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Abstract

The Edge Illumination (EI) method is a phase contrast imaging tech-

nique suitable for use with conventional X-ray sources, which has

demonstrated its great potential for translation into real-world envi-

ronments. The increase in image contrast provided by it, in particular

for low-absorbing materials, along with its ability to be operated as a

computed tomography (CT) modality, make it an especially advanta-

geous technique for biomedical applications.

The work presented in this thesis aimed to develop new image ac-

quisition and processing strategies to further advance the current ca-

pabilities of EI CT, such that it could be used in a robust way for

a wide range of biomedical applications. This was achieved by the

development of two retrieval algorithms, which are required for the

extraction of quantitative information of various sample properties.

The first algorithm targets applications which involve high-resolution,

multi-modal lab-based CT scans. It has been shown that, during these

long scans, the variation in system parameters across the field-of-view

and over time can lead to significant image artefacts in reconstructed

CT slices. The proposed algorithm is capable of correcting for both

types of variations, leading to the quantitative retrieval of sample

properties from long CT scans in non-ideal environments.
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The second algorithm was aimed at applications which require fast CT

scans, possibly at the expense of spatial resolution and quantitative

information. A previously developed algorithm enabled a substan-

tial reduction in scan times for homogeneous samples, by reducing

the number of required images per angular view. The new algorithm

presented here has extended the previous one to non-homogeneous

samples, therefore expanding the range of objects which could benefit

from a reduction in scan times through use of this approach.

In addition, perinatal post-mortem imaging has been identified as

a new biomedical application which could benefit from EI CT in

the future. Promising results are reported from a proof-of-principle

scan carried out using a gold standard X-ray phase contrast imaging

method at a synchrotron.
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Impact Statement

The developments presented in this thesis have led to the optimization of the

Edge Illumination computed tomography (CT) imaging method. Using a simple

experimental setup, the Edge Illumination method is capable of detecting the

refraction of X-rays, in addition to their absorption, thus leading to increased

image contrast when compared to conventional X-ray imaging.

In this thesis, through collaboration with radiologists from Great Ormond Street

Hospital, perinatal post-mortem imaging has been identified as a new application

which could benefit from the use of the Edge Illumination method. Furthermore,

by developing two new algorithms, the method has been optimized for the per-

formance of both fast CT scans of samples made of more than one material, and

quantitative, high-resolution scans acquired in non-ideal environments. As such,

this research provides a significant contribution to making Edge Illumination a

robust technique which can be used in different imaging environments, and which

has the flexibility to be adjusted for optimal use depending on the application.

Therefore, this work forms an integral part of the transformation of Edge Illumi-

nation CT into a widely used imaging tool. For example, the “fast” algorithm

working with non-homogeneous samples can open the way to in-vivo pre-clinical

imaging, while the quantitative, high-resolution algorithm could be suitable for

use in complex cases in e.g. virtual histology.

In addition to the direct impact on the optimization of the Edge Illumination

method, this work could be potentially used by other research groups to achieve

similar results using different X-ray phase contrast methods. Should these devel-

opments contribute to the construction of a commercial imaging system capable
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of providing increased image contrast in addition to the extraction of quantita-

tive sample information, this could have significant impact on a range of research

fields. While the work presented here focused on applications in the biomedical

field, this technology could benefit other fields, such as, for example, materials

science. Examples of potential outcomes, biomedical and not, include the de-

velopment of new therapies by monitoring the effect of a given treatment in a

small-animal model, the design and characterization of scaffolds used for tissue

engineering purposes, and the quantitative evaluation and analysis of materials

of interest.
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Introduction

X-rays have been used for imaging since they were first discovered by Wilhelm

Roentgen in 1895 [5]. Early experiments of the then unknown radiation, demon-

strated that X-rays could pass through most opaque objects, yet denser materials

such as bone and metals seemed to stop them. The potential of using this char-

acteristic feature for the purpose of imaging was immediately recognized, and a

multitude of both medical and industrial applications quickly developed. Soon

after early experiments, reports of symptoms such as hair loss and burns were

filed, yet the general assumption was that exposure to this radiation, which could

not be seen or felt, posed no risk.

Decades of research have followed, and it is now known that X-rays are a form

electromagnetic radiation, with wavelengths in the range of 0.1-100 Å and ener-

gies around 0.1-100 keV. These short wavelengths, which are comparable to the

size of an atom, enable X-rays to pass through matter, unless an interaction on

the atomic level occurs, in which case X-rays can be absorbed or scattered. It

is these interactions which form the basis of X-ray imaging, as the contrast in

a conventional X-ray image is attenuation-based, i.e. it is the difference in the

amount of X-ray attenuation by different materials which enables the visualiza-

tion of a detail against its background. However, the mechanism by which X-rays
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are attenuated involves the transfer of energy between an X-ray and an electron,

which can, as a consequence, be freed from the atom. X-radiation is therefore a

form of ionizing radiation, capable of harming and destroying living cells.

While X-ray production, detection and protection have been all greatly improved

over the last century, the underlying principles of X-ray imaging remained the

same: an X-ray beam produced by a source is directed at the object of interest.

X-rays which pass through the object are then measured by an X-ray detector,

placed behind the object. The intensity of the detected X-rays over the field-of-

view (FOV) then forms the image.

The technique’s relatively simple and inexpensive setup has resulted in its wide-

spread global use, with a variety of applications in both medicine and industry.

Notwithstanding the technique’s commercial success, for many decades it suffered

from two main drawbacks. The first, the problem of overlapping structures in a

planar image, was solved in 1971 by the development of the first computed to-

mography (CT) scanner, marking a significant advancement in the field of X-ray

imaging. By acquiring multiple images over an angular range and using dedicated

algorithms, the entire volume of an object could be reconstructed. The second

limitation however, is inherent to the contrast mechanism employed, causing the

technique to suffer from poor visualization of low-attenuating materials, or poor

differentiation between ones with similar attenuation properties. In particular,

this poses a problem for many medical applications of X-ray imaging, where it

is necessary to visualize different soft tissues. In certain applications, soft tissue

contrast could be improved by the use of radio-opaque contrast agents. However,

these can cause adverse reactions and, since they increase X-ray absorption, their

use also inevitably leads to the undesired outcome of an increased dose.
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X-ray phase contrast imaging (XPCi) techniques, on the other hand, have the

potential to overcome this limitation since as the name suggests, the main mech-

anism which these rely on to generate image contrast is different to X-ray atten-

uation. Instead, XPCi techniques are sensitive to the phase shifts that an X-ray

beam experiences as it passes through matter [6]. These phase effects manifest as

interference patterns or as X-ray refraction, and are often considerably stronger

than the associated attenuation effects, thereby leading to increased image con-

trast. Although the first XPCi technique was developed in the 1960’s, it was only

in the 1990’s that extensive research in XPCi began, and different techniques

emerged [7]. So far, these techniques have repeatedly demonstrated their capa-

bility to significantly improve image quality in comparison to attenuation-based

images, however, specialized setups are required. These specialized setups are

currently the main limitation of XPCi, preventing its widespread use in clinics

and industrial environments. Therefore, while most techniques require the use

of a synchrotron facility, there is a growing interest in developing XPCi methods

compatible with laboratory X-ray sources [8]. In particular, such developments

could have a significant impact on the biomedical field, by enabling the visualiza-

tion of soft tissue details, previously unseen by conventional X-ray imaging, in a

clinical setting.

The Edge Illumination (EI) method is currently one of the most promising XPCi

techniques for translation to clinical and industrial environments. Although it

was first developed at a synchrotron facility [9], the method is achromatic [10]

and does not require coherent radiation [11], making its implementation with

commercially available X-ray equipment possible. Since it was first invented in

the late 1990’s, different approaches to image acquisition and processing schemes
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were developed, such that EI could be used for a vast range of applications. In-

deed, experiments were performed in diverse fields including security scanning

[12], paleontology [13], tissue engineering [14], materials science [15] and mam-

mography [16]. In EI, by using the same simple setup and making modifications

to the imaging parameters, it is possible to increase the spatial resolution above

the one determined by the detector pixel size [17], and to retrieve up to three

different contrast channels [3].

In 2014, the EI method has been adapted to a CT modality, and the first results

of an EI CT scan acquired with synchrotron radiation have been published [18].

Shortly after, the laboratory EI system has been modified to enable CT imag-

ing and further CT-related studies have been performed ever since. Although

the EI method is capable of providing high-resolution, multi-modal images, these

advancements involve acquiring multiple images per projection, leading to an in-

crease in scan time and dose. While certain applications have less stringent dose

and scan duration restrictions, when high-resolution, multi-modal scans are per-

formed in CT mode, scans can last hours or even days, leaving the system exposed

to environmental changes. When these are not accounted for, they can lead to

severe artefacts in the reconstructed CT slices, compromising the accuracy of the

retrieved values. On the other hand, in many applications in the biomedical field

it is essential that the delivered dose is minimized and scan times are reduced,

potentially at the expense of retrieving strictly quantitative information.

The work presented in this thesis aimed to optimize both the acquisition and

processing of CT data acquired using the EI laboratory system, in particular for

biomedical applications. First, the possibility of using EI CT as an alternative

to perinatal autopsy has been considered as a new, potential application of the
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method. To test this, a proof-of-principle scan was performed using a gold stan-

dard approach, involving the use of another XPCi technique and synchrotron

radiation. Analysis of the data by radiologists confirmed that XPCi has the po-

tential to provide diagnostically relevant results, and that further studies should

be pursued in the future in a laboratory setting. The next study aimed to reduce

artefacts arising from system instabilities during long, laboratory-based CT scans,

by investigating and analyzing different sources of error. Following simulated and

experimental studies, the main sources of error have been identified and a “local”

retrieval algorithm was developed to account for them and reduce their associ-

ated image artefacts. In contrast to the local retrieval algorithm aimed at long

CT scans, a different retrieval algorithm was developed in an additional study

to enable the performance of fast CT scans. Thus continuous CT scans can be

performed using this “single-image” retrieval algorithm which requires only one

image per projection and can be applied to objects containing a range of materials.

The first chapter in this thesis will focus on conventional, attenuation-based X-

ray imaging. An overview of the different interactions of X-rays and matter will

be given, explaining the mechanisms by which X-rays are attenuated. The ba-

sic principles of X-ray imaging will then be presented, covering both planar and

CT imaging. The second chapter focuses on XPCi, providing an overview of the

most prominent current techniques, with a specific emphasis on EI. Results from

the proof-of-principle experiment for using XPCi as an alternative to perinatal

autopsy are reported and discussed in the third chapter. The fourth chapter

presents work done on image artefacts in long, laboratory-based CT scans. The

local retrieval algorithm is developed and the resultant improvement in image
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quality of a biological sample is demonstrated. In the fifth chapter, the multi-

material single-image retrieval algorithm is developed, and its quantitativeness

and associated improvement in image quality are studied using both simulated

and experimental data.

The work of chapters 3-5 each resulted in a peer-reviewed publication:

• A. Zamir, O.J. Arthurs, C.K. Hagen, P.C. Diemoz, T. Brochard, A. Bravin,

N.J. Sebire, and A. Olivo, X-ray phase contrast tomography; proof

of principle for post-mortem imaging. Br. J. Radiol., 89:20150565,

2016.

• A. Zamir, M. Endrizzi, C.K. Hagen, F.A. Vittoria, L. Urbani, P. De Coppi,

and A. Olivo, Robust phase retrieval for high resolution edge illumi-

nation X-ray phase-contrast computed tomography in non-ideal

environments. Sci. Rep., 6:31197, 2016.

• A. Zamir, P.C. Diemoz, F.A. Vittoria, C.K. Hagen, M. Endrizzi, and A.

Olivo, Edge illumination X-ray phase tomography of multi-material

samples using a single-image phase retrieval algorithm. Opt. Exp.,

25:11984-11996, 2017.
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1

Attenuation X-ray imaging

In this chapter, the background to conventional, attenuation-based X-ray imaging

is provided. First, for completeness, a brief overview of the different interactions

of X-rays with matter will be given, providing more information about the mech-

anisms by which X-rays are absorbed and scattered. The basic principles of X-ray

imaging will then be presented, providing details of a typical imaging setup and

key equations by which image formation can be described. In the last section, the

adaptation of X-ray imaging into a 3-dimensional imaging modality, namely CT,

will be discussed. The theoretical background will be presented, along with the

associated adaptations of the system setup and image reconstruction procedures.

For a more detailed description of these topics, readers are referred to several

textbooks [1, 19, 20, 21].
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1.1 X-ray interactions with matter

When X-rays transverse matter, apart from the possibility of being transmitted

without any interaction, they can be absorbed or scattered [21]. The combination

of the latter two results in X-ray attenuation which in this context is defined as

the removal of photons from the primary beam. There are four main mechanisms

by which these processes occur, namely (a) photoelectric absorption, (b) Comp-

ton scattering, (c) coherent scattering and (d) pair production. The former two

are the main contributers to the attenuation contrast in an X-ray image, as pair

production occurs at energies well beyond those used in diagnostic X-ray imag-

ing, and the occurrence of coherent scattering is low with respect to the other

interactions. In order to describe these interactions, it is useful to model an atom

as consisting of a positively charged nucleus surrounded by negatively charged

electrons. The electrons are bound in different shells with respective quantized

binding energies, the latter determined by the strength of the electrostatic at-

traction between the electrons and the nucleus.

In photoelectric absorption, an X-ray photon is absorbed fully by an inner shell

electron, which in turn is liberated from its shell. The kinetic energy of the ejected

electron is then given by the difference between the photon’s energy and the elec-

tron’s binding energy. The vacant electron position is then filled by a higher shell

electron, a transition that results in the emission of radiation with energy equal

to the energy difference of the two shells, and is therefore characteristic to the

atom. In some cases, the excess energy can be emitted by liberating an outer

shell electron, which is then referred to as an Auger electron. The probability

of photoelectric absorption is approximately proportional to Z3/E3, where Z is
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the atomic number and E is the X-ray energy. This however is not valid when

the energy is slightly higher than the binding energies of inner shell electrons, in

which case there is an abrupt increase in the probability of this interaction. In

general, the occurrence of photoelectric absorption is significantly higher for low

energy photons and high Z materials.

Compton scattering is an inelastic process in which an X-ray photon interacts

with an outer shell electron. Here, the X-ray’s energy is considerably larger than

the binding energy of the electron, which can therefore be considered as free.

During the interaction, there is an energy and momentum transfer between the

photon and the electron. As a result, the electron is ejected, and the photon is

scattered with a reduced energy. The change in energy can be calculated by con-

sidering the conservation of both energy and momentum during the interaction.

The probability of Compton scattering is independent of Z, and varies propor-

tionally with ρ/E, where ρ is the density of the material.

Coherent scattering occurs at low X-ray energies, when the latter is typically

below an electron’s binding energy. Here, the photon interacts with the whole

atom, causing the oscillation of the entire electron cloud. The latter then emits

radiation with the same energy as that of the incident photon, the combination

of which with the original wave results in a change in the X-ray propagation

direction (predominantly forward scatter at small angles). Coherent scattering

however is not significant in diagnostic X-ray imaging due to its relative low

probability of occurrence, and the fact that the photon is emitted in the forward

direction with no loss of energy, often causing negligible attenuation.

The last interaction, pair production, is mentioned here for sake of completeness,

as it occurs only for photons with energies above 1.02 MeV and is hence irrelevant
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in relation to X-ray imaging. In this case, the photon interacts with the nucleus’

electrostatic field, causing the former to convert its energy into an electron and

positron pair. Any energy in excess of the threshold required to satisfy the mass-

energy equivalence (1.02 MeV being twice the electron’s rest mass) is converted

into kinetic energy with which the electron and positron travel through matter

until they are fully absorbed or annihilate, respectively.

In general, the relative contributions of these interactions vary depending on the

sample material and X-ray energy. However, at energies used for diagnostic ra-

diology (5-150 keV), X-ray attenuation occurs mainly due to a combination of

photoelectric absorption and Compton scattering. For soft tissues, the photoelec-

tric effect is dominant at lower energies (up to about 30 keV), while Compton

scattering becomes more significant and the dominant interaction at higher ener-

gies (E >∼ 30 keV). For denser materials, such as bones, the photoelectric effect

is the dominant interaction over a wider range of energies (up to about 50 keV)

[19]. In diagnostic radiology, these higher energies are therefore used for imaging

thicker body sections, or ones containing bones [20].

1.2 Planar X-ray imaging

X-ray imaging was first performed shortly after the discovery of X-rays in 1895,

and has been since vastly applied to medical investigations, material testing and

security inspections [5]. A typical imaging setup is shown in Fig. 1.1. An X-ray

source is used to generate an X-ray beam which is directed at the object under

investigation. The transmitted X-rays are then detected by an X-ray detector,

placed immediately after the object. Since the attenuation of X-rays varies with
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Figure 1.1: A schematic of a typical attenuation-based X-ray imaging system.

material type and density, the distribution of detected X-rays over the FOV

contains information about the internal structure of the object. In general, the

attenuation of the incident beam by the object can be expressed by the Beer-

Lambert Law [22]:

I1 = I0e
−µt (1.1)

where I0 and I1 are the incident and transmitted beam intensities respectively,

t is the material’s thickness in the direction of X-ray propagation, and µ is the

linear attenuation coefficient which varies with material type and density, and

with X-ray energy. If the object is composed of more than one material, then the

incident beam will be attenuated by different amounts as it traverses different

materials along its path. For example, consider the case shown in Fig. 1.2, where

a “target” detail with attenuation coefficient µ2 and thickness t2 is embedded

within a slab of material with attenuation coefficient µ1 and of total length t1.

X-rays which traverse material 1 only, will be transmitted with an intensity given

by I1 = I0e
−µ1t1 , while rays which pass through the part containing the target
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detail, will be transmitted with intensity I2 = I0e
−µ1(t1−t2)e−µ2t2 . The image

that is produced by the detector is therefore a 2-dimensional representation of

the 3-dimensional distribution of the attenuating properties of the entire object,

projected onto the plane orthogonal to the direction of X-ray propagation. In the

absence of scatter, the contrast between the target detail and the material within

which it is embedded, is defined as [20]:

C =
I1 − I2

I1

= 1− e(µ1−µ2)t2 , (1.2)

where the expressions previously developed for I1 and I2 were used. It is there-

fore apparent that the contrast between a detail of interest and its background

increases with the thickness of the detail and with the difference between the

attenuation properties of the two materials. It should be noted that since the

attenuation coefficient reduces with increasing energy, so does the contrast. For

this reason, the energy used in conventional X-ray imaging is chosen as a trade-off

between high image contrast and low deposited dose.

Figure 1.2: The transmitted intensity varies depending on the type of materials
and their thicknesses that X-rays encounter along their path.

Planar X-ray imaging (also termed projection radiography) is currently the most
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commonly used imaging modality in diagnostic medicine in the UK, with 22.6

million procedures performed in 2016 by the NHS (compared with 8.92 million ul-

trasound examinations, which are the following most common imaging modality)

[23]. Radiologists are trained to observe the 2-dimensional projection image and

deduce diagnostic information about the organs of interest, which might appear

as overlapping with other organs. While this is possible and indeed useful for vi-

sualizing certain anatomical structures (e.g. bones, chest, breast etc.), the issue

of overlapping structures often makes the detection of abnormalities in other or-

gans (e.g. heart, abdomen etc.) quite challenging. This difficulty was overcome

by the development of X-ray CT scanners, which is the topic of the following

section.

1.3 Computed tomography

The invention of the first commercial CT scanner in 1971 is often regarded to

as the greatest step forward in radiology since Rontgen’s discovery [5]. The sig-

nificant impact of this invention was further recognized by awarding Sir Godfrey

Hounsfield and Allan Cormack the 1979 Nobel Prize for Physiology and Medicine.

However, the mathematical background which CT reconstruction relies on was

developed much earlier, in 1917, when Johann Radon first introduced the “Radon

Transform” and its inverse transformation. Radon’s work demonstrated the very

core principle underpinning CT, i.e. that a volumetric function can be recon-

structed from 2-dimensional projections of the function, taken over an angular

range.

Today, different types of CT reconstruction algorithms exist, all of which manipu-
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late the acquired projection data to reconstruct slices representing the distribution

of the object’s properties in space. While there is a growing interest in iterative

algorithms which are based on algebraic or statistical approaches, these are be-

yond the scope of this thesis. Instead, here we will focus on the most commonly

used reconstruction algorithm, namely filtered back-projection (FBP). There are

Figure 1.3: Frame of reference for a stationary object and a rotating imaging
system.

two key mathematical relations which form the basis of the FBP reconstruction

algorithm: the Radon transform and the Fourier Slice Theorem. Consider the

schematic shown in Fig. 1.3 demonstrating a simplified CT setup in which a

stationary object is illuminated by a parallel X-ray beam, with the X-ray source

and detector rotating around the object. The function f = f(x, z) represents the

distribution of an unknown quantity in the transverse plane xz, which is to be

reconstructed. Here, xyz describes the stationary frame of reference, and x′y′z′

is obtained by rotating the former by an angle θ and noting that y ≡ y′. At each
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rotation angle θ, the path followed by an X-ray can be described by the line:

l(θ, x′) = x cos θ + z sin θ. (1.3)

For any value of θ and assuming a constant y = y′, the Radon transform relates

the function f to the value of its integral over any line l parallel to the z′ axis,

and is defined as [1]

R[f(x, z)](θ, x′) := g(θ, x′) =

∫
l(θ,x′)

f(x, z)dz′, (1.4)

where R indicates the Radon transform operator, and g(θ, x′) is the Radon trans-

form (also called “sinogram”) of f , and can be thought of as a forward projection.

By using a delta function, this can be rewritten as

g(θ, x′) =

∫ ∞
−∞

∫ ∞
−∞

f(x, z)δ(x cos θ + z sin θ − x′)dxdz, (1.5)

and its Fourier transform (FT) is given by

F[g(θ, x′)](ω, θ) =

∫ ∞
−∞

∫ ∞
−∞

f(x, z)e−iω(x cos θ+z sin θ)dxdz. (1.6)

The right-hand side (RHS) of Eq. 1.6 is the same as the 2-dimensional FT of the

function f at spatial frequencies (u = ω cos θ, v = ω sin θ). This equality is known

as the Fourier Slice Theorem (FST) which states that the 1-dimensional FT of a

projection of a function, taken at an angle θ, is equal to the 2-dimensional FT

of the function itself, along a line [1]. More specifically, the particular line is the

one passing through the origin at an angle θ. This is demonstrated in Fig. 1.4
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and can be expressed mathematically as [1]

F1[Rf(x, z)](ω, θ) = F2[f(x, z)](ω cos θ, ω sin θ). (1.7)

Therefore, according to the FST, it should be possible to reconstruct an unknown

function f from projection data acquired over an angular range, by first perform-

ing a 1-dimensional FT on each projection, hence filling the corresponding lines

in the Fourier domain, and then using a 2-dimensional inverse FT to retrieve the

original function. In practice this is rarely the approach taken for reconstruc-

tion, since projections are acquired at finite angular steps and the Fourier space

is filled radially. Most practical algorithms which perform the Fourier trans-

formation require data sampled on a Cartesian grid, hence an interpolation in

the Fourier domain is necessary. Furthermore, the sampling distribution of the

Fourier domain is denser near the origin, meaning that high frequencies, which

correspond to the fine details of an object, are under-represented, thus resulting

in an unsharp reconstruction.

FBP is a reconstruction algorithm which overcomes these drawbacks. The idea

here is that the original object function could be reconstructed by “smearing”

each projection over the object domain in the direction in which is was originally

acquired. However, this backprojection procedure alone results in an unsharp

reconstruction due to the reasons mentioned previously. Therefore, prior to the

backprojection step, each projection is filtered. The most commonly used filter is

the “Ram-Lak” filter, which amplifies the high frequencies while suppressing the

low ones. Furthermore, a cutoff frequency is usually defined in order to reduce

noise levels in the reconstructed image. These two steps are combined in the FBP
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Figure 1.4: The Fourier Slice Theorem demonstrating the relationship between
the object function in the space and frequency domains. Figure adapted from ref.
[1].

formula with which the object function can be retrieved according to [1]:

f(x, z) = FBP [g(x′, θ)](x, z)

=
1

2π

∫ π

0

F−1
{
|k|F[g(x′, θ)](k)

}
(x cos θ + z sin θ)dθ,

(1.8)

where FBP represents the filtered-backprojection operator, F and F−1 indicate

the forward and inverse Fourier transforms, respectively, and |k| is the filter

function applied in the Fourier domain.

In X-ray CT, it is the linear attenuation coefficient µ which is reconstructed using

Eq. 1.8. This is possible since a line integral relationship exists between µ and

the recorded projections, as is apparent when the Beer-Lambert law (now written

in a general form for an inhomogeneous object) is rearranged:

g(θ, x′) =

∫
l(θ,x′)

µ(x, z)dz′ = − ln

(
I1(x′)

I0(x′)

)
. (1.9)

39



Note that Eq. 1.8 is valid for a laminar, parallel beam. While this condition

can be achieved by collimating the beam, it leads to reduced flux and increased

scan times. Therefore, in practice, most laboratories use an uncollimated cone

beam. The FBP formula can then be applied only in those cases where the cone

angle is sufficiently small. Otherwise, data should be reconstructed using an ex-

tension of the FBP algorithm to cone beam geometries, which is however more

computationally intensive. The Feldkamp-David-Kress algorithm [24] is the most

commonly used cone-beam reconstruction algorithm, owing to its straightforward

implementation and fast computation time; however, it is approximate by nature

as it fails to satisfy Tuy’s data sufficiency condition for exact cone beam recon-

struction [25]. In addition, cone-beam artefacts become more prominent with an

increasingly large cone angle [24, 26].

Furthermore, Eq. 1.9 assumes the use of monochromatic radiation. In reality,

the linear attenuation coefficient varies with energy, hence when considering a

polychromatic beam, the expression is obtained by summing the individual con-

tributions of each energy in the spectrum. In this case, describing the recorded

projections as line integrals of the object’s attenuation is only approximately

true, due to the object’s self attenuation which leads to a change in the detected

energy spectrum. When the FBP algorithm is used in situations where there is

significant self-attenuation by the object, the reconstructed CT slices suffer from

beam hardening artefacts [1].

Last, it should be noted that although the mathematical background presented

in this chapter was derived for a frame of reference in which the X-ray source and

detector rotate around a stationary object (as is the case for in-vivo scanners),

equivalent expressions are obtained for a system in which the source and detector
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are stationary, and the object is rotating. This latter configuration is the one

most commonly used in prototype scanners and in micro-CT scanners, and is in-

deed the approach adopted in the experiments described in the following chapters.

Today, conventional X-ray imaging is an invaluable tool in a number of fields,

including medicine where it is the most commonly used imaging modality, in

both planar and 3-dimensional imaging. Although it causes a significant increase

in scan time and dose, CT scans enable the reconstruction of an object’s entire vol-

ume by stacking individually reconstructed CT slices. The rational for using CT

scans for medical purposes, is that the associated increase in dose is outweighed

by the gain in diagnostic information when compared to planar radiography.

However, both planar and CT radiography suffer from the poor visualization of

low-attenuating materials, an issue inherently related to their attenuation-based

contrast. This is a problem particularly in the biomedical field, where many ap-

plications require the imaging of different soft tissue details. The next chapter

describes alternative X-ray imaging methods in which image contrast is based

on the refraction of X-rays instead of their attenuation, which often leads to an

improved visualization of low-attenuating materials.
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2

Phase contrast imaging

The previous chapter provided the background to conventional X-ray imaging,

where image contrast is based on the attenuation of X-rays. However, apart from

being attenuated, an X-ray beam traveling through matter also experiences phase

shifts. The extent of these two effects is determined by the complex refractive

index of the given material, which can be represented as [22]:

n(E) = 1− δ(E) + iβ(E), (2.1)

where E is the photon energy and the terms δ and β are linked to the phase

and attenuation effects, respectively. The attenuation term β is related to the

linear attenuation coefficient by µ = 2kβ, where k = 2π/λ is the wavenumber

and λ is the photon wavelength. The term δ, often referred to as the refrac-

tive index decrement (RID), is related to the material’s electron density, ρe, via

ρe = k2δ/2πre where re denotes the classical electron radius.

Phase contrast imaging techniques are ones in which image contrast is based on
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phase effects, the latter related to changes in the RID. While these phase effects

are effectively ignored in a conventional, attenuation-based imaging system, the

design of customized setups enables their detection. The motivation for con-

structing such systems lies in the fact that for many materials (in particular low

attenuating materials, e.g. soft tissue) and in the energy range typically used for

X-ray imaging, the RID is considerably larger than β, by up to three orders of

magnitude. Therefore it follows that improved contrast can be achieved if the

imaging system could be made sensitive to changes in the RID. Furthermore, it

should be noted that δ and β do not depend on energy in the same way; in fact,

δ ∝ 1/E2 while β ∝ 1/E4 [6]. This suggests that the improvement due to phase

contrast can be maintained at higher energies, hence leading to the possibility of

low dose imaging.

By treating X-rays as electromagnetic waves and using the definition of the com-

plex refractive index (Eq. 2.1) in the expression of a monochromatic plane wave

propagating in the z direction, it can be shown that the total phase shift Φ(x, y)

imparted on the wave as it traverses an object is given by [22]

Φ(x, y) = −k
∫
object

δ(x, y, z)dz. (2.2)

Note that Eq. 2.2 is valid under the projection approximation, which amounts to

assuming a thin object with scatterers sufficiently weak such that the ray paths

are negligibly changed due to the presence of the object. Using this approxi-

mation, the total phase shift and attenuation immediately after the object (exit

surface) can be expressed as the ones accumulated as the X-rays traverse a path

corresponding to the one connecting the entrance and exit surfaces, in the ab-
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sence of the object.

Detecting the phase shift directly however is not possible, since X-ray detectors

are sensitive to changes in X-ray intensity. Therefore, in order to obtain a phase

contrast image, the imaging system must be able to convert the phase shift caused

by the object into intensity variations. This can be achieved by two different ap-

proaches on which XPCi methods are based. The first approach relies on the

detection of interference patterns caused by the interaction of the unperturbed

waves with the phase shifted wavefronts. In general, this can be achieved either

by positioning the detector at an increased distance away from the object, thus

allowing the beam to propagate and an interference pattern to emerge, or by

means of an interferometer. The second approach involves the detection of X-ray

refraction. Here, a ray-optics view is adopted, according to which the local dis-

tortion of a wavefront results in a change in the direction of X-ray propagation.

The angle by which the X-ray is deviated (refraction angle) is proportional to the

local variation in the phase shift, and is given by [27]

α ∼= k−1|∇x,yΦ| =
∣∣∣∣∇x,y

∫
object

δ(x, y, z)dz

∣∣∣∣ , (2.3)

where ∇x,y indicates the 2-dimensional gradient, resulting in the two transverse

components of the refraction angle. It therefore follows that the refraction angle

is greatest where the variation in phase is maximal, i.e. at the borders of an

object or of details within it. Consequently, images in which the refraction angle

is directly measured have an edge-enhanced appearance.

Three decades have passed between the development of the first phase contrast
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technique, “Bonse-Hart interferomentry” [28], and subsequent methods such as

“Analyzer-based imaging” (ABI) [29] and “Free-space propagation” (FSP, also

referred to as “In-line holography”) [30]. These advancements were largely facil-

itated by the advent of 3rd-generation synchrotrons, which produce X-radiation

characterized by high coherence and high flux. Shortly after, two more methods

were developed, namely “Grating interferometry” (GI) [31] and “Edge illumina-

tion” [9], both of which were first demonstrated using synchrotron radiation (SR).

Today, as the performance of synchrotrons continues to improve, more scientific

research based around the use of XPCi is being pursued. By harnessing the high

brilliance of SR, high quality phase contrast images can be obtained in unpar-

alleled scan times, featuring high spatial resolution and contrast. However, the

limited availability of synchrotron facilities implies that there is a need to develop

phase contrast methods which can be used with laboratory sources, in particu-

lar for medical applications. To a certain extent, all the above mentioned XPCi

methods could be implemented with laboratory sources. However, the majority

suffer from impractical scan times in a laboratory implementation (especially for

CT) as a result of low available flux, due to the need for a microfocal source,

or to the use of crystals or other optical elements. Today, GI and EI are the

two methods which can produce phase contrast images within reasonable times

with conventional, non-microfocal X-ray sources [32, 33], making them the prime

candidates for translation into clinical and industrial environments.

The motivation for the work presented in this thesis was to further optimize the

performance of EI CT, with a particular focus on biomedical applications carried

out in a laboratory environment, thus forming a step towards the transformation

of EI CT into a widely spread imaging tool. Furthermore, the following chapter
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will discuss a new potential application of XPCi (perinatal post-mortem imag-

ing) which has been investigated in a proof-of-principle experiment using the gold

standard FSP technique.

The remainder of this chapter will provide an overview of the above mentioned

XPCi methods. The physical principles that these rely on to generate contrast will

be discussed along with descriptions of the experimental setups. The associated

advantages and limitations of each method will be highlighted, and information

about the most common algorithms used to retrieve phase information (“phase

retrieval” algorithms) will be provided. Particular focus is given to the FSP and

EI methods, as both methods were employed in the experiments described in

chapters 3-5. For more information about the history and recent developments

in the XPCi field, the reader is referred to several reviews [6, 7, 8].

2.1 Bonse-Hart interferometry

The first XPCi method was Bonse-Hart interferometry which was developed in

1965 [28]. In order to generate phase contrast images, the method makes use

of a crystal interferometer, as shown in Fig. 2.1. The setup consists of three

crystals and their alignment is as follows: first, a crystal (“splitter”) is placed

downstream the X-ray beam causing the beam to split into two mutually coher-

ent beams when exiting it by means of a symmetrical Laue reflection. A second

crystal (“mirror”) is placed downstream which again splits both beams. At this

point, if no object is present in the beams’ path, two of these beams will be

redirected towards each other and recombine, creating an interference pattern,
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with fringes too finely spaced to be directly observed with a standard detector.

This is solved by the addition of a third crystal (“analyzer”) to the setup, such

that the beams recombine at its surface. If an object is then placed in one of the

branches of the interferometer, the corresponding beam will be attenuated and

phase shifted. As a result, interference between the “reference” beam (i.e. the

beam which did not traverse the object) and the shifted beam, when these com-

bine at the analyzer crystal, will lead to a shift and a dampening of the pattern

with respect to that observed in the absence of the object, which can be recorded

by a detector.

Figure 2.1: Schematic representation of a Bonse-Hart interferometer.

Quantitative phase contrast imaging was made possible by converting the recorded

interference pattern into an image of the phase shift distribution by using a fringe

scanning method [34]. This method entails the insertion of a wedge-shaped phase-

shifting object into the reference beam, hence creating a controllable variation

of the reference interference pattern of carrier fringes. The introduction of the
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sample object shifts the observed fringes by an amount directly proportional to

the RID, which could be quantified by means of a Fourier transform method,

described in detail in [35].

Since the transmission of the analyzer crystal is dependent on the position of

the standing wave impinging it, a direct link between measured intensity and

phase shift can be made. While other XPCi methods are sensitive to the first or

second derivative of the phase shift (as will be discussed shortly), Bonse-Hart in-

terferometry is the only method sensitive directly to the phase shift, and is hence

considered the most sensitive phase contrast method to date [36]. Practically, due

to the restrictive requirement of sub-atomic alignment between the crystals, the

interferometer is normally made by channel-cutting a single crystal block such

that all crystals have a common base, and the analyzer and splitter crystals are

at equidistant from the mirror crystal. This usually restricts the FOV to a few

mm2[34]. Furthermore, the crystals act as monochromators and lead to a sub-

stantial reduction in flux. As a result, practical use of Bonse-Hart interferometry

is limited to high flux sources such as synchrotron radiation facilities.

2.2 Analyzer-based imaging

In Analyzer-based imaging, the rocking curve (RC) of an analyzer crystal is ex-

ploited to generate a phase contrast image [29, 37]. Typically, an incoming X-ray

beam will be made monochromatic by passing it through a first monochromator

crystal. A second, “analyzer” crystal is then placed downstream, directing the

X-ray beam towards a detector (see Fig. 2.2). The analyzer crystal’s RC is the

result of a convolution between the reflectivity curves of the monochromator and
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the analyzer crystals, plus the contribution of the beam divergence. For a given

energy, the RC effectively determines the probability of X-rays being redirected

towards the detector as a function of their incidence angle upon the analyzer.

The analyzer can be positioned such that all incoming X-rays satisfy the condi-

tion of the Bragg angle, meaning that close to 100% will reach the detector. If

an object is then placed in the beam’s path, X-ray refraction will occur due to

the object’s complex refractive index, with the refraction angle determined from

Eq. 2.3. As a result, the angle with which the X-rays hit the analyzer crystal will

vary, and the portion of X-rays reaching the detector will change, in accordance

with the RC. Hence, the crystal acts as an analyzer, in the sense that it performs

an angular selection.

Increased sensitivity to refraction can be achieved by “rocking” the analyzer crys-

tal to the steepest point on the RC, such that only 50% of the reference beam

(i.e. without the object) reaches the detector [38]. In this configuration, small

deviations in the X-ray direction caused by the object will lead to the maxi-

mum possible increase or decrease in detected intensity, depending on the angle

of refraction. This increase/decrease in signal results in pairs of bright and dark

fringes corresponding to edges of details in the object. This is a characteristic fea-

ture of XPCi methods which are sensitive to the refraction angle. These methods

are often called “Differential Phase Imaging” techniques, since they are sensitive

to the first derivative of the phase shift (see Eq. 2.3).

Phase retrieval methods have been proposed to separate the recorded intensity

image into two images: one with the conventional, attenuation contrast, and one

showing only the refraction signal. Chapman et al. developed a phase retrieval
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Figure 2.2: Schematic representation of a typical Analyzer-Based Imaging setup.

algorithm called “diffraction-enhanced imaging” which involves the acquisition of

two images on opposite sides of the analyzer’s RC [39]. The recorded intensity can

then be expressed in terms of the reflectivity as a function of angle and the inten-

sity affected by attenuation only. Using knowledge of the RC and both images,

the attenuation intensity and refraction angle can be found on a pixel-by-pixel

basis, resulting in separate attenuation and phase-contrast images. Four other

phase retrieval methods for ABI are discussed and their validity is compared in

[40].

Since the phase contrast in an ABI setup arises from sensitivity to refraction

made possible by the analyzer crystal and its RC, it is therefore essential that the

X-ray beam is monochromatic. While a conventional X-ray source can be made

monochromatic (e.g. by the use of a mismatched, two-crystal monochromator

[41, 42]), this would introduce a substantial reduction in flux. Furthermore, a

highly precise alignment between the crystals is necessary in order to accurately

detect the refraction signal, and hence a highly stable experimental setup is re-
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quired. For these reasons, ABI is usually limited to synchrotron sources.

2.3 Grating interferometry

Grating interferometry is a phase contrast method which relies on the Talbot self-

imaging effect and is hence also known as “Talbot Interferometry”. According to

the Talbot self-imaging effect, when a coherent X-ray beam is transmitted through

a periodical object (grating), an image identical to the grating itself is formed

at a set of distances away from the grating (“Talbot distances”) [31, 43, 44, 45].

Figure 2.3 displays a typical setup of a GI system. A coherent X-ray beam tra-

verses an object prior to encountering a phase grating. Being a phase grating,

this is typically made of a low µ material as in principle it should introduce no

attenuation. An absorption grating is then placed at a Talbot distance down-

stream, immediately in front of an X-ray detector. The presence of an object

in the beam’s path alters the Talbot self-image generated by the phase grating

and leads to local displacements of the fringes. The absorption grating acts as

an analyzer as it enables the conversion of phase effects into detectable intensity

variations.

The phase effects can be separated from the object’s attenuation by a method

called “Phase Stepping” [46]. In this method, the phase grating is scanned lat-

erally with respect to the absorption grating over one period, and an image is

acquired at each grating position. The displacement in the intensity oscillation

in each pixel over the scan, compared to the case where the object is absent,

is related directly to the differential phase shift of the wavefront. Quantitative

phase information can then be obtained by 1-dimensional integration. Phase-
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Stepping simultaneously yields an attenuation image by considering the average

intensity in each pixel over the one-period scan, in comparison to a reference scan

performed while the object is absent.

Figure 2.3: Schematic representation of a Grating Interferometry setup. The
source grating is required only in the case of a laboratory implementation with an
extended X-ray source.

While GI can be performed using some degree of polychromaticity [46], it relies

on a spatially coherent beam. A laboratory implementation of the method (with

an extended source) includes a third grating, placed shortly after the source.

This corresponds to a Talbot-Lau configuration [32]. To achieve coherence, the

source grating “divides” the beam into sets of individually coherent yet mutually

incoherent sources [32]. The fine alignment between the gratings is essential for

the method and so stability of about 100 nm is required [46], making it sensitive

to environmental vibrations. Due to grating fabrication constraints, the FOV

is normally limited to a few cm2 [47]. Biomedical applications along with the

issue of long scan times and relatively high dose, in particular when CT scans are
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performed, are discussed in a review by Pfeiffer et al. [48].

2.4 Free-space propagation

Free-space propagation is an XPCi method which is sensitive to interference ef-

fects and has the simplest experimental setup of all XPCi methods. Just like

in conventional attenuation radiography, the entire setup consists of an X-ray

source and detector. However, two requirements transform it from an attenua-

tion contrast method to one sensitive to phase effects; a spatially coherent source

and a large object-to-detector distance [30]. As shown in Fig. 2.4, an object

placed in the path of a coherent X-ray beam distorts the wavefront due to both

refraction and attenuation. This leads to interference between the unperturbed

parts of the beam (which did not encounter the object) and the ones perturbed

by the object. when a detector is placed in contact with the object (as is done

in conventional radiography), these interference effects are not visible. However,

if the beam is allowed to propagate in free space (hence the name), sets of dark

and bright fringes corresponding to the edges of object details are observed.

Although both wave- and ray-optics models can be used to provide a theoretical

explanation of the phenomenon [27, 49, 50], a simplified ray-optics description

can illustrate the creation of these fringes (see Fig. 2.4); one should notice that,

at the edges of the object, the photons are redirected away from it. This means

that photons which would have previously reached the detector’s pixel are now

impinging on the neighboring pixel, away from the object. This leads to de-

creased counts (dark fringe) immediately inside the object, and increased counts

(bright fringe) immediately outside of it, as the refracted X-rays sum up with the
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unperturbed ones traveling immediately outside the object.

Figure 2.4: Schematic representation of a Free Space Propagation setup, demon-
strating the ray-optics interpretation. The object-to-detector distance zod is large
compared to conventional radiography resulting in an intensity pattern sensitive to
phase effects.

FSP is not limited to monochromatic sources and although synchrotron sources

are ideal for its performance, laboratory implementations exist using microfocal

X-ray sources [27]. However, as microfocal sources have reduced flux, scan times

are long and may be impractical for many applications. This limitation can now

be mitigated by the use of promising new technologies such as the liquid-metal-jet

source which offers high coherence and flux [51, 52]. Another limitation of the

method has to do with its spatial resolution. As no further optical elements are

employed, the detector pixel size limits the spatial resolution and so high resolu-

tion detectors are required to resolve the interference fringes, which are typically

characterised by very high spatial frequencies [30]. In practice, the FSP fringes

diminish with an increasing pixel size, due to the convolution of the signal with
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the detector’s point-spread function [7].

In FSP, the contrast of a phase object is proportional to the second derivative of

the phase function [27, 53]. This can be modeled by means of the “Transport-of-

Intensity equation” (TIE), which describes the evolution of the intensity distri-

bution of a monochromatic wave propagating in the z-direction, in the paraxial

approximation [54]:

∇x,y · (I(x, y, z)∇x,yΦ(x, y, z)) = −k ∂
∂z
I(x, y, z). (2.4)

Over the years, different phase retrieval methods were developed for FSP setups,

however, the most commonly used ones are the ones developed by Cloetens [55]

and Paganin [56]. Using the method presented by Cloetens, the phase map of an

object can be quantitatively reconstructed by following a “holographic” recon-

struction procedure which relies on the acquisition of multiple images at a set of

object-to-detector distances [55]. On the other hand, the advantage of the method

developed by Paganin is that it requires only a single image [56]. However, the

use of a single image is made possible by making several assumptions, including

object homogeneity. Since the experiment described in chapter 3 consisted of a

FSP setup and a modification of Paganin’s method for phase retrieval, a more

detailed description of the latter is provided below.

Paganin’s algorithm is derived starting from the TIE formulation (see Eq. 2.4). If

a plane wave of uniform intensity I0 transverses a homogeneous, thin object (such

that it satisfies the projection approximation), Eqs. 1.1 and 2.2 for the beam’s

intensity and phase in the contact plane (i.e. immediately after the object) can
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be used:

I(x, y, z = 0) = I0 exp (−µt(x, y)), (2.5)

and

Φ(x, y, z = 0) = −kδt(x, y), (2.6)

where µ and δ are the object’s linear attenuation coefficient and RID, respectively,

and t(x, y) is the projected thickness of the object onto the detection plane. By

substituting Eqs. 2.5 and 2.6 into Eq. 2.4 and representing both the contact image

and the phase contrast image as Fourier integrals, Eq. 2.4 can be rearranged and

solved for t(x, y):

t(x, y) = − 1

µ
log

F−1

 1(
zodδ
µ

)
κ2
⊥ + 1

F

[
I(x, y, z = zod)

I0

]
 , (2.7)

where F and F−1 are the forward and inverse Fourier transforms, and κ2
⊥ =

(κx, κy) are the Fourier coordinates corresponding to x and y. Thus t(x, y) can

be obtained by considering a single projection (I(x, y, z = zod)) and a priori

knowledge of δ and µ. If needed, t(x, y) can then be substituted into Eqs. 2.5

and 2.6 to obtain separate attenuation and phase contrast projections.

Eq. 2.7 was derived assuming an infinite source-to-object distance, a condition

which is approximately true at a synchrotron facility. However, the algorithm can

be extended to include the magnification arising from a point source, if this is not

negligible [56]. Although the algorithm is derived assuming a homogeneous ob-

ject, it often provides good qualitative results also in cases when the object is not
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strictly homogeneous, but can be approximated as quasi-homogeneous (i.e. has a

constant δ/µ ratio throughout). This has been used in various cases when imag-

ing biological samples [14, 57, 58]. Furthermore, as will be shown in chapter 3, a

modification to Paganin’s algorithm relaxes the assumption of a homogeneous (or

quasi-homogeneous) object and yields good qualitative and quantitative results

under certain conditions.

Paganin’s algorithm is often used for FSP tomography, as all retrieved quantities

(whether the projected thickness, phase or attenuation maps) satisfy line-integral

relations, and so CT reconstruction can be performed by means of the FBP al-

gorithm. However, there are many examples of different combinations of phase

retrieval algorithms and CT reconstruction techniques for FSP, each making dif-

ferent assumptions on the object and the projection acquisition procedure. Vari-

ous approaches can be found in publications such as [59, 60, 61, 62, 63, 64, 65, 66].

2.5 Edge illumination

2.5.1 Basic principles

The Edge Illumination method was first developed in the late 1990’s using syn-

chrotron radiation [9]. A simple schematic of the setup, demonstrating its under-

lying principles, is shown in Fig. 2.5(a). A narrow, collimated beam is aligned

with the edge of a detector pixel row or column, such that only part of the beam

reaches the pixels. When an object is placed in the beam’s path, any refraction

caused by the object will lead to a change in detected intensity, as it would de-
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flect the beam towards or away from the pixel. In this example, upward refraction

will lead to a decrease in measured intensity (see Fig. 2.5(b)), while refraction

downwards will increase the detected intensity (see Fig. 2.5(c)). Practically, in a

synchrotron, the incoming beam is collimated by a vertically narrow and horizon-

tally long slit placed upstream of the object, while an absorbing edge is placed in

contact with the detector row to create the edge illumination condition. There-

fore, in this configuration, to obtain an image of the entire object, the latter must

be scanned through the laminar beam.

Figure 2.5: Schematic diagrams of the synchrotron (a-c) and laboratory (d) im-
plementations of the edge illumination system. An X-ray beam aligned with the
edge of a pixel (a) is refracted away (b) or towards (c) the pixel after passing
through an object. In the laboratory, two masks are employed to replicate the
edge illumination condition over the entire FOV (d).

Since the method does not rely on interference effects, nor does it require monochro-

matic radiation, it is well-suited for translation to a laboratory environment (using

a polychromatic and extended source) [33]. To enable area imaging and avoid
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scanning the object (which would lead to impractical scan times when using a

laboratory source), the slit and edge are replaced with two masks which replicate

the edge illumination condition for all detector rows (or columns), as is shown in

Fig. 2.5(d). The first mask (sample-mask) is placed upstream of the object and

divides the incoming beam into physically separated beamlets. The second mask

(detector-mask) is placed in contact with the detector and creates insensitive re-

gions between pixels. The detector-mask is fabricated with a period matching

the detector pixel size, while the sample-mask period is scaled down to account

for the beam’s divergence. In this implementation, the entire object is captured

in a single image with a spatial sampling rate given by the sample-mask period

(de-magnified pixel size). However, unlike most other XPCi methods, in EI the

intrinsic spatial resolution is not limited by the pixel size, and its upper limit is

determined by the smaller of the sample-mask aperture and the projected source

size, down scaled to the sample plane [17]. To achieve this higher resolution, a

process called “dithering” can be used, where multiple projections are acquired

at different sub-pixel positions of the object, and are later recombined to form a

high-resolution projection image.

Although the laboratory setup of EI can seem similar to GI, the methods are

inherently different. While GI is an interferometric approach, interference does

not occur in EI as the masks’ pitch is considerably larger, usually by an order

of magnitude. Furthermore, the larger aspect ratio of the masks lowers their

fabrication costs while also allowing a considerably larger FOV to be employed

[67, 68]. Furthermore, the EI method is robust against environmental vibrations

[69], achromatic [10], and can be used with sources with focal spots up to 100

µm [11]. Moreover, while the conventional EI setup is sensitive to refraction only
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in the direction perpendicular to the masks’ apertures, the system can be made

sensitive to refraction in two directions if suitable masks are employed [70].

2.5.2 Experimental Methodology

The simple principles which the EI method relies on enable its implementation

with different X-ray sources and detectors. Furthermore, the distances between

the source and the sample, and between the sample and detector can be varied,

as can the sample-mask aperture size, which to first approximation determines

the spatial resolution. In the experiments described in chapters 4-5, the labora-

tory implementation of EI was used. Figure 2.6 depicts the experimental setup,

demonstrating how the different elements are arranged on the optical table.

Figure 2.6: Pictorial representation of the lab-based EI setup, consisting of
(from left to right) source, sample-mask, sample stage, detector-mask and detector.
Adapted with permission from IOP Publishing: Physics in Medicine & Biology, Ref
[2], Copyright 2014.

The X-ray source used in the experiments was a Rigaku MicroMax 007 HF rotat-

ing anode (molybdenum) X-ray tube (Rigaku Corporation, Japan) with a focal
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spot of approximately 70 µm.

Throughout the experiments, two different detectors were used. The first was

a Hamamatsu C9732DK flat panel detector with a passive-pixel CMOS sensor

(Hamamatsu, Japan), and a pixel size of 50×50 µm2. The second was a Pixirad

single-photon counting, energy-resolving detector [71, 72], with a pixel size of

62×62 µm2.

Both masks were fabricated by electroplating gold strips onto a graphite substrate

(Creatv Microtech Inc., Potomac, MD, USA). For each detector, a different set

of masks was required, such that their period matched that of the detector pixel

(while taking beam divergence into account). However, in order to reduce the

negative effect of pixel cross-talk on the EI signal, when the Hamamatsu detector

was used, the masks period was doubled with respect to the pixel size. In this

situation, every second detector pixel column is fully covered and is therefore

discarded during data processing.

The sample of interest is placed on the sample stage, upstream from the sample-

mask. During the imaging sequence, the sample is translated along the x-axis for

dithering, and rotated around the y-axis for CT scans.

2.5.3 Phase retrieval approaches

Projection images acquired with an EI system contain mixed information related

to both the object’s attenuation and refraction properties. The first retrieval

algorithms for EI, capable of separating the mixed projections into independent

attenuation and refraction images, were developed by Munro [73] and Diemoz

[74], and were inspired by Chapman’s diffraction-enhanced imaging algorithm for
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ABI [39]. These relied on the observation that when two images are acquired at

different positions of the sample-mask (such that opposite edges are illuminated),

the signal due to attenuation remains the same, while the refraction signal re-

verses. For quantitative retrieval, the algorithm requires a measurement of the

Illumination Curve (IC), which describes the detected intensity as a function of

the sample-mask displacement in the absence of an object. The form of the IC

and the equations used in the algorithm are slightly different depending on the

chosen EI setup (i.e synchrotron or laboratory implementation) [73, 75]. Here, the

key retrieval equations relevant to the laboratory implementation are presented.

Figure 2.7: The object’s refraction can be related to a shift on the IC. The IC is
a measure of the detected intensity as a function of the sample-mask position, with
no object present (a). In this example, for sample-mask position ξ1, the presence
of the object will increase the detected intensity (b-c), while the effect is reversed
when the mask is positioned at ξ2 (d-e). The red marks on the IC in (a) correspond
to ξ1 and ξ2, while the black arrows represent the effect of the object’s refraction
on the intensity.

Since the beam’s divergence is not negligible, a frame of reference is adopted in

which the magnification, M , between the object (ξ, η, z) and detector (x, y, z)

planes is taken into account. Hence, x = Mξ and y = Mη, where the magnifica-
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tion depends on the source-to-object distance zso and object-to-detector distance

zod according to M = (zso + zod)/zso (see Fig. 2.5(d)). Fig. 2.7(a) shows a

typical IC, here indicated by C, obtained by scanning the sample-mask laterally

over one period, in the absence of the object. Two positions of the sample-mask

(ξ = ξ1, ξ2) are chosen as the working points for the two images acquired with the

object in the beam (I1 and I2), where it is assumed that ξ1 and ξ2 are symmetric

around the origin, and that they correspond to the parts of the IC which are ap-

proximately linear [75]. Consider the cases shown in Fig. 2.7(b-e). It is apparent

that, in a similar way to the effect of object refraction on the RC in ABI, in EI,

the beam’s refraction caused by an object is equivalent to a displacement on the

IC. Using the algorithm, the two images can be processed together to retrieve the

projected attenuation and the refraction angle, according to:

∫
µ̂(ξ, z)dz = 2

∫
k̂β̂(ξ, z)dz = − ln

(
(I1 + I2)/I0

C(ξ1) + C(ξ2)

)
, (2.8)

α =
∂

∂ξ

∫
δ̂(ξ, z)dz = f−1

(
I1 − I2

I1 + I2

)
· M
zod

, (2.9)

where I0 is the maximum intensity measured by the detector when the masks

apertures are aligned, and f−1 indicates the inverse of a function f which maps

the displacement caused by the object refraction onto the difference between the

corresponding values on the IC [75]. The quantities indicated by a hat in Eqs.

2.8-2.9 refer to an effective energy (e.g. k̂ = k(Eeff ) etc.). It was shown that

the effective energies for the phase and attenuation are in general different, and

depend on both the imaging system and object parameters [76].
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The algorithm described above has been derived under the assumption that an

object placed in the beam’s path affects it by means of attenuation and refrac-

tion only. However, according to recent algorithms developed by Endrizzi et al.,

if three images are acquired and processed together, a third contrast channel can

be retrieved [3, 77, 78]. This additional channel is a scatter image, the inten-

sity of which depends on the object’s microscopic structure on a sub-pixel scale,

which has the effect of broadening the beamlet. By defining σ̂2
Φ(ξ, η, z)dz as the

localized broadening of the beamlet by an infinitesimal volume of the object of

width dz, the retrieved scattering signal representing the total broadening of the

beamlet is equal to [79, 80, 81]:

σ̂2
f =

∫
σ̂2

Φ(ξ, η, z)dz . (2.10)

These approaches therefore provide quantitative, complementary information,

which is essential for some applications. However, they typically require displac-

ing the sample-mask multiple times, therefore making scans slower, especially

in CT. To tackle cases where a single, high quality image with high contrast is

needed and speed is more important than multi-modality, a retrieval algorithm

requiring only a single image was developed for the case of homogeneous (or quasi-

homogeneous) objects [82]. In fact, the three-image and single-image retrieval

algorithms formed the basis for the work presented in chapters 4-5, respectively,

in which these were extended for use in EI lab-based CT scans under different

conditions. A more detailed description of these algorithms will be provided in

the relevant chapters.
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2.5.4 Extension to CT

The EI technique was first adapted to perform CT scans in 2014 by Hagen et

al. [18]. In contrast to the conventional method, so far CT scans in EI have

been realized by rotation of the object while the source and detector are kept

stationary, in line with most micro-tomography applications [83]. The mathe-

matical formulation for CT reconstruction from projection data was provided in

the previous chapter (see 1.3) using the frame of reference shown in Fig. 1.3.

Equivalent expressions are obtained when considering an object described by a

frame of reference (x′y′z′) which is rotated by an angle θ with respect to the

stationary source and detector (xyz). Sinograms can then be constructed from

the retrieved projection data:

Sδ(x, y; θ) =
∂

∂x

∫
l(x,y;θ)

δ(x′, y′, z′)dz, (2.11)

Sβ(x, y; θ) = 2k

∫
l(x,y;θ)

β(x′, y′, z′)dz. (2.12)

Using Eqs. 2.11 and 2.12, tomographic maps of δ and β can be obtained with

standard CT reconstruction algorithms such as FBP. However, the derivative

appearing in Eq. 2.11 implies that a special filter function H, the Hilbert filter,

must be used in the FBP formula [84]:

H(k) = −i · sign(k), (2.13)

where here k is the Fourier domain frequency term, in accordance with Eq. 1.8.

Therefore, by employing the Hilbert filter in the FBP formula, δ can be recov-
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ered using a 1-step algorithm, as the filter effectively performs the integration of

the differential projection in the frequency domain [84]. Alternatively, a simple

1-dimensional integration can be applied to the sinogram Sδ, prior to FBP recon-

struction with the Ram-Lak filter.

It should be noted however that the integration step, whether performed prior

to or during the CT reconstruction, can lead to image artefacts. In an inte-

grated sinogram these can appear as unidirectional stripes, as local errors are

smeared along the direction of integration. In RID tomograms reconstructed

with the Hilbert filter, these can appear as gradually changing shades (i.e “gradi-

ent” artefacts). These artefacts however can be reduced by the use of the retrieval

algorithms developed in chapters 4-5.

Furthermore, when EI CT is performed using an extended source with an asso-

ciated magnification, the latter should be taken into account when quantitative

reconstruction is sought (i.e. sinograms measured at the detector plane should be

demagnified onto the object plane). In order to use the FBP formula for parallel

beam geometries, this entails assuming constant magnification across the object.

This assumption is often made when employing the conventional, lab-based EI

configuration, as the resulting error on the magnification is negligible. For exam-

ple, when considering an object with a 4 cm diameter, and the typical distances

employed (zso=1.6 m, zod=0.4 m), this assumption implies a maximum error of

2.5% on the magnification, and its effect on the CT-retrieved quantities is further

reduced by the averaging occurring during the backprojection step.

Unlike refraction images which are proportional to the first derivative of the

phase function and hence have an “edge-enhanced” appearance, the integration
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step means that maps of the RID (from now on referred to as “phase maps”)

have the conventional appearance in which an area contrast is displayed. Al-

though both attenuation and phase maps have similar appearance and can aid

in the quantitative identification of different materials, the phase maps are often

advantageous as they inherently present a higher contrast.

The optimization of EI CT for different imaging environments and applications

has been the focus of extensive research since the method was first adapted to

CT. It was shown that quantitative CT reconstruction of δ and β maps is possible

by employing the two-image retrieval algorithm described in 2.5.3, using both SR

[18] and laboratory sources (within the limits of polychromaticity) [85]. It was

demonstrated that “mixed” tomograms (i.e. ones formed as a linear combina-

tion of the phase and attenuation signals) can be reconstructed using one image

per view, if the axis-of-rotation is parallel to the direction of phase sensitivity

[18]. Furthermore, the low dose capabilities of lab-based EI CT were discussed

in another experiment which demonstrated that the phase signal strength is in-

dependent of the sampling rate [85]. This observation was further confirmed in

an additional publication in which the relationship between the sampling rate

and the retrieved phase values was investigated. The study demonstrated that

while a high sampling rate is required for the retrieval of unambiguous values of

the phase shift in a planar image, a much reduced sampling rate can be used to

retrieve quantitative tomograms of the RID [86].

With the aim of reducing CT scan times, three additional phase retrieval algo-

rithms were developed. The first is based on the two-image algorithm presented

previously 2.5.3, however, it exploits the “reverse projection” relation, according
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to which, for a fixed position of the sample-mask, projections separated by 180

degrees can be processed together (as they are effectively equivalent to projections

acquired at opposite slopes of the IC for a given view). Therefore, the sample-

mask can be kept at a fixed position throughout the scan, and the object can

rotate continuously over 360 degrees [87]. In the second algorithm, the retrieval

of both δ and β is combined with the CT reconstruction step by using a gradient-

based optimization method [88]. Using this method, only a single image per view

is required. Initial results demonstrated that it is possible to retrieve δ and β

from a data set acquired over 180 degrees, however, this requires altering the po-

sition of the sample-mask between successive views. Nevertheless, if projections

are acquired over 360 degrees, the object can be rotated continuously. The third

algorithm was developed by Diemoz et al. and can be viewed as an adaptation of

Paganin’s algorithm to the case of EI [82, 89]. By making the assumption of a ho-

mogeneous object with known refractive index values, the object’s 3-dimensional

phase map can be retrieved using a single image per view. Here, the object can

be rotated continuously and an angular range of 180 degrees is sufficient, leading

to unprecedented exposure times in XPCi CT with laboratory sources [89].

Recently, a new possible application of EI CT was identified in the field of tis-

sue engineering [14]. In this study, acellular scaffolds were scanned using differ-

ent XPCi methods, with the aim of evaluating their decellularization techniques

through the visualization of the scaffolds’ microstructure. A key finding was the

observation that, at least for some samples, images obtained with the lab-based

EI system were of comparable quality to the “gold-standard” ones obtained with

a FSP setup and SR [14].
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Ultimately, the advances in EI research have enabled it to be used for a vast

range of applications, thus maximizing its potential for widespread use. Differ-

ent factors that can be varied include source technology, spatial resolution, the

retrieval of various contrast channels and a choice between projection and CT

imaging. The work presented in the following chapters was primarily focused on

the advancement of lab-based EI CT for biomedical applications, and was under-

taken in parallel with some of the CT-studies mentioned above. In particular, two

retrieval methods were developed in this thesis work: one suitable for multi-modal

retrieval in long, high-resolution CT scans, and a second approach targeting fast

CT scans, in which only a single image per view is acquired. The latter was

developed as an extension to Diemoz’s algorithm and overcomes its main limi-

tation, i.e. the assumption of a homogeneous object. In addition, the range of

applications which could benefit from EI CT was expanded by performing a first

proof-of-principle experiment in a new area with SR, as will be discussed in the

following chapter.
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3

Post-mortem imaging using

XPCi: a proof-of-principle study

3.1 Background and motivation

Perinatal autopsy is important for future pregnancy management, medical re-

search and mortality statistics [90]. However, perinatal autopsy rates continue to

fall, for a variety of reasons, including parental reluctance on moral or religious

grounds, fear of cosmetic effects and a lack of understanding of the potential ben-

efits [91]. This has led to the development of less-invasive post-mortem imaging

techniques, such as Magnetic Resonance Imaging (MRI), being developed both

as adjuncts and alternatives for conventional autopsy [92, 93]. It has been shown

that in the majority of cases, images acquired using a 9.4 T MRI scanner provided

a high enough level of detail to rule out the necessity of an autopsy. However,

these scanners are not licensed for clinical use and require extremely long acqui-

sition times, which prevents them from being used in routine clinical practice for
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the purpose of post-mortem imaging. Clinical MRI scanners, usually featuring

a 1.5 T field, do not provide adequate image quality of small fetuses, primarily

due to insufficient spatial resolution [92, 93]. Conventional X-ray CT is faster,

easier to use and more widely available; however, it suffers from poor soft-tissue

differentiation, especially in foetuses and children, in the absence of exogenous

contrast media [94].

XPCi methods on the the other hand have the potential to overcome some of

these problems, as they are capable of differentiating between different soft-tissues

without the use of contrast media, while maintaining high spatial resolution. Al-

though XPCi techniques are currently limited to synchrotron facilities and spe-

cialized laboratories, the optimization of these methods such that they could be

used in a clinical setting is the primary research interest of many groups.

The aim of the study presented in this chapter was to provide a first proof-

of-principle of the feasibility of using XPCi for post-mortem imaging. To do so,

an experiment was carried out which involved two simplifications. First, the sim-

plest XPCi method, FSP, was used under ideal conditions, i.e. at a synchrotron

facility. Second, rather than human tissue, a newborn piglet was used as an an-

imal model owing to its anatomical similarity to a human foetus in shape, size

and general anatomy.
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3.2 Materials and methods

3.2.1 Sample preparation

A deceased new-born piglet, acquired from a local farm near the imaging site

which supplies the food industry, was used as a test sample. Ethical approval was

not required, and no animals were sacrificed for the purpose of this experiment,

since the animal died naturally at birth. For ease of prolonged handling, and

since it has been reported to have no effect on the resulting image contrast [95],

the piglet was fixed using a 4% formalin solution. It was then placed in a custom-

made plexiglass cylinder (10 cm diameter, 25 cm height) which maintained it in

a fixed (vertical, head up) position during the CT scan.

3.2.2 Experimental setup

The experiment was conducted at the ID17 biomedical beamline of the European

Synchrotron Radiation Facility (ESRF, Grenoble, France) with a FSP arrange-

ment. The working principles of FSP were described previously (see 2.4), and a

schematic of the setup is shown in Fig. 3.1. The source size was approximately

132 µm (horizontal)×24 µm (vertical) (full width at half maximum) and was

located approximately 143 m from the end of the optics hutch where the sam-

ple was placed. A double-crystal Si (111) monochromator provided X-rays with

an energy of 52 keV. The beam’s vertical dimension was approximately 5 mm.

The sample was placed downstream of the monochromator, on translation and

rotation stages. The object-to-detector distance (zod) was approximately 10 m.

Images were acquired using a FReLoN CCD camera, custom-developed in-house
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at the ESRF, with an effective pixel size of 46×46 µm2. The recorded FOV was

2048×110 pixels, corresponding to approximately 5 mm vertically, and thus re-

quired vertical scanning of the sample to cover its full length (approximately 25

cm). This was achieved by acquiring a 5 mm thick, full CT data set (“sub-scan”)

of the sample at a given vertical position, then shifting the sample vertically by

slightly less than 5 mm (to create an “overlap” and avoid missing information)

and repeating the procedure until the full volume was covered. As the sample

was also larger than the horizontal FOV, projections were acquired using the

half-acquisition method, i.e. the sample was rotated over 360 degrees while its

centre was aligned with the edge of the FOV [96]. This is equivalent to acquiring

projections of both halves of the sample, each over 180 degrees. Each CT scan

consisted of 8000 equally spaced projections, each of which was acquired with a

15 ms exposure time. Furthermore, for each scan a total of 40 images without a

sample (i.e. “flat fields”) were taken: 20 images immediately before the scan and

20 images immediately after. These were averaged and used to correct the FSP

projections for beam and detector non-uniformities.

3.2.3 Image processing

Each of the raw FSP projections was normalized by division by the flat-field

image, and composite projections of the full sample were created to account for

the use of the half-acquisition method. This was done by adding pairs of projec-

tions separated by 180 degrees, at their overlap position (i.e. centre-of-rotation

(COR)), after horizontally inverting the second projection of the pair. It should

be noted that although attempts were made during the experiment to align the
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Figure 3.1: Schematic representation of the FSP setup at the ESRF. The X-ray
beam is wide in the horizontal (x) direction and narrow in the vertical (y) direction.
The large object-to-detector distance (zod), jointly with the beam coherence, gives
rise to the phase signal. The sample was rotated around the y-axis.

axis-of-rotation with the vertical axis, it is apparent that these were slightly mis-

aligned, as the COR position varied between subsequent scans, and even within

a sub-scan (consisting of about 100 pixel rows). As can be seen in Fig. 3.2,

misalignments which were not corrected led to artefacts in the reconstructed CT

slices. This manifested in the form of a bright/dark dot at the COR for mis-

alignments of 1-2 pixels, with additional streaks if the misalignment was more

substantial. To avoid these, the overlap position was adjusted manually for each

sub-scan until the artefacts were minimized.

In order to extract the phase information, a phase-retrieval algorithm was ap-

plied to each projection. As previously discussed in 2.4, a common FSP phase

retrieval method was developed by Paganin [56]. Using Paganin’s algorithm, the

projected thickness of a homogeneous sample with known δ and β values can be
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Figure 3.2: Reconstructed CT slices from unprocessed projections showing how
image artefacts increase if the overlap position is not chosen accurately during the
half-tomography correction. Resulting streaks due to shifting the overlap position
by 0.5 (b) and 2.5 (c) pixels with respect to (a).

retrieved from a single image. However, if the sample contains additional mate-

rials with significantly different refractive index values, Paganin’s algorithm will

reconstruct these wrongly; primarily affecting their interfaces with other mate-

rials, either by over-blurring or by leaving the characteristic FSP double-fringes

under-compensated.

Typical refractive index values of different tissue types can be seen in table 3.1.

It is apparent that while most soft tissue organs have small differences in their

values, the refractive index values of bone are significantly different. Therefore,

when attempted to use Paganin’s retrieval algorithm with input values of either

bone or soft tissue, the resulting CT slices suffered from the above mentioned

artefacts. To overcome this, a phase retrieval algorithm introduced by Beltran

[97] was implemented in the reconstruction. Beltran’s algorithm is based on the

TIE and can be viewed as an extension of Paganin’s algorithm. Beltran’s method

enables the retrieval of 3-dimensional maps of the complex refractive index of a

multi-material object [97, 98]. For quantitative retrieval, the algorithm requires

a priori knowledge of the complex refractive index of each material in the sample,
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Table 3.1: Refraction and attenuation values of different tissue types at 52 keV
[4].

Tissue/Organ δ β
Blood 0.895E-7 4.486E-11

Bone (cortical) 1.518E-7 1.428E-10
Brain 0.882E-7 4.398E-11
Fat 0.788E-7 3.605E-11

Lung 0.887E-7 4.431E-11
Muscle (skeletal) 0.887E-7 4.418E-11

Skin 0.917E-7 4.535E-11

along with the total projected thickness of the object. The algorithm is derived

by considering a ternary object composed of material j embedded in material 1,

with the latter slowly varying in thickness along the transverse direction. The

projected thickness of material j can then be calculated according to:

tj(x, y) = − 1

∆µ
log

(
F−1

{
1

zodγκ2
⊥ + 1

F

[
I(x, y, z = zod)

I0exp [−µ1A(x, y)]

]})
, (3.1)

where ∆µ = µj − µ1, γ =
δj−δ1
µj−µ1 , and µ1, δ1, µj, δj are the attenuation and re-

fraction terms of materials 1 and j, respectively. The total projected thickness

is given by A(x, y) = t1(x, y) + tj(x, y). The meaning of the other terms is the

same as that given in 2.4, where Paganin’s algorithm was first discussed.

In practice, A(x, y) was obtained in the following way: Eq. 2.7 was used to recon-

struct for each angular view the projected thickness of the “encasing material”,

t1(x, y) (in this case - soft tissue), i.e. making the assumption that the entire

sample is homogeneous. For each of these projections, A(x, y) was calculated

for each detector pixel row, by locating the edges of the cylinder containing the

sample, calculating its radius and using these values in an equation calculating
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the projection of a circle. Eq. 3.1 was then used to calculate tj(x, y), using δ and

µ values of soft tissue (encasing material; 1) and bone (embedded material; j),

and the total projected thickness A(x, y), calculated as just described.

CT slices of tj can then be reconstructed by using the FBP formula with the

Ram-Lak filter. However, in practice, prior to the phase retrieval and CT re-

construction steps, projections from consecutive sub-scans were vertically joined.

This was done at their overlap position, and included the averaging of the overlap-

ping areas, to account for minor differences in background intensity. The reason

for joining the projections prior to the retrieval step, was that as the retrieval

algorithm operates in 2-dimensions, it fails to perform adequately at the top and

bottom of a projection. This lead to about 20 detector rows (10 at the top, 10 at

the bottom) with non-physical retrieved values, resulting in non-physical recon-

structed CT slices. Hence, by joining projections from sub-scans, these artefacts

are confined to the top and bottom 10 rows of the full dataset, and the entire

volume of the sample can be reconstructed.

Following CT reconstruction, the Amira platform (Mercury Computer Systems,

Germany) was used for 3-dimensional volume visualization and manipulation.

Volume rendering was performed to assist with organ identification, and slice ori-

entation was varied to allow for best organ visualization, similar to the procedure

followed in standard clinical practice.

3.2.4 Image analysis

The entire data set was assessed by an experienced paediatric radiologist (Owen J

Arthurs, with 8 years’ experience in clinical imaging), to identify internal organs
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and other structures, assess tissue contrast and optimize 3-dimensional organ vi-

sualization, analogous to a clinical setting. Seven organ or body systems were

assessed, including the heart, lungs, kidneys, liver, small and large bowels (in-

testines), brain and spinal cord, and bones (vertebrae), as these are typically the

most important organs to assess in human post-mortem imaging.

Unfortunately, as we had no access to a standard CT scanner, the phase images

have not been directly compared with conventional CT scans of the same sam-

ple. However, to provide quantitative evidence to support the findings of the

radiologist, it is possible to exploit the fact that, in an unprocessed FSP slice

(i.e. where phase retrieval was not applied), the area contrast (i.e. away from

edges of a detail which will exhibit the typical phase-induced fringes) is caused

merely by sample attenuation. Therefore, the contrast-to-noise ratio (CNR) was

assessed and compared in multiple organs for both unprocessed FSP slices and

phase-retrieved slices. The CNR was defined as the difference in mean values of

two closely spaced tissues (each calculated from a homogeneous area away from

edges), divided by the standard deviation of the background noise (measured in

the air gaps in the cylinder). More generally, it should also be noted that the

superiority of phase-contrast images over attenuation contrast images - mainly in

terms of signal-to-noise ratio and CNR - has been previously reported in samples

of similar size and complexity [99].

3.3 Results

Table 3.2 provides a quantitative comparison by reporting the measured CNR

values for different organs for both unprocessed and phase-retrieved FSP slices.
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Table 3.2: Contrast-to-noise ratio (CNR) values for different organs in unpro-
cessed and phase-retrieved FSP slices.

Tissues compared Unprocessed FSP CNR Phase-retrieved FSP CNR
Small intestine -
free peritoneal fluid 1.0 4.6
Kidney - intestine 1.6 7.1
Heart - artery 1.1 5.5
Kidney - liver 1.6 5.9
Muscle - stomach 1.2 9.5

In all cases, CNR values were higher in phase-retrieved slices, with an increase

factor ranging from 3.7 to 7.9. This can be visually appreciated in Fig. 3.3,

which presents both an unprocessed FSP (Fig. 3.3(a)) and phase-retrieved slice

(Fig. 3.3(b)), each windowed to optimize the visualization of the same region in

the heart. The heart’s structure was clearly visible in the phase-retrieved slice,

owing to the increased soft-tissue contrast arising from sensitivity to phase shifts

induced by the sample.

All seven organ or body systems were visualized with sufficient contrast and

adequate resolution, using the described FSP setup. Fig. 3.4 displays images

of key organs for the purpose of a post-mortem examination. The anatomy of

the heart is depicted with a high level of detail (Fig. 3.4(a,b)); all four cardiac

chambers with the great vessels were identified, including high-quality visualiza-

tion of the cardiac valves (such as the pulmonary valve, Fig. 3.4(b)). Although

attempts were made to minimize the effect of variation in background intensity

between sub-scans which were joined, a remnant of these intensity differences can

be seen in the form of the striations in Fig. 3.4(a). Lung structure is also shown
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Figure 3.3: Phase retrieval (b) provides higher soft-tissue contrast compared
with an unprocessed FSP (a) image of the same axial slice through the thorax,
showing normal heart and lungs. Large bilateral post-mortem pneumothoraces are
demonstrated (non-pathological).

clearly (Fig. 3.4(c,d)); the architecture shown in Fig. 3.4(d) was visualized by

magnifying and reconstructing the minimum intensity projection over 24 slices.

The anatomy of the right kidney is shown in two orthogonal views (Fig. 3.4(e,f))

and in a false-colour maximum intensity projection image obtained by using 31

slices (Fig. 3.4(g)). The renal pelvis emerging into the proximal ureter is clearly

shown in Fig. 3.4(e), and the vascular system is depicted in detail in Fig. 3.4(g);

no intravascular contrast agent was required.

A coronal slice of the head is shown in Fig. 3.5(a); the contrast was optimized for

soft-tissue, causing the nasal canals and skull to appear over-exposed, while the

observed striations are again related to the normalization process between sub-

scans. The high soft-tissue contrast in the eyes and olfactory bulb can be easily

appreciated. Figure 3.5(b) shows a magnified slice of the brain (maximum inten-

sity projection using 28 slices), in which white and grey matter in the cerebellum
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can be clearly differentiated, despite very similar δ values and the comparably

strong signal from the adjacent skull.

Figure 3.4: Excellent soft-tissue contrast allows for a high level of detail of the
organs typically identified and examined at autopsy. Internal cardiac structures are
clearly demonstrated, including ventricular chambers in sagittal (a) and oblique
axial orientations ((b), FOV: ∼4×7 cm for both) and the outflow tract valves [e.g.
pulmonary valve; arrow in (b)]. Lung windowing permits detailed examination
of the lung parenchyma (coronal; (c), FOV: ∼5×3 cm) which may be further
enhanced using magnified minimum intensity projection images for structural detail
((d), FOV: ∼1.5×2.5 cm). Axial and coronal images of the kidney ((e) and (f),
respectively (FOV ∼2×3 cm for both)) allow the normal collecting system and
ureter (e; arrow) to be identified, and the internal vascular anatomy can be assessed
on false-coloured reconstructed maximum intensity projection images ((g): FOV
∼2×3 cm).

Figure 3.6 demonstrates the high dynamic range of this imaging technique. In

this figure, good soft-tissue contrast is evident when visualizing the small intes-

tine (Fig. 3.6(a)), liver (Fig. 3.6(b)) and eye, down to the cranial nerves (Fig.
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3.6(c)). However, although the protocol was designed to optimize visualization

of soft-tissue, this does not compromise the quality of bone imaging, as effective

windowing allows the visualization of both soft- and hard-tissue details. Indeed,

Fig. 3.6(d) demonstrates the high resolution and contrast of a vertebral body

obtained with the FSP setup. Therefore, XPCi allows all different components of

of a complex biological sample to be adequately resolved through the acquisition

of a single data set.

Figure 3.5: Brain imaging. A coronal slice through the brain, showing normal
globes and olfactory structures ((a), FOV ∼10×15 cm). A sagittal maximum inten-
sity projection image of the cerebellum showing white/grey matter differentiation
((b), FOV ∼1.8×2.2 cm).

3.4 Discussion and conclusion

This study confirmed that XPCi holds great promise as a tool for whole body

post-mortem imaging. The results demonstrate that XPCi can simultaneously

provide high quality images of both bone and soft tissue for this clinical ap-

plication. With further optimization for use with commercially available X-ray

sources, XPCi CT has the potential to become a clinically useful post-mortem
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imaging modality.

Figure 3.6: High soft-tissue contrast allows detailed examination of several
anatomical structures. Examples include oblique axial slices of the abdomen
demonstrating normal intestinal wall and lumen (a; arrow) and hepatic architecture
(b; arrow). Magnified oblique sagittal views through the orbits and globe allow the
optic nerve to be assessed ((c), FOV ∼6×4 cm; arrow). Using different windowing
provides high bone detail, such as seen in this axial slice through a single vertebral
body ((d), FOV ∼4×4 cm).

In this proof-of-principle study, a FSP setup was used with SR. While FSP does

not require the use of any optical elements and is therefore easy to implement, it

requires highly coherent radiation, which limits its use outside specialized facil-

ities. Nevertheless, as mentioned previously, several XPCi methods can now be

implemented with laboratory sources [27, 32, 33, 100]. Indeed, it is the possibility

of translating these results to a laboratory setting by using either EI or another
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lab-based XPCi method which supports the relevance of the work presented here.

In particular, it has been recently shown that for certain samples, images obtained

with the lab-based EI setup were of similar quality to those obtained with a FSP

setup at a synchrotron [14].

The results shown in table 3.2 provide some form of comparison between XPCi

and conventional attenuation-based imaging; however, these are drawn from the

same data set, which was optimized for phase imaging. In the future, a direct

comparison with conventional CT could be made. Where no access to a stan-

dard CT scanner exists, a comparison can be made with an additional data set

obtained with a short propagation distance, such that it approximates to a con-

ventional CT setup.

The sample used in this experiment was fixed using formalin solution. This

procedure is currently common for XPCi CT [99, 101, 102, 103, 104, 105] since

it simplifies specimen-handling, and has been reported to have no effect on the

resulting image contrast [95]. Although formalin fixation is routinely used in

diagnostic histopathology practice, in the future, when an optimized laboratory-

based XPCi system will become available, it should be possible to image both

fixed and non-fixed samples. This advancement however is dependent on the

possibility of performing fast CT scans in the laboratory, which is indeed the

aim of many recent studies. With regards to the EI method, such work includes

the single-image retrieval algorithm developed by Diemoz et al. [82] and its

extension to a multi-material object, which will be introduced in chapter 5. Gen-

erally speaking, lab-based EI XPCi CT seems to possess ideal characteristics for
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the imaging of small fetuses (<24 weeks’ gestation), which is an application for

which conventional methods currently struggle to produce images with sufficient

diagnostic quality [94]; other lab-based implementations of XPCI could present

similar advantages. Furthermore, although not shown here, it should be noted

that software like Amira allows segmenting specific organs and measuring their

size (width, length, volume etc.), which can further assist in the identification of

anatomical abnormalities.

As a final note, it should be pointed out that although a newborn piglet was

used in this study, the results are likely to be generalizable to other animal mod-

els and human foetal tissue. This animal model was specifically chosen owing its

similarity to a human foetus in terms of size and body components. All of the

shown structures would be of potential significance during a conventional human

perinatal autopsy. A variety of techniques are currently required for human post-

mortem imaging in order to cover a range of body sizes, with different technical

attributes for soft-tissue and bone imaging. Were XPCi to be available and op-

timized for human use, particularly for smaller foetuses, then XPCi CT would

have the potential to become a clinically useful post-mortem imaging modality,

alongside other existing techniques including conventional CT and MRI.

In conclusion, the results of this study demonstrate that XPCi CT is applica-

ble to relatively large, unstained biological samples, and that major organs can

be visualized with the required contrast and resolution for the purpose of clin-

ical diagnostic use. This experiment was conducted as a first proof-of-principle

study using SR and an animal model, and successfully demonstrated the feasibil-
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ity of using XPCi methods for such applications. Future studies should focus on

translating this application to a clinical environment, such that XPCi CT could

become a practical alternative to perinatal autopsy. The work presented in the

following chapters was aimed at advancing the current lab-based EI CT system

such that it could be used in a robust way, for a range of applications, perinatal

autopsy being one of them. With further successful developments of EI CT, it

could be possible to perform post-mortem imaging of human foetuses in a lab-

oratory, thus providing a method with the potential for accessible, inexpensive

imaging with high throughput.
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4

Robust multi-modal retrieval

strategies for EI CT

The most commonly used phase retrieval algorithm in EI is the one which was

described in chapter 2 (section 2.5.3), which requires two images per view (ac-

quired at two different positions of the sample-mask, such that opposite edges of

the pixel are illuminated) [73, 74]. By using this algorithm, separate images of

the refraction and attenuation properties of the object can be obtained.

So far, quantitative and high-contrast images of a range of samples were obtained

by using the 2-image algorithm, on datasets acquired both at synchrotrons and

laboratories, in planar and CT modes [14, 18, 74]. Nevertheless, this was not

the case for all samples, and indeed for some (specifically a subset of thick, low-

contrast samples, see Fig. 4.1), CT reconstructions of lab-based scans were of

poor quality, often suffering from excessive noise and severe artefacts.

The work presented in this chapter aimed to provide a better understanding of the

origin of these artefacts, and to develop new strategies for removing (or reducing)
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Figure 4.1: Examples of lab-based EI CT reconstructions suffering from high noise
levels and ring artefacts. Retrieved phase slices of (a) a human kidney sample, and
(b) a human atherosclerotic plaque specimen. Both samples were placed in a plastic
cylinder (diameter=7 mm) for imaging.

them such that quantitative CT scans can be performed in the laboratory on a

wider range of samples.

In the first part, the results of a simulation study aimed to characterize different

sources of noise and artefacts in experimental CT scans are presented. Four

different sources of error were considered and modelled, and their effect on CT

reconstructions was investigated via simulated data.

In the second part, a new retrieval algorithm specifically aimed at multi-modal,

high-resolution lab-based CT scans is developed, to overcome the main sources of

error affecting EI CT. The algorithm is first validated using simulated data, and

its ability to remove severe image artefacts is demonstrated by applying it to an

experimental dataset of a complex biological sample.
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4.1 Characterizing and modelling artefcats

4.1.1 Background and motivation

When trying to identify sources of error in EI CT imaging, it is important to con-

sider all the different steps which occur during and after the scan. For example, a

typical EI CT imaging sequence is as follows: first, an IC scan is performed, where

multiple images are acquired in the absence of a sample, as the sample-mask is

translated over one period. The CT scan then begins: for each view, flat-field

images are acquired (i.e. without a sample in the FOV), at the sample-mask po-

sitions chosen for imaging. The sample is then moved into the FOV, and images

are acquired again at the chosen positions of the sample-mask. When dithering

is performed, for each position of the sample-mask, multiple images are acquired

as the sample is translated by sub-pixel steps (“dithering steps images”). The

sample is then rotated, and the same process is repeated for the next view.

To process the data, images containing the sample are first normalized by the

flat-field images, to correct for beam and detector non-uniformities. Then, a

high-resolution (“dithered”) image is obtained by combining the images corre-

sponding to the different dithering positions of the sample. To obtain separate

attenuation and refraction images, the phase retrieval algorithm is then applied

to the dithered images (which were acquired at different positions of the sample-

mask). From the retrieved images, separate sinograms of the sample’s attenuation

and refraction are created, and are used as input for CT reconstruction using FBP

(with the Ram-Lak and Hilbert filters, respectively).

Therefore, any error related to the movement of the sample (translation, rota-

tion) or sample-mask (translation) during the scan, or errors arising from beam
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instability, detector defects and masks misalignment or defects, could propagate

in a non-intuitive way during the post-processing steps and affect the appearance

of CT reconstructed images.

Wave-optics simulation

In order to identify the main sources of error which lead to common artefacts

in EI CT, a simulation study was performed. The simulation is described in

detail in a publication by Vittoria [106], in which it is shown that by using the

wave-theory of optics in the Fresnel approximation, a Fourier formulation of EI

imaging can be derived. The simulation algorithm has been implemented in

Matlab (Mathworks, USA) and is computationally efficient. Vittoria’s algorithm

enables varying different parameters of the EI setup to retrieve the 1-dimensional

signal which would be detected by a detector row for a given sample.

This is done by realizing that the EI system can be described as a series of

free-space propagations and transmissions through objects (here, objects refer

to both the sample and the masks). The evolution of the beam’s intensity as

it propagates in free-space between the source and the sample-mask (assumed

to be at the same plane as the sample), and between the two masks, can be

described by the Fresnel-Kirchhoff integral in the Fresnel approximation. For

a thin object (sample or masks) satisfying the projection approximation, the

effect of its presence on the beam can be taken into account by the complex

transfer function, Tobj(x) = exp[−iΦ(x) − M(x)], where Φ(x) = k
∫
δ(x, z)dz

and M(x) =
∫
µ(x, z)dz. The simulation therefore predicts the beam’s intensity

evolution as it is radiated from a source, propagates a certain distance until it

is transmitted through the sample-mask and sample, then propagated in free-
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space again until it is transmitted through the detector-mask, and sampled by

the detector pixel. The simulation enables the variation of all components: i.e.,

the spatial distribution of the source can be chosen, along with a given spectrum

if a polychromatic beam is considered. The masks’ material and thickness can

be varied, as can their aperture size and period. The sample’s composition and

geometry can be modified to examine different cases, and the distances between

the source and the masks can be varied. If necessary, the detector’s point-spread

function can be included by convolving the signal with a Gaussian curve of a given

width, while the detector energy response can be incorporated by modifying the

employed X-ray spectrum. When simulating a polychromatic beam, the detected

signal is evaluated for each energy in the spectrum, and the polychromatic signal

is calculated as a weighted sum. Furthermore, sample dithering can be simulated

by evaluating the detected signal at different positions of the sample, the latter

determined by the number of dithering steps and the masks’ period.

To adapt the simulation code to a CT scan, the above algorithm was looped over

a specified angular range, with the sample rotated for each angular view. The

rotation of the sample (numerical phantom) was implemented by calculating the

projected thickness of the sample as a function of the rotation angle, prior to

computing the sample’s complex transmission function, Tobj(x).

4.1.2 Methods and results

For this initial study, the simplest phantom was chosen - a homogeneous rod.

This choice was motivated by the realization that an ideal reconstructed CT slice

would display a uniform, flat disk, and any other features could be regarded as
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image artefacts. For comparison with experimental data, the phantom and EI

parameters were chosen to match those used in the laboratory. The phantom

was modelled as a polymethyl methacrylate (PMMA) rod with a 5 mm diameter,

and its refractive index values were taken from the ICRU 44 database [4]. The

source-to-object and object-to-detector distances were set as zso = 1.6 m and

zod = 0.4 m, and a total of 80 detector pixels of size 100 µm were simulated. The

sample-mask period and aperture size were 79 µm and 10 µm, respectively. The

detector-mask period was 100 µm with an aperture size of 17 µm.

First, an IC scan was simulated (as is necessary for the phase retrieval step),

for 30 positions of the sample-mask over one period. Then, for the simulated

CT data, the sample was rotated over 180 degrees, with a 0.5 degree step. At

each view, images were acquired at two positions of the sample-mask, xe = ±8µm

with respect to the position at which they are fully aligned with the detector-mask

apertures (i.e. maximum of the IC). Images acquired at these positions will be

referred to as IL and IR indicating these were acquired on the “left” and “right”

slopes of the IC. To avoid under-sampling, at each position of the sample-mask,

the sample was dithered using 16 dithering steps, which were then recombined

to create high-resolution projections. From these, two sinograms (SL, SR) were

created, corresponding to the signal detected at the two sample-mask positions.

It should be noted that the output of the simulation is an ideal, noise-free signal.

Therefore, to test the effect of different sources of error, these were added to SL

and SR directly, prior to the phase retrieval and CT reconstruction steps.

In this study, 4 different possible sources of error were considered, all of which

could be present during experimental CT scans and affect the final reconstruc-

tion. The following provides a description of the way these can arise, how they
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were modelled and implemented via simulation, and their observed effect on re-

constructed CT slices.

1. Masks/detector imperfections - This refers to the case when the de-

tected intensity in specific pixels in the detector row is considerably and

consistently higher/lower than the intensity measured by other pixels (in

the absence of the sample). This situation can occur due to major defects

in the masks (e.g. if the size of an aperture is significantly reduced) or if the

detector pixel itself is faulty. This was modelled as a pixel-specific system-

atic error, present for the same pixel at all views, and in all dithering steps

images. However, the value of the added error could be different between

the images acquired at the two different sample-mask positions (e.g. a re-

duced aperture size can have a different effect on the measured intensity,

depending on its alignment with the detector-mask aperture).

To study the effect of such an error, different “error vectors” were created

(with dimensions equal to that of the simulated detector row), and were

added to the simulated signal of each dithering step image. From these,

dithered images were created, which were then used to form correspond-

ing sinograms. The 2-image phase retrieval algorithm was applied to the

sinograms, and CT reconstruction followed. This procedure was repeated

multiple times, for different error vectors, corresponding to different posi-

tions of the defective pixels, and different error values.

The addition of such a systematic error had the effect of creating thick

rings in the reconstructed phase slice. This is similar to conventional,

attenuation-based CT, where ring artefacts are common, and originate from

defective pixels. However, unlike in attenuation-based CT, the rings in the
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EI phase slice are thick and smeared. This is due to two reasons: the fact

that dithering is used, hence rings are as wide as the number of dithering

steps used (instead of having a 1 pixel width), and the fact that the differ-

ential phase sinogram is integrated during the CT reconstruction step with

the Hilbert filter (causing the smearing of the rings).

Figure 4.2: The effect of 3 defective pixels on a CT slice. (a) The error vectors
which were added to the left (blue) and right (orange) images. (b) The added
error appears as horizontal lines in the retrieved differential phase sinogram. Re-
constructed phase CT slices from a 360 (c) and 180 (d) degrees sample rotation
showing full and partial ring artefacts, respectively.

Furthermore, the rings’ intensity and position changed according to the

chosen error values (and their difference between the right and left images),
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and their position on the detector row. Similar to the case of conventional

CT, a 180 degrees rotation results in partial rings, while full rings are ob-

served if the sample is rotated over 360 degrees.

An example for the effect of this systematic error can be seen in Fig. 4.2,

where the used error vectors are shown in panel (a), the retrieved differen-

tial phase sinogram is shown in panel (b), and panels (c) and (d) show the

reconstructed CT slices, for rotations of 360 and 180 degrees, respectively.

In addition, by keeping the error value constant while varying the defec-

tive pixel position on the detector, it was found that the ring’s intensity is

inversely proportional to the ring’s radius (i.e. pixel distance from COR).

This is demonstrated in Fig. 4.3 which shows the ring intensity as a func-

tion of its radius.

Figure 4.3: The ring intensity is inversely proportional to its radius, as demon-
strated by plotting profiles (corresponding to the red line in (b)) across multiple
CT slices, each reconstructed after adding the same error value to a single detector
pixel, at different positions on the detector row. The CT slice in (b) is showing the
case of the defective pixel closest to the COR, corresponding to the plot with the
highest peak in (a).
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2. Flat-field normalization error - Here, the assumption is that errors or

noise can be introduced when sample images are normalized by flat-field

images. As previously mentioned, for each angular view, the imaging se-

quence entails first acquiring two flat-field images, one at the left position of

the sample-mask (FL) and another at the right position (FR). The sample

is then moved into the FOV, and the sample-mask is returned to the left

position, where images are acquired for each dithering step of the sample

(IL,ds). The sample-mask is then moved to the right position, where the

complementary images are acquired (IR,ds). For the normalization, sample

images from each dithering step are divided by the flat-field images, i.e.

ILN,ds = IL,ds/FL and IRN,ds = IR,ds/FR, and are then recombined to create

highly-sampled images.

Therefore, any discrepancy between the flat-field and sample images can

introduce correlated errors, since the same flat-field image is used for all

dithering steps images in a single view. Discrepancies between the flat-field

and sample images can be either due to random noise, or due to slight

differences in the alignment of the masks caused by the movement of the

sample-mask between their acquisition.

To model this type of error, error vectors were added to the ideal signals

(prior to the phase retrieval and CT reconstruction steps), where the value

added to each pixel was drawn randomly from a uniform distribution with

mean 0. The same error vector was used for all dithering steps images of a

given sample-mask position and view.

An example of the effect of such an error on EI data is shown in fig. 4.4. The

employed error vectors for a particular view are plotted in panel (a), where
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Figure 4.4: The effect of an error in the flat-field normalization on CT slices. (a)
The error vectors which were added to the left (blue) and right (orange) dithered
images of the first angular view. (b) The retrieved differential phase sinogram. (c)
Reconstructed phase slice, windowed to optimize the visualization of the resulting
clumpy noise structure. (d) The NPS of the noise present in the object, shown
using a logarithmic scale.

the reader can notice that although the values were randomly drawn from

a uniform distribution for each dithering step image, when these images are

recombined to form the dithered image, the resulting error vectors have a

“stepped” appearance (since the error values are constant for all dithering

steps of the same pixel). The resulting differential phase sinogram is shown

in panel (b), which displays what seems at first as random noise. However,

the CT reconstruction shown in panel (c) reveals that the noise is correlated,

leading to a “clumpy” noise texture. To provide complementary informa-
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tion, a plot of the noise-power-spectrum (NPS) of the noise present in the

imaged object, is shown in panel (d) using a logarithmic scale. The NPS has

become a common tool for the characterization of the noise behaviour of CT

systems, by presenting the distribution of noise power over different spa-

tial frequencies [107, 108, 109]. It therefore provides information about the

texture of the noise in addition to its magnitude; white noise has constant

magnitude over all frequencies, while increased noise power concentration

at low or high spatial frequencies implies coarse (“clumpy”) or finer grain-

iness of the noise pattern, respectively [110]. The NPS was calculated by

selecting a region within the (homogenous) object in the reconstructed CT

slice, subtracting its mean, taking its 2-dimensional FT and calculating the

latter’s square modulus at each spatial frequency, which were then radially

averaged.

As expected from the appearance of the CT slice, which featured a clumpy

noise structure, the NPS associated with this type of error presents a higher

noise power concentration at low spatial frequencies, and its shape resem-

bles that of a FT of a rectangular function, consistent with the “stepped”

appearance of the noise in dithered images. In this case, the width of the

rectangular function is given by the sample-mask period, i.e. 79 µm, which

is in agreement with the locations of the NPS minima, at integers of the

corresponding spatial frequency 1/79 µm−1 = 12.66 mm−1.

3. Intensity changes between dithering steps - This type of error consid-

ers the situation where the beam intensity varies randomly between acquired

projections between angles, but also between dithering steps at the same
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angle. To minimize this effect, in practice, before the pixel-by-pixel normal-

ization of the sample image by the flat-field image, an intensity correction

factor is calculated by comparing the average intensity in a background re-

gion in the sample image, to the same region in the flat-field image. The

entire sample image is then divided by the correction factor, and only then

does the pixel-by-pixel normalization step occurs. However, this process

has the potential to introduce errors, which would be characterized by the

same magnitude for all pixels in a given dithering step image.

To model this, different error vectors were created for each dithering step

image, each sample-mask position and each view. However, for each unique

image, the same error value, randomly drawn from a uniform distribution

of mean 0, was added to all pixels in the image.

Fig. 4.5(a) shows an example of error vectors added to the ideal, dithered

(left and right) images. These error vectors are shown for 5 detector pix-

els (=80 image pixels after dithering recombination) to emphasize that al-

though the values are drawn randomly for each dithering step image, their

pattern repeats with the number of dithering steps (=16). In this particular

example the error values are relatively small (maximum 2% of the signal

strength), resulting in a differential phase sinogram (panel (b)) which seems

to be artefact free. However, when the contrast in the reconstructed phase

slice is stretched (panel (c)), it is apparent that this type of error creates a

fine noise pattern which repeats itself on a small scale.

This can be better appreciated by considering the corresponding NPS (panel

(d)), which presents low noise power at all frequencies, apart from the ones

corresponding to multiples of the sample-mask period (i.e. the distance

99



Figure 4.5: The effect of errors arising from intensity variations between acquired
projections. (a) Error vectors added to (5 detector pixels of) the left (blue) and
right (orange) dithered images of a single view. (b) The retrieved differential phase
sinogram. (c) The reconstructed phase slice, containing a fine noise structure re-
vealed by appropriate windowing. (d) The NPS of the noise present in the object,
shown using a logarithmic scale.

separating adjacent detector pixels, after dithering recombination). This

indicates an underlying periodicity in the noise structure, which manifests

as the fine structure seen in the phase slice.

4. Spatially correlated shot noise - In this part, the aim was to study the

effect of statistical noise, associated with the production of X-rays, which

can potentially have a certain spatial correlation between neighbouring de-

tector pixels, due to either detector cross-talk, or slow variations in the
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masks. To model this, unique error vectors were created and added to each

dithering step image, before the creation of dithered images. To create

each error vector, error values (for each detector pixel) were first randomly

drawn from a normal distribution (to simulate shot noise), and the entire

sequence was then convolved with a Gaussian kernel. Depending on the

chosen value for the standard deviation of the Gaussian kernel, the noise

structure in the reconstructed phase slice changed. In general, as the stan-

dard deviation was increased, the noise in the phase slice changed from

random, almost white-noise, to one containing both a fine, periodic struc-

ture on small length-scales, and a larger, “clumpy” noise structure on larger

length-scales.

As an example, consider the case shown in Fig. 4.6. Panel (a) presents

the error vectors generated for a particular view and dithering step, for the

left (blue) and right (orange) images, using a 1-dimensional Gaussian ker-

nel with a 0.7 pixels standard deviation. While a certain degree of spatial

correlation can be observed in these error vectors, this is more difficult to

detect in the error vectors created when the dithering steps images are re-

combined (see panel (b)). The resulting phase slice is shown in panel (c), in

which noise patterns on both small and larger length-scales can be observed.

On the other hand, when the standard deviation of the Gaussian kernel is

reduced to 0.2 pixels, the noise in the resulting phase slice does not seem to

present any spatial correlation (panel (d)). This can be better appreciated

by considering the NPS plots corresponding to both slices (blue and orange

lines corresponding to reconstructions in panels (c,d), respectively), shown

in panel (e). The orange curve is simply the result of adding random noise
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Figure 4.6: Noise patterns arising from correlated shot noise. (a) Error vectors
generated for the left (blue) and right (orange) dithering step images of a particular
view, and the error vectors obtained for the corresponding dithered images (b).
Phase slices (c,d) and corresponding NPS plots on a logarithmic scale (e). A
Gaussian kernel with standard deviation of 0.7 pixels was used to generate (a-
c), while (d) was generated using a Gaussian kernel with a 0.2 pixels standard
deviation.
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to the signal. The blue curve, on the other hand, shows interesting features:

similarly to the previously considered noise (arising from intensity changes

between dithering steps), the NPS plot here is periodic, and features peaks

at frequencies determined by the sample-mask period, which gives rise to

the fine noise pattern seen in the slice in panel (c). However, here the peaks

are not narrow, and instead their width indicates that there is a spatial cor-

relation between different pixels, giving rise to the “clumpy” noise structure

observed in panel (c).

For comparison with experimental data, a CT scan of a PMMA rod (5

mm diameter) was performed in the laboratory using the EI set up. As

a source, the Rigaku MicroMax 007 HF rotating anode (molybdenum) X-

ray tube (Rigaku Corporation, Japan) with a focal spot of approximately

70 µm was used, and was operated at 25 mA and 35 kVp, with a 30 µm

molybdenum filter. The detector was a CMOS image sensor C9732DK-11

(Hamamatsu, Japan) with a pixel size of 50×50 µm2. However, the effective

pixel size in the x-direction was 100 µm due to the line-skipping design of

the detector-mask, where every second detector pixel column is completely

covered [111], and was therefore discarded during data processing. Both

masks were fabricated by electroplating gold strips onto a graphite sub-

strate (Creatv Microtech Inc., Potomac, MD, USA), and their dimensions

and relative distances matched those implemented in the simulation study

(apart from the fact that the detector-mask period was 98 µm, since in

reality there is a 4 cm gap between the mask and the detector). The CT

scan consisted of 360 equally spaced views, acquired over 180 degrees. At
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each view, flat-field and sample images were acquired at the left and right

positions of the sample-mask (xe = ±8µm). For sample images, 16 dither-

ing steps were employed. The exposure time per projection was 4 s. Data

processing and CT reconstruction followed the same procedure described

above.

The reconstructed experimental phase slices presented a “clumpy” noise

structure in addition to ring artefacts. Their NPS was evaluated (an ex-

ample is provided in Fig. 4.7(a,c)): it can be seen that the noise power of

the experimental slice (blue line in panel (c)) has high concentration at low

frequencies, and presents small peaks at regular intervals, which correspond

in real space to the sample-mask periodicity.

In an attempt to recreate the appearance of the phase slice (and hence its

corresponding NPS) using simulated data, different combinations of the

above mentioned error/noise types were added to the simulated signal.

However, the first type of error described (related to ring artefacts) was

omitted in the simulation, owing to its strong dependency on both the cho-

sen error values and their position on the detector row. Figure 4.7(b) shows

a simulated phase slice which was reconstructed using a combination of the

errors described above, and its corresponding NPS is plotted in panel (c,

red line) and shows good agreement with the experimental NPS.

In addition, the phase slice shown in Fig. 4.8 was reconstructed from the

same experimental data, however with the correction for intensity varia-

tions between dithering steps images removed. This is a good example for

an extreme case of the 3rd type of noise modelled by the simulation, and

similar features in the noise structure are seen both in the reconstructed
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Figure 4.7: Experimental (a) and simulated (b) phase slices, and a comparison
between their NPS (c).

slice and in its NPS (panel (b)). As previously mentioned, this error is rou-

tinely corrected for in the processing of the data by rescaling the dithering

steps images appropriately prior to phase retrieval.

4.1.3 Conclusion

A simulation study was performed to investigate the different types of noise and

errors which can be present in EI CT scans performed in the laboratory, and their

effect on the reconstructed phase slices. This was motivated by inconsistencies in

image quality of CT datasets acquired for different samples.
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Figure 4.8: Reconstructed phase slice (a) and its NPS (b) from experimental
data, where no correction was applied for intensity variations between dithering
steps images.

Four different sources of errors were described and modelled, and their effect on

reconstructed phase slices was examined, by both visual evaluation of the CT

slices, and analysis of the NPS. It was shown that errors due to defects in the

masks or detector pixels manifest as blurred, thick rings, while the use of the

same flat-field image for normalization of all dithering steps in a particular view

leads to a “clumpy” noise structure. In addition, random intensity variations be-

tween dithering steps, which are not fully corrected for prior to the phase retrieval

step, create a repeating noise pattern on small length-scales, determined by the

the number of dithering steps and the period of the sample-mask. Last, if shot

noise is spatially correlated, e.g. by the detector cross-talk, it can lead to both

repeating noise patterns on a short length-scale and a clumpy noise structure over

longer length-scales.

A combination of these modelled errors was then used to generate a simulated

phase slice with visual resemblance to an experimental slice, and good agreement

between their respective NPS. This work therefore contributed to the under-

standing of different sources of noise and artefacts in EI CT, hence enabling the
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development of strategies for their reduction, such as the phase retrieval algorithm

described in the following section.

4.2 Retrieval algorithm for high-resolution, multi-

modal EI CT in non-ideal environments

4.2.1 Background and motivation

As previously mentioned, through dedicated algorithms, the EI method enables

the quantitative retrieval of absorption, refraction and ultra-small-angle scatter-

ing in the sample [3, 77], and the spatial resolution in the image can be increased

beyond that traditionally determined by the detector pixel size, through the use

of sample dithering [17]. The use of these characteristic features in combination

with the lab-based CT implementation of EI, can be beneficial to a wide range

of applications.

While both scan time and dose are increased with the number of dithering steps

and number of retrieved contrast channels, for certain applications (e.g. material

science and ex-vivo medical research), the requirements of high spatial-resolution

and multi-modality may be more important than dose or scan time considera-

tions. Such scans however are inevitably long, leaving the system susceptible to

environmental changes, which can in turn lead to image artefacts in the recon-

structed CT data.

In this section, a robust phase retrieval method is presented, developed to provide

a solution for long, high-resolution EI CT scans in non-ideal environments. The

retrieval algorithm is based on a “local” retrieval method developed by Endrizzi
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et al. [78] which has been shown, using planar imaging, to be robust against a

significant degree of system misalignment. The new “modified local retrieval”

algorithm presented here has been developed specifically for CT scans, which are

substantially longer, and more sensitive to local misalignments due to the inte-

gration step necessary for the retrieval of δ from differential phase sinograms.

Furthermore, this new algorithm removes the need to acquire flat-field images at

every projection, thereby leading to a substantial reduction of scan time com-

pared to the previous method, and a potential reduction in the clumpy noise

structure described previously (see section 4.1.2). Importantly, this adaptation

incorporates corrections of time-varying system components, which could be due

to e.g. vibrations or temperature fluctuations, affecting the source and/or the

masks. This is particularly relevant since EI CT is suited for use with com-

mercial X-ray tubes, and so its ability to provide high precision, quantitatively

reliable data in environments affected by such instabilities is crucial to its future

translation into realistic sites such as hospitals and factories. Possible sources of

instability were analyzed, modelled, and incorporated into the simulation frame-

work described at the beginning of this chapter. Following validation on a simple

geometrical phantom, experimental results of a complex biological sample are

presented, demonstrating a very significant improvement in image quality thanks

to the new retrieval method.

4.2.2 Theory

Current EI phase retrieval methods allow the extraction of three different sample

properties: absorption, refraction and scattering. These can be linked to changes
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in the detected intensity distribution in an intuitive way, as demonstrated in Fig.

4.9, in which the beams with and without the sample in place are compared, for

a single detector pixel. Sample absorption leads to a reduction in the total area,

while the shift in the centre position is caused by sample refraction, and sample

scattering broadens the beam.

Figure 4.9: Beam distribution in an EI setup, shown for a single detector pixel.
The presence of a sample leads to an attenuated, shifted and broadened intensity
distribution. Adapted with permission from AIP Publishing: Applied Physics
Letters, Ref [3], Copyright 2014.

The intensity recorded with the EI setup by a single detector pixel can be de-

scribed by:

I(x)

I0

= (C ∗O)(x−∆xR)T , (4.1)

where I0 is the intensity transmitted through the sample-mask aperture, C is the

IC describing the intensity change as a function of relative masks positioning x

(see Fig. 4.11(b)), O is the sample’s scattering distribution, ∆xR is the beam shift

due to sample refraction, T is the fraction of intensity transmitted through the
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sample, and ∗ is the convolution operator [3]. Both C and O can be represented

as a sum of Gaussian functions:

C(x) =
N∑
n=1

An√
2πσ2

n

exp[−(x− µn)2/2σ2
n] , (4.2)

O(x) =
M∑
m=1

Am√
2πσ2

m

exp[−(x− µm)2/2σ2
m] . (4.3)

Thus Eq. 4.1 can be rewritten as:

I(x)

I0

= T
∑
m

∑
n

Amn exp

[
− (x− µmn)2

2σ2
mn

]
, (4.4)

where σ2
mn = σ2

m + σ2
n, Amn = AmAn(1/

√
2πσ2

mn) and µmn = µm + µn.

Equation 4.4 can be analytically inverted to obtain solutions for absorption, re-

fraction and scattering, in the case where three images are acquired in positions

x1 = −x3, x2 = 0 with respect to the IC (“global retrieval”) [77]. When applied

to experimental data, this approach therefore assumes the same positions on the

IC for every pixel over the entire FOV, not taking into account local variations

due to misalignment of optical elements or masks imperfections. These variations

are mostly compensated for by normalizing the raw data by flat-field images.

As has been shown by Endrizzi et al. [78], Eq. 4.4 can also be used to retrieve

sample absorption, refraction and scattering, without making any assumptions

on system alignment. This is done by applying it on a pixel-by-pixel basis, where

Eq. 4.4 is used as a model function for a non-linear curve-fitting, solved by the

least-squares method: the intensity values from the IC scan are used to obtain

reference values for each pixel, of the amplitude, mean, standard deviation and
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offset of the curve. Then, for the same pixel, the intensity values from the sample

images acquired at the three different positions of the sample-mask are used in the

curve-fitting process. The parameters (amplitude, mean, standard deviation and

offset) of the fitted curve are then compared to the reference values, resulting in

the extraction of sample absorption, refraction and scattering. Therefore, owing

to its pixel-by-pixel computation, this method (“local retrieval”) automatically

takes system misalignment and mask defects into account and corrects for them.

This has been applied to planar data, and was shown to correct for a significant

degree of system misalignment [78].

While the algorithm described here is based on the local retrieval method, a fur-

ther extension of the retrieval equation was required in order to adapt it for use

on CT scans. Since sample properties are extracted from comparison with refer-

ence parameters drawn from the IC scan, if the latter change over time due to

system instabilities, the model should account for such changes. In particular, as

shown below, it was found that the mean position of the IC varies over time. To

accommodate for this variation, two correction steps were implemented: the first

was real-time illumination tracking during the scan (as described below), while

the second was incorporated into the retrieval algorithm and involved the use

of information from background regions in the images. This additional informa-

tion was used to estimate the new mean position of the IC (hence updating the

reference value), and therefore added a degree of freedom to the fitting process.

The correction term ∆µ, corresponding to the translational shift of the IC, was

incorporated into Eq. 4.4 in the following way:

I(x)

I0

= T
∑
m

∑
n

Amn exp

[
− (x− µ′mn)2

2σ2
mn

]
, (4.5)
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where µ′mn = µm + µ′n, µ′n = µn(ij) + ∆µ, and i and j correspond to individual

pixel coordinates.

The illumination curve’s mean position can be calculated for each pixel as µn(ij)

from an initial IC scan. To find the translational shift of the IC over time, begin

by defining a background area in the FOV. This background region could be any

part of the FOV which is not covered by the sample throughout its rotation.

However, since information from this region is used to generate correction terms

for the sample data, it is beneficial that the background region is chosen as close

as possible to the sample, typically next to it or above it. For each pixel in the

background region, the new position of the illumination curve’s mean is estimated

as µn im(ij) by means of a least-squares curve fitting using values from the three

images acquired at each dithering step. The shift ∆µ is then determined according

to:

∆µ =

∑
i

∑
j µn im(ij) − µn(ij)

Nij

, (4.6)

where Nij is the total number of pixels in the defined background region. The

shift ∆µ is then applied in the phase retrieval to all pixels in the same dithering

step image. Notably, in contrast to the global retrieval, here no flat-field images

are needed for processing, as all the required pixel-wise information is drawn from

the IC scan.

A diagram of the image reconstruction workflow using the modified local retrieval

algorithm is shown in Fig. 4.10.
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Figure 4.10: The image reconstruction workflow using the modified local retrieval
algorithm.

4.2.3 Methods

Both the experimental and simulated scans described below were performed using

the conventional, lab-based EI CT setup depicted in Fig. 4.11(a) (or its simulated

equivalent). The working principles were described previously in chapter 2 (see

2.5), and the employed source, detector, masks and relative distances matched

those described in the first part of this chapter (see 4.1.2).
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Figure 4.11: (a) A top view of an EI setup with an extended X-ray source. For
CT, the axis of rotation is aligned with the y direction, while the sample is moved by
sub-pixel steps along x for dithering. (b) A typical IC showing intensity variation
as a function of masks displacement over one period. The circles represent typical
choices of mask positions for imaging.

Simulation study

To analyze and understand the effect of system misalignment on the retrieved

phase slices, a simulation study was performed, using the same simulation frame-

work described above [106]. The simulated sample was a uniform rod (1 cm

diameter) with refractive index values similar to those of the experimental data

shown below (see 4.2.4): δ = 1.7 × 10−7 and β = 2.7 × 10−10. A photon energy

of 17.5 keV was assumed, corresponding to the k-alpha line of the molybdenum

target used in the laboratory source.

To test the performance of the proposed retrieval method, system misalignment

was modelled and incorporated into the simulation. This was done by extracting

the IC parameters of each pixel in a detector row from an experimental measure-

ment of the IC. The position of the mean of the IC for each pixel was used to

model pixel-wise misalignment in the simulation, by adding it as an offset to the

centre position of each aperture in the sample-mask, before the generation of the
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simulated detected signal. This is equivalent to each pixel featuring the same IC,

however centred on a different position.

To perform global retrieval, flat-field signals were generated as well, however

with a slightly different misalignment, as is the case in an experimental environ-

ment. The flat-field’s misalignment values were taken from the same detector

row used for the sample signals, however from a subsequent experimental IC

scan. Sinograms were generated at three positions on the IC (at relative masks

displacement xe = −8, 0,+8µm, see circles in Fig. 4.11(b), before adding the

misalignment offset). To test the global retrieval, sample sinograms were first

normalized by the flat sinograms, as would happen in a standard experimen-

tal procedure. The normalized sinograms were then processed with the 3-image

global retrieval algorithm, using the same illumination curve for the entire FOV.

To test the modified local retrieval, sample sinograms (no flat normalization)

were processed with the proposed algorithm, using a differently centred illumina-

tion curve for each pixel, according to the input misalignment. Sinograms of the

sample’s differential phase, absorption and scattering properties were produced

from each of the retrieval methods. For CT reconstruction of the phase maps,

the FBP algorithm was used with the Hilbert filter.

IC stability

One of the greatest advantages of the EI method is that it is suited for use with

commercially available X-ray source and detector technologies, making its trans-

lation to clinical and industrial environments possible. However, such environ-

ments are likely to suffer from non-ideal imaging conditions, such as temperature

instabilities and vibrations of the experimental setup. As all retrieval methods

115



described above rely on the knowledge of the IC, and since high-resolution CT

scans can last hours, it was necessary to observe changes in the IC over time.

Using the experimental setup described above, multiple illumination curves (one

every 15 minutes, over three days) were acquired and analyzed. While the shape

and amplitude of the IC remain reasonably constant over time, the position of

the mean was found to vary in a cyclical pattern, as shown in Fig. 4.12. The

laboratory currently used for EI scans has no measures in place for vibration

damping or temperature insulation, and the plot shown in Fig. 4.12 demon-

strates that indeed environmental changes can have a significant impact on the

IC. To accommodate for these large drifts and ensure that images are acquired

at the correct illumination positions (thus maintaining high refraction sensitiv-

ity), real-time tracking of the illumination level was implemented into the CT

scan. Here, the required spatial shift of the sample-mask is found by comparing

the intensity of a background region in an image to the desired value from the

initial IC scan. The positions of the sample-mask and sample are then adjusted

accordingly.

Experimental data acquisition and processing

A CT scan was performed using the laboratory setup described above. The source

was operated at 25 mA and 40 kVp, and the exposure time per projection was 2 s.

An IC was acquired by recording the detected intensity as the sample-mask was

shifted with respect to the detector-mask over one period. The scanned sample

was a rat heart, placed in a plastic container. The heart was harvested from an

adult Sprague-Dawley rat weighing about 300 g. The rat was sacrificed by CO2

inhalation and cervical dislocation. Once sacrificed, a midline incision was made
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Figure 4.12: The position of the mean of the illumination curve (IC) as a function
of time, taken from experimental data collected over 3 days. The IC analysis
considered an area of 50x50 pixels in the centre of the FOV.

to completely expose the abdominal cavity and the heart was dissected free and

removed. The organ was then washed with PBS and fixed in 4% PFA overnight.

The heart was freeze-dried at a pressure of 10 mBar overnight in a petri dish.

The scan consisted of 360 views over 180 degrees, with 6 dithering steps per view

corresponding to a resolution of approximately 13 µm in the x-direction, and 3

images (at different positions on the IC) for each dithering step. Flat-field images

were acquired at each view, as they are required for the global-retrieval processing.

The modified local retrieval does not require flat-field images for normalization,

and so the new procedure allows avoiding them completely in the future.

The experimental data was processed using the two different phase retrieval meth-

ods (global and modified local), according to Eqs. 4.4 and 4.5. Although the

real-time illumination tracking procedure ensures that large shifts of the IC are

mitigated, a small shift of the IC was observed between consecutive dithering
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steps. The shift was calculated for each dithering step image using Eq. 4.6, and

the adjusted values were used in the modified local retrieval.

To reduce noise levels in the absorption and scattering sinograms, a 1-dimensional

median filter was applied to the sinograms, using values from 8 (absorption) and

16 (scattering) neighbouring pixels. CT reconstruction of absorption, scattering

and phase maps was performed using FBP with the ramp (absorption, scattering)

and Hilbert (phase) filters.

4.2.4 Results

Data of a rod, simulated with included system misalignment, was used to compare

the performance of the two retrieval methods. Figure 4.13 presents reconstructed

CT images of the sample’s phase, processed with the global (a) and modified

local (b) retrieval. The plot shown (c) compares profiles taken through the cen-

tres of both slices. As expected, the reconstructed slices confirm that masks

misalignment leads to significant artefacts when global retrieval is used, due to

systematic errors in specific pixels. As well as ring artefacts, a gradient can be

observed across the slice in Fig. 4.13(a). This is a result of a gradient and/or

offset in the retrieved differential phase projections due to misalignment, com-

bined with the fact that sample rotation was over a 180 degrees range. While

this could in principle be reduced by acquiring projections over 360 degrees, it is

completely avoided when the modified local retrieval algorithm is used, as seen

in Fig. 4.13(b). As well as demonstrating the removal of artefacts such as rings

and gradients, the results confirm that the method is quantitative; the retrieved

δ value was δret = (1.72± 0.06)× 10−7, compared to the theoretical input value
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δth = 1.70 × 10−7. The small variations in the locally retrieved δ profile are due

to numerical errors of the fitting process used in the algorithm.

Figure 4.13: Phase maps of simulated data of a rod processed with global (a)
and modified local (b) phase retrieval. The reduction of artefacts can be further
appreciated by plotting a profile through the slices’ centre (indicated by the red
lines in (a) and (b)), as shown in (c).

Following confirmation of the effective adaptation to CT of the local retrieval

approach through simulation, the method was tested on experimental data of a

complex biological sample. In Fig. 4.14, slices reconstructed with global retrieval

are shown on the left (a,c) while the panels on the right (b,d) display the same

slices processed with the modified local retrieval approach. As can be seen, there is
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a dramatic improvement in image quality. Areas of severe masks defects can cause

complete loss of information (as seen in the central region in Fig. 4.14(c)), which

can however be fully recovered by using the modified local retrieval. As predicted

by the simulation, the globally retrieved slices also suffer from a gradient, which

is completely eliminated in the locally-retrieved slices.

Figure 4.14: Transverse phase slices of experimental data of a rat heart, showing
the superiority of data retrieved with the modified local method (b,d) compared
with global retrieval (a,c).

It should be noted that the transition from global to local retrieval mostly affects

the retrieved refraction image, while only marginally altering the absorption and

scattering images. This is easily understood by considering that, when local mis-
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alignment is not taken into account, the algorithm incorrectly attributes changes

in the mean position of the IC to refraction by the sample. Absorption and

scattering signals are determined by changes in the amplitude and width of the

beamlets with and without the sample, which are well-described in both cases

through the use of three input frames. Figure 4.15 displays the results of CT

reconstruction of the phase, absorption and scattering (a-c respectively) signals

of experimental data retrieved with the modified local method. Corresponding

magnified views of a region in the heart (rectangle in Fig. 4.15(a)) are shown in

panels (d-f). When comparing these three channels, it should be noted that the

application of the median filter on absorption and scatter data has introduced

a substantial blur to the reconstructed CT slices. However, it should be noted

that filtering was necessary in order to improve the CNR; without filtering, most

features which are now visible would have been hidden in the noise floor. For the

phase slice, no median filtering was required due to its intrinsically high CNR.

As a result, features in the heart are more clearly visualized in the phase slice.

The scattering distribution slice provides some complementary information about

regions in the sample with refractive index inhomogeneity on a scale smaller than

the aperture size of the sample-mask. For example, the disappearance of the

cylinder in the scattering slice confirms it is a highly homogeneous material. The

structures seen in Fig. 4.15(d) appear to be the result of “cracks” in the cardiac

muscle tissue, possibly caused by the freeze-drying process.
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Figure 4.15: CT reconstructed slices of the phase (a), absorption (b) and scatter-
ing distribution (c) of a rat heart, processed with the modified local phase retrieval.
As these data were acquired with a polychromatic spectrum, the reconstructed
maps refer to sample properties estimated at effective energies, indicated by the
hat symbol. (d-f) show their corresponding magnified views of the region in the
rectangle in (a).
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4.2.5 Discussion and conclusion

A robust phase retrieval method has been presented, capable of correcting for local

misalignment and changes to system geometry that might happen during long

acquisitions. This is especially relevant for long, high-resolution multi-modal CT

scans, during which system parameters have been shown to vary significantly over

time, as the source and/or masks can move unexpectedly, due to vibrations and/or

thermal effects. By processing simulated data with the global version of a 3-image

retrieval algorithm, it has been demonstrated that ring and gradient artefacts in

phase slices are related to projections acquired with system misalignment and/or

masks defects, as these create systematic errors in the retrieved quantities. The

modified local retrieval method is able to correct for these systematic errors,

resulting in the removal of artefacts and therefore in a significant improvement

in the quality and quantitativeness of reconstructed images. When applied to

experimental data, locally-retrieved phase slices were free of artefacts, even in

areas where the globally-retrieved slices had rings with up to 100% intensity

variation.

While it is common practice to acquire flat-field images before and/or after a

scan, until now in EI CT, flat-field images were usually taken at each rotation

angle, as has been done here for the “global” processing. In situations where there

are mild changes to system parameters over time, this approach helps minimizing

normalization problems. However, as has been shown, here some parameters

had a significant degree of time dependency, and so the use of multiple flat-field

images was not sufficient to improve image quality. In contrast, the new retrieval

method provides improved image quality, while requiring no flat-field images,
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thereby reducing the EI CT scan time substantially.

The proposed retrieval method is computationally intensive when compared with

the global retrieval, since the fitting process has to be repeated for each pixel

in the image. However, once the shift of the IC is calculated using three frames

per image, the pixel-wise computation implies that the rest of the process can be

parallelized. Combining this with the possibility to compute in parallel different

rows in the image, different projection angles and different dithering steps images,

offers opportunities to significantly reduce computation time.

As mentioned before, the retrieved refraction signal in EI is proportional to the

derivative of the phase shift, and so reconstruction of the phase shift (and hence

δ) requires a 1-dimensional integration (here, performed by the Hilbert filter in

Fourier space). This integration is considered problematic, as any local errors

in the retrieved signal are propagated and affect the image globally, resulting in

artefacts [112]. This emphasizes the need for a phase retrieval method which

reduces the errors in the locally-retrieved signal, such as the one presented here.

Furthermore, the modified local algorithm inherently avoids/reduces 3 out of the

4 sources of error and noise described in 4.1.2: systematic errors are corrected

through pixel-wise computation, flat-fields are not required for normalization, and

intensity changes between dithering steps are corrected using the shift correction

term ∆µ .

While the experiment reported here served as a proof-of-principle on a small

biological sample, it is expected that the method should perform equally well on

large samples, owing to its pixel-by-pixel computation. The resolution can be

further increased by using masks with a smaller aperture size and increasing the

number of dithering steps used, although at the cost of a longer scan duration
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and increased computation time. Nonetheless, the presented retrieval method and

associated correction for time-varying components have the potential to reliably

provide CT scans with a resolution of the order of 10 µm on large samples, in non-

ideal imaging environments affected by vibrations and/or temperature changes.
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5

Single-image retrieval algorithm

for fast CT scans of complex

samples

5.1 Background and motivation

The retrieval algorithm presented in the previous chapter targeted applications

which require the extraction of multiple contrast channels, from high resolution

lab-based EI CT scans. Such scans are inevitably long as multiple images per

view are required, corresponding to different positions of the sample-mask, and

different sub-pixel positions of the object (required by the dithering process). For

many applications however, in particular in the biomedical field, the ability to

perform fast CT scans with reduced dose, is more important than the quantitative

retrieval of multiple contrast channels. Ultimately, the development of strategies

for robust and fast EI CT scans has the potential to transform it into a high
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throughput imaging tool, suitable for e.g. pre-clinical in-vivo applications.

In chapter 2, when reviewing the extension of EI to CT and its subsequent de-

velopments, three retrieval algorithms aimed at reducing scan times were briefly

mentioned. Out of the three, it is Diemoz’s retrieval algorithm which can lead to

the greatest reduction in scan time, as it requires only a single image per view,

and could be implemented with a continuous sample rotation over 180 degrees

[89]. In a similar way to the algorithm developed by Paganin et al. for FSP

[56], Diemoz’s algorithm for EI relies on several assumptions, the main one being

that the sample is quasi-homogeneous (i.e. that it has a constant ratio between

the real and imaginary parts of its complex refractive index). The single-image

algorithm was first applied to planar data acquired with SR, and has been shown

to provide quantitative results when imaging a homogeneous sample, and en-

hanced image quality when imaging complex biological samples [82]. Additional

developments have made the algorithm suitable for use on CT data acquired in a

laboratory environment, with an extended and polychromatic X-ray source [89].

The potential for reduction in scan time was clear: while lab-based, multi-modal

high resolution CT scans can last hours, the use of the single-image algorithm

resulted in the reconstruction of a high quality CT dataset from a scan with an

unprecedented acquisition time of only 3.3 minutes [89] (made possible mainly

due to the continuous rotation of the sample, enabled by eliminating the need

to acquire multiple frames at each CT angle while displacing the sample-mask).

However, although high image quality was observed for a range of samples which

can be considered approximately homogeneous (e.g. rat heart), many biological

samples of interest are not quasi-homogeneous (e.g. contain both soft-tissue and

bone), and applying the algorithm to such samples will result in under or over-
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retrieved characteristic features (dark/bright fringes, blurring). For example, still

in the results presented in [89], this can be seen as blurring around a chalk detail

embedded in a phantom containing various plastic materials.

The work presented in this chapter aimed to overcome the main limitation of

Diemoz’s algorithm (i.e. the assumption of a sample made of a single material),

by extending it such that it could be applied to multi-material samples. Such a

development would expand the range of samples which could benefit from fast

EI CT scans, and be particularly significant for biomedical applications, since

samples containing both bone and soft-tissue could be scanned.

The algorithm developed in this chapter (“multi-material, single-image algo-

rithm”) follows the work of Beltran et al. who extended Paganin’s single-image

retrieval algorithm for FSP, to the case of a multi-material object [97, 98], as

was briefly described in chapter 3. While still requiring only a single image per

projection, the multi-material, single-image algorithm can correctly reconstruct

the interface between any two materials (when one is encased by the other), by

tuning the relevant input parameters. When a sample is made of various materi-

als, the algorithm can be applied multiple times, once for each pair of materials,

and a “splicing” method can then be used to obtain a composite CT slice, in

which all materials are adequately displayed.

5.2 Theory

In this section, the theoretical derivation of the EI single-image phase retrieval for

samples made of multiple materials is presented. Consider the typical laboratory

EI system which has been described in detail in chapter 2 and schematically
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shown in Fig. 2.5. As previously explained, when the two masks are misaligned

with respect to each other, refraction of the beamlets caused by the sample in

the direction perpendicular to the masks’ apertures is converted into detectable

intensity changes, which are proportional to the first derivative of the phase,

Φ. Image formation in the direction parallel to the masks’ apertures can be

treated as FSP, where the signal recorded is proportional to the second derivative

of the phase [17, 113]. It should be noted however, that in the lab-based EI

implementation, the FSP signal is very weak due to the use of an extended source.

Assuming a near-field regime, and that the sample’s attenuation and phase are

varying slowly, the signal can be modelled by the TIE [54, 113]. Indeed, for

the development of the single-image retrieval algorithm, Diemoz used the TIE

as a starting point for the derivation, leading to the following expression for the

normalized signal recorded by an EI setup [89]:

Sn =

{
T − T C

′(xe)

C(xe)
k−1zod∇xΦ− k−1zod∇y[T∇yΦ]

}
∗ LSF y , (5.1)

where T = exp(−2k
∫
β(x, y, z)dz) and Φ = −k

∫
δ(x, y, z)dz are the transmission

and phase shift caused by the sample, respectively. As before, the IC (denoted by

C) describes the measured intensity as a function of the relative masks’ displace-

ment, xe, in the absence of a sample. The object-to-detector distance is denoted

by zod, and LSF y is the detector’s line spread function along the direction parallel

to the masks’ apertures. Differentiation with respect to x or y is represented by

∇x,y and ∗ indicates convolution. It can be seen that in Eq. 5.1, the first term

is the conventional attenuation signal, the second term is the EI signal along x,
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and the third term is the FSP signal along y.

By assuming a homogeneous sample which is sufficiently thin such that it satisfies

the projection approximation, the transmission and phase at the sample’s exit

surface can be both expressed as a function of the sample’s thickness, t(x, y):

T (x, y) = exp(−2kβt(x, y)) , (5.2)

Φ(x, y) = −kδt(x, y) . (5.3)

Diemoz has shown that by substituting Eqs. 5.2 and 5.3 into Eq. 5.1 and defining

JEI = zodC
′(xe)C

−1(xe), an expression for the sample’s projected thickness can

be obtained [82]:

t = − 1

µ
log

[
F−1

{
F{Sn}

MTF y(ky) · [1 + iJEIδµ−1kx + zodδµ−1k2
y]

}]
, (5.4)

where µ = 2kβ is the linear attenuation coefficient, F and F−1 represent the 2-

dimensional Fourier transform and its inverse, kx = 2πfx and ky = 2πfy where fx

and fy are the Fourier space coordinates, and the system’s modulation transfer

function along y is given by MTF y(ky) = F{LSF y}. When a polychromatic

beam is used, both δ and µ should be evaluated at their effective energies [76, 89].

Therefore, when a homogeneous sample of known material is imaged with mono-

chromatic radiation, Diemoz’s algorithm will retrieve quantitative values for the

object’s thickness. While in the case of inhomogeneous samples the retrieved

results would not be quantitative, often high image quality can still be achieved
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by tuning the input δ and µ values following an initial guess. This however is

not the case for a sample made of various materials with significantly different

refractive index properties, which was the motivation behind the work presented

in this chapter.

In the following, the multi-material algorithm is developed by adapting the deriva-

tion first presented for FSP by Beltran et al. for a ternary object (composed of

two materials and voids) [97], to the case of EI. For simplicity, the algorithm is

derived assuming monochromatic radiation.

Consider an object made of two materials denoted by 1 and j, where mate-

rial j is fully encased by material 1. The corresponding refractive indices are

n1 = 1 − δ1 + iβ1 and nj = 1 − δj + iβj, with β1 = µ1/2k and βj = µj/2k. For

monochromatic radiation, Eq. 5.1 describes the detected normalized signal. As-

suming the sample satisfies the projection approximation, the transmission and

phase shift at the sample’s exit plane are given by:

T (x, y) = exp[−(µ1t1(x, y) + µjtj(x, y))], (5.5)

Φ(x, y) = −k(δ1t1(x, y) + δjtj(x, y)) , (5.6)

where t1(x, y) and tj(x, y) are the projected thicknesses of materials 1 and j in

the direction of wave propagation, z. By defining the total projected thickness

as A(x, y) = t1(x, y) + tj(x, y), the transmission and derivatives of the phase can

be expressed as follows:

T = exp[−µ1A] exp[−(µj − µ1)tj], (5.7)
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∇x,yΦ = −k[δ1∇x,yA+ (δj − δ1)∇x,ytj] . (5.8)

where dependencies on x and y have been discarded for notation simplicity. By

substituting Eqs. 5.7 and 5.8 into Eq. 5.1, a solution for tj can be obtained. Eq.

5.7 is in fact the first term on the RHS of Eq. 5.1. The second term on the RHS

becomes:

T
C ′(xe)

C(xe)
k−1zod∇xΦ = −(δj − δ1)JEI exp[−µ1A] exp[−(µj − µ1)tj]∇xtj

=
δj − δ1

µj − µ1

JEI exp[−µ1A]∇x exp[−(µj − µ1)tj] ,

(5.9)

where the following identity was used:

exp[−(µj − µ1)tj]∇xtj = − 1

µj − µ1

∇x exp[−(µj − µ1)tj], (5.10)

and it was assumed that the projected thickness of the encasing material is slowly

varying (i.e. that the first term on the RHS of Eq. 5.8 is negligible compared to

the second term), and hence the terms containing its spatial derivatives can be

ignored. This assumption was previously made by Beltran et al. [97] and, while

it is violated in certain cases (e.g. near the edges of the encasing material, where

phase gradients due to the latter are non-negligible), errors resulting from these

violations are localized and should not hinder the retrieval of tj as long as the

latter is not in contact with (or in the immediate vicinity of) another interface.
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The third term on the RHS is expanded as:

k−1zod∇y[T∇yΦ] = −zod(δj − δ1) exp[−µ1A]∇y{exp[−(µj − µ1)tj]∇ytj}

=
δj − δ1

µj − µ1

zod exp[−µ1A]∇2
y exp[−(µj − µ1)tj] ,

(5.11)

where the following identity was used:

∇y{exp[−(µj − µ1)tj]∇ytj} = − 1

µj − µ1

∇2
y exp[−(µj − µ1)tj] . (5.12)

These terms can be substituted into Eq. 5.1 to get:

Sn
exp[−µ1A]

=
[
LSF y ∗ (1− γJEI∇x − γzod∇2

y)
]

exp[−∆µtj] , (5.13)

where γ = (δj − δ1)/(µj − µ1) and ∆µ = µj − µ1 .

By taking the 2-dimensional FT of Eq. 5.13 and making use of the Fourier

derivative theorem, the following expression is obtained:

F

{
Sn

exp[−µ1A]

}
=
[
MTFy(fy) (1− 2πiγJEIfx + 4π2γzodf

2
y )
]
F{exp[−∆µtj]} .

(5.14)

An expression for tj can then be obtained by inverse transforming both sides of

Eq. 5.14 and rearranging:

tj = − 1

∆µ
log

[
F−1

{
F{Sn/ exp[−µ1A]}

MTFy(fy)(1− 2πiγJEIfx + 4π2γzodf 2
y )

}]
. (5.15)

For a given experimental setup, Eq. 5.15 can be readily implemented to obtain
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quantitative results of the projected thickness of material j, provided that the to-

tal projected thickness A, and the refractive indices of both materials are known.

The total projected thickness can be easily estimated in common situations when

the sample is placed in a cylindrical, full container (as is the case in both exam-

ples provided below). However, in other cases where there are voids to consider,

A(x, y) can be estimated by forward-projecting a CT slice reconstructed by using

Eq. 5.4 for material 1, and setting a threshold to separate object from void, as

was previously suggested by Beltran et al. [97].

For samples containing multiple materials j = 2, 3, ...N , Eq. 5.15 can be applied

N −1 times, each time adjusting ∆µ and γ such that they correspond to the pair

of materials of interest. As long as each material j is fully encased by material 1,

the interface between the two materials will be correctly reconstructed. N inde-

pendent CT slices can be obtained by applying the conventional FBP algorithm

to sinograms of t1 and tj=2,3,...N . Each of these slices will provide an accurate re-

construction of the corresponding pairs of materials, while other interfaces will be

either under or over-retrieved (appearing either as residual fringes or as blurred

interfaces). A composite CT slice, with all interfaces sharply reconstructed, can

then be obtained by splicing together these CT slices, each tuned on a different

pair of materials. The splicing procedure consists of extracting from each slice

the area containing the correctly retrieved pair of materials, and digitally insert-

ing these into a single, composite slice, following the adjustment of background

offsets.
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The diagram shown in Fig. 5.1 provides a summary of the different steps of

the multi-material, single-image retrieval algorithm, and their relative order.

Figure 5.1: The workflow of the multi-material, single-image retrieval algorithm.
If the refractive index values are unknown, these can be estimated and tuned until
the interface between the two materials of interest is sharply reconstructed in the
CT slice.

Note that while Eq. 5.15 was derived for the case of monochromatic radiation, an

analogous expression could be developed for polychromatic beams. In a similar

way to Diemoz’s work [89], since both δ and β vary with energy, a polychromatic

extension would involve expressing the measured detector signal as a weighted

sum of all its monochromatic components, taking into account the source spec-

trum and the detector’s energy response. Therefore, as long as there is no signifi-

cant beam hardening by the sample, Eq. 5.15 can also be applied to data acquired

with a polychromatic beam, if the input values for δ and β are calculated at their

effective energies [76].
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5.3 Quantitative validation

The novelty of the proposed algorithm lies in its ability to enable the imaging of

samples containing materials with significantly different refractive index proper-

ties. In order to test its validity, a simulation study was performed, followed by

the acquisition of experimental data for direct comparison. As a test sample, a

water filled cylinder containing aluminium and low-density polyethylene (LDPE)

rods was chosen.

Vittoria’s wave-optics simulation code [106] (introduced previously in chapter 4),

was used to generate the simulated data, with a photon energy of E = 17.5 keV.

A numerical phantom was created, which consisted of a vertically-aligned cylin-

der of water (diameter = 1.85 cm) containing an aluminium rod (diameter = 2

mm) and an LDPE rod (diameter = 3.9 mm). Corresponding refractive index

values were taken from the ICRU 44 database [4] and are reported in table 5.1.

Table 5.1: Input refractive index values used for the simulated phantom.

Material δ µ (1/cm)
Water 7.5E − 7 1.1
Aluminium 1.8E − 6 13.7
LDPE 7.1E − 7 0.5

Mask parameters were chosen to match those used in the laboratory, where each

mask is 150 µm thick and made of gold. The masks’ periods and aperture sizes

were 48 µm and 12 µm, respectively, for the sample-mask, and 62 µm and 15 µm

for the detector-mask. The masks’ apertures were aligned with the vertical (y)

direction. The detector pixel size was 62 × 62 µm2. The source-to-sample dis-

tance was zso = 1.6 m and the sample-to-detector distance was zod = 0.4 m. For

simplicity, in the simulation it was assumed that there was no gap between the
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sample-mask and sample, and similarly no gap between the detector-mask and

detector; in practice, a small (∼1-2 cm) gap was present, however it is not ex-

pected to have any noticeable effect on the images. An IC was simulated to obtain

C(xe) and C ′(xe). A CT scan was then simulated, consisting of 2400 views over

360 degrees (i.e. angular step = 0.15 degrees). The relative displacement of the

sample-mask with respect to the detector-mask was set as xe = 10 µm. Dithering

was used to increase the spatial sampling rate; at each angular view, 4 images

were taken at different sub-pixel positions of the sample and recombined to form

a high-resolution image. Dithering however is not required unless an increase in

spatial resolution over that determined by the detector pixel size is sought [86].

The phase retrieval part comprised of three steps. First, Eq. 5.4 was applied

to the unprocessed projections using the refractive index values of water. The

second and third steps consisted of applying Eq. 5.15 to unprocessed projections,

once for the water-aluminium interface, and then for the water-LDPE interface,

using the values listed in table 5.1. A(x, y) was calculated as the projection of a

circle with a diameter corresponding to that of the water cylinder. Three separate

sinograms were created, corresponding to the different retrieval steps. CT slices

of each of these phase-retrieved sinograms were then reconstructed by means of

a FBP algorithm (and were later spliced, see below).

For experimental validation, a phantom was created which matched the simu-

lated one (apart from the fact that a hollow plastic cylinder of unknown material,

with inner and external diameters of 1.75 cm and 1.85 cm, respectively, was filled

with water for practical reasons). As a source, the Rigaku MicroMax 007 HF

rotating anode (molybdenum) X-ray tube (Rigaku Corporation, Japan) with a
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focal spot of approximately 70 µm was used. The source was operated at 25 mA

and 40 kVp, with a 30 µm Molybdenum filter. A Pixirad single photon counting,

energy-resolving detector [71, 72], with a pixel size of 62× 62 µm2 was used and

placed 2.07 m away from the source.

The sample and detector masks were placed at 1.6 m and 1.97 m downstream

of the source, respectively. Both masks were fabricated by electroplating gold

strips onto a graphite substrate (Creatv Microtech Inc., Potomac, MD, USA).

The masks’ period and aperture sizes were the same as used in the simulation,

apart from the period of the detector-mask which was 59 µm, to compensate for

the limited magnification arising from the small gap between the detector-mask

and the detector.

An IC scan was performed, followed by a CT scan of the phantom with the same

parameters reported for the simulation. Flat-field images were acquired at each

angular view, and were later used to normalize the sample images. The exposure

time per projection was 4 s.

For phase retrieval, Eqs. 5.4 and 5.15 were applied to the normalized data. Here,

since the source spectrum is polychromatic and the complex refractive index

varies with energy, the refractive index values used in the retrieval were esti-

mated. In general, these can be estimated using the concept of effective energies

if the source spectrum, detector energy response and sample composition and

geometry are known [76].

In the case discussed in this chapter, one can consider that an optimal CT recon-

struction has been achieved when two conditions are satisfied. The first one is

the maximization of the sharpness of the interface between the pair of materials

of interest. The second is that the reconstructed material j has a mean value of
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1 in the CT slice. In order to simultaneously fulfill these conditions, CT recon-

struction is carried out multiple times while varying the refractive index values.

The chosen values used in the retrieval algorithm of the experimental data are pre-

sented in table 5.2, along with the effective energies these correspond to for each

material. These effective energies are reasonable considering the source spectrum

produced by the molybdenum target. The difference between the values obtained

for water and LDPE compared to aluminium can be explained by taking into ac-

count the beam hardening caused by the higher absorption of the aluminium rod.

Phase retrieved sinograms were created, followed by a CT reconstruction using

FBP.

Table 5.2: Refractive index values used for the retrieval of the experimental
phantom images.

Material δ Eef,δ (keV) µ (1/cm) Eef,µ (keV)
Water 7.6E − 7 17.5 0.76 20.5
Aluminium 9.5E − 7 24 5.5 24
LDPE 7.1E − 7 17.5 0.48 18

For a quantitative evaluation of the proposed algorithm, simulated and exper-

imentally retrieved projected thicknesses of each material were plotted against

each other and are shown in Fig. 5.2.

The plots demonstrate the quantitativeness of the algorithm: all simulated pro-

files retrieve the nominal thickness values accurately (retrieving diameters of 1.85

cm, 2 mm and 3.9 mm for water, aluminium and LDPE, respectively). As ex-

pected, in each case the profiles are quantitative only for the interface between

the two materials targeted by the algorithm through selection of the relative in-

put parameters. A good agreement can also be noted between the experimental

and simulated profiles for each material of interest. Discrepancies in e.g. the re-
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Figure 5.2: Retrieved projected thicknesses for water, aluminium and LDPE,
using values reported in tables 5.1 and 5.2. The red arrows point at the material
of interest in each case. The experimental profiles were averaged over 5 pixel rows.

trieved thickness of water, in the location where the aluminium rod is positioned,

arise from the difference in (effective) energies between the monochromatic sim-

ulation and the experimental polychromatic spectrum. Another inconsistency in

retrieved values can be observed between simulated and experimental profiles of

both aluminium and LDPE, just near the edges of the cylinder. This inconsis-

tency arises from the fact that, while a water cylinder was implemented in the

simulation, the experimental phantom consisted of a plastic cylinder filled with

water. Finally, by looking at the retrieved projected thickness of both aluminium

and LDPE, it can be seen that the algorithm breaks down at the edges of the

outer cylinder; this can be expected since in that case the assumption of a slowly
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varying thickness of the encasing material is violated. However, this affects the

retrieved values only locally, at the edges of the encasing material, and values at

the interface of interest are not compromised.

In order to present all interfaces correctly in a single CT slice, the three differ-

ent slices were spliced together. This step was performed using the open source

software ImageJ, for both the experimental and simulated slices. While the seg-

mentation part of the splicing procedure could be automated using methods such

as Otsu thresholding [99, 114] or by developing expressions for the “bleed-width”

in a similar fashion to Beltran’s work [97], for this proof-of-concept study the seg-

mentation was done manually, by visually estimating the blurring bleed-width.

Individual simulated CT slices, each displaying reconstructions of the water-air

(a), aluminium-water (b) and LDPE-water (c) interfaces are shown in Fig. 5.3,

along with the simulated and experimental spliced slices. Each slice in panels

(a-c) demonstrates a sharp reconstruction of the material pair of interest, while

residual phase-contrast fringes and blurred interfaces of other materials are high-

lighted by arrows.

In order to achieve a quantitative spliced slice preserving the δ values used in

the retrieval across the entire phantom, each slice reconstructed from tj had to

be manipulated according to: slice∗tj = [slicetj × (δj − δ1)] + δ1, before digi-

tally inserting its segmented area of interest into the corresponding region of

slice∗t1 = slicet1 × δ1. The same splicing procedure was applied to both simula-

tion and experimental slices, however, the δ values used for quantitative splicing

were different. For each case, the δ values applied during splicing were the same

as the ones previously used in the retrieval algorithm, hence some differences exist

(most notably for aluminium, see tables 5.1 and 5.2). This can be appreciated in
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Figure 5.3: Simulated CT slices focusing on the water-air (a), aluminium-water
(b) and LDPE-water (c) interfaces, using E=17.5 keV. The white arrows indicate
artefacts arising from locally incorrect choices of refractive index values. Simulated
(d) and experimental (e) spliced slices along with a plot of profiles through them
(f), in the position indicated by the red line in (d). The difference in the retrieved
values of the aluminium rod in (f, see arrow) is expected and is due to the difference
in effective energies (see tables 5.1 and 5.2).

Fig. 5.3(f) where profiles across both spliced slices are plotted against each other

for comparison. Ignoring the discrepancies which have already been discussed

above (due to the plastic container and the polychromaticity of the spectrum,

which also leads to a difference in the retrieved δ values for aluminium), both

profiles demonstrate a sharp, quantitative reconstruction of all parts of the phan-

tom. These results confirm that the algorithm is indeed quantitative for the case

of monochromatic radiation, and can be applied when a polychromatic spectrum

is used, if the concept of effective energies is employed [76].
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5.4 Qualitative evaluation

Following validation by a phantom study, the proposed retrieval algorithm and

splicing method were applied to experimental data of a complex biological sam-

ple. The imaged sample was a chicken bone surrounded by soft tissue, placed

in a plastic cylinder of approximately 8 mm diameter. The sample was “fresh”,

i.e. no additional sample preparation was applied (e.g. formalin fixation). The

same source used for the phantom scan was used, operated at 40 kVp and 25

mA, with no additional filters. The detector used for this scan was a Hamamatsu

C9732DK flat panel detector with a passive-pixel CMOS sensor (Hamamatsu,

Japan), and was positioned 2 m away from the source. The detector pixel size

was 50× 50 µm2, however the effective pixel size in the x-direction was 100 µm

due to the line-skipping design of the detector-mask, where every second detec-

tor pixel column is completely covered. This mask design is used to reduce the

negative effect of pixel cross-talk on the EI signal [111]. The sample and detector

masks were placed at 1.6 m and 1.96 m downstream of the source, respectively.

The sample-mask period and aperture size were 79 µm and 10 µm, respectively,

while the detector-mask period was 98 µm with a 17 µm aperture size. Following

an IC scan, a CT scan was performed with 720 views over 360 degrees (i.e. 0.5

degree step). To increase the spatial resolution through dithering, 8 projections

were taken at different sub-pixel positions of the sample, at each angular view.

The exposure time per projection was 3 s and the relative position of the sample-

mask with respect to the detector-mask was set as xe = 8 µm.

Raw projections were corrected for dark current and flat-field inhomogeneities

prior to the phase retrieval step, which used Eq. 5.4 once (for the cylinder-air
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interface) and Eq. 5.15 twice (where the interfaces between soft tissue types, e.g.

fat-muscle, and between soft tissue and bone were considered). For the retrieval

of the bone-soft tissue interface, refractive index values of bone and water (which

is commonly used as a tissue-equivalent material) at an estimated effective energy

of 22 keV were used [4]. Here, the effective energy was estimated according to

the theoretical source spectrum and a predicted linear detector energy response,

since the detector used in this setup was an integrating detector with an energy

response function which has yet to be fully characterized (unlike in the phantom

scan reported in section 5.3, where a photon-counting detector was employed).

Moreover, since the specific tissue types were not known and the complex sample

geometry in this case did not strictly satisfy the algorithm’s condition for a ma-

terial fully encased by another, a purely qualitative evaluation was performed for

the retrieval of the interface between soft tissue types. In practice, an iterative

approach was employed, where ∆µ and γ were varied until the contrast between

the different soft tissues, was maximized.

The reconstructed slices are shown in Fig. 5.4. On the left hand side, three sepa-

rate reconstructions are shown, each rendering a specific interface while exhibiting

the expected blurring\fringes at other interfaces. A spliced, composite CT slice

is presented in the larger image on the right, in which all different materials are

adequately reconstructed.

As previously noted, although the algorithm was derived for the case of a material

j fully encased within material 1, this is not strictly the case for the chicken bone

sample. However, as already observed by Beltran, a locally incorrect choice of re-

fractive index values will only affect the part of the interface for which the choice

is not ideal [97]. Since quantitative results were not expected, the composite slice
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Figure 5.4: Axial slices of a chicken bone sample reconstructed using values
optimized for the cylinder-air interface (a), contrast between soft-tissue types (b)
and bone-soft tissue interface (c). Panel (d) shows a composite slice obtained by
splicing slices (a-c).

was created by windowing each retrieved slice differently, in order to achieve the

best visualization. As before, the splicing procedure was performed using ImageJ

and manual segmentation. The spliced image shown in Fig. 5.4(d) demonstrates

that this method could be used to obtain high-quality, albeit not quantitative,

images of complex samples with unknown composition, using a single image per

projection.

5.5 Discussion and conclusion

An algorithm capable of quantitatively retrieving the projected thickness of multi-

material samples illuminated by monochromatic radiation, using a single input

image acquired with an EI setup, has been presented. A CT phantom simulation
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study was used to validate the algorithm’s accuracy, while results from an exper-

imental scan provided good agreement, within the limits of polychromaticity. A

“splicing” method was then presented as a means for producing a composite CT

slice where all parts of a sample are adequately reconstructed, thereby eliminat-

ing artefacts previously arising from locally incorrect choices of refractive index

values for multi-material samples, during the phase retrieval step.

For strictly quantitative results, one material must be fully encased by the other,

and the refractive indices of both materials and the total projected thickness

must be known. Therefore, for quantitative imaging, certain applications (e.g.

in the field of materials science) could benefit from using the proposed method

on data acquired using monochromatic radiation. However, the work presented

here has shown that enhanced image quality and visualization can be achieved for

complex samples of unknown materials, also when imaged with a polychromatic

beam produced by a laboratory source.

It should be noted that, if the requirement for quantitativeness is relinquished and

when splicing is used, similar results can be obtained by using Eq. 5.4 multiple

times, and replacing δ and µ with ∆δ = δj−δ1 and ∆µ = µj−µ1. This approach

might be more practical since it does not require the total projected thickness as

input; however, the retrieved projected thickness profiles will not be quantitative

as they are not “normalized” by the encasing material. Nevertheless, during the

splicing step, the CT slices are scaled and can be windowed to achieve similar

results to those obtained by using Eq. 5.15.

The EI single-image retrieval algorithm recently developed by Diemoz has shown

great potential for reducing scan times, particularly for CT scans, by simplifying

the acquisition sequence [89]. Previously, different retrieval algorithms required
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the position of the sample-mask to be varied at least once per projection, lead-

ing to increased scan times as well as potentially introducing instabilities to the

imaging system. In this proof-of-principle study, dithering was performed in both

reported scans, meaning that multiple images of the sample at different sub-pixel

positions were acquired at each view, thereby increasing the delivered dose and

scan duration. However, dithering is not strictly necessary and is only used to

increase the spatial resolution, as previous studies have shown that quantitative

information can be extracted from EI CT also when no dithering is performed

[86]. Although not exploited in this study, when dithering is not required, single-

image retrieval enables a continuous rotation of the sample, which can lead to

significantly reduced scan times, as was recently reported [89]. It is therefore

expected that the development presented in this chapter will enable obtaining

similar results for complex samples containing materials with a wide range of

refractive index values, thereby making EI CT suitable for a wider range of ap-

plications. Furthermore, since the algorithm requires only one input image as

opposed to the previously needed minimum of two [73], future work should focus

on investigating its potential for dose reduction strategies.
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Conclusions

XPCi techniques have the potential to revolutionize the field of X-ray imag-

ing, thanks to the increase in image contrast they provide when compared to

attenuation-based imaging. Currently, the main obstacle preventing XPCi from

becoming a commonly used imaging tool is the need for specialized setups, often

requiring highly coherent X-ray sources. The EI method however does not rely on

spatial coherence, and can be implemented with conventional X-ray source and

detector equipment. It therefore shows great potential for translation into clini-

cal and industrial environments, an essential step in making XPCi a widespread

imaging technique in a range of fields.

The work presented in this thesis aimed to explore further developments of the

EI method, and specifically its CT modality, in order to increase the range of

applications which could benefit from its various advantages. First, the under-

lying principles of attenuation-based X-ray imaging were presented, along with

the theoretical background to CT reconstruction. The concept of XPCi was then

introduced, followed by a review of the most prominent XPCi techniques. The

working principles of each technique were presented, and their advantages and

limitations were discussed. Particular focus was given to the EI method and its

adaptation to a CT modality, and the previous literature specifically dedicated
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to this method was reviewed.

Prior to the work presented in this thesis, the entirety of EI CT research com-

prised of demonstrating that EI CT is feasible, and can be performed at both

synchrotrons and laboratories. It was therefore necessary to carry out studies

aimed at optimizing both the acquisition strategy and the processing of EI CT

data, such that it could be used for a wide range of applications, which typically

have different requirements with regards to dose, speed and spatial resolution.

In the first study described in this thesis, a new application which could po-

tentially benefit from EI CT has been identified: perinatal post-mortem imaging.

As perinatal autopsy rates continue to fall for a variety of reasons, the use of

non-invasive imaging as an alternative is being investigated, using a range of

imaging techniques. In light of the high spatial-resolution and soft-tissue sensi-

tivity provided by XPCi methods, this study aimed to demonstrate the feasibility

of using XPCi tomography for this purpose. In this proof-of-principle study, a

new-born piglet was scanned at a synchrotron using a FSP setup. The recon-

structed phase slices were assessed for diagnostic quality by a radiologist, and

were determined to be clinically satisfactory, as they presented high soft-tissue

contrast and sufficient resolution for resolving organ structure. Furthermore, all

key organs for the purpose of a post-mortem examination (heart, lungs, kidneys,

liver and intestines) were easily identified and adequately visualized. The study

therefore provided evidence that XPCi could be used for the purpose of whole

body post-mortem imaging. However, to make XPCi CT a practical alternative

to perinatal autopsy, further developments are required in order to translate this

application to a clinical environment. As a first step, the experiment should be
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repeated with an animal model using the laboratory implementation of EI. Upon

obtaining successful results in the laboratory, the next step would be to scan

human foetal tissue, and make a direct comparison to data obtained with con-

ventional imaging techniques (CT and MRI). The lab-based EI CT system thus

needs to be further optimized for human use, particularly smaller foetuses, before

being introduced into clinical practice. New data acquisition strategies and phase

retrieval approaches, such as the “local” and “single-image” retrieval algorithms

presented in this thesis, are essential steps in achieving this goal.

In the second study presented here, a “local” retrieval algorithm was developed,

which enables to obtain high-quality EI CT images from high-resolution, multi-

modal lab-based scans. The ability of the EI method to provide multiple contrast

channels (absorption, phase, scatter) is one of its greatest advantages, as com-

plementary information from such images can be useful in many applications.

However, instabilities of the imaging system during the scan or imperfections in

the optical elements and their alignment can introduce errors during data pro-

cessing. Such errors can lead to poor image quality in the phase slices, which

often suffer from artefacts.

In order to improve image quality and reduce image artefacts in long lab-based

scans, possible sources of noise and error were first modeled in a simulation study,

and their effect on the reconstructed phase slices was analyzed. Four sources of

error were considered ((1) masks/detector imperfections, (2) flat-field normaliza-

tion, (3) intensity changes between dithering steps, (4) correlated shot noise), the

combination of which was shown to result in a similar noise structure to the one

observed in experimental data.
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After the main sources of noise and image artefacts were identified, a new re-

trieval algorithm was developed, the “modified local” algorithm. This algorithm

is a further development of a previous one capable of retrieving the absorption,

refraction and scatter information of a sample in cases where the imaging system

is misaligned. The modified local algorithm was developed specifically for high-

resolution, multi-modal CT scans in non-ideal environments. Such scans can last

hours, during which system parameters can vary due to environmental changes.

Variations in system parameters (both over time, as well as local variations over

the FOV) which are not taken into account during data reconstruction can intro-

duce errors which severely degrade the reconstructed phase slices.

Specifically, it was shown that there is a significant lateral shift in the position

of the IC over time. As a first step to compensate for these shifts, a real-time

illumination tracking procedure was implemented into the CT scan. Then, the

algorithm was modified to include a correction term for the shift of the IC be-

tween dithering steps images. Simulated data was used to quantitatively validate

the algorithm’s performance in the case of system misalignment, while a qualita-

tive evaluation was performed using experimentally acquired data of a complex

biological sample. The algorithm’s performance was evaluated in comparison to

a previously used “global” retrieval algorithm, and was shown to result in the

removal of all major artefacts, leading to a significant improvement in image

quality. Furthermore, the algorithm is applied on a pixel-by-pixel basis, and does

not require the acquisition of any flat-field images. Its use is therefore expected

to enable the acquisition of high-resolution, reliable CT data of large samples in

realistic settings.
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For many applications, in particular in the biomedical field, the ability to obtain

high-quality CT data from fast scans can be more important than the retrieval of

multiple contrast channels. Furthermore, depending on the sample, the spatial-

resolution given by the de-magnified detector pixel size might be sufficient, in

which case dithering is not required. In the last study presented in this thesis,

the “multi-material, single-image” algorithm was developed, as means to perform

scans of this type. This algorithm requires a single image per projection, as op-

posed to the conventional EI retrieval algorithms which require the acquisition

of multiple ones while the position of the sample-mask is varied. The multi-

material, single-image algorithm was developed as an extension to a previous

single-image algorithm, with the aim of overcoming the latter’s main limitation,

i.e. the assumption of a homogeneous sample. Such a development is essential for

biomedical applications, as it will enable the performance of fast EI CT scans on

samples containing materials with significantly different refractive index values,

such as soft-tissue and bone. Notably, it has the potential to make small-animal

imaging possible, including in-vivo applications.

The theoretical derivation of the algorithm was presented, and its capability to

quantitatively retrieve the projected thickness of multi-material samples illumi-

nated by monochromatic radiation was demonstrated. Using simulated and real

versions of the same phantom, the algorithm’s quantitativeness was validated

from both simulated and experimental data, the latter showing good agreement

within the limits of polychromaticity. To eliminate image artefacts related to lo-

cally incorrect choices of refractive index values during the phase retrieval step, a

splicing method was described for obtaining a composite CT slice where all parts

of a sample are adequately reconstructed. Furthermore, the algorithm’s ability
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to provide high-quality, albeit not quantitative, CT slices of complex samples was

demonstrated by applying it to experimental data of a biological sample contain-

ing both bone and soft-tissue.

Although this proof-of-principle study involved the use of dithering, many ap-

plications might not require the increase in spatial resolution provided by the

dithering procedure. Such applications can benefit the most from this algorithm,

as the sample can be continuously rotated over 180 degrees, and scan times sub-

stantially reduced as a consequence. It is therefore expected that by using the

multi-material, single-image algorithm, high-quality CT reconstructions of com-

plex samples will be obtained from fast scans performed in a laboratory setting.

In the future, the algorithm’s potential for dose reduction should be investigated,

through comparison with the dose requirements of EI algorithms requiring mul-

tiple images per projection.
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[102] J. Keyriläinen, A. Bravin, M. Fernández, M. Tenhunen, P. Virkkunen,

and P. Suortti. Phase-contrast X-ray imaging of breast. Acta Radiol.,

51(8):866–884, 2010. 84

168

http://www.ncbi.nlm.nih.gov/pubmed/22516937
http://www.ncbi.nlm.nih.gov/pubmed/22516937
http://www.ncbi.nlm.nih.gov/pubmed/22516937
http://www.ncbi.nlm.nih.gov/pubmed/20389666
http://www.ncbi.nlm.nih.gov/pubmed/20389666
http://www.ncbi.nlm.nih.gov/pubmed/20389666
http://www.ncbi.nlm.nih.gov/pubmed/22048612
http://www.ncbi.nlm.nih.gov/pubmed/22048612
http://www.ncbi.nlm.nih.gov/pubmed/19375952
http://www.ncbi.nlm.nih.gov/pubmed/19375952
http://stacks.iop.org/0031-9155/52/i=23/a=010?key=crossref.53832d481b0f5d329302122d6a8837b7
http://stacks.iop.org/0031-9155/52/i=23/a=010?key=crossref.53832d481b0f5d329302122d6a8837b7
http://www.ncbi.nlm.nih.gov/pubmed/20799921


[103] P. Coan, F. Bamberg, P. C. Diemoz, A. Bravin, K. Timpert, E. Mutzel,

J. G. Raya, S. Adam-Neumair, M. F. Reiser, and C. Glaser. Charac-

terization of Osteoarthritic and Normal Human Patella Cartilage by

Computed Tomography X-ray Phase-Contrast Imaging. Invest. Radiol.,

45(7):437–444, 2010. 84

[104] Y. Zhao, E. Brun, P. Coan, Z. Huang, A. Sztrókay, P. C. Diemoz,
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