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Approximate Smoothing and Parameter Estimation
in High-Dimensional State-Space Models

Axel Finke, Sumeetpal S. Singh

Abstract—We present approximate algorithms for performing
smoothing in a class of high-dimensional state-space models via
sequential Monte Carlo methods (‘particle filters’). In high di-
mensions, a prohibitively large number of Monte Carlo samples
(‘particles’), growing exponentially in the dimension of the state
space, is usually required to obtain a useful smoother. Employing
blocking approximations, we exploit the spatial ergodicity properties
of the model to circumvent this curse of dimensionality. We thus
obtain approximate smoothers that can be computed recursively
in time and parallel in space. First, we show that the bias of our
blocked smoother is bounded uniformly in the time horizon and in
the model dimension. We then approximate the blocked smoother
with particles and derive the asymptotic variance of idealised
versions of our blocked particle smoother to show that variance is
no longer adversely effected by the dimension of the model. Finally,
we employ our method to successfully perform maximum-likelihood
estimation via stochastic gradient-ascent and stochastic expectation–
maximisation algorithms in a 100-dimensional state-space model.

Index Terms—high dimensions, smoothing, particle filter, sequen-
tial Monte Carlo, state-space model

I. INTRODUCTION

ALGORITHMS known as sequential Monte Carlo (SMC)
methods or particle filters (PFs) are nowadays commonly

used to perform inference in state-space models [1], [2] and
more generally [3]. In order to infer certain ‘static’ model
parameters, SMC methods are often employed within other
algorithms, i.e. within Markov chain Monte Carlo (MCMC) or
other SMC approaches for Bayesian inference [4], [5] or within
stochastic gradient-ascent and expectation–maximisation (EM)
algorithms for Frequentist inference [6]. In both cases, it is
imperative to control the error of SMC approximations of the
filter and smoother. Unfortunately, the number of Monte Carlo
samples (‘particles’) typically needs to scale exponentially in
the dimension of the state space in order to control these errors
[7]. This ‘curse of dimensionality’ quickly leads to a prohibitive
computational cost in higher dimensions.

In order to circumvent the curse of dimensionality in the
context of filtering, so called ‘blocking approximations’ have
been introduced in the literature. For finite state-space dy-
namic Bayesian networks, blocked filter approximations (termed
Boyen–Koller algorithm) were proposed by [8], [9]. SMC approx-
imations of the Boyen–Koller algorithm were first considered
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in [10]. For models on general state spaces [11], [12] used
similar algorithms. [13] termed one such algorithm blocked
particle filter and showed that it permits approximations of filter
marginals which are bounded uniformly in time and model
dimension as long as the model is sufficiently ergodic in both
time and space. Other attempts at reducing the state-dimension
by introducing additional intermediate SMC steps were made
in [14]–[16]. However, for problems without a very specific
conditional-independence structure, these strategies induce mod-
els which are no longer Markov which may cause difficulties in
an SMC context. For state-space models with Gaussian-mixture
transitions, the iterated auxiliary particle filter introduced by [17]
can make Bayesian inference via particle MCMC methods [4]
feasible in high dimensions.

The problem of performing smoothing for high-dimensional
state-space models has received much less attention thus far. For
small finite state spaces, [18] attempted a simple approximate
forward–backward recursion and more sophisticated blocked
smoothing algorithms are developed by [19, personal communi-
cation] independently of the present work. However, for general
(e.g. large discrete or even continuous) state spaces, efficient
smoothing algorithms in high dimensions are still lacking.

The goal of this work is thus to exploit blocking strategies
to devise approximate versions of particle smoothing algorithms
known as backward sampling [20] and forward smoothing [21]
for the canonical class of high-dimensional (general state-space)
hidden Markov models from [13] and to provide theoretical
guarantees for these methods. Our methodological contributions,
mainly contained in Section IV, are as follows.

• In Subsection IV-C, we show that existing smoothing al-
gorithms break down in high dimensions in the sense that
the asymptotic variance grows exponentially in the model
dimension – even if we make the favourable assumption that
the filter errors are dimension-independent (Proposition 1).
This unequivocally justifies the need for new dimensionally
stable particle smoothers.

• In Subsection IV-D, we introduce novel blocked particle
smoothing algorithms and a bias-reduction technique.

• In Subsection IV-E, we prove a uniform (in both time and
model dimension) bound on the asymptotic variance of our
estimator (Proposition 2) and a similarly uniform bound on
the asymptotic bias (Proposition 3).

In Section V, we empirically illustrate that our algorithm induces
local errors which are bounded in the model dimension. Finally,
we successfully perform maximum-likelihood estimation via
stochastic gradient-ascent and stochastic EM algorithms in a 100-
dimensional state-space model.
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II. STANDARD PARTICLE FILTERING AND SMOOTHING

In this section, we review standard particle methodology for
performing filtering or smoothing in state-space models.

A. State-Space Models

A (homogeneous) state-space model is a stochastic process
(Xt, Yt)t∈N on a space X×Y with the following properties. The
process (Xt)t∈N is a Markov chain on X with initial distribution
µ(dx1) = m(x1)ψ(dx1) and transitions p(xt−1, xt)ψ(dxt).
Here, ψ denotes the reference measure on X with respect to
which m : X → (0,∞) and p : X × X → (0,∞) are densities.
The chain (Xt)t∈N is not directly observed. At each time t, we
instead observe the value yt of the random variate Yt whose law,
conditional on the ‘state’ sequence X1:t := (X1, . . . , Xt) taking
the values x1:t ∈ Xt, is g(xt, yt)ϕ(dyt). Here, ϕ denotes the
reference measure on Y with respect to which g : X×Y→ (0,∞)
is a transition density. Throughout this work, we will refer to
V := cardX as the model dimension. Finally, all densities
may depend on some model parameter θ but for simplicity, we
suppress θ from the notation wherever possible.

1) Filtering: In many applications, e.g. when tracking objects
in real time, we are interested in approximating integrals with
respect to the filter at time t, πt. This is the distribution of Xt

given all the observations recorded up to time t, i.e. πt(dxt) =
P(Xt ∈ dxt|Y1:t = y1:t).

2) Smoothing: The joint smoothing distribution Qt is the
posterior distribution of the states X1:t given the data y1:t, i.e.
Qt(dx1:t) := P(X1:t ∈ dx1:t|Y1:t = y1:t). It is given by
Qt(dx1:t) ∝ Γt(dx1:t), where

Γt(dx1:t) = µ(dx1)g(x1, y1)

t∏
s=2

p(xs−1, xs)g(xs, ys)ψ(dxs).

3) Goal: In this work, we seek to efficiently approximate
integrals of certain additive functions Ft : Xt → R (see Sub-
section IV-A) w.r.t. the joint smoothing distribution, i.e.

Ft := Qt(Ft) := E[Ft(X1:t)], for X1:t ∼ Qt,

for the canonical class of high-dimensional state-space models
introduced in [13] (and detailed in Subsection III-A of this
work). First, however, we review existing methods conventionally
employed for this purpose. We will sometimes refer to these
as standard particle filters and smoothers to distinguish them
from the blocked particle filters and smoothers reviewed and
introduced in Sections III and IV, respectively.

B. Standard Particle Filtering

We begin by reviewing (standard) particle filters (PFs). Let
Qt(z,dx) := qt(z, x)ψ(dx) be a Markov transition kernel, where
qt : X × X → (0,∞) is some suitable transition density with
respect to the reference measure ψ. All these quantities may also
depend on y1:t but we suppress this dependence, for simplicity.
Finally, define

G1(x) :=
m(x)g(x, y1)

q1(x)
,

Gt(z, x) :=
p(z, x)g(x, yt)

qt(z, x)
, for t > 1.

Algorithm 1 summarises a PF. Here, Cat(p1:N ) is the categori-
cal distribution with some vector of probabilities p1:N and we use
the convention that actions prescribed for the nth particle are to
be performed conditionally independently for all n ∈ {1, . . . , N},
where N is the number of particles.

Algorithm 1 (particle filter):

1) At time 1,
i) sample Xn

1 ∼ Q1,
ii) set wn1 := G1(Xn

1 ) and Wn
1 := wn1 /

∑N
k=1 w

k
1 .

2) At Step t, t > 1,
i) sample Ant−1 ∼ Cat(W 1:N

t−1 ); write Xn
t−1 := X

An
t−1

t−1 ,
ii) sample Xn

t ∼ Qt(Xn
t−1, · );

iii) set wnt := Gt(X
n
t−1, X

n
t ) and Wn

t := wnt /
∑N
k=1 w

k
t .

If qt = p then Algorithm 1 is often termed bootstrap PF. For
any test function f : X → R, we may approximate πt(f) using
the weighted sample (Xn

t ,W
n
t )n≤N . That is, after the tth step,

we may estimate πt(f) by

πNt,PF(f) :=

N∑
n=1

Wn
t f(Xn

t ). (1)

Throughout this work, we assume that the cost of sampling each
particle Xn

t and evaluating each weight wnt grows linearly in V .
The complexity of the PF is then O(V N) per time step.

C. Standard Particle Smoothing

We now review algorithms which have been proposed to
approximate expectations with respect to the joint smoothing
distribution, i.e. integrals FT = QT (FT ), for some T ∈ N.

1) Backward Recursion: It is well known [1, Corollary 3.3.8]
that the joint smoothing distribution can be written as

QT (dx1:T ) = πT (dxT )

T−1∏
t=1

Bπt(xt+1,dxt), (2)

where the backward kernels Bν : X × Borel(X) → [0, 1]
(Borel(X) is the Borel σ-algebra and ν some probability measure
on X) are defined by

Bν(x,dz) =
p(z, x)ν(dz)∫
X p(u, x)ν(du)

.

2) Particle Approximation: Unfortunately, the filters πt and
hence the backward kernels Bπt(x, dz) in (2) are usually in-
tractable unless the model is linear and Gaussian or unless the
model dimension V = cardX is sufficiently small. To circumvent
this intractability, standard particle smoothers [20], [21] replace
the filters in (2) by Monte Carlo approximations. More precisely,
let (Xn

t ,W
n
t )n≤N be a weighted sample (e.g. obtained from

the PF in Algorithm 1) such that πNt :=
∑N
n=1W

n
t δXn

t
,

approximates πt. Here, δx denotes the point mass at x. We then
replace Bπt

(x, dz) in (2) by

BπN
t

(x, dz) =

N∑
n=1

Wn
t p(X

n
t , x)∑N

k=1W
k
t p(X

k
t , x)

δXn
t

(dz). (3)

Conditional on (Xn
t ,W

n
t )n∈{1,...,N}, the computational com-

plexity of evaluating BπN
t

(x, · ) is O(NV ).
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Replacing Bπt
(x, dz) by BπN

t
(x, dz) in (2) then induces the

following approximation of QT (FT ):

QNT,FS(FT ) :=

∫
XT
FT (x1:T )πNT (dxT )

T−1∏
t=1

BπN
t

(xt+1,dxt)

=
∑

n1:T∈{1,...,N}T
FT (Xn1:T

1:T )WnT

T

T−1∏
t=1

BπN
t

(X
nt+1

t+1 , {Xnt
t }). (4)

3) Forward Smoothing: The computational cost of summing
over NT terms in (4) is normally prohibitive. However, if FT is
additive in time in the sense that there are functions f1 : X→ R
and ft : X2 → R (where ft may depend on yt) such that

Ft(x1:t) = f1(x1) +

t∑
s=2

fs(xs−1, xs),

then the computational cost of evaluating this estimate can be
brought down to O(N2TV ). The resulting algorithm is called
(standard) forward smoothing (FS) and was introduced by [21],
[22] who also derived finite-sample error bounds as well as a
central limit theorem (see also [23]). Algorithm 2 outlines the
idea; we use the convention that any action prescribed for some
n is to be performed conditionally independently for all n ∈
{1, . . . , N}. Note that Algorithm 2 can be implemented online,
i.e. αnt can already be determined at Step t of the PF.

Algorithm 2 (forward smoothing):

1) Set αn1 := f1(Xn
1 ). For t > 1, set

αnt :=

N∑
m=1

BπN
t−1

(Xn
t , {Xm

t−1})[αmt−1 + ft(X
m
t−1, X

n
t )].

2) Approximate Ft by FNt := QNt,FS(Ft) =
∑N
n=1W

n
t α

n
t .

4) Backward Sampling: To circumvent the O(N2) compu-
tational complexity of FS, we may instead estimate QT (FT )
using a simple Monte Carlo approximation based on M < N
sample points drawn conditionally independently from QNT,FS.
More precisely, the algorithm samples M particle paths X̃m

1:T in
the reverse-time direction according to the kernel from (3). This
gives the (standard) backward sampling (BS) [20] approximation1

QNT,BS(FT ) :=
1

M

M∑
m=1

FT (X̃m
1:T ).

Algorithm 3 outlines the method. Here, we use the convention
that any action prescribed for some m is to be performed
conditionally independently for all m ∈ {1, . . . ,M}.

Algorithm 3 (backward sampling):

1) Sample X̃m
T ∼ πNT and X̃m

t ∼ BπN
t

(X̃m
t+1, · ), for t < T .

2) Approximate FT by FNT := QNT,BS(FT ).

The computational complexity of Algorithm 3 is O(MNTV ).
However, QNT,BS(FT ) normally has a larger variance than
QNT,FS(FT ) since FS can be seen as a Rao–Blackwellisation of
the BS approximation, i.e. since

QNT,FS(FT ) = E
[
QNT,BS(FT )

∣∣w1:N
1:T , X

1:N
1:T

]
. (5)

1Note that additivity in time of the test function is not needed for BS.

As proposed in [23], the O(MN)-complexity of BS can be
reduced to O(N) using an accept-reject step which circumvents
the need for evaluating the denominator in (3), and [24] devel-
oped an online implementation around this idea called particle-
based rapid incremental smoother (PaRIS). However, the accept-
reject step typically requires O(eV ) proposed samples to obtain
a single accepted sample. The overall complexity of PaRIS or of
the backward sampler from [23] is therefore O(NT eV ).

III. BLOCKED PARTICLE FILTERING

In this section, we describe the canonical class of high-
dimensional state-space models for which we will compute the
smoother in the next section. The same model was used in [13] to
analyse their blocked filtering algorithm which is also reviewed.

A. Class of High-dimensional State-Space Models

The state-space model (Xt, Yt)t∈N from Subsection II-A is
now developed into a high-dimensional model as follows. We
assume that the state space X =

∏
v∈V Xv is endowed with a

graph G := (V, E) where vertices v ∈ V index the components
of the state vector and edges e ∈ E define the spatial corre-
lation structure. The latent states Xt := (Xt,v)v∈V are then V -
dimensional, with V = cardX = cardV again being the model
dimension. For each component Xt,v , taking a value xt,v ∈ Xv ,
we obtain an observation Yt,v , taking a value yt,v ∈ Yv . Thus,
Yt := (Yt,v)v∈V takes a value in Y =

∏
v∈V Yv . Finally, for all

v ∈ V, we let ψv and ϕv be reference measures on Xv and Yv ,
respectively, with ψ =

∏
v∈V ψv and ϕ =

∏
v∈V ϕv . We assume

that the densities satisfy the following properties.
i) The initial density factorises as m(x) =

∏
v∈Vmv(xv),

where mv : Xv → (0,∞) is a density w.r.t. ψv .
ii) The transition densities p and g factorise as

p(z, x) =
∏
v∈V

pv(z, xv) and g(x, y) =
∏
v∈V

gv(xv, yv),

where pv : X × Xv → (0,∞) and gv : Xv × Yv → (0,∞)
are transition densities w.r.t. ψv and ϕv , respectively.

iii) Let NR(v) be the R-neighbourhood of the vertex v, i.e.

NR(v) := {u ∈ V | d(u, v) ≤ R},

where d(u, v) is the length of the shortest path between
vertices u and v, and R > 0. The parameter R is fixed
throughout this work and we write N (v) := NR(v). We
assume that R governs the spatial correlation of the model
in the sense that pv(z, xv) = pv(z

′, xv) for any (z, z′, xv) ∈
X2 × Xv with zN (v) = z′N (v), where zK := (zv)v∈K , for
any K ⊆ V. Under the model, the vth component thus
only depends on the components in N (v) at the previous
time step which allows us to slightly abuse notation to write
pv(zN (v), xv) := pv(z, xv).

The structure of the model is illustrated in Fig. 1.
For the blocked particle filters reviewed in this section, we

also assume that the proposal kernel used by the PF fac-
torises in the same way as the model transitions. That is,
qt(z, x) :=

∏
v∈V qt,v(z, xv), where qt,v : X × Xv → (0,∞)

are transition densities w.r.t. ψv . We assume that qt induces
the same spatial correlation structure as p which allows us to
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Yt−1,v+1 Yt,v+1 Yt+1,v+1

Yt−1,v Yt,v Yt+1,v

Yt−1,v−1 Yt,v−1 Yt+1,v−1

Xt−1,v+1 Xt,v+1 Xt+1,v+1

Space

Xt−1,v Xt,v Xt+1,v

Xt−1,v−1 Xt,v−1 Xt+1,v−1

Time

Fig. 1. Sketch of the state-space model considered in this work. In this example,
R = 1, i.e. N (v) = {v − 1, v, v + 1}. A similar figure can be found in [13].

write qt,v(zN (v), xv) := qt,v(z, xv). Again, all above-mentioned
densities may depend on some model parameter θ though we
suppress θ from the notation if possible.

B. Localisation

Let πt,K denote the marginal of πt on XK :=
∏
v∈K Xv .

Assume that f : X → R is local, i.e. it only depends on
the components in some block K ⊆ V. More formally, there
exists fK : XK → R such that f(z) = f(x) =: fK(xK) for any
x, z ∈ X with xK = zK . In this case, πt(f) = πt,K(fK).

The number of particles N must usually grow exponentially
in the model dimension V to control the error of the PF
approximation in (1). Unfortunately, this curse of dimensionality
persists even if we only want to approximate the integral of
a local function, πt(f) = πt,K(fK), because the importance
weights Wn

t still depend on V .
A naı̈ve attempt to stabilise the local filtering error, i.e. the

error of the particle approximation of πt,K(fK), as V grows,
would be to replace the weights in (1) by weights which only
depend on the components of the particles X1:N

t in K. That is,
we could approximate πt,K(fK) by

N∑
n=1

Wn
t,KfK(Xn

t,K), (6)

with local weights Wn
t,K := wnt,K/

∑N
m=1 w

m
t,K defined through

wnt,K =
∏
v∈K

Gt,v(X
An

t−1

t−1,N (v), X
n
t,v) =

∏
v∈K

wnt,v.

Here, we have set N (K) :=
⋃
v∈K N (v), for any K ⊆ V, and

Gt,v(zN (v), xv) =
pv(zN (v), xv)gv(xv, yt,v)

qt,v(zN (v), xv)
.

The approximation in (6) is clearly independent of the dimension
of Xt. Unfortunately, for t > 1, it still suffers from the curse of
dimensionality because of the particles and weights indirectly
depend on (the dimension of) X1:t−1.

C. Blocked Particle Filters

Let K be a partition of V, i.e.
⋃
K∈K = V and K ∩K ′ = ∅

for all K,K ′ ∈ K. To stabilise the local filtering errors, the
blocked particle filter (BPF) from [13] seeks to make the entire

evolution of the particle system depend only on local weights
Wn
t,K = wnt,K/

∑N
i=1 w

i
t,K , for K ∈ K – and not just the

construction of marginal filter approximations as in (6).
Algorithm 4 summarises the BPF. As before, we use the

convention that any action described for some v, K, or n is to
be performed conditionally independently for all v ∈ V, K ∈ K
and n ∈ {1, . . . , N}.

Algorithm 4 (blocked particle filter [13]):

1) At Step 1,
i) sample Xn

1 ∼ Q1,
ii) set wn1,v := G1,v(X

n
1,v) and wn1,K :=

∏
v∈K w

n
1,v .

2) At Step t, t > 1,
i) sample Ant−1,K ∼ Cat(W 1:N

t−1,K),
ii) concatenate Xn

t−1 := (X
An

t−1,K

t−1,K )K∈K,
iii) sample Xn

t ∼ Qt(Xn
t−1, · ),

iv) set wnt,v := Gt,v(X
n
t−1,N (v), X

n
t,v); wnt,K :=

∏
v∈K w

n
t,v .

To obtain an approximation of the filter, [13] construct the
blocking approximation

π̃Nt,BPF(f) :=
[⊗
K∈K

π̃Nt,K

]
(f), (7)

where, for any K ⊆ V (i.e. even for K /∈ K), we have defined

π̃Nt,K(fK) :=

N∑
n=1

Wn
t,KfK(Xn

t,K). (8)

We use the ‘tilde’-symbol to stress that in contrast to standard
PFs, the BPF asymptotically (as N → ∞) does not target the
true filter πt but rather an approximate, blocked filter π̃t which
is defined in Appendix B.

The complexity of the BPF is (N |K|∞ cardK) per time
step where |K|∞ := maxK∈K cardK. Under strong mixing
assumptions, [13], [25] show that local errors of π̃Nt,BPF are
bounded uniformly in t and V .

Remark 1: Recall that the particle smoothers from Section II
require approximations of the filters. Unfortunately, approximat-
ing πt by π̃Nt,BPF has complexity O(N cardK) which is typically
prohibitive. Instead, we propose to approximate πt by subsam-
pling N points conditionally independently from π̃Nt,BPF. This has
complexity O(N).

Remark 2: The blocked particle smoothers proposed in Sec-
tion IV, will require approximations of filter marginals on blocks
K ′ ⊇ K ∈ K. More specifically, K ′ will be some neighbourhood
of K. Unfortunately, approximating πt,K′ by marginalising π̃Nt,BPF

has complexity O(N cardL), where L := {K ∈ K |K ∩K ′ 6= ∅},
and this is typically prohibitive. Instead, we propose to approx-
imate πt,K′ by π̃Nt,K′ (i.e. via (8) with K ′ = K). This has
complexity O(N).

IV. BLOCKED PARTICLE SMOOTHING

In this section, we formally show that standard particle
smoothing breaks down in high dimensions – even under di-
mensionally stable filter approximations. We then propose novel
blocked particle smoothers which provably circumvent this curse
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of dimensionality in the canonical high-dimensional model from
Subsection III-A (potential extensions to other models are dis-
cussed in Subsection G of the supplementary materials).

A. High-dimensional Smoothing

For the remainder of this work, we will be concerned with
approximating smoothed expectations Qt(Ft) for the canonical
high-dimensional model in the case that Ft : Xt → R is additive
in both time and space2, in the sense that there exist functions
f1,v : Xv → R and ft,v : XN (v) × Xv → R, for t > 1, such that

Ft(x1:t) =

t∑
s=1

∑
v∈V

fs,v(xs−1,N (v), xs,v), (9)

with the convention that any quantity with time index 0 is to
be ignored. Each constituent function ft,v may also implicitly
depend on yt,v .

We now give an example of such an additive function which
is important for the problem of calibrating θ.

Example 1 (score): Assume that mv = mθ
v , pv = pθv , gv = gθv

and hence ΓT = Γ θT depend on some unknown parameter vector
θ. Approximating the (marginal) maximum-likelihood estimate
(MLE) of θ via a gradient-ascent algorithm requires computing
the score, i.e. the gradient of the (marginal) log-likelihood, given
by ∇ϑ logΓϑT (1)|ϑ=θ = QθT (F θT ), where F θT is as in (9) with

fθ1,v(xv) = ∇ϑ log
[
mϑ
v (xv)g

ϑ
v (xv, y1,v)

]∣∣
ϑ=θ

,

fθt,v(zN (v), xv) = ∇ϑ log
[
pϑv (zN (v), xv)g

ϑ
v (xv, yt,v)

]∣∣
ϑ=θ

.

B. Assumptions

In this subsection, we state some assumptions under which we
prove various theoretical results below.

Assumption 1 is a regularity condition routinely used in the
analysis of SMC techniques (e.g. [26]). It can often be relaxed
at the price of significantly complicating the analysis [27],
[28]. Assumption 2 requires FT to be spatially and temporally
local. Recall that by (9), the smoothing functional of interest
decomposes into a sum of such local functions. For simplicity,
as in [21], [22], we assume here that ft,J does not depend on
the state at time t − 1 but this could be relaxed. Assumption 3
lists a number of options for the Monte Carlo approximation πNt
of the filter πt needed for the standard particle smoothers.

Assumption 1 (strong mixing condition): For any v ∈ V the
dominating measure ψv is finite, and there exist ε > 0 such that
for all (x, z, y) ∈ X2 × Y and all v ∈ V,

ε−1 ≤ pv(xN (v), zv) ≤ ε and 0 <

∫
Xv

gv(zv, yv)ψv(dzv) <∞.

Assumption 2 (local test function): There exist J ⊆ K ∈ K,
r ∈ {1, . . . , T}, and fr,J : XJ → R with ‖fr,J‖ ≤ 1 such that
fr,J is not ψ-almost everywhere constant and

FT (x1:T ) = fr,J(xr,J), for all x1:T ∈ XT .

Assumption 3 (filter approximations): For any t ∈ N, approx-
imate πt using

2Strictly speaking, as with standard particle smoothers, additivity in time in
only needed for the FS but not the BS variant of the algorithm.

a) a standard PF with N particles (i.e. via (1)),
b) N samples drawn conditionally independently from the BPF

approximation in (7) (see Remark 1),
c) N IID samples from the exact filter, πt,
d) N IID samples from the blocked filter π̃t (see Appendix B).

C. Breakdown of Standard Particle Smoothing

In this subsection, we show that standard particle smoothing
suffers from a curse of dimensionality, even if local filter errors
are dimension-independent.

The efficiency of standard particle smoothing relies strongly
on the mixing properties of the transitions p. Unfortunately, the
mixing of p(x, z) =

∏
v∈V pv(x, zv) degrades exponentially in

the model dimension V , unless the local transitions are perfectly
mixing in the following sense.

Definition 1 (perfect mixing): The local transitions pv
are called perfectly mixing if

∫
A
pv(xN (v), zv)ψv(dzv) is∏

u∈N (v) ψu-almost everywhere constant for all A ⊆ Xv .

Note that if the transitions are perfectly mixing, the latent
states are independent over time in which case particle filter-
ing/smoothing methodology is not needed.

Our main result in this subsection is Proposition 1, proved in
Appendix A. It shows that the asymptotic variance associated
with the standard FS approximation QNT,FS(FT ), defined in (4)
(see also Algorithm 2), grows exponentially in the model di-
mension unless the model transitions are perfectly mixing. The
result holds even though we assume highly favourable conditions,
summarised in Assumption 4, and even if local filter errors are
dimension-independent.

Assumption 4 (spatially IID model): We have R = 0, i.e.
p(x, z) =

∏
v∈V pv(xv, zv), for any (x, z) ∈ X2. In addition,

for any t ≤ T and any u, v ∈ V, we have Xu = Xv =: X̊,
Yu = Yv =: Y̊, pu(x, z) = pv(x, z) =: p̊(x, z), gu(x, yt,u) =
gv(x, yt,v) =: g̊t(x), ψu = ψv =: ψ̊ and ϕu = ϕv =: ϕ̊.

We stress that we only use Assumption 4 (which implies a
complete absence of spatial interactions) to highlight the fact that
standard particle smoothers break down in high dimensions even
under such highly favourable conditions. The novel smoothing
methodology proposed below does not rely on this assumption.

Proposition 1:
1) Under Assumptions 1, 2, 4 and if the filter is approximated

according to Assumption 3a (using a bootstrap PF), or
according to Assumption 3c,

√
N
[
QNT,FS(FT )−QT (FT )

]
⇒ N(0, σ2

T (FT )),

as N →∞, where

σ2
T (FT ) ≥

T∑
t=1

at,T (fr,J)(ct,T )V . (10)

Here, for each t ≤ T , at,T (fr,J) > 0 and ct,T ≥ 1 do not
depend on the model dimension, V .

2) For all t ≤ T , ct,T > 1, unless the model transitions are
perfectly mixing.

Note that ct,T > 1 implies that the asymptotic variance in
Equation 10 grows exponentially in V .
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Although Proposition 1 has been established for FS (which
computes the sum in (4) exactly), it extends immediately to BS
and to the PaRIS algorithm from [24] as these construct sampling
approximations of (4). Due to (5), they cannot attain a smaller
variance than FS (for equal numbers of particles N ).

D. Proposed Algorithms

In this subsection, we propose novel ‘blocked’ particle
smoothers aimed at circumventing the curse of dimensionality
analysed in Proposition 1.

1) Blocked Backward Kernels: The curse of dimensionality
suffered by standard particle smoothing methods is due to the
dependence of the backward kernel in (3) on the mixing prop-
erties of the full model transitions p (as outlined above, these
deteriorate as the model dimension increases). Thus, we need to
design approximate versions of the backward kernels which only
operate on some ‘fixed’ block K ⊆ V of components and which
therefore only rely on the mixing properties of the transitions
associated with K:

pK(xN (K), zK) :=
∏
v∈K

pv(xN (v), zv).

To achieve this, we employ blocked backward kernels
BK,ν : XK × Borel(XN (K))→ [0, 1], for x ∈ XK given by

BK,πt,N(K)
(x, dz) :=

pK(z, x)πt,N (K)(dz)∫
XN(K)

pK(u, x)πt,N (K)(du)
. (11)

Again, the filter marginal πt,N (K) is typically intractable and
must be replaced by a Monte Carlo approximation πNt,N (K).

2) Blocked Forward Smoothing: In the remainder of this work,
for any K ∈ K, we let K ⊆ K ⊆ V be some enlarged
block containing K. Note that with this notation, πNt,N (K) is an
approximation of the marginal filter on the components in the
neighbourhood of the enlargement of K.

Our proposed blocked FS scheme is outlined in Algorithm 5,
where as usual, any action prescribed for some n is to be
performed conditionally independently for all n ∈ {1, . . . , N}.

Algorithm 5 (blocked forward smoothing):
1) Perform the following steps (in parallel) for any K ∈ K.

i) Set αn1,K := f1,K(Xn
1,K). For t > 1, set

αnt+1,K :=

N∑
m=1

BK,πN
t,N(K)

(Xn
t+1,K , {Xm

t,N (K)})

×
[
αmt,K + ft+1,K(Xm

t,N (K), X
n
t+1,K)

]
.

2) Approximate Ft by FNt :=
∑
K∈K FNt,K , where, for any

K ∈ K, FNt,K :=
∑N
n=1W

n
t,Kα

n
t,K .

As in the case of standard FS (Algorithm 2), Algorithm 5
can be implemented online. That is, the terms αnt,K can
be determined at the tth step of the Monte Carlo filter
used to generate (Xn

t,v, w
n
t,v). The computational complexity

is O(N2T [cardK] maxK∈K cardN (K)) when running the al-
gorithm up to time T . This is slightly higher than that of
the (dimensionally unstable) Algorithm 2. However, significant
speed-ups should be attainable since the blocked smoothing
recursions can be run in parallel on distributed architectures or
multiple cores (see [29]).

3) Blocked Backward Sampling: As with standard particle
smoothing, we may reduce the computational complexity of
blocked FS to O(NMT [cardK] maxK∈K cardN (K)) via a
simple Monte Carlo approximation based on M < N particle
paths. Algorithm 6 outlines blocked BS. Here, we use the
convention that any action prescribed for some m is to be
performed conditionally independently for all m ∈ {1, . . . ,M}.

Algorithm 6 (blocked backward sampling):
1) Perform the following steps (in parallel) for any K ∈ K.

i) Sample X̃m
T,K ∼ πNT,K . For t = T − 1, . . . , 1, sample

X̃m
t,N (K) ∼ BK,πN

t,N(K)
(X̃m

t+1,K , · ).

ii) Set FNT,K := 1
M

∑M
m=1

∑T
t=1 ft,K(X̃m

t−1,N (K), X̃
m
t,K).

2) Approximate FT by FNT :=
∑
K∈K FNT,K .

4) Bias Reduction: The blocking strategy introduces a bias
but as shown in Proposition 3 below, this bias is bounded
uniformly in the time horizon and model dimension. In addi-
tion, we can reduce the bias by defining the enlarged blocks
as K := Ni(K) :=

⋃
v∈K Ni(v), for some i > 0. That way,

blocked particle smoothers do not require evaluating test func-
tions at components near block boundaries (by Proposition 3
below, the bias decays exponentially in the distance to the block
boundary).

Though as we will discuss in more detail in Subsection IV-E,
any bias reduction attained by choosing larger (enlarged) blocks
needs to be carefully balanced against the variance increase this
induces. In particular, taking K = V trivially minimises the
bias but then the blocked particle smoothers coincide with the
(dimensionally unstable) standard particle smoothers.

5) Marginal Filter Approximations: As with standard particle
smoothers, any stable (Monte Carlo) approximation of filter
marginals can be plugged into Algorithms 5 and 6. We consider
the following approximations πNt,K′ of filter marginals πt,K′ .

Assumption 5 (marginal filter approximations): For any t ∈ N
and any block K ′ ⊆ V, approximate πt,K′ using a

a) standard PF but based on local weights as in (6),
b) BPF (via (8) as justified in Remark 2).
c) suitable marginal of Assumption 3c (IID samples from πt),
d) suitable marginal of Assumption 3d (IID samples from π̃t).

E. Theoretical Analysis

In this subsection, we do not consider enlarged blocks, i.e. the
blocks used for smoothing are the same blocks employed by the
BPF. Under Assumption 2, for J ⊆ K = K ∈ K, the blocked
FS approximation of QT (FT ) then simplifies to

QNT,FS(K)(FT ) =

∫
fr,J(xr,J)πNT,K(dxT,K)

×
T−1∏
t=1

BK,πN
t,N(K)

(xt+1,K ,dxt,N (K)).

We now derive uniform (in both the time horizon T and model
dimension V ) bounds on the asymptotic (as N → ∞) bias and
variance of the blocked FS estimator QNT,FS(K)(FT ). Following
[13], we also show that this estimator can be made locally
consistent by scaling K appropriately with N .
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1) Variance: We now state Proposition 2, proved in Ap-
pendix A, which suggests that the variance of blocked FS is
bounded in time and in the model dimension but may grow
exponentially in the block size for a fixed number of particles
(so that controlling the variance requires N to grow exponentially
in the block size). To prove this result, we specifically assume
that we approximate the filter at any time t using IID samples
from π̃t (Part 1) or from πt (Part 2). In addition, recall that
|K|∞ = maxK∈K cardK and let N(µ, σ2) be a normal distri-
bution with mean µ ∈ R and variance σ2 > 0. The measures
QT and Q̂T which govern the asymptotic mean in this central
limit theorem are specified in Appendix A. We stress that Part 2
of this proposition is included mainly as a direct contrast to the
negative result in Proposition 1.

Proposition 2 (asymptotic variance): Under Assumptions 1
and 2, there exist probability measures QT and Q̂T on XT such
that the following statements hold.

1) If filter marginals are approximated per Assumption 5d
√
N
[
QNT,FS(K)(FT )−QT (FT )

]
⇒ N(0, σ2

T (FT )),

as N →∞, where for c1 > 0 which only depends on ε,

σ2
T (FT ) ≤ ec1 cardK ≤ ec1|K|∞ .

2) Part 1 remains valid (but with asymptotic mean Q̂T (FT )) if
filter marginals are approximated per Assumption 5c.

2) Bias: We now state Proposition 3, proved in Appendix A,
which shows that the bias of blocked FS is bounded in time and
in the model dimension and decays exponentially in the distance
to the block boundary. This result assumes that we use either
the BPF or IID samples from π̃t to approximate the filter at each
time step. In addition, for any K,K ′ ⊆ V, we write d(K,K ′) :=
minv∈K minv′∈K′ d(v, v′) and ∂K := {v ∈ K | N (v) * K}.

Proposition 3 (asymptotic bias): Under Assumptions 1, 2, and
if filter marginals are approximated either per Assumption 5b or
per Assumption 5d,∣∣QT (FT )−QT (FT )

∣∣ ≤ c2 card(J)e−c3 d(J,∂K),

where c2 ∈ R and c3 > 0 only depend on ε and R.

3) Consistency: Propositions 2 and 3 indicate a bias–variance
trade-off: for a fixed number of particles, the bias can be reduced
by increasing the size of the blocks but the variance typically
grows exponentially in the block size. To minimise the mean-
square error (MSE), we must therefore scale the size of the blocks
suitably in N to balance the variance and the (squared) bias.

For any (t, v) ∈ {1, . . . , T} × V, define the function
Ft,v : XT → R for any x1:T ∈ XT by Ft,v(x1:T ) := xt,v . The
local MSE for component v ∈ K ∈ K of blocked FS is

MSE t,v(N) := E
[
(QNT,FS(K)(Ft,v)−QT (Ft,v))

2
]
.

The blocked particle smoothing estimate can then be made locally
MSE-consistent by growing blocks suitably logarithmically in N
because Propositions 2 and 3 imply

MSE t,v(N) = O
(
e−2c3 d(v,∂K) +N−1ec1 cardK

)
. (12)

As a simple illustration, assume that the spatial graph G is a
one-dimensional lattice as in Fig. 1 and consider a component v

at the centre of K := Ni(v) so that d(v,K) = i and cardK =
2i+ 1, for some i ≥ 0. The local MSE in (12) then vanishes as
N →∞ if the block radius grows as i = o([log(N)/c1 − 1]/2).
For instance, taking i = blog(N)/(8c1)c implies that the local
MSE is O(exp(− c3

2c1
log(N))). A straightforward modification

of [13, Corollary 2.5] extends such local consistency to compo-
nents v which are not at the centre of some block or to the case
that G is a q-dimensional lattice. Though, in both cases, i must
grow even more slowly with N .

V. SIMULATIONS

In this section, we compare standard and blocked particle
smoothers on a high-dimensional state-space model.

A. The Model

Blocking strategies have already been successfully applied to
perform filtering in a functional magnetic resonance imaging
(FMRI) application [12] and in military multiple-target track-
ing scenarios [30]. However, to assess the performance of our
smoothing algorithms, we consider the more abstract model from
[13] which is increasingly popular as a benchmark for SMC
algorithms in high dimensions [16], [17], [31]. Purely in order
to compare our method against analytical solutions, we let the
model be linear and Gaussian.

Let N( · ;µ,Σ) denote the density of a normal distribution with
suitable mean vector µ and covariance matrix Σ, let 0V ∈ RV be
a vector of zeros and let IV ∈ RV×V be the identity matrix. Then
the model is given by X = Y = RV , mθ(x) = N(x;0V , IV ),

pθ(z, x) = N(x;Az, σ2
XIV ), gθ(x, y) = N(y;x, σ2

Y IV ).

Here, σX , σY > 0 and A = (ai,j)(i,j)∈V2 is a symmetric, banded
diagonal (i.e. symmetric Toeplitz) matrix whose diagonal entries
are a0, a1, . . . , aR > 0 for some R ∈ N ∪ {0}:

ai,j :=

{
ar, if r ∈ {0, 1, . . . , R} and j ∈ {i+ r, i− r},
0, otherwise.

This induces a local spatial correlation structure because

pθv(zN (v), xv) = N(xv;
∑R
r=0 ar

∑
u∈Br(v) zu, σ

2
X),

where Br(v) := {u ∈ V | d(u, v) = r} denotes the vertices in
V whose distance from vertex v is exactly r.

We parametrise the model via

θ := θ0:R+2 := (a0, a1, . . . , aR, log σX , log σY ).

All simulation results use R = 1 with true parameter values
a0 = 0.5, a1 = 0.2, σX = σY = 1.

B. Smoothing

In this subsection, for fixed θ, we estimate the smoothed
sufficient statistic FT , defined according to (9) with f1,v ≡ 0
and, for t ∈ N, by

ft+1,v(xt,N (v), xt+1,v) := xt+1,v

∑
u∈Br(v) xt,u.

A full list of sufficient statistics for this model is given in
Subsection I of the supplementary materials.

We run standard and blocked FS and BS (with N = 500 and
M = 100) for model dimensions up to V = 500, for contiguous
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blocks of size cardK ∈ {1, 2, 20} and for enlarged blocks K :=
Ni(K) =

⋃
v∈K Ni(v), for i ∈ {0, 1}. The results in Fig. 2

are based on 400 independent repetitions, each using a different
observation sequence y1:20 sampled from the model.

For each algorithm, we compare the impact of different
filter approximations. Standard and blocked PFs used the con-
ditionally, locally optimal proposal kernel qt,v(xN (v), zv) ∝
pv(xN (v), zv)g(zv, yt,v). While this proposal is usually in-
tractable, in the model class considered in this work, it can be
‘exactly’ approximated [31] (at an additional computational cost
which grows in the model dimension). We employed the filter
approximations from Assumptions 3a–c for the standard particle
smoothers and from Assumptions 5a–c for the blocked particle
smoothers. The results suggest the following interpretation.
• Fig. 2a illustrates that the root-mean-square error (RMSE)

of estimates of FT /V grows in V when using a standard PF
irrespective of the type of smoothing algorithm employed.
This is consistent with our theory since Propositions 2 and
3 assume dimensionally stable local filter approximations
and standard PFs (even with efficient proposals) normally
break down in high dimensions. For instance, in a similar
model, [17] reported that even the fully-adapted auxiliary
PF [32], [33] fails to yield useful filter approximations for
model dimensions as small as 20.
• Fig. 2b and 2c illustrate that when local filter errors are

dimensionally stable, blocked particle smoothers yield esti-
mates of FT /V whose error is bounded in V . In contrast,
standard particle smoothers induce an RMSE that appears
to grow with the model dimension.
• The RMSE of both standard and blocked particle smoothers

is slightly higher in Fig. 2b than in Fig. 2c. This is due to
the additional bias induced by the BPF.
• The first and last column in Fig. 2b and Fig. 2c illustrate the

consequence of a suboptimal solution to the bias–variance
trade-off discussed at the end of Subsection IV-E. That is, for
the given number of particles, the block sizes cardK = 1
or cardK = 20 induce an error that is larger than for the
choice cardK = 3 displayed in the second column.

C. Parameter Estimation

We now combine blocked particle smoothing with stochastic
gradient-ascent and stochastic EM algorithms in order to ap-
proximate the MLE of the model parameters θ (see [34] for a
comprehensive review).

These algorithms generate a sequence of parameter values
(θ[p])p∈N via some update rule which requires the evaluation
of some smoothed sufficient statistics FθT . As FθT is usually
intractable, we use (blocked) particle smoothers to estimate it.

1) Offline Gradient-ascent: Let (γ[p])p∈N be a step-size se-
quence which is non-negative, non-increasing, and which satisfies∑∞
p=1 γ[p] = ∞ as well as

∑∞
p=1 γ[p]2 <∞. Gradient-ascent

algorithms use the update rule

θ[p+ 1] = θ[p] + γ[p]Fθ[p]T , (13)

where ∇ϑ logΓϑT (1)|ϑ=θ = FθT = QθT (F θT ) is the score if the
additive functionals fθt,v are as defined in Example 1.

Details on the calculation of the score for the model considered
in this section are given in Subsection I of the supplementary
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a. Using a standard particle filter to approximate the filter.
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b. Using a blocked particle filter to approximate the filter.
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c. Using IID samples from the filter.

Fig. 2. Root-mean-square error of the estimate of FT /V . Obtained from 400
simulation runs (each with a different observation sequence) using standard (—
) and blocked (—) forward smoothing as well as standard (– –) and blocked
(– –) backward sampling. Note that the lines for the standard smoothers are
almost indistinguishable from one another and the same is true for the blocked
smoothers.

materials. The step sizes were γ[p] = p−0.8. To avoid manual
tuning of the step-size sequence, we normalised the gradient
approximation by its L2 norm in (13).

2) Offline EM: EM algorithms use the update rule

θ[p+ 1] := Λ(Fθ[p]T ) := arg max
ϑ

E
[
log

dΓϑT
dψ⊗T

(X1:T )
]
, (14)
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Fig. 3. Average error of the parameter estimates in the 100-dimensional state-
space model. Obtained from 45 runs of the stochastic gradient-ascent and stochas-
tic EM algorithms using standard (—) and blocked (—) backward sampling. We
used blocks of size cardK = 3 and enlarged blocks of the form N2(K). The
shaded areas delimit, respectively, the range all encountered realisations and the
(0.05, 0.95)-quantiles.

where X1:T ∼ QθT and where the expectation on the r.h.s. is
usually a function of FθT .

The exact form of the function Λ in (14) for the particular
model considered in this section is also given in Subsection I of
the supplementary materials.

3) Results: We apply both algorithms, based on standard and
blocked BS, to approximate the MLE of θ using N = 500,
M = 200 and T = 10. In Fig. 3, we only show results for
filter approximations obtained from the BPF (via Assumption 3b
for standard BS and via Assumption 5b for blocked BS). As
expected, using a standard PF led to large errors in all algorithms.

VI. SUMMARY

We have presented online and offline smoothing recursions for
efficiently estimating smoothed functionals in a class of high-
dimensional state-space models (extensions to other models are
discussed in Subsection G of the supplementary materials). We
combine these backward recursions with existing approximate
forward-filtering recursions for high-dimensional models known
as blocked particle filters. The resulting algorithms then exploit
spatial additivity of the smoothing functionals and spatial ergod-
icity of the model to produce estimates whose local errors are

independent of the model dimension (for a fixed number of parti-
cles). Thus, we circumvent the so called curse of dimensionality.
This is in contrast to existing methods which require the number
of particles to scale exponentially in the model dimension. We
have successfully applied our algorithms to perform smoothing
and maximum-likelihood estimation.
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APPENDIX

PROOF OF PROPOSITION 1
This appendix contains the proofs of Propositions 1,

2 and 3. To simplify the notation in all these proofs,
we set gt,v(xv) := gv(xv, yt,v), gt,K(xK) := gK(xK , yt,K) and
gt(x) := g(x, yt) for any x ∈ X, any v ∈ V and any K ⊆ V.

Our proofs of Propositions 1 and 2 are based on [22, Theo-
rem 3.1] which was formulated for prediction models but whose
results can be easily transferred to updated models via [26,
Section 2.4.3] as follows. The filter πt of a state-space model
defined by the triple (m, p, gt) can be interpreted as the predictor
of a state-space model defined by the triple (m̆, p̆t, ğt), where
• m̆(x) := m(z)g1(z)/

∫
Xm(z)g1(z)ψ(dz),

• p̆t(x, z) := p(x, z)gt(z)/
∫
X p(x, z)gt(z)ψ(dz),

• ğt(x) :=
∫
X p(x, z)gt+1(z)ψ(dz).

The remainder of this appendix is devoted to the proof of
Proposition 1.

Proof: Let π̊t and Q̊T represent, respectively, the marginal
of the time-t filter and of the joint smoothing distribution on
X̊, i.e. by Assumption 4, πt =

⊗
v∈V π̊t and QT =

⊗
v∈V Q̊T .

Let B̊π̊t (̊x,dz̊) := π̊t(dz̊)p̊(̊z, x̊)/π̊t(p̊( · , x̊)) be the backward
kernel associated with the marginal of the model on one
spatial component. Define Q̊s(̊x, dz̊) := p̊(̊x, z̊)̊gs(̊z)ψ̊(dz̊),
Q̊t,T :=

⊗T
s=t+1 Q̊s as well as Gt,T :=

⊗
v∈V G̊t,T , with

G̊t,T := Q̊t,T (1)/π̊tQ̊t,T (1) and, for z̊t ∈ X̊,

D̊t,T (̊zt,dx̊1:T ) := δz̊t(dx̊t)
[t−1∏
s=1

B̊π̊s
(̊xs+1,dx̊s)

]
× Q̊t,T (̊xt,dx̊t+1:T ),

Finally, Pt,T :=
⊗

v∈V P̊t,T with P̊t,T := D̊t,T /D̊t,T (1).
We can now prove Part 1. By [22, Theorem 3.1] – transferring

the results from prediction to updated models as outlined above –
the FS approximation of QT (FT ) is asymptotically normal with
asymptotic variance given by

σ2
T (FT ) :=

T∑
t=1

πt
(
G2
t,TPt,T (FT −QT (FT ))2

)
. (A.15)

Without loss of generality, assume that card J = 1, i.e. J = {u},
for some u ∈ V. Write FT (x1:T ) ≡ F̊T (x1:T,u) ≡ fr,u(xr,u).
The tth term on the r.h.s. of (A.15) is then

πt
(
G2
t,TPt,T (FT −QT (FT ))2

)
= π̊t

(
G̊2
t,T P̊t,T (F̊T − Q̊T (F̊T ))2

)̊
πt(G̊

2
t,T )V−1. (A.16)
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Since Jensen’s inequality ensures that

ct,T := π̊t(G̊
2
t,T ) ≥ π̊t(G̊t,T )2 = 1, (A.17)

and since fr,J is not ψ̊-almost everywhere constant,

at,T (fr,J) := π̊t
(
G̊2
t,T P̊t,T (F̊T − Q̊T (F̊T ))2

)
/ct,T > 0.

This proves Part 1.
It remains to prove Part 2. If the model transitions are not

perfectly mixing, G̊t,T is not ψ̊-almost everywhere constant.
Hence, Jensen’s inequality in (A.17) is strict (since x 7→ x2 is
strictly convex). As a result, the r.h.s. in (A.16), and thus σ2

T (FT ),
grows exponentially in V . �

PROOFS FOR SUBSECTION IV-E

A. Outline

In this section, we prove Propositions 2 and 3. Central to
the proofs are three alternate state-space models which may be
viewed as approximations of the original state-space model, i.e.
approximations of the model defined by the triple (m, p, gt).

1) Model (m̃, p̃t, g̃t), defined in Subsection B, represents the
asymptotic target distribution of the BPF as stated in [25].
It defines a joint smoothing distribution Q̃T and filters π̃t.

2) Model (m̂, p̂t, ĝt), defined in Subsection C, defines a joint
smoothing distribution Q̂T whose marginal on Block K ⊇ J
coincides with the corresponding marginal of QT and its
filter coincides with πt.

3) Model (m, p̄t, ḡt), defined in Subsection D, defines a joint
smoothing distribution QT whose marginal on Block K ⊇ J
coincides with the corresponding marginal of Q̃T and its
filter coincides with π̃t.

When approximating the filter using IID samples from πt
(respectively π̃t), blocked particle smoothing for (m, p, gt) co-
incides with standard particle smoothing for (m̂, p̂t, ĝt) (respec-
tively (m, p̄t, ḡt)). The central limit theorem for standard particle
smoothing from [22] then proves Proposition 2.

When approximating the filter using the BPF (or IID samples
from π̃t), blocked particle smoothing for (m, p, gt) coincides with
standard particle smoothing for (m̃, p̃t, g̃t). The bound on the bias
from [13] then proves Proposition 3.

For probability measures µ and ν on S =
∏
i∈I Si and I ⊆

I ⊆ N, define the local total variation distance

‖µ− ν‖I := sup
f∈SI
|µ(f)− ν(f)|,

where SI is the class of measurable functions f : S → [−1, 1]
such that for all x, z ∈ S, xI = zI implies f(x) = f(z).

B. Model (m̃, p̃t, g̃t)

The state-space model (m̃, p̃t, g̃t) is defined by m̃ := m, g̃t :=
gt, and p̃t(x, z) :=

∏
K∈K p̃t,K(xK , zK) with

p̃t,K(xK , zK) :=

∫
X
pK(xN (K), zK)π̃t−1,N (K)\K(dxN (K)\K).

Let Q̃t be the joint smoothing distribution of this model (on Xt)
and π̃t(A) := Q̃t(1⊗ 1A), for A ⊆ X and t > 1, is the blocked
filter, with initial condition π̃1 := Q̃1 = π1.

C. Model (m̂, p̂t, ĝt)

The state-space model (m̂, p̂t, ĝt) is defined by

m̂(z) := mK(zK)$1(z)/$1,K(zK),

p̂t(x, z) := pK(xN (K), zK)$t(z)/$t,K(zK), for t > 1,
ĝt(x) := gt,K(xK).

Here, writing KC := V \K we have defined $t(x) := dπt

dψ (x)
and $t,K(xK) :=

∫
XKC

$t(x)ψKC (dxKC ). We let Q̂t, π̂t and
B̂t,π̂t

(x, dz) := p̂t+1(z, x)π̂t(dz)/π̂t(p̂t+1( · , x)) be the joint
smoothing distribution, filter and standard backward kernel of
(m̂, p̂t, ĝt).

Lemma 1:

1) For any t ∈ N, ‖π̂t − πt‖V = 0.
2) For any t ∈ N, ‖Q̂t −Qt‖{1,...,t}×K = 0.
3) Under Assumption 2,

Q̂T (FT ) =

∫
fr,J(xr,J)πT,K(dxT,K)

×
T−1∏
t=1

BK,πt,N(K)
(xt+1,K ,dxt,N (K)),

where BK,ν is the blocked backward kernel from (11)

The proof of Parts 1 and 2 of Lemma 1 follow by induction.
Part 3 follows from Part 1 and the definition of B̂t,πt

. For
completeness, we detail these proofs in Subsection H of the
supplementary materials.

D. Model (m̄, p̄t, ḡt)

The state-space model (m, p̄t, ḡt) is defined by

m(z) := mK(zK)$̃1,KC (zKC ),

p̄t(x, z) := pK(xN (K), zK)$̃t,KC (zKC ), for t > 1,
ḡt(x) := gt,K(xK).

Here, for any K ⊆ V, we have defined $̃t(x) := dπ̃t

dψ (x)
and $̃t,KC (xKC ) :=

∫
XK

$̃t(x)ψK(dxK). We let Qt, π̄t and
Bt,π̄t

(x, dz) := p̄t+1(z, x)π̄t(dz)/π̄t(p̄t+1( · , x)) be the joint
smoothing distribution, filter and standard backward kernel of
(m, p̄t, ḡt).

Lemma 2:

1) For any t ∈ N, ‖π̄t − π̃t‖V = 0.
2) For any t ∈ N, ‖Qt − Q̃t‖{1,...,t}×K = 0.
3) Under Assumption 2,

QT (FT ) =

∫
fr,J(xr,J)π̃T,K(dxT,K)

×
T−1∏
t=1

BK,π̃t,N(K)
(xt+1,K ,dxt,N (K)),

where BK,ν is the blocked backward kernel from (11).

The proof of Lemma 2 is similar to the proof of Lemma 1.
For completeness, we detail the proof in Subsection H of the
supplementary materials.
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E. Central Limit Theorem

Proof (of Proposition 2): We first prove Part 2. By Lemma 1,
we are performing standard particle smoothing for (m̂, p̂t, ĝt).
For any t ≤ q ≤ T and any xt, zt ∈ X, define

Qt,q(xt,dxt+1:T ) :=

q∏
s=t+1

p̂s(xs−1, xs)ĝs(xs)ψ(dxs),

Dt,T (zt,dx1:T ) := δzt(dxt)

[t−1∏
s=1

B̂s,π̂s
(xs+1,dxs)

]
×Qt,T (xt,dxt+1:T ).

Furthermore, we write Qt,q(fq)(xt) := Qt,q(1 ⊗ fq)(xt), and
also define Gt,T := Qt,T (1)/π̂tQt,T (1) as well as Pt,T (FT ) :=
Dt,T (FT )/Dt,T (1).

By [22, Theorem 3.1] (again transferred to updated models as
described above) the blocked FS approximation of Q̂T (FT ) is
asymptotically normal with asymptotic variance

σ2
T (FT ) ≤ ε4 cardK

T∑
t=1

π̂t
(
Pt,T (FT − Q̂T (FT ))2

)
,

since it is easy to check that Gt,T ≤ ε2 cardK . Define the Markov
kernels Rt,r : X× Borel(X)→ [0, 1] by

Rt,r(fr)(xt)

:=


δxt

(fr) = fr(xt), if t = r,
Qt,r(fr)(xt)/Qt,r(1)(xt), if t < r,∫
Xt−r fr(xr)

∏r
s=t−1 B̂s,π̂s(xs+1,dxs), if t > r.

Let osc(f) := sup(x,y)∈X2 |f(x)−f(y)| denote the oscillations of
some function f : X → R and let Osc1(X) denote the set of all
real-valued functions with domain X whose oscillations are less
than 1. Furthermore, let β(M) := supf∈Osc1(X) osc(M(f)) ∈
[0, 1] denote the Dobrushin coefficient of a Markov kernel
M : X× Borel(X)→ [0, 1]. Then

π̂t
(
Pt,T (FT − Q̂T (FT ))2

)
≤ 4β(Rt,r), (A.18)

where we have used that since ‖fr,J‖ ≤ 1,

osc
(
(FT − Q̂T (FT ))/2

)
= osc

(
(fr,J − Q̂T (FT ))/2

)
≤ 1.

For any t ∈ N, we bound β(Rt,r) in (A.18) as follows:

β(Rt,r) ≤ (1− ε−4 cardK)|t−r|. (A.19)

If t = r, (A.19) holds because β(Rt,r) ≤ 1. If t < r,
(A.19) is implied by [22, Proposition 4.3.3]. Finally, it can be
easily checked that B̂t,π̂t(x, · ) ≥ ε−4 cardKB̂t,π̂t(z, · ), for any
(x, z) ∈ X2, so that β(B̂t,π̂t) ≤ 1− ε−4 cardK . Hence, if t > r,
β(Rt,r) ≤

∏r
s=t−1 β(B̂s,π̂s) ≤ (1−ε−4 cardK)|t−r|. As a result,

T∑
t=1

β(Rt,r) ≤ 2

∞∑
t=0

(1− ε−4 cardK)t = 2ε4 cardK ,

so that σ2
T (FT ) ≤ 8ε8 cardK = ec1 cardK ≤ ec1|K|∞ , with c1 :=

log(8ε8). This completes the proof of Part 2.
To prove Part 1, note that by Lemma 2, we are performing

standard particle smoothing for (m, p̄t, ḡt). Part 2 is then proved
exactly as Part 1 but with (m̂, p̂t, ĝt, Q̂T , π̂t, B̂t,π̂t) replaced by
(m, p̄t, ḡt,QT , π̄t, Bt,π̄t). �

F. Asymptotic Bias

Proof (of Proposition 3): By Lemma 2 we are performing
standard particle smoothing for (m̃, p̃t, g̃t). In particular,

‖QT −QT ‖{t}×J = ‖Q̃T −QT ‖{t}×J ,

for any t ∈ {1, . . . , T} and any J ⊆ K. Then by [25,
Theorem 4.3] (which is stated only for the bias of the filter,
i.e. for t = T , but whose proof is established for t < T ),

‖Q̃T −QT ‖{t}×J ≤ c2 card(J)e−c3 d(J,∂K).

This completes the proof. �
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Supplementary Materials:
Approximate Smoothing and Parameter Estimation in

High-Dimensional State-Space Models

Axel Finke, Sumeetpal S. Singh

In these supplementary materials, we first discuss ways in which the methods
proposed in the main document may be extended to other models than those
described in Subsection III-A in the main document. We also provide the proofs
of Lemmata 1 and 2 as well as additional details about the simulation study
conducted in Section V of the main document.

G. Extension to other models

To develop dimensionally stable particle smoothers, it is necessary to exploit
some specific model structure. Indeed, as in the case of particle filters, it seems
unlikely that there exists a way of circumventing the curse of dimensionality
which is directly applicable to arbitrary state-space models.

In this work, we exploit such structure by considering the canonical class of
high-dimensional state-space models from [1] (reviewed in Section III-A of the
main document). In this class of models, we can exploit the spatial-decorrelation
to circumvent the curse of dimensionality suffered by particle smoothers via
suitable blocking approximations (i.e. using the idea through which [1] devised
dimensionally stable particle filters).

Of course, many existing high-dimensional state-space models do not exactly fit
into the class of models from Subsection III-A in the main document (hereafter,
we will simply refer to the latter as ‘canonical models’) but will nonetheless
exhibit (or can be modified to exhibit) some spatial decorrelation. To perform
smoothing for such models, we propose two options.

1) In some cases, it may be possible to devise blocked particle methods such
that they still exploit spatial decorrelation in the spirit of [1] but can be
implemented for the original model. This approach is discussed in Example 2
below, where we describe a way of modifying our blocked particle smoothers
to accommodate a different class of model.

2) Alternatively, we advocate taking the bias–variance trade-off which is already
at the heart of blocking approximations (see [1] and Subsection IV-E
of the main document) one step further. That is, we advocate accepting
slightly more model misspecification error (i.e. bias) in exchange for a
practical (i.e. dimensionally stable) way of estimating the model. Example 3
below describes how learning two more parameters (one of which is a
suitable neighbourhood size R) for the canonical model allows us to relax
the assumption that the state transition of the fitted model fully factorise
as specified in Subsection III-A of the main document. Our proposed
methodology and analysis applies without modification in this case.

Example 2 (modified algorithm): As before, let Xt and Yt be V -dimensional
vectors. Consider the multivariate stochastic volatility model defined through

Yt = Vtηt,

Xt = AXt−1 + εt,

where Vt is a V × V diagonal matrix whose entries on the diagonal are given
by the volatilities exp(Xt,1), . . . , exp(Xt,V ). The joint error term (εt, ηt) is
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multivariate Gaussian with covariance matrix[
Σε Σε,η
Σε,η Ση

]
.

We assume that order of the assets, i.e. the order of the components of Xt and Yt,
has been chosen in such a way that highly correlated assets have been grouped
together (e.g. by applying some clustering technique to the data). This ensures
spatial decorrelation by implying that A, Σε and Ση have little mass far away
from the main diagonal. Note, however, that we do not assume that the entries
off the main diagonal (or off the first few diagonals in the case of A) are zero
so that the transition densities p(x, z) and g(z, yt) (with respect to the usual
dominating measure ψ =

⊗
v∈V ψv and ϕ =

⊗
v∈V ϕv for V := {1, . . . , V }) do

not factorise. As a result, the stochastic volatility model cannot be viewed as a
special case of the canonical model.

The model does, however, satisfy the following weakened assumption.

Assumption 6: For any time t and any block K ⊆ V, it is possible to evaluate
the marginal densities

a) gK(z, yt,K) :=
∫
g(z, yt)

∏
v/∈K ϕv(dyt,v),

b) pK(x, zK) :=
∫
p(x, z)

∏
v/∈K ψv(dzv).

Under Assumption 6a, we can approximate the filter via a modified ver-
sion of the BPF (for simplicity, we only consider a bootstrap version, i.e.
qt(x, z) = p(x, z)). The modified BPF remains exactly as in Algorithm 4 of
the main document except that the local weights associated with block K are
now calculated as

wnt,K := gK(xnt , yt,K). (A.20)

Likewise, under Assumption 6b, we can perform smoothing via modified
versions of blocked FS and blocked BS. The modified blocked particle smoothers
remain exactly as Algorithms 5 and 6 of the main document, except that we
replace the blocked backward kernels BK,πN

t,N(K)
(xK ,dzN (K)) by

N∑
n=1

Wn
t,Kp(X

n
t , xK)∑N

k=1W
k
t,Kp(X

k
t , xK)

δXn
t,K

(dzK). (A.21)

Note that these kernels now map from K to K (in a suitable sense) whereas
Algorithms 5 and 6 (main document) used kernels that map from K to N (K).
Though if required by the test functions which we wish to integrate, we could
easily make (A.21) map from K to some i-neighbourhood Ni(K) by replacing
Xn
t,K and Wn

t,K by Xn
t,Ni(K) and Wn

t,Ni(K) (computed via (A.20)) in (A.21). As
usual, we may also replace K ∈ K by some enlarged block K ⊇ K to reduce
bias.

Example 3 (modified model): Note that even though the canonical model as-
sumes that spatial components interact only locally (in some R-neighbourhood)
over a single time step, all spatial components interact with one another after
sufficiently many time steps L, where L is a function of the neighbourhood size
R.

For instance, in the one-dimensional lattice example shown in Fig. 1 – where
R = 1, i.e. N (v) = {v − 1, v, v + 1} – all spatial components interact over
L = V − 1 steps.
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This motivates approximating a model with non-local spatial interactions (and
observations y1:T ′ over T ′ time steps) by a canonical model with only local
interactions and with T := LT ′ and where the latter takes

g(xt, yt) :=

{
g(xt, y

′
t), for t ∈ {L, 2L, . . . , LT ′},

1, otherwise.

Given the choice of approximating canonical model, our theoretical results
immediately guarantee dimensional stability of the blocked particle smoothers
as the latter can be applied without any change. In particular, the parameter-
estimation algorithms from Subsection V-C of the main document can then be
used to guide the selection of R and L.

H. Additional proofs
In this subsection, we present the proofs of Lemma 1 and Lemma 2 which

were omitted from the main document.

Proof (of Lemma 1): We prove Part 1 by induction. Clearly,

π̂1(dz) ∝ ψ(dz)$1(z)mK(zK)g1,K(zK)/$1,K(zK)

∝ ψ(dz)$1(z) ∝ π1(dz),

since $1,K(zK) ∝ mK(zK)g1,K(zK). Assume now that the statement holds at
some time t− 1. Then

π̂t(dz) ∝
∫
X
p̂t(x, z)ĝ(z, yt)ψ(dz)πt−1(dx)

=

∫
X pK(xN (K), zK)gt,K(zK)πt−1(dx)

$t,K(zK)
πt(dz)

∝ πt(dz),

since $t,K(zK) ∝
∫
X pK(xN (K), zK)gt,K(zK)πt−1(dx).

Part 2 is also proved by induction. By Part 1, since π1 = Q1 and π̂1 = Q̂1,
the statement holds at time t = 1. Assume now that the statement holds at some
time t− 1. Then for any A ⊆ XtK , by Part 1,∫

Xt

1A(x1:t,K)Q̂t(dx1:t)

∝
∫
Xt

1A(x1:t,K)
$t(xt)

$t,K(xt,K)
pK(xt−1,N (K), xt,K)

× gt,K(xt,K)Qt−1(dx1:t−1)ψ(dxt)

∝
∫
Xt

1A(x1:t,K)Qt(dx1:t).

To prove Part 3, note that for any A ⊆ XN (K), by Part 1,∫
X
1A(zN (K))B̂t,π̂t(x, dz)

=

∫
A
pK(zN (K), xK)πt,N (K)(dzN (K))∫

XN(K)
pK(uN (K), xK)πt,N (K)(duN (K))

=

∫
A

BK,πt,N(K)
(xK ,dzN (K)).

Noting that the above expression is constant in xKC then completes the proof of
Part 3. �

Proof (of Lemma 2): The proof is immediate if we replace the quantities
(m̂, p̂t, ĝt, Q̂t, π̂t, B̂t,π̂t

, πt,Qt) in the proof of Lemma 1 by the quantities
(m, p̄t, ḡt,Qt, π̄t, Bt,π̄t

, π̃t, Q̃t). �
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I. Sufficient Statistics
In this subsection, we derive the sufficient statistics needed for performing

parameter estimation in the high-dimensional linear-Gaussian state-space model
from Section V of the main document. For q, r ∈ {0, 1, . . . , R}, define

f
θ,(1,r,q)
1,v = f

θ,(2,r)
1,v ≡ 0,

and, for any t ∈ N,

f
θ,(1,r,q)
t+1,v (xt,N (v), xt+1,v) :=

∑
u∈Bq(v) xt,u

∑
w∈Br(v) xt,w,

f
θ,(2,r)
t+1,v (xt,N (v), xt+1,v) := xt+1,v

∑
u∈Br(v) xt,u,

f
θ,(3)
t,v (xt−1,N (v), xt,v) := x2

t,v,

f
θ,(4)
t,v (xt−1,N (v), xt,v) := xt,vyt,v.

For any superscript (?) in the previous equation, we may then define the following
sums of smoothed sufficient statistics

Fθ,(?)T :=

T∑
t=1

∑
v∈V

E
[
f
θ,(?)
t,v (Xt−1,N (v), Xt,v)

]
, X1:T ∼ QθT .

To simplify the notation, we define the following matrix and column vector

Fθ,(1)
T := (Fθ,(1,r,q)T )(r,q)∈{0,...,R}2 ∈ R(R+1)×(R+1),

Fθ,(2)
T := (Fθ,(2,l)T )l∈{0,...,R} ∈ RR+1,

and finally, we collect all of these smoothed sufficient statistics in the ordered set

FθT := (Fθ,(1)
T , . . . ,Fθ,(4)

T ). (A.22)

J. Parameter Estimation
In this subsection, we state the ways in which the update rules of (stochastic)

gradient-ascent and EM algorithms depend on the smoothed sufficient statistics
from (A.22). To simplify the notation, we write y2 :=

∑T
t=1

∑
v∈V y

2
t,v .

1) Gradient-ascent Algorithm: While the score may be directly written as
an additive function as shown in Example 1 of the main document, we can
alternatively write it as ∇ϑ logΓϑT (1)|ϑ=θ =: Ψθ(FθT ). Here, for T > 1, writing

Ψθ(FθT ) = (Ψθr (FθT ))r∈{0,...,R+2},

we have

Ψθ0:R(FθT ) = e−2θR+1
(
Fθ,(2)
T − Fθ,(1)

T θ0:R

)
,

ΨθR+1(FθT ) = e−2θR+1
(
Fθ,(3)
T − Fθ,(3)

1 − 2θT0:RF
θ,(2)
T

+ θT0:RF
θ,(1)
T θ0:R

)
− V (T − 1),

ΨθR+2(FθT ) = e−2θR+2
(
Fθ,(3)
T − 2Fθ,(4)

T + y2
)
− V T.

2) EM Algorithm: For (stochastic) EM algorithms, the vector (of length R+3)
needed for the update rule in (14) in the main document,

Λ(FθT ) := (Λr(FθT ))r∈{0,...,R+2},

is given by

Λ0:R(FθT ) = (Fθ,(1)
T )−1Fθ,(2)

T ,

ΛR+1(FθT ) = 1
2 log

(
1

V (T−1)

[
Fθ,(3)
T − Fθ,(3)

1

− (Fθ,(2)
T )T(Fθ,(1)

T )−1Fθ,(2)
T

])
,

ΛR+2(FθT ) = 1
2 log

(
1
V T

[
Fθ,(3)
T − 2Fθ,(4)

T + y2
)
.
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Finally, we note that since this model is in the exponential family, the maximi-
sation problem admits a closed-form solution.

K. Implementation Details

All the computations in this paper were implemented in the programming
language C++ using the Armadillo linear algebra library [2]. All the algorithms
were called from the R programming language [3] using various Rcpp [4], [5]
libraries.
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