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We study non-Brownian suspensions under steady shear flow. In concentrated suspensions, we are
trying to reproduce the shear thickening phenomenon seen in, for example, cornstarch. We investi-
gate the effect of different frictional contact models. When contact acts to impose a fixed minimum
separation between particles, there is a strict upper bound to the viscosity predicted by simulations.
We deduce that soft or compressible contacts are a critical component of the strong shear thickening
seen in experiments. Published by AIP Publishing. https://doi.org/10.1063/1.4989929

I. INTRODUCTION: SHEAR THICKENING
AND CONTACT

Most common complex fluids – whether solids sus-
pensions or polymer solutions – have viscosities, η, which
decrease with shear rate, γ̇: they shear thin. Some starch sus-
pensions, including cornstarch, show the opposite behaviour:
their observed steady shear viscosity increases with an increase
in the imposed shear rate. Note that although starch is a poly-
mer, a cornstarch and water mixture may be treated as a
suspension of solid particles: Fig. 1 shows a micrograph of
cornstarch, in which the separate grains of starch can clearly
be seen.

Though we can not yet predict when shear thickening
will occur (not all starch solutions exhibit shear thickening1)
there is a growing understanding of the mechanism behind
it. A thorough review of the area is given by Wyart and
Cates;2 broadly, it is agreed that shear thickening occurs in two
forms. In continuous shear thickening (CST), which occurs at
moderate suspension concentrations (solids volume fraction
φ ≈ 0.5), the observed steady viscosity increases smoothly
with shear rate. The viscosity increase here is relatively large –
in Fig. 2 we see an example where the viscosity doubles
during CST – but not extreme. In discontinuous shear thick-
ening (DST), on the other hand, the viscosity increase is
both sudden and large: in Fig. 2 we see that at a solids vol-
ume fraction φ = 0.58, the viscosity increases by an order
of magnitude as the dimensionless shear rate is changed
slightly.

Over the past few years, shear thickening, and par-
ticularly DST, has been the focus of sustained research
effort, and we are now approaching a real understanding of
the physical mechanisms behind it. In the absence of any
inter-particle interactions, a pure non-Brownian suspension
in Stokes flow has a constant viscosity independent of the
imposed shear rate (by the linearity of Stokes flow) so we
know that inter-particle interactions are important. Shear thick-
ening is not typically seen in attractive particle solutions:4

a repulsive inter-particle force is a key ingredient to shear
thickening.

Early proposed mechanisms for DST had serious
weaknesses. For instance, a mechanism built around the
flow-induced formation of particle clusters5 fails to predict
viscosity jumps of the required magnitude;4 and a proposal
based around dilatancy, the tendency of granular materials to
expand under flow,6 incorrectly predicts DST for smooth, hard
particles.2

The current consensus is that DST arises from frictional
contact between particles,3,7,8 which can effectively trigger
granular-type behaviour.9 At a certain shear rate and for high
enough concentrations, the forces keeping particles apart are
overcome, and particles which are not perfectly smooth can
come into contact. This has been confirmed in experiment.10–12

Gallier et al. compile a number of experimental and simulation
measurements of the effective viscosity of suspensions in Fig. 9
of Ref. 13, and show that frictionless simulations underesti-
mate suspension viscosity at higher concentrations; they show
that at the highest concentrations and friction coefficients, up
to 70% of the viscous dissipation in simulations comes directly
from contact.

The idea of contact between particles in viscous flow is
not new: it follows experimental evidence of contact over
the last 40 years.14,15 A typical roughness height for sup-
posedly smooth particles used in suspension experiments is
5 × 10−3 of the particle radius:16,17 though small, this is suf-
ficient to break symmetry in many flows and cause observ-
able effects. Perfectly smooth spheres under finite forcing can
never make contact within Stokes flow; so various models
have been proposed in which microscopic surface asperi-
ties make contact while the particles’ nominal surfaces are
still separated by a layer of fluid. Figure 3 sketches the idea
of these models: the microscopic roughness elements are
assumed not to interact with the hydrodynamics of the flow,
but rather to affect the particle motion directly via contact
forces.

A variety of models have been used, including pure repul-
sion,18 stick–rotate,19 and roll–slip.19,20 The first of these
applies no tangential force; in the second, the particles “weld
together” and cannot even roll relative to one another while
the contact endures. In the roll–slip and stick–slide models, a
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FIG. 1. Micrograph of cornstarch suspension. Courtesy of Peter Kilbride at
Asymptote.

tangential friction force is applied, limited by Coulomb’s law;
the model of Ref. 20 implements different friction coefficients
for rolling and slipping contact.

When these early models were proposed and used
in simple flow situations, the idea was that the asperi-
ties would prevent the particles from approaching beyond
the nominal roughness height. However, this has always
been difficult to implement in large simulations. Different
groups have used different forms of repulsive force when
the asperity regions overlap, to imitate hard contact: a lin-
ear spring force;3,21–23 a Hertz contact force;13 a dashpot
force proportional to the normal approach velocity;21 or
an exponentially decaying short-range repulsive force.3,24

Although these force laws repel close particles, particles are
still able to approach within the “asperity contact” region.
This has the effect of “softening” roughness under strong
shear.

In this paper, we exploit the linearity of Stokes flow and
of the Stokesian Dynamics method to determine the required
normal contact force exactly. We carry out simulations in
which particles cannot approach closer than the nominal con-
tact height; we will see that this has the effect of destroying
the DST observed in simulations elsewhere.

FIG. 2. Continuous and discontinuous shear thickening is observed here at
varying volume concentrations (φ). Graph reproduced with permission from
Seto et al., “Discontinuous shear thickening of frictional hard-sphere sus-
pensions,” Phys. Rev. Lett. 111, 218301 (2013). Copyright 2013 American
Physical Society.

FIG. 3. Schematic of a roughness model. The pink bumps represent sparse
surface asperities, which prevent the particles from approaching closer than a
nominal roughness height while leaving hydrodynamic forces unchanged.

II. IMPLEMENTATION
A. Contact model

In common with all the current DST simulations, the
contact forces we apply to our particles will act only at the
point of contact. We decompose the contact force into its nor-
mal component, Fstop, and tangential component, Ft . Figure 4
shows how the forces are applied to each particle. The two
tangential forces also result in a torque T = ain̂ × Ft being
applied to each particle (with ai the radius of the particle in
question).

We now need to select the forms of Fstop and Ft . In earlier
work25–27 we used the roll–slip model of Davis.19 Its concept
is very simple: the repulsive normal force Fstop is precisely
chosen to prevent particle approach beyond a critical surface
separation h, and the tangential force Ft resists the relative
tangential motion of the particle surfaces, and is limited in
magnitude by ν |Fstop |, where ν is a friction coefficient. For
dilute suspensions,25 increasing the roughness height lowers
the suspension viscosity by increasing the inter-particle gap
and thereby lowering lubrication dissipation; and increasing
the friction coefficient increases the viscosity very mildly.
However, shear thickening only occurs in suspensions which
are far from dilute. In later work (Ref. 26 corrected in Ref. 27),
we carried out small simulations of concentrated suspensions
in shear flow; here, increasing either the roughness height or
the friction coefficient tended to increase the viscosity. There
were two major weaknesses of this study, however (beside the

FIG. 4. The normal contact force, Fstop, and tangential friction force, Ft ,
oppose the motion of the approaching particles. These forces are added to any
existing forces – hydrodynamic, gravity, etc. – already acting on the particles.
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small size of the simulations, which is simply a measure of
the computational power available in 2002). We determined
Fstop using an iterative algorithm, which failed to converge for
highly concentrated suspensions, so we were limited in our
scope. More fundamental, however, for the purpose of shear
thickening: all the forces in this model are linear in the exter-
nal flow forcing, so the viscosity is independent of shear rate.
In order to reproduce any shear thickening effects, we need
the friction force to vary in a nonlinear way with the external
forcing.

This is accomplished, as in Seto et al.3 and Mari et al.,21

for example, using a critical load model. The frictional tan-
gential force, Ft , is now only applied if the magnitude of the
normal force, |Fstop |, exceeds a critical value Fcrit. The con-
cept of the critical load model is drawn from granular flows;
following its success in simulations, there is recent experi-
mental evidence11,12 that suspensions are indeed frictionless
when the compressive forces acting are small. This modifica-
tion to the model brings the possibility of shear thickening:
at low flow rates, the normal forces are small and the tangen-
tial forces are never imposed; at higher flow rates, there is a
frictional contribution to the dissipation which increases the
overall viscosity.

Our final model has three parameters: the critical separa-
tion distance h, which has typical values16

10−3 ≤
h

(a1 + a2)/2
≤ 10−2, (1)

the coefficient of friction ν, which has typical values15

0.1 ≤ ν ≤ 0.4, (2)

and the critical load Fcrit, which is used to set a timescale

Tcrit =
6πµa2

Fcrit
(3)

against which the shear rate will be made dimensionless.
The process for calculating the contact forces is as

follows:

1. Using velocities from the previous timestep, identify any
new contacting pairs: that is, approaching pairs of parti-
cles whose surfaces are within the critical separation h.
Add these to the list of contacting pairs.

2. Calculate the normal forces, Fstop, required to keep the
interparticle separation of each listed contacting particle
pair unchanged.

3. Remove from the contact list any pairs of particles for
which Fstop acts to pull the particles together: only
repulsive forces can be exerted by contact.

4. For those remaining pairs for which |Fstop | < Fcrit,
the contact force is simply Fstop, with no tangential
component.

5. For those pairs for which |Fstop | > Fcrit, we impose Fstop

as the normal component of the contact force. Next calcu-
late the tangential force Froll required to prevent slipping
between the particle surfaces.

6. For each such pair, check whether |Froll | > ν |Fstop |.

If |Froll | > ν |Fstop |, then set Ft = ν |Fstop |
Froll

|Froll |
.

If |Froll | ≤ ν |Fstop |, then set Ft = Froll.
(4)

At step 2, we need to determine the normal forces required
to prevent particle approach. We do this by exploiting the
linearity of our simulation framework, Stokesian Dynamics.
Recall that for a timestep without contact forces, in a linear
background flow field

u∞(x) = U∞ + Ω∞ × x + E∞ · x, (5)

the Stokesian Dynamics method consists of solving the linear
system

*.....................
,

F1

F2

...
T1

T2

...
S1

S2

...

+/////////////////////
-

= R

*....................
,

U1 − u∞(x1)
U2 − u∞(x2)

...
Ω1 − Ω∞

Ω2 − Ω∞

...
−E∞
−E∞

...

+////////////////////
-

, (6)

in which Fi and T i are any other external forces and torques
acting on sphere i, u∞(x) is the far-field velocity, and R is the
Stokesian Dynamics approximation5 to the grand resistance
matrix, formed from exact two-sphere resistance relations for
R2B and Faxén laws for the far-field mobility relations:

R = (M∞)−1 + R2B −R2B,∞. (7)

Here we are using Ui to denote the velocity of sphere i and
Ω i its rotational velocity. The stresslet Si is generated by
particle i.

Now suppose that particles 1 and 2 are in close approach.
The normal stopping force on particle 1 can be written

Fstop = −F12
stopn̂12, (8)

where n̂12 is the unit vector along the line of centres between
the particles at positions r1 and r2:

n̂12
=

r2 − r1

|r2 − r1 |
. (9)

An equal and opposite force, −Fstop, is placed on particle 2.
The condition for stopping this pair approaching is that

(U2 − U1) · n̂12
= 0. (10)

We can then write the resistance formulation of this new system
as

*..........
,

F1 − F12
stopn̂12

F2 + F12
stopn̂12

T1

T2

S1

S2

+//////////
-

= R

*.........
,

U1 − u∞(x1)
U2 − u∞(x2)
Ω1 − Ω∞

Ω2 − Ω∞

−E∞
−E∞

+/////////
-

. (11)

We can combine Eqs. (10) and (11) into a single matrix
equation:

*..
,

F1

F2

n̂12
· [u∞(x2) − u∞(x1)]

+//
-
=
*..
,

R n̂12

−n̂12

n̂12
−n̂12 0

+//
-

*..
,

U1 − u∞(x1)
U2 − u∞(x2)

F12
stop

+//
-

,

(12)
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where, for clarity, the torque and stresslet terms (and rows
and columns relating to other particles) have been omit-
ted. An extra row and column is added to the resistance
matrix for every contacting pair. For example, for three
particles, where only 1–2 and 2–3 are in contact, we
have

*.......
,

F1

F2

F3

n̂12
· [u∞(x2) − u∞(x1)]

n̂23
· [u∞(x3) − u∞(x2)]

+///////
-

=

*........
,

n̂12 0
−n̂12 n̂23

R 0 −n̂23

n̂12
−n̂12 0

0 n̂23
−n̂23 0

+////////
-

*.......
,

U1 − u∞(x1)
U2 − u∞(x2)
U3 − u∞(x3)

F12
stop

F23
stop

+///////
-

. (13)

We have retained the symmetry, and positive definiteness, of
the matrix system, and we can calculate the scalars F ij

stop with
very little extra computational effort.

In step 5 of our process, we need to calculate the tangen-
tial force required for rolling contact between a given pair of
spheres. Rolling contact occurs when the tangential velocities
of the particle surfaces, at the point of contact, are equal [see
Fig. 5(a)]. We do this using lubrication theory, along with the
particle velocities calculated in the presence only of normal
forces.

For spheres where the centre-to-contact distances are a
and b, the tangential velocities on the surface are

u1
t = (I − n̂n̂) · U1 + Ω1 × an̂, (14)

u2
t = (I − n̂n̂) · U2 + Ω2 × (−bn̂), (15)

and the tangential velocity difference (which we want to force
to be zero) is

u2
t − u1

t = (I − n̂n̂) · (U2 − U1) − (aΩ1 + bΩ2) × n̂. (16)

Now consider the small test case shown in Fig. 5(b).
We apply the tangential force Froll to particle 1, and the
corresponding force −Froll to particle 2; these also result in
torques applying to each particle. The resultant motion can be

described by the equation

*....
,

(I − n̂n̂) · U1

(I − n̂n̂) · U2

Ω1

Ω2

+////
-

=M
*....
,

Froll

−Froll

n̂a × Froll

n̂b × Froll

+////
-

, (17)

whereM is the two-sphere mobility matrix.28 We can write the
new tangential velocity difference, using the mobility scalars
of Kim,28 as

u2
t − u1

t =
[
−(y11

a − y12
a − y21

a + y22
a )

+ 2(ay11
b − ay12

b + by21
b − by22

b )

− (a2y11
c + aby12

c + aby21
c + b2y22

c )
]

Froll,

(18)

which gives us Froll if we know the mobility scalars.
For close spheres, the leading order terms of these mobil-

ity scalars can be written in terms of the sphere surface sep-
aration distance, ξ = 2r/(a + b) � 2 [Ref. 28, tables 11.17
and 11.21]. In particular, for equal-sized spheres, a = b, this
reduces the above equation to

Froll =
πµa(ln ξ − 6.04 + 6.33/ ln ξ)

1 − 4.69/ ln ξ

×
[
(I − n̂n̂) · (U2 − U1)

− a(Ω1 + Ω2) × n̂
]

, (19)

as in Wilson and Davis [Ref. 26, Eq. (3.2)].
We have not implemented a more sophisticated friction

model such as the stick–slide model of Mari et al.,21 which
uses tangential spring stretch, a concept borrowed from gran-
ular dynamics. Instead, we are making as small a deviation as
possible from the early models for simplicity.

Though we are describing this implementation as an
exact calculation, in reality there are still small approxima-
tions involved. Regarding the normal forces: what we have
actually calculated is the set of normal forces required to
simultaneously halt the normal motion of all contacting pairs
in the absence of tangential forces. Once the normal forces
for those pairs which are observed to need an attractive Fstop

are removed, and tangential forces are added, these remaining
normal contact forces will no longer perfectly prevent parti-
cle approach. However, it is reasonable to use them. The first
modification – the removal of the normal forces for those pairs

FIG. 5. Rolling contact between two
spheres. (a) The velocities at the con-
tact point need to be equal for rolling. (b)
Small test case to determine the required
tangential force.
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FIG. 6. Mean approach velocity (across all contacting pairs) for simulations
with different values of ν and Γ̇. All values are at most of magnitude 10�3,
which is rather small, so we can conclude that our normal forces are indeed
a good approximation to those which exactly halt particle approach. There
is no systematic dependence on either friction coefficient or shear rate; these
values are just small-magnitude noise.

which are separating – is a rare event (it occurs only when a pair
which has been in compressive contact moves out of it) and also
a small change (the normal velocities, and hence the normal
force, are very small at this point). The second modification is
more common, but still only occurs when |Fstop | > Fcrit; and
the magnitude of the added force is at most ν |Fstop |. Since we
limit ourselves to physically realistic values ν < 1, the added
forces are at least constrained to be smaller than the normal
forces we claim to calculate exactly. In Fig. 6 we show the
mean approach velocity of all contacting pairs for a variety of
simulations; in all cases they are of the order of 10�3 or smaller.

The tangential forces are calculated via the lubrication
approximation. One might wonder why we do not implement
something similar to Eq. (13) in order to produce an exact value
for Froll. However, if we did that we would end up with the
set of tangential forces Froll required to simultaneously cause
rolling motion of all pairs in which friction is activated. In
Fig. 7 we plot the time-averaged numbers of particle pairs in
each state [contact; friction-activated contact; slipping motion
(tangential force limited by friction); or rolling motion], for
simulations at an area fraction of 69%. As expected, the pro-
portion of friction-activated particles which roll increases with

increasing ν; at ν = 0.1 roughly half the friction-activated parti-
cles are in rolling contact. At ν = 0.4 a much higher proportion
are in rolling motion, and perhaps we might find our tangen-
tial forces more accurately by using an exact method; but it
should be borne in mind that the lubrication approximation is
also reasonably accurate at these small surface separations.

B. Simulation protocol

For the bulk of the results in this paper, we simulate the
motion of a single plane of identical spheres of radius a within
an infinite volume of viscous fluid of viscosity µ. We use a
periodic box of area A, and impose a shear flow in the plane
of the particles, with shear rate γ̇.

Because we just have one plane of particles, the volume
concentration is strictly zero: but because the spheres all reside
in the plane of shear, they interact strongly with one another,
and the effects of contact can be felt. The extra viscosity
contributed by the particles can be extracted from Stokesian
Dynamics simulations via the particle stresslets S, and in par-
ticular their shear components. For a 3D simulation with solid
volume fraction φ in a volume V, we would have the effective
viscosity

η = µ +
1
γ̇V

∑
α

Sα
12, (20)

(where the summation is over all particles α) which leads, for
well-separated spheres for which

Sα =
20
3
πµa3E∞ Sα

12 =
10
3
πµa3γ̇, (21)

to the Einstein relation:29

η = µ

(
1 +

5
2
φ

)
. (22)

For a single plane of spheres, we follow the convention estab-
lished by Brady and Bossis30 and take the nominal width of
the layer to be the particle diameter, 2a. Then our region of
area A has volume V = 2aA. If we define the area fraction as
c, the equivalent of Eq. (22) becomes

η = µ

(
1 +

5
3

c

)
. (23)

FIG. 7. Information about the number
of particle pairs in contact; in friction-
activated contact; in rolling contact; and
in slipping contact. Simulation parame-
ters: area fraction c = 0.69, h = 0.01a.
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This formula also gives a lower bound for the effective
viscosity, using the minimum dissipation theorem.

We will report our viscosity results in terms of the dimen-
sionless effective viscosity η/µ and the dimensionless shear
rate

Γ̇ = γ̇Tcrit =
6πµγ̇a2

Fcrit
, (24)

notated Γ̇ to match the literature, which is analogous to the
Péclet number. Shear thickening has been seen to occur13

for Γ̇ above 10�1; we will consider shear rates in the region
100 < Γ̇ < 102.

There is a popular modification to Stokesian Dynam-
ics, now in common use for very concentrated suspensions

[e.g., Refs. 21 and 31], which involves neglecting the two-
particle interactions in the grand mobility matrix M∞ and
instead using the appropriate value for isolated spheres. We
will use this – referred to as the Ball–Melrose approximation
– in some of our larger simulations; we will also discuss the
effect it has on the macroscopic viscosity measurements.

III. VERIFICATION

We are using our own new implementation of Stokesian
Dynamics, which has been extensively verified against results
from both the original code of Brady and Bossis5 and the
more recent (and independent) implementation of Wilson and

FIG. 8. The effect of contact forces on
two spheres passing under external forc-
ing. The circles indicate the position of
the particle at three evenly spaced times.
The arrows in the circles indicate the ori-
entation of the particles, which always
start upright. The dotted lines indicate
the path of the particle centres; the dots
are spaced at regular time intervals. (a)
No contact: the trajectories are fore-aft
symmetric, and both particles rotate by
almost 90◦ during their interaction. (b)
Normal contact force only (no friction);
critical roughness height h = 0.05a. The
fore-aft symmetry is destroyed by con-
tact, and the rotation of both particles is
reduced. The particles also travel further
than when contact is absent. (c) Small
friction coefficient, ν = 0.1: very little
difference from the friction-free con-
tact case. (d) Large friction coefficient,
ν = 0.5. The roughness height h is cho-
sen unphysically large in figures (b), (c),
and (d) to demonstrate the effect of con-
tact, and we have set the critical load
Fcrit = 0.
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Davis.26 The only aspect remaining to be fully checked for the
current work is the implementation of the contact force. We
confirm that the contact force is working as expected using
studies of just two close spheres.

Our test scenario, shown in Fig. 8, is the motion of two
passing spheres. These equisized particles have equal and
opposite external forces imposed upon them, in a quiescent
fluid. We apply horizontal forces êx and −̂ex to spheres whose
initial positions are (�5a, 0.25a) and (5a,�0.25a) respectively.
The particles then move in time and the positions of their cen-
tres are shown. We see that contact causes an increased offset
downstream relative to upstream, as expected. Other effects of
the increased minimum separation are to lessen the interaction
between the particles: so they travel further than they would in
the absence of contact, and rotate less. The addition of friction
primarily affects the rotation: at a realistic friction coefficient
of ν = 0.5, the particles rotate a similar angle to the contact-free
situation.

We have also carried out similar simulations using two
spheres of very different sizes. In all cases, the small sphere
carries out most of the rotation, as one would expect; the other
observations carry over unchanged from the equal-spheres
case.

IV. SIMULATION RESULTS

We will begin by exploring the effect of various differ-
ent simulation parameters, before demonstrating the effect of
our contact model on the phenomenon of shear thickening.
We are using simulations of a single layer of spheres, so we
parametrise the particle density in terms of the area concen-
tration c. For a monodisperse 3D suspension with volume
fraction φ, close packing occurs at φCP = π/3

√
2 ≈ 74%,

while the highest freely-shearing density (consisting of non-
overlapping layers of packed spheres) is φFS = π/3

√
3 ≈ 60%.

For a single layer of spheres, the close-packed area fraction is
cCP =

√
3π/6 ≈ 91% and the freely-shearing packing frac-

tion, cFS = π/4 ≈ 79%. These arrangements are sketched in
Fig. 9.

For these two critical packing states, the key ratio c/φ
is rather similar (between 1.2 and 1.3), so we can map
conclusions from our layer simulations into 3D parameter

FIG. 9. Packing fractions below 79% allow for particles to shear past each
other without bumping. When packing fractions approach 91%, the system
jams completely.

FIG. 10. Dimensionless viscosity under shear, measured over five shear units.
Here the friction coefficient is ν = 0.3, roughness height h = 0.01a, timestep
∆t = 5 × 10−3γ̇−1 and the dimensionless shear rate is Γ̇ = 6π. Each peri-
odic box contains 90 identical spheres. The dashed lines represent the dilute
viscosity limit for each concentration, 1 + 5c/3.

space in a coherent way. In particular, referring back to the
simulation data shown in Fig. 2, we see that both CST and DST
are observed at packing fractions φ below the freely-shearing
packing fraction, so we would expect this sort of behaviour at
area fractions just below cFS ≈ 79%.

A. Simulation time

In Fig. 10 we plot the time-trace of the shear viscosity for
two simulations at slightly lower concentrations c = 57% and
69%, to show how the system evolves in time. We can see that,
while the signal remains noisy (as one would expect), the initial
transients (much more visible at the higher concentration) have
dissipated after two shear units.

Henceforth we will simulate five shear units of flow for
each set of parameters, discard the first two shear units of
equilibration, and average over the remaining time to produce
a single data point. To further reduce the effect of our ini-
tial particle placements, we also average over different initial
conditions.

B. Choice of timestep

We use RK4 timestepping, and in Fig. 11 we carry out
calculations using three different timesteps to ascertain the
importance of taking ∆t sufficiently small. We see that a figure

FIG. 11. The effect of varying the timestep ∆t. Plot of the mean steady viscos-
ity with model parametersν = 0.3, h = 0.01a, and a periodic box containing 90
spheres at an area fraction of 69.3%. A timestep ∆t = 0.025γ̇−1 is too large to
make meaningful predictions; but the marginal gain in accuracy by reducing
from ∆t = 0.005γ̇−1 to ∆t = 0.001γ̇−1 does not merit the extra computational
effort involved.
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of ∆t = 0.005/γ̇ is adequate to capture the qualitative features
of the viscosity profile, though it systematically overestimates
the true viscosity by around 5%.

C. Effect of periodic cell size

Our most significant results are likely to be at the highest
concentrations we can simulate; these are, of course, also the
simulations in which a periodic box containing 90 particles
takes up the smallest total area – and therefore the effects of
the finite replicating cell are likely to be most apparent. In
Fig. 12 we carry out simulations at our higher concentrations
(area fractions c = 69.3%, 75%, and 80%) using a variety of
particle numbers. To make the larger simulations tractable we
use the Ball–Melrose approximation here; for comparability
we use it in all the calculations in Fig. 12.

We see that at a concentration of 69%, there is no coher-
ent trend of viscosity measurements against box size – the
differences here are simply the usual variation associated with
different starting conditions – and we can assume that 90 par-
ticles are sufficient to give a robust result. At 75% (marginally)
and, more strongly, at 80% area fraction, however, we see that
there is a coherent increase of viscosity with shear rate which is
only seen when sufficient particles are used in the simulation.
For this reason, when we report our results in the following
sections, we will use larger simulations (and the Ball–Melrose
approximation) at the highest concentration 80%.

D. The Ball–Melrose approximation

Since we need to use the Ball–Melrose approximation
(which replaces each instance of M∞ in Stokesian Dynamics
with its equivalent value for isolated spheres) at our higher
concentrations, in Fig. 13 we show what effect it has on vis-
cosity measurements. These calculations are carried out with
only 90 spheres at an area fraction c = 69.3% as to go to higher
particle numbers is computationally intractable.

We find that the viscosity predicted by full Stokesian
Dynamics is 5%–15% higher than that given by the Ball–
Melrose approximation. Both sets of simulations shown here
exhibit shear thickening, but the effect is amplified by the
Ball–Melrose approximation: though the absolute viscosities
are lower, the dependence on shear-rate is stronger.

FIG. 12. The effect of system size. Model parameters ν = 0.3, h = 0.01a,
and we are using the Ball–Melrose approximation to save computation time.
At the highest concentration, box size effects are important; at c = 69% 90
particles will suffice and at c = 75% we use 98 particles.

FIG. 13. Comparison of the viscosity calculated by full Stokesian Dynamics
with the Ball–Melrose approximation. Simulations of 90 spheres at an area
fraction c = 69.3%, using ν = 0.3 and h = 0.01a.

E. Shear thickening results: Concentration

To see the development of shear-thickening behaviour as
concentration increases, we now carry out a full set of simu-
lations at a range of values of the area fraction c, and over the
full physically relevant range of the dimensionless shear rate,
Γ̇. The results are shown in Fig. 14.

At low-to-medium concentrations, we see almost no
change in the viscosity as the shear rate is increased. At
c = 69% we see a 3% increase in viscosity, and at c = 80%, the
viscosity increases by 20% as the shear rate changes. This is
qualitatively similar to the CST seen in, for example, Fig. 2.
However, the area fraction here is above the freely-shearing
limit cFS = π/4 ≈ 79%. This is in contrast to 3D simulations
in the literature,3 in which both CST and DST occur at volume
fractions below the freely-shearing limit.

F. Shear thickening results: Friction coefficient

Finally, we show the dependence of our viscosity results
on friction coefficient in Fig. 15. It is no surprise to see that on
average the viscosity of the system increases with increasing

FIG. 14. Dependence of the dimensionless viscosity on dimensionless shear
rate at different values of the area fraction c. At concentrations up to 69% we
use full Stokesian Dynamics with 90 particles; at 75% we use 98 particles;
and at the highest concentration we use the Ball–Melrose approximation to
allow us to use more particles. The model parameters are h = 0.01a and
ν = 0.3.
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FIG. 15. Plot of dimensionless viscosity against dimensionless shear rate for
a system with area fraction c = 69.3%, h = 0.01a and a range of values of the
friction coefficient ν. There are 90 particles in the periodic cell and we are
using full Stokesian Dynamics.

ν; individual exceptions to this within the figure are simply the
result of variation between simulations.

The shear thickening here is very moderate, and this is an
inevitable result of our choice of contact model. Because the
dimensionless shear rate is defined as

Γ̇ = γ̇Tcrit =
6πµγ̇a2

Fcrit
, (25)

the limit Γ̇ → 0 corresponds to Fcrit → ∞, in which the
tangential friction forces never apply: this is equivalent to set-
ting ν = 0. On the other hand, the limit Γ̇ → ∞ corresponds
to setting Fcrit = 0, and applying the tangential friction force
to all contacting pairs. This is the original roll-slip model of
Ref. 19, which generates only small variations of viscosity
with friction coefficient.26,27

This conclusion is wider than the specific combination
of contact models introduced here. Another common method
of introducing flow-rate dependence into suspension flow is
to incorporate a short-range repulsive force between particles,
separate from the contact force (as in Ref. 32). At low flow
rates, this makes contact unlikely, while at higher flow rates
the driving flow overcomes the repulsive force and the con-
tact occurs almost unaffected. However, in the limit of very
fast flow, the physical interactions are reduced to the case of
no repulsive force: again, the maximum possible shear vis-
cosity is that predicted by the original roll-slip contact model
alone.

G. Shear thickening results: Shear rate

In all the graphs we have plotted in the preceding sec-
tions (with the exception of those for which ν = 0, where
no thickening is observed), we see viscosity as an increasing
function of the shear rate Γ̇, but the experimentally-observed
plateaus in the viscosity at high and low shear rates are not
necessarily obvious. This is simply because we have only plot-
ted over the range of shear rates where interesting behaviour
occurs.

At low shear rates, we have Γ̇ � 1, or equivalently Fcrit �

6πµa2γ̇. Large values of Fcrit result in a form of contact in
which friction is never activated: so the viscosity at lower shear

rates is not sensitively dependent on the shear rate, but reduces
to the value predicted by our model (at all shear rates) when
ν = 0.

At high shear rates, on the other hand, we have Γ̇ � 1,
and so Fcrit � 6πµa2γ̇. The typical stress in the system is now
much larger than Fcrit, so most contacting pairs will experi-
ence frictional contact. In the limit of very high shear rates,
the system is equivalent to setting Fcrit = 0, which is pre-
cisely the original frictional contact model of Davis.19 We
have included this data point on the results graphs, labelled
as Γ̇ = ∞.

The viscosity is, therefore, an increasing function of shear
rate which is bounded below by the Davis model with ν = 0
(the pure hard-sphere repulsion model) and above by the Davis
model with the appropriate value of ν. Generically, it must have
plateaus at low and high shear rates with an increasing region
between. In this paper we have focused only on the increasing
region.

V. CONCLUSIONS

We have used Stokesian Dynamics to simulate shear flow
of a suspension of identical rough particles with frictional con-
tact between them, in an attempt to replicate shear thickening.
We have also quantified the effect of the Ball–Melrose approx-
imation, in which far-field interactions are approximated by
their value for isolated particles; it is shown to underpredict
the shear viscosity of the suspension while also overpredict-
ing the shear thickening effect (that is, the underprediction is
worse at low shear rates).

Many authors have used a range of different models of
particle contact in order to capture the phenomenon of shear
thickening. For the first time, we have produced an accurate
implementation for a set of models for which contact halts the
approach of a particle pair.

At high enough particle concentrations, this model can
lead to shear-thickening behaviour in suspensions; however,
the shear thickening is mild. We have not been able to
reproduce discontinuous shear thickening, despite carrying
out simulations above the freely-shearing packing fraction.
We are led to the conclusion that compressive or soft parti-
cle roughness, as modelled by the various repulsion forces
in the literature, is an important part of the discontinuous
shear thickening model. This makes intuitive sense: if an
increased flow rate can cause particles to be pushed closer
together, the lubrication stresses between their surfaces will
increase, causing the enhanced dissipation seen in shear
thickening.

However, compressible roughness is not the only possible
mechanism at the particle scale to potentially trigger macro-
scopic shear thickening. The stresses around particle contacts
are extraordinarily high. It is possible that as particles sepa-
rate, cavitation bubbles may form,33 breaking reversibility and
causing additional dissipation. Equally, under sufficiently high
pressures, the particle asperities may melt and fuse together.
The contacting particles would then maintain contact until they
overcome a critical force to separate – another source of energy
dissipation. This latter mechanism may, indeed, require the
fused particles to be modelled using the stick-rotate model of
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Ref. 19, which has been largely neglected since its original
publication.
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