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OBJECTIVES: To investigate whether poorer cognitive
ability is a risk factor for development of physical frailty
and whether this risk varies according to cognitive domain.

DESIGN: Prospective longitudinal study with 6-year fol-
low-up.

SETTING: Edinburgh, Scotland.

PARTICIPANTS: Members of the Lothian Birth Cohort
1936 (N = 594).

MEASUREMENTS: Frailty was assessed at ages 70 and
76 using the Fried criteria. Cognitive function was assessed
at age 70, 73, and 76. Factor score estimates were derived
for baseline level of and change in four cognitive domains:
visuospatial ability, memory, processing speed, and crystal-
lized cognitive ability.

RESULTS: Higher baseline levels of processing speed,
memory, visuospatial ability and crystallized ability at age
70, and less decline in speed, memory, and crystallized
ability were associated with less risk of becoming physi-
cally frail by age 76. When all cognitive domains were
modelled together, processing speed was the only domain
associated with frailty risk, for a standard deviation (SD)
increment in initial level of processing speed, the risk of
frailty was 47% less (0.53 95% confidence interval
(CI) = 0.33–0.85) after adjustment for age, sex, baseline
frailty status, social class, depressive symptoms, number of
chronic physical diseases, levels of inflammatory biomark-
ers, and other cognitive factor score estimates; for a SD
increment in processing speed change (less decline) risk of

frailty was 74% less (RRR = 0.26, 95% CI = 0.16–0.42).
When additional analyses were conducted using a single
test of processing speed that did not require fast motor
responses (inspection time), results were similar.

CONCLUSIONS: The speed with which older adults pro-
cess information and the rate at which this declines over
time may be an important indicator of the risk of physical
frailty. J Am Geriatr Soc 65:1289–1295, 2017.

Key words: fried frailty phenotype; processing speed;
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Frailty is a clinical syndrome observed in older adults, the
core feature of which is greater vulnerability to stressors

due to impairments in multiple systems, lower physiological
reserves, and a decline in the ability to maintain homeosta-
sis.1 It increases the risk of adverse outcomes.1–3 The pheno-
type model—in which frailty is based on three or more of
five components: poor grip strength, slow walking speed,
low physical activity, exhaustion, and unintentional weight
loss2—is one of the two principal models of frailty.1 The
frailty index, or cumulative deficit model, defines frailty in
terms of the accumulation of deficits (symptoms, signs, dis-
eases, disabilities), whereby an individual’s frailty index
score reflects the proportion of potential deficits present.4

These models differ in the potential role that cognitive
impairment plays in their definition of frailty. The Fried
phenotype defines frailty in purely physical terms, whereas
the cumulative deficit model permits cognitive impairment
to be included as a deficit. A consensus conference agreed
that this broader definition of frailty should be distinguished
from the medical syndrome of physical frailty.5 Given the
importance of cognitive function and physical robustness
for quality of life and survival, it is crucial to understand
the extent to which cognitive ability and physical frailty are
associated and the reasons for this.

Physical frailty and poorer cognitive function often
coexist.6–8 The direction of this relationship and the under-
lying mechanisms are uncertain. Some longitudinal studies
suggest that physical frailty increases risk of cognitive
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decline9,10 or dementia.11–13 Poor cognitive function might
be a risk factor for becoming physically frail, but evidence
is sparse. Two longitudinal studies have found that lower
Mini-Mental State Examination (MMSE) scores increase
the risk of incident physical frailty,14,15 but it is unclear
whether differences over the range of cognitive ability can
predict the onset of physical frailty or whether some
domains of cognitive ability are more important as risk
factors than others. Results from a longitudinal study
found that poorer executive function and greater decline in
executive function were more strongly linked to physical
frailty than level of or decline in psychomotor speed or
memory.16 Further longitudinal investigations are needed
to understand the role of specific cognitive domains in the
development of physical frailty.

The Lothian Birth Cohort 1936 (LBC1936) was estab-
lished to study cognitive aging.17 Three waves of data on
processing speed, memory, visuospatial ability, and crystal-
lized cognitive ability were used to examine how initial level
of and change in cognitive function in these domains were
related to risk of developing physical frailty or prefrailty.

METHODS

Participants

The LBC1936 was established to study cognitive aging in
surviving members of the 1947 Scottish Mental Sur-
vey.17,18 Community-dwelling people approximately age
70 were recruited (N = 1,091). Wave 2 took place when
participants were approximately age 73 (n = 866). Wave 3
took place when participants were approximately age 76
(n = 697). Ethical approval was obtained from the Multi-
Centre Ethics Committee for Scotland and Lothian
Research Ethics Committee.

Measures

Physical Frailty

Frailty status was assessed during Waves 1 and 3 using the
Fried phenotype,2 which defines frailty as the presence of
three or more of unintentional weight loss, weakness, self-
reported exhaustion, slow walking speed, and low physical
activity. Prefrailty is defined as the presence of one or two
of these criteria. These criteria were operationalized using
definitions similar to Fried’s2,19 (Appendix S1).

Cognitive Ability

Participants took a variety of cognitive tests in an identi-
cal fashion at each wave that were used as indicators of
four domains of cognitive ability. Visuospatial ability was
assessed according to scores on tests of matrix reasoning
and block design from the Wechsler Adult Intelligence
Scale (WAIS-IIIUK)20 and spatial span forward and back-
ward from the Wechsler Memory Scale (WMS-IIIUK).21

Verbal-declarative memory (henceforth memory) was
assessed according to scores on tests of logical memory
and verbal paired associates from the WMS-IIIUK, and
digit span backward from the WAIS-IIIUK. Processing
speed (henceforth speed) was assessed according to scores

on tests of digit-symbol substitution and symbol search
from the WAIS-IIIUK and measures of four-choice reaction
time22 and inspection time.23 Of these measures of speed,
inspection time is the only test requiring no speeded
responses., in other words, participants are not required
to respond as fast as possible. Crystallized cognitive abil-
ity was measured using National Adult Reading Test24

and Wechsler Test of Adult Reading25 scores, The MMSE
was used solely to identify participants with likely cogni-
tive impairment or dementia. With the exception of three
of the tests for processing speed that required fast motor
responses, none of the tests relied on physical function.

Covariates

Age, socioeconomic status, smoking status, number of
chronic physical diseases, depressive symptoms, and
inflammatory biomarkers were chosen at Wave 1 as poten-
tial confounding variables. Assessment details are given in
Appendix S2.

Statistical Analysis

The cognitive tests were organized into four domains: visu-
ospatial ability, memory, speed, and crystallized ability. An
intercept factor (baseline level of the ability) and a slope
factor (change in the ability across the three waves) were esti-
mated within each grouping using latent growth curve mod-
elling in a factors-of-curves format.26 Latent-variable models
reduce the influence of test-specific measurement error by
using the shared variance between the baseline levels and
changes in observed scores on multiple cognitive tests to esti-
mate latent (unobserved) variables of cognitive ability base-
line and change. Factor models and score estimates, which
used full-information maximum likelihood estimation to use
all the data in the full sample at each wave, were produced
using Mplus v7.3 (Muth�en & Muth�en, Los Angeles, CA).
Details of the factors-of-curves structural equation models
and mean decline in the cognitive test scores over the three
waves are given in Appendix S3 and Table S1.

Other analyses were performed in Stata version 13
(Stata Corp., College Station, TX). Multinomial logistic
regression was used to calculate relative risk ratios (RRR) of
prefrailty or frailty at age 76 according to a standard devia-
tion (SD) increment in factor score estimates for baseline
cognitive ability in each domain and change in cognitive
ability in each domain from age 70 to 76, with adjustment
for potential confounding factors. Relationships did not vary
according to sex, so the data were pooled, and sex was
adjusted for. To reduce potential bias due to attrition, all
models included inverse probability weights that made the
sample more representative of the cohort at baseline.27 Three
of the speed factor tests required fast, accurate motor
responses. The fourth, inspection time, required no speeded
response. To test whether associations found with the speed
factor were artefacts caused by overlap of components of the
frailty phenotype measure—slow walking speed and exhaus-
tion—with the motor aspects of three of these tests, models
were estimated in which only inspection time baseline and
slope were used as predictors. Finally, analyses were
repeated excluding participants who scored less than 24 on
the MMSE.28

1290 GALE ET AL. JUNE 2017–VOL. 65, NO. 6 JAGS



RESULTS

Analyses were based on 594 participants with data on all
variables of interest. People excluded because of attrition
tended to be older; had poorer cognitive ability, more
depressive symptoms, more chronic physical disease, and
higher blood concentrations of c-reactive protein (CRP)
and fibrinogen; were more likely to smoke and less likely
to have professional or managerial socioeconomic status;
and met more criteria for frailty at age 70. There were no
significant differences between those in the sample and
those excluded because of missing baseline data, except in
level of the cognitive factor “speed,” which was lower in
the missing-data group (Table S2).

By age 76, 47.0% of the participants were prefrail,
and 14.3% were frail. (At age 70, equivalent figures were
45.5% and 4.9% respectively.) The increase in prevalence
of frailty between these ages is similar to that found previ-
ously.29 Of those who were frail at age 76, the most com-
mon combination of frailty criteria was exhaustion with
low activity or slow walking speed (both occurring in
76.1%). In the sample as a whole, the most common
frailty indicator was low activity (30.3%).

Table 1 shows participant characteristics according to
frailty status at age 76. Greater frailty at age 76 was associ-
ated with older age, more depressive symptoms, more
chronic physical disease, being a current smoker, having
higher blood concentrations of CRP, and meeting more cri-
teria for frailty at age 70. Greater frailty at age 76 was also
associated with lower baseline level of visuospatial ability,
memory, speed, and crystallized ability and greater decline
in memory and speed between ages 70 and 76.

Table 2 shows the relative risk ratios of incident pre-
frailty or frailty at age 76 according to a SD increment in
factor score estimates for baseline level of cognitive ability
in each domain. In models adjusted for age, sex, and

number of frailty criteria at baseline, higher factor scores
for speed were associated with lower risk of becoming pre-
frail. This association was attenuated and no longer signifi-
cant after further adjustment for other covariates and for
other cognitive factor score estimates. There were no sig-
nificant associations between any of the other cognitive
factor score estimate levels and risk of becoming prefrail.
In initial models, having a higher level of speed or visu-
ospatial ability (but not memory or crystallized ability)
was associated with a significantly lower risk of becoming
frail by age 76 (becoming frail per SD increment in cogni-
tive factor score estimates: RRR = 0.24, 95% CI = 0.17–
0.35 for speed; RRR = 0.63, 95% CI = 0.42–0.93 for
visuospatial ability). Further adjustment in the models of
frailty for the other potential confounding factors had only
a small attenuating effect on these associations. In a final
model with frailty as the outcome, all cognitive factor
score estimates were examined simultaneously. In this
model, processing speed was the only cognitive domain
that was independently associated with risk of becoming
frail (SD increment in speed: RRR = 0.53, 95% CI =
0.33–0.85). When changes in depressive symptoms, in
chronic physical illnesses, and in inflammatory markers
between Waves 1 and 3 were adjusted for in place of these
measures at Wave 1, results were similar (SD increment in
speed: RRR = 0.46, 95% CI = 0.28–0.77).

Table 3 shows RRRs for incident prefrailty or frailty
according to a SD increment in factor score estimates for
the slope of the trajectory of cognitive ability in each
domain between ages 70 and 76. Higher factor score esti-
mates for change in speed and in visuospatial ability—indi-
cating less decline—were associated with lower risk of
becoming prefrail. No other cognitive domain was inde-
pendently associated with prefrailty. In initial models, for
a SD increment in cognitive factor change—indicating less
decline—the risk of pre-frailty was less by 56% in the case

Table 1. Characteristics of Study Sample at Age 70 According to Frailty at Age 76

Characteristics Not Frail, n = 230 Prefrail, n = 279 Frail, n = 85

P-Value for

Differencea

Age, mean � SD 69.4 � 0.83 69.5 � 0.81 69.7 � 0.77 <.001
Depressive symptom score, median (IQR) 1 (0–2) 1 (0–2) 2 (1–3) <.001
Number of frailty criteria, median (IQR) 0 (0–1) 0 (0–1) 2 (1–2) <.001
Number of chronic diseases, median (IQR) 0 (0–1) 1 (0–1) 1 (1–2) <.001
Fibrinogen, g/L, median (IQR) 3.1 (2.7–3.5) 3.2 (2.8–3.5) 3.2 (2.9–3.7) .14
C-reactive protein, mg/L, median (IQR) 1.5 (1.5–5) 3 (1.5–6) 4 (1.5–7) .02
Female, n (%) 108 (47.0) 139 (49.8) 44 (51.7) .70
Current smoker, n (%) 11 (4.78) 17 (6.09) 11 (12.9) .03
Professional or managerial social class, n (%) 144 (62.6) 166 (59.5) 47 (55.3) .48
Cognitive factor score estimates for baseline level, mean � SD
Visuospatial ability 0.32 � 0.85 0.17 � 0.84 �0.42 � 0.92 <.001
Memory 0.24 � 0.79 0.12 � 0.80 �0.29 � 0.82 <.001
Speed 0.46 � 0.81 0.18 � 0.76 �0.54 � 1.01 <.001
Crystallized ability 0.23 � 0.94 0.12 � 0.93 �0.29 � 1.07 <.001

Cognitive factor score estimates for slope, mean � SD
Visuospatial ability �0.02 � 0.50 �0.04 � 0.51 �0.01 � 0.56 .85
Memory 0.10 � 0.68 �0.03 � 0.75 �0.28 � 0.82 <.001
Speed 0.23 � 0.54 �0.01 � 0.69 �0.42 � 0.81 <.001
Crystallized ability �0.02 � 0.87 �0.03 � 1.08 0.003 � 0.66 .96

aFrom analysis of variance, Kruskal–Wallis, or chi-square tests as appropriate.

SD = standard deviation; IQR = interquartile range.
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of speed (RRR= 0.44, 95% CI 0.32 - 0.62), and by 24%
in the case of visuospatial ability (RRR=0.76, 95% CI =
0.53 - 0.98) were (RRR = 0.44, 95% CI = 0.32, 0.62 for
speed; RRR = 0.76, 95% CI = 0.53–0.98 for visuospatial
ability). The association between change in speed and risk
of prefrailty changed little in subsequent models, but the
association between change in visuospatial ability and risk
of prefrailty ceased to be significant when adjusted for
other cognitive factor score estimates. In initial models of
frailty, higher factor score estimates for change in speed
and memory—indicating less decline—were associated
with lower risk (becoming frail per SD increment in cogni-
tive factor change: RRR = 0.20, 95% CI = 0.13–0.32 for
speed; RRR = 0.48, 95% CI = 0.33–0.70 for memory).
Further adjustment for the other covariates had only a
small attenuating effect. In the final model, higher estimate
for change in speed was the only cognitive factor score
estimate that remained significantly associated with lower
risk of frailty (SD increment: RRR = 0.26, 95%
CI = 0.16–0.42). When changes in depressive symptoms,
chronic physical illnesses, and inflammatory markers
between Waves 1 and 3 were adjusted for in place of these
measures at Wave 1, the association between change in
speed and risk of frailty was very similar (SD increment in
speed: RRR = 0.28, 95% CI = 0.17–0.46).

Table 4 shows RRRs for incident prefrailty or frailty
according to SD increments in baseline level and change in
inspection time. Results were similar to those obtained
using the speed factor estimates.

The analyses were repeated excluding those who
scored less than 24 on the MMSE at all three waves
(n = 27). Results were almost unchanged (data not
shown).

A sensitivity analysis was performed with those who
were physically robust at age 70 (n = 295). Effect sizes
were very similar to those presented in Tables 2 and 3;
speed was the only cognitive domain associated with
frailty risk in the fully adjusted models (SD increment in
baseline level of speed: fully adjusted RRR = 0.78, 95%
CI = 0.53–1.14 for prefrailty; RRR = 0.24, 95%
CI = 0.09–0.61 for frailty; SD increment in change in
speed: RRR = 0.49, 95% CI = 0.31–0.79 for prefrailty;
RRR = 0.23, 95% CI = 0.10–0.57 for frailty).

DISCUSSION

To the knowledge of the authors, only one study has
examined the relationship between different cognitive abil-
ities and onset of physical frailty. In 331 women from the
Women’s Health and Aging Study, higher initial level of

Table 2. Risk of Incident Physical Prefrailty and Frailty at Age 76 According to Baseline Level of Cognitive Func-
tion at Age 70

Cognitive Factor

Score Estimate for

Baseline Level, per

Standard Deviation

Adjusted for Age, Sex, and

Components of Frailty Present at

Age 70

Further Adjusted for Depressive

Symptoms, Chronic Physical

Diseases, Social Class,

Inflammatory Biomarkers, and

Smoking Status at Age 70

Further Adjusted for Other

Cognitive Factor Score Estimates

Prefrail Frail Prefrail Frail Prefrail Frail

Relative Risk Ratios (95% Confidence Interval)

Visuospatial ability 1.01 (0.79–1.30) 0.63 (0.42–0.93) 0.99 (0.76–1.30) 0.64 (0.41–0.98) 1.05 (0.78–1.63) 0.81 (0.50–1.31)
Memory 1.03 (0.78–1.04) 0.81 (0.55–1.21) 1.04 (0.78–1.40) 0.81 (0.52–1.26) 1.01 (0.73–1.38) 0.86 (0.52–1.40)
Speed 0.66 (0.52–0.84) 0.24 (0.17–0.35) 0.84 (0.64–1.10) 0.49 (0.32–0.76) 0.82 (0.61–1.09) 0.53 (0.33–0.85)
Crystallized ability 1.10 (0.87–1.40) 1.06 (0.77–1.46) 1.14 (0.87–1.51) 1.21 (0.81–1.81) 1.15 (0.86–1.54) 1.40 (0.90–2.18)

All estimates are weighted to adjust for attrition since baseline.

Table 3. Risk of Incident Physical Prefrailty and Frailty at Age 76 According to Change in Cognitive Function
(Slope) Between Age 70 and 76

Cognitive Factor

Score Estimates

for Slope, per

Standard Deviation

Adjusted for Age, Sex, and

Components of Frailty Present at

Age 70

Further Adjusted for Depressive

Symptoms, Chronic Physical

Diseases, Social Class,

Inflammatory Biomarkers, and

Smoking Status at Age 70

Further Adjusted for Other

Cognitive Factor Score Estimates

Prefrail Frail Prefrail Frail Prefrail Frail

Relative Risk Ratios (95% Confidence Interval)

Visuospatial ability 0.72 (0.53–0.98) 0.65 (0.40–1.06) 0.71 (0.52–0.98) 0.65 (0.39–1.06) 0.82 (0.59–1.15) 0.95 (0.56–1.63)
Memory 0.80 (0.62–1.03) 0.48 (0.33–0.70) 0.79 (0.61–1.02) 0.49 (0.33–0.72) 0.93 (0.70–1.24) 0.75 (0.48–1.15)
Speed 0.44 (0.32–0.62) 0.20 (0.13–0.32) 0.47 (0.34–0.65) 0.22 (0.15–0.36) 0.50 (0.35–0.70) 0.26 (0.16–0.42)
Crystallized ability 0.93 (0.77–1.12) 0.91 (0.69–1.19) 0.92 (0.776 1.11) 0.90 (0.68–1.18) 0.93 (0.77–1.13) 0.92 (0.69–1.24)

All estimates are weighted to adjust for attrition since baseline.
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and slower decline in executive function—assessed using a
single test—were associated with lower risk of physical
frailty.16 Participants were also assessed for psychomotor
speed and immediate and delayed verbal memory—again
using single tests. Higher scores for speed, delayed verbal
memory only, and general cognitive performance were
associated with lower risk, but there were no significant
associations between rate of decline on any cognitive test
other than the test of executive function and physical
frailty risk. The measure used to assess executive function
in that study (the Trail-Making Test) may also reflect pro-
cessing speed,30 conforming to the findings in the current
analysis.

In the present study, initial level of and decline in mem-
ory and speed were associated with frailty risk. Speed
seemed to be the more-powerful predictor of physical frailty
because it was associated with risk independent of covari-
ates and other cognitive domains; for a SD increment in ini-
tial level of speed or change in speed (less decline), risk of
frailty was 47% or 74% less, respectively. To check
whether overlap between the speed of motor response
required by some tests of processing speed and the slow
walking speed or exhaustion components of the frailty phe-
notype might produce these associations, the analyses were
repeated using the psychophysical inspection time test as the
sole measure of processing speed; this test of speed of visual
discrimination does not rely on physical reactions. Effect
sizes using this single test were smaller than those obtained
using the speed factor—for a SD increment in baseline level
of or change in inspection time, risk of frailty was 40% or
35% lower, respectively, after full adjustment—but these
results demonstrate that the link between processing speed
and risk of frailty is not artifactual. Processing speed may be
an early signal of impending limitations in a number of
physical–mental domains, with some underlying shared
causes. There is evidence that greater decline in processing
speed is associated with greater decline in walking speed,31

and in the current cohort, decline in processing speed, as
measured according to inspection time, was strongly corre-
lated with decline in general cognitive ability.32

The mechanisms underlying associations between
domains of cognitive ability, in particular speed, and risk of
physical frailty remain unclear. Adjustment for covariates
had modest attenuating effects. Neuropathology that has an
adverse effect on cognitive function may also influence risk

of physical frailty. Support for this comes from findings that
rates of change in physical frailty and cognitive function
were strongly correlated and that Alzheimer’s disease
pathology, macroinfarcts, and nigral neuronal loss were
associated with prior rates of change in physical frailty and
cognitive ability.33 Disruption of connectivity in white mat-
ter affects processing speed34,35 and walking speed.36 Fur-
ther investigation in this cohort could test whether this is the
mechanism underlying these findings. Another explanation
might be that some common biological process of cellular
senescence underlies the associations.37 Cellular senescence
is a stress response that occurs when cells are exposed to
potentially oncogenic stimuli. Senescent cells appear with
increasing frequency in older tissues. The secretion of proin-
flammatory cytokines, growth factors, and proteases that
accompanies cellular senescence may be implicated in cogni-
tive decline and physical frailty.38

Strengths of this study include the characterization of
each domain of cognitive function over three waves,
enabling how initial level and change were related to onset
of physical frailty or prefrailty to be examined. Other
strengths are the narrow age range, data on a range of
potential confounding factors, and the fact that the sample
was of both sexes. One limitation is that, for some individu-
als, decline in cognitive ability and onset of physical frailty
will have begun before age 70, making it uncertain whether
poorer cognitive ability predates later frailty or whether
cognitive and physical health are declining together. The
finding that slower processing speed was as predictive of
frailty in the subset of participants who were physically
robust as in the whole sample suggests that poorer cognitive
ability may increase the risk of frailty. A second limitation is
that, largely because of attrition, the analyses were based on
54% of participants in the baseline survey. Attrition can
result in biased estimates if there are differences in likeli-
hood of follow-up related to exposure and outcome. In the
analytical sample, higher baseline levels of processing speed
were associated with lower risk of becoming physically frail.
The risk of becoming physically frail was likely to have been
higher in those lost to follow-up because they tended to be
in poorer health and were frailer at baseline (Table S2).
Those lost to follow-up (and those excluded because of
missing data) also differ from the analytical sample in hav-
ing lower levels of processing speed. The models were
weighted to reduce potential bias due to attrition, but the

Table 4. Risk of Incident Physical Prefrailty and Frailty at Age 76 According to Baseline Level of and Change in
Inspection Time Between Age 70 and 76

Inspection Time

Baseline Level

or Slope, per

Standard Deviation

Adjusted for Age, Sex, and

Components of Frailty Present at

Age 70

Further Adjusted for Depressive

Symptoms, Chronic Physical

Diseases, Social Class,

Inflammatory Biomarkers, and

Smoking Status at Age 70

Further Adjusted for Other

Cognitive Factor Score Estimates

Prefrail Frail Prefrail Frail Prefrail Frail

Relative Risk Ratios (95% Confidence Interval)

Level 0.76 (0.62–0.93) 0.56 (0.42–0.76) 0.77 (0.63–0.934) 0.58 (0.43–0.79) 0.76 (0.62–0.93) 0.60 (0.44–0.83)
Slope 0.87 (0.63–1.21) 0.60 (0.38–0.97) 0.86 (0.62–1.20) 0.61 (0.38–0.79) 0.86 (0.61–1.20) 0.65 (0.40–1.01)

All estimates are weighted to adjust for attrition since baseline.
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results may underestimate the predictive power of process-
ing speed regarding risk of physical frailty.

The speed with which older people process informa-
tion and the rate at which this declines may be important
indicators of the risk of becoming physically frail. More
research into cognitive domain–specific associations and
risk of physical frailty is needed to confirm the importance
of different domains for predicting onset of frailty and elu-
cidate the underlying mechanisms.
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