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Abstract 

An adequate representation of protein evolution needs to consider how the acceptance of 
new mutations depends on the overall context in which they arise. Epistatic interactions 
between sites in a protein link the substitutions at one site with the changes occurring at 
other sites, resulting in time and spatial rate heterogeneity beyond the capabilities of 
current models. Here, we exploit parallels between amino acid substitutions and chemical 
reaction kinetics to develop a new theory of protein evolution. This theory was developed 
by constructing a mechanistic framework for modelling amino acid substitution rates that 
employs the formalisms of statistical mechanics, with population genetics principles 
underlying the analysis. We use theoretical analyses and computer simulations of proteins 
under purifying selection for thermodynamic stability to show that substitution rates and 
the stabilisation of the currently resident amino acid (the ‘evolutionary Stokes shift’) can be 
predicted from biophysics and the effect of sequence entropy alone. Furthermore, we 
demonstrate that substitutions predominantly occur when epistatic interactions result in 
near neutrality of that substitution; substitution rates are thus determined by how often 
epistasis results in such nearly neutral conditions. Our theory provides a general 
framework for understanding and modelling protein sequence change under purifying 
selection, explains patterns of convergence and mutation rates in real proteins that are 
incompatible with previous models of protein evolution, and provides a better null model 
for the detection of adaptive changes.  
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Introduction 

Protein sequences, like all biological systems, are continuously sculpted through the 
evolutionary process. Mutations that arise at the DNA level are generally fixed or 
eliminated with a probability that depends on the effect of that mutation on the protein’s 
structure, stability, functionality, intermolecular interactions and other properties. These 
properties depend on complex networks of interacting amino acids throughout the protein 
so that the effect of a mutation depends upon the background sequence in which it occurs; 
selection on such holistic properties of the protein sequence induces epistatic interactions 
(coevolution) among sites. Because of the complexity of the epistatic interactions, it has 
been difficult to identify what determines substitution rates at a site, to characterise how 
these rates depend on the rest of the sequence, and to understand how they vary with time 
and location in the protein. 

The standard approach to studying protein evolution is to employ empirical substitution 
rate models that neglect epistatic interactions and the resultant rate heterogeneity beyond 
simple scaling factors. In such models, the parameters are adjusted to best represent 
observed differences between related protein sequences1-3. Although these models have 
had a major impact in many areas of the life sciences, they cannot estimate the effect of 
epistatic interactions on stability, function or fitness, predict the role of compensatory 
substitutions in protein evolution4,5, predict which of the 10% of deleterious mutations in 
humans are harmless in other species6, or accurately represent the rate and time 
dependence of convergence and homoplasy5. Empirical models have been developed that 
include rate heterogeneity7-10, but their utility and accuracy are limited by the sequence 
information required to estimate the resulting explosion of adjustable parameters. One 
attractive possibility is to create more mechanistic substitution models that better 
represent the underlying process of molecular evolution and protein biophysics. This 
would allow more accurate models to be constructed using a limited set of biologically 
meaningful parameters. Current attempts in this direction, however, are hindered by the 
lack of a deeper understanding of the process of sequence change, especially the 
characteristics and effects of epistasis. 

We have previously demonstrated that computational simulations of protein evolution, 
with fitness determined by thermodynamic stability, can reproduce many of the puzzling 
aspects of protein evolution including the rate- and time-dependence of convergence5 and 
the site- and time-dependence of substitution rates11. In particular, these models exhibit a 
phenomenon we named the ‘evolutionary Stokes shift’12, the tendency for the newly 
resident amino acid at a site to be stabilised, or ‘entrenched’13 over evolutionary time 
following a substitution. We also observed a tendency for the new amino acid to be pre-
stabilised prior to the substitution by chance or contingency13,14. Consequentially, the 
evolutionary Stokes shift process can proceed through entirely neutral or nearly-neutral 
substitutions12. The pre- and post-adjustment of the protein to the new amino acid occurs 
without a corresponding changes in fitness, distinguishing this process from compensatory 
substitutions which generally involve a fitness increase15.  
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Until now we could say little about the mechanism by which selection for stability 
determine substitution rates at individual sites in a protein, and what drives the pre- and 
post-substitution stabilisations in the absence of changes in fitness. To remedy this, we 
describe a mechanistic framework for modelling amino acid substitution rates employing 
the formalisms of statistical mechanics. Although our theoretical framework is based on the 
need of most proteins to be in a specific structure in order to function, analogous models 
can be applied to other forms of selection at this and other organismal levels; an example is 
the application of cellular Potts models to morphological development16. We find that 
average substitution rates can be explained by the evolutionary equivalent of transition 
state theory, with fluctuations in amino acid preferences due to epistatic interactions 
representing an essential aspect of the substitution process. Just as entropy plays a 
preeminent role in statistical mechanics, the sequence entropy of folding, defined as the log 
of the number of possible sequences that fold with the evolutionarily determined degree of 
stability, is central to evolutionary mechanics. We test our mathematical approximations 
and predictions using computational simulations of protein evolution. We demonstrate 
that average substitution rates at a site can be predicted from site-specific stability 
distributions estimated in the absence of selection on that site and the relative sequence 
entropy of folding associated with different overall protein stabilities. The effect of other 
global factors such as effective population size, protein structure designability, and 
selective strength are combined in the entropy term and do not need to be considered or 
estimated separately. This provides a powerful approach to understanding the 
determinates of substitution rates in the presence of epistasis. 

Results 

Site-specific stabilities and relative substitution rates: To develop a mechanical theory 
of protein evolution, we considered how purifying selection for stability determines site-
specific substitution rates. Real proteins are under selection for a range of properties; we 
choose this specific form of selective pressure because it is well defined, theoretically 
tractable, and a common constraint for a large number of different types of proteins. We 
expect the insights from this analysis to be applicable whenever there is purifying selection 
for a holistic protein property resulting from a large number of modest contributions. In 
addition, analysing selection on stability provides a ‘null model’ to examine the effect of 
other forms of selection acting on specific proteins. 

The stability Φ(𝐗) of a protein sequence 𝐗 = {𝑥1, 𝑥2, 𝑥3 …𝑥𝑛} was defined as the negative of 
the free energy of folding, so that more positive values indicate greater stability. This 
redefinition allows simpler descriptive language and a more direct relationship to 
population genetics terms. The fitnesses of sequences were set equal to the probability that 
the encoded proteins would be folded at thermodynamic equilibrium (Equation (1))12,17,18. 
Thus, increases in stability correspond to increases in fitness.  

To understand how the rest of the protein influences substitution rates at individual sites, 
we focus our attention on a focal site 𝑘, currently occupied by amino acid α. Relative to site 
k, the protein stability, Φ(𝐗), can be partitioned into the sum of two contributions Φ(𝐗) =
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ϕ𝑘,α(𝐗∌ 𝑘) + Φ𝑘,Bath(𝐗∌ 𝑘). The first term, ϕ𝑘,α(𝐗∌ 𝑘), includes the contribution to the 

stability from the site-specific interactions between the amino acid α at site 𝑘 and the 
amino acids at all other sites excluding k, 𝐗∌ 𝑘; in standard statistical mechanics analyses, 
this term represents the system of interest. The second term, Φ𝑘,Bath(𝐗∌ 𝑘), includes 

interactions among amino acids at all sites excluding the focal site. Because the vast 
majority of interactions do not involve site 𝑘, this second term corresponds to the 
thermodynamic bath in statistical mechanics, as indicated by the subscript. Both 
contributions include interactions in the folded state as well as unfolded states. For 
simplicity, in the Results and Discussion sections we omit the functional dependence of 
these values on 𝐗∌ 𝑘 and the specification of the site k when it is clear from context, and 
use  Φ , ϕα  and ΦBath  to represent  Φ(𝐗), ϕ𝑘,α(𝐗∌ 𝑘) and Φ𝑘,Bath(𝐗∌ 𝑘) , respectively. (For 
clarity, the explicit representation is maintained in the Methods section.) 

This statistical mechanics formalism can now be applied to understanding the amino acid 
substitution rate under purifying selection in the low mutation rate regime where 
polymorphisms are negligible. Still considering a specific focal site, the instantaneous rate 
of substitution from a resident amino acid α to a new amino acid β is equal to the rate of 
mutation from α to β times the fixation probability. The fixation probability depends on the 
difference in fitness between proteins with amino acid α or β at that site with the rest of the 
sequence unchanged; in our thermodynamic model, fitness differences specifically depend 
on the impact of the two amino acids on the protein’s stability. Prior to the mutation, when 
amino acid α  is resident, the protein stability is equal to Φ = ϕα + ΦBath  with 
corresponding fitness 𝑚(Φ), given by Equation 1 (Methods). After a mutation to amino acid 
β , the stability is equal to Φ′ = ϕβ + ΦBath = Φ + ϕβ − ϕα , corresponding to 

fitness 𝑚(Φ′) = 𝑚(Φ + ϕβ − ϕα), where we have used the fact that ΦBath is unchanged by 

the mutation. The situation is complicated by the non-linear relationship between fitness 
and stability (Equation 1, Methods), but can be greatly simplified by noting that real 
proteins, as well as proteins from this and other evolutionary simulations under purifying 
selection for thermostability, evolve within a narrow range of stability values around an 
average value Φ̅17,19-22; see Supplementary Fig. S1. This narrow stability range occurs 
where the effectiveness of selection for greater stability is balanced by large numbers of 
slightly destabilising mutations fixed by genetic drift23,24. We therefore approximate the 
protein’s stability prior to the mutation as equal to Φ = Φ̅; the resulting change in fitness 
is then equal to Δ𝑚α→β = 𝑚(Φ̅ + ϕβ − ϕα) − 𝑚(Φ̅). The value of Φ̅ depends on factors 

such as temperature17, effective population size (as shown in17 and Fig. S1), and protein 
structure and function, but will be constant as long as these factors are approximately 
constant. With these assumptions, the change in fitness and thereby the probability of 
fixation of the mutation is therefore determined by the difference between the current 
values of ϕα and ϕβ.  

While the total stability value of Φ̅ is a constant, the manner in which this stability is 
distributed amongst the various interactions, and therefore the values of  ϕα and ϕβ as well 

as the corresponding substitution rate, will vary as substitutions occur along the rest of the 
protein sequence. The nature of this variation depends on which amino acid occupies 
position 𝑘 because that amino acid affects the evolution in the rest of the protein12. In order 
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to compute the estimated average substitution rate, we assume that the other sites are 
sufficiently numerous and change sufficiently rapidly that the protein is always fully 
adjusted to the current amino acid at site 𝑘. (This assumption is most likely to break down 
following non-conservative substitutions, as discussed below.) The joint probability 
distribution of ϕα and ϕβ given total stability Φ̅ and the occupation of site 𝑘 by amino acid 

α can then be described by the stationary distribution ρ(ϕα, ϕβ|Φ(𝐗) = Φ̅, 𝑥𝑘 = α), which 

we simplify to  ρ(ϕα, ϕβ|α). The average substitution rate from α to β at a site is completely 

determined by the mutation rate and this marginal distribution. Because of its predicted 
importance in determining the average substitution rate, the rest of this paper will focus 
primarily on characterising this resident-dependent joint stability probability density.  

With the approximations that proteins with the same structure and population conditions 
evolve to the same stability, and that the fitness is completely specified by this stability, all 
of the sequences represented by ρ(ϕα, ϕβ|α)  have identical fitnesses. Under such 

circumstances, ρ(ϕα, ϕβ|α) is simply proportional to the number of sequences with those 

values of ϕα and ϕβ, amino acid α at site 𝑘, and total stability Φ̅. In analogy to Boltzmann’s 

description of entropy as proportional to the log of the number of microscopic 
representations of a system corresponding to a specified macroscopic description, we refer 
to the log of the number of sequences corresponding to specific values of ϕα, ϕβ, 𝑥𝑘 = α 

and Φ̅ as the ‘sequence entropy of folding’ 𝑆(ϕα, ϕβ|α). We note that this quantity is very 

different from the ‘sequence entropy’ derived from information theory and commonly used 
to represent site-specific variability25. The average substitution rates are determined by 
the dependence of the sequence entropy of folding on ϕα  and ϕβ , as reflected 

in ρ(ϕα, ϕβ|α) ∝ e𝑆(ϕα,ϕβ|α). 

To explore and evaluate our theoretical analysis, we simulated the evolution of a 300-
residue protein under selection for thermodynamic stability. In these simulations, fitness 
was equal to the probability of the protein being folded at thermodynamic equilibrium so 
as to match our theoretical model. These simulations are not meant to make quantitative 
predictions in particular cases, but rather to predict general characteristics of evolutionary 
behaviour for proteins that require a native confirmation to carry out some critical 
biological function. They have demonstrated their ability to reproduce fundamental aspects 
of protein evolution12,17,18. By using a simple pair-contact model of protein 
thermodynamics, we were able to perform replicate simulations corresponding to about 5 
billion years given typical eukaryotic substitution rates. 

We first examined the joint probability distributions ρ(ϕα, ϕβ|α) observed in the simulated 

proteins over long periods of time. Although the pair-contact potential does not vary 
amongst sites, these models still produce different average substitution rates at different 
sites, as with real proteins. To analyse these differences, we grouped sites with similar 
substitution patterns into four different site classes, with class 1 the most exposed and 
class 4 the most buried. Figs. 1A-D show the resulting joint probability distributions 

ρℂ(ϕGlu, ϕLys|Glu) and ρℂ(ϕGlu, ϕLys|Lys), the distribution of site-specific contributions of 

glutamic acid and lysine conditional on glutamic acid or lysine being resident, for the set of 
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sites {𝑘}ℂ belonging to site class ℂ = {1,2,3,4}. Corresponding distributions of population 
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Figure 1: A-L) Relative local contributions to stability for glutamic acid and lysine in 
different site classes (A-D), or for different population sizes for site class 1 and 3 (E-H), or 
various amino acid pairs in site class 3 (I-L). Points were sampled when the amino acid in 
the abscissa was resident (green), when the amino acid in the ordinate was resident 
(pink), or during transitions between the two (yellow). M-P) Distributions of local 
contributions to stability in reference state when the non-interacting null amino acid was 

present (ρ(ϕα, ϕβ|∅), pink), when the amino acid in the abscissa was present as predicted 

using Equation (7) (ρ (ϕα, ϕβ|α), cyan), or as observed (ρ(ϕα, ϕβ|α), green). Grey diagonal 

lines mark the boundaries of regions of near-neutral substitutions. 
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scaled selective coefficients are shown in Supplementary Fig. S2. The distributions are 
broad, consistent with earlier results demonstrating that selective pressures vary over a 
wide range as substitutions occur elsewhere in the protein12. Exposed, rapidly evolving 
sites with few selective constraints (site class 1, Fig. 1A) generally have more compact 
distributions with smaller variances in ϕGlu and ϕLys compared to buried, slowly evolving 

sites (site class 4, Fig. 1D). The distributions also strongly depend on whether the glutamic 
acid or lysine is the resident amino acid. In particular, the potential contribution of an 
amino acid to the protein stability tends to be greater when that amino acid is resident at a 
site (e.g., ρℂ(ϕGlu, ϕLys|Glu) is centred on higher values of ϕGlu than is ρℂ(ϕGlu, ϕLys|Lys)), 

a reflection of the ‘evolutionary Stokes shift’12. The amount of this increase appears to be 
correlated with the variance in ϕα. 

Joint distributions at different population sizes (over 4 orders of magnitude) and for other 
pairs of amino acids are shown in Figs. 1E-L. The bivariate distributions are surprisingly 
independent of the population size (Figs. 1E-H, S2), but are highly dependent on which 
amino acids are being compared (Figs. 1I-L, S2). Distributions for physicochemically 
similar amino acids (e.g., glutamic acid versus aspartic acid, Fig. 1I) are highly correlated, 
while those for dissimilar amino acids (e.g., glutamic acid versus alanine, Fig. 1J) are anti-
correlated. A non-resident amino acid is generally stabilised if the distributions are 
correlated (e.g. ϕGlu is positive when aspartic acid is present), but destabilised if the 
distributions are anti-correlated (e.g. ϕGlu is negative when alanine is present).  

Predicting relative substitution rates: As described above, substitution rates should be 
predictable from knowledge of 𝛒(𝛟𝛂, 𝛟𝛃|𝛂). To test this, we modelled 𝛒(𝛟𝛂, 𝛟𝛃|𝛂) as 

bivariate normal distributions based on the observations in Fig. 1, and numerically 
integrated over these distributions to calculate substitution rates using Kimura’s formula 
for the probability of fixation26-28 (Equation (2)). There is extremely good agreement 
between expected substitution rates and those obtained by counting substitutions that 
occurred during simulations, for all site classes over a four order of magnitude range of 
population sizes, as shown in Figs. 2A-C. This supports our use of the approximation 
𝚫𝒎𝛂→𝛃 = 𝒎(�̅� + 𝛟𝛃 − 𝛟𝛂) − 𝒎(�̅�). The population size independence of the predicted 

(Figs. 2A-C) and observed substitution rates (Fig. S1B) matches previous observations29, 
and corresponds to our use of a concave-down fitness function (Equation 1)30.  

We next investigated whether substitution rate calculations could be simplified by 
considering the dynamics of the substitution process. As described above, the values of ϕα 
and ϕβ vary as the rest of the protein sequence changes. A part of the evolutionary 

trajectory before and after a glutamic acid to lysine substitution is shown in Fig. 3. Most of 
the time prior to substitution when glutamic acid is resident, glutamic acid is stabilised by 
the evolutionary Stokes shift, while lysine is slightly destabilised, reflecting the 
physicochemical differences between these two amino acids. The pattern is reversed after 
the substitution when lysine is resident. Strikingly, the substitution occurs when 
fluctuations in the values of ϕGlu and ϕLys take the site into a narrow overlap region 

between ρ(ϕGlu, ϕLys|Glu) and ρ(ϕGlu, ϕLys|Lys), along the diagonal ϕGlu = ϕLys, where 
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substitutions are nearly neutral (i.e. 𝑚(Φ̅ + ϕβ − ϕα) ≈ 𝑚(Φ̅)). The general tendency for 

substitutions to occur under conditions of near neutrality is also supported by the data 
shown in Figs. 1 and S2.  

These observations suggest the possible applicability of transition state theory (TST), a 
method for predicting the rate of chemical reactions31. TST focuses on how the energies of 
the reactants and products vary as the reactants undergo conformational fluctuations. The 
reaction is assumed to be possible only when the reactants are in a ‘transition state’ in 

Figure 2: Comparison of predicted and observed substitution rates, 
for all pairs of amino acids separated by a single base change for all 
sites in the different site classes (Class 1, blue circles; Class 2, pink 
squares; Class 3, black triangles; Class 4, orange diamonds). A-C: 
predicted substitution rates calculated by integrating over 

ρ(ϕα, ϕβ|α)  for three different population sizes. D-F: Predicted 

substitution rates calculated using transition state theory (Equation 
(6)), which assumes only near-neutral substitutions occur. G-I: 
Predicted substitution rates calculated using transition state theory 
with parameters estimated using Equation 7.  
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which the energies of reactant and product are equal. The 
predicted reaction rate is then equal to the probability that 
the reactants are in the transition state, times the rate of 
conversion from reactants in the transition state to 
products.  

Adapting this theory, the substitution rate from α to β at 
every site was estimated from the probability that the 
protein is in a transition state in which the fitnesses of the 
wild type and mutant are nearly equal, times the rate of 
substitution under neutral conditions. The probability that 
the protein is in a nearly neutral transition state was 
calculated by integrating ρ(ϕα, ϕβ|α)  over a constant-

width zone straddling the neutral line ϕα = ϕβ . As 

described in Methods, the width of the neutral zone is 
determined by how the numbers of sequences varies with 
the overall protein stability, which is represented in our 
analysis as an exponential ρΦ(Φ) ∝ exp(−γΦ), where γ 
was estimated for our simulations by the relative numbers 
of destabilising and stabilising mutations. Under this 
assumption, the width of the neutral zone can be shown to 

approximately equal 
2

γ
. Multiplying this probability by the 

neutral substitution rate results in a closed-form 
expression for substitution rates (Equation (6)). This 
approach produced strikingly accurate substitution rate 
predictions (Fig. 2D-F). Notably, because this calculation 
considers only neutral substitutions, Kimura’s fixation 
fitness-dependent and population size-dependent fixation 
probability formula is not needed, greatly simplifying the 
calculations. The average substitution rate between amino 
acids is completely determined by the bivariate normal 
approximations of ρ(ϕα, ϕβ|α), with no other parameters 

needed besides the mutation rate and γ. 

The equilibrium distributions of site-specific stabilities and the evolutionary ‘Stokes 
Shift’: As described above, the rate of amino acid substitutions is determined by 
𝛒(𝛟𝛂, 𝛟𝛃|𝛂) in the region where 𝛟𝛂  ≈  𝛟𝛃. A better mechanistic description requires that 

we understand how these distributions, and therefore the substitution rates, are 
determined; we now demonstrate how this goal can be advanced using the principles of 
statistical mechanics and sequence entropy of folding.  

As discussed above, the distribution ρ(ϕα, ϕβ|α) ∝ e𝑆(ϕα,ϕβ|α) simply reflects the sequence 

entropy of folding for specified values of ϕα , ϕβ , 𝑥𝑘 = α  and Φ̅ . We approximate 

ρ(ϕα, ϕβ|α) by the product of two terms, ρLoc(ϕ α, ϕβ)  × ρBath(ΦBath = Φ̅ − ϕα). The local 

-10															0															10		
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Figure 3: Example of a 
trajectory before and after 
a substitution from 
glutamic acid to lysine. 
Local contribution to 
stability when either is 
resident is shown for 
before (green) and after 
the substitution (pink) 
(green). Values during the 
substitution shown in 
yellow; beginning and end 
points are shown as black 
circles. The observed 
distributions over the 
simulations when glutamic 
acid or lysine is resident 
shown as shaded region. 
Grey diagonal lines mark 
regions of near-neutral 
substitutions. 
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term ρLoc(ϕα, ϕβ represents the fraction of sequences with site-specific ϕα and ϕβ, while 

the second term ρBath(Φ̅ − ϕα) represents the fraction of sequences where the bath 
interactions provide sufficient contributions to the stability so that ϕα + ΦBath = Φ̅. 
(Equivalently, we are approximating the sequence entropy of folding, 𝑆(ϕα, ϕβ|α), as the 

sum of local and bath terms, 𝑆(ϕα, ϕβ|α) ≈ 𝑆Loc(ϕ α, ϕβ) + 𝑆Bath(ΦBath = Φ̅ − ϕα).) This 

calculation assumes independence of the bath and local contributions to total stability, 
which is likely to be approximately true as the interactions involved in the two terms are 
different. 

To estimate the first term, we calculated ρ(ϕα, ϕβ|∅), the distribution of site-specific 

stability contributions in the absence of selection at that focal site; this was accomplished 
by performing simulations in which a non-interacting amino acid ∅ was fixed at that site 
and all other sites were allowed to evolve freely. We then calculated the values of ϕα and 
ϕβ that would result if amino acids α and β were substituted for ∅ in the sequences arising 

from the simulation. Interactions involving the focal amino acid represent a small fraction 
of total stability contributions, so the second term ρ(ΦBath) was approximated by the 

Figure 4: Accuracy of site-specific stability and evolutionary 
Stokes shift predictions. A-C) Observed versus estimated 
values of the Stokes shift (ζα|α) for all four site rate classes 

(Class 1, blue circles; Class 2, pink squares; Class 3, black 
triangles; Class 4, orange diamonds), for three different 
population sizes. D-F) The linear relationship between the 
observed evolutionary Stokes shift and the variance in amino 
acid-specific stability contributions in the absence of 

selection on the site (σα|∅
2 ). The lines shown are theoretical 

predictions with γ = 1.26. Outliers are identified. 
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distribution of protein sequences with total stability Φ represented as before as the 

exponential ρΦ(Φ) ∝ exp(−γΦ).  

As derived in the Methods section, the evolutionary Stokes shift is expected to change the 
average value of ϕα by an amount ζα|α ≡ ϕ̅α|α − ϕ̅α|∅ = γσα|∅

2 , where ϕ̅α|α is the average 

value of ϕα when α is resident at that site and σα|∅
2  is the variance in the distribution of 

ρ(ϕα|∅). The mechanism of this shift can be understood by comparing the relative 
contributions of ϕα and ΦBath  to Φ̅. Increasing values of ϕα correspond to decreasing 
values of ΦBath necessary to fulfill ϕα + ΦBath = Φ̅. As the number of possible sequences 
rapidly increases with decreasing ΦBath, the result is a strong bias towards increased 
values of ϕα. This stabilisation resulting from the large increase in sequence entropy of 
folding with decreasing ΦBath is precisely the evolutionary Stokes shift.  

The predicted distributions of ρ(ϕα, ϕβ|α) versus those observed in thermodynamic 

simulations are shown in Figs. 1M-P. The estimated ζα|α obtained by this approximation 

matches values observed in the simulations surprisingly well given the approximations 
made (Fig. 4A-C). As predicted, the entropic stabilisation is approximately linear with σα|∅

2 , 

and the slope is close to the estimated value of γ = 1.26 (kcal mol-1)-1 (Fig. 4D-F), confirming 
the trends evident in Fig. 1. The observed entropic stabilisation is smaller than predicted 
for the two largest shifts in the two slowest rate classes, involving the charged lysine, 
arginine, aspartic acid and glutamic acid. Earlier work demonstrated that equilibration for 
the most buried states can be extremely slow12; these deviations may occur when the 
protein has had insufficient time to adjust to the presence of the new amino acid. 

In earlier work, we described how the evolutionary Stokes shift results in stabilisation of 
amino acids that are similar to the current resident, and destabilisation of amino acids that 
have large physicochemical differences. We can now understand the basis of this effect. 
According to our new theory, the presence of α at the site shifts the average values of ϕβ by 

ζβ|α = γ φαβ|∅ σα|∅ σβ|∅, where φαβ|∅ is the correlation between ϕα and ϕβ in ρ(ϕα, ϕβ|∅); 

these shifts can be to either higher or lower values depending on whether the 
physicochemical properties of the amino acids are similar or different (positive or negative 
φαβ|∅, respectively), increasing or decreasing the density of the distribution in the region 

ϕα  ≈ ϕβ and the corresponding substitution rate. Substitution rates estimated with the 

TST approximation (Equation (6)) using the site-specific stabilities calculated using 
Equation (7) are remarkably accurate for all four site classes over four orders of magnitude 
(Fig. 2G-I).  

Discussion 

The evolutionary mechanics developed here represents a fundamental shift in how we 
conceptualise the process of protein evolution. It allows us to understand how sequence 
entropy and epistasis determine the relative magnitudes of substitution rates and how 
these rates fluctuate over time. We provide a mechanistic explanation for the known 
predominance of nearly neutral evolution and a better understanding of what happens 
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during purifying selection. We and others have previously shown that evolutionary 
simulations based on protein thermodynamics produce patterns of epistasis, convergence, 
and entrenchment that are qualitatively similar to patterns in real proteins; the current 
research provides a clear explanation why these patterns were produced, how they result 
from statistical mechanics considerations.  

A central result of the theory is an understanding of how relative substitution rates among 
amino acids arise. The effect of an amino acid-altering mutation on protein stability 
depends on the relative contributions to stability made by the resident and mutant amino 
acids (ϕα and ϕβ, respectively), while the probability that a mutation will fix depends on 

the impact of that stability change on fitness, along with the current effective population 
size, as described by Kimura26-28. This at first seems to suggest that we need to determine 
the difference in fitnesses and the effective population size in order to calculate the fixation 
probability and the rate of substitution. However, such an agenda is compromised by 
epistatic interactions connecting the site of interest to other sites throughout the protein. 
As substitutions occur at these other sites, the stability contribution of a resident amino 
acid at a site fluctuates, as would the contribution of a new amino acid at that site resulting 
from a mutation, resulting in variations in the fixation probability that are difficult to 
predict. In this paper, we show that this complication leads to an even greater 
simplification. Occasionally, these fluctuations will equalise stability contributions among 
pairs of amino acids, in which case substitutions from one to the other are nearly neutral; 
the substitutions that occur under these conditions dominate the evolutionary process, 
shifting our focus from how to estimate the fitness change resulting from a substitution to 
calculating the fraction of the time that epistatic interactions make that substitution nearly 
neutral. Thus, although evolutionary mechanics theory fully incorporates population 
genetics theory and Kimura’s equation for the probability of a substitution, systems near 
equilibrium do not require Kimura’s formula to predict and explain substitution rates 
among amino acids. Fluctuations in contributions to stability cannot be ignored because 
they are the essential element necessary to create the conditions under which substitutions 
occur. 

According to this new perspective, the relative rates of substitutions among different 
amino acids result from differences in the frequencies of nearly neutral conditions. Amino 
acids with similar physicochemical properties can make correlated contributions to 
stability. Such correlations will increase the probability of near-neutrality, providing a 
mechanistic explanation for higher rates of conservative change, a phenomenon first 
described by Fisher32. The multiplicity of interactions at buried sites increase the variances 
of ϕα and ϕβ, reducing the probability of near neutrality and thus the substitution rate, as 

shown in Figs. 1A-1D, consistent with observed slower substitution rates observed at 
internal (buried) sites compared with external (exposed) sites.  

Characterising the frequency of nearly neutral conditions requires an understanding of the 
joint distribution of ϕα and ϕβ. This is complicated by the tendency for the resident amino 

acid (and similar amino acids) to be stabilised, what we call the ‘evolutionary Stokes shift’. 
By developing a statistical mechanical view of protein evolution, this shift can be seen as a 
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direct consequence of sequence entropy of folding. Increases in the stabilising 
contributions of an amino acid occupying a given site increase the affinity of that amino 
acid for that site. Given that total protein stability is approximately constant, this reduces 
the amount of stabilisation required from interactions among the remaining amino acids 
(the ‘bath’). Because more sequences are able to fulfil this reduced stabilisation 
requirement, the contributions of the bath to the sequence entropy of folding is larger, and 
higher affinities for the resident amino acid are entropically favoured. In this context, the 
sequence adjusts to the current amino acid at the focal site in an analogous manner to the 
way that memory foam pillows adjust to the head of a slumberer, by distributing the air in 
the latex foam. The sequence adjustment acts to prevent non-conservative changes, and 
instead substitutions tend to occur preferentially between amino acids sharing 
physicochemical properties. Although describable as an adjustment, this evolutionary 
mechanism can be fully reversible, as are the simulations described here, with similar 
processes of moving into and away from the neutral zone12. These processes, called 
‘contingency’ and ‘entrenchment’ by Plotkin and colleagues13, are mirrors of each other, so 
that if the substitution were reversed the dissipation (entrenchment) process, played 
backwards, would have the same statistical properties as the pre-adaptation (contingency) 
process played forwards. 

A key result is that the magnitude of the entropic stabilisation that drives the evolutionary 
Stokes shift is proportional to the variance of the underlying site-specific stability 
distribution in the absence of selection at the focal site times a protein-wide constant 
characterising the decrease in the number of sequences with increasing protein stability: 
the effect can be understood purely in terms of biophysics and sequence entropy. As with 
the average entropic stabilisation, the predicted average substitution rates can be estimated 
solely based on these distributions and the mutation rates, with no adjustable parameters. 
Surprisingly, the strength of selection and the effective population size do not affect the 
steady-state evolutionary Stokes shift, in agreement with theoretical predictions of the 
size-independence of substitution rates demonstrated in Supplementary Fig. S129,30. Details 
of the protein structure, function, and context can influence these distributions, but 
otherwise do not affect the substitution rates, as long as the assumptions and 
approximations of the analysis remain valid. In particular, other forms of constant selection 
acting on the protein such as interactions with other proteins, ligand binding, catalysis, and 
avoiding proteolysis and aggregation would restrict the number of acceptable sequences 
and the form of the distributions, but would not otherwise affect the theory or calculations. 
Such additional selective pressures may also occasionally force adaptive, non-neutral 
substitutions if external pressures change. When an outside change compels such a 
substitution, an evolutionary Stokes shift still occurs, except the process is no longer 
reversible12. The interaction of fluctuating selection and fluctuating population size is 
another area requiring further investigation.  

The pre- and post-adjustment of proteins to a substitution is explicitly time-dependent. 
Here, we addressed only the theoretical equilibrium predictions and results from 
simulations designed to be near equilibrium. Some discrepancies between the predicted 
and observed Stokes shifts for charged residues in buried sites, however, may be explained 
by time dependence. Individual sites at specific time points may be constrained by 
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conserved neighbouring sites in the structure as well as the conserved structural context of 
their interactions with those sites. Such effects may influence the time-dependent 
probability of back mutations as well as subsequent substitutions, an important topic for 
further investigation.  

We do not intend to imply that the theory developed here explains everything about 
molecular evolution, as we have considered only a simple situation of purifying selection in 
which fitness is based on the ability to fold and population size does not fluctuate. This 
theory provides an improved conceptual basis to understand what we should expect to 
happen in the absence of further complications, and should allow more accurate and 
confident prediction of non-structural functional constraints, adaptation, and fluctuating 
population sizes when they do occur. Although the current work is focused on fitness 
defined by protein stability, we expect other kinds of selection to fit into this framework, 
either by defining a large nearly neutral landscape in their own right, or by constraining the 
stability-based nearly neutral network.  

In conclusion, the work described here sets up a theory of evolutionary mechanics, and 
simulations demonstrate that this theory can be used to predict substitution rates from the 
basic properties of how amino acids interact. As with the role of statistical mechanics in 
thermodynamics, we can apply the theory of evolutionary mechanics to understand how 
the microscopic events of evolutionary mechanics (mutation rates, fitness differences, and 
fixation probabilities) lead to the macroscopic events of molecular evolution (relative rates 
of substitution, and distributions of fluctuating rates across sequences and over time). 



15 

 

Methods 

Simulations of protein evolution: The methods used to simulate protein evolution have 
been described previously12,17,18. Our simulations modelled proteins evolving under 
selection for a common requirement for globular proteins, stability of the native 
conformation. The free energy 𝐺(𝐗, 𝐫)  of a protein sequence X = {𝑥1, 𝑥2, 𝑥3 …𝑥𝑛}  in 
conformation 𝐫 was calculated by summing the pairwise energies of amino acids in contact 
in that conformation, using the contact potentials derived by Miyazawa and Jernigan33. The 
free energy of folding Δ𝐺Folding(𝐗) was computed by first determining the free energy of the 

sequence in a pre-chosen native state, the conformation of the 300-residue purple acid 
phosphatase, PDB 1QHW34. The energies of unfolded states were assumed to follow a 
Gaussian distribution; the parameters characterising this distribution were estimated by 
calculating the free energies of the sequence in a widely diverse set of 55 different protein 
structures. The energy of the unfolded state was then calculated by assuming a large set 
(10160) of possible unfolded structures with free energies drawn from this distribution. The 
free energy of folding Δ𝐺Folding(𝐗) was calculated as the difference between the two, and 

stability was Φ(𝐗) = −Δ𝐺Folding(𝐗). The Malthusian fitness of a sequence m(𝐗) was 

defined as the fraction of that sequence that would be folded to the native state at 
equilibrium 

 𝑚(Φ(𝐗)) =  
exp (

Φ(𝐗)
𝑇 )

1 + exp (
Φ(𝐗)

𝑇 )
 (1) 

where T is temperature in units of energy, 0.6 kcal mol-1.  

The simulations implemented a Gillespie algorithm35 representing the evolution of a 
protein in the low mutation rate limit where the monomorphic population is represented 
by a single sequence. Starting from a single randomly chosen nucleotide sequence encoding 
a 300 amino-acid protein, we simulated evolution by considering in each step all possible 
nucleotide mutations with rates given by the K80 nucleotide model (κ = 2)36. The fixation 
probability of each mutation was calculated based on the Kimura formula for diploid 
organisms26-28,  

 𝑃Fix(𝐗, 𝐗′) =
1 − e−2(𝑚(Φ(𝐗′))−𝑚(Φ(𝐗)))

1 − e−4𝑁𝑒(𝑚(Φ(𝐗′))−𝑚(Φ(𝐗)))
 (2) 

where 𝐗 and 𝐗′ are the sequences before and after the mutation. The total substitution rate 
was set equal to the product of the mutation rate times the fixation probability, summed 
over all possible mutations. At each step, the evolutionary time was advanced by an 
amount chosen from an exponential distribution based on the total substitution rate, and 
one substitution was chosen to be fixed at random with relative probabilities determined 
by the product of the mutation rates times the acceptance probabilities.  
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Sequence evolution was simulated for a sufficient number of generations such that protein 
stability was roughly constant, representing mutation-drift selection balance. 100 
equilibrated proteins were chosen, and two longer simulations were performed using each 
these equilibrated proteins as initial starting sequences, for a total of 200 simulations. The 
evolution of each lineage was simulated for an evolutionary distance of approximately 
seven amino acid replacements per amino acid position. The sequence and energy were 
sampled at regular time intervals. 

Grouping of sites: For ease of analysis, we divided protein sites into four classes with 
similar substitution rates. Substitution matrices were calculated individually for each site; 
due to the length of simulations, we had on average over 1400 substitutions at each site. 
Sites were then clustered based on the off-diagonal elements of the substitution matrices 
using K-means clustering37,38. The resulting clusters were approximately equal in size, and 
class membership strongly depended on how buried or exposed sites were in the native 
state (as indicated by number of contacts). We ranked clusters by surface exposure, where 
class 1 is the most exposed and 4 is the most buried. 

Calculating the site-specific contribution to protein stability: The site-specific 
contribution ϕ𝑘,α(𝐗∌ 𝒌) of amino acid α at focal site k as a function of the amino acids 𝐗∌ 𝒌 at 
all sites excluding k is equal to Φ{𝑥1, 𝑥2, 𝑥3 …𝑥𝑘−1, α, 𝑥𝑘+1 …𝑥𝑛}, the stability when the focal 
site is occupied by α, minus Φ{𝑥1, 𝑥2, 𝑥3 …𝑥𝑘−1, ∅, 𝑥𝑘+1 …𝑥𝑛} , the stability of a reference 
state when α is replaced by a non-interacting amino acid ∅, with the rest of the sequence 
and thus all other interactions unchanged. The part of the stability unaffected by this 
replacement is represented by the ‘bath’ interactions Φ𝑘,Bath(𝐗∌ 𝒌) =  Φ(𝐗) − ϕ𝑘,α(𝐗∌ 𝒌) so 

that Φ(𝐗) = ϕ𝑘,α(𝐗∌ 𝒌) + Φ𝑘,Bath(𝐗∌ 𝒌).  

Calculating the substitution rate integrating over distributions of local contributions: 
The average rate for substitution α → β at site k, 𝑄𝑘,α→β, is equal to the neutral substitution 

rate 𝛖𝛂→𝛃 times the average probability of fixation, which is a function of the stability of the 

protein before and after the substitution. The standard deviation of observed values of Φ, 
0.71 kcal mol-1, was small compared with the range of values of ϕ𝑘,α(𝐗∌ 𝒌), allowing us to 

represent the distribution Φ by its average, Φ ≃ Φ̅ = 9.15 kcal mol-1. We assumed that the 
stability before the substitution was Φ̅ and afterwards was Φ̅ + (ϕ𝑘,β(𝐗∌ 𝒌) − ϕ𝑘,α(𝐗∌ 𝒌)). 

The average substitution rate was then estimated as  

 𝑄𝑘,α→β = να→β ∬
1 − e−2Δ𝑚(ϕ𝑘,α,ϕ𝑘,β)

1 − e−4𝑁𝑒 Δ𝑚(ϕ𝑘,α,ϕ𝑘,β)
ρ(ϕ𝑘,α, ϕ𝑘,β|𝑥𝑘 = α) dϕ𝑘,α dϕ𝑘,β. (3) 

where Δ𝑚(ϕ𝑘,α, ϕ𝑘,β) = 𝑚 (Φ̅ + (ϕ𝑘,β − ϕ𝑘,α)) − 𝑚(Φ̅)  and ρ(ϕ𝑘,α, ϕ𝑘,β|𝑥𝑘 = α)  is the 

joint distribution of ϕ𝑘,α(𝐗∌ 𝑘) and ϕ𝑘,β(𝐗∌ 𝑘) for the equilibrium distribution of sequences 

𝐗∌ 𝑘 when α occupies site 𝑘.  
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Based on observations in Fig. 1, ρ(ϕ𝑘,α, ϕ𝑘,β|𝑥𝑘 = α) was modeled as a bivariate normal 

distribution of the form ρ(ϕ𝑘,α, ϕ𝑘,β|𝑥𝑘 = α) = 𝒩(ϕ̅𝑘,α|α, ϕ̅𝑘,β|α, σ𝑘,α|α
2 , σ𝑘,β|α

2 , φ𝑘,αβ|α) . 

Parameters were calculated directly from evolutionary simulation, and Equation Error! 
Reference source not found.) was integrated numerically. The neutral substitution rate 
was calculated using the same K80 nucleotide model (κ = 2)36 as used in the simulation, 
with all non-nonsense codons considered equally likely. 

Calculating the substitution rate integrating assuming only neutral substitutions: As 
observed in Fig. 1, substitutions generally occur in a neutral region in which 𝚫Φ𝑘,α→β =

ϕ𝑘,β(𝐗∌ 𝒌) − ϕ𝑘,α(𝐗∌ 𝒌) ≈ 0, so that  

 
1 − e−2Δ𝑚(ϕ𝑘,α,ϕ𝑘,β)

1 − e−4𝑁𝑒 Δ𝑚(ϕ𝑘,α,ϕ𝑘,β)
≈

1

2 𝑁𝑒
. (4) 

This condition is satisfied in a band of width 2ε centred on ϕ𝑘,β(𝐗∌ 𝑘) − ϕ𝑘,α(𝐗∌ 𝑘), where ε 

represents a deviation from strict neutrality that is sufficiently close for Equation (4) to be 
sufficiently accurate. 

A natural scale for ε was obtained by considering the ‘free fitness’ Γ(Φ) of the protein equal 

to Γ(Φ) = 𝑚(Φ) +
𝑆(Φ)

4𝑁𝑒
  where 𝑆(Φ) is the sequence entropy of folding, equal to the log of 

the number of sequences corresponding to a given total stability Φ39,40. Free fitness is 
analogous to thermodynamic free energy but with temperature 𝑇 replaced by 4𝑁𝑒 , and 
encompasses contributions from both fitness and sequence entropy to determine the 
distribution of states; evolutionary dynamics moves towards maximising this quantity. As 
the stability represents the sum of many small interactions, we would expect the 
distribution of stabilities to obey the central limit theorem and to resemble a Gaussian 
distribution. We are, however, on the tail of the distribution where the Gaussian is 
indistinguishable from an exponential, with one additional unidentifiable parameter. We 
instead assume 𝑆(Φ) = ln(Ω0 𝑒

−γΦ) where Ω0 is constant. Noting that the system is at 

equilibrium with 
𝜕Γ(Φ)

𝜕Φ
= 0 when Φ = Φ̅, it can be demonstrated that 

𝜕 4𝑁𝑒𝑚(Φ)

𝜕Φ
|
Φ=Φ̅

= γ (5) 

Thus, γ defines the rate of change of the population-weighted fitness 4𝑁𝑒𝑚(Φ) with 

stability. Alternatively, a change in stability of 
1

γ
 corresponds to a unit change in population-

weighted fitness. In our calculations, we equated ε =
1

γ
; the estimation of γ is described 

below. Note that this calculation demonstrates that ε is, surprisingly, independent of 
effective population size 𝑁𝑒 . This is a result of the balance between selection and 
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mutational drift at equilibrium; for fixed effect of mutational drift, the degree of selection 

(
𝜕𝑚(Φ)

𝜕Φ
) adjusts to changes in effective population size so that their product is constant29,30. 

If we assume that ρ(ϕ𝑘,α, ϕ𝑘,β|𝑥𝑘 = α) is broader than ε, and that Equation (4) is satisfied, 

Equation Error! Reference source not found.) becomes 

 
𝑄𝑘,α→β

TST  = 
2ε υα→β ∬ ρ(ϕ𝑘,α, ϕ𝑘,β|𝑥𝑘 = α) δ(ϕ𝑘,α − ϕ𝑘,β) dϕ𝑘,α dϕ𝑘,β 

 

(6) 

 

 = 
 υα→β

γ

exp (−
(ϕ̅𝑘,α|α − ϕ̅𝑘,β|α)

2

2(σ𝑘,α|α
2 + σ𝑘,β|α

2 − 2φ𝑘,αβ|ασ𝑘,α|ασ𝑘,β|α)
)

√2π(σ𝑘,α|α
2 + σ𝑘,β|α

2 − 2φ𝑘,αβ|ασ𝑘,α|ασ𝑘,β|α)

 

where δ(ϕ𝑘,α − ϕ𝑘,β) is the Dirac delta function. 

For highly similar amino acids the entire distribution of ρ(ϕ𝑘,α, ϕ𝑘,β|𝑥𝑘 = α) may be 

contained in a region significantly narrower than the neutral zone, resulting in an 
overestimation of 𝑄𝑘,α→β > υα→β. For this reason, the estimated rate was capped at the 

neutral rate υα→β. 

Estimating 𝛒(𝛟𝒌,𝛂, 𝛟𝒌,𝛃) : As described in the Results section, we approximate 

ρ(ϕ𝑘,α, ϕ𝑘,β|𝑥𝑘 = α) as the product of two terms, ρLoc(ϕ𝑘, α, ϕ𝑘,β)  ×  ρBath(Φ𝑘,Bath = Φ̅ −

ϕ𝑘, α), where ρLoc(ϕ𝑘, α, ϕ𝑘,β) represents the fraction of sequences with given values of 

ϕ𝑘,α and ϕ𝑘,β independently of how the rest of the protein adjusts to the current amino acid 

resident at site k, while ρBath(Φ𝑘,Bath = Φ̅ − ϕ𝑘, α), represents the fraction of sequences 
where the bath interactions contribute sufficiently to the stability so that ϕ𝑘, α + Φ𝑘,Bath =

Φ̅ . 

ρLoc(ϕ𝑘, α, ϕ𝑘,β)  was approximated by ρ(ϕ𝑘,α, ϕ𝑘,β|𝑥𝑘 = ∅) , the observed distribution 

observed when site k was occupied by a non-interacting amino acid ∅. We assumed that the 
contribution to the stability was small and approximated the distribution of Bath 
contributions with the distribution of total protein stabilities, ρBath(Φ𝑘,Bath = Φ̅ − ϕ𝑘, α) ≃

ρΦ(Φ𝑘,Bath = Φ̅ − ϕ𝑘, α) ∝ exp (−γ(Φ̅ − ϕ𝑘, α)). 

Because the number of possible sequences is immense, and because ϕ𝑘,α and ϕk,β are the 

result of many interactions, the central limit theorem suggests that ρ(ϕ𝑘,α, ϕ𝑘,β|𝑥𝑘 = ∅) 

can be approximated by a bivariate normal distribution ρ(ϕ𝑘,α, ϕ𝑘,β|𝑥𝑘 = ∅)  ∝

𝒩{ϕ̅k,α|∅, ϕ̅k,β|∅, σk,α|∅
2 , σk,β|∅

2 , φk,αβ|∅} . The normalised product of ρ(ϕ𝑘,α, ϕ𝑘,β|𝑥𝑘 = ∅) and 

ρBath(Φ𝑘,Bath = Φ̅ − ϕ𝑘, α) ∝ exp (−γ(Φ̅ − ϕ𝑘, α)) results in an estimated shifted bivariate 

normal distribution ρ 𝑘,α(ϕ𝑘, α, ϕ𝑘, β) = 𝒩{ϕ̃𝑘,α|α, ϕ̃𝑘,β|α, σ̃𝑘,α|α
2 , σ̃𝑘,β|α

2 , φ̃𝑘,αβ|α} with 
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ϕ̃𝑘,α|α = ϕ̅k,α|∅ + γσ𝑘,α|∅
2

σ̃𝑘,α|α
2 = σ𝑘,α|∅

2

ϕ̃𝑘,β|α = ϕ̅k,β|∅ + γ φk,αβ|∅ σ𝑘,α|∅ σ𝑘,β|∅

σ̃𝑘,β|α
2 = σ𝑘,β|∅

2

φ̃𝑘,αβ|α = φ𝑘,αβ|∅

 (7) 

Substituting these results into Equation (6) yields 

 

𝑄𝑘,α→β
TST,∅ =

 υα→β

γ

exp

(

 
 
−

(ϕ̅k,α|∅ − ϕ̅k,β|∅ + γσ𝑘,α|∅
2  (1−φk,αβ|∅   

σ𝑘,β|∅

σ𝑘,α|∅
))

2

2(σ𝑘,α|∅
2 + σ𝑘,β|∅

2 − 2φ𝑘,αβ|∅σ𝑘,α|∅σ𝑘,β|∅)

)

 
 

√2π(σ𝑘,α|∅
2 + σ𝑘,β|∅

2 − 2φ𝑘,αβ|∅σ𝑘,α|∅σ𝑘,β|∅)

 

(8) 

Characterising the bath state distribution: As described above, we assume that the 
number of protein sequences with a given value of Φ in the range of interest around Φ = Φ̅ 
is approximately exponential Ω(Φ)~ 𝑒−γΦ. We estimated γ from the average change in 
stability resulting from random mutations, 〈ρmut(ΔΦ)〉, which is negative due to the greater 
number of sequences coding for proteins with lower stability. This suggests that by 
correcting for the dependence of Ω on Φ by multiplying ρmut(ΔΦ) and 𝑒γΔΦ, this bias would 
disappear. We adjusted γ so that 〈ΔΦ𝑒γΔΦ〉 = 0 where the average was over all possible 
mutations during the simulations, yielding γ = 1.26 (kcal mol-1)-1.  

The bath state distribution determines the equilibrium stabilities through Equation (5). 

Substituting Equation (1) into Equation (5) yields Φ̅ ≈ 𝑇 ln (
4𝑁𝑒

γ𝑇
). This expression results in 

estimations for Φ̅ of 6.53, 9.27, and 12.05 for 𝑁𝑒 equal to 104, 106, and 108, respectively. 
These agree well with the average of the distributions shown in Supplementary Figure S1: 
6.40, 9.15, and 11.90.   

We note that under this model, the population scaled fixed load 2𝑁𝑒(1 − 𝑚(Φ̅)) is equal to  

2𝑁𝑒(1 − 𝑚(Φ̅)) = 2𝑁𝑒 (
1

1 + (
4𝑁𝑒

γ𝑇 )
) ≈

γ𝑇

2
 (9) 

that is, it only depends on the dependence of the sequence entropy on the stability and the 

temperature. For our system, 2𝑁𝑒(1 − 𝑚(Φ̅)) ≈ 0.38.  
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Data Availability: Data will be made available on Dryad, including structures used, contact 
potentials, tables of outcomes, and raw program data output.  

Code Availability: All simulations and analysis software will be made available on GitHub.  
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