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Abstract: In this work, composite Eudragit L100 / phosphatidyl choline microparticles were fabricated14

through electrospraying. pH-responsive liposomes were found to self-assemble from these when the15

microparticles were added into aqueous media. The microparticles and the liposomes were both16

approximately spherical in shape according to electron microscopy, but the liposomes have much17

smaller diameters (200-300 nm) than the electrosprayed particles (1.6-1.7 µm). The zeta potential of18

the liposomes is approximately -30 mV, which suggests the formation of stable suspensions. Varying19

the pH conditions used for self-assembly causes the liposomes to change their shape and structure, due20

to the influence of Eudragit molecules. The model drug ketoprofen could be loaded into the liposomes,21

with an entrapment efficiency of 75%. pH-dependent release was observed from the drug-loaded22

liposomes. At pH 4.5, only 58% of the drug loaded was released after 12 hours while 80% was released23

at pH 7.4. Overall, these results demonstrate that the pH-dependent liposomes developed have great24

potential for application as stimuli-responsive drug delivery systems.25
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In recent years, a range of pH-sensitive liposomes, which can control the release of a loaded drug in1

response to the pH of the surrounding medium, have been reported [1-3]. These liposomes can serve as2

carriers of many different active ingredients, for instance small organics, peptides, RNA, DNA, and3

diagnostic agents [4-7]. They also generally have good biocompatibility [8]. There are two key types of4

pH-dependent liposomes, which are bounded either by natural lipid bilayers or polymer functionalized5

lipid bilayers. A pH-driven phase transition of the lipid bilayers or of the polymer attached to them6

permits their contents to be freed into solution in a responsive manner [9]. However, natural7

phospholipid-based liposomes usually have low stability at low pH values [10]. It is therefore desirable8

to prepare polymer-functionalized systems to improve stability.9

10

Many studies have reported that liposomes decorated with pH-sensitive polymers are capable of11

pH-responsive release [11-13]. Eudragit L100, which is synthesized from methacrylic acid and12

methacrylic acid methyl ester, is a pH-sensitive polymer widely used in the pharmaceutical industry,13

for instance as enteric coatings for tablets. It can also be employed for preparing microspheres and14

nanoparticles for use as targeted gastro-intestinal drug delivery systems [14, 15]. Eudragit L10015

dissolves only at pH values higher than 6.0, and is insoluble in aqueous media below this pH. Thus, it16

can be specifically applied to release an incorporated drug only in the lower parts of the17

gastro-intestinal tract [16].18

19

A number of methods can be applied to obtain pH-sensitive liposomes. For instance, Straubinger et al.20

used oleic acid and phosphatidylethanolamine to fabricate pH-sensitive liposomes via the evaporation21

method [17]. In other work, Catalan-Latorre et al. fabricated multicompartment liposomes loaded with22

curcumin through combining Eudragit S100, hyaluronic acid and a phospholipid using the23

freeze-drying method [18]. However, these methods can be complex, and often there is solvent residue24

in the multicomponent liposomes. As a result, researchers have sought alternative methods for25

producing liposomes [19-21].26

27

Liposomes form as a result of molecular self-assembly, driven by noncovalent interactions. The28

spontaneous association of amphiphilic molecules, isolating lipophilic sections from an aqueous29

medium, for instance, leads to the creation of stable and well-defined supramolecular structures [22].30
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This approach is important for the fabrication of biomaterials [23-25], but it is challenging to control1

such a bottom-up process. Therefore, methods to direct the contacts between building blocks and drive2

the assembly process towards a desired conclusion are required.[26-28].3

4

One route that may be used to obtain control over self-assembly processes is electrospraying, a5

hydrodynamic atomization approach. This is a top-down process which exploits electrical energy to6

evaporate the solvent from a polymer solution, resulting in solid dispersions in the form of7

sub-micron-sized particles. Electrospinning is a similar technique, and yields nanoscale fibers. Both8

electrosprayed particles and electrospun fibers can be exploited as templates to direct the self-assembly9

of nanoscale-objects from multiple components [29, 30]. Self-assembly is achieved by a simple10

dissolution of the fiber or particle precursors, and the resulting aggregates can easily be loaded with an11

active ingredient during the assembly process. For instance, Yu et al. prepared core/shell nanofibers by12

electrospinning, and were able to use these to self-assemble drug-loaded nanoparticles with13

controllable sizes [31]. Jin and co-workers have also prepared thermosensitive ketoprofen-loaded14

liposomes via the dissolution of electrosprayed composite microparticles of15

poly(N-isopropylacrylamide) and phosphatidyl choline [19]. During dissolution, the polymer matrix16

(which is typically made of a hydrophilic fast dissolving polymer) is believed to help confine the17

assembling components in close proximity, facilitating their self-aggregation to minimize any18

interactions between the aqueous medium used for assembly and hydrophobic components in the19

composites. The liposomes fabricated in this way are generally found to have uniform diameters, and20

high drug entrapment efficiencies. The fact that they are produced on demand from stable solid21

dispersions means that the stability issues commonly arising with liposomal formulations can be22

effectively ameliorated.23

24

The studies reported to date on stimuli-responsive liposomes have generally employed the evaporation25

method, and there is little work on using electrospinning or electrospraying to this end [19, 32]. In this26

study, we sought to exploit electrospraying to generate microparticles of Eudragit L 100 loaded with27

phosphatidyl choline (PC). When the microparticles were added to water, the PC was found to28

self-assemble into liposomes, and the physicochemical and biological properties of the liposomes were29

studied in detail. Ketoprofen-loaded systems were further prepared, and their drug release properties30
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examined.1

2

2. Experimental3

2.1 Materials4

Eudragit L100 (average molecular weight ca. 135,000) was provided by Rohm GmbH (Darmstadt,5

Germany). Phosphatidyl choline (PC, extracted from soybean) was procured from the Sinopharm6

Chemical Reagent Co. (Shanghai, China). Chloroform and N,N-dimethylacetamide were purchased7

from the Traditional Industries Co. (Shanghai, China). Ketoprofen (KET) was obtained from Shanghai8

Greentech Industries Co. (Shanghai, China). Water was double distilled prior to use.9

10

2.2 Electrospraying11

Solutions were prepared by adding Eudragit L100 and PC to a mixture of12

chloroform/N,N-Dimethylacetamide (4:1 v/v) at room temperature and stirring for over 20 h. Details of13

the solution compositions are given in Table 1. The fully dissolved solutions were then loaded in 5 mL14

syringes, which were fitted with a stainless-steel flat-tipped needle (internal diameter 0.5 mm). The15

syringes were mounted on a syringe pump (KDS100, Cole-Parmer, Vernon Hills, IL, USA) and16

solution expelled at a rate of 1.0 mL/h. A voltage of 16 kV (ZGF- 2000 power supply, Shanghai Sute17

Electrical Co. Ltd., China) was supplied between the spinneret and a flat aluminium foil-covered18

collector (10×10 cm). The tip-to-collector distance was set at 25 cm, and experiments performed at 2519

± 2 ºC and relative humidity of 50 ± 5%. Six formulations were prepared in total (see Table 1).20

Table 1 The compositions of the solutions used for electrospraying21

Concentration F1 F2 F3 F4 F5 F6

CEudragit (%w/v) 2 2 2 2 2 2

CPC (%w/v) 0 0.5 1 1.5 2 1

CKET (%w/v) 0 0 0 0 0 0.4

CEudragit denotes the concentration of Eudragit, CPC the concentration of PC, and CKET the concentration22

of KET.23

24

25
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2.3 Preparation of liposomes1

0.01 g of the electrosprayed particles were removed from the collector and added to 100 mL of2

phosphate buffered saline (PBS, pH=7.4) at room temperature.3

4

2.4 Characterization of microparticles5

The surface morphology of the microparticles was observed using a JSM-5600LV scanning electron6

microscope (SEM; JEOL, Tokyo, Japan). The average particle diameter was calculated through7

measuring more than 100 different particles in SEM images using the ImageJ software (National8

Institutes of Health, Bethesda, MA, USA).9

10

The physical form of the components in the microparticles and their interactions were analyzed by11

Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). FTIR was performed12

using a Nicolet-Nexus 670 FTIR spectrometer (Nicolet Instrument Corporation, Madison, WI, USA).13

XRD was undertaken on a D/Max-BR diffractometer (Rigaku, Tokyo, Japan) with Cu-Kα radiation. 14

Thermogravimetric analysis (TGA; STA409PC instrument, Netzsch, Selb, Germany) was also15

performed to determine the thermal stability of the microparticles. 3-5 mg of dried sample was weighed16

into a crucible and analysis was carried out at a heating rate of 10 ºC/min under a flow of nitrogen.17

18

2.5 Characterization of liposomes19

The morphology of the liposomes was evaluated by transmission electron microscopy (TEM; H-80020

instrument, Hitachi, Tokyo, Japan). One drop of the liposome suspension (microparticles dissolved in21

phosphate buffered saline, pH=7.4) was dropped onto a carbon-coated copper grid and dried at 25 ºC.22

Particle size and zeta potential were measured with a Zetasizer Nano ZS instrument (Malvern23

Instruments, Malvern, UK). 0.02 g of the microparticles were added to 100 mL of PBS. As a control,24

pure PC was added to PBS at the same concentration (0.02 g in 100 mL) and the zeta potential and size25

recorded. In order to study the behavior of the liposomes under different pH conditions, the pH of the26

liposome suspensions was also adjusted to 4.5, 5.5, 6.0 and 6.527

28

2.6 Drug entrapment efficiency29
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The encapsulation efficiency (EE) of KET in the self-assembled liposomes from F6 was calculated as1

follows:2

EE = (Wt - Wf)/ Wt × 100%3

where Wt is the total drug mass in the electrosprayed particles and Wf the amount of free drug in the4

supernatant after liposome formation. The latter was isolated by ultracentrifugation (TGL-16G5

instrument, Anting Instrument Co. Ltd, Shanghai, China) for 30 min at 8,000 rpm, and the free drug6

content quantified by UV-vis spectrometry (UV-2101 spectrometer, Unico Instrument Co. Ltd,7

Shanghai, China) at 260 nm.8

9

2.7 In vitro drug dissolution tests10

For in vitro drug release experiments, 100 mg of the F6 microparticles were added to 10 mL of PBS11

buffer (pH 7.4) to form liposomes, and 3 mL of the liposome suspension then placed in a dialysis bag12

(MWCO=3500 Da). The filled dialysis bag was in turn immersed in a plastic bottle filled with 25 mL13

of PBS (pH = 7.4) or acetic acid buffer (pH = 4.5). The bottle was incubated at 37 ºC in a shaker bath14

operating at 100 rpm. Periodically, 1 mL aliquots were removed and replaced with the same volume of15

prewarmed buffer solution. Experiments were carried out in triplicate and the results are shown as16

mean ± S.D.17

18

3. Results and discussion19

3.1 Morphology of electrosprayed microparticles20

The ease by which polymer solutions can be processed by electrohydrodynamic approaches is21

dependent on their concentrations and molecular weights, which ultimately determine the viscosity and22

conductivity [33]. The molecular weight of PC is low (< 1000 Da), and thus it cannot be independently23

processed by electrospraying. SEM images of the product obtained from an attempt to process a 4 %24

w/v solution of PC in a mixture of chloroform and N,N-Dimethylacetamide (4:1 v/v) are shown in the25

Supplementary Information, Fig S1. A few irregularly shaped droplets can be seen, but there are no26

microparticles present. The addition of Eudragit L100 to the solution increases the solution viscosity27

and ensures that sufficient chain entanglements can occur to generate microparticles with well-defined28

morphologies. The presence of PC can however improve the morphology of the microparticles (over a29

pure Eudragit solution), since it acts as a surfactant [34].30
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1

SEM images and size distribution of the electrosprayed microparticles (F1-F6) are given in Fig 1, with2

the details of their composition listed in Table 1. Most of the particles are spherical, with the exception3

of F1 where some irregularities are observed. In all cases there are a few fibers present as well as the4

particles. PC is an amphoteric ionic surface active agent. The addition of PC can lower the viscosity5

and surface tension of the electrospraying solution, which is conducive to the formation of spherical6

microparticles. The surfactant properties of PC are thought to contribute to the greater regularity of F27

as compared to F1 [35], as a result of its effect on the surface tension of the spinning solution. The8

average diameter of all the PC containing particles is around 1.6 µm, with F1 being a little smaller at9

1.2 µm. A comparison of F3 and F6, which are identical except for the presence of drug in the latter,10

reveals that the two materials are virtually indistinguishable, and thus the presence or absence of KET11

has little influence on the particle size. All the microparticles have approximately the same spherical12

shape, indicating that no significant phase separation occurred in the process.13

14
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1

Figure 1 SEM images and diameter distributions of the electrosprayed particles. (a) F1, (b) F2, (c) F3,2

(d) F4, (e) F5, and (f) F6.3

4

3.2 Physical form of the components in the microparticles5

FTIR spectra are presented in Fig 2 (a). The particles of pure Eudragit (F1) show peaks at 1260 cm-16

and 1178 cm-1, which corresponded to the ester (C-O-C) stretching bands. A strong absorption at 17287

cm-1 is caused by the stretching of the carbonyl groups. In the spectrum of PC, vibrations at 2924 and8

2853 cm−1 correspond to symmetric and antisymmetric CH2 stretching from the hydrophobic tail9

regions. Peaks at 1250 and 1047 cm−1 are the result of phosphate group stretching vibrations, and the10

band at ca. 1739 cm−1 arises from the carbonyl group in PC.11

12
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1

Figure 2 FTIR spectra (a) and X-ray diffraction patterns (b) of the electrosprayed particles.2

3

The spectra of the Eudragit/PC electrosprayed particles (F2–F5) contain all the characteristic peaks of4

both PC and Eudragit. However, some small shifts in frequency (for instance of the C=O group at5

around 1730 cm-1) arise, suggesting interactions between two components. There are much larger6

differences between the spectra of KET and the KET/Eudragit/PC particles (M6). Absorption bands of7

KET at 1655 and 1695 cm−1 can be attributed to the C=O group, with the latter corresponding to the8

dimer present in the crystalline form of the drug. After processing into microparticles, peaks at 17319

cm−1 and 1659 cm-1 are visible. The small shifts in the positions of the Eudragit and KET vibrations10

suggest the presence of intermolecular interactions between them. In addition, the absence of the 169511

cm-1 band indicates that the KET dimer is not present in the particles, suggesting that KET-KET12

interactions are replaced by interactions with the Eudragit or PC.13

14

The physical form of the components in the particles was also investigated by X-ray diffraction. The15

results are shown in Fig 2 (b). KET has a large number of distinct Bragg reflections visible in its16

pattern, demonstrating that it is a crystalline material. However, the Eudragit and PC materials are17

clearly amorphous, with only broad humps present. The patterns of all the PC loaded microparticles18

(F2–F5) also show merely the characteristic humps of amorphous systems. In the KET-loaded19

particles (F6), no Bragg reflections corresponding to the crystalline drug can be seen, which indicates20

that the electrospraying process has converted KET into the amorphous form. This finding is in21

complete agreement with numerous other studies in the literature [36, 37].22

23

Fig 3 illustrates the thermogravimetric (TG) and derivative thermogravimetric (DTG) curves for PC,24
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F1, F3 and F6 (data for the remaining systems are shown in Fig. S2). There are three main stages in the1

profiles for all the samples: below 200 ºC, between 200-400 ºC and above 400 ºC. The first is due to2

the loss of physisorbed water. The second, most significant, loss can be attributed to the combustion of3

the organic species present in the sample. When the temperature is between 400-900 ºC, the mass of the4

samples remains essentially constant. The temperature of maximum decomposition rate of PC is at 3315

ºC, while those of Eudragit (F1) and PC-containing (F3) particles are at 376 and at 396 ºC, respectively.6

The addition of PC clearly has some effect on the thermal stability of the particles, although this is7

unlikely to be significant in the pharmaceutical setting given the elevated temperatures needed to drive8

decomposition. All the PC-containing particles exhibit the same behavior (see Fig 3 and Fig S2), and it9

can be seen that neither the amount of PC incorporated nor the presence of KET has any appreciable10

effect on the thermal stability.11

12

13

Figure 3 Thermal analysis of selected microparticles: (a) TG and (b) DTG.14

15

3.3 Liposome formation16

The formation of self-assembled liposomes from electrosprayed microparticles has been reported17

previously[19]. In agreement with previous research, when 0.1 g of the electrosprayed microparticles18

was added into 100 mL of PBS at pH 7.4, we observed the self-assembly of liposomes. The19

morphology and size of the liposomes were assessed by TEM and dynamic light scattering (DLS). The20

results are given in Fig 4 and Fig 5(a). In the TEM images (Fig 4), roughly spherical objects with21

core-shell structures can be seen. This indicates that there is some Eudragit polymer attached to the22

surface of the liposomes. The liposomes appear to be well dispersed, with sizes around 200 nm.23
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1

2

Figure 4 (a) a TEM image of liposomes assembled from F3 with (b) an enlarged image of single3

liposome.4

5

The results obtained from DLS agree well with the TEM data. The data depicted in Fig. 5(a) for PC, F36

and F6 show that the liposomes self-assembled from the Eudragit-based particles are rather larger than7

those made of PC alone. This is consistent with the suggestion from TEM that the liposomes from F38

and F6 are decorated with Eudragit at their surfaces. The average diameter of the F3 liposomes from9

DLS was ca. 224 nm, which is slightly larger than suggested from TEM. We believe that is caused by10

the increased degree of hydration in DLS. A comparison of the liposomes assembled from S3 and S611

reveals that the addition of KET has little influence on the liposome diameters.12

13
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1

Figure 5 DLS measurements recorded on the self-assembled liposomes: (a) size measurements from2

pure PC, F3 and F6 in PBS (pH=7.4), (b) size measurements on liposomes from F3 when the buffer pH3

was adjusted to different values, and (c) the mean diameters of liposomes obtained from F3 at different4

pH.5

6

The effect of a change in buffer pH on the liposome diameters was also measured, and the results are7

given in Fig 5(b) and (c). The mean diameters of the liposomes rise as the pH is decreased from 7.4 to8

4.5 (Fig 5(c)). This might tentatively be ascribed to changes in the ionization of the COOH groups of9

Eudragit and their interactions with water molecules [38, 39]. A lower pH value will result in less10

ionization, and thus reduced solubility of Eudragit L 100 and larger mean diameters of the liposomes as11

the Eudragit chains aggregate at the liposome surfaces. Zeta potential values were recorded at pH 7.412

(Table S1). It should be noted that the Eudragit-only particles and PC both gave negative values, and13

the liposomes from F3 – F6 possessed even more negative zeta potentials (at around -30 mV),14

indicating that the liposome suspensions should have good colloidal stability. Zeta potential values15

were also recorded at pH 4.5 (Table S2), and it was found that although the zeta potentials have16

increased they are still around – 20 mV at this lower pH. Thus, the liposomal suspension will be stable17
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at both pH 4.5 and 7.4.1

2

3.4 In vitro drug release3

The entrapment efficiency of KET into the liposomes assembled from F6 in deionized water was4

determined to be approximately 75.0 ± 5.26%, which is higher than that of liposomes prepared using5

other methods[40]. This is in agreement with other reports that using electrospinning or spraying to6

prepare sacrificial templates for liposomal self-assembly can lead to improved drug entrapment7

efficiency [41, 42].8

9

Drug release profiles obtained at pH 7.4 and at pH 4.5 are shown in Fig 6. In the drug release10

experiment, F6 particles were dissolved in PBS, forming liposomes containing KET. They were then11

added to two different pH buffer solutions at 37 °C. At pH=7.4, KET release reached a plateau of12

around 80 % after 12 h, while when pH=4.5, the drug release was just 58 % after 12 h. The KET-loaded13

liposomes appeared to release more rapidly, and also release a greater final cumulative release14

percentage, at the higher pH value. However, ketoprofen is an acidic drug, so it will be more soluble at15

pH 7.4 than at pH 4.5. In order to be sure that the difference is due to the liposomes rather than the16

inherent solubility of the drug, we prepared control particles made of polyvinylpyrrolidone (PVP), PC,17

and KET (see Supplementary Information, Fig S3). The drug release profiles of liposomes18

self-assembled from the PVP/PC/KET microparticles are given in Fig S4. It is clear that the release19

profile is very similar at both pH 4.5 and 7.4, with only a small increase in the release rate and final20

cumulative percent release reached at pH 7.4 (compared to pH 4.5). The difference between the profiles21

is much more pronounced in the case of F6, and hence it can be concluded that it is the presence of22

Eudragit that causes liposomes assembled from these particles to show pH-sensitive release.23

24
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1

Figure. 6 The in vitro drug release profiles of liposomes obtained from F6, measured at pH=4.5 and2

pH=7.4.3

4

The pH-responsive liposomes prepared in this work have a number of potential applications as targeted5

delivery systems. For example, in the human gastrointestinal tract, the pH value increases going from6

the stomach to the small intestine[43], which can be exploited to target release.7

8

3.5 Proposed mechanism of liposome self-assembly and drug release9

Based on the above results, it is clear that liposomes are easily formed from the Eudragit systems10

through self-assembly, and have pH-sensitive properties. A schematic diagram illustrating the proposed11

mechanism underlying this is shown in Fig 7. It is believed, on the basis of XRD and FTIR results, that12

the Eudragit and PC are mixed on the molecular level after electrospraying. This arises because the13

solvent evaporates very quickly, preventing the formation of a crystalline lattice, and instead hydrogen14

bonds form between the different components of the electrosprayed particles [35]. After the15

microparticles were dissolved in PBS, the Eudragit matrix dissolves quickly due to the ionization of its16

COOH groups to COO-, while the insoluble PC and KET self-assemble into liposomes[30]. However,17

there will be electrostatic attractions between the negatively charged carboxyl groups in Eudragit and18

the positively charged quaternary ammonium group in PC. Thus, it is likely that the Eudragit chains19

can become anchored on the liposomes formed through electrostatic attractions. When the pH value of20

the liposomal solution is below 6.0, the Eudragit chains will become insoluble due to the protonation of21
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COO- groups, and thus they will aggregate at the liposome exteriors, packing tightly to minimize1

Eudragit/water interactions. This is in accordance with the increase in size as seen at pH < 6, and will2

help to prevent drug release from the liposomes.3

4

Figure. 7 A schematic diagram illustrating the self-assembly of liposomes from Eudragit/PC5

microparticles, and the effect of pH on the drug release.6

7

When the pH of the liposomal suspension is higher than 6, the Eudragit chains will ionize and dissolve,8

either becoming freed into solution or attached loosely around the liposomes. Given the reduction in9

size seen at higher pH, we suspect that the former is the dominant process, although the TEM data at10

pH 7.4 indicate that some Eudragit molecules remain associated with the liposomes. These effects11

leave the KET inside the liposomes with a clear path to diffuse out into solution, promoting its release.12

13

4. Conclusions14

In this study, we report a simple method to fabricate pH-sensitive liposomes. Eudragit/phosphatidyl15

choline (PC) composite microparticles were first prepared by electrospraying. Analogous particles were16
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also prepared loaded with the model drug ketoprofen (KET). IR spectroscopy and X-ray diffraction1

data suggested that the components were mixed on the molecular level, while electron microscopy2

revealed the formation of spherical particles at around 1.2 – 1.6 µm in size. Liposomes could be3

self-assembled from the electrosprayed microparticles by dispersing them in a pH 7.4 phosphate buffer.4

Transmission electron micrographs suggested that these liposomes were roughly spherical in shape,5

with core/shell structures. The latter observation indicated the presence of Eudragit on the exterior of6

the PC core. In support of this idea, the resultant liposomes undergo distinct size changes when7

exposed to different pH environments. In vitro drug release experiments found that the liposomes had8

high entrapment efficiency for KET (ca. 75%) and can control the release of the incorporated KET in9

response to pH. Our findings indicate that the self-assembled pH-sensitive liposomes prepared in this10

work could have potential applications as advanced drug delivery systems.11

12
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