are compared with cross-sections calculated at
198 K from the present ab initio line list in Figure 4.§] The FWHM of the ex-
perimental rotationally-resolved cross-sections was 0.3 cm~!. In calculations, the
Gaussian line shape profile with FWHM = 0.3 cm™—! was used and the partition
function at 198 K (3246.3) was calculated from ro-vibrational energy levels avail-
able from Underwood et al. [262]. The shape of the cross-section spectrum is nearly
insensitive to addition of transitions with J > 40, thus no higher J energy levels need
to be calculated for the present comparison. Nonetheless, it is technically possible
to obtain a line list with J > 100, with the present implementation of the DVR3DUV

code.

The uncertainty in the cross-sections measured by Blackie et al. was estimated
9-15% for the strongest bands ¢ € (1077 cm?, 10~'® cm?) and more than 20% for
bands weaker than 10~'8 cm?. Overall agreement between the unassigned measured
cross-sections in Figure 4.8/ and theoretical cross-sections is very good though. Vi-
bronic assignments are also given in Figure 4.8 These assignments agree with
experimental assignments of Danielache et al. [280]. Unfortunately, no ro-vibronic
assignments for the experimental spectrum are available, which makes a line by line
comparison difficult. A major reason for which the spectrum measured by Blackie
1

et al. cannot be presently assigned in the rotational resolution is the 10-20 cm™

uncertainty in ab initio line positions. Future studies should focus on obtaining
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Figure 4.8: Comparison of the ab initio and measured absorption cross-sections.
The ab initio cross-sections were calculated at 198 K from ro-vibronic line list for
the X 'A; — C B, electronic transition of SO; in the J = 0 — 40 range. Measure-
ments were made by Blackie et al. at 198 K. Vibrational assignments found
manually are indicated with dashed lines. All marked transitions are from the vi-
bronic ground state to vibrational states of C ' B,.

a higher quality, more global PES for the C 'B, state. Then, with the use of the
present procedure, a purely ab initio based ro-vibronic assignment of experimental

spectra could be become possible.
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4.4.2 Franck-Condon intensities for a large geometry displace-
ment

The wavefunction for the vibrational ground state in the electronic ground state
X 'A| of SO, is very compact, and most of its amplitude is localized near the C,,,
equilibrium geometry {7 = 1.431 A, 57 = 1.431 A, 6% = 119.32°, as displayed
in Figure {.9] For this reason, the vibrational wavefunction overlap between the
vibrational ground state of X 'A; and vibrational states localized in the second well
of the C !B, state, located near 6 = 165°, is likely to be very small. Indeed, Table
[.3|shows that calculated overlap integrals for transitions to the second well are 5-8
orders of magnitude smaller than the respective factors to the main well, where the

global minimum for the C ' B, state is located.
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18 6 bondlength [A]
14
e — | 1.2
—

41 40000
41 20000
0

150 angle [deg]

Figure 4.9: Potential energy surfaces for X 'A; electronic state (purple/grey) and
C B, electronic state (green/blue) of SO,. The other bond length is fixed at r, =
1.7A . Wavefunctions for the vibrational ground state of each well are added, with
arrows marking Franck-Condon vertical transitions from the electronic ground state.
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Table 4.3: Comparison of vibrational overlap integrals calculated between J = 0
wavefunctions of the vibronic ground state and vibrational states of the C !B, state.
Given in columns are respectively: ID of the vibrational state belonging to the elec-
tronic excited state, overlap integral calculated for the 1*" well located at 6 = 104°,
overlap integral calculated for the 2" well located at 6 = 165°.

State ID overlap integral (1" well) overlap integral (2" well)

1 8.48x 1073 2.92x10°10
2 1.41x1072 1.12x10710
3 1.73x1072 -1.41x107 1!
4 -2.28x1072 -2.14x107°
5 1.67x1074 -1.84x107°
6 1.71x1072 1.12x107°

It is thus justified to neglect the second well completely in the theoretical in-
tensity calculations. This conclusion is expected to be general, applicable to other

molecules and other electronic states.

4.5 Ro-vibronic line list for CaOCa

Another molecule studied in this thesis as a test system in the procedure for calcu-
lating Born-Oppenheimer ro-vibronic spectra of triatomic molecules is di-Calcium
oxide Ca;0O (CaOCa), or Calcium suboxide. This molecule is very challenging
to produce in the gas phase in the laboratory and so far there has been no pub-
lished high-resolution UV or visible spectrum for this system. A single theoretical
study was reported on infrared absorption spectra of calcium suboxide by Ostojic et
al. [301]. These authors also analysed the IR spectrum of the Sr,O molecule [256].
The hyper-metallic Ca;O molecule is an example of a class of exotic molecular
species, which suffer from lack of experimental characterisation, either due to their
toxicity or due to technical difficulties in synthesising and maintaining them. In
such instances ab initio calculations are a very good predecessor to experiment,
providing high-resolution ro-vibronic absorption line positions, giving ro-vibronic
assignments of absorption lines and transition intensities. This study on CaOCa
was initiated with a request from an experimental group [302] to provide pilot ro-
vibronic spectra for this molecule.

In this section we follow analogical procedure to the scheme outlined in the
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sections regarding SO,. We focus here on the electronic ground state 1'A’ of Ca,O
and the first excited singlet electronic state 1'A” (classification in the Cy molecu-
lar symmetry group). To produce ro-vibronic spectra for the transition between the
electronic ground state 1'A’ of CayO and the first singlet electronic excited state
1'A”, potential energy surfaces for these electronic states were generated. For this
purpose ab initio electronic energy points were taken from calculations by Fawzy
and Heaven [302]]. They used multireference configuration interaction (MRCISD)
method with state-averaged, full-valence complete active space self-consistent field
(SA-FV-CASSCF) wavefunctions. The active space consisted 12 orbitals occupied
with 10 valence electrons, where all the valence electrons were correlated. Con-
tributions of higher excitations and relativistic effects were taken into account us-
ing the Davidson correction and the Douglas-Kroll (DK) Hamiltonian, respectively.
The correlation-consistent polarized weighed core-valence quadruple-zeta basis set
(cc-pwCVQZ-DK) was used for all three atoms.

The PES for the 1'A’ state was least-squares fitted with 30 parameters to 1253

ab initio electronic energy points with the following functional form:

Vi 01,32,33) = Y, Cirayiyhys (4.2)
J.k,l

where y; = %(xl +x2), y2 = %(xl —x3) and y3 = 6,;, — 6. Here xy,x, are Morse
coordinates x; = 1 — e~ (n=rt’) Lo =1— e @(=7") The electronic energies for
the X 'A; electronic state of Ca,O were generated for 1253 geometries in bond—
length, bond—angle coordinates (ry,r;,0). Stretching coordinates were chosen in
the range: 1,7, € [1.85;2.21] A. Angles between the Ca — O bonds were sampled
from 95° to 180° with 2.5° increment. The uniformly weighted fit gave RMSR
= 1.8 cm~! with respect to all used ab initio points, and is applicable in the 0 —
5000 cm~! energy range. The equilibrium geometry of the Ca,O molecule in the
electronic ground state corresponds to Cp, symmetry with r1 = r =2.03 A and
0°? = 180°. The PES for the electronic ground state of Ca;O has a relatively simple,
nearly harmonic shape.

The PES fit for the electronic excited 1'A” state turned out to be more challeng-
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ing, because of a complicated shape of the PES. The fitted function was divided into
two regions: a low angle region (85 — 120°) and a high angle region (120 — 180 °).
At low angles the functional form of the PES is identical with that from eq. In
this angle range the least-squares fit to 420 ab initio electronic energy points with 40
parameters was straightforward and resulted in 5 cm~! RMSR. At higher angles, the
PES for the 1'A” state morphs into a non-C,,, double-minimum form, and reaches
a deep double-well structure when the bending angle goes towards molecule’s lin-
earity. This situation is depicted in Figured @.10H4.5] For this reason the functional

form for the fit had to be modified:

Vi (01,52,53) = Y, Citay| 555 + feusp (11,72, 0) (4.3)
ik

where y; = %(m +r), 2= %(m —r7) and y3 = cos 0,4 —cos 6. Here ry,r; are Ca—

2
cos“ 6 —a(d—0
(rla—r2)2+b2€ o

is used to properly shape the region near the C,, geometry (r; ~ r,), where a saddle

O bond lengths. The extra correction function fe,s, (71,72, 0)=

point connecting two the local minima is located. This saddle point has a very
sharp ridge, behaving nearly as a cusp. The standard functional form from eq.
was incapable of reproducing the ab initio energies in this region. The final
form of the correcting function f,s, was a result of intuition and try-and-error, but
eventually resulted in 29 cm™! RMSR of the fit in the 120 — 180 degrees angles
region. The a,b,c,d parameters in the cusp-correction function were optimized
using the least-square method together with other parameters of the fit (89 total).
The fit was non-uniformly weighted with weights of near-cusp points set to two-

times the values for other points. All points above 3000 cm™!

were weighted half
the weight of points below this energy. The functional form and fit coefficients
were chosen to secure the correct shape of the PES at C;, geometries. For a fixed
angle 6 = 6y, the PES V (r,r,6p) has a saddle point when r; = r;, and two non-
C,, minima in the r|—r; plane, which are symmetry connected, as shown in Figure
The global minimum for the first singlet electronic excited state is located at

linear geometry, with non-equal Ca—O bond lengths. This broken-symmetry can be

probably attributed to a vibronic interaction with a higher lying singlet electronic
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state.

Figure 4.10: 2D-slice at fixed & = 180° of the PES for the electronic excited 1'A”
state of CayO. ab initio points (in red) are overlaid on top of the fitted continuous

funcitonal form. A deep double-minimum structure is visible, which suggests non-
equal Ca—O bond lengths at linearity.
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Figure 4.11: 2D-slice at fixed 8 = 95° of the PES for the electronic excited 1!A”

state of CayO. ab initio points (in red) are overlaid on top of the fitted continuous
funcitonal form.
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o/ A

Figure 4.12: 2D-slice at fixed r; = 2.0 A of the PES for the electronic excited 1'A”
state of Cay0. ab initio points (in red) are overlaid on top of the fitted continuous
funcitonal form. A switching point between the low angle PES and the high ange
PES is visible at 120°.

DVR calculations were performed for both electronic states separately with
the PESs described above. For this purpose the Morse-like oscillator basis was
chosen and optimized using the method described in section 3.2 in chapter 3. The
DVR calculations used Radau coordinates in r;-bond embedding of the molecule-
fixed coordinate frame. The optimized parameters of the Morse-like basis read:
ro = 4.2ag, D, = 0.3E;, @ = 0.012E;,. With these parameters a satisfactory level
(<2 cm~! at the energy of 3000 cm~') of convergence of J = 0 energy levels for
the electronic excited state was achieved with 80 basis functions for the stretch-
ing motion (NPNT=80) and 80 basis functions for the bending motion (NALF=80).
The 3D DVR Hamiltonian was truncated at 1000 (MAX3D = 1000). The nuclear
masses for Calcium and oxygen were mc, = 40.078 Da and mp = 15.990 Da, re-
spectively. The fitted potential energy functions were given extra potential walls, to
prevent from non-physical (negative) values of the potential function for large val-
ues of r1,rp or small angles 6. The walls were placed at r;,;, = 1.75 A rpar = 2.45
A and 6,,;, = 90°. The height of the wall was 0.1E), and the energy levels were
tested for independence of the height of these walls. The calculated zero-point vi-

brational energies (ZPE) for the electronic ground state was 392.4 cm™! and for the



4.5. Ro-vibronic line list for CaOCa 235

electronic excited state was 1256.6 cm™~! . Rotlev calculations were performed with
the IBASS parameter equal to 100. Ro-vibrational energy levels and wavefuncitons
were calculated in the 0-10 J range for both electronic states using identical basis
set parameters. Transition intensity calculations were performed with the use of
the DIPOLE program in the Franck-Condon approximation. The vertical excitation
energy used for this purpose was taken from experiment [302]: 7, = 14535.0 cm ™!
. The transition intensities were calculated at 295 K and the partition function for
the electronic ground state was calculated set to a dummy value Q(295)=1, due to
lack of reliable source of data for this quantity. The spin-statistical factor was set
to 1 for even and odd states. As a result, a generic room temperature line list in the
0-10 J range was produced.

Table [4.4] summarizes on J = 0 DVR3D-calculated energy levels of the
electronic ground state and the first singlet electronic excited state of the CayO
molecule.

Table 4.4: Comparison of vibrational energy levels calculated with DVR3D for the

1'A” and 1'A” states of CaO. In the rightmost column vibrational assignments of
the energy levels are given.

vib. energy: 1TA’ vib. energy: 1TA’ assignment
132.81 11.54 v, (bending)
251.29 333.93 2v, / v (symmetric stretch)
362.20 652.72 3v, /2v;
467.06 766.54
527.85 863.06
567.52 939.58
635.29 1114.96
672.18 1228.09
682.96 1295.30
763.12 1448.24
785.06 1504.14
816.14 1557.88
877.94 1562.10
901.11 1715.48
938.22 1734.71
993.92 1766.01
1014.00 1894.65
1055.86 1912.34

In Figure[4.5]a cross-section spectrum is displayed, calculated from the present

line list at room temperature. The cross-sections were calculated via convolution of
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transition intensities with the Gaussian profile function with FWHM = 0.1 cm~! .
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Figure 4.13: Ro-vibronic cross-sections for the 1'A” < 1!A’ electronic transition
in Cay0. The cross-sections were obtained from room-temperature line list in the
0-10 J range calculated with the DVR3D program. The line shape function used in
production of the cross-section spectrum was Gaussian profile with FWHM = 0.1
cm~!.

Future measurements of the electronic spectrum of Ca;O can benefit from
comparisons with the present line list. The accuracy of line positions in the present
line list is dictated by the accuracy of the PESs and can be estimated in the 10-40
cm™! range, which suggests that further improvements to the PES fits are neces-
sary. However due to unusual geometry of the upper electronic state PES, this task
is currently difficult to complete and may require construction of a diabatic model

with two vibronically interacting electronic states included.



4.6. Summary 237

4.6 Summary

The theoretical scheme presented in this chapter is based on accurate calculations of
ro-vibrational energy levels and wavefunctions for isolated electronic states of SO,
and Ca,0 in the Born-Oppenheimer approximation, followed by ro-vibronic tran-
sition intensity calculations between two electronic states. The scheme presented
here give absolute integral intensities, thus is advantageous to traditional approaches
based on the Franck-Condon approximation, for which only relative intensities are
theoretically available. Utilization of rotation-vibration coupled wavefunctions ren-
ders calculated intensities as inherently more accurate than the standard vibrational
Franck-Condon calculations. Inclusion of the transition dipole moment surface al-
ternates intensities of the strongest bands by less than 10%, hence may be consid-
ered only in quantitative studies. The accuracy of calculated transition intensities
depends strongly on the quality of potential energy surfaces, especially for the elec-
tronic excited state, for which many vibrational states are required, and which is
normally more challenging to generate. This aspect is particularly important for at-
mospheric science. For example, in the case of SO, the high resolution modelling of
the strongest absorption region associated with the C 'B, «— X A electronic tran-
sition is still troublesome with the model presented here. However, this is solely be-
cause the location of the strongest absorption in this band near 50 000 cm ™! requires
calculation of highly excited ro-vibrational states of the C ' B, electronic state, and
for this reason an accurate and global PES for this state is needed. With high qual-
ity potential energy surfaces provided, the theoretical framework presented in this
work can be readily applied to other ro-vibronic bands of SO, and other molecules,

such as ozone.

An aspect of the ro-vibronic problem which is not addressed here is extending
beyond the single state approximation. As shown by Yurchenko and co-workers
for diatomic molecules [248} 303, 304], often a significant number of electronic
states contribute to the vibronic spectrum; this number is typically larger than three.
The computer program DUO due to Yurchenko ef al. [305] treats full ro-vibronic

calculations, allowing for interaction of an arbitrary number of electronic states
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in diatomic molecules. A triatomic analogue of DUO is the ultimate aim of this
project. For this reason in the next chapter, we are going to discuss the possibility
of extending the DVR3D methodology onto a fully coupled non-Born-Oppenheimer

ro-vibronic grounds.



Chapter 5

Ro-vibronic transitions beyond the

Born-Oppenheimer approximation

5.1 A spin-rotational-vibrational-electronic theory
for triatomic molecules. A perspective for ex-

tension of DVR3D.

With the DVR3D program [59,261], which is based on the theory presented in the
previous chapters it is possible to produce ro-vibrational line lists (line positions and
line intensities) within a single electronic state, or ro-vibronic line lists in the Born-
Oppenheimer approximation between different electronic states (no spin-orbit or
other vibronic couplings). In this section, we attempt to develop a theory, within the
framework of the Sutcliffe’s and Tennyson approach to nuclear motion [58,59,61),
86], which aims at creating a solution scheme to the fully-coupled (spin-rotational-
vibrational-electronic coupling) Schrodinger equation. This equation, when solved,
generate non-adiabatic spin-ro-vibronic energy levels and wavefunctions, which can

be further used in transition intensities calculations.

As already mentioned in the previous chapter, a number of programs for solv-
ing the ro-vibronic Schrédinger equation are available, such as RENNER [250-252]
by Odaka et al. , which is designed for linear Renner-type triatomic molecules, or

more general variational codes for solving the triatomic spin-ro-vibronic problem
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based on MORBID by Jensen et al. [253-256] which uses an approximate kinetic
energy operator for nuclei, RVIB3 [257-259]] by Carter, Handy et al. is designed
only for semi-rigid triatomic molecules with three or less interacting electronic
states. In the light of limitations of each of these computer codes, it seems natu-
ral to search for a general robust code, which does not carry any significant inherent
approximation. No such program has been yet developed, to the best of author’s
knowledge. Thus, it is reasonable to attempt to extend the existing DVR3D program
to satisfy this so far elusive goal. Computationally, a solution to a strongly coupled
system with many highly excited states is difficult to marry. Usually either a com-
puter code is based on essentially very accurate quantum-mechanical model (e.g.
RVIB3 or a code by Schwenke [49] or Alijah et al. [306]), but due to the bottleneck
in the variational methodology, which is diagonalising the large matrices required
for calculations of highly excited rotational states, has limited use, or an approxi-

mate model provides highly excited energy levels and wavefunctions [265-267].

The issue with the computing power needed in purely variational calcula-
tions can be partially overcome with the use of the discrete variable representation
(DVR) [8990,260]], which is presently well known for its computational efficiency.
In addition to that, the DVR3D suite by Tennyson et al. [59,261] uses an exact
kinetic energy (EKE) operator, and hence operates at a very high level of theory.
The DVR3D computer code has been used to generate a considerable number of
ro-vibrational line lists [37-39,/56.76.262], with wavefunctions and energy levels
calculated in several cases up to values of the rotational quantum number J > 100.
The accuracy of these wavefunctions and energy levels is largely determined by
the quality of the potential energy surface (PES) and the dipole moment surface
(DMS). The accuracy of transition intensities in our recent ro-vibrational line lists
generated with ab initio DMS has reached and arguably exceeded experimental ac-
curacy [28,37-39], and as a result has been used to replace experimental entries in

compilations of spectroscopic databases, such as the HITRAN2016 database [196].

For diatomics, the DUO computer code of Yurchenko and co-workers [248,

303-303] solves the fully coupled ro-vibronic SE using an EKE operator. A propo-
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sition for a triatomic analogue of DUO is the goal this chapter. This is done below
by extending the theory used by the current version of DVR3D to take into ac-
count rotational-vibrational-electronic couplings in the form of an exact quantum-
mechanical operator. Next, a tentative proposal is outlined for utilization of the

existing DVR3D architecture to implement the newly developed theory.

5.1.1 The Hamiltonian

The general space-fixed nuclear Hamiltonian given in eq. [2.3| can be extended to
take into account simultaneously electronic and nuclear degrees of freedom. With
such extension, following Sutcliffe [|61] the body-fixed molecular Hamiltonian can

be written as:

H(9,9,6) =K(¢,4,8)+Hu.(&;9) (5.1)

where the KEO is explicitly given as

N 1 PN o N
K((p’qv&)zi [ZMa,ﬁNOCNB +Z()¥a+2(ML>a)Na +

’ -

1 3N§—6 92 3Nuue—6 T
2 u,v=1 aq#aqv p=1 a‘ﬂt_
1 A R
+5 %MaﬁLaLﬁ—k;AaLa
a,

The quantities appearing in the above equation are defined as in eq. 2.8 2.9
and ¢ := (a, B, ) denotes the three Euler angles describing the rotational mo-
tion, ¢ stands for a general vector (q1,¢2,¢3) of vibrational coordinates, denoted in

previous chapters as (ry,72,0). & is a vector of 3N, electronic position coordinates.

The electronic Hamiltonian is a sum of the following terms:

Hy (&:9) = To(&) + Vie(E59) + Vee (&) + Vin(q) (5.3)

where 7,(£) denotes the kinetic energy operator for electrons, V,.(E:q) is the
electron-nuclei attraction potential energy, V.. () is the electron-electron repulsion

energy and V,,,(g) is the nucleus-nucleus repulsion potential energy. Here, it was
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decided to operate in the Hund’s case (b) [307]] (DUO uses Hund’s case (a) [303]),
with the rotational energy operator proportional to N — L, that is the difference be-
tween the ro-vibronic angular momentum and the electronic angular momentum. In
such non-relativistic scheme it is a custom to include extra terms, which account
for the ’spin-orbit’ and ’spin-rotation’ interactions. These operators are usually
parametrized empirically. Here all nuclear spin related interactions are neglected.

With these spin-relativistic add-ons the total Hamiltonian can be written as:

A(9,q.&) =Kv(q) +Ksrv (9,9) + Ksgve(9.9,8) + Her (E:9) + Hso(q,&) + Hsr(¢.q)

(5.4)
where the KEO was divided into the vibrational part:
R 1 3Nnuc—6 82 3Nnuc—6 a
Ky(q) =—5 Guy=—5—+ Ty=— (5.5)
2 u,gil dqudqy uz—:l Iqu
the spin-ro-vibrational part:
1
KSRV(‘P q) = ) [ZMOC ﬁNaNﬁ ‘f'Z)LocNa] (5.6)
o.p

and the spin-ro-vibronic part:

Ksrv (9,9) [Z My gLlolg+ Z (AaLle+2 (ML) ) Na] (5.7)
o,

The spin-orbit Hamiltonian can be written in a general form as:

Hs0(q,8) = Y A0 (a)Lu(8)Sy (5.8)
uv
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and the spin-rotation Hamiltonian is given by:
Hsr(q) = ) Vv (0) NSy (5.9)
uv

The spin-orbit coupling and spin-rotation coupling operators are often ap-
proximated by effective operators [307]: Hsg(q) ~ 7°R(q) Yu NSy, Hso(q) ~
ASO(q) Yu iuﬁﬂ.

In the above equations Mg denotes the generalised inverse moment of inertia
introduced and explained by Sutcliffe in [61]. Ay = —i (va 2 e Wua%>
and quantities v and W, o depend on vibrational coordinates only and are defined in
ref. [61]. Aq is related to Coriolis-couplings and cannot be eliminated by a choice of
embedding. The molecule-fixed embedding of the coordinate frame is not specified
at this point, but the form of A, depends on the choice of the embedding. In the
vibrational part of the kinetic energy operator Ky (g) the tensor G,y and vector T,
are functions of coordinates, independent of embedding, and are defined in ref. [61].
All internal-coordinate dependent quantities presented above can be calculated with
a little use of algebra when a choice of particular internal coordinates in made. Here
we only specify that the internal coordinates are orthogonal (u;; = 0, see eq. .

With the total Hamiltonian defined, the next step is to choose a spin-ro-vibronic

basis set.

5.1.2 Basis set

We shall follow the standard approach to the vibronic-coupling problem, where a
Born-Huang (BH) [182] type expansion is assumed for the ro-vibronic wavefunc-
tion. This approach however is not the only one [182,308], and perhaps is not
the best one. Unfortunately, no better representation of the ro-vibronic wavefunc-
tion has been given so far, to the best of author’s knowledge. The problem with
the BH representation is that whenever the space of electronic states is narrowed
to few states, non-removable singularities appear in the ro-vibronic Hamiltonian,
in regions of the configuration space where two adiabatic electronic states inter-

sect. These singularities are stacked on top of singularities related to space-fixed —
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molecule-fixed transformation. The latter case can be efficiently dealt with an ap-
propriate choice of the basis set and embedding of the molecule-fixed coordinates
frame [58]]. The former problem however is non-resolvable in the present frame-
work, where the electronic wavefunctions are eigenfunctions of a clamped-nuclei
electronic Hamiltonian [182,308]]. Approximate diabatisation schemes are possi-
ble, which eliminate singularities in the non-adiabatic coupling terms (NACT) and
diagonal Born-Oppenheimer correction (DBOC). Yet, an open challenge is to find
an alternative procedure for defining ro-vibronic matrix elements in terms of some
new, neither adiabatic nor diabatic representation.

The general anzatz for the spin-rovibronic wavefunction is assumed similar to
the Born-Huang expansion. By this we mean an expansion of the wavefunction as
a sum of products of an ’electronic wavefunction’ and a ’spin-ro-vibrational wave-

function’:

[¥(9,4.6)) = Y Wer.i(8:0) | Psri(4,9)) (5.10)

Effectively the expansion in eq. is truncated at few electronic states,
which couple substantially. The electronic part of the wavefunction is obtained
from electronic structure calculations, in a solution to the eigenproblem for the elec-
tronic Hamiltonian H,; (&;q) (W i(€:9)) = Vi(q)|Wer.i(€:q)). The electronic basis
forms a complete orthonormal set of functions with the standard scalar product:
(Ve (83| Wer.i(839)) = [ W3 #(8:0)Wer ,i(§3q)dE = by;. Although it should be
noted, that this is not the only possibility for the representation of the electronic
wavefunction, as we will discuss further on. For the primitive rotational basis a
complete set of symmetric-top Hamiltonian eigenvectors |N,k, M) is used. Here N
stands for the ro-vibronic angular momentum quantum number, k is the projection
of the total angular momentum J on the molecule-fixed z-axis and M is the projec-
tion of the total angular momentum J on the space-fixed z-axis. A set of commuting
observables for this eigenbasis is N2, N, /2, J;,58%. These operators correspond to

the following eigenvalue problemﬂ

Iwritten in atomic units
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N?|N,k,M) =N(N+1)|N,k,M

N|N,k,M) = k|N,k,M

)
)
PN k,M) = J(J +1)|N,k,M) (5.11)
JIN,k,M) = M;|N,k,M)
)

2N k,M) = S(S+1)|N,k,M

This basis can be further symmetry-adapted with the use of the parity transformation

E*:

N, K. M, p) = Nk, M)+ (=DNPIN, —k M) |, K =[k| >0

7 (5.12)

IN,K,M,p)=|N,0.M), K=0

This rotational basis is then coupled and symmetry adapted with a spin basis [60]:

JKS,p e 1S4y ST N § J
spmrot Z Z Z + X
N=|J—S|M=—N My=—S M M; —M;;

X|S7MS>’N7K7M7P>
(5.13)

where |S, M) is the spin standard basis: $2|S, M) = S(S +1)|S,M;),S.|S, M) =
M;|S, My) and (S', M|S, M) = 3558y v, The total spin quantum number S is as-
sociated with a given isolated electronic state. The energy of the molecule in free
space is independent of any space-fixed defined quantum number, thatis: M, M;, M.
Finally, having defined the electronic and spin-rotational basis, we are ready to write

the full basis set adopted to represent the molecular Hamiltonian in eq. [5.4}
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J+S N S N vib.states el .states N S J
LR W M I oD Vio vl s Sl e x
S N=|J—S|M=-NM;=—SK=p mn,j i M My —M;

XCZ}\I;,’gmmJ“) |S7M€>‘N,K,M,p> |m(l)>‘n(’)> |JK(1)>
(5.14)

where |i) is a shorthand notation for an i-th eigenfunction of the electronic Hamilto-
nian H,; (&;q), |S, M;) is the standard spin basis function defined above, |N,K, M, p)
is the parity-adapted symmetric-top Hamiltonian eigenvector, [m()), [n()) are vi-
brational basis functions for the r| and r; stretching, respectively and |jK (i)) s a
basis function for the bending motion (8 coordinate). Note that the vibrational ba-
sis in general depends on the electronic state i as indicated with the superscript (i).
Summation over the S quantum number accounts for mixing of electronic states
with different spin multiplicity through spin-orbit coupling or spin-rotation cou-
pling. Additionally the bending vibrational basis state is assumed to depend on K,
which as discussed in chapter 2, brings the benefit of eliminating spurious singulari-
ties in the Hamiltonian, which result from the vanishing Jacobian of the space-fixed
to molecule-fixed transformation. Such regularisation of the Hamiltonian is possi-
ble when an associated Legendre polynomial basis is used |jK) = PJ(K) (cos ). The
superscript in the basis set notation is reserved for good quantum numbers which
in the present case are J and p, while 7 enumerates the final spin-rovibronic energy

states.

Because in this work we are using the complete rotational basis set spanned by
eigenvectors of the symmetric-top Hamiltonian: {|N,k, M) }r—_n N+1,...N—1,N> the
total Hamiltonian given in eq. [5.4] can be represented in the spectral representation
of the symmetric-top Hamiltonian. Such a trick allows to integrate out rotational
degrees of freedom of the molecule in an exact, formal way. The matrix of the total
Hamiltonian in this basis can be evaluated analytically. Similarly, it is feasible to
formally integrate out over all electronic and spin degrees of freedom to yield an

effective vibrational Hamiltonian in the following form:
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H(q) = Rv(q) + Ksrv(q) + Ksrve(q) + Hei () + Hso(q) + Hsr(q) (5.15)

where

2Ry (q) = Sxr B [Wev (@) + G+ %i’l} (5.16)

2Ksrv (q) = Sr Sy [3” (2b (N(N+1) —K?) — Kby + kAo) + [\{)’i: +

1 .
Sk 1805 [5,-,,. (b41(2K+1)+ A1) +A%] +

1 o
+8k-18¢55Crg [&/i (b12K—1)+A)+ AT+ (5.17)
1
+5 Skk+20y501ib12Cix Crrg 1+

1 -

2KsrvE(q) = Sk Bys [ZMaﬁLZZB +Z/laLgf — K@ |(ML).|i)+ 6" +
of o

(5.18)
+8x k1 Crg (| (ML) 1 i) + Sgre—1 Cg (i | (ML) i)
H,1.(q) = 8¢30kx 61:Viri(q) (5.19)

A 1 o - _ o - o -
Hso(q) = A%°(q) [5 [6s’s+15K’KC;_MSLl+l + 8y5-10kk Copg L | + 6s’56K’KLlZl:|

(5.20)
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N 1 -
Hsr(q) =7"(q) {5 [5s's+15K'K+1CS+MSC1¢K + 5s’s715K’K71CSMSCNK] + 5s's5K/KK]

(5.21)

where Cyp = (N(N+1) FK(K + 1))%. Here, for clarity of presentation the inte-
gration was performed with the use of the primitive spin-rotational-electronic basis:
li)|s,Ms)|N,K,M). Symmetry adaptation, as a linear unitary operation is rather
straightforward and can be applied at the implementation stage.

All operators are labelled by the quantum numbers, which define the spin-
electronic-rotational basis: J,K,i,S, p. We omit the space-fixed defined quantum
numbers as irrelevant to the dynamics in free space. Each operator written above
is defined for a given set of good quantum numbers J and p, which are assumed
implicit and not denoted for the clarity of presentation. Thus, there are three sets of
indices, which define the Hamiltonian hyper-matrix: K'K, i'i and §’S. The quantities

appearing in the above equations for the effective operators are as follows:

l 3]Vrluc4_6

N
wv=
,- 9° ,- d
‘llli/ <l/| aq aqv ’l>’ a;Ll - <l/‘a_|l>
, 1 3Npuc.—6 ( " 8 g, a
i B G ol —|—OC”—>
2 #;1 BN Y dqy
. 3Npuc—6 .
Al = —2j Wuyay,'  v=x,y,2
u=1 (5.22)
Ai/z:/"\gi7 l:tl:/'\\;/l:[:l/’\\;:l
fiy = (| ad gl
Ly = (7|Lali)
. 3Npuc—6 R a
o' =i Y (W
u=1 qu
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and all = sub-scripted operators appearing in eqs. [5.16|—[5.21] are defined as A4 =
AxFiAy. There are essentially two types of operators, which act on the vibrational
basis: functions of vibrational coordinates and differential operators. In the above
Hamiltonian there are two types of differential operators enclosed in 7' and Ag.
The former one is associated with derivative couplings of different electronic states
(NACT) and the latter is associated with the Coriolis-coupling of ro-vibrational

states.

5.1.3 Input functions

To summarize, the fully coupled spin-ro-vibronic procedure (working name:
DVR3D-UV) requires the following input functions for solving the stationary

Schrodinger equation:

1. Vi(q) - potential energy surfaces (PES) for each adiabatic electronic state of

interest.

2. (xﬂ"(q) - non-adiabatic coupling matrix elements (NACT) between electronic

states i and i’ and for vibrational coordinate U.

3. [;’v (q) - diagonal Born-Oppenheimer correction (DBOC) terms and pseudo-

potential off-diagonal non-adiabatic terms.

4. AS9(q) - spin-orbit coupling surface(s). Note that in general the spin-orbit
coupling operator is proportional to a tensor quantity Af,l.o(q) which mixes
different spin states.

5. Lﬁ;"(q),Liliﬁ (q) - L-coupling and L2-coupling surfaces, respectively.

o

6. 0'i(g) - L-vibronic coupling surfaces.

7. ¥*R(q) -spin-rotation coupling surface(s). Note that in general the spin-
rotation coupling operator is proportional to a tensor quantity }fflR (g) which

mixes different spin states.
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5.1.4 Solution strategy

The solution strategy for the spin-ro-vibronic Schrodinger equation with the effec-
tive Hamiltonian from eq. [5.15] consists of a multi-step diagonalisation-truncation
procedure. The idea of two-step diagonalisation-truncation originates from Ten-
nyson and Sutcliffe [67,[86./87]] has been proven very efficient, especially in compu-
tation of high-J states. In order to maintain this high efficiency and feasibility for

highly excited rotational states we shall follow here a similar procedure.

Figure depicts a suggestion for the implementation scheme, which can be
followed in the future computer implementation of DVR3D-UV. In the first step,
we focus on the electronic index of the Hamiltonian, more specifically on its diago-
nal blocks (marked in purple in the uppermost matrix in Figure[5.I). Each of these
blocks is indexed by the K, K’ approximate quantum numbers. For clarity of presen-
tation, the uppermost matrix in Figure corresponds to a two-dimensional elec-
tronic states space. For each electronic diagonal block an appropriate ro-vibrational
problem needs to be solved. This ro-vibrational problem is however different from
the problem solved in the original ro-vibrational version of DVR3D. Now, some
new operators are included into the Hamiltonian, which requires calculation of some
additional matrix elements. These matrix elements arise due to vibronic coupling,
which is diagonal in the electronic index: the DBOC terms and any diagonal con-
tributions from the operators listed in the previous paragraph. Fortunately, these
modified ro-vibrational problems can be separated into the old ro-vibratinal prob-
lem solved by the original DVR3D plus additional matrix elements, which can be

calculated using quadrature schemes already implemented in DVR3D.

There are more than one possibilities for order in which the total Hamiltonian
is diagonalised. Below given are propositions for sequential diagonalisation of the
total Hamiltonian and comparison of their approximate computational cost, so the

best option can be chosen.
Scenario 1: a) for each diagonal block of the total Hamiltonian (in the elec-
tronic index) diagonalise the Coriolis-decoupled problem, as in DVR3DRIJZ, but

with additional matrix elements, which result from vibronic couplings. Form a com-
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posite basis from combined eigenbases of the just diagonalised electronic blocks;

b) diagonalise the full Coriolis-coupled problem in this composite basis.

Scenario 2: a) diagonalise separately Coriolis-decoupled problems for each
block of the full Hamiltonian indexed by electronic quantum numbers; b) for each
of these blocks diagonalise the full Coriolis-coupled problem using a contracted
basis from step a); c¢) diagonalise the full Hamiltonian, which consists of already

pre-diagonalised blocks.

We are going to assume the computational complexity for diagonalisation
as approximately proportional to the cube of the size of the diagonalised matrix
4 (N3 ), denoted for simplicity as N 3) [309]. The vibrational basis for each sce-
nario is assumed of the same size N,, so that for a given J and p the size of a single
electronic block matrix is N; = N, x (/ — p+1). Index i labels electronic states.
Solutions the the Coriolis-decoupled problem form a basis, which can be truncated
before utilizing in the next stage. Let the truncation parameter be 0 < y < 1, so that
the Coriolis-coupled matrix for the i-th electronic block to be diagonalised is of size

Y x N;. The computational time for scenarios 1-3 can be estimated as follows:

Scenario 1). In step a) we diagonalise separately the Coriolis-decoupled prob-
lem inside each of N,; independent diagonal electronic blocks of the full Hamilto-
nian, which gives the cost of N,; x Ni3. Step b), which involves diagonalisation in
the full electronic-ro-vibrational Hilbert space generates cost: (Z?fl yNi> ’ where
N; denotes ro-vibrational basis which in general could be different size for differ-
ent electronic states. In this fashion the total computational cost in scenario 1 is
T = N, X Ni3 + (Zf.\f] }/Ni) ’ =N, (1 +N621y3) N3, where in the last equality iden-
tical basis size for all electronic states was assumed (N; = N).

Scenario 2). In step a) we diagonalise separately the Coriolis-decoupled prob-
lem inside each of N,;(N,; + 1)/2 independent diagonal electronic blocks of the full
Hamiltonian, which gives the cost of Ny (N +1)/2 x Nl-3. In step b) we solve the
Coriolis-coupled problem for each electronic block separately which gives the cost:
Noy(Ney +1)/2 x }/3Ni3; assuming that identical ro-vibrational basis size is chosen

for each block. Finally in step c) the full electronic-ro-vibrational Hamiltonian ma-
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trix is diagonalised. This matrix consists of electronic blocks which are diagonal in
K. Diagonalisation of the final Hamiltonian costs N31y3N3. The overall cost then
reads: 72 = N, (%(Nel +1D)(1+7) +N3173) x N3.

Comparison of the computational costs for both scenarios considered indicates
that scenario 1 has the lowest computational requirements: 7® > 7. For this

reason the scheme from scenario 1 is recommended for implementation.

With the choice of scenario 1, the (vibronically modified) ro-vibrational prob-
lem for each adiabatic electronic state is solved in a two-step scheme. In the first
step, K is considered a good quantum number and for each K value a separate
vibrational problem is solved, by diagonalising an appropriate Hamiltonian. This
situation corresponds to neglecting the off-diagonal terms in K in the big middle ma-
trix in Figure and diagonalising each orange Hamiltonian block independently.
The resulting Coriolis-decoupled eigenfunctions contain already much information
about the nuclear dynamics, thus serve as an excellent basis for the second step, in
which terms off-diagonal in K are included. The situation corresponds to diagonal-
ising the full big middle matrix in Figure that is including the green and purple

blocks of the Hamiltonian.

The variational coefficients of the wavefunction calculated in the first stage are

given as

vi,i,S,K g, p) = Y DGn 2 @) (D) jk p) (5.23)

mﬁn’j
j7m7n

where vy is an index enumerating solutions to the Coriolis-decoupled problem. §
indexes the total spin of a given electronic state i. The number of solutions v, =
Y x N passed to the next stage is essential for the total computational cost. In step
2, for each diagonal electronic block separately, the Coriolis-coupled problem is

solved, meaning that the wavefunction after the second stage can be written as:

J YXN

va,isS,J,p) = X Y PO v, 0,8, K, p) (5.24)
KZ[JV]Zl

From the eigenbases generated by diagonalisation of each electronic diagonal block
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Figure 5.1: A scheme for the representation of the total Hamiltonian on the
electronic-rotational manifold. See text for further details.

separately a composite basis is formed:

V3,80 D) vyt oy = V200850, Pyt yeNsiet Ny, (5.25)

meaning that v3 = (v,7) is now a combined index enumerating elements of the

Hamiltonian.

In step 3, a routine called ’vibron’ receives the composite basis from step 2.
Step two has to be performed for every diagonal block in the electronic coordinate.
Depending on the system, the off-diagonal blocks in the electronic Hamiltonian
could be treated as some kind of not-too-large perturbation. For this reason, efficient
diagonalisation schemes for sparse matrices with small off-diagonal elements could

be utilized here.
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_ YXN XNy .
S piy =Y, P

v3=1

v3,8,J,p) (5.26)

In the last step, if needed, mixing between different spin states is considered.
Such mixing can originate from the spin-rotation coupling terms or off-diagonal
terms in the spin-orbit coupling operator. The structure of matrices at this stage
should be simple, due to the AS = £1 selection rule dictated by the spin-rotation
and spin-orbit interactions. Direct diagonalisation of this matrix leads to the final
spin-ro-vibronic energy levels and wavefunctions

thin
o,y =Y Y Wy p ). (5.27)
S=1 j ’

The approach to solution of the nuclear motion problem based on the Born-
Huang-type expansion of the wavefunction with electronic basis functions chosen
as the eigenbasis of the electronic Hamiltonian inherently fails in the vicinity of
conical intersections between different adiabatic electronic states. When two elec-
tronic states become degenerate, it is straightforward to show, that non-adiabatic
coupling matrix elements diverge, producing infinite quantities [310]. Even though
in the standard Born-Oppenheimer picture the nuclear wavfunction must have a
node at the point of the CI, and in this manner if one assumes that the molecule is
not allowed in some way to occupy this particular point in the configuration space
(which is by the way a rather ridiculous artifact) then the values of NACTs are very
sensitive to small inaccuracies in the electronic wavefunction. This situation can be
viewed as some kind of a resonance interaction between two adiabatic electronic

states.

From numerical point of view, solving the nuclear motion problem in the adi-
abatic representation near the CI is a suicidal task. For this reason a number of
techniques have been developed, in which the KEO is diagonalised in the electronic
coordinate, all under a common label of ’diabatisation’ schemes. In the simple
space of two interacting electronic states such diabatisation can be performed ex-

actly. However, as shown by Mead and Truhlar [311], solutions to differential equa-
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tions defining the diabatic representation for more than two interacting electronic
states is ambiguous and cannot be found in the exact way. Several approximate
diabatisation schemes have been therefore developed over the years. In the dia-
batic representation singularities related to NACTs vanish making the requirement
of strongly vanishing nuclear wavefunciton at the CI no longer necessary. This
clearly indicates that the singularities in the Hamiltonian at the point of CI in the
adiabatic representation are artifacts of the method and have little to do with physi-
cal reality, especially because the adiabatic and diabatic representation are formally
connected by an unitary transformation, which preserves the scalar product. This

cognitive dissonance has been a subject to numerous papers [312-314].

Another problem with the existence of Cls is the phase of the electronic wave-
function. Electronic structure programs generally provide the electronic wavefuc-
ntion with an arbitrary phase, which depends on the instantaneous configuration
of nuclei. Whenever a CI is present and the ro-vibrational wavepacket can en-
circle this CI, the adiabatic electronic wavefunction becomes double valued, i.e.
gains a geometric phase when encircling the CI [315H318]]. In order to account for
this double-valueless of the electronic wavefunciton, the nuclear wavefunction also
needs to be double valued. Alternatively one may think of transforming the elec-
tronic and nuclear wavefunctions so that they are single valued. In such case the
nuclear motion Hamiltonian needs to be also transformed with a similarity transfor-
mation, and this in general affect the nuclear dynamics [[319,320]. In order to find

this transformation, again a diabatisation scheme needs to be employed.

Clearly, from this perspective the geometric phase (or Berry phase) is an arti-
fact of the Born-Oppenheimer approximation; but without inclusion of this phase,
under some circumstances the dynamics can be simply wrongly modelled [321].
The geometric phase effect then can be regarded at a similar level as the Jahn-Teller
effect or the Renner-Teller effect [60], all of which are a consequence of the Born-
Huang expansion, the parametric dependence of the electronic wavefunction on the
nuclear coordinates and the spectral representation of the electronic Hamiltonian for

the electronic wavefunctions. The ’effect’ of distortion of the high-symmetry geom-
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etry of the molecule due to ’vibronic interaction’ between PESs in the Jahn-Teller
effect occurs only because we divide the solution scheme into the ’clamped-nuclei’
stage (Born-Oppenheimer) and ’correction’ (vibronic interactions). The problems
mentioned above in the context of the DVR3D-UV methodology should be a subject

of future studies.



Chapter 6

Conclusions

This thesis addresses a number of problems in modern molecular spectroscopy.
From the nuclear motion theory point of view, the main focus was on quantum-
mechanical description of the rotational-vibrational and rotational-vibrational-
electronic motion of triatomic molecules. In chapter 3, rotational-vibrational line
lists for 13 isotopologues of carbon dioxide were calculated, together with a theo-
retical analysis of reliability of computed transition intensities. Completeness and
accuracy of these line lists were evaluated against a range of experimental and the-
oretical studies, providing a comprehensive benchmark, which indicated that the
accuracy of calculated transition intensities constitutes a new state-of-the-art for
CO,. For this reason 12 line lists for stable isotopologues of carbon dioxide were
included as a part of the HITRAN 2016 spectroscopic database. This fulfilled the
working goal of the CO, project. The line lists are available for use on the website
of the ExoMol project (www.exomol.com), as well as in the newest edition of HI-
TRAN [196]. Transition intensities calculated for two important absorption bands
(near 1.6 um and 2.06 um) of the main isotopologue of CO, have been shown to
meet the sub-percent accuracy requirements for remote sensing and can be used
in retrieval models for concentration measurements of this greenhouse gas in the

Earth’s atmosphere, e.g. in NASA’s OCO-2 mission.

A theory of Coriolis-type and Fermi-type interactions between ro-vibrational
energy levels was presented and later utilized as a background for a method for esti-

mating sensitivity of transition intensities to minor inaccuracies in the wavefunction
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(hence in the PES). Application of this method to 13 isotopologues of CO; required
computation of 54 room-temperature infrared line lists. As a result, each transi-
tion intensity was assigned a reliability factor, which has also been found to be a
simple descriptor for detecting resonance interactions between energy levels, and a
good measure quantifying the strength of such interactions. Information about the
strength of interactions between ro-vibrational energy levels was elucidated only by
analysing the sensitivity of transition intensities to imperfections in the PES. This

technique is believed to be applicable to other molecules as well.

Rotational-vibrational-electronic line lists in the Born-Oppenheimer approx-
imation were calculated for the SO, molecule in the UV absorption region and
for the CaOCa molecule in the visible region. For this purpose appropriate ab
initio PESs and a TDMS were generated. These were the first reported ab initio
ro-vibronic line lists for triatomic molecules, generated with an exact kinetic en-
ergy operator. The influence of the nuclear coordinate dependence of the electronic
transition dipole moment was discussed with the conclusion, that for low energy ex-
citations intensity difference due to this dependence is rather weak, usually below
10%. By this observation, the Franck-Condon approximation for transition inten-
sities gained a rigorously founded justification. The DVR3D code for electronic
transitions thus awaits further applications to other triatomic molecules. The only
essential requirement for this purpose is availability of PESs for electronic states of

interest.

It appears essential to derive a theoretical procedure implemented in a com-
puter code, which is capable of accurately solving the rotational-vibrational-
electronic Schrodinger equation beyond the Born-Oppenheimer approximation.
Such scheme would be a natural continuation to the Born-Oppenheimer DVR3D
code used for calculation of ro-vibronic line lists for SO, and CaOCa. Chapter 5
discussed one possible approach to this problem by derivation of the exact non-
relativistic rotational-vibrational-electronic Hamiltonian for a triatomic molecule.
Matrix elements of this Hamiltonian in a chosen variational basis were evaluated

and a prospective implementation scheme was outlined.
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Going beyond the present 0—8000 cm ™! spectral applicability region for the
UCL line lists is a future challenge. An update to the Ames-1 PES (named Ames-
2) published [322] just before submission of this thesis is believed to be applica-
ble at least up to 25 000 cm~ ! (upper energy level), but the present ab initio UCL
DMS must be improved. Such improvement would require calculation of additional
dipole moment points, which correspond to geometries located at higher electronic
energies. Future studies concerning CO, should be thus aimed at construction of a
global DMS for the electronic ground state of the CO, molecule. This would allow
for computation of high accuracy high-temperature CO; line lists reaching visible
and possibly UV absorption region.

Implementation of non-adiabatic effects into DVR3D is another important ob-
jective for future research. Almost all triatomic molecules have their electronic
excited states significantly affected by vibronic interactions, thus for genuine mod-
elling of rotational-vibrational-electronic spectra of triatomic molecules, a high-
quality ro-vibronic model is an absolute necessity. A first step to circumvent this
problem was presented in Chapter 5, but further work is obviously needed. Finally,
the large amount of data generated for CO,, SO, and Ca,O is expected to be fur-
ther utilized, beside remote sensing procedures, in modelling of radiative cooling
of molecules in atmospheres, ro-vibrational relaxation models, or monitoring of

industrial emissions (14CO,) and volcanic hazes (SO»).
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