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Abstract Even though it is not possible to differentiate gen-
eral relativity from teleparallel gravity using classical exper-
iments, it could be possible to discriminate between them
by quantum gravitational effects. These effects have moti-
vated the introduction of nonlocal deformations of general
relativity, and similar effects are also expected to occur in
teleparallel gravity. Here, we study nonlocal deformations
of teleparallel gravity along with its cosmological solutions.
We observe that nonlocal teleparallel gravity (like nonlocal
general relativity) is consistent with the present cosmologi-
cal data obtained by SNe Ia + BAO + CC + H0 observations.
Along this track, future experiments probing nonlocal effects
could be used to test whether general relativity or teleparal-
lel gravity gives the most consistent picture of gravitational
interaction.

1 Introduction

General Relativity (GR) tells us that gravitational interaction
is described by the curvature of torsion-less spacetimes. On
the other hand, it is possible to describe gravity by the torsion
of spacetime, so that the curvature picture is not necessary.
A theory where gravity is described by the torsion of space-
time (without curvature) is called the Teleparallel Equiva-
lent of General Relativity (TEGR) [1–4]. Even though these
two approaches are fundamentally different, they produce
the same classical field equations. Thus, both theories pre-
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dict the same dynamics for classical gravitational systems,
and so classical gravitational experiments cannot be used to
test which of them gives the correct theory of gravity. In other
words, they are equivalent at the classical level.

However, because these theories are conceptually differ-
ent, they are expected to produce different quantum effects.
An important remark is in order at this point. We can deal
with TEGR only at the classical level because it produces the
same classical field equations as GR. Considering quantum
effects and nonlocality, it is improper to speak of equivalence
of the two theories since they could be fundamentally differ-
ent. Due to this fact, we will speak of teleparallel gravity in
general and of TEGR in the classical case.

Even though we do not have a fully developed quantum
theory of gravity, there are various proposals for quantum
gravity, and a universal prediction from almost all of these
approaches seem to be the existence of an intrinsic extended
structure in the geometry of spacetime [5,6], and such an
extended structure would be related to an effective nonlocal
behavior for spacetime [7–10]. For example, in perturbative
string theory, it is not possible to measure spacetime below
the string length scale, as the string is the smallest available
probe. As it is not possible to define point-like local struc-
tures, string theory produces an effective nonlocal behav-
ior [11,12]. Similarly, there is an intrinsic minimal area in
loop-quantum gravity [13], and this extended structure is
expected to produce a nonlocal behavior. It can be argued,
from black hole physics, that any theory of quantum grav-
ity should present intrinsic extended structures of the order
of the Planck length, and it would not be possible to probe
the spacetime below this scale. In fact, the energy needed to
probe the spacetime below this scale is more than the energy
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needed to form a mini black hole in that region of spacetime
[14,15].

Thus, quantum gravitational effects produce effective
extended structures in spacetime that would lead to nonlo-
cality [5,6]. Hence, it can be argued that the first order cor-
rections from quantum gravity will produce nonlocal defor-
mations of GR [16–18], and this will, in turn, produce a
nonlocality in cosmology. The effect of nonlocal deforma-
tions in cosmology could be a straightforward explanation
for cosmic acceleration [19–22].

Furthermore, the nonlocality induced by GR deformations
could be important to understand better the transition from
radiation to matter dominated era if consistently constrained
with the observations.

As nonlocality is produced by first order quantum grav-
itational effects, it is expected that they would also occur
in teleparallel gravity. Unlike the standard local classical
dynamics, the behavior of such nonlocal effects could be very
different in teleparallel gravity and GR, and they can be used
to experimentally discriminate between these two theories.
Therefore, it is interesting to study the nonlocal deformation
of both GR and teleparallel gravity. Even thought the non-
local deformation of GR has been extensively studied, the
nonlocal deformation of TEGR has not been studied. Thus,
in this paper, we will analyze a model of nonlocal teleparallel
gravity.

We will observe that at present, the nonlocal teleparallel
gravity satisfies all the existing cosmological experimental
constraints, and can explain phenomena that are explained
using nonlocal deformations of GR. However, as the nonlocal
teleparallel gravity is fundamentally different from nonlocal
deformation of GR, future experiments can be used to verify
which of these theories is the correct theory of gravity. Thus,
the action for general relativity SGR can be corrected by a
nonlocal term SSRNL due to quantum corrections, and so the
quantum corrected nonlocal GR can be written as [19,20]

S1 = SGR + SGRNL. (1)

Similarly, the standard classical action of TEGR STEGR can
be corrected by a nonlocal term due to quantum corrections
STEGRNL, and so the quantum corrected nonlocal teleparallel
gravity can be written as

S2 = STEGR + STEGRNL. (2)

It is not possible to experimentally differentiate betweenSGR

and STEGR, but the quantum corrections to these theories
SGRNL and STEGRNL are very different. Thus, it is experi-
mentally possible to discriminate between S1 and S2. It may
be noted that like in nonlocal GR case, the nonlocal correction
to teleparallel gravity is motivated by quantum gravitational
effects, and it is not arbitrary added to the original action.

It may be noted that nonlocal teleparallel formalism could
be a better approach to the study of quantum gravitational

effects. This is due to the fact that TEGR does not require
the equivalence principle to be formulated (see Chapter 9
in [2]), and it has been argued that quantum effects can
cause the violation of the equivalence principle [24]. Fur-
thermore, a violation of the equivalence principle can be
related to a violation of the Lorentz symmetry [25], and
Lorentz symmetry is also expected to be break at the UV
scale in various approaches to quantum gravity, such as dis-
crete spacetime [26], spacetime foam [27], spin-network in
loop-quantum gravity (LQG) [28], non-commutative geom-
etry [29,30], ghost condensation [31] and Horava–Lifshitz
gravity [32,33]. In teleparallel theories of gravity, there are
two different approaches. The first one does not assume that
the spin connection (which is related to inertial effects) is
zero, making all the quantities invariant under Lorentz trans-
formations. This formalism was implemented firstly in mod-
ifications of teleparallel theories of gravity in f (T ) grav-
ity in [34]. The second approach is the one where a spe-
cific frame is chosen at the beginning of the theory, or in
other words, where one chooses the spin connection equal
to zero. When Einstein and later Weitzenböck formulated
the teleparallel equivalent of general relativity theory, they
chose that formalism. This approach is sometimes called the
“pure tetrad” formalism or the “Weitzenböck gauge” telepar-
allel formalism. In this formalism, the torsion tensor does
not transform covariantly under local Lorentz transforma-
tions. Hence, the torsion scalar also is not invariant under
local Lorentz transformations. In standard teleparallel grav-
ity where just a linear combination of the scalar torsion is
considered in the action STEGR, the theory becomes quasi-
local Lorentz invariant, or invariant up to a boundary term.
However, when one is considering modifications of telepar-
allel theories of gravity, such as f (T ) gravity or in our case
nonlocal teleparallel gravity, the theory is no longer local
Lorentz invariant. In that case, in terms of computations,
one way to alleviate this issue is by introducing the so-
called “good tetrad” [35]. Mostly all the papers related to
f (T ) gravity work with this formalism so that in this work,
we will follow it (see [36]). Further, the lost of this invari-
ance in teleparallel theories might be an interesting behav-
ior on quantum scales. For a detailed analysis related to the
covariance of teleparallel theories of gravity, see [34,37–
39].

In this paper, we will study a nonlocal deformation of
Teleparallel Gravity, and the nonlocal cosmological solutions
obtained from such a deformed theory. Furthermore, we pro-
pose a way to experimentally discriminate teleparallel grav-
ity from GR at quantum scales. The paper is organized as
follows. In Sect. 2, we discuss the action and the field equa-
tions of nonlocal teleparallel Gravity. Observational con-
strains coming from cosmology are given in Sect. 3. These
constraints result useful discriminate between nonlocal GR
and nonlocal teleparallel gravity. Conclusions are drawn in
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Sect. 4. Appendix A is devoted to details of the derivation of
the field equations.

2 Nonlocal teleparallel gravity

In this section, we will obtain a nonlocal deformation of
teleparallel gravity. Adopting the formalism developed for
nonlocal deformations of GR [19,20], we can write a nonlo-
cal deformation for teleparallel gravity as

S = 1

2κ

∫
d4x e(x) T (x) [ f (G[T ](x)) − 1]+

∫
d4x e(x) Lm

(3)

= STEGR + 1

2κ

∫
d4x e(x) T (x) f

(
(�−1T )(x)

)

+
∫

d4x e(x) Lm, (4)

where κ = 8πG, T is the torsion scalar, e = det(eaμ) =√−g, f is an arbitrary function which depends on the
retarded Green function evaluated at the torsion scalar (quan-
tum effects such as the Planck constant have been absorbed in
the definition of this function), Lm is any matter Lagrangian,
� ≡ ∂ρ(egσρ∂σ )/e is the scalar-wave operator, and G[ f ](x)
is a nonlocal operator which can be written in terms of the
Green function G(x, x ′) as

G[ f ](x) = (�−1 f )(x)

=
∫

d4x ′ e(x ′) f (x ′)G(x, x ′). (5)

Furthermore, like the nonlocal corrections to the GR, these
nonlocal corrections to the teleparallel gravity are also moti-
vated from quantum gravitational effects. We note that, as
for nonlocal GR, the Green function is evaluated at the Ricci
scalar R, in nonlocal teleparallel gravity, the Green function
is evaluated at the torsion scalar T (for the sake of simplicity,
we write T (x) as T and e(x) as e).

It is worth noticing that (unlike GR, which produces the
same equations of motion as TEGR), the nonlocal defor-
mation of GR is different from the nonlocal deformation
of teleparallel gravity. The latter comes from the fact that
R = −T+B, where B is a boundary term so thatSGR (which
is constructed by R) and ST EGR(which is constructed by T )
produces the same field equations. However, the nonlocal
terms

√−gR f1(�−1R) and eT f2(�−1T ) coming from the
nonlocal actions SGRNL and STEGRNL will produce differ-
ent field equations even for the case where f1 = �−1R
and f2 = �−1T . This happens since the boundary term
B, which is the difference between T and R, produces a
contribution in the variational process in nonlocal terms.
This fact is in the same spirit as the discussion in [38,40],
where it was shown that f (R) and f (T ) gravity (general-

izations of SGR and STEGR, respectively), are different for
this boundary term and the way to connect these two theo-
ries is to consider a more general action where the function
depends on both the boundary term and the scalar torsion,
the so-called f (T, B) gravity (see also [41,42]). Moreover,
the same happens when one considers more general theo-
ries like modified Gauss–Bonnet f (R,G) gravity [43] and
teleparallel modified Gauss–Bonnet gravity f (T, TG) [44]
where two boundary terms f (T, B, TG , BG) need to be taken
into account in order to connect the two theories (for more
details, see [45]). Similarly, it is also possible to construct a
general scalar tensor theory by considering non-minimally
couplings between the scalar field and both the scalar tor-
sion and the boundary term (see [46,47]). By doing that,
one can also recover other well-known scalar tensor theories
such as quintessence or non-minimally coupled curvature–
scalar field theory. Exactly as in those cases, in principle,
one can extend the action (3) changing eT f (�−1T ) by
e f1(T, B) f2(�−1T,�−1B) and hence we achieve a more
general theory which can connect nonlocal teleparallel grav-
ity with nonlocal GR for the cases f1 = −T + B and
f2 = −�−1T + �−1B [48].

By a variation with respect to the tetrad, we obtain

δS = δSTEGR + 1

2κ

∫
[T f (G[T ])δe + e f (G[T ])δT

+ e T δ f (G[T ])] d4x +
∫

d4xδ(eLm), (6)

where

e f (G[T ])δT = −4
[
e(∂μ f (G[T ]))Sa μβ + ∂μ(eSa

μβ) f (G[T ])
−e f (G[T ])T σ

μa Sσ
βμ

]
δeaβ, (7)

T f (G[T ])δe = eT f (G[T ])Eβ
a δeaβ , (8)

eT δ f (G[T ]) = e
[
TG[T f ′(G)]Eβ

a + ∂μ(G[T f ′(G)])(∂νT )

×
(
gμνEβ

a − 2gβ(μEν)
a

)]
δeaβ

+e G[T f ′(G)]δT . (9)

See Appendix 1 for details of the variation of the nonlocal
term (9). It is worth noticing that the energy-momentum ten-
sor is


β
a = e−1[δ(eLm)/δeaβ ], (10)

so the field equations for Nonlocal teleparallel gravity can be
written as
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Fig. 1 Evolution of G[T ] as a function of the cosmic time in Gyr for
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4
[
Sa

μβ∂μ + 1

e
∂μ(eSa

μβ) − T σ
μa Sσ

βμ − T Eβ
a

]

×
[
f (G[T ]) + G[T f ′(G)]

]

−4

e
∂μ(eSa

μβ) + 4T σ
μa Sσ

βμ + T Eβ
a − ∂ρ

×
(
G[T f ′(G)]

)
(∂σ T )

(
gσρEβ

a − 2gβ(ρEσ)
a

)
= 2κ
β

a .

(11)

We have obtained the field equations for the nonlocal defor-
mation of teleparallel gravity, and now we will analyze a
nonlocal cosmological solution coming from this nonlocal
model of gravity.

Let us assume a Friedman–Lemaître–Robertson–Walker
(FLRW) cosmology with the following tetrad in Euclidean
coordinates eaβ = (1, a(t), a(t), a(t)), and write the FLRW

metric as ds2 = dt2 −a(t)2(dx2 +dy2 +dz2) for a spatially
flat spacetime. We will also consider a power-law cosmology,
such that a(t) = a0t s , where s is a constant. Now using the
nonlocal formalism, we can observe from Eq. (5)

G[T ] = −
∫ t

t∗
dt ′

e(t ′)

∫ t ′

t∗
dt ′′e(t ′′)T (t ′′), (12)

= 6s2

(1 − 3s)2

[
1 −

(
t

t∗

)1−3s
]

− 6s2 log
( t
t∗

)
3s − 1

. (13)

This can be used to analyze the effect of nonlocal defor-
mation in teleparallel cosmology. From Fig. 1 we can observe
the evolution of the functionG[T ] for the universe dominated
by a certain form of matter (s = 3/2) and for the universe
dominated by a specific scalar field (s = 1, 1.2).

3 Observational constraints

In this section, we will analyze some observational con-
straints for nonlocal teleparallel cosmology. As discussed in
[49], to analyze the observational constraints, we first express
the nonlocal action in Eq. (3), in terms of two auxiliary scalar
fields φ and ξ . In our case, we have

S = 1

2κ

∫
d4x e

[
T ( f (φ) − 1)

−∂μξ∂μφ − ξT
]

+
∫

d4x e Lm . (14)

By varying this action with respect to φ and ξ we get
φ = �−1T and �ξ = − f ′(φ)T respectively. By varing
this nonlocal action with respect to the tetrads, we obtain

2(1 − f (φ) + ξ)

[
e−1∂μ(eSa

μβ) − Eλ
a T

ρ
μλSρ

βμ − 1

4
Eβ
a T

]

−1

2

[
(∂λξ)(∂λφ)Eβ

a − (∂βξ)(∂aφ)

−(∂aξ)(∂βφ)
]

− 2∂μ(ξ − f (φ))Eρ
a Sρ

μν = κ
β
a . (15)

Thus, the field equations can be written as

3H2(1 + ξ − f (φ)) = 1

2
ξ̇ φ̇ + κ(ρm + ρ�), (16)

(1 + ξ − f (φ))(3H2 + 2Ḣ) = −1

2
ξ̇ φ̇ + 2H(ξ̇ − ḟ (φ))

−κ(pm + p�), (17)

where dots represent differentiation with respect to the cos-
mic time and we have assume that the matter is described
by the energy density of standard matter ρm and an energy
density related to a cosmological constant ρ�. The equations
for the scalar fields can be written as

−6H2 f ′(φ) + 3H ξ̇ + ξ̈ = 0, (18)

3H φ̇ + 6H2 + φ̈ = 0. (19)

These equations describe a nonlocal model of teleparallel
cosmology. We can take into account constraints on them
from recent cosmological data. We will assume f (φ) =
A exp(nφ), in order to test the dynamics of the model given
by the system (16)–(19). In order to constrain the free param-
eters of the model, we consider the following data sets:
SNe Ia: Type Ia supernovae (SNe Ia) have been used to

discover the current stage of accelerated expansion of the
universe. Hence, these observational data are a powerful tool
for geometric tests. Here, let us adopt the latest “joint light
curves” (JLA) sample [50], comprised of 740 type Ia super-
novae in the redshift range 0.01 ≤ z ≤ 1.30.
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Fig. 2 One-dimensional marginalized distribution, and two-dimensional contours with 68 and 95% confidence level for the free parameters of the
model

BAO: The baryon acoustic oscillations (BAOs) are another
important probe. We use the BAO measurements from the Six
Degree Field Galaxy Survey (6dF) [51], the Main Galaxy
Sample of Data Release 7 of Sloan Digital Sky Survey
(SDSS-MGS) [52], the LOWZ and CMASS galaxy sam-
ples of the Baryon Oscillation Spectroscopic Survey (BOSS-
LOWZ and BOSS-CMASS, respectively) [53], and the distri-
bution of the LymanForest in BOSS (BOSS-Ly) [54]. These
data points are summarized in Table I of [55].

CC+H0: The cosmic chronometers (CC) data set are another
important data set. Here, we use the CC data set comprising
30 measurements spanned in the redshift range 0 < z < 2,
recently compiled in [56]. We also use the recently measured
new local value of Hubble constant given by H0 = 73.24 ±
1.74 km/s/Mpc.

We use the publicly available CLASS [57] and Monte
Python [58] codes for the model under consideration in order
to constrain the free parameters of this nonlocal cosmolog-
ical model using SNe Ia + BAO + CC + H0. We used the
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Fig. 3 Reconstruction of the q(z) (deceleration parameter) and j (z) (jerk parameter) from SN Ia + BAO + CC + H0 data set at 1 σ CL

Metropolis Hastings algorithm with uniform prior on the
model parameters. In our analysis, we considered φ̈ � φ̇,
ξ̈ � ξ̇ . Figure 2 shows the parametric space for A, n, H0,
and ��, at 1σ and 2σ confidence levels (CL) from the joint
analysis SNIa + BAO + CC + H0. We have observed at
1σ CL the following constraints: A = −0.009713+0.017

−0.021,

n = 0.02086+0.0013
−0.0208, h = 0.7127+0.013

−0.015 km/s/Mpc, �� =
0.7018+0.018

−0.02 , and �m0 = 0.2981+0.02
−0.018, with χ2

min = 707.4.
We can note that the constraints are closed to the �CDM
model, without any evidence for nonlocal effects in the
present analysis, which here are characterized by the param-
eters A and n. In order to investigate kinematic effects, Fig.
3 shows the deceleration and jerk parameters as a function
of the redshift. We consider the standard error propagation
using the best fit values from SNIa + BAO + CC + H0 in the
reconstruction (gray region) of both parameters. On the left
panel we have q(z), where the transition from decelerated to
accelerated phase occurs at z ∼ 0.6, with q0 = −0.54±0.15.
As expected, we have q → 1/2 for high redshift. The right
panel shows the jerk parameter j (z) obtained from the joint
analysis, the dotted black line ( j = 1) represents the �CDM
model. In general, small deviations can be noted when non-
local effects are introduced, but such effects are close the
dynamics of �CDM model.

The free parameters of the nonlocal teleparallel cosmol-
ogy are strongly constraint by present cosmological data.
Furthermore, since nonlocal GR and nonlocal teleparallel
gravity are fundamentally different, it is possible that future
cosmological data can be used to test which of these two
proposals is the correct theory of gravity.

As these theories are fundamentally different, experiments
can be performed to distinguish each other. Here we propose
some possible experimental tests that can be pursued in the
near future to know which is the correct theory of gravity.

The first experiment that can be performed is based on
the violation of the equivalence principle, as this can only
occur in nonlocal teleparallel gravity. The accuracy of weak

equivalence principle has been measured from the acceler-
ation of beryllium and titanium test bodies using a rotating
torsion balance [59]. It has been found that, for acceleration
a, the accuracy is of the order �a/a ∼ 1.8−13. The accuracy
is increased to �a/a ∼ 2−17 using the SR-POEM project
[60]. It is possible to use more accurate future experiments
to observe a violation of the weak equivalence principle. As
such, a violation would only occur in nonlocal teleparallel
gravity and it can be used as an experimental test to know
which of these theories is the correct theory of nature.

We can also test these theories by performing experi-
ments using photon time delay and gravitational red shifts
measured by high energy gamma rays. Both these nonlo-
cal effects would produce different photon time delays that
have been observed by measuring the round trip time of a
bounced radar beam off the surface of Venus [61]. This kind
of experiments, performed with more precision, can be com-
pared with effects produced by the nonlocal deformation of
both theories, and any discrepancy between results can be
used to discriminate between them. Similarly, the gravita-
tional red shift can be used to distinguish between the two
theories. The gravitational red shift derived by gamma rays
of energy 14.4×10−6 GeV has been measured in the Pound–
Snider experiment [62], and it is possible to perform similar
experiments with higher energy gamma rays with present day
technology. Since Nonlocal teleparallel gravity and nonlocal
GR predict different gravitational red sifting, such difference
can be compared with these more accurate experiments.

4 Conclusions

Since GR and TEGR produce the same classical field equa-
tions, they cannot be differentiated by using classical exper-
iments. However, these theories are fundamentally different
each other and so they have to produce different quantum
mechanical effects. According to this consideration, GR and
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teleparallel gravity could be distinguished only at the quan-
tum level. Even though we do not have a fully developed
theory of quantum gravity, there are several proposals in this
direction. A universal prediction by almost all the approaches
is the existence of extended structures of spacetime geometry
that are expected to give rise to nonlocal deformations whose
effects could be detectable from microscopic scales to cos-
mology. Thus, the nonlocal deformations of teleparallel grav-
ity, just like the nonlocal deformations of GR, are motivated
by quantum gravitational effects. In principle, nonlocal cos-
mology from GR predicts a different behavior with respect
to nonlocal teleparallel cosmology. Thus, the nonlocal defor-
mations of these cosmological models can be matched with
observational data. In analogy with a nonlocal deformation
of GR, we constructed a nonlocal deformation of telepar-
allel gravity. Starting from this, we derived nonlocal cos-
mological solutions and constrained them using data com-
ing from SNeIa, BAO, and CC surveys. The main result of
this paper is that nonlocal teleparallel gravity is consistent
with present cosmological data and then cosmology, besides
quantum experiments, could be the ground on which to dis-
criminate the two approaches. As a general consideration,
nonlocal deformations for both GR and teleparallel gravity
are different, and the parameters of the field equations can be
fixed, in principle, by experiments. Here we proposed also
future experiments that can be performed to distinguish them
from each other.
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Appendix A: Derivation of the field equations

1. Variation of f (G[T ]) = f (�−1T )

Let us consider the variation of the action (3) with respect to
the tetrad fields. The term with the quantity f (�−1T ) is

eT δ f (G[T ]) = eT δ f
(
�−1T

)

= eT f ′(G)
( 1

�δT − 1

� (δ�)
1

�T
)

(A1)

= −e�−1(T f ′(G))δ
(∂μegμν∂ν

e

)
�−1T

+ e�−1(T f ′(G))δT . (A2)

We will not work out the second term on the right hand side
since the variation of F(e)δT is well known for any function
F(e) which depends on the tetrad. Now, if we expand the
first term, we get

− e�−1(T f ′(G))δ
(∂μegμν∂ν

e

)
�−1T

= (�−1T f ′(G))T δe − �−1(T f ′(G))∂μδ(egμν∂ν)�−1T,

(A3)

= TG[T f ′(G)]δe + ∂μ(G[T f ′(G)])(∂νT )
(
gμνδe + eδgμν

)
,

(A4)

where we used � × �−1T = T and we neglected boundary
terms. Now, if we take into account that δe = eEβ

a eaβ and

δgσρ = −(gσβEρ
a + gρβEσ

a )δeaβ we can expand the above
term yielding

− e�−1(T f ′(G))δ
(∂μegμν∂ν

e

)
�−1T

= e
[
TG[T f ′(G)]Eβ

a + ∂μ(G[T f ′(G)])(∂νT )

×
(
gμνEβ

a − 2gβ(μEν)
a

)]
δeaβ. (A5)

Therefore, the variation of the nonlocal term is

eT δ f (G[T ]) = e
[
TG[T f ′(G)]Eβ

a + ∂μ(G[T f ′(G)])(∂νT )

×
(
gμνEβ

a − 2gβ(μEν)
a

)]
δeaβ

+eG[T f ′(G)]δT . (A6)
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