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Abstract 

Risk management is an effective way to mitigate the adverse consequences of extreme events, and 

plays an important role in climate change adaptation. On the basis of the literature, this paper 

presents a conceptual framework for managing the risk of extreme events under climate change, and 

accordingly summarizes the recent developments with a focus on several key topics. In terms of risk 

determinants, the impacts of climate variability on the frequency of extreme events are addressed, 

and the various meanings and measurements of specific vulnerability are compared. As for the 

process of risk management, the dynamic assessment approach regarding future climate condition is 

emphasized. Besides, in view of decision making the available means to enhance the effectiveness of 

adaptation and mitigation strategies are highlighted. Finally, uncertainty is discussed with respect to 

its sources and solution. 
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1 INTRODUCTION  

Climate change may cause serious impacts on human-environmental system, and is an integrated 

scientific issue which challenges the world (IPCC, 2014). It is reported that the changing climate 

may result in more extreme events worldwide, so that there would be heavier socioeconomic 

damages (IPCC, 2012; Rummukainen, 2012; Yuan et al., 2016). This is receiving more attention 

from the public, and especially the governments and research scholars have been devoted to 

exploring effective measures to mitigate adverse consequences. 

Risk management is an available way to timely cope with extreme events (Nam et al., 2012). 

Different from traditional idea, it aims to emphasize preparedness and provide appropriate strategies 

according to the extent of damage. In the context of climate change, the occurrence of extreme event 
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and socioeconomic development appear to own high uncertainty with varying time and space. This 

suggests that risk management is of great significance to help alleviate the impacts of weather-related 

extremes, and of necessity in adaptation to climate change (IPCC, 2012; Kunreuther et al., 2013). 

It is argued that the risk of climate change, which mainly arises from extreme events, reflects the 

interactions between hazard and vulnerability in a particular condition which integrate natural and 

social sciences (Blaikie et al., 1994; UN/ISDR, 2004). Thus, risk management of extreme events 

under climate change is regarded as an interdisciplinary problem, and there have been some 

discussions in different aspects. 

The cause of risk is attributed to hazardous physical event whose variations are expected to influence 

the components of risk management. With global environmental change, therefore, there are more 

complicated characteristics of risk management of extreme events, and practically these bring out 

some bigger challenges. First, it is required to analyze the effects of climate change on extreme 

events and the associated consequences of human-environmental system. This refers to risk 

assessment which attempts to describe climate change risk with qualitative and quantitative methods. 

Second, it needs to detect the ways to set up coping strategies with diverse information and 

knowledge, and the adoption of adaptive behavior in practice. This relates to damage adaptation and 

mitigation which intend to reduce and control the risk of extreme events. Finally, the uncertainty 

should be considered with respect to the possible impacts and solutions because of its essential role 

in risk management. 

This paper aims to highlight the features of climate change risk, and address the advances in risk 

management. The crucial components in risk management are identified based on a bibliometric 

analysis. Accordingly, a conceptual framework for risk management of extreme events under climate 

change is presented to summarize recent developments with a focus on some key topics.  
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2 CONCEPTUAL FRAMEWORK 

The bibliometric analysis is made with the data collected from Web of Science. On the basis of the 

literature a conceptual framework for risk management of extreme events considering climate change 

effect is given as Figure 1.  

 

Figure 1 Conceptual framework for risk management of extreme events under climate change 

(adapted from Turner et al. (2003); UN/ISDR (2004); IPCC (2012)) 

For risk management, the basic work is to address how to characterize risk and how to deal with risk. 

These eventually refer to risk assessment and risk adaptation and mitigation. The risk of extreme 

events, which results from the interactions between climate and human society, consists of three 

primary components including hazard, exposure, and vulnerability (IPCC, 2012). Here hazard refers 

to various kinds of climate extremes, and its extent is often characterized by frequency and 

magnitude. Climate variability can directly influence natural environment on both temporal and 

spatial dimensions, so that there would be changes in the statistical characteristics of extreme events. 

These affect human society via particular exposure, and thus vulnerability is commonly defined as 
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the degree to which a system is likely to be adversely affected (Adger, 2006). Notably, vulnerability 

at different scales actually carries diverse information (Fekete et al., 2010). This requires the 

integration of multi-level information in vulnerability analysis. 

Risk assessment synthesizes hazard, exposure, and vulnerability to map risk with qualitative and 

quantitative methods. Hazard analysis and vulnerability analysis are two basic processes to find the 

relationship between the extent of extreme event and its probability of occurrence and the 

relationship between the extent of extreme event and the magnitude of consequence respectively. 

Therefore, the outcomes of risk assessment have various types. For example, risk classification is a 

quantitative form that reveals the differences in risk level across areas (Yuan et al., 2015a). This 

facilitates the exploration of risky nations and regions at the macro-level. Yet, risk curve quantifies 

the relationship between the probability of occurrence of extreme event and the magnitude of 

consequence to provide more detailed information for risk description. Due to climate variability and 

socioeconomic development, the dynamic risk assessment regarding future climate condition is of 

greater practical significance. 

To mitigate and adapt to climate change risk, the structural and non-structural measures are adopted. 

Structural interventions concern the optimized plan developed by cost-benefit analysis and portfolio 

according to risk level. As a result, this requires to figure out the acceptable ranges of risk. As for an 

individual, there are several factors playing key roles in choosing adaptation and mitigation strategies, 

such as risk preference, risk perception, living experience, and living condition. High risk awareness 

makes more adaptive behavior such as buying insurance, reducing asset exposure, and preparing 

emergent facilities, and these could help promote the effectiveness of damage reduction.  

Two elements, climate information and knowledge, need to be highlighted in risk management of 

extreme events under climate change. When making decisions, policy makers, managers, and 

individuals all rely on climate information which are required to be not only useful but also usable 
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(Lemos et al., 2012). Delivering accurate information could make better strategies and more benefits. 

In addition, it is argued that human knowledge, which refers to both scientific knowledge and local 

experience, is necessary during this process. Therefore, it requires more participants with various 

knowledge and the integration of diverse information to enhance the objectivity of risk assessment 

and the effectiveness of mitigation and adaptation strategies. 

3 FREQUENCY OF EXTREME EVENTS WITH CLIMATE 

VARIABILITY 

The natural environment is altered by climate variability from two dimensions: for the average 

climate variable may have a long-run trend, while for the fluctuation there may be a wider range with 

more extreme values (IPCC, 2013). These essentially bring out the changes in the statistical 

characteristics of climate variables (Morss et al., 2011; Rummukainen, 2012).The frequency of 

extreme events is of concern to risk management. It is used to represent the extent of hazard in risk 

assessment, and also provides the basis for mitigation and adaptation strategies such as engineering 

construction and premium rate. It is a basic work for managing climate change risk that estimating 

the frequency curve of extreme event and the associated variation.  

The series of extreme values is usually obtained by block maxima (BM) method and peaks-over-

threshold (POT) method (Coles, 2001). BM method picks up extreme value within a fixed period, 

however, it often has insufficient samples in some regions due to partial information used only. POT 

method uses a threshold to identify extreme value in the entire data set, which eventually increases 

samples and decreases estimation bias. Traditional frequency analysis method assumes that the 

extreme values are identical, i.e. they come from the same condition. However, climate variability 

makes it difficult to completely conform to such an assumption. This may reduce the reliability of 
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the estimates of extreme event frequency and threaten the effectiveness of measures for risk 

management (Gilroy and McCuen, 2012).  

In previous studies, some non-stationary frequency analysis approaches have been developed (Khaliq 

et al., 2006; Olsen, 2006). A common way is to introduce external factors into the distribution 

function of extreme values so as to reveal dynamic characteristics. On the temporal dimension, the 

time-varying parameters in distribution function are constructed when there are significant periodic 

and long-term variations. The frequency curve changing with time indicates temporal dynamics 

(Mendez et al., 2007; Roth et al., 2012; Wi et al., 2016). On the environmental dimension, the 

parameters are usually coupled with climate variable according to the relationship between extreme 

event and climate mode. The frequency curve containing climate information implies the dynamics 

in the changing condition (Du et al., 2015; Katz et al., 2002; Lopez and Frances, 2013; Silva et al., 

2016).  

As a result, future frequency curve is obtained on the basis of the varying distribution function by 

extrapolating external driving force (Gilroy and McCuen, 2012; Mudersbach and Jensen, 2010). 

Note that there needs to be a reliable relationship between function parameter and the associated 

driving factor. In addition, frequency curve can also be derived from a set of extreme values 

simulated by physical models during a future period (Ngongondo et al., 2013; Raff et al., 2009). 

Nevertheless, its accuracy highly depends on model outputs.  

4 VULNERABILITY 

Vulnerability is a central concept in climate change risk research. From different perspectives, there 

are significant differences in the research object, meaning, and measurement of specific vulnerability. 
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Physical vulnerability is formed in accordance with the dose-response chain which focuses on 

physical damage caused by extreme event. The object in physical vulnerability assessment is natural-

environmental system, and the physical process of extreme event essentially reflects vulnerability. It 

reveals the input-output relationship in natural environment system, that is, the extent of hazard 

relates to the magnitude of damage (Wang et al., 2013). Such a relationship is commonly defined as 

vulnerability curve which is calculated by simulating different scenarios based on physical models. 

For example, the crop production would be affected by drought event, and thus we can simulate a 

variety of yield losses in the associated drought conditions. Accordingly, this relationship between 

production losses and drought event (represented by drought hazard index) implies vulnerability 

(Yue et al., 2015).  

Social vulnerability emphasizes on sensitivity and adaptive capacity to extremes, and refers to 

several influences such as population characteristics, economic development, resources and 

environment, and living conditions. Therefore, the difference in social vulnerability, to some extent, 

implies the inequalities between regions (Cutter et al., 2003; Cutter and Finch, 2008; Martinich et al., 

2013). Different from physical vulnerability, social vulnerability is usually regarded as an 

independent status irrelevant to extreme event, and theoretically applicable to all scenarios under 

climate change (Emrich and Cutter, 2011). Indicator-based method is widely used for social 

vulnerability measurement. Zou and Wei (2010) employed meta-analysis method to determine the 

driving factors of vulnerability. In a direct way, those selected indicators are aggregated with 

equal/unequal weights (Lee, 2014). Yet, social vulnerability is commonly characterized by a variety 

of indicators indeed. Due to the potential complicated interrelationships, the multi-level indicators 

can be decomposed into some key components for assessment with multivariable statistical analysis 

(Armas and Gavris, 2013; Frigerio and De Amicis, 2016; Mazumdar and Paul, 2016).  



 

9 

From a perspective of human-environmental system, vulnerability is more inclusive with natural, 

environmental, social, and economic aspects (Lee et al., 2013; Morss et al., 2011). The 

comprehensive vulnerability in a particular scenario is generally composed of exposure, sensitivity, 

and adaptive capacity (Krishnamurthy et al., 2011; Murthy et al., 2015; Wilhelmi and Morss, 2013). 

Yuan et al. (2015b) interprets vulnerability as the imbalance among the three components, that is, the 

excesses of exposure and sensitivity as well as the shortfalls of adaptive capacity. Wei et al. (2004) 

measures vulnerability from an input-output perspective. The indicators are combined by data 

envelopment analysis. Also, vulnerability curve is a common expression to describe the variation of 

vulnerability in the changing climate and socioeconomic conditions, and provides important 

information for risk reduction (Dawson et al., 2011).  

Here we argue that more attention should be paid to the scales in vulnerability research. For example, 

the scale of research field determines the scope of objects, i.e. the physical, social, economic, cultural, 

and environmental dimensions (Kienberger et al., 2013). Temporal scale indicates the period in 

which vulnerability exists, while spatial scale fixes the area and location where vulnerability occurs 

(Fekete et al., 2010; Turner et al., 2003). These research scales set up the meaning, layers, and 

framework of vulnerability, and the particular variations at different scales are revealed. It could help 

understand the cause of climate change risk and make proper coping measures by integrating the 

multi-level information with top-down or bottom-up modelling.  

5 RISK ASSESSMENT 

Risk assessment is a key process in risk management of climate extremes. It aims to quantify risk 

and the associated temporal-spatial characteristics, and guide the development of adaptation and 

mitigation strategies. The current assessment features the dynamic variation of future risk 

considering the need for coping with climate change. 
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Dynamic risk assessment mainly relies on scenario simulation methods with the assumptions on the 

natural and social factors associated with climate, land, demography, economy, technology, and 

policy. Climate scenario reflects the extent of climate variability in the future which comes from the 

outputs of climate models. The large-scale climate data are downscaled to get high-solution regional 

projections by either statistical or dynamical methods. Socioeconomic scenario includes the 

developments in demography, economy, urbanization, and technology, and can be derived by 

extrapolating the indicators according to their historical variations. Policy scenario represents the 

planning at global, national, and regional levels including structural and non-structural measures 

(Dawson et al., 2011). Land scenario indicates the change in utilization type that is affected by 

geographic and socioeconomic conditions. For example, Cammerer et al. (2013) estimated the 

impacts of natural and social drivers on land patterns using statistical approach. The projected and 

assumed data are finally decomposed into the smallest cells in accordance to spatial scale (Linde et 

al., 2011; Yu et al., 2013). 

Climate change risk results from the interaction between natural and social systems, and has the 

primary components of hazard, exposure, and vulnerability. In this paper, hazard refers to climate 

extremes whose variations are calculated with climate scenarios and disaster models. Exposure is the 

status exposed to the external environment of a particular unit, which is related to population, asset, 

land area, and so on (Jongman et al., 2012). Preston (2013) focused on the path dependence of 

socioeconomic exposure, so that the future changes were projected from the past trajectory. 

Furthermore, vulnerability curves are simulated under different scenarios (Bouwer, 2013; Ranger et 

al., 2011). 

Most studies on dynamic risk assessment aim to get the scenario-based risk curves (Kirshen et al., 

2012) which combine frequency analysis of extreme event and vulnerability analysis (Yuan et al., 

2013). Thus, risk curve reveals the relationship between the occurrence probability of extreme event 
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and its damages. As a matter of fact, the changes in risk curves with and without coping measures 

show the benefits of damage reduction plan. Instead of seeking the lowest risk, it is more practical to 

explore the acceptable ranges of risk on the basis of cost-benefit analysis considering the risk 

preference of decision maker. 

6 ADAPTATION AND MITIGATION 

Structural and non-structural measures are available for risk adaptation and mitigation, and there are 

lots of concrete contents for different sectors (Jones and Preston, 2011). The literature mainly 

concerns the decision processes of making and implementing strategies. 

In the stage of making strategies, scientific knowledge and information are considered as crucial 

elements (Kiparsky et al., 2012; Pennesi et al., 2012), and especially the local knowledge is of 

particular experience for environmental change adaptation (Lebel, 2013; Naess, 2013; Reyes-Garcia 

et al., 2016; Xu and Grumbine, 2014). Participatory Integrated Assessment (PIA) is employed to 

integrate the diverse knowledge and information to enhance the quality of decision in risk 

management (Gaillard et al., 2013). Salter et al. (2010) summarized the methods, mechanisms, 

processes, and outcomes of PIA, and further emphasized that computer models were the necessary 

platform to realize quantitative outcomes. For example, the interactive communication gathers the 

knowledge and information of participants to form decision support systems for adaptation and 

mitigation strategies (Ceccato et al., 2011; Santoro et al., 2013). Importantly, the integration relies on 

the relationships between key influences of risk, and are completed by inference and simulation 

models, such as Bayesian decision network (Catenacci and Giupponi, 2013; Richards et al., 2016), 

collaborative modelling (Evers et al., 2016), and system dynamics modelling (Haase, 2013). 

In the stage of implementing strategies, the effectiveness at the household level is dominantly 

determined by individual decision. The empirical results show that adaptive behavior is affected by 
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two parts: (1) the objective factors include social and demographic attributions (e.g. gender, age, 

occupation, and education), economic attribution (e.g. income and price), and environmental 

attribution (e.g. geographic location, reliance on resources, and warning system); (2) the subjective 

factors refer to value, risk awareness, risk attitude, and risk perception (Bichard and Kazmierczak, 

2012; Botzen et al., 2009, 2013; Combest-Friedman et al., 2012; Paul and Routray, 2011; Qasim et 

al., 2015; Tucker et al., 2010). Risk perception is the determinant motivating individual adaptive 

behavior (Grothmann and Patt, 2005). This is interpreted by Protection Motivation Theory which 

consists of threat and coping appraisals. Specifically, during the threat appraisal process the 

perceived risk is evaluated from severity, occurrence probability, consequence, vulnerability, and 

intrinsic and extrinsic rewards. Then, the coping appraisal is the process of thinking about the 

benefits of possible actions, which includes response efficacy, self-efficacy, and response cost 

(Bubeck et al., 2012; Koerth et al., 2013a; Reynaud et al., 2013; Terpstra, 2011). Previous studies 

illustrate that influencing factors such as personal emotions, knowledge, disaster experiences, and 

trust would have impacts on risk perception (Terpstra, 2011), however, there might be insignificant 

relationship between high perception and mitigation behavior (Bradford et al., 2012; Bubeck et al., 

2012). Instead, the coping appraisal process seems to have a dominant effect (Koerth et al., 2013b). 

The explanation given by Bubeck et al. (2012) is that the investigation is influenced by early 

precautionary behavior, and actually risk perception is positively related to future mitigation 

behavior. 

7 UNCERTAINTY  

There are many uncertainties in climate change risk management, and basically they are attributed to 

nature, recognized bias, and ambiguity (Ekstrom et al., 2013; Walker et al., 2003). The nature 

indicates that uncertainty is the intrinsic characteristics of natural-social system caused by the 

complicated natural processes and human activities, e.g. atmosphere-ocean circulation, land use, and 
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socioeconomic development. Recognized bias means that uncertainty is the outcome of the 

recognition of natural-social system, and shows the incomplete knowledge of inherent rules. It is 

closely related to data availability and accuracy, technology level, the completeness of knowledge, 

model structure and parameter, and so on. For example, climate model is used to simulate the natural 

variability based on historical data and recognized mechanism, but it still cannot reflect the real 

physical process exactly. The outcomes have uncertainties due to model structure, parameter 

selection, and calculation bias. Ambiguity implies that uncertainty comes from the difference in 

understanding and the lack of universally truth. It refers to subjective cognition. For instance, 

decision makers would have different choices based on their own recognitions and preferences as 

facing with some plans of similar effectiveness.  

These uncertainties make higher difficulties in risk management, especially for coping with climate 

change. Recently, it is argued that robust decision is an effective way to deal with uncertainty. It 

attempts to detect the performances of possible results from a wide range of scenarios so as to 

evaluate the decision plan with robust rather than optimized criterion (Kunreuther et al., 2013; 

Ranger and Niehorster, 2012). Weaver et al. (2013) points out that robust decision is a process to 

improve the strategy which needs cooperation and wide participation. Thus, this would accelerate the 

movement of information from useful to usable in order to meet the demand of decision makers 

(Lemos et al., 2012). Meanwhile, Lemos and Rood (2010) suggests that in the context of high 

uncertainty decision makers should not look for perfect results, but seek different ways to manage 

uncertainty with knowledge systems. 

8 SUMMARY  

Climate change is one of the most important issue of concern to the public, and may cause serious 

impacts on society. Faced with possible more extreme events, managers try to feature preparedness 
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to alleviate the adverse consequences. Risk management can provide timely strategies to mitigate 

potential damages. This paper presents a conceptual framework for risk management of extreme 

events under climate change to summarize recent developments with a focus on several key topics. 

The main points are summarized below. 

The dynamic risk management of extreme events is desired with the effect of climate change. First, 

due to climate variability the non-stationary frequency analysis is needed for extreme events. On the 

temporal and environmental dimensions, a common way is to introduce varying variables into the 

distribution function to reveal the dynamic characteristics of frequency curves in the changing 

environmental conditions. Second, risk assessment is established on the dynamic processes 

associated with climate, society, economy, policy, and land use. The main outcome is risk curve 

revealing the relationship between the occurrence probability of hazard and the magnitude of adverse 

consequences, and its dynamic changes under different scenarios provide decision basis for 

adaptation and mitigation strategies.  

Multi-level is an inherent attribution of climate change risk management. The research object and 

meaning of vulnerability are different from the global to regional level. Physical vulnerability 

considers the physical damages caused by hazardous event, while social vulnerability emphasizes 

sensitivity and adaptive capacity of social groups to extreme events. More commonly, vulnerability 

contains natural and social aspects. Decision makers should take full use of the information which 

indicates the particular characteristics of vulnerability at different temporal-spatial scales.  

Uncertainty is the nature of risk management. With natural stochastic rules and limited knowledge 

the occurrence of extreme event cannot be predicted exactly, and climate change raises more 

uncertainties. To enhance the effectiveness of adaptation and mitigation strategies for climate change 

risk, it is important to not only promote individual adaptation, but also integrate the diverse 

information and knowledge to make robust decision. 
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The multi-hazard risk management needs to be developed in the future studies. In fact, the physical 

processes of extreme events are interrelated to cause impacts. This requires to consider the joint 

occurrence of extreme events to quantify risk. As mentioned above, climate change is likely to result 

in non-stationarity. Therefore, it is of great complexity to model the probability of multi-events. The 

conventional methods for univariate analysis are insufficient for risk assessment. In addition, it is a 

challenge to model the impacts of multi-hazard due to the complicated interactions. The extreme 

impacts caused by compound events are of concern to stakeholders. Thus, it is necessary to define 

the impact boundaries at the beginning of multi-risk assessment. On the other hand, we should pay 

more attention to the adaptation and mitigation to multi-hazard risk. Still, we argue that the 

integration of knowledge and information to make strategies is a crucial issue. With the probabilistic 

method, the uncertainty in decision-making is quantified. That helps produce robust plans for multi-

risk management. 
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