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ABSTRACT

The aim of the present study was to investigate the potential for children to
use the turtle methaphor to develop understandings of intrinsic, euclidean
and cartesian geometrical ideas. Four aspects of the problem were
investigated.

a) the nature of the schema children form when they identify with the turtle in
order to change its state on the screen,;

b) whether it is possible for them to use the schema to gain insights into
certain basic geometrical principles of the cartesian geometrical system;

c) how they might use the schema to form understandings of euclidean
geometry developed inductively from specific experiences;

d) the criteria they develop for choosing between intrinsic and euclidean
ideas.

Ten 11 to 12 year - old children participated in the research, previously
having had 40 to 50 hours of experience with Turtle geometry. The research
involved three case - studies of pairs of children engaging in cooperative
activities, each case - study within a geometrical Logo microworld. The data
included hard copies of everything that was said, typed and written.

Issues a) and b) were investigated by means of the first case - study which
involved three pairs of children and a microworld embedding intrinsic and
coordinate ideas. A model of the children's intrinsic schema and a model of
the coordinate schema which they formed during the study were devised. The
analysis shows that the two schemas remained separate in the children's
minds with the exception of a limited number of occasions of context specific
links between the two.

Issue c) was investigated in the second case - study involving one pair of
children and a microworld where the turtle was equipped with distance and
turn measuring instruments and a facility to mark positions. The analysis
illustrates how a turtle geometric environment of a dynamic mathematical
nature was generated by the children, who used their intrinsic schema and
predominantly engaged in inductive thinking. The geometrical content
available to the children within this environment was extended from intrinsic
to both intrinsic and euclidean geometry.

Issue d) was investigated by means of the third case - study involving a pair of
children and a microworld where the children could choose among circle
procedures embedding intrinsic and/or euclidean notions in order to construct
figures of circle compositions. The analysis shows that the children employed
their turtle schema in using both kinds of notions and did not seem to
perceive qualitative differences between them. Their decisions on which type
of notion to use were influenced by certain broader aspects of the
mathematical situations generated in the study.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND TO THE RESEARCH

In the latter half of this century geometry has had a continually reduced role to
play in mathematics curricula, at least in the United Kingdom. A major factor
has been that Euclidean Geometry, which was taught as a tight deductive
system and was considered an area of high status knowledge, came to be
regarded as "inappropriate" for primary and secondary education since
children could only master its deductive structure by rote learning. Research
into children's geometrical understandings, starting from the work of Piaget,
has highlighted on the one hand, the formal (in the Piagetian sense) nature of
deductive thinking and on the other, pupils' difficulties in achieving such
thinking in the context of geometry (Freudenthal, 1973, van Hiele, 1959). Thus
the case for teaching geometry as a ready - made deductive system has
inevitably become rather weak.

Research in mathematics education in general has given credence to the case
put forward by cognitive psychologists and mathematics educators that the
process of learning involves the reorganisation of personal experiences by
acting on the environment, rather than the passive intake of quantities of
information. The advent of the computer and specifically the dramatic increase
of availability of micro - computers in classrooms which has begun in the last
decade, has provided researchers with the opportunity to create interactive,
dynamic computer environments where pupils can take control of their own
learning. An increasing amount of research has recently been stimulated,
investigating the educational potential of such environments on the one hand,
and the learning processes of pupils engaged in activities within such
environments on the other.

A good example of such environments is Turtle geometry, an important part of



the Logo computer language, which invites children to give commands to a
turtle (a screen cursor with position and heading) to move or turn. The turtle
can leave a visible trace when changing its position, thus enabling the children
to form shapes and figures on the screen. Apart from increasing evidence that
Logo can be a means to generate rich mathematical and programming
environments for children, Papert and Lawler argue that turtle geometry has an
especially promising characteristic, i.e. that children make particular sense of
driving the turtle on the screen because they can identify with it and therefore
relate to experienced bodily motion. On the other hand, Turtle geometry
incorporates powerful geometric ideas which, according to Papert, belong to
Intrinsic (Differential) geometry.

This notion of Turtle geometry seems to fit with the case for geometry made by
Freudenthal, i.e. that it has an important role to play in education, if seen
through a different perspective, i.e. if, as educators we exploit the relationship
between geometry and the experienced space, since it is a unique opportunity
to mathematise reality, but we also keep the option open for deductive
geometry (Freudenthal, 1973). Furthermore, von Glasersfeld has argued that
"the generation of deductive abilities in both logic and mathematics must be
based on the practice of inductive inference" (von Glasersfeld, 1985, p.484).
Recent research, however, has shown that children do not necessarily use
geometrical ideas when doing Turtie geometry (Hillel et al, 1986, Hille! and
Kieran, 1987, Leron, 1983).

In the present study, the nature of the "schema" 12 year - old children build
when they identify with the turtle is investigated. Although the study is informed
by other uses of the word "schema" (see section 2.1.1), there is an attempt
throughout the thesis to form a meaning related to the research findings.
Furthermore, the investigation extends to the potential for children's use of this
schema to understand powerful ideas which are at the basis of geometrical
systems other than the Intrinsic, thus extending the geometrical content
available to the children from Intrinsic geometry to Euclidean and Cartesian. It
was therefore important for the study to focus on both children's learning
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processes and understanding of geometrical content.

The research was carried out in a primary school within the Greek educational
system. Primary education in Greece is rather formal, i.e. the predominant
assumption in the classroom is that the teacher has an amount of knowledge in
his/her head and his/her job is to transmit it to the recipiants, i.e. the children.
The pupils participating in the study, however, had had one year's experience
with Logo in an informal investigative classroom atmosphere.

The four objectives of the study were:

1) to investigate the nature of the schema children form when they identify with
the turtle in order to change its state on the screen;

2) to investigate whether it is possible for them to use the schema to gain
insights into certain basic geometrical principles of the Cartesian geometric
system;

3) how they might use the schema to form understandings of euclidean

geometry developed inductively from specific experiences;

4) to investigate the criteria they develop for choosing between intrinsic and
euclidean representations of geometrical ideas.

1.2 THETHE RETI AL FRAMEWORK FOR THE TUDY

The theoretical framework of the study is based on the role of Logo and Turtle
geometry within a specific view of mathematics education which emphasises
the process of learning as an on - going reorganisation of personal experience,

rather than an effort to describe some ontological reality.

The "constructivist” perspective regarding the development of knowledge,

which seems to be influencing more and more mathematics educators
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(Kilpatrick, 1987), was first considered in "scientific" terms - rather than a purely
philosophical question - by Piaget. There are many definitions or descriptions
of Constructivism as a theory of knowledge - Piaget himself has described
Constructivism several times, according to emphases within particular contexts.
According to Sinclair, what Piaget meant by "interactive" or "dialectical"
Constructivism incorporates the idea that "the essential way of knowing the real
world is not directly through our senses, but first and foremost through our
actions... (i.e.) ...all behaviour by which we bring about a change in the world
around us or by which we change our own situation in relation to the world"
(Sinclair, 1987, p. 28). Epistemological debate on Constructivism, however,
has pushed this main idea to extremes such as "all knowing is active and all
knowledge is subjective” (Kilpatrick, 1987, p. 10). The constructivist view

involves the following main ideas:

- knowledge is actively constructed by the cognising subject, not passively

received;

- coming to know is an adaptation process that organizes one's experiential
world; it does not discover an independent, pre - existing world.

Although there seems to be general agreement on the former principle (von
Glasersfeld, 1985, Cobb, 1986), the latter has raised considerable debate, the
main bulk of which, the author believes is of a philosophical nature, rather than
an educational one. Acceptance of the last clause, i.e. the questioning of the
existence of an ontological reality by arguing that the results of all cognitive
construction are necessarily subjective has been labelled "radical
Constructivism” (von Glasersfeld, 1985). There have been attempts to deal with
the obvious shortcoming of "denouncing” reality, by proposing a definition of
objectivity which, as von Glasersfeld puts it, "does not require access to
ontology", i.e. "objectivity arises when concepts, relations and operations that |
have found to be viable in the management of my own experience, turn out to
be viable also when | attribute them to the models of Others which | construct to
manage my interaction with them" (von Glasersfeld, 1985, p.99).
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It could be argued however, that the epistemological debate raised by radical
Constructivism has a questionable direct relevance to educational practice and
that the extremity of the "radical" viewpoint may have been influenced by a
polarisation resulting from cognitive scientists' reactions to behaviourism over
the last 20 years (Resnick, 1983). The lack of emphasis on the social nature of
learning, for instance, does not take into account the reasons for the widely
acknowledged discrepancies between solitary and collaborative learning
highlighted by Vygotsky's notion of the "zone of proximal development”, which
he defined as the distance between the actual developmental level during
solitary learning and the potential developmental level, determined in
situations involving adult guidance or collaboration with more able peers
(Vygotsky, 1978).

Mathematics educators, however, have found it useful to adopt key ideas
involved in the constructivist perspective, such as the principle of "learning by
doing" (Papert, 1972) rather than learning by receiving information, without
ignoring the social nature of learning. "l see constructivism as the best way to
consider the process of appropriation by which a student makes mathematics
his own knowledge. Rather than a pure and lonely construction, the learning of
mathematics is for me the difficult appropriation of a social knowledge”
(Vergnaud, 1987a, p.53).

It is particularly useful for the present study to employ a theoretical framework
for learning mathematics which, on the one hand, incorporates ideas about
pupils' learning processes when they are engaged in activities which foster
"learning by doing" (often, for example, in the case of Logo activities), and on
the other, examines the mathematical content available to the pupils during
such situations of active learning. As Vergnaud put it, "the choice of these
situations cannot be made without reference to mathematics as a science, and
to the developmental process of mathematical schemes and concepts in
students' minds... adaptation does cope with the actual world, and not with a
purely imaginary science" (Vergnaud, 1987a, p.p.53 and 46).
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Certain notions concerning these two domains, are useful for the theoretical
framework of the present study, during which the research focused equally
upon the process by which children develop understandings of geometrical
ideas in Logo activities and on the nature of those ideas within the structure of

wider geometrical domains.

An important notion regarding the learning process is children’s developments
of operational invariants in situations where they perform actions. The notion is
not a new one, since invariants are a recurrent topic in Piaget's work, such as,
for instance, the conservation of volume in situations of transferring some liquid
from a narrow to a wide glass, a "norm" which, according to Piaget, develops at
around the age of 10. However, Vergnaud has focused on this notion from a
mathematical perspective, drawing attention to the invariance of relations and
to children's implicit and localised use of "powerful properties” or concepts.
Vergnaud maintains that children should be given the opportunity to form
"theorems in action" - his term for relational invariants -, since "before being
objects, concepts are cognitive tools, and many theorems should be 'theorems
in action' before being explicit theorems, especially at the primary and
secondary level" (Vergnaud, 1987a). The notion of a concept being used as a
tool within a situation before becoming an object was put forward by Douady;
"We say that a mathematical concept is a tool when our interest is focused on
the use to which it is put in solving problems. By object we mean the cultural
object, which has a place in the body of scientific knowledge, at a given time,
and which is socially recognised" (Douady, 1985, p.35).

For the present study, however, awareness of the mathematical structure of the
situations within which pupils formed theorems in action and used concepts as
tools was of equal importance to the awareness of pupils' thinking processes.
Consequently, the notion of "conceptual field", put forward by Vergnaud, was
an important element for the theoretical framework of the study. According to

Vergnaud, a concept can be described as a triplet (S, |, Z), where;



S is a set of situations which make the concept meaningful;

| is a set of invariants that constitute the concept;

Z is a set of symbolic representations used to represent the

concept, its properties and the situations it refers to.

For Vergnaud, however, it is not so useful to examine a concept in isolation, but
rather within more than one situations, involving on the one hand different
properties of the same concept, and on the other, a variety of concepts.
Furthermore, pupils' formation of concepts relies on a meaningful application
and adaptation of former conceptions. Vergnaud therefore makes a case
against studying "small - sized" objects when the objective is to understand the
processes by which pupils master mathematics. As an alternative, he offers the
notion of "conceptual field", i.e. "...a set of situations, the mastery of which
requires a variety of concepts, procedures and symbolic representations tightly
connected with one another" (Vergnaud, 1982, p.36). In the present study,
situations were designed within which the pupils could explore and solve
problems in Turtle geometry. The conceptual field, or the mathematical
structure of these situations was carefully analysed by the researcher before
the study took place (chapter 3 and sections 6.1.3, 7.1.4 and 8.1.3).

The situations generated in the study, involved pupils' activities within "turtle
environments" which were designed by the researcher to have an underlying
specific geometrical structure. The notion of a "microworld" seems the most
useful for describing such environments. For Papert, microworlds are "places tc
get to know one's way around a set of concepts, problem situations, activities,
places in which the student and teacher can test out ideas in a subject domain
of interest” (Weir, 1987, p.12). A main feature of microworlds is that pupils can
start exploring without much prerequisite knowledge about the underlying
mathematics. They can therefore experiment and try out personal (sometimes
wrong) theories. In microworlds, right or wrong are not the decisive criteria...

"the child is learning... as a means to get to a creative and personally defined
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end" (Papert, 1980, p.134). According to Lawler, a microworld embodies the
simplest model the expert can imagine, for entering a "rich" mathematical area
(Lawler, 1982). Hoyles and Noss described the notion of a microworld as a set
of Logo based situations constructed so that the pupil will come up against
embedded mathematical ideas in the context of meaningful activity (Hoyles
and Noss, 1987b). An elaborated example of a microworld is that of Turtle
geometry in Logo, where, as will be discussed in chapter 2, the children find an
easy entry point by employing their experience of bodily motion to drive the
turtie on the screen, but have available a "conceptual field" incorporating
powerful ideas belonging to Intrinsic geometry. For the author, the terms
"conceptual field” and "Logo microworid" are related, since it could be argued
that the latter is a specific case of the former.

In the present research, a case - study method is adopted, involving a detailed
observation of pairs of children working collaboratively with a computer by
engaging in activities within microworids designed by the author to have the
characteristics of specific conceptual fields. Although the entry point to all three
microworlds is the turtle, the embedded concepts not only belong to Intrinsic
geometry, as in the standard Turtle geometry microworld, but also to the

Euclidean and Cartesian geometrical systems.

ASIDE: The writer of this thesis refers to himself as "the author" in chapters 1

and 2 and as "the researcher” in the remaining parts of the thesis.

AN VERVIEW FTHE NTENT F THE THE

Although it may be unrealistic to isolate process from content, the dialectic
between the two domains, discussed in Capter 1, provided the researcher with
a basis for the structure of Chapter 2, where the literature related to the study is
reviewed in two parts, the first involving issues concerning children's
mathematical learning processes and the second reviewing such processes
within specific geometrical contents. Chapter 3 contains an analysis of the

general mathematical principles underlying the microworids in the present
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study. In chapter 4, the methodology for the present study is discussed and an
overview of the research is given. The research involved a preliminary phase
which is presented in chapter 5. The main research consisted of three case -
studies. The findings for each case - study are presented in each of the
following three chapters (chapters 6, 7 and 8) respectively. Due to the detailec
design of each case - study, it was seen as clearer for the reader to incorporate
a presentation of the design at the beginning of each chapter. For instance, the
design of the case study presented in chapter 6, is at the front of the same
chapter, and so on. The conclusions are presented in chapter 9.



CHAPTER 2

A REVIEW OF THE LITERATURE

2.1 CHILDREN'S MATHEMATICAL LEARNING PROCESSES

The first two parts of section 2.1 contain a review of the literature on the
qualitative development of children's thinking and their processes of
symbolising in mathematics. Children engaged in Logo activities often have
opportunities to form different representations of the same idea (i.e. Logo
"code", graphics, "acting out" the turtle’s movements) in environments where
they can take substantial control over their learning and discover things for
themselves. The author found that a review of the literature on the two issues
mentioned above provided him with an informative backgound for interpreting
the thinking processes of the children participating in the study while they
were engaged in activities with Logo. Sections 2.3 and 2.4 contain a review of
research over the last ten years concerning the processes of children's

learning in open - ended Logo environments.

What we know about the way children think has been greatly influenced by the
work of Jean Piaget. He was revolutionary in his approach to learning since,
contrary to common belief at the time, he perceived the child as an active
learner, an actor, rather than someone who is passively acted on by the
environment. Moreover, he regarded cognitive growth as an essentially
qualitative change in the organisation of knowledge in the mind rather than &
quantitative gathering of increasing amount of knowledge. The nature of
cognitive growth, as a qualitative re - organisation of knowledge, is of primary
concern in this section.

An important part of Piaget's theory involves the dynamic process by which the

child learns, the essence of which can be described as follows; Piaget's
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central notions for describing learning are "scheme", "assimilation”,
"accommodation" and "equilibration". Assimilation is the application of an
existing cognitive structure or scheme to a new situation, while
accommodation involves the reorganisation of a scheme as a result of new
experiences. "A scheme, for Piaget, is a dynamic totality that ties together all
the ingredients of a functional activity and can both accommodate to new
situations and assimilate them" (Vergnaud, 1987b, p.231). Equilibration
coordinates the three factors which, according to Piaget, influence cognitive
growth, i.e. organic growth, experience with the physical world and experience
with the social world. Equilibration involves a process of the reorganisation of

schemes through assimilation and accomodation.

Although this part of Piaget's theory contains very important ideas about how
children learn - the notion of learning as acting on the environment rather than
receiving knowledge seldom having generated criticism - there have been
attempts to illuminate further the process by which what Piaget called
"equilibration”, i.e. how knowledge is organised in the mind, comes about
(Lawler, 1985, DiSessa, 1982). A common contention between Lawler and
diSessa is that knowledge is essentially fragmented and learning takes place

via the acquisition and reorganisation of disparate pieces of knowledge.

Lawler's central contention, based on Minsky's theory of "frames” (Minsky,
1975 and 1977), involves the construction of mind as a process of genesis
and interaction of "microviews", i.e. fragmentary views of the world. The terms
"microworld" and "microview" are central to Lawler's thesis. Microworld is a
fragment of the world perceived by the child as disparate. Microviews "are
internal, cognitive structures built through interacting with... microworlds and
reflecting that fragmentary process of knowing" (Lawler, 1985, p.193). They
are like content - specific frameworks into which problems and real life
situations are assimilated. However, unlike Piaget's somewhat similar idea of
scheme, Lawler focuses on, and tries to explain the relationships between
microviews and how they evolve. For instance, he maintains that microviews

are linked in an intricate genetic network. Some of them are descendants of
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one or more others, some of them co-exist with no apparent relations but
possibly with common "ancestral” microviews. He also puts forward the
concept of dominant and sub dominant microviews. There are not only
"microviews of knowledge which dominate problem solving behaviour but
also... sub - dominant microviews which do not normally dominate behaviour

but which with intervention do so" (Lawler, 1985, p.105).

The notion of differing frameworks of knowledge existing simultaneously in the
child's mind was also put forward by Booth as a result of a project involving a
small - group teaching experiment to investigate children's errors in
elementary algebra (Booth, 1984b) highlighted by the earlier CSMS research
(Hart, 1980). Analysis of the data from the CSMS project had yielded that
children use "naive intuitive strategies" rather than the "proper” mathematics
taught them at school (Booth, 1981). Booth noticed, however, that, after
participating in the relatively short teaching experiment of the SESM project,
the children improved their performance regarding acceptance of "lack of
closure" (Collis, 1974) and formalisation of method. She consequently
suggested that the cognitive structures necessary for such assimilations were
already available to the children and the reason why they did not use them
was the inappropriateness of the framework of reference within which they
were working, i.e. an arithmetic framework instead of an algebraic framework
(Booth, 1984a). In Lawler's terms, the children could have already developed
a microview for arithmetic and a microview for algebra, each related to an
apparently different ancestral microview. What could have happened as a
result of the teaching experiment, was the employment of the microview for
algebra, which until that stage, was sub - dominant in the children's problem -
solving behaviour.

The idea of simultaneous existence of pieces of knowledge in the mind and
their invoking via a priority system, is central to diSessa's proposition of
knowledge organisation. He discussed the role of intuitive epistemology in
learning through the domain of physics. DiSessa maintained that physical

knowledge is based on intuitions which originate in naive interpretations of
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personal interactions with the physical world. He called the components of
these intuitions "phenomenological primitives”, or "p - prims", i.e. the intuitive
equivalents of physical laws (diSessa, 1983). P - prims are organised in the
mind so that they are evoked to make sense of situations according to a
priority system. Two kinds of priority determine whether a p - prim will be
invoked to make sense of a specific situation: "cuing priority", which has to do
with how likely it is for a p - prim to be called upon, and "reliability priority"
referring to the resistance to abandoning a p - prim once it is invoked. For
diSessa, experience can initiate a reorganisation of p - prims, for instance a
rearranging of cuing priority and reliability priority, the inclusion of new p -
prims or the split of a p - prim into two or more. He consequently suggests that
they are likely to be responsible for difficulties with the interpretation of
situations since "they are high priority naive phenomena which require drastic
reduction of priority or rearrangement of priority structure to allow expert - like
understanding" (diSessa, 1983, p.30), an argument which the author believes
is consistent with Lawler's idea of dominant and sub - dominant microviews
(Lawler, 1985) and with Booth's alternative frameworks of knowledge (Booth,
1984a). For diSessa, the difference between common sense and scientific
reasoning "is not so much the character or even the content of knowledge, but
rather its organisation. Experts have a vastly deeper and more complex
priority system" (diSessa, 1983, p.32).

The issues discussed above refer to the process and the nature of cognitive
growth. Although there is, of course, agreement that learning in children
comes about through their experience with the world, recent researchers do
not seem to accept that mental growth is as independent of the nature of these
experiences as Piaget seemed to imply. The developing picture of knowledge
as fragmented and context - specific and the idea that small discrete pieces of
knowledge co - exist in the mind and are invoked according to a dynamic
priority system is, in effect, a recognition of the limitations of Piaget's
contention that children mostly learn independently and spontaneously; in the
literature discussed above, a common implication is that the priority system by

which a fragment of knowledge (or a microview, or a p - prim) is employed
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within a situation is strongly related to the nature of this situation. This criticism
is informative in understanding children's learning through activities with
Logo, where the environment in which the children cause changes has a
specific mathematical structure.

Another aspect of Piaget's theory is the well - known, but largely controversial
contention that children's thinking develops in stages, each stage
characterised by a specific cognitive structure and reached by the child at a

specific age. Criticisms of this theory can be split in two categories:

a) criticism within the stage theory, i.e. the rates of development and the
consistency of development across tasks or domains (Flavell, 1977, Keating
and Clark, 1980). Piaget has acknowledged that development is not
consistent across tasks, and has described the inconsistency as "horizontal
decalage".

b) existence of other factors influencing the child's observed thinking such as
misunderstandings between child and researcher due to the former's inability
to use disembedded language (Donaldson, 1978) and the "appropriateness of
the framework of reference” within which the child is working (Booth, 1984a,
Demetriou and Efklides, 1981).

Although the present study generally benefits from an awareness of those
criticisms, certain aspects related to the stage theory are particularly
informative regarding children's geometrical activities with Logo where, for
instance, children's thinking often involves relations between geometrical
ideas and bodily motion (Papert, 1980). The first aspect is Lawler's
reasonable assumption that the basis of mind is to be found in the
sensorimotor period and his consequent argument that much of the activity of
early age is developing communicative links between subsystems of the
sensorimotor system, which according to Lawler are: the somatic, locomotive,
visual, manipulative and linguistic subsystems (Lawler, 1985). This could

provide an indication of why the "turtle metaphor" makes sense to children,
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since using a schema based on movement and turning would be based on

early experiences.

The second aspect involves certain characteristics of concrete and formal
thinking and of the transition from the former to the latter. Concrete operational
thinking involves, for instance, the ability to perform operations and to
understand that each operation is reversible. It also involves inductive
reasoning, i.e. arriving at a conclusion based on individual experiences.
Formal operational thought involves the ability to think about ideas as well as
objects. Deductive thinking is a characteristic of formal thinking, since it
requires reasoning from the general to the particular. Part of the controversy of
the stage theory concerns the age of transition from concrete to formal
thinking; Piaget maintained that the transition started at the age of 11, while
Collis' observations show that children do not develop formal thinking till the
age of 16 and some of them never achieve formal thinking at all (Collis, 1974).
According to Collis and Halford, who applied Piaget's stage theory to
children’s understanding of mathematics (mainly algebra), transition from the
concrete to the formal stage involves the child's acceptance of "lack of closure”
(Collis, 1974) and the development from understanding binary relations to
understanding tertiary relations (Halford, 1978). The most important aspect of
the transition for the present study however, is the development from inductive
to deductive thinking i.e. when the objects of reasoning become disembedded
from personal experience. As will be discussed in section 2.2, Geometry has
widely been taught as a tight deductive system, even from the years of primary
education. As a consequence, children have only been able to learn
Geometry by rote, since they are not ready to understand the mathematical
ideas involved in any depth, as argued by Freudenthal (Freudenthal 1973).
Piaget would also agree on this point, since he has argued that "...when adults
try to impose mathematical concepts on a child prematurely, his learning is
merely verbal; true understanding of them comes only with his mental growth"
(Piaget, 1953, in Hughes, 1986, p.16). The research issues of the present
study are investigated within the context of children learning Geometry in an

inductive way, i.e. by trying out things first and building theories about them
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after.

2.1.2 The rocess of s mbolisin inthe learnin of mathematics

The present study focuses on the learning of mathematics as a functional
activity, i.e. as an activity which is personally meaningful to the pupil. Although
the use of symbolic systems is very important in mathematics, litile is known
about the processes by which children use symbolic representations for
functional purposes. Formal symbolic systems are introduced to children very
early, from their primary education, in situations with little meaning for them
(Mason, 1980). As Hughes argues, the symbols do not help them to solve
problems, they do not appear to have any obvious purpose and thus become
associated with artificial activities such as doing sums (Hughes, 1986). Not
surprisingly, using mathematical symbols is a general problem area in
traditional mathematics education. Vergnaud (1984, p.27) states that "- certain
symbolic activities are meaningless to many students - it is a difficult job to

transform a situation or a word - problem into a symbolic representation”.

For example, as a result of research with pre - school children, Hughes (1986,
p.95) states that "there seemed to be a large gap between the children's
concrete numerical understanding and their use of formal written symbolism".
He offers an alternative interpretation of this finding by arguing that "young
children do not see the value of using conventional written symbols" (Hughes,
1986, p.122). Although the issue of children’'s understanding of symbols in
mathematics was not the primary concern in the researchers' interpretations of
the CSMS (Hart, et al, 1980) and the SESM (Booth, 1984b) research projects,
the results show that many children have difficulties in using algebraic
symbols during early secondary education, often relying on the use of
arithmetic strategies to solve algebraic problems (Booth, 1981).

There has been substantial psychological research on the issue of symbolism
in general as a means by which we communicate internal thought. The main

theme highlighted by this research is the important role of imagery, as distinct
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from language (Paivio, 1978, Skemp, 1971) in the representation of ideas.
Some researchers do not distinguish between imagery and perception
maintaining a "picture-in-the-mind" view of imagery (Clements, 1982, Casey,
1976), while others do not see a mental image as identical to a picture but as
as means to represent an object (Shepard, 1978, Kaufmann, 1979). An
analytical review of this literature is not within the scope of the present study.
However, Piaget and Inhelder's view of imagery is informative in that they see
imagery as a symbolic system which is part of a developmental process, i.e. it
changes with age. They emphasise the symbolic nature of imagery, arguing
that it is a dynamic symbolic system which develops in parallel to, and in
interaction with, logical - verbal thought (Piaget and Inhelder, 1971). For
Piaget, "representation is primarily interiorization of action, effective action and
accommodation, and later, possible action and accommodation" (Vergnaud,
1987b, p.230).

The present study is primarily concerned with different ways of representing
the same idea, since giving commands to the turtle to move or turn in Logo
requires the use of a formal symbolic code to convey some action (the Logo
language), computer feedback in the form of a graphical representation of that
action, and the possibility for the children to perform this action themselves by
identifying with the turtle (Papert, 1980). In this sense, Bruner's enactive,
iconic and symbolic levels of representation of an idea seem relevant to the
process of giving commands to the Logo turtle. In investigating children's
cognitive growth, Bruner distinguished three phases of such growth, each
corresponding to a mode of internal representation involving action, imagery
and language (Bruner, 1966). The phase of enactive representation involves
children's ability to respond to questions only in relation to previous practical
experience. The iconic phase involves responses which refer to mental
images of physical objects or to an inner sense of pattern or structure.
Symbolic representations of ideas involve the use of abstract symbols whose
meaning must be articulated or defined. Bruner states that "their appearance
in the life of a child is in that order, each depending on the previous one for its

development, yet all of them remaining more or less intact through life"
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(Bruner, 1964, p.2). Subsequent criticisms of Bruner's theory question the
usefulness of interpreting children's activities in the classroom as a direct
correspondence to the three phases of representations (Freudenthal, 1983),
and Bruner's treatment of images as relatively concrete and static without
making more than a passing reference to the possibility that they may evolve
into more abstract and dynamic forms, as argued by Presmeg (Presmeg,
1985).

However, the developmental aspect of Bruner's theory, does not relate directly
to the turtle geometric environments of the present study, especially with
respect to the age of the children; "Bruner's domain of application is the
psychology of the very young child, and in this period the phases can
meaningfully be filled out" (Freudenthal, 1983, p.135). However, giving
commands to the turtle seems to require an almost simultaneous
representation of the same idea in three different forms: acting out the idea by
playing turtle, using a symbolic code to type it in and receiving a graphical
feedback of the implied action. This facet of multiple representations of an idea
or action is very vivid in Logo since it applies for every typed - in command.
Mason found Bruner's theory useful in addressing the issue of different modes
of representing mathematics by emphasising the importance of using all three
representations, enactive, iconic and symbolic, in a given meaningful
mathematical situation (Mason, 1980). By adopting a principle which is not in
accordance with Bruner's theory, i.e. "that symbolic expression must ultimately
become enactive if the idea is to be built upon or become a component in a
more complex idea”, p.10), Mason stressed the importance of "moving along
the spiral in which enactive elements provide an iconic representation of some
pattern or relationship, to a symbolic articulation, to enactive elements and so
on", (Mason, 1980, p.10). A key aspect of this idea is that the "E-I-S spiral" is
"relevant to presenting mathematics at all levels". For instance, as mentioned
above, algebraic symbols often mean to pupils nothing more than a means to
exercise manipulative techniques, i.e. although they might manipulate the

symbols on the surface, they find it difficult to understand the meaning.
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In an attempt to capture this phenomenon, Skemp maintained that attention is
drawn to a syntactical surface structure of symbols, away from a semantic
deep structure (Skemp, 1982). In Mason's words, students "only experience
other people's algebra, without being encouraged to use algebra to express
their own generality, to manifest their own inner perceptions in written form...
there must be some access to symbolising so that if and when trouble
develops, students have recourse down the spiral to greater confidence and
meaning. The attraction of surface structure over deep structure is of course
important in the movement up the symbolising spiral, in which symbols
become concrete..." (Mason, 1987, p.76). It is the author's belief that the
importance of mathematical environments where "moving down" the E-I-S
spiral is always possible seems highly relevant to the turtle geometric
environment, when children who have come up with some difficulty can
always move down to enactive mode, by playing turtle. Accordingly, they can
equally move up the spiral to manipulate graphical and "Loge code" symbols,
(for instance debugging procedures in the Logo editor), without having to
constantly refer back to meaning. An issue which has seldom been
addressed, however, is the nature of the relationship between "playing turtle"

representations and their signifiers in the form of symbols or graphics.

Vergnaud discusses Bruner's enactive mode of representation in conjunction
with the situation the individual is acting upon (Vergnaud, 1987b). He
maintains that pupils develop their knowledge within a variety of situations by
initially acting upon them, often mastering local or "noncoherent" properties
and calls this process "theorems in action” (Vergnaud, 1982). For Vergnaud,
theorems in action are representational even though pupils may not be able to
put them into words or symbols. He proposes that the production of
representations in the pupil's mind involves three types of interactions
between three levels of representational entities, the referent, the signified anc

the signifier;

"1) The referent - signified interaction in which action, chunks and invariants of

different levels, inferences, rules and predictions play the main part;
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2) the signified - signifier interaction in which the natural language and other
symbolic systems provide aids for identifying invariants for reasoning, for

planning and controlling action;

3) the interaction between different symbolic systems" (Vergnaud, 1987b,
p.232).

Vergnaud argues that enactive representations imply interactions between the
referent and the signified, where representation is related to action. On the
other hand, the iconic and the symbolic levels involve signifiers. Although
Bruner perceives of the symbolic level as a higher level of representation than
the iconic, Vergnaud disagrees, giving the example that language (the best
example of a symbolic mode) develops before drawing and reading pictures
(the best example of the iconic mode).
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2 1 3 Children' learnin rocesses

in n L Vi

Over the last ten years there has been a substantial amount of research into
children's learning with the use of Logo. Since the present study brings into
focus both children's learning processes and the geometrical content of the
Logo situations in which they are involved (chapters 1 and 4), the author
found it useful to review research concerning the process by which children
learn in open - ended Logo environments, independently from geometrical
content - oriented studies, which are reviewed in section 2.2. The present
focus on process is not only due to the special links between learning
programming and learning mathematics (Noss, 1985), but also due to the
new insights into the way children learn, offered by new technological
methods for collecting detailed data and by the child - in - control "active"
nature of Logo environments. However, explicit focus on the process of
children's learning did not come about automatically in earlier research
studies (Feurzeig and Papert, 1969, Howe et al, 1980 and Howe at al, 1982).

21 Process vers

Feurzeig, Papert et al's pioneering 15 month research (1969) involved 12 7 to
9 year - old children of average mathematical ability. The study focused on
the children's difficulties in programming and on the role of programming in
helping to form an understanding of selected mathematical concepts. Despite
the optimistic and encouraging nature of the researchers' conclusions, it is
tempting to say that their concluding remarks implicitly acknowledge the need
to perceive and research the process of the learning of mathematics rather
than the learned content. The researchers accordingly saw the role of Logo
as a "conceptual framework" for teaching mathematics which could provide
the student "with an active operational universe for constructing and

controlling a mathematical process" (Feurzeig et al, 1971, part 4, p.3).
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A "premature” focus on content was the main strand of criticisms of the
Edinburgh project which extended over a period of six years in three two -
year phases (Howe, O'Shea and Plane, 1980, Howe, Ross et al, 1982). The
"formative phase" (1974 - 76) involved the teaching of Logo programming to
two bottom stream classes of 11 - 13 year olds for about one hour per week.
In the subsequent "summative phase" (1976 - 78) the developed materials
and strategies were used to teach specific parts of the mathematics
curriculum to a bottom stream, end of primary class. The results based on pre
and post tests of this group of children and a control group were inconclusive.
The study was criticised for its selection of students, choice of school and
choice of tests. A second investigation attempting to answer the criticisms by
a different choice of school - type, pupils and location of the study (it took
place within the school instead of in a laboratory), yielded overall significant
results at the 5% level in favour of the Logo group, mainly attributable to the
effects on girls (Howe, Ross et al, 1982). The researchers, however,
maintained their approach to programming a computer which was later
criticised by Noss; "Howe's emphasis on mathematical content, together with
a prescriptive pedagogical strategy, implies a relative de - emphasis on the
mathematical process involved in programming and concentrates on the
modelling of specific mathematical concepts” (Noss, 1985, p. 62). With the
benefit of hindsight, it could be argued that a lack of emphasis on process in
the work carried out both by Feurzeig and Papert and in Edinburgh implied a
lack of awareness of the process - content dialectic, rather than an explicit
research or pedagogical choice.

In reaction to this emphasis on content, three subsequent research projects
were carried out in the following decade, i.e. the Brookline Logo project
(Papert, Watt, di Sessa, Weir, 13979), the Chiltern Logo project (Noss 1985)
and the Logo Maths project (Hoyles and Sutherland, in press). A common
central aim in all three was to investigate and analyse the processes by which
children iearned to program in Logo, and specifically, their programming,

mathematical and conceptual characteristics. The present study has been
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influenced by these three research projects, due to the relevance of the
backgound information on such processes, the nature of the created
environments for the children and the methods of research and analysis. A
brief account of the three projects is given at this point, followed by a
synthesis of the findings concerning the process by which children learn to

program in Logo.

A comprehensive account of children's programming activities was given by
the Brookline project (Papert et al, 1979) which involved 16 sixth grade
children working with Logo during the academic year 1977 - 78. Both
"average" and "exceptional" achievement children were selected by means of
national achievement scores and their teachers' evaluations. The
researchers, proposing a one to one child - machine ratio as the norm for the
near future, split the children up into groups of four, each group working
accordingly with the four available computers, during 40 to 90 minute
sessions and with their teacher who had previously had a year - long training
in Logo by the researchers. The study's general "teaching objectives" were
for the children to:

1. learn to feel in control of the computer;

2. learn the elements of the Logo computer language;

3. learn the subject matter of Turtle Geometry;

4. understand the relation between force and motion (using a
"dynaturtle");

5. develop problem - solving skills.

The technology was also used in the collection of data which included dribble
files of the children's typing and hard copies of graphics and procedures
saved on disk. Systematic notes were kept by the teacher, while the
researchers conducted regular observations. Although all but two students
(both in the lowest quartile of school perfomance) learned to program

according to the researchers' criteria, they attributed more importance to a
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somewhat different claim that they made: "All students irrespective of
perfomance level were engaged by computer activities in the Logo
environment; all underwent significant observed learning and we made
significant progress towards developing a methodology of channelling this
learning toward a mastery of programming."” (Papert et al, 1979, p. 1.15).

ASIDE: The "dribble files" facility enables the saving of everything that the
children type on a disk file.

Noss (1985) set out to illuminate the mathematical nature of the activities that
children engage in while programming in Logo. The study involved 118
children in total, aged from 8 to 11. The children were distributed amongst five
classrooms in five schools, each class spanning the full within - school ability
range. The children worked with Logo in pairs or threes in the classroom as
part of their "routine" schedule, for approximately 75 minutes a week and for a
total period of around 18 months. The schools were chosen for their mixed -
ability teaching so that the classrooms participating in the study would have a
flexible internal organisation and an informal educational atmosphere. The
children's own classroom teachers, having had a short training in technical,
programming and related educational issues, were responsible for the Logo
work in their clasrooms.

The study's objective was to investigate the potential of programming with
Logo as a medium for creating a mathematical environment. The research
issue mostly relevant to the present study was the investigation of the nature
of the children's Logo programming and the mathematical ideas involved in
this process. The research consisted of the following three parts:

1. A preliminary phase, illuminating the children's emerging programming
strategies.

2. A programming phase, illuminating the children's mathematical activities
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via the "combination" of two frameworks; i) certain key programming ideas,
i.e. procedures, iteration, subprocedures, editing - debugging, inputs,

recursion and ii) a model of the children's "learning modes”, i.e.:

a) "making sense of" a new programming idea, i.e. trying it out, acquiring

some control over it,

b) "exploring" a new idea by forming links with their already existing ones
and,

c) solving problems, i.e. using a programming idea in a goal directed activity,
in order to produce a desired outcome.

The researcher analysed the children's mathematical activities with respect to

the three learning modes for each of the key programming ideas.

3. Finally, the researcher conducted a series of case - studies of four pairs of
10 - 11 year old children over a period of approximately six months, in order
to further investigate two issues arising from the programming phase:

a) the ways in which children acquired new programming ideas and used
them in an exploratory or problem solving manner and,

b) ways of intervening which would be effective for the children's learning.

Among the researcher's conclusions is that the children's learning, alternated
between the three learning modes described, rather than being of a
"developmental stages” nature. Moreover, it was suggested that ample time
for exploratory learning may play a crucial role in children's understanding of
key programming ideas. The children's work was characterised by a lack of
planning throughout the research period, and by initially mainly goal -
directed activites gradually giving ground to exploratory activities, which the
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researcher suggests may have been a consequence of a feeling ot control

over the computer.

The most comprehensive case - study research on the potential of Logo as an
aid to pupil's learning and thinking in mathematics (Hoyles and Sutherland,
in press), involved eight 11 - 14 year - old children starting from their first year
of secondary education and extended over a three - year period. The children
worked in pairs on the computer during their normal mathematics lessons
and the researchers adopted a dual role of observers and teachers, at least
one researcher participating in the research at all times. An explicit analysis
of their teaching interventions yielded three such types, i.e. those which left
the control of the interaction to the pupil, teacher directed tasks in order to
achieve specific learning outcomes and "teaching episodes" to introduce new
programming or mathematical ideas. The detail in the data collection was
substantially increased in comparison to the Brookline and Chiltern projects,

involving:

- video recording of all the Logo work;

- audio recording of all the language interactions;
- hard copy of written procedures;

- occasional graphics dumps;

- pupils' written records and plans;

- participant observers' notes.

The nature of the collected data enabled the researchers, not only to throw
more light on the children's understahding and use of mathematical ideas
and into their problem - solving strategies, but also to investigate other issues
emerging from such an educational environment such as the children's

collaborative Logo work and the role of the teacher interventions.

As will be shown below, the Brookline, Chiltern and Logo Maths projects

provided substantial insight into the way children learn, when programming in
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Logo. They showed us that when given the opportunity, the children engage
in doing their own mathematics, which are often different than the
mathematics an educator might prescribe, and not infrequently, wrong. They
argue for the value of such activities, however, since exploration with
mathematical ideas provides the opportunity for children to become
mathematicians (Papert, 1972), i.e. engage in the process of doing
mathematics in meaningful contexts. It is also quite rightly argued that
programming is essentially a mathematical activity and at the time when the
studies took place (especially the Chiltern project) there was a need to
establish this link. In recent studies, however, it could be argued that attempts
to investigate children’s learning of a specific content domain within a Logo
environment would have benefitted from a more thourough separate analysis
of the programming and the mathematics children engage in (e.g. Kieren,
1987).

Three "facets" regarding the strategies children seem to build when
programming in Logo seem to have emerged from the research projects
mentioned above, seen through each project's individual perspective, and
refined as one project benefited from the results of the previous. The facets
involve the children's adoption of different cognitive styles of programming,
their developing problem - solving strategies and the development of their
understanding of key programming ideas such as modularity, procedures and
subprocedures. The findings are presented in some detail, since they were
particularly informative for the present study, both in setting up a Logc
environment for the year - long experience of the participating children prior
to the main research (chapters 4 and 5) and in providing the author with
insights into the interpretation of children's activities during the main study
(chapters 6, 7 and 8).
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2.1.3b Pro rammin st les

The Brookline researchers identified a "top - down" / "bottom - up" dimension
in the children's programming styles. They used specific examples of
individual children (the Brookline project had a 1 - 1 child - machine ratio) to
describe these styles. For instance, Kathy developed a strategy of writing
small, simple subprocedures and building them up to complex designs, while
Donald would plan a superprocedure first, and then move down to define the
embedded subprocedures (Papert et al., 1979). These two examples are of
course at the two ends of the "continuum" and the researchers include
examples of children's work which incorporated both styles, starting for
instance with a vague overall plan, defining subprocedures and accordingly
refining the plan in the process.

The sexes of the children at the two ends of the continuum in the Brookline
research may not have been a mere coincidence. The deeper investigation
carried out by the Logo Maths researchers, revealed indications of a
preference of a-bottom - up approach to programming by the girls and of a top
- down approach by the boys, although the pioneering character of such
research does not allow any strong assertions. Accordingly, the researchers
maintain that gender seems to be related to other dimensions of

programming style revealed by the detail of their research, i.e.

- Working towards well defined goals... working towards loosely
defined goals;

- "Hard" planning... "soft" negotiation;

- Attention to global characteristics.... attention to local
characteristics;

- Defining a procedure immediately in the editor... trying out a
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procedure in direct drive before defining in editor;

- Systematic... not systematic.

2.1.3c Problem - solvin strate ies

In all three projects, the researchers were keen to identify the strategies which
the children adopted in their programming. In the Brookline research, the
identified strategies were rather closely tied to programming ideas and
covered a span of such ideas which seemed somewhat large, in comparison
to the more explicitly child - centred learning achievements described later by
the lengthier English studies. For instance, such strategies in the Brookline
report were:

—

. Acquiring the sense of command;
. Developing the notion of a procedure as an entity;
. Separating the process from the product of a procedure;

HOW N

. Acquiring flexibility in establishing procedure hierarchies (i.e.
procedures and subprocedures);
5. Fitting a procedure into a hierarchy (i.e. top - down versus
bottom - up);
6. Developing patterned procedures using REPEAT, recursion
and iteration;

7. Using variables in Logo procedures.

In the Chiltern project, however, Noss attempted to include a more general
dimension to children's strategies "detaching" them from programming ideas
by employing his framework of "early strategies" for the children's initial
experiences and "learning modes" for their more advanced programming
(described earlier). In what seems a further attempt to perceive aspects of the
children's activities as de - contextualised from the Logo language, i.e.

essentially as activities of thinking and learning in general, Hoyles and

29



Sutherland (in press) identified the following three categories of programming

activities and used them as a framework for their analysis:

1. Working at syntactical level, where children would type in commands
focusing on the output without reflecting on how and why the output was
achieved,

2. "Making sense of" where children would explore an idea by trying it out and
reflecting on what is happening. Not giving the phrase quite the same
meaning as Noss (Noss, 1987), the researchers saw this activity as goal -
directed or not goal - directed and suggested that pupils should be

encouraged to take time to explore new ideas;

3. Goal directed activities, aiming at an outcome. These were described by

two dimensions:

a) loosely defined... well defined, refering to the global structure and the
outcome of pupils' goals;

b) real world... abstract, refering to the pupils perception of the "realness" of
their goal.

They also examined pupils activities from a different perspective, i.e. that of
planning, implementing and debugging, all of which can have either a global
focus referring to a mental plan, or a local focus referring to graphics or text
output. They argued that the sequence of activities depends on individual
programming styles and represented those processes in relation to their
interaction with the negotiation of a goal.
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2.1.3c nderstandin of rocedure sub rocedur and modularit

The descriptive characteristic of the Brookline research and the focus of the
researchers on the programming that the children actually learned, resulted
in a rather optimistic picture (with the benefit of hindsight) regarding their use
of procedures and subprocedures in a structured manner. Subsequent
studies, however, revealed difficulties not only in children's understandings of
structured programming, but also in their adopting a personalised meaningful
use for it. In one of the first reactions to previous findings, Leron pointed out
that from his experience with 12 year - olds' programming, most children
seemed to write linear unstructured lengthy procedures. Moreover, even
when encouraged to structure their programs, they would "fall back" to linear
programming when left alone (Leron 1983). He related the children's
difficulties to their "lack of a clear concept of the interface between
subprocedures” and the importance of the turtle state before and after the
execution of a subprocedure. In describing the children's mathematical
activities while "making sense of", "exploring" and "problem - solving with"
procedures and subprocedures, Noss also depicted and described difficulties
such as: reluctance to use procedures involving the turtle going over a line

more than once, and perceiving the interface between two subprocedures as
an entity (Noss 1985).

Shortly after a ten week case - study involving two pairs of 9 - 10 year olds’
learning of procedure and variable (Hillel and Samurcay, 1985a), Hillel
reported that even children who have had ample experience with procedures
and have been involved in discussions of the merits of using them,
surprisingly opted for simple direct - drive programming. Offering as a
plausible explanation, the children's perception of programming as "drawing
with the turtle" (Hillel and Samurcay, 1985b), he later investigated this issue
more deeply, giving evidence of "a strong drawing schema underlying the
children's choices of goals, productions and planning strategies, as well as,

their criterion for success" (Hillel, 1986, p.435). Mendelsohn has also given
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similar evidence in a study of children's programming from a psychological
perspective (Mendelsohn, 1985).

Although the researchers of the Logo Maths project agreed with the
explanations offered above, they proposed other factors which seemed to
influence the programming manner of the children in their research, related to
the children's perception of their goals and on the nature of the goals
themselves. For the former, they contended that when the children perceive of
a goal as a "real world" one, they are more likely to perceive programming as
drawing with the turtle. Accordingly, they are more likely to see the need for
structure when their goals are well defined abstract ones. For the latter, the
researchers report indications that when children have a high degree of field
independence they are more likely to use a structured design when
programming in Logo.

in addition to drawing results from their longitudinal transcript data of their
study's four pupil pairs, Hoyles and Sutherland also gave the pupils an
individual structured task (the four squares task consisiting of a row of four
equal sized squares horizontally placed at equal distances between them) at
the end of each of the three years of the study in order to investigate the
children's perception and use of the modular properties of the task and the
development of these aspects over the three year period (Hoyles and
Sutherland, in press). After analysing the data from these tasks and further
ones administered at the end of the third year, the researchers concluded
that:

1. Pupils are more likely to use a modular programming style in tasks where
the modules are "disconnected" (e.g. the four squares task) than when the

modules are interconnected (e.g. the net of a cube);

2. Pupils are more likely to choose modules which when put together will not

involve drawing the same line more than once. For example they tended to
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choose a rectangle rather than a square in the window and net of cube task.
This second conclusion is in accordance with Noss' findings mentioned
above and the Canadian researchers' work on 11 - 12 year olds' perceptual
and analytical schemas in solving structured tasks (Kieran, Hillel and

Erlwanger, 1986). This research will be analysed below.

3. Pupils are more likely to remove the interfacing commands as separate
subprocedures when a task involves modules of varying size but invariant

interfaces (as in a row of decreasing equidistant squares).

These conclusions could suggest pedagogical techniques for providing
environments where key issues of structured programming are meaningful to
children. Moreover, the diversity of the tasks throws further light on the
relationship between the content nature of a goal or a task and the children's
perception of this nature. The problem, however, of whether children who
"personalise" aspects of structured programming in this way preserve the
same programming manner in other contexts seems to relate to the
fragmented, "domain specific" nature of knowledge (diSessa, 1982, Lawler,

1985) rather than to the specific nature of structured programming.

In an effort to describe the pupils' developing use of structure in their
programming, Hoyles and Sutherland identified three hierarchical phases of
such development, stating that a pupil will not necessarily perform at his/her
highest potential phase since the context and nature of a pupil project
determines the performance at any particular time. These phases are:
Procedure as ro uc

1. Writing an error free procedure by direct driving and recording commands...

1a. no evidence of structure within the commands;

1b. structure emerging within the commands;
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1c. clear evidence of structure within the commands, i.e.
using modular ideas but not translating these into a
program structure.

Transitional sta e

2. Dividing the written record of a set of commands into sequential parts (non

modular) and defining these as subprocedures.

3. Using the written record of direct drive work to perceive modularity in the
design and defining these modules as subprocedures.

Pr cedures as roc sses

4. Perceiving modularity from the outset and using subprocedures to define
the modules.

The above findings (from the Brookline, Chiltern and Logo Maths projects)
concerning children's processes of learning to program in Logo, provided
insights into three important aspects of these processes; the differences
between children in cognitive styles of programming, and the variability of
their developments of problem - solving strategies and of their understanding
of key programming ideas. However, there are more problems to be solved,
indications of which have been identified in the above projects and in
particular, in the Logo Maths project. Firstly, the influence of interaction
between small groups of children on the learning of each child individually.
Secondly, on the role of teacher interventions both in classroom situations
with children's everyday teachers and in situations of researcher
interventions during participant observation. A preliminary analysis of these
issues in the Logo Maths project indicates the need for a lot more work to be
done in the area.
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[t seems reasonable to suggest, however, that the illuminative gains from this
process - oriented research, have influenced subsequent smaller - scale
research developments, now allowing an increasing degree of focus on the
mathematical or the programming content of children's learning, whilst taking
the children's thinking processes explicitly into account. A detailed review of
such research carried out in Canada and England will now follow, due to the
relevance of its research principles to the present study, which required a
high level of awareness at both the process and the content level (for a
discussion of this issue, see chapters 1 and 4). In the following section,
however, the review will concentrate on studies focusing on the content of
children's learning in a general sense, allowing for a more detailed view of
studies specifically dealing with geometry within Logo programming in a later
section which will consequently include geometry - specific analyses of
studies covering a wider span of issues (e.g. a study on children's
understanding of angle in the Logo Maths project).

2.1.4Th of L hil ren' Learnin

A research pioneering a more explicit balance between focusing on the
process of children's learning and focusing on the content learned (compared
to the process - oriented studies reviewed above), was carried out in Canada
in 1984 (Hillel and Samurcay, 1985a, b). The researchers focused on a
specific programming content, i.e. procedure with variable. The study
involved the observation of two pairs of 9 - 10 year old children working with
the computer for one hour a week, for a total of ten weeks, the collected data
being of the same detail as in the Logo Maths project. The children had had
an initial 12 hour experience prior to the study in a slightly restricted Logo
environment (e.g. the turtle was slowed down), the researchers emphasising
the use of paper and pencil planning, the using of simple procedures as
building blocks and drawing attention to the idea of "turtle state" (Hillel,

1985a). The researchers carried out the study in the light of an analysis of the
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"conceptual field" of the content which "attempted to establish relationships”

among:

- the class of activities of problems;
- the concepts and techniques associated with such activities;

- the cognitive demands of each activity;

Their consequent analysis of the research data was carried out in terms of the
mathematical and programming conceptual difficulties encountered by the
children and - due to a rather specific task and intervention strategy - on the
researchers' "teaching" interventions. Seen through the light of a further 12 -
hour observation of the same children in an "extension" of the study (Hillel,
1985b), the researchers report on two sets of conceptual difficulties; the first
set involved those in which the children later showed a "greater fluency": the
definition and use of general procedures including parametrizing other than
length, thinking about variables and spontaneous definition of general
procedures. The second set of conceptual difficulties involved those
persisting after the children's extended experience, i.e. operating on
procedures, resolving inter - procedural relations and coming to terms with
the intrinsic nature of the geometry. In his concluding remarks on this "trilogy"
of studies, Hillel contended that turtle - geometric activities involve difficult
and subtle notions related to both cognitive aspects (e.g. shifting from a
"drawing schema" to a "procedural analysis" of figures) and the geometrical
and programming content. He concluded with a statement stressing the
importance of the children's cognitive processes, which was meant to
challenge criticisms on the limitations of content in Logo and seems in
accordance with a considerable volume of more recent research - for
instance on older and Logo - experienced children (Hoyles and Noss, 1986,
1987a and 1987c); "I argue that, with a little bit of thought and effort, there is
enough content in turtle geometry to keep children busy throughout their
elementary schooling.” (Hillel, 1985b, p.45).
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In support of this argument, other researchers in Canada have subsequently
carried out a multitude of studies, extending overall from 1985 to the present
(individually or in cooperation), slightly shifting their analysing focus from the
process / programming content dimension to that of process / geometrical
content. Although these latter studies are reviewed analytically in a later
section, two points seem to be of interest here, i.e. the use of "special" Logo
primitives and the further light thrown on children's strategies from a cognitive
perspective.

A further restriction of the openness of the Logo environment, from the
administering of structured tasks, was the use of special primitives which
either slowed down the turning of the turtle or constructed simple, specially
designed, geometrical figures. For instance, in research carried out by Hillel,
Erlwanger and Kieran (1986), the following "primitives" were given to 11 - 12

year old children, as an introduction to Logo:

TRT, TLT (input), a slowed down version of RT and LT;

MOVE (input), a slowed down PU FD (input) PD;

TEE (input), a state - transparent procedure for the figure T,

VEE (input), a state - transparent V with a fixed interior angle of 60.

The children's activities alternated between own projects and set tasks
involving complex combinations of Tee's and Vee's, and the researchers
started with content - oriented objectives, i.e. to emphasise and foster notions
of angle, translation and rotation of figures and decomposition of complex
figures in terms of simpler ones other than line segments (fig. 2.1). Their
analysis, however, also revealed process - oriented findings of a rather subtle
nature, such as the children's tendency to employ a "perceptual” rather than
an "analytical" cognitive schema to solve geometrical tasks. The encouraging
outcomes of this research (Kieran, Hillel and Erlwanger, 1986) resulted in
further such experimentations with special Logo primitives, either keeping the

objective to analyse children's cognitive strategies in a decontextualised way

37



as a "hidden agenda" (Kieran, Hillel, Gurtner, 1987), or reversing the focus of
analysis on psychological aspects of children's understandings (Gurtner,
1987).

Fi ure 2.1 Exam les of the "Tees and Ve " tasks.

In the former research, highly structured tasks were administered to 12 year
old children, composed of explicitly stated inter - relations of simple figures
(procedures of which were given as primitives) shown to the children on
paper (fig. 2.2). The procedures / building blocks, in this case, were MOVE,
TRT, TLR as before, and a state - transparent rectangle procedure with two
linear inputs (RECT :A :B). At the beginning of the study, the children's
attention would tend to focus on dimensions which appeared directly as
inputs to the Logo commands, rather than coordinating other dimensions of
the relative placements of the figures. Moreover, their criterion for acccepting
a production as a solution was based on visual verification of the output,
rather than the structure of a program. However, the researchers report on a
development by the end of the year - long study, in all but one of the children,
in their awareness that the exactness of the solution lies in the program rather
than in the screen output.

Fi ure 2.2 Exam les from the "C nt rin ks
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In a parallel year - long case study, Gurtner's investigation concentrated on
children's awarenesses of the reasons or the processes involved in their
successful solving of tasks. Gurtner was interested in investigating the gap
between success and children's depth in understanding the problem,
rightfully arguing that a child might be successful in producing an outcome
"without knowing why, sometimes without noticing it" (Gurtner, 1987, p.229).
He used the primitives of the previous study, plus the procedure BASELINE
(input) which produced a horizontal line segment with the input as its fength.
He gave the children complex figures with a high degree of precise
interdependence between their component parts (fig. 2.3), and several off -
computer tasks at later dates during the year, referring to the children’'s
awareness of the tasks' solutions. The analysis revealed that the children
have their own spontaneous beliefs about where their programs are faulty,
and their own criteria for success, such as a sequential (rather than parallel)
dealing of mismatches between a child production and the target figure, and
a locality input - specific criterion (a finding similar to the previous study).
Gurtner concludes that correct - looking productions do not necessarily mean
that a student has solved the expected problem, i.e. that the many ways which

lead to a particular target may allow the circumvention of such problems.

F' re2. The"4-T "fi

The English experience with longitudinal studies of the children's learning
processes in Logo programming, led to the developing of further research
with a more explicit simultaneous focus on process and content. On the
process level, a decontextualised model (UDGS) for learning mathematics

was devised from the observations of children's activities with Logo (Hoyles,
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1986), and refined in subsequent recent research (Hoyles and Noss, 19873,
b, and 1987c), while used as a framework for designing structured tasks and
analysing the children's activities (details of the model are given below). On
the content level, on the other hand, the researchers extended the notion of a
"microworld" put forward earlier (Papert 1980, Lawler, 1982, Weir, 1987), to
incorporate a broader perspective of the learning environment (Hoyles and
Noss, 1987b). The two notions of the UDGS model for learning mathematics
and a "microworld" are presented through this recent research, since both

notions are used in the design and analysis of the present study.

As a pre - amble to an explicit use of the two frameworks, Hoyles and Noss
carried out an investigation of the relations between Logo experienced
children's conception of proportion within a Logo environment and their
conception of the same notion from school mathematics (Hoyles and Noss,
1986). They devised a set of highly structured tasks on and off the computer,
involving the construction of "N" and "Z" shapes, the notion of proportion
embedded in the length relationships among the three line segments of the
figures. The tasks were given to seven 13 year old children during a day visit
to a computer iab in the University. The researchers were familiar with the
children's programming background (over 80 hours of Logo programming)
since they had started off as participants in the Chiltern project and had been
followed up by the researchers during their secondary schooling. The results,
yielding a discrepancy between the children's performances in "computer
mode" and "pencil and paper mode" (the CSMS ratio test was used, Har,
1980), led the researchers to re - acknowledge the contrast between a
dynamic, investigative response activated by the computer and the limitaton
of "paper and pencil mode" to a response in the form of a "fixed answer to a
fixed question”. Not having knowledge of trigonometry, the children used the
computer to try out different lengths and devise their own "theories",
discovering for themselves the inadequacies of an additive strategy (Har,
1980) and exploring a range of multiplicative strategies, given - via the

computer - the opportunity to think about the general within the specific. An
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important tool for the children was the construction of a procedure with inputs
for the lengths, and the attempt to find "general" relationships between the
inputs.

In subsequent research, however, instead of the children attempting to
"invent" a personal theory when knowledge about the phenomenon was
inaccessible to them, they were given a complex tool - in the form of a
procedure with inputs - encapsulating specific properties of a geometrical
figure (a parallelogram) and encouraged, through structured tasks on and off
the computer, to investigate notions embedded within the procedure and
notions involved in using the procedure as a whole (Hoyles and Noss,
1987a). For example, a procedure initiating the children's investigational
activities was the following:

TO SHAPE :SIDE1 :SIDE2
FD :SIDE1 RT 40

FD :SIDE2 RT 140

FD :SIDE1 RT 40

FD :SIDE2 RT 140

END

The crucial factor enabling such investigational activity was the ability to
change the size of component parts of the figure and therefore explore the
essential properties for its construction. Such changes involved the
manipulation of either variable or fixed inputs and the consideration of the
"effects” of changing one input on the other inputs of the procedure. The
analysis of the data was carried out within the explicit process and content
frameworks of the UDGS model for learning mathematics (Hoyles, 1986) and
the notion of a "microworld" (Hoyles and Noss, 1987b) respectively, the
presentation of which seems useful at this point.

According to Hoyles, the UDGS model for learning mathematics reflects a

constructivist thesis for mathematics education, attempting to incorporate and

foster learning through personally meaningful activity, but also to bring the
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mathematics embedded in an activity to "a plane of conscious awareness”
(Thom, 1973, Hoyles, 1986), since the children may not be aware of the
mathematics they are using, or "may fail to discriminate contextual from
mathematical properties" (Hoyles, 1986, p.112). The model involves four

dynamically related components, which are:

usin - where a concept is used as a tool for functional purposes to achieve

particular goals;

rimin ~ where the different parts of the structure of a concept used as

a tool are progressively made explicit;

eneralisin : where the range of application of a concept used as a tool is

consciously extended from a particular to a more general case;

h n - where the range of application of the concept used as a tool is
consciously integrated with other contexts of application - that is, where
multiple representations of the same knowiedge in different symbolic forms

derived from different domains, are reformulated into an intergral whole.

The crucial characteristic of the model, by means of which it embodies a
constructivist approach to learning mathematics, is the specific role of the
activity of using a concept, i.e. that children use a concept first, and then
develop understandings of it. It is the relationships between these
components, i.e. how transition from one component to the other comes
about, and the clarifying of the components themselves, which has been the
process - oriented objective of the described research (Hoyles and Noss,
1987a, b and 1987c¢).

At the content level, the framework of a "microworld" is used, i.e. "Logo -

based situations constructed so that the pupil will come up against embedded

mathematical ideas in the context of meaningful activity" (Hoyles and Noss,
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1987¢, p.131). The researchers do not perceive of a "microworld" as only
consisting of the technical component, but rather give the term a meaning of
the educational situation which can be fostered by the technical component,

i.e. by the incorporation of:

a) the pedagogical aspect, playing an important role in provoking "prediction,

reflection and evaluation”,

b) the pupil component, by taking into account the pupil's perceptions of
problems or tasks, built on their previous experiences (Erlwanger, 1973, Har,
1984, Booth, 1984a), their different working styles, and affective issues, e.g.

overcoming the fear of failure (Hoyles and Noss, 1987Db), and;

c) the contextual component, i.e. the social setting within which the

programming activity takes place.

Hoyles and Noss take the opportunity to state their research intentions of
including an explicit focus on mathematical content while maintaining the
importance of process, both in curriculum design and in research: "We
propose that the next step in research and curriculum development should be
to integrate Logo into the curricutum through the construction of mathematical
microworlds as set out above. While exploring within Logo microworlds, our
hope is that pupils will use mathematical concepts as tools whose functions
can be investigated within meaningful projects." (Hoyles and Noss, 1987b,
p.591)

It is with this framework in mind that the structured tasks of the above research
were perceived by Hoyles and Noss as a component of a parallelogram
microworld. A major component of the findings of the two phases of this
research (a follow - up study was carried out, taking explicit account of the
children's initial and final conceptions, but lacking the backup of longitudinal

data), was the developing illumination of how the UDGS model works "in
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action", i.e. the understanding of the processes by which the pupils make their
way around the model while working in a Logo environment and
consequently the role of the environment itself. For instance, the researchers
maintain that this role is related to the pupil's ability, through interaction in a

Logo microworld, to:

a) synthesise the symbolic desrciptions in terms of programs (or fragments of

programs) with the geometric image on paper or on the screen, and;

b) to use the computer as scaffolding for the construction of generalisations
(Hoyles and Noss, 1987c).

Moreover, they discuss the role of discrimination within the model,
"discrimination involves a synthesis between the geometric and symbolic
representations of some part of the concept facilitated by the Logo
environment, while generalisation is aided by the scaffolding role of the
computer" (Hoyles and Noss, 1987c¢,p.133). However, aithough the
"synthesising" across contexts activity is considered an integral part of the
model, yielding the researchers' contention that it is an important par of
learning mathematics, their research does not seem to provide evidence that
the designed environments encouraged such activities.

Research into the mathematical learning processes of children engaged in
Logo programming has provided substantial evidence that Logo can provide
a means to generate rich mathematical environments for children to act upon
in a personally meaningful way. The specific aspects of these processes in
the context of Logo which have been observed and analysed, i.e. their
varying programming styles, their problem solving strategies and their
understandings of key programming ideas have also provided insights into

children’s learning in general. However, other aspects related to this process
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could be subject to further illumination, such as peer interaction in small -
group learning, the role of teacher interventions and ways of bringing about
change in classrooms so as to inject a more child - centred atmosphere.
Recent contentions concerning the factors involved in children's learning,
imply a growing appreciation of the role of the context - specific and
fragmented nature of knowledge, in contrast to Piaget's holistic view of
qualitative levels of thought. The findings from the process - oriented studies
of children learning with Logo corroborate this view of the nature of
knowledge. Furthermore, recent emphases on the role of symbolising one's
own reality in the learning of mathematics highlight the educational value of
mathematical situations where children can alternate between enactive,
iconic and symbolic representations of ideas. The author suggests that Logo
can be such an environment through Turtle geometry, where children can act
- out turtle movements, and discuss graphical representations of their

symbolising efforts.

However, attempts to study what children learn in Logo environments have
been mainly restricted to specific contents, either from the domain of
programming, or from that of mathematics. A more systematic analysis of
content combined with the design of microworlds, or conceptual fields within
Logo (chapter 1), could provide the basis for research into children's learning

of specific mathematical ideas.

45



2.2 GE METRY AS A CONTEXT WITHIN WHICH
H D ND MT E ATl

Before considering children's learning of geometry in a Logo environment, it
is useful to take into account other research into the structure of geometrical
thinking in relation to developments in the field of geometry as a discipline for
education, providing thus a background for interpreting and understanding
children's geometrical conceptions during Logo activities. Although there has
been some research into children's understanding of geometrical topics,
usually carried out from a "psychometric" perspective (Herskowitz and Vinner,
1983, Kramer et al, 1986, Eylon and Razel, 1986, Heink, 1982, Friedlander et
al, 1986, Fisher, 1983, Noelting, 1979), it does not seem relevant to the
present study, the aim of which is not to suggest that Logo activities will
improve performance in traditional geometrical tasks, but rather to investigate
the geometry that children do when engaged in open - ended geometrical
environments. However, the study is informed by the wide tendency during
the second half of this century - at least in the U.K. - to change the role of
geometry in education and by the research carried out to establish the nature
of geometrical thinking. A review of research into children's geometrical
understandings in the context of Logo environments providing children with at

least some control of their own learning, is also relevant to the study.

221 eometr a ci line for teachin deduction

The first lesson in geometry on record reflects the Socratic method of
instruction of a well prepared teacher posing questions to the pupil designed
to lead him to understand the discipline (Socrates to Meno, Freudenthal,
1973). For two millenia, Euclidean Geometry dominated all teaching of
geometry, the aim of which was the teaching of deduction (Eves, 1976, Boyer,
1968). From the 17th century, however, other geometrical systems were
invented (e.g. Descartes, Riemann, Cauchy, Hilbert) characterised by a
"coordinisation" and an "algebrization" of geometry (Freudenthal, 1973).

Moreover, after thorough study, logical shortcomings were found in Euclid's
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Elements and new axiomatic systems were proposed by Hilbert and Pasch in

the early 20th century.

Although the questioning of geometry as a perfect conceptual system seems
to have initially been a catalyst for its diminishing role in educational
curricula, research into children's understandings - starting from Piaget in the
middle of the century - has been the major factor which "pushed" geometry

into the margin of mathematics.

Piaget's research consists of a rather strict application of his theory of stages
of cognitive development in conjunction with basic geometrical concepts such
as; Conservation and Measurement of Length, Rectangular Co - ordinates,
Angles and Curves, Areas and Solids (Piaget et al, 1960). Although Piaget's
stage theory has been subject to considerable criticism (section 2.1.1), the
main reason for the later tendency of "new mathematics" in the sixties to
abandon the teaching of Euclidean geometry was evident in his research;
deductive thinking, for Piaget, requires formal thinking which, according to
Collis, is aquired as late as the age of 16 and not by all people (Collis, 1974).
Euclidean geometry was considered as "inappropriate” for the majority of
school children because "it was being taught as a tight deductive system
which most children could master only by rote learning" (Kuchemann in Hart,
1981). The teaching of geometry involved the imposing of deductivity on the
pupil and thus offering the subject matter as a preorganised structure, rather
than allowing the child to experience such organisation. Freudenthal stated
that "The deductive structure of traditional geometry has not just been a
didactical success. People today believe geometry failed because it was not
deductive enough. In my opinion, the reason was rather that this deductivity
was not taught as reinvention, as Socrates did, but that it was imposed on the
learner... If geometry as a logical system is to be imposed upon the student it
would better be abolished." (Freudenthal, 1973, p.402 and 406).
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2.2.2 Geometr as a field for mathematizin realit

Far from advocating the "abolition" of geometry, however, Freudenthal made
an extensive case for its use in education, but in a different role than that of
the imposition of ready - made deductivity; "Geometry can only be meaningful
if it exploits the relation of geometry to the experienced space. If the educator
shirks this duty, he throws away an irretrievable chance. Geometry is one of

the best opportunities that exists to learn how to mathematize reaiity." (p.407)

It is the author's opinion that Freudenthal's perspective of the potential role of
geometry in education is, at root, a consliuctivist position. Initial concrete
experiences for the child, using visual, kinetic and kinesthetic cues to
experiment and discover properties of geometrical shapes lead to meaningful
organising of these properties, an activity which lies at the root of deductive
thinking. In this way, the child experiences, for instance, that "defining is more
than describing, that it is a means of the deductive organisation of the
properties of an object” (Freudenthal, 1973, p.417). Research into children's
understandings of geometrical concepts has shown their difficulties in
defining or identifying geometrical figures by organising or even using their
properties (Pyshkalo 1968, Burger, 1982, APU, 1982, Hart, 1981). For
example, the APU findings reveal that 85% of 11 year old children could
identify a regular hexagon without obvious distractors present. The
percentages however fell dramatically when pentagons were present and / or
the hexagon was irregular, ranging from 25% to 43% according to the task
(APU, 1982). The author interprets this finding as revealing of the children’s
defining of the hexagon as "what looks like a hexagon", rather than using the
property that it has six vertices, i.e. the children used visual cues rather than
adopting an analytical approach. Although the traditional geometrician's view
would have been in this case, to teach the definition to the children, the view
of geometry proposed by Freudenthal would encourage more experiences of
manipulating polygons until they start using the property of the number of
vertices for themselves. Then they would be ready, he claims, to understand
the definition.
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2.2 The srucure of eometrical thinkin

In support of Freudenthal's case for the role of geometry in education, Pierre
van Hiele and Dina van Hiele - Geldof completed in 1957 a two - fold
research on the structure of geometrical thinking which later influenced both
a substantial amount of related research and the structure of curricula
internationally. Influenced by Piaget and by their personal experience of high
- school geometry teaching, the predominant problem they set out to address
was the "futility” of teaching students at a higher level of thought than that
which they could attain. A partial outcome of their research was a sequence
of levels of geometrical thinking into which people may be classified. In
Freudenthal's words about the Van Hieles' research: "As long as the child is
not able to reflect on its own activity, the higher level remains inaccessible.
The higher level of operation can then, of course, be taught as algorithm
though with little lasting consequence.” (Freudenthal, 1973, p.130)

P. van Hiele thus formulated a system of thought levels in geometry and D.
van Hiele - Geldof concentrated on teaching experiments to raise students'
thought levels. Although much attention has been given to the levels of
thinking, this is only one of three components of the van Hiele model, the
other two being the notion of insight and the phases of learning. Insight is
defined by the ability to perfom in a possibly unfamiliar situation, by a
competent performance of the acts required by the situation and by the
application of an intentional (deliberate and conscious) method to resolve it
(van Hiele, 1973 in Hoffer, 1983). The phases of learning proposed by the
van Hieles encapsulate a didactical prescription for raising the students'
level. Hoffer compares the phases to Polya's principle of consecutive phases
(Polya, 1965) and to the learning cycle of Dienes (1963), stating that a
common element is the continuity of the generation, refining and extension of
ideas by the student (Hoffer, 1983).

The thought levels have mainly been described as they apply to geometry
(Hoffer, 1983, Fuys et al, 1985, Usiskin, 1982, Wirszup, 1976). However,
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there have also been attempts to generalise their application to structure
courses in other disciplines such as chemistry and economics in the
Netherlands. Hoffer proposed a topic - free description of the levels (Hoffer,
1983), which is considered by the author as worthwhile to present in parallel
with a geometry - specific description, since it provides an insight into the
nature of the levels which are "characterised as differences in objects of
thought" (van Hiele, 1959, in Fuys et al, 1985).

level 0, geometry: recognition of shapes by their global appearance;
level 0, topic - free: objects are the base elements of the study;

level 1, geometry: analysis of properties of figures, but no
explicit interrelation of figures or properties;
level 1, topic - free: objects are properties that analyse the base elements;

level 2, geometry: interrelation of figures and properties but no
organised sequences of statements to justify observations;
level 2, topic - free: objects are statements that relate the properties;

level 3, geometry: deductive reasoning in an axiomatic system;
level 3, topic - free: objects are partial orderings (sequences) of the
statements;

level 4, geometry: rigorous study of axiomatic systems;
level 4, topic - free: objects are properties that analyse the partial orderings.

The Soviets used the van Hiele model to analyse their geometry teaching
materials for children aged 7 to 15 in 1960, and have carried out research, a
major finding of which is that children up to the age of twelve mostly tend to
perceive figures as "wholes", and only 10 - 15 % reach level 1, which is
needed as a basis for further study of geometry (Pyshkalo, 1968). Extensive
research has been carried out more recently in the United States, with similar
results with respect to the identification of high school students' thought levels
(Chicago project, Usiskin, 1982). Having been introduced to the mode! by
Wirzup in 1974 (Wirzup, 1976) and Freudenthal (1973), educators in the
States carried out research in another two aspects of the model, i.e.
longitudinal case studies of children (Oregon project, Burger, 1982) to
describe their reasoning processes in geometry in terms of the model, and

the development of instructional modules to study the effects of such
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instruction (Brooklyn project, Fuys te al, 1985).

An attempt to synthesise the findings from the research carried out in the
Soviet Union and in the States, which are informative for the present study,
reveals the following:

a) when the van Hiele model was used to assess the teaching of geometry in
the States, it revealed that children had very little or no experience with
geometry at levels 0 and 1 at the elementary period (most geometry textbook
material at primary education corresponded to van Hiele level 0) and were
subsequently introduced to deductive geometry (levels 2 and 3) in high -
school, when their actual background was at level 0 (Geddes, 1982 in Paalz
Scally, 1986);

b) results from several studies (Pyshkalo, 1968, Burger 1982, Fyys et al,
1985) agree that a very high proportion (85 - 90% according to Pyshkalo) of
sixth grade children (age 12) are at level 0;

c) Fuys argued that the previous results (those of his own study amongst
them) correspond to the students' actual level of thinking. However, after
analysing rather detailed interview data from 16 sixth graders’ experience
(4.5 to 6 hours in total for each student) with suitable teaching materials
(developed by the Brooklyn project, Fuys et al, 1985), Fuys reported that all
but three of the students showed considerable progress in terms of level of
thinking, consequently arguing that their potential level was level 1 or even
level 2. Similar findings had been reported much earlier by Pyshkalo
(Pyshkalo, 1968), while van Hiele had already stressed the importance of
instruction, going so far as to state that "progress from one level to the next is
more dependent on educational experiences than on age or maturation” (in
Fuys, 1984, p.114). Finally, Dreyfus and Thompson (1987) reported a
difference between childrens' actual and potential thinking levels.
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2.2.4 Lo o as an inductive Geometrical ex erienc

There has been recent research in the States, attempting to bring together
the van Hiele model of geometrical thinking and children's learning of
geometry through Logo programming. The Atlanta - Emory Logo project
(1984 - 86, Olive et al, 1986) involved one - semester long Logo courses to
classes of around 20 ninth grade minority students. The general research
objective was to determine the impact students' interaction with Logo has on
their mathematical thinking (Olive and Paalz Scally, 1987). Although the
project lends itself to criticism concerning the clarity of the research design,
and the development of the courses (Olive, 1985), there have been a number
of subsequent analyses of the data - consisting of dribble files and transcripts
from clinical interviews - from different perspectives, such as the effects of the
Logo experiences on the students' "non - verbal cognitive abilities" (Olive
and Lankenau, 1987), the implementation of various models to evaluate
students’ responses (Olive and Paalz Scally, 1987) and the effects of
learning Logo on students' understanding of specific geometric concepts
(Paalz Scally, 1987).

In the latter research, there are certain points of interest to the present study.
Firstly, the researcher perceived the use of Logo as a means to provide
children with experience of geometrical thinking corresponding to level 1,
thus explicitly adressing a probiem area highlighted by the relevant research
on the van Hiele model described above. The interest here lies in the
perspective of using Logo as an environment to provide opportunities for
inductive thinking as a~ prerequisite, or an intermediary step towards
deductive geometry. Secondly, the interviews concentrated on specific
geometrical topics (angles, triangles and quadrilaterals), thus taking explicitly
into account some geometrical content area; descriptors of the van Hiele
levels were developed applying specifically to each topic. Although no
significant differences were found between the experimental and comparison
groups of the study - not surprisingly, according to Papert's criticism on
"treatment / effect" methodologies in studies involving children's learning with
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Logo (Papert, 1985) - Paalz Scally reported indications of individual progress

of Logo group children corresponding to the levels.

On the topic of angle, she also reported the only indication from van Hiele /
Logo research of the "discrepancies between students' understanding of
static angle and their ability to apply that knowledge to tasks that involve
turning angle" (Paalz Scally, 1986, p.127). It seems to the author that there
are two implicit issues underlying this statement; the need for a more precise
awareness of the geometrical content, from both a research and a
pedagogical perspective and a deeper understanding of the children's
thinking processes. For instance, the process - oriented studies reviewed
above have indicated that using an idea in different contexts - such as the
static and dynamic view of angle - is by no means an easy task for children,
either in Logo environments (e.g. Hoyles and Noss, 1988) or in a more
general sense (e.g. DiSessa, 1982, Lawler, 1985). Moreover, recent Logo
research (informed by the process - oriented studies) on children's learning of
specific geometrical contents has began to reveal that, at least for the concept
of angle, children seem to keep dynamic and static definitions in different
"mental compartments" (Kieran, 1986a).

The above discussion concerning the limitations of the research involving the
van Hiele model and learning geometry with Logo, was restricted to specific
research projects. However, there seems to be ground for consideration of
certain more general research issues; firstly, whether enough is known about
the relationship between the geometrical thinking described by the van Hiele
model and children's thinking processes in Logo environments; secondly,
whether there has been sufficient analysis of how children's programming
strategies relate to the model as a descriptor of children's geometrical
thinking; finally, on how the model might explain limitations of children's
understandings of geometrical notions within different geometrical systems.
These ideas are now discussed.

Firstly, although the van Hiele model has been used - prior to the Logo
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studies - as a method for identifying children's level of geometrical thinking, it
was considered most useful for understanding more about such thinking and
consequently improving the teaching of geometry (Fuys, 1984, Hoffer, 1983).
Logo, however, has provided the opportunity to create educational
environments of an intentionally different nature than those of conventional
schooling. The understanding of children's thinking processes in such
environments has been the object of a substantial amount of research. The
extent to which the relationship between these processes and the
geometrical thinking portrayed by the van Hiele model is understood seems
open to question. Consequently, using the mode! to devise instructional
programs for Logo courses based on the model seems somewhat
problematic, at least with respect to the time when the Atlanta - Emory Logo
project took place. Recent research has been carried out addressing the
issue of the use of the model in its de - contextualised form, to understand
growth in children's thinking while doing Logo, sensitive to the "ego -
syntonic” nature of the "turtle geometric" content (Olson, Kieren and Ludwig,
1987).

Research using the model to determine the effects of Logo programming on
children's mathematical thinking falls under a wider category of psychometric
research on the effects of Logo "treatments", criticised by Papert (Papert
1985) for its irrelevance to "constructivist" environments, and for its lack of
measuring sensitivity. Finally, research with the model as an explicit
educational priority and the use of Logo as a means to address problems
highlighted by the model (Paalz Scally, 1987) seems to have clearer
objectives which, however, are not within the direct interests of the present
study.

A second consideration concerning such research is how the programming
element of the Logo activities relates to van Hiele levels of thinking and to
geometrical content. A distinction between programming and geometry has
been taken into account in a recent attempt by Kieren (Kieren, 1987) to

explain growth in children's thinking while doing Logo. The analysis is based
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on a study carried out by Ludwig (1986), involving a unit of instruction of
motion geometry for Logo experienced 12 year olds, using turtle geometry
and adopting the intents of the van Hiele phases of learning. The children
were closely monitored and detailed video - taped data was collected.
Analysis revealed a progress in the level of children's thinking from level 0
(involving turtle movements used as a "drawing tool") to level 1 thinking,
where figures were seen as a group of commands. However, distinguishing
between the programming and the geometry aspect of turtle geometric
activities involves some contradiction with the application of the van Hiele
model on turtle geometry as a whole, leaving questions such as the necessity
of using procedures to achieve level 1 thinking, unasked.

Thirdly, a distinction between different geometrical systems has not been
explicitly addressed, an issue which applies in general to research on the
learning of geometry with the use of Logo. Such content analysis could be
useful in interpreting "unexpected” difficulties in children’'s understanding of
geometrical concepts such as static and dynamic angle (Paalz Scally, 1986)
and in extending Logo courses such as the one designed by Ludwig (Olson
et al, 1987) to contents beyond motion geometry. The issue of the relationship
between Turtle geometry and different geometrical systems has been
addressed from a mathematical perspective by Papert 1980, Abelson and
diSessa, 1981 and Harvey 1985 and is reviewed in the following section.

Th m ri T m

In an analysis of the question 'what mathematics does one learn when one
learns Turtle geometry' Papert stated that the turtle is a reconstruction of the
qualitative core of a particular mathematical structure, differential geometry,
"the turtle program is an intuitive analog of the differential equation, a concept
one finds in almost every example of traditional applied mathematics.
Differential calculus derives much of its power from an ability to describe
growth by what is happening at the growing tip." (Papert, 1980, p. 66)
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To illustrate this, Papert used the example of the construction of a circle with
the turtle, by giving it instructions to move forward one step and turn right one
degree repeatedly. He described this process as referring "only to the
difference between where the turtle is now and where it shall momentarily be.
This is what makes the instructions differential. There is no reference in this to
any distant part of space outside the path itself. The turtle sees the circle as it
goes along, from within, as it were, and is blind to anything far away from it."
(Papert, 1980, p. 67). It is in this sense that Papert, and later Abelson and
diSessa (1981) and Harvey (1985) characterised Turtle geometry as

"Intrinsic".

To illustrate the point further, contrasts have been made Dbetween
constructions of specific geometrical figures (e.g. square, rectangle, circle) in
different geometrical systems, namely the Differential, Euclidean and
Cartesian. In the example of the circle for instance, Papert states; "For Euclid,
the defining characteristic of a circle is the constant distance between points
on the circle and a point, the centre, that is not itself part of the circle... in
Descarte's geometry, in this respect more like Euclid's than that of the turtle,
points are situated by their distance from something outside of them, that is to

say the perpendicular coordinate axes." (Papert, 1980, p.67).

In their analyses of Turtle geometry, Papert, Abelson and diSessa, and
Harvey perceive the intrinsic nature of the geometry as the main factor which
makes it different from the Euclidean and Cartesian systems. However,
emphasising the difference between Cartesian and Turtle geometry, Abelson
and diSessa and Harvey also give a global / local dimension as a
disrciminating characteristic; "Each instruction... takes into account the turtle’s
position within the screen as a whole. The "point of view" from which we draw
the picture is that of an observer standing above the plane looking down on
all of it... By contrast, the turtle geometry metaphor adopts the point of view of
the turtle itself; each line is drawn without regard to where the turtle is in

global terms." (Harvey, 1985, p.126).
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Moreover, Abelson and diSessa uses an intrinsic / extrinsic dichotomy to
characterise properties of geometric figures, stating that "an intrinsic property
is one which depends only on the figure in question, not on the figure’s

relation to a frame of reference.” (Abelson and diSessa, 1981, p.13).

In the author's opinion, the latter two dichotomies of local / global descriptions
and intrinsic / extrinsic properties of figures seem useful in differentiating
Cartesian and Turtle geometry but not so clear regarding Euclidean
geometry, even if the dichotomies are considered as a continuum, with
Euclidean geometry somewhere in between the two "extremes" (Abelson and
diSessa state that Turtle geometry is more intrinsic and more local than
Cartesian). For instance, the centre of a circle is an intrinsic propeny to the
circle according to Abelson and diSessa but not an intrinsic characteristic of

the circle according to Papen.

Such analysis, however, is not within the scope of the present study which
will adopt Papert's perspective of discrimination between geometries, i.e. that
the word "intrinsic" characterises the method of constructing a geometrical
figure by the absence of reference to any point outside the trace of the figure.
If such a reference is involved, the figure is constructed in a non - intrinsic
method. A detailed discussion of how these ideas reflect on the microworlds
designed for the present study is incorporated in chapter 3.

n wih m

in h of L oa iviie

Although there has been a certain amount of recent research focusing on
both the geometrical content learned by children doing Turtle geometry and
on the process of their learning (Hillel, 1985a, Kieran, 1986b, Lawler, 1985,
Hoyles and Sutherland in press, Hillel, Erlwanger and Kieran, 1986), there
has been no explicit account taken of the geometrical conceptual field
available to the children in a broad sense, i.e. concerning the relation

between the geometrical nature of Turtle geometry and other geometrical
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systems such as the ones mentioned above. Consequently there is very little
known about the potential of Logo to provide the opportunity for children to
engage in "constructivist" learning within a wider span of geometrical
systems. However, a review of this research is relevant to the present study
since it provides a background for understanding children's thinking

processes in relation to specific geometrical concepts.

Having carried out substantial work into the children's learning of
programming (Hillel, 1984 and 1985a and b), the Canadian researchers
began to focus more on the geometrical content of Turtle geometry (Kieran,
1986a and b) and on the thinking schemas formed by the children in relation
to this content (Hillel, 1986, Kieran et al, 1986). Hillel carried out a study
based on his longitudinal observations of eight to twelve year olds' Logo
programming, with the aim of investigating the links between children's
thinking processes and the contents of both programming and geometry.

On the process level, the researcher provided evidence that the children's
perception of doing Turtle geometry was largely dependent on the "drawing
with the turtle" metaphor, i.e. that they developed a "drawing schema", setting
themselves "concrete" goals, choosing inputs to commands based on
perceptual cues rather than on inherent mathematical relations. Hillel argues
that the "drawing schema" is compatible with a "naive programming mode"
(Kieren, 1985), but not so with a "planned programming mode". He presents
as evidence, children's perceptual organisation of figures with "tight" inherent
geometrical or programming relations. Hillel also suggests that the "drawing
schema favours a particularly static conception of procedures" since the
children not only have difficulties in changing their mental representations of
procedures between “"procedure as product” and "procedure as process”, but
also find it difficult to understand geometrical relationships required for
appropriate turtle state changes in the interfaces between procedures.
However, he agrees with Hoyles and Sutherland (in press), that when
children are engaged in solving structured tasks, they are more ready to

consider a "planned programming mode" when the tasks are of an "abstract”
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nature.

Concerning the geometrical content, Hillel perceived turtle geometry as a
"particular type of geometry" the nature of which is independent from the use
of computers, but that its embedding within a computer fanguage "not only
provides for a very different way of 'doing mathematics' but also brings into
play some interesting links between programming concepts and geometric
ones" (Hillel, 1986, p.433).

Kieran investigated children's developing understandings of a specific
geometrical concept, the angle, through their experiences with Logo (Kieran,
1985, 1986 a and b). There has been a substantial amount of research
revealing children's difficulties in understanding the concept of angle in
general. Their misconceptions seem to relate to misinterpretations of features
of the graphical representation of angle (e.qg. the length of the line segments)
or features of the plane (e.g. the area between the line segments) as the
defining features of the angle (Hershkowits and Vinner, 1984; Hart, 1981;
APU, 1982; Noss, 1987). Other recent research (Papert et al., 1979, Noss,
1985, Hoyles and Sutherland in press, Hoyles and Noss, 1987a, Hillel, 1984,
Zack, 1986, Paalz Scally, 1986) has indicated that children find difficulties in
understanding the concept of angle in Logo and in relating angles to turtle
turns, while Noss, corroborating the findings of Papert, suggested that
knowledge about length is more deeply rooted than knowledge about angles
(Noss, 1987).

Kieran’s research consisted of two studies with a difference in the age of the
children and their prior experience with formal geometry (Kieran, 1986a).
The first study involved nineteen 10 to 11 year old children working with turtle
geometry once a week for a year (1984 - 85) on projects of their own
choosing. They had had no formal geometry teaching. The researcher carried
out three interviews with each child individually, in September, January and
June of that year and a follow - up interview in March 1986 (the children

continued to work with Logo during the 85 - 86 period). Kieran reported that
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prior to the study, the children had a static concept of an angle, and that their
experience with Logo led them to form a rotational representation of angle
which, however, remained distinct from the former. At the end of the year 84 -
85, Kieran reported:

i) many children were still confused whether an input to a turn command was

a rotation or the constructed angle;

i) it was easier for the children to draw a figure corresponding to a command

rather than give the command which was needed for a given figure;

iii) most children retained their static conception of angle;

iv) most children classified angle size in terms of the le§th of the arms;

The second study, carried out during 1985 - 86 involved six sixth - formers
(12 year olds), working with Logo once a week in the university computer lab
under close observation (dribble files were kept and notes on children's and
researchers' spoken language were taken). Little evidence is shown in this
study of the children's development of the notion of dynamic angle, but some
evidence is given of the children beginning to integrate static and dynamic
angle notions, in contrast to the fourth graders who "seemed to keep static
angles and their measurement in one mental compartment, and dynamic
turns and their input in another" (Kieran, 1986a, p.104).

It is interesting that although the initial aims of the research seemed rather
insensitive to the dichotomy of a static / dynamic conception of angle (Kieran,
1985), analysis of the data highlighted the importance of the issue for the
children's learning of the concept, leading the researcher to further analysis
of this issue in particular (Kieran, 1986b). Minsky's hypothesis that children
develop an intuitive "turn - schema", ordering rotations according to the
amount of turn (Minsky, 1975), was contrasted to evidence from the study

(prior to experience with Logo) showing influence of the global size of paper
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representations of a rotation on children's conception of angle. The
researcher concluded that experience with Logo helped the children refine
their "turn - schema" by focusing more on the "sharpness of the point", with
respect to exterior turns, but did not seem to have effect on refining the
schema with respect to interior turns. Furthermore, although the sixth -
graders were able to respond to questions about interior and exterior turns
with similar facility, they had major difficulties in understanding the

supplementarity relation between interior and exterior turns.

The children's difficulty of understanding the concept of angle, but also the
prevailing role of the concept in turtle geometric environments, is related to
the fact that the issue was analysed in the Logo Maths project even though it
was not an initial objective of the research. Supported by background data
collected by administering structured tasks to the case study and extended
network pupils and holding structured interviews with the former, the
researchers analysed in detail and highlighted the work of Janet - a member
of a collaborative working pair - throughout the three years of the study
(Hoyles and Sutherland, in press). Through the experience of Janet, who
carried her uncenrtainties with amount of turn and turtle orientation thoughout
the three years, the researchers conclude that "pupils may not perceive inputs
to RT and LT as rotations in circumstances where the nature of these inputs is
determined by the context... in such situations children compute inputs to RT
and LT, add and subtract them or compose them at the level of action but do
not necessarily synthesise their resulting input to a total amount of turn; put
another way children might be adding and subtracting numbers or adding
and subtracting actions but not angles!" (Hoyles and Sutherland, in press). In
effect, the researchers' process - oriented perspective seems to reveal the
importance of the additional problem that pupils (even up to the age of 14)
will not necessarily use the mathematics that is there - especially when the

projects are chosen by them and are real world representations.

The same issue of the children's limited use of the geometry, was by no

means ignored by the researchers in Canada who collaboratively analysed
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six 11 - 12 year olds' uses of geometrical concepts in trying to solve
structured tasks. The children were introduced to the VEE, TEE, MOVE, TRT
and TLT special logo primitives described in section 2.1.4, which produced
"vee" and "tee" shaped figures and moved and turned the turtle in a slowed -
down fashion. They were introduced to the normal Logo commands at about
half way through the year, and were given throughout the year time to work
on their own projects. The researchers' analysis was based on the children's
work on structured tasks involving complex figures composed of tee and vee
shapes linked by "precise" geometrical relations (e.g. fig. 2.1) and
concentrated on the children's perceptions of these relations and of the
geometrical structure within the VEE and TEE procedures (Hillel et al, 1986,
Hillel and Kieran, 1987).

The main outcome from these analyses was the researchers' synthesis of the
children's solution schemas across tasks into the following two general
schemas:

i) the perceptual schema, where inputs are chosen on the basis of perceptual
cues, i.e. without using geometrical relationships or properties and without
relating the turtle's state to the previous state; rationale for the choice of inputs
was often expressed as "it looks like...";

ii) the analytical schema, where inputs are chosen on the basis of geometrical
relationships inherent in the given information and/or "from mathematical
knowledge". An example given for the rationale for choosing inputs was;
"Since this vee is 60 degrees, then...".

The researchers concluded that most children tend to use the perceptual
schema spontaneously, not perceiving the need for a different approach
unless the task at hand is unsuccessfully solved (according to their view). In
such cases, 11 - 12 year olds are more ready to shift to an analytical schema
than younger children (Hillel, 1986, Kieran, 1986a). Moreover, they
concluded that the children's perception of the precision of a task influences
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the strategies they use to solve it, a finding which is supported by the Logo
Maths project researchers. Finally, emphasis is given on the potential value
of such analysis for interpreting children's work and designing Logo
activities.

227A ni v hil
thinkin with the turtle

The conclusions from the previous research may be seen through a different
perspective in relation to the problem of why children find it so difficult to
synthesise the geometrical understandings they develop in the context of
Turtle geometry with paper and pencil representations of these
understandings. Little research has been carried out concerning the nature of
the process by which children identify with the turtle to drive it on the screen,
and in particular, the nature of "body - syntonic" learning (Papert, 1980).
Papert argues that identifying with the turtle enables children "to bring their
knowledge about their bodies and how they move into the work of learning
formal geometry" (p.56), stating that the turtle metaphor enables children to
make sense of an idea. However, the question of why identifying with the
turtle helps children make sense of ideas does not seem to be addressed in
detail. Furthermore, subsequent research has shown that children often
identify with the turtle without using the available mathematics, but their
personal, naive strategies (Leron, 1983, Hillel at al, 1986). .

There is equally very little research on children's understandings of the
differences and the relations involved in constructing geometrical figures by
means of Turtle geometry (and its intrinsic nature) and by methods requiring
non - intrinsic points of reference such as, for instance, the centre of a circle
or the origin of the coordinate plane.

The research which comes closest to addressing the issues of the nature of
learning by identifying with the turtle and children's perception of Turtle
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geometry in relation to other geometries was carried out by Lawler, whose
deep investigation of the cognitive development of a six year old child
(Miriam) working in Logo environments has been an influence on the present

study,for reasons outlined below (Lawler, 1985).

A specific part of Lawler's research into Miriam's cognitive organisation, was
to investigate the child's thinking processes when attempting to make sense
of a new knowledge domain which could not be linked to her "turtle geometry
microview", i.e. the fragment of knowledge she chose to empioy. The
particular relevance of this part of Lawler's research with the present study
was his choice of Turtle geometry and Coordinate geometry as two
essentially different content domains, "essentially different in that they
connect naturally to different kinesthetic subsystems™ (Lawler 1985, p.151).
He contended that the "turtie navigation” microview has its roots in the child's
very early experiences with movement; he called these experiences a
"personal geometry” microview which, "developing from a coordination of the
somatic and locomotive sensorimotor subsystems, has those subsystems as

its ancestors™ (Lawler, 1985, p.163).

On the other hand, Lawler set out to show that the "coordinate microview"
has its roots eisewhere, i.e. in the visual subsystem. To do that, he gave
Miriam a computer game which involved the use of the coordinate description
of the plane in order to change the direction and the position of an entity
similar to the turtle. Miriam’s main confusions related to her perception of the
coordinate values as having an operation - operand structure, for instance
she interpreted signs as signifying operations and numerical values as
guantities of a change of state. However, Miriam formed a different microview,
disconnected from movement or arithmetical knowledge, but related to
"visually based knowledges", as a result of her experience with a different
computer environment which simply required the naming of locations on the
screen.

Two aspects of Lawler's conclusions are important for the present study.
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Firstly, that the understanding of Turtle geometry and Coordinate geometry
depends on disparate fragments of knowledge which resepectively have their
roots in the child's very early locomotion and visual experiences. Secondly,
that forming connections between such microviews of different descent is by
no means a trivial task. To (successfully) achieve such a connection in
Miriam's mind, for instance, Lawier provided her with an experience
(involving eye - hand coordination) which was able to function mediatively
between descendents of the locomotive and visual subsystems. His
respective concluding statement seems provokingly strong: "the connections
between late - development cognitive structures can only occur through the
mediation of cognitive descendents of the coordinating schemata of the
sensorimotor period." (Lawler, 1985, p.184)

In the author's opinion, Lawler's in - depth probing of a child's mind offers
limited but very precise evidence of a very close correspondence between
the content differences separating two distinct geometrical systems and the
respective fragments of knowledge the child applied to understand them. It is
also important for the present study that Lawler regards these fragments as
descendents of deeply rooted intuitive ideas, deriving from early experiences
with motion for Turtle geometry and with vision for Coordinate geometry.
Freudenthal has also supported the idea that geometrical knowledge has
deep intuitive roots; "Many geometrical objects and concepts have been
formed early, most of them at the primary school age and some of them even
earlier, though they do not yet bear verbal labels, or at least those labels that
we have learned to attach to them in our geometry lessons.” (Freudenthal,
1983, p.226).

An example of a misconception, possibly due to 12 year old Gary's separate
mental compartments for Turtle geometry and Plane geometry, can be
depicted from a case study in the Brookline report (Papert et al, 1979); Gary
used a circle procedure (RCIRCLE - input) which caused the turtle to trace
along the approximation of a curve resulting from repeated "small" moves

and turns. The input, however, was the radius of the circle, i.e. required

65



taking into account the "non - intrinsic" centre. Although Gary moved the turtle
80 steps to the left, he then typed RCIRCLE 45, instead of RCIRCLE 40 which
would give the diameter of 80 (Papert et al, part 3, p. 7.4).

2.3 ONCLUSION

The reviewed literature has highlighted how the role of geometry in
mathematics education has been de - emphasised due toc a mismatch
between the taught content of deductive Euclidean geometry and the ideas
which the children were able to master. Freudenthal's case for reconsidering
geometry as a field allowing inductive as well as deductive learning, is
supported by substantial evidence,from a wide span of educational systems,
that children in primary and secondary education have very little experience
in relating geometrical ideas to some meaningful "concrete” reality. Although
the work of the van Hieles on children's geometrical thinking has played an
important role in this research, it was decided that the van Hiele model could
not be of direct use in interpreting children's behaviors in the present study,
mainly because there is little known about the relationship between the
geometrical thinking described by the model and children's thinking
processes in Logo environments. This was felt to be a shortcoming of recent
studies using the model in Logo - related research. However, the context -
specific descriptions of inductive and deductive geometrical thinking provided
by research involving the model has been informative for the present study.

In Turtle geometric open - ended environments children have the opportunity
to engage in inductive thinking, since they can explore and deveiop
understandings from experiences within personally meaningful situations.
Research into children's thinking processes within such situations has
revealed that they do not always use the geometrical ideas embedded in
Turtle geometry, often employing perceptual cues, perceiving the turtle as an
extension of their hand while drawing. Papert and Lawler suggest that the
ideas the children do use in identifying with the turtle to drive it on the screen

are based on deeply rooted intuitions concerning bodily motion and that this

66



is why Turtle geometry makes sense to children. Recent studies, however,
have indicated that children do not relate their understandings of geometrical
notions in Logo, to the same notions in "static" environments. Very little is
known about the potential for children to use the intuitive "turtle metaphor” tc
develop understandings within a wider span of geometrical notions than
those belonging to Intrinsic geometry. This issue is investigated in the present
study.
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CHAPTER 3

A CONCEPTUAL FRAMEWORK
FOR THE MICROWORLDS OF THE STUDY

Logo is a programming language developed by Papert and Feurzeig in the
late sixties and derived from LISP, a powerful list processing language. It has
been characterised as procedural, extensible, interactive, recursive and
functional (Noss, 1982, Leron and Zazkis, 1986, Klotz, 1986, Hoyles and
Sutherland, in press). Detailed reviews and analyses on its origins and its
programming nature can be found in Noss, 1985, Harvey, 1985. An important
part of Logo is turtle graphics, where commands to move or turn are given to
a screen cursor with position and heading. It is possible for the turtle to leave
a trace of its movements, and thus pupils can drive the turtle to make figures
on the screen.

The present chapter contains an analysis of the general mathematical

principles underlying the Logo microworlds in the present study.

RTLE E ME RY AND THE INTRIN
EUCLIDEAN AND CARTESIAN GEOMETRICAL SYSTEMS

The present study addresses the problem of whether it is possible for children
to use the turtle metaphor in developing understandings of Intrinsic,
Euclidean and Cartesian geometrical ideas. Turtle geometry as it is
implemented in the standard Logo language, however, has been developed
and characterised as Intrinsic geometry (Papert, 1980, Loethe, 1985). It was
therefore necessary to design Logo microworlds based on the turtle metaphor

which would invite the use of ideas from all three geometrical systems.

As discussed in the review of the literature (2.2.5), there has not been much
concern for a rigorous investigation of the nature of Intrinsic geometry with

respect to its distinction from Euclidean and Cartesian geometry. Attempts to
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delineate the geometrical identity of Turtle geometry have had differing foci
on what it is that matters in the distinctions between Turtle, Euclidean and
Cartesian geometry (Papert, 1980, Abelson and diSessa, 1981, Harvey,
1985). In order to discriminate between the three geometries, Papert used the
"nucleus" of each geometrical system, its mathematical entity (Papert, 1980).
In Turtle geometry the entity, which is the turtle, has a state i.e. a position and
a heading. This is not so in Euclidean and Cartesian geometry where the
entity is the point on the plane. In Cartesian geometry, however, the point has
a location determined by an absolute description of plane locations. This is
not the case for Euclidean geometry, where the point does have a location
relative to other points or line segments, but not to an absolute locating
system. This is the discriminating factor between the entities of Euclidean and
Cartesian geometry.

To illustrate how these distinctions offer a way of discriminating among
methods of constructing a geometrical figure, Papert used the example of a
circle. The Cartesian method involves the location of the points of a circle via
an equation relating each point to the perpendicular axes of the coordinate
system. A circle is therefore described as; (x - a)2 +(y - b)2 = R2, where x and
y are the distances of a point of the circle with respect to the axes, a and b are
parameters determining the displacement of the circle's centre from the origin
and R is the radius. The defining characteristic of a circle in the Euclidean
method is the constant distance between the points of the circle and the
circle's centre, itself not a part of the circle. Turtle geometry, however, relies
upon the notion of constant curvature, i.e. a constant turning for a given

forward motion.

In the construction of figures, there are two main factors which discriminate

Turtle geometry in general,

1) The turtle's state is uniquely determined by its immediately previous state.

This is what makes Turtle geometry differential.
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2) There is no reference to any distant part of space outside the turtle's path.

This is what makes Turtle geometry intrinsic.

The differential property was emphasised by Papert in order to highlight
Turtle geometry's links to both children's intuitions and a powerful
geometrical system which, for instance, provides the base for Newton's
physical laws; "Turtle geometry has links both to the experience of a child and
to the most powerful achievements in physics." (Papert, 1980, p.67). In the
related literature (e.g. Loethe, 1985), and for the purposes of this study,
however, Turtle geometry is characterised as Intrinsic geometry, in

incorporating both the above "differential” and "intrinsic" principles.

Although the application of both principles makes the turtle the entity of a
powerful geometrical system, it is rather restrictive with respect to the turtle's
"awareness" of the geometrical plane. In the example of the circle, for
instance, the only way for the turtle to go to a given point on the circle is to
retrace along the curvature until it reaches the point. The intrinsic turtle can be
characterised as "blind" or, more accurately "short sighted”; it has no
"awareness" of the plane further than its adjacent state(s). Consequently, for

instance, the centre of the circle is non - existant for the turtle.

In the microworlds designed for the present study, it was essential for the
mathematical entity to be the turtle with its state of position and heading, since
the primary concern was to create situations inviting the use of the turtle
metaphor. Consequently, the geometry in these environments was generated
in a dynamic way, that is by changing the state of the turtle. It follows
therefore, that the present study has a differing perspective than that of Papert
in distinguishing among the three geometries; for Papert, the important
discriminating factor is the mathematical entity of each system. For the
present study, however, it is the method by which the turtle is controlleq, i.e.
the ideas employed by the pupil in order to change the turtle's state. If these
ideas conform to both the differential and intrinsic principles stated above,

then the method of changing the state, for the purposes of this study, will be
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characterised as intrinsic.

The microworlds in the study, however, were designed to provide the
possibility of changing the turtle's state without conforming to the "strict"
intrinsic principles; for instance, the opportunity is provided for referring
directly to any point of the turtle's path rather than just the adjacent to the
turtle's present state. In such cases, the method for changing the turtle's state

is characterised as "non - intrinsic".

In order to illustrate how these ideas are embedded in the Logo language, an
account is given at this point, of the state - changing Logo instructions used to
design the microworlds of the study. The commands were presented to the
children as "primitives", i.e. as the basic tools available for constructing
figures on the screen. In each microworld, a subset of these commands was
employed, according to the nature of the designed mathematical environment
and the research objectives. The specific combination of commands used for
each microworld and the designed situations within a microworld are
presented in chapters 6, 7 and 8 respectively. However, at this point, it was
seen as useful to outline in brief, the general mathematical principles
involved in the methods of changing the turtle's state via the Logo commands
used in the study. In accordance with those principles, the commands can be
split into the following five groups:

FD (number), BK (number),

- where "number" is a numerical quantity in unit lengths of turtle
position change;

RT (number), LT (number),
- where "number" is a numerical quantity in degrees.

The commands in Group A represent an action - move or turn - and the

quantity of that action in the respective metric system - turtle steps or degrees.

In the study they are often referred to as the "action - quantity” or "action -
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guantification” commands.

POST (name);
DISTANCE (name);
DIRECTION (name);
- where "name" is a user - defined name of a location.

The POST command provides the ability to give a name to a position of the

turtle. The name can only be given when the turtle is in that position.

The DISTANCE command provides the distance between the turtle’s current
and some previous position. This previous position can only be specified by a

name having been given to it by the POST command.

The DIRECTION command provides the angle between the turtle's current
heading and the heading required to face some previous position. The angle
is measured from the current heading clockwise. The previous position can

again only be specified by a name having been given to it by the POST

command.

The POST, DISTANCE and DIRECTION commands have been adapted from
Loethe (1985). Loethe's purpose in designing the commands was to define a
microworld "of clear and vivid concepts which describe extrinsic geometry..."
(Loethe, 1985, p.123). "The main point by the use of these new primitives is
that we avoid coordinates by posting important points in advance. This makes
these points to elements of the geometric setting of a figure rather than to
elements of an absolute coordinate system of the plane; these posts are local
to the related procedure and posting in this way guarantees that the figure
can be drawn in every position only dependent on the initial state of the
turtle." (Loethe, 1986, p.8). In the present study, the POST command was
changed so that its use results in a graphical representation of the respective
location and of the name of the location given by the pupil (see chapters €
and 7).
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The POST, DISTANCE, DIRECTION commands do not cause a state change
in themselves. However, they can be used for referring to previously labelled
points (via POST) in the plane which are distant from the turtle's current

position.

SETX (x) - where "x" is a number representing a location on the x axis, in unit
lengths of the coordinate axes;

SETY (y) - where "y" is a number representing a location on the y axis in unit
lengths of the coordinate axes;

SETPOS (x y) - where "x" and "y" represent the coordinate values of a
location on the plane.

The SETX, SETY, and SETPOS commands change the position of the turtle.
They are not action - quantity commands since the input here represents a
location on the plane rather than the quantity of a turtle action. In standard
Logo the turtle metaphor becomes mathematically meaningless, since the
commands cause a displacement of the turtle to the named location
irrespective of the turtle's heading which remains unaltered. This is in
accordance with the mathematical entity in Cartesian geometry, the point,
which does not have a heading. In standard Logo, however, the graphical
representation of the entity remains the turtle even with the use of the Group
C commands. In the present study the commands have been changed - the
SETX, SETY and SETPOS commands work only if the turtle is facing towards
the target location (chapter 6). In this way, the turtle metaphor is essential for
changing the state even when the Cartesian coordinates are used.

SETH (number) - where "number" represents the heading in degrees in
relation to an absolute heading system in which headings are measured
clockwise starting from zero, i.e. the turtle facing upwards.
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The SETH command is not an action - quantity command, since changing the
heading comes about via the description of an absolute direction rather than
the quantity of a turtle turn. However, it does not directly require the use of the

coordinate system either.

Grou

SETH TOWARDS (x y) - where "x" and "y" are the coordinates of a plane

location.

It is obvious that SETH TOWARDS is not an action - quantity command.
Heading change is caused via a description of a location, rather than the
description of a direction as in the SETH command. There is, therefore, a

direct reference to the coordinate system.

The SET commands, i.e. SETPOS, SETX, SETY, SETH, SETH TOWARDS

are refered to in the study as the "coordinate" (or the "Cartesian") commands.

The command descriptions given above refer to the general mathematical
principles underlying the use of the commands to change the state of the
turtle. What follows is a discussion of the relationship between the specific
geometrical ideas which can be employed in using the commands to change
the turtle's state and the Intrinsic, Euclidean and Cartesian geometrical
systems. A convenient way to present this discussion is via an example
involving a hypothetical situation which requires a specific change in the
turtie's heading and position.

.1.1 Anexam le

From its starting position, the turtle has drawn a square and has set a marker
labelled "A" on the top right hand vertex, as a result of the following
instructions: FD 30 RT 90 FD 30 RT 90 POST "A FD 30 RT 90 FD 30 RT 90
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(fig. 3.1). The geometrical ideas embedded in the construction belong to
Intrinsic geometry, since the differential and intrinsic principles are met; the
quantities of the action - quantity commands (FD and RT) depend entirely on
the action and not on any distant part of the plane outside the path of the

turtle.
A

Fi ure 3.1 An exam le

The objective in this situation is now to take the turtle directly from its present
position to point "A", thus "constructing" the diagonal of the square. It is
obvious that what is required is a heading change for the turtle to face point
"A" and a position change for the turtle to get there. It is however impossible to
retain the differential and intrinsic principles to achieve this since, for
instance, reference to point "A" involves a breach of both principles.

The different ways of effecting this heading and position change with the use
of the described commands is discussed with respect to the geometrical
ideas which can be employed in each occasion.

han n the headin

a) RT 45

This method employs the action - quantity paradigm. However, the quantity of
the action does not depend on the action itself, but on information about parts
of the plane outside the turtle's path such as: the internal angle of the square
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and the dissecting property of the diagonal. In other words, knowledge about
some of the square's properties involving the plane are a prerequisite for

determining the quantity which the turtle has to turn.

b) PR DIRECTION "A (computer feedback is: 45)
RT 45

This method also employs the action - quantity paradigm. However,
knowledge about properties of the figure in the plane is not a prerequisite: the
quantity is determined by a "measurement”, as if the turtle was equipped with
a protractor. Nevertheless, the method is non - intrinsic, since the
"measurement” involves reference to a point away from the adjacent positions
of the turtle.

c) PR DIRECTION 30 30 (computer feedback is: 45)
RT 45

This method involves the same ideas as the previous one. The difference is
the method of referring to the target point. In both cases referring to the point
involves naming it. In the previous case, however, the name is given by the
user and the point is necessarily relative to the figure in question. In this case
there is an underlying absolute method of naming any location on the plane
via the coordinate system. Point 30 30 happens to be related to the square,
but naming a point does not necessarily require some relationship between

the point and the figure.

d) SETH 45

This is not an action - quantity method of heading change. The numetrical
input of 45 is a description of a direction on an absolute heading system.
There is no reference to point "A". However, knowledge of plane properties of

the figure is a prerequisite for determining the turtle’s target direction.
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e) SETH TOWARDS 30 30

This, also, is not an action - quantity method, since heading change is
brought about by a description of a turtle direction. The target direction,
however, is described in relation to an absolute location rather than an
absolute direction system. This implies reference to a point away from the
immediate "vicinity" of the turtle which does not necessarily need to be related
to the figure (here, of course, it is). No knowledge about the figure's plane

properties is needed.

Chan in he osition

a) FD 42.46

This method employs the action - quantity paradigm. As in the case of RT 45,
the guantity of the action does not depend on the action itself, but on
information about parts of the plane outside the turtle's path, such as those
required for the pythagoras theorem with the help of which the distance
between the two diagonal points can be determined. In other words,
knowledge about some of the square's properties involving the plane are a

prerequisite for determining the quantity which the turtle has to move.

b) PR DISTANCE "A (computer feedback is 42.26)
FD 42.26

As in the case of PR DIRECTION "A, the action - quantity paradigm is
employed. However, knowledge about properties of the figure in the plane is
not a prerequisite: the quantity is determined by a "measurement”, this time
resembling the turtle equipped with a ruler. Similarly, the method is non -
intrinsic, since the "measurement"” involves reference to a point away from the

adjacent positions of the turtle.
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c) PR DISTANCE 30 30 (computer feedback is 42.26)
FD 42.26

In this case, the same ideas apply as in using the PR DIRECTION 30 30

"measurement” followed by the action - quantity command.

d) SETPOS 30 30

This is not an action - quantity method, since position change is brought
about by a description of a location. The target location is described in
relation to the absolute coordinate system. This implies reference to a point
away from the immediate "vicinity" of the turtle which does not necessarily
need to be related to the figure (here, of course, it is). No knowledge about

the figure's plane properties is needed.

In the present study, the terms intrinsic, euclidean and cartesian geometry,
idea or notion (spelt with lower - case initials to distinguish the meaning from
the classical terms) are used to convey a specific meaning in accordance with
the geometrical ideas analysed above in situations of changing the turtle's
state.

a) When the ideas used in a specific state change comply with the intrinsic
and differential principles stated above, then they are characterised as
intrinsic.

b) When the ideas used in a state change involve a reference to a point in the
plane which;

i) is related to the figure under construction,

ii) does not coincide with a position adjacent to the turtle's present position
and;
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iii) cannot be located on the plane via an absolute plane description method,

then they are characterised as euclidean.

c) When they involve a reference to a point in the plane, which can be located
with the use of Cartesian coordinates, then they are characterised as
cartesian.

However, this characterisation does not restrict itself to situations of state
change. Its application is extended to the method of constructing a
geometrical figure. In the previous example, for instance, the notions involved
in the method by which the turtle constructed the square by repeatedly
moving forward and turning, were intrinsic. The author's awareness that the
terms Intrinsic, Euclidean and Cartesian geometry have been much used in
various situations and disciplines (e.g. Mathematics, Mathematics Education)

led to this need to specify the meaning attributed to them in the present study.

The above analysis involved a particular subset of the Logo language, the
state - changing commands, due to their specific relevance to the geometrical
principles used in this study. However, all the Logo commands and
programming ideas with which the participating children were familiar,were
available to them during the research sessions (see chapter 5). Among these,
for instance, are the following: REPEAT, procedures, editing procedures,
saving and loading files, variables, PU, PD, PE, PRINT. The above analysis
can be extended to these commands with respect to their use in generating
state changes and constructions of figures. For instance, the following

procedure with a variable length input can be written for a square:

TO SQUARE :SIDE
REPEAT 4 [FD :SIDE RT 90]
END

According to the above, the procedure, the REPEAT command and the
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variable input have been used for an intrinsic construction of a square. In the
following examples, however, the procedures DIAG1 and DIAG2 involve

intrinsic square constructions and euclidean methods to "draw" their

diagonals:

TO DIAGH TO DIAG2

REPEAT 4 [FD 30 RT 90] REPEAT 2 [FD 30 RT 90]
RT 45 FD 42.26 POST "A

END REPEAT 2 [FD 30 RT 90]

RT DIRECTION A
FD DISTANCE ‘A
END

Finally, the procedure COSQUARE employs a cartesian method to construct

a square:

TO COSQ

SETPOS 0 30 SETH TOWARDS 30 30
SETPOS 30 30 SETH TOWARDS 300
SETPOS 300 SETH TOWARDS 00
SETPOS 00 SETH TOWARDS O 30
END

3 2 OVERVIEW OF THE MICROWORLDS IN THE PRESENT STUDY

This chapter consisted of an analysis of the general geometrical principles
underlying the Logo commands used in the study. Each of the three
microworlds developed for the study incorporates a specific subset of the

state - change commands. In summary, the microworlds involved the
following:

1) the "Turtle in the Coordinate Plane" (or "T.C.P.") microworld, where the
turtle was provided with means of referring to the coordinate system, by either
retaining the action - quantity method of changing its state or achieving such

changes by location descriptions (chapter 6),
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2) the "POST, DISTANCE, DIRECTION" (or "P.D.D.") microworld, where the
turtle was given the means to refer to any of its previous positions (chapter 7),
and;

3) the "Circle" microworld, where the turtie was provided by four circle -
constructing procedures which involved differing intrinsic and euclidean

ideas (chapter 8).

The geometrical conceptual field of each microworld is analysed in the
respective chapters, as a specific application of the general principles
outlined in this section. The particular set of state - changing primitive
commands in each microworld is analysed with respect to the method(s) it
provides to change the turtle's state, and with respect to the turtle's
awareness of the plane when it is equipped with the respective set of
primitives. For the purposes of the present study, activities within each
microworld were designed for the participating children. The activities for
each microworld are analysed in the respective chapters (chapters 6, 7 and
8). The relationship between the research objectives and the microworlds is
presented in the following chapter (4.2.2).
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CHAPTER 4

AN OVERVIEW OF THE RESEARCH

41. AMETH D AL PER PE TIVE

The distinction between qualitative and quantitative research has been an
increasingly established means of characterising research methodology, in
the past decade at least. Recently, however, it has been considered
worthwhile to bring this characterisation under scrutiny. Goetz and Lecompte,
for instance, maintain that, on the one hand, it is rather naive to classify
methodologies according to discrete categories and that continua between
two extremes is more realistic (Goetz and Lecompte, 1984). On the other
hand, they regard as a more useful means of conceptualising researchers'
assumptions of reality and how to explain it, the framing of these assumptions

into four dimensions rather than one:

- The inductive / deductive dimension, referring to the place of theory; the
inductive perspective implies that the theory is built from the data, while the

deductive, that data is found to match some pre - conceived theory.

- The generative / verificative, referring to the position of the evidence within a
research and the generalisability of the findings to other populations.

Generative research is often inductive and verificative is often deductive.

- The constructive / enumerative, referring to assumptions concerning the
analysis of the data. A constructive approach involves the development of the
method of analysis during the course of observation and description.
Enumeration implies a pre - conceived method involving counting or

enumeration.

- Finally, the subjective / objective dimension involving the explanation of

reality according to the researchers' own experiences or according to how the
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experiences of others match the experiences of the researcher.

Goetz and Lecompte conceptualised each of these dimensions as a
continuum, with qualitative research being at the inductive, generative,

constructive and subjective end, and the converse for quantitative research.

Since the present study is concerned with the generation and development of
mathematical schemas in children's minds in situations within specific
geometrical contexts, and since, prior to the study, very little was known about
these schemas, the author decided that a qualitative approach would be an
effective research strategy. The study involved a year - long preliminary
phase during which the objectives of the main research were developed and
refined (section 4.2.1, chapter 5). The methodological process of progressive
clarification and redefining of the problem areas so as to systematically
reduce the breadth of inquiry in order to enable more concentrated attention
to the emerging issues has been labelled "progressive focusing” (Parlett and
Hamilton, 1977, Atkinson, 1979).

In the present research, however, it was not considered as useful to follow
some prescriptive research methodology, but rather, informed by the general
methodological issues and assumptions, to allow the research problem itself
to determine the method. Parlett and Hamilton have expressed an a
corresponding viewpoint more than ten years ago; "llluminative evaluation is
not a standard methodological package, but a general research strategy. It
aims to be both adaptable and eclectic. The choice of research tactics follows
not from research doctrine, but from decisions in each case as to the best
available techniques: the problem defines the methods used, not vice versa.”
(Parlett and Hamilton, 1977, p.13).

On the one hand, it has been argued that qualitative research involves the
researcher adopting a stance of the naive observer (Atkinson, 1979) who
initially avoids sharpening his/her problems into specific research hypotheses
"until considerable exploratory investigation has occured" (Atkinson, 1979,
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p.53). On the other, it is uitimately necessary for the researcher to be
knowledgeable about what he/she is observing. For instance, Vergnaud has
argued that in research situations involving children engaged in
mathematical thinking and learning, "one cannot observe well what one is not
prepared to observe. This presupposes that the contents, and the situations
through which these contents are conveyed, are clearly analysed beforehand
so that one may be prepared to 'see' the meaning of events and behaviours
observed." (Vergnaud, 1982, p.41)

The researcher spent the preliminary year becoming progressively aware of
the nature of the learning environment aimed to be generated in the main
research and what children's behaviours might mean. However, during the
main research sessions, although the researcher used his experience from
the preliminary phase, he also explicitly attempted to take into account
unpredicted or surprising behaviours.

The main phase of the research involved case studies of pairs of children
working cooperatively with a computer in situations which on the one hand
were carefully designed by the researcher, but on the other, were open -
ended in order to allow for the children to feel in control of their learning by
participating in the directing of the work. Case - study work, as a proponent of
gualitative research, has been widely practiced in open - ended Logo
situations. Aparn from Logo being a means for children to do mathematics, it
has been widely appreciated as a research tool, due to the opportunities it
provides for recording children's activities; Weir, for instance, states that Logo
has the potential to "act as a window into the mind of the learner" (Weir, 1987,
p.1).

However, the importance of carefully planned "situations", or microworlds - ir
the broader sense of Hoyles and Noss (Hoyles and Noss, 1987b) - has
recently enjoyed increasing appreciation, as is clearly implied by Weir. "Case
descriptions are interesting as texts behind which to probe for the 'why' and

the 'how' of phenomena and are a prerequisite for carefully controlled large
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group studies. In particular, they help to decide what the appropriate controls
might be. However, it is fallacious to assume that students’ free activity alone
can tell us why particular behaviours do or do not occur. Direct interventionist
steps, for example, setting particular tasks designed to probe particular
possibilities, are crucial. In due course these probes become incorporated
into the learning situation itself, so that the boundary between research and

teaching becomes blurred." (Weir, 1987, p.3).

4.1.1 The initial research roblem

As discussed in the review of the literature, there has recently been
increasing evidence of Logo being used as a means to generate vivid open -
ended educational environments within which children have the opporunity

to take control of their learning.

Moreover, there has been little - but very rich - evidence (Papert, 1980,
Lawler, 1985) that the Logo - turtle metaphor invites children to form an
experience - linked schema in identifying with the turtle and thus make sense
of mathematical situations arising from driving the turtle on the screen.
However, very little is known about whether the geometrical content of turtle
metaphor environments can be extended further than that of Intrinsic
geometry, so that children might use the schema in wider geometrical

contexts.

The problem which the study addressed in a year - long preliminary phase,
played an important role in the development of the main research issues. The
main question asked was: is intrinsic geometry the only geometrical system
within which children may develop geometrical understandings with the use
of the turtle metaphor? Furthermore, are there any indications that children
use notions from Intrinsic, Euclidean and Cartesian geometry in order to

construct geometrical figures with the turtle in "standard Logo" environments?

The researcher, therefore, began the preliminary research with the general
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objectives of investigating;

- the problem of extending the geometrical content which children can use for
mathematical learning and thinking while programming with turtle geometry
and,

- the nature of the mathematical schemes they use and form while engaged in

turtie geometric environments.

412Th v mn

The research was carried out in Psychico College, a primary school in
Athens. There are two types of schools in Greece, state schools being the
large majority, and private schools. Some private schools, one of which is
Psychico College, are considered as above average in "status". In this school
there are around 700 children distributed among the six years of primary
education which, in Greece, begins from the age of five and a half to six

years. There are around 30 children in each classroom, i.e. 120 in each year.

Research in mathematics education in Greece has barely got off the ground
as yet. Consequently, although the researcher was informed by reviewing the
relevant literature on mathematics education based on evidence from
educational systems other than the Greek, he could not take for granted that
the reviewed issues applied to Psychico College automatically. However, the
researcher being brought up through this system, and his role as participant
observer in a Logo "club" formed during the preliminary phase (section 4.2.1
and chapter 5) in Psychico College, gave him an insight into the relevance of
the literature for the school (see also chapter 5).

In general, the Greek educational system is highly centralised compared to
that of the U.K. and characterised by a prescriptive curriculum. The general
principle by which education is practiced rather conveys a view of the teacher
as the transmitter of the knowledge embedded in a content - defined syllabus,
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and the children as the receivers of that knowledge, a view which was
supported by the researcher's experience during the preliminary phase of the
research.

The children officially start Geometry at the fourth year of primary. Although
their Geometry books have been recently improved as regards the
"friendliness" of the presentation (e.g. the narrative is more personal,
addresses the reader - pupil in a more informal way than before) and there is
now a little measurement or experimentation before some definition or
theorem, the overall spirit remains akin to the one described above. The
content predominantly consists of formal angles, circle and the relationship
between diameter and perimeter taught in the fourth year, triangles and some
of their properties (e.g. sum of internal angles) taught in the fourth and
revisited in the sixth year. Moreover, there are some sections on area and
volume in the fifth and sixth years. Discussions with the children's teachers,
however, revealed that the teaching of geometry was de - emphasised,
mainly for practical reasons, i.e. being at the end of the mathematics "book -
syllabus", the contents of which were unrealistically disproportionate to the
available time in the school year, resulted in most of it being left out. During
the research period, the researcher was aware of whether and what the
children were doing in school geometry. However, it is only mentionned in the

study in cases of evidence that it influenced their work with the Logo turtle.

Although at present there is no central provision or near - future prospect for
the use of computers in Greek primary education, some private primary
schools have recently been equipped with computers, the use of which,
however, has been limited. As a result of Psychico College being equipped
with ten microcomputers at the beginning of the year 1985/86 (details in
section 4.2.3), the researcher made a personal agreement with the school's
director, himself an educationalist not unaware of issues concerning Logo
and primary education and interested in "exploiting" the available technology.
The researcher would have access to the school's technology and children

(after negotiation) for his research. In exchange, he would help with the
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"spreading” of an informal "Logo culture" throughout the school.

It has been the practice that private schools often offer some extracurricular
activities for the children, such as the teaching of foreign languages or the
running of "clubs" involving activities such as drama, chess, sport, craftwork,
etc. Taking the opportunity of this "free activities” hour, the researcher formed
and organised a "Logo club" consisting of twenty 5th - year (10 - 11 year old)
children, representative (not in the clinical sense) of the span of abilities in the
school. The children worked in an informal environment with a Logo
experienced (elsewhere) school teacher for 75 minutes each week, and
provided the basis for the preliminary phase of the study. The Logo club
continued to function in the following year with the same children and a
different teacher in similar environments. The children for the case studies of
the main research were chosen from the Logo club, during the first two terms

of the following year, i.e. 1986/87.

The latter part of the agreement between the researcher and the school's
director led, in the following year 1986/87, to the development of a full Logo
program involving one informal Logo session per week for all the children in
the last four years of the school and all their teachers, each one with their own
class. The Logo program involved investigation - oriented sessions with a
structure similar to that developing in the Logo club (a summary of the
progress of the program is given in appendix B). The only specific relation of
this program to the present research, however, is the acknowledgement of the
nature and the extent of the Logo experience the main research children
were having at the time when the research was in progress; a particular child
participating in a case - study of the main research would also have two
investigation - oriented Logo sessions per week, one as a member of the club
in its second year and one as a member of their normal class in the Logo
program session (see chapter 5). Details of the setting of the main case -

study research are given in section 4.2.7.
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4.2 AN OUTLINE OF THE RESEARCH

The three main case - studies of the research are used to investigate different
aspects of the same problem, i.e. whether children can use their turtle
metaphor "schema” to develop understandings of intrinsic, euclidean and
cartesian geometry. However, each study stands rather on its own, i.e. no
child participated in more than one study, and each study involved an
individual microworld and activity development, research design, and
pilotting. Furthermore, each study involved a considerable degree of detail in
its design, since the study relied on careful planning of the research
environments. It was therefore seen as clearer for the reader, to present the
details of the design of each study at the beginning of the relevant chapter
(chapters 6, 7 and 8), allowing at this point for only a brief general outline of
the research.

In the following first two sections (4.2.1 and 4.2.2), an outline of the
preliminary phase of the research, the emerging research issues and how
they relate to the three case - studies of the subsequent main research is
given. In sections 4.2.3. and 4.2.4., an account is given of how the case -
study microworlds and the activities within them were developed and pilotted.
The development of the method for collecting data and the technology used
in this process are then presented, followed by an account of the participating
children and the criteria for their selection. In section 4.2.7, the case - study
research setting is described, concluding in an account of the researcher’s
activities during a typica!l 24 hours of the main research phase. Finally, in
section 4.2.8, the phases of the analysis of the data and the resulting method
of the presentation of the results are described. In chapter 5, a more detailed

outline of the preliminary phase of the research is given.

4 Th limin h

The preliminary phase of the research involved the formation of a Logo club
in the Greek school during the 1985/86 school year. Twenty 5th - year (10 to
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11 year old) children participated in the club. In cooperation with the school's
director, ten girls and ten boys, representative of the school's span of
"abilities” were chosen to join the club among a comparatively large number

of volunteers.

The aim of the club was;

- to provide the children with an experience of an informal explorative
educational environment, which was not automatically assumed by the

existing educational system,

- to allow the children to develop considerable experience with Logo

programming.

- to address the general research problems described in section 4.1.1, in

order to focus on, and refine, the objectives of the study.

The teacher responsible for the club (labelled teacher "F") had already had
some prior experience in using Logo with infant children. The Logo sessions
took place for 75 minutes per week throughout the year, the children working
collaboratively in groups of two or three, in an informal, investigation -
oriented, atmosphere. By the beginning of the main research which took
place during the first two terms of the following school year (1986/87), the
children participating in the three main case - studies, who were all chosen
from the Logo club, had had 40 to 55 hours of experience with Logo
programming. This was a result of their participation in the Logo club and
Logo program activities (see section 4.1.2).

After having discussed with teacher F the pedagogical framework, the setting
up, the classroom organisation and the content of the Logo club activities, the
researcher payed three extended visits to the school during the preliminary
phase, allowing for equivalent time spans between the visits. A record of F's

account and the children's perceptions of the activities in each session was
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kept during the researcher's absence. In all three occasions of his visiting the
club, he carried out preliminary research by administering structured tasks to
all the children with the purpose of monitoring their progress in Logo
programming and probing the nature of the geometrical ideas they used in
attempting to solve the tasks. During the second visit in March 1986, at the
beginning of which the children had had 13 hours of Logo sessions, the
researcher engaged in participant observation by taking the role of F for 15
hours of Logo sessions in total (some extra sessions were allowed to take
place), thus acquiring a personal view of the classroom atmosphere and of
the children's work. At the beginning of the following year 1986/87, prior to
the main research, the researcher administered a set of structured tasks as
part of the process of probing the geometrical ideas used by the children to
solve them (appendix A.5 and A.6). The researcher's conclusions from all the

structured tasks are presented in chapter 5.

Th hi ir

he cas udie of he research

Analysis of the data from the preliminary phase, which provided indications of
the children using the turtle metaphor and specific intrinsic, euclidean and
plane description notions in order to construct geometrical figures, allowed

the development of the main issues to be addressed by the study.

The four objectives of the study were:

1) to investigate the nature of the schema children form when they identify

with the turtle in order to change its state on the screen;

2) to investigate whether it is possible for them to use the schema to gain
insights into certain basic geometrical principles of the cartesian geometric
system;

3) how they might use the schema to form understandings of euclidean

91



geometry developed inductively from specific experiences;

4) to investigate the criteria they develop for choosing between intrinsic and

euclidean representations of geometrical ideas.

Issues 1 and 2 were investigated by means of the "T.C.P. microworld" study,
presented in chapter 6, and consisting of three individual case - studies, each
of which involved the encouraging of the development of a separate learning
sequence, which formed a "learning path" from intrinsic to cartesian methods
of changing the turtle's state (see chapter 3). A separate pair of children
participated in each case - study, by engaging in the activities designed for
each path. All three paths led to common activities involving changes of the
turtle's state in the "Turtle in the Coordinate Plane" ("T.C.P.") microworld,
where the children could choose the method of changing the state of the
turtle. In their attempts to control the turtle by using the available "cartesian
commands" (chapter 3), the children initially used the turtle schema they had
formed prior to the study, thus providing the researcher with an insight into the
nature of this schema (issue 1). The children's subsequent uses of cartesian
notions in controlling the turtle enabled the researcher to engage in the
investigation of issue 2.

Issue 3 was investigated by means of the "P.D.D. microworld" study
presented in chapter 7, which consisted of a case - study of a pair of children
engaged in activities within the "POST, DISTANCE, DIRECTION" ("P.D.D.")
microworld. Initially, the activities were task - oriented and mainly consisted of
constructions of irregular and isosceles triangles, a process which involved
the employment of euclidean notions and triangle properties. The latter part of
the case - study involved open - ended projects where the children had the
choice of using the P.D.D. primitives or the procedures resulting from their
triangle constructions, thus providing the researcher with further insight into
issue 3.

Issue 4 was investigated by means of the "Circle microworld" case - study
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presented in chapter 8, involving a pair of children. In the first part of this
study, the children engaged in a learning sequence, the object of which was
the development of understandings concerning the functioning of four Logo
procedures to construct a circle. The procedures were such that their use
invited the employment of differing intrinsic and / or euclidean notions. In the
second part of this study, structured tasks were administered to the children,
requiring the construction of figures involving circle combinations. The
investigation focused on which circle procedure the children chose for each
task, and on their reasons for doing so.

Although the studies were designed for the investigation of the issues as
described above, subsequent repeated analyses of the data, of a particular
study for instance, unexpectedly revealed useful insights intO(;“g Cgrg:c:géarch
issuesfrom the four stated above, for which the study was not specifically
designed. For example, the criteria developed by the children in the "P.D.D.
microworld" study, for choosing to use intrinsic or euclidean notions of angle
provided further research insights into issue 4. For reasons of clarity, the
analysis of the data of each of the main case - studies is given in the chapter
presenting the respective case - study. When data from one study is used as
supporting evidence for the issue investigated by another, it is mentioned in

the discussion section, as for example in section 7.5.

42 The develo ment of he micr world for each cas

Informed by the principles concerning the notion of a microworld (discussed
in chapters 1 and 2), the researcher initially engaged in the programming
involved for the technical component of each of the microworlds. They were
all pre - pilotted in order to test their functionality, and the clarity of the error
messages (see appendices C, D and E). Changes were also made as a
result of the main pilot studies which were carried out in an english school in
a research setting similar to that of the main study. The technology used for
the pre - pilot and main pilot sessions was different to that used in the study.
The former consisted of a B.B.C. (B) microcomputer, and the Logo version
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used was B.B.C. LOGOTRON (L.C.S.1.) Logo. The latter consisted of an
APPLE IIC microcomputer, and the Logo version used was APPLE LOGO II.
The transfer of the programs for the microworlds, although not a trivial task,
was completed satisfactorily. Details are given in the sections describing the
design for each study.

4.2.4 The velo men of h activitie within ea h micr world
h

The activities designed for each study involved an interplay between open -
ended and task - oriented activities. The latter were designed so as to allow
the pupils some choice as to the method or strategy used to achieve the set
goal. The research interest was focused on the process by which the children
set out to solve the task rather than the actual goal that was set. The activities
were pre - pilotted and the resulting refined versions then fully pilotted in the
main pilot study. Some activities involved documentation and some were
verbally presented to the children. An account of the activities and an analysis
of the tasks is given at the beginning of the respective study. The
documentation (where applicable) is given in appedix C, D and E.

4.2. D velo men m lle

Informed by the literature on the one hand, but also through the experience of
the preliminary phase of the research on the other, the researcher was
convinced of the importance of collecting data which would subsequently
help in reconstructing what happened during the case - studies in as much
detail as possible. The importance of the rich generation of data has recently
been appreciated in case - studies involving children's thinking processes in
Logo environments (Hoyles, Sutherland and Evans, 1987, Lawler, 1985).
Lawler, for instance, argues that; "Inasmuch as the experimenter has an
imperfect theory of mind, is insensitive to the importance of specific incidents,
or cannot comprehend the mass of observations as it is developing (these
conditions are always true), the strategy of choice is to create a corpus of
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sufficient richness and permanence that it may be queried as subsequent

interpretation proceeds." (Lawler, 1985, p.19).

During the preliminary phase of the research, however, a considerable
proportion of the collected data was not directly relevant to the research
issues. A primary concern in the design of the main case - studies, therefore,
was the generation of situations centreing on the research issues.
"Progressive focusing... reduces the problem of data overload, and prevents
the accumulation of a mass of unanalysed material". (Parlett and Hamilton,
1977, p.15).

All the data collected during the main research, was produced and processed
by the researcher. The finilised data collection for all three case - studies,
consisted of the following;

- audio taping of everything that was said during each case study,

- "soft" (i.e. on computer disk) and "hard” (i.e. on paper) copies of
verbatim transcriptions translated into English,

- soft and hard copies of everything the children typed,

- hard copies of graphics screen dumps,

- soft and hard copies of all the procedures the children chose to save on
disk,

- the researcher’s notes, and;

- the children's prompted and unprompted notes on paper.
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4 2 6 The children artici atin in each stud

n h ir n

The data collected during the first year of the Logo club (preliminary phase of

the research), was used for the following purposes with respect to this study:

a) to build a profile of the students' general attainments in their class,

b) to form a background knowledge of the development of their intrinsic

schema and their more general Logo progress and;

c) to develop criteria for their participation in the study, i.e. willingness and
motivation, some evidence of having formed an intrinsic schema, not
belonging to an extreme end of the ability range, and being able to work in a

sound collaborative spirit with their respective partner.

427 The iIn of h mainre ear se sl

The main research sessions consisted of three participants; the researcher
and the respective pair of children. They were held in a small room in the
school provided for this purpose. The researcher was aware, on the one
hand, of arguments for research settings within children's everyday "normal”
activities in their classroom (Noss, 1985, Sutherland, 1988). However, the
setting in the present study falls somewhere between two extremes, that of
"normal” classroom situations and that of isolated researcher - to - child
situations as, for instance, in Lawler's research; in making a case for such
methodology, Lawler claimed that "...the Intimate Study represents a sensible
approach to studying the process of learning, despite the manifest difficulty of
the task and the method's vulnerabilities to criticism. Further, | claim there is
no other empirical approach with such promise of telling us anything
important about the accommodation of mental structures through experience

in the language - capable mind" (Lawler, 1985, p.17).
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In the present study, the researcher's objective was to observe children's
behaviours in situations prepared with a considerable degree of specificity
(see the "task analysis sections in chapters 6,7, and 8). Moreover, it was not
within the study’s objectives to investigate such situations within classroom
dynamics. Furthermore, it was felt that the external stimuli of the classroom
setting would enhance fluctuations in the children’s attention. Since the
research activities were designed to be in a specific order and the experience
with one activity could influence children's thinking in another, it was decided
that a rather "stable" external environment was essential for the study. The
experience of the pilot study, where in some sessions interruptions of various

kinds were not infrequent, supported the researcher’'s decision.

The researcher, however, did attempt to provide a setting which would at
least not seem "artificial” to the children. The research sessions were held in
a small room which was familiar to the children as their "museum" (all sorts of
things collected by the children were on exhibition). The vocabulary used for
the children's activities was consistant with their other Logo activities. For
example, the Greek word for "concept" was used for a Logo procedure,
instead of the verbatim translation of the word "procedure". Moreover, words
which were meaningful in Greek were used for the words "saving" (the Greek
word for “preserving"”) or the Logo editor (the Greek word for "writing book").
The "private tutoring" - type environment which resembled the research
sessions, was not unfamiliar to the children since they were all having private
tuition for one subject or another. For the studies which involved several
research sessions with a pair of children (e.g. the P.D.D. microworld study
and the Circle microworld study), the pair stayed after school in agreement
with the parents. The other studies took place during school hours.

For the researcher, a typical 24 hours during the time of the research would
involve a 90 minute research session after school (i.e. at 4.30 pm), followed
by an immediate printing of the dribble file so that a hard copy would be
available in the next morning. The next day would involve transcribing the

previous day's session with the help of the dribble file and the notes, and
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making a hard copy of the transcription. Following that, the dribble file would
be played back (the technology for this facility was not readily available at the
time in England - it was borrowed from John Olive, University of Atlanta) and
paused to print suitable screen dumps. The collected data would then be
given a code name and filed away. Time was allowed for preparing the next
session.

42 Ph h

The researcher initially studied the data, attempting to reconstruct in his mind
what happened during each case - study. After repeated analyses, certain
episodes reflecting children's insights or difficulties related to the research
issues, began to emerge from the research situation. The researcher
subsequently synthesised such episodes according to the specific research
issues which they illuminated. The presentation of the analysis is structured in
accordance with the research issues, rather than reflecting the time sequence
in which the episodes took place or the sequence in which the tasks were
presented to the children. Accordingly, the titles in the sections involving the
presentation of the analysis refer directly to the research issues. However, the
time sequence and the order in which the activities took place are made clear
in the research design sections and are constantly referred to during the
presentation of the data. Furthermore, the full set of data collected during one

research session is given in appendix F.
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CHAPTER 5

THE PRELIMINARY PHASE OF THE STUDY

5.1 INTRODUCTION

The increase in the availability of microcomputers and the Logo language in
primary schools could enhance the likelihood that more and more children
will have had some experience with Turtle geometry in the coming years, as
part of their primary education. The general aim of the study presented in this
thesis, was to investigate the potential of children extending their experiences
of using the turtle metaphor beyond the conventional Logo environment, to a
wider geometrical area within which they would be able to use their turtle
schema to do mathematics. It was accordingly decided that the children
participating in this study should have had some prior experience with Turtle

geometry for the following two reasons:

1) so that they would have acquired the experience which the researcher
perceived as essential for their taking part in the designed microworld
environments of the main research, i.e. their participation in an informal
environment involving investigative activities in the context of Turtle geometry;

2) so that the researcher would have the opportunity to carry out an informal
preliminary investigation of the children's activities, enabling him to focus on,
and refine the initial general objectives of the study which are given in section
4.1.1.

The opportunity to create such an environment in the primary Psychico
College did not leave the researcher without some scepticism; for reasons
explained above, an informal child - centred classroom atmosphere would be
more of a "forerunner” rather than something which would arise automatically
within the Greek educational system (see sections 4.1.2 and 4.2.1). It was

therefore important prior to the forming of the Logo club (section 4.2.1), to
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establish a child - centred pedagogical framework for the functioning of the
club, through discussions with teacher F, the teacher undertaking the running
of the club. A report of the forming and the function of the Logo club is given in
section 5.2. The above factors concerning the setting of the Logo club within
the Greek educational system warrant a descriptive account of the
atmosphere generated during the club's activities, which is given in section
5.3.

The significance of the results of this phase of the research is relatively de -
emphasised due to its methodological role within the context of the whole
study (section 4.1). Within this context, however, the research objective of the
preliminary phase (objective 2) was met by an informal investigation
concerning:

a) the children's developing programming strategies during four
administrations of the "Four Squares" task, presented in section 5.4, and;

b) indications of their use of intrinsic and non - intrinsic geometrical notions
during their attempts to solve a series of geometrical structured tasks,
discussed in section 5.5.

Mi ND TH T N FTH L

As discussed above, the forming of the club had a dual purpose; that of
providing the children with the necessary experience to participate in the
study and that of providing the researcher with the base for preliminary
investigation which would enable him to develop and refine the research
objectives. The club consisted of 20 5th - year children (10 to 11 year olds),
which were picked by the school's director so that the group would be as
representative of the school's span of "abilities" as possible and would

consist of 10 boys and 10 girls (these constraints were imposed by the
researcher).
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The children worked in groups of 2 or 3 throughout the year for 75 minutes a
week, split into two sessions during the first term, but, after the researcher's
request, merging the sessions to one 75 minute session each week for the
rest of the year. The teacher ("F") responsible for the club (teaching E.F.L. in
the school) had had some experience of using Logo with young children
elsewhere. At the outset of the club activities, the researcher and teacher F
established guidelines to encourage an informal, group work classroom
atmosphere. The researcher visited the club three times during the year
administering structured tasks as a means tc monitor the children's progress
in Logo programming and carry out preliminary investigations of the nature of
the geometrical notions the children were using to solve the tasks. The latter
investigation continued as a result of a fourth "batch” of structured tasks given
to the children prior to the study, at the beginning of the year 1986/87.
Furthermore, as a means of acquiring a personal experience of the classroom
atmosphere created during the club sessions and in order to contribute to the
encouragement of a child - in - control spirit, the researcher undertook the
running of the club during his second visit in March 1986 for 15 hours in total,

the children having had 13 hours of Logo sessions prior to that.

The children programmed in "direct - drive" for 5 - 6 hours, used the REPEAT
command and procedures for the following 25 hours and variable inputs for
12 hours (hard copies of their procedures saved on disk were kept). The
researcher and teacher F attempted to introduce the new programming
features in a meaningful way by linking their function to experiences the
children had had in recent activities. For example, the researcher introduced
the notion of variable during his second visit, as a means to change the size
of a house, a project which the majority of the children had chosen to engage
in. Apart from the occasions of the introduction of new Logo commands, F and

the researcher were keen not to direct the children's activities.
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THE CLASSROOM ATMOSPHERE

At the end of the year, the researcher felt that his skepticism concerning the
formation of an informal classroom environment was well - founded.
However, the children did show signs of taking control of their projects and of
learning the rules of a social game which was new to them, i.e. that it is
legitimate and often rewarding to try to solve problems, that cooperation in
small groups is accepted and encouraged and that the object is not to solve
something set by the teacher, but to engage in something of personal interest.
A brief description of this process is presented below, in section 5.3.2 and an
outline of the data on which it was based is given in section 5.3.1.

.1 Collection of da

The following data was collected in order to form a picture of the classroom

atmosphere:

- The "Pupil profile" questionnaires, adapted from the Logo Mathematics
Project (Hoyles, Sutherland and Evans,1985). These were filled in by F as a
result of her impression of each pupil in the club in cooperation with each
pupil's Greek teacher (appendix A.1).

- The "Pupil questionnaires”, which were also adapted from the same source
as the "pupil profiles”, translated into Greek and answered in writing by the
pupils. The questionnaires concerned the pupils’ attitudes to the Logo club
and to Mathematics (appendix A.2).

The profiles and the pupil questionnaires were filled in during the
researcher’s first visit to the club (December, 1985).

- At the end of the school year, the children wrote an essay consisting of their
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opinions on their experiences concerning the club.

b) Data collecte e end of each session where a licable

- Throughout the year, each pupil spent the last five minutes of each session
answering a brief questionnaire (the "Logo log"), adapted from the Logo
Mathematics project and translated into Greek, concerning his/her
perceptions of his/her activities during the session (appendix A.3).

- A "Record sheet" was filled in by F at the end of each session regarding her
perception of the activities of each group of pupils. It was adapted from the
Logo Mathematics project and modified during the researcher's first visit to
the club (appendix A.4).

- Hard copies of the children's procedures were kept, when a group would
save procedures on disk

- During his undertaking of the responsibility for the sessions, the researcher
kept notes (immediately after each session) regarding his impression of the
classroom atmosphere

Through his experience as participant observer, the researcher identified
indications of the following difficulties the children had with taking contro! of
their learning:

They would expect the teacher to provide the answers to almost any problem.
Their initial reactions to a problem would be to raise their hand and wait for
the teacher to come and solve it. They seemed to find it hard to realise that a
large proportion of the problems they met could be solved by them, if they
thought and discussed them. They would treat the outcomes of their activities
on the screen as "right" or "wrong", rather than part of some process. There

103



were difficulties in communicating ideas and suggestions within groups. They
would not readily take initiatives to start off new projects, often asking the
teacher to provide the ideas. They seemed impatient with problem situations
often abandoning a goal at the first difficulty. They would not readily expand

or elaborate a project they were more happy to start on a new one.

However, throughout the year, the children's independence from the teacher
seemed to grow, encouraged by teacher F's and the researcher's attitude of
not providing ready - made answers, encouraging the children to solve their
own problems and responding positively in such instances. Moreover, their
written responses from the Logo logs indicated a substantial degree of
enjoyment during the sessions and progressively more articulate and precise
descriptions of what they had done in a session and their plans for the next
session. The latter issue, i.e. the increasing explicitness of their plans, seems
to suggest that the children were developing an increasing awareness of a
continuity of a project through more than one session, which was not the case
from the start.

The record sheets supported the indications that the children were highly
motivated throughout the year, although it was difficult to determine the
influence of the "novelty" factor and the social "status" of the Logo club
children within the school, who were the only ones using the computers at the
time. However, the groups did engage in self - set projects, teacher F's
impression through the record sheets being that there was an increasingly
high degree of involvement and awareness of what was "going on" during a
project within each group. The children's essays at the end of the year
provided some indications of personal involvement in meaningful situations

as is suggested in the following extracts, translated from Greek;

Maria: "When the lessons were finished | felt | had a very good time we had
fun, we learned and the most important we are looking forward to the new
year to learn more. The computers are not simply machines they need your

brain and your patience to work."
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Valentini: "...we did not only learn to make shapes with Logo. We knew many
more things. By the end of the year we had learned to use our brain more
practically and above all, to cooperate... because without realising we

discussed, we thought, in a few words we learned to cooperate.”

The indications of the children's progressive acceptance of the open - ended
classroom dynamics were important for their subsequent participation in the
case - studies of the main research, where the activities involved an interplay
between researcher - set (but open - ended) tasks and personal projects. The
children's relative readiness to take control of their own learning provided the
researcher with a rich data base for the investigation of the nature of such
learning. It also gave more meaning to the results, due to the children's
learning through their experiences with the case - study microworlds by

causing self - initiated changes in mathematical situations.

H R MN T AT

The researcher felt that the data collected by means of the record sheets and
the procedures saved on disk, showed only end results of the children's
programming, rather than process. It was therefore decided to administer a
structured task (the "Four squares" task, adapted from the Logo Mathematics
project) to the children on all three occasions of the researcher's visits and to
collect more detailed data - by means of the dribble files technique - of all the
children's typing in their attempts to solve the task (fig. 5.1). During the first
visit the tasks were given to the children in pairs, to solve collaboratively (see
appendix A.5). As a result of a preliminary analysis of the data, however, it
was decided that information on the children's individual programming wouid

give a considerably clearer picture of their conceptualisations of the task.
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Fi re 5.1 The "Four S uares" task

During the second visit, the researcher gave the four squares in a verical
formation, to reduce the element of children using the same strategy because
they "remembered" what they had done in a previous occasion. On both
second and third visits, the researcher did not mention procedures or other
programming techniques, and told the children they could solve the task in
any way they liked, when queried on this issue. The four squares were
accordingly given (printed on paper) to each child to construct on a computer
(appendix A.5). One teaching session was available on all occasions, and a
hard copy of the dribble file for each child was kept. During the third
administering of the task, programs were employed so that the dribble file
would show the contents of the editor and thus enable the researcher to trace
the children's "debugging" or developing of their procedures. These

programs were from then on used throughout the research.

42R  vance he res Itsto he main research.

The analysis of the data regarding the children's strategies to construct the
four squares yielded two main points in relation to the main case - study
research. Firstly, that the children's programming was not atypical of that
concerning similarly aged children with similar experience, reported in other
studies (Noss, 1985, Hillel, 1986). Although replicability was not within the
objectives of the study, the researcher's awareness of the children’s
programming styles and strategies provided him with an insight into their
behaviours during the case - study research. A more detailed account of the

children's programming strategies can be found in appendix H.

Secondly, it became apparent that for the purposes of interpreting the
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children's activities during the case - studies, a distinction between the
programming aspect and the geometrical aspect of their strategies would be
useful. Consequently, during the analysis of the data from the main research,
the geometrical notions the children used in order to construct figures, and
the programming strategies they employed (e.g. using procedures or

subprocedures and modularity) were considered separately.

ILD E F ME N N

The researcher administered a series of structured tasks involving
interconnected geometrical figures (squares and rectangles) on each of his
three visits (see appendix A.6). As in the four squares task, from the second
visit onwards the tasks were given to the children individually to construct on
a computer, and dribble files of their typing were kept. A fourth administering
of the tasks was carried out prior to the main research, at the beginning of the
following school year, 1986/87 (fig 5.9).
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Fi ure 59 The s ructured tasks administ red riorto the main stud

An informal analysis of the data indicated that the children's programming
strategies were comparable to those employed in the "Four squares" task.
However, the children did not perceive modularity in the task figures to the
extent exemplified in the "Four squares” task. This finding corroborates the
results from the Logo Mathematics project, where Hoyles and Sutheriand
reported that children tend to see modularity more easily when the modules
are disconnected from each other. Furthermore, during the fourth
administering of the tasks, the children's programming was not quite up to the
level achieved at the end of the previous year, possibly due to the long
Summer break.

The analysis of the data, however, supported the argument which emerged
from analysing the data from the "Four squares” task, i.e. that a distinction
between the children's programming and the geometry they used would be

useful in interpreting their strategies during the main research. Moreover, the
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analysis of the children's attempts to solve the tasks shown in figure 5.9,
contributed to the researcher's decision to use two further distinctions to
interpret the main study data.

Firstly, the children's identifying with the turtle did not necessarily mean that
they used the geometrical notions embedded in turtle geometry; they often
drove the turtle on the screen by "trying out" inputs to turns or moves in a
perceptual way, a strategy reported also in other research (Kieran, et al,
1986). Leron described this phenomenon as follows; "...the turtle may be a
'maths speaking creature', but we cannot automatically assume that the
children always listen to what it is saying..." (Leron, 1983, p.349). The
researcher found it useful to distinguish between the children's "turtle
schema", i.e. the schema formed and employed in their identifying with the
turtle, and the geometrical notions embedded in changing the turtle's state,
which the children used, or ignored.

Furthermore, for the purposes of this study, the geometrical notions the
children used during their attempts to construct the figures in the structured
tasks, are characterised by the geometrical system in which the notions
belong (an analysis of these ideas is presented in chapter 3). In changing the
state of the turtle, therefore, a child could either use;

a) perceptual cues,

or a geometrical idea belonging to;

b) intrinsic geometry,

c) euclidean geometry,

d) cartesian geometry.

Although the children were programming in the "standard" Turtle geometry
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using an intrinsic notion

generating squares
’ by iterating

move and turn

sequences

using a euclidean notion

placing a cross at the
centre of a square

using a cartesian notion

placing a figure at the
centre of the screen

the turtle’'s heading is signified by an arrow T

the turtle’s position is signified by a dot e

Fi ure 5.10 Exam les of usin intrinsic euclidean and cartesian notionse
while constructin a structured task
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environment, there were indications of all four cases in the data from the
structured tasks. That is, the children would use ideas involving plane
relationships between points, line segments or figures (euclidean ideas), or
ideas involving some awareness of the plane (cartesian ideas), in the sense

discussed in chapter 3. An example of each case is given in figure 5.10.
56 CONCLUSION

The classroom environment generated in the preliminary study provided the
children with experience of taking control of their own learning. The
researcher was thus able to choose children from the club so that
encouragement for such learning in the situations generated within the
microworlds of the case - studies, would be meaningful for the children.
Furthermore, the personal working relationship established during the
preliminary year between the researcher and the children, and the
researcher's insights into each case - study child's thinking played an
important part in the generation of an investigative atmosphere during the
main research on the one hand and in the interpretation of the children's
behaviours on the other.

The analysis of the data on the children's programming strategies to solve
structured tasks enabled the researcher to clarify his ideas on the meaning of
children's behaviours during the main research. Aiming to illuminate the
nature of the schema the children formed in identifying with the turtle, he
decided to initially perceive of the schema independently, without pre -
determining what mathematics the children might use when driving the turtle
on the screen. It was also decided, to analyse the geometrical aspect of the
children's activities a< distinct ﬁﬂ?m the programming aspect. The
researcher's perspective was that the distinctions of programming strategies
from mathematical strategies on the one hand, and the turtle schema from the
three geometrical systems on the other, would be valuable tools for

interpreting the data of the main research.
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The preliminary study was consequently crucial in establishing a general
framework for analysing the data and in enabling the refining of the main
research issues formulated in section 4.2.2.

112



CHAPTER 6

FROM INTRINSIC TO CARTESIAN GEOMETRY

RE EAR HDE N

As discussed in chapter 2, Lawler's research illustrates a substantial degree
of disparity between Intrinsic and Cartesian geometry for a six year old child,
by describing her failure to form a "microview" about the latter, based on her
persona! / turtle geometry microview (section 2.2.7). Lawler also illustrated
the child's reluctance to abandon the use of her intrinsic "thinking schema"
and use a different conceptual base (he used the term "ancestral microview")
to make sense of cartesian concepts.

As discussed in chapter 4 (section 4.2.2), the general aims of the study

presented in this chapter were to investigate issues 1 and 2, i.e.

1) the nature of the schema children form when they identify with the turtle in

order to change its state on the screen, and

2) whether it is possible for them to use the schema to form understandings of

certain basic geometrical principles of the cartesian geometric system,;

The method employed involved the encouraging of the development of three
separate learning sequences, one pair of children participating in each
sequence. All three sequences were designed to invite the forming of links
between intrinsic and cartesian methods of changing the state of the turtle.
However, a different conceptual base for describing the plane was embedded
in the initial part of each sequence, thus inviting the forming of different links
between intrinsic and cartesian geometry. All the sequences (the word

"paths” is also used to denote the general progression of the embedded
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notions from intrinsic to cartesian geometry) consisted of three "categories" of

activities (fig. 6.1.1). The specific research objective for each category was:

aim of category 1: to illuminate the process by which the children formed

understandings of a systematic description of the plane;

aim of category 2: to illuminate the nature of the children's understandings of
the absolute coordinate and heading systems, while using a non - intrinsic

method to change the turtle state in the coordinate plane;

aim of category 3: to investigate if and how they used their intrinsic schema to
relate intrinsic and coordinate notions while choosing a method of changing

the turtle state in the coordinate plane.

1.2 verview fthe tasks.

The activities designed for the three pairs of children who participated in the
study were split into three categories (fig. 6.1.1), in accordance with the above
task - specific research objectives. Each pair of children started from a
different set of activities in the first category, before progressing to the
common activities of the second and third categories. Figure 6.1.1. illustrates
what the screen looked like during each activity and the commands available
to the children for that specific activity. An analysis of the specific tasks
involved in each activity is given as an introduction to the presentation of the
findings of the respective activity (sections 6.2.2, 6.3.2, 6.4.2, 6.6.1 and 6.7.1).

The general aim of the first category of activities, was to illuminate the
children's formation of three different "conceptualisations" of notions involved
in the description of the plane. The activities involved locating positions on

the plane in different ways, according to each pathway. The first pathway
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(path 1, fig. 6.1.1) involved placing points on the Cartesian plane, in a
coordinate non - action environment (no visible turtle). The aim was to
investigate the way the children made sense of the method of locating and
the numerical naming system. The second pathway involved joining points of
a grid with a "chess - type" naming method, by using a turtle equipped with
angle and length measuring instruments (i.e. the DIRECTION and
DISTANCE commands, see chapter 3), in order to find out the way the
children integrated notions of the locating method to their intrinsic schema.
The third pathway involved the construction of a simple grid by the children
themselves with the use of the POST/DISTANCE/DIRECTION (P.D.D.)
microworld (see chapter 3), and subsequently their use of this grid to make
shapes by joining its points with the turtle. The aim was to find out what
meaning the children gave to constructing and using a description of the
plane, and to illuminate how they used their intrinsic schema to make sense
of the grid's geometrical properties.

12b o 2

The aim of the second category was to investigate the process by which the
children developed an understanding of a non - intrinsic controlling of the
turtle which required the use of ideas belonging to coordinate geometry (fig.
6.1.1). The investigation concentrated both on how the children made sense
of using the coordinate system to control the turtle, and on the ideas they
used to explain the issues involved. The tasks initially involved taking the
turtle to specific locations in the coordinate plane using commands which
refer directly to the structure of the absolute coordinate and heading systems
(i.e. SETH, SETX, SETY). The second part of the tasks involved the use of
commands referring directly to the locations themselves (i.e. SETPOS, SETH
TOWARDS) for taking the turtle to locations and measuring the distance
between them, using the DISTANCE command.
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6.1.2c Cate o 3

The third category aimed at illuminating the process by which the children
developed an integrated use of intrinsic and coordinate notions in performing
actions which required choosing the method of controlling the turtle in the
coordinate plane. The task involved driving the turtle in the coordinate plane
and making angle and linear measurements between locations (fig. 6.1.1).
The available commands provided a choice between employing intrinsic or
non - intrinsic notions. The investigation concentrated on two levels of
notions: firstly on the interplay between static and dynamic interpretations of
lengths and angles, and secondly on the interplay between intrinsic and
cartesian notions used to perform actions and collect information (see section
6.1.3).

.1.3 Anal sis of the conce tual field
"T 1 inh Pl T w

This study is based on the develop: ment of three different conceptual
pathways from intrinsic to coordinate geometry. The embedded geometrical
notions in the activities of the learning sequences were initially of a different
geometrical nature, thus forming different microworlds. However, all three
sequences concluded with activities within the same final microworld, where
the turtle can be driven in the coordinate plane, preserving the two - fold
heading and position state, but allowing for a choice of intrinsic or non -
intrinsic control of the turtle (fig. 6.1.1, category 3). For reasons of clarity, this
section deals with analysing the way in which the final microworld (i.e. the
T.C.P. microworld) involves notions from both representational systems. The
microworlds in the category 1 and 2 activities involve specific sets of notions
forming bridges from one geometry to the other. Although these notions
become apparent from the analysis in this section, they will be explicitly
described, in the "task analysis" sections.
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At this point, however, it is important to analyse the differing nature of; a) the
notion of the state of the mathematical entity, b) the method for changing the
state of the entity and c) the extent of awareness of the plane, in the two
geometries, in order to clarify the ways of controlling the turtle in the T.C.P.

microworld.

.1.3a Chan e of state.

As discussed in chapter 3, in Turtle geometry, the state consists of position
and heading. Changing the state requires an action (move or turn) followed
by a quantification of that action. The action describes the nature of the
change which is about to take place (i.e. change of position or change of
heading), while the quantification is dependent on the action (e.g. in RT 90,
the 90 degrees refer to the turn rather than an absolute system of describing
the heading on the plane).

In any coordinate system (e.g. Cartesian or Polar) the state (position or
heading) of any point can be described in an absolute way. The description is
relative only to the origin of the plane, and is independent of previous states.
Therefore, changes in such a plane can be performed by an absolute
description of the end state of the change, i.e. the important factor in a state -
change moves away from the point itself, and rests on the location
descriptions. In the coordinate plane, the mathematical entity (the point) can
be fully described by its position. Action ceases to have much meaning, since
to change the state, a description of the new location suffices (e.g. in

SETPOS 30 40, heading, turn, backwards or forwards are meaningless).

The intrinsic nature of Turtle geometry restricts mathematical awareness of
the space around the mathematical entity (i.e. the turtle). The turtle's state is

uniquely defined by the immediately previous state, i.e. the heart of Turtle
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geometry is the nature of the state itself, changes are generated by the turtle's

own actions.

On the contrary, awareness of the plane is what Coordinate geometry is all
about. The nature of the mathematical entity has no special meaning since
changes happen by describing new locations. The description of the
coordinate plane is absolute (does not depend on the entity) and systematic,

and is a very important part of the geometry itself.

h inh T Pm w

In the T.C.P. microworld, the turtle has the ability to make measurements with
the DISTANCE and DIRECTION commands. Changing the turtle's state can

therefore be achieved by the following sets of commands:

set a) FD, BK, RT, LT, some quantity;

set b) DISTANCE "name",
DIRECTION "name",

where "name" is the two coordinates of a point;

set ¢) SETH "value",

SETX "value",

SETY "value",
where "value" directly refers to the structure of the absolute coordinate and
heading systems;

set d) SETH TOWARDS "name”,
SETPOS "name",

where "name” is the two coordinates of a point.

The commands in set a) are intrinsic, the quantification depending on the
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action only (e.g. FD 30 means "forward 30 steps"). Combining the commands
in sets a) and b) preserves the action - quantification characteristic, but the
guantification can be determined by the relationship between the present and
the desired state of the turtle (e.g. "PR DIRECTION 30 -30" outputs the
guantity for a right turn from where the turtle is to the point 30 -30). The state
of change does not have to belong to the turtle's path (as in the P.D.D.
microworld), there is an absolute system of describing locations. The method
of controlling the turtle is substantially different in the c¢) and d) sets. What
causes a change of state is the word SET, which in this context, logically
implies the description of the state of change via an absolute method for such
a description. Consequently, there is no action element from the current state
to the desired state, and therefore no quantification of an action, but a name
(a description) of the desired state only (e.g. SETPOS 40 40 changes the
position by simply describing the end position of the turtle).

Moreover, in Coordinate geometry, the state of the point can be fully
described by its position, which makes the heading redundant (e.g. SETPOS
can move the turtle in a direction which is different to that of its heading). The
purpose of the T.C.P. microworld is to provide an environment where there is

a close interdependency between intrinsic and coordinate notions.

Consequently, a factor which is mathematically superfluous, but "binds" the
two geometries together was imposed: in order to change the turtle's position,
it has to be facing towards the position of change. This factor imposes a
heading and position state for the T.C.P. microworld's entity, the turtle. For
example, to take the turtle from a zero heading and a (0 0) position to point
(-20 90), there is a need to turn the turtle to face towards point (-20 90) and

then change its position, otherwise an error message appears on the screen.

The children in the study were provided with the T.C.P. microworld only as the
final activity of three initially differing conceptual pathways, whose research

aim was to illuminate on the one hand, how they might make sense of
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different categories of concepts belonging to Coordinate geometry (initially,
either by incorporating their intrinsic schema or not) and on the other, how
they progressively integrated coordinate and intrinsic notions according to the

respective pathway.

4M h

An illuminative approach was employed for the case study of each pair of
children, under the general principles discussed in chapter 4, with the
researcher as participant observer. The learning environments were
designed so that the children's activities would on the one hand be relevant
to the research issues and on the other would increase the likelihood of
revealing their thinking processes. In this sense, designing the T. C. P.
microworld, and the conceptual pathways leading to it, had a two - fold aim;
that of creating learning environments and that of using those environments
as research tools. The role of the researcher was accordingly two - fold, i.e.
participating in the pedagogical component of the microworld (Hoyles and
Noss 1987b), and carrying out the research.

The pilot study consisted of two phases. The preliminary phase invoived
trying out the microworld programs, the new primitives, and a rough trial
structure for the three pathways. As a result of the preliminary phase, a trial
structure of the learning paths was designed and tested out in a detailed main
pilot study.

4 Th m

The main pilot study took place in an English school, employing the structure
of the main study, i.e. three pairs of children, with each pair of which the
whole set of the activities pertaining to the respective pathway was tried out.
The research took place in a room with one computer, the researcher and a

pair of children at a time. The children were aged 13, and had had one to
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three years of Logo experience. The research lasted for three school hours
per pair of children (i.e. per pathway). Data was collected by the following
means:

a) all the children's typing using "dribble files" (see section 2.1.3);

b) researcher's notes;

c) audio taping and transcriptions.

The following changes were made as a result of the pilot study:
Global chan es

It was decided that more time was needed for each pair of children in order to
allow the respective experiences and concepts to mature. This would enable
the choice between commands at the final task to be genuine, rather than due
to insufficient experience with a certain set of commands. Moreover, more
time would result in a higher degree of experience with the pathways which in

turn would allow more clarity from a research point of view.

Imposing a position change relative to the heading (see section 6.1.3) was
made clear and stated at the first instance of its use. It was decided that
method of data collection was appropriate, the only shortcoming being that a
clearer picture of what was going on on the screen was essential. Dribble
playback programs were therefore implemented; after the end of a research
session, the option to activate the dribble playback program for the dribble file
collected during the session, provided the researcher with the opportunity to
pause the playback and make a printout of the screen representing the state
of affairs at specific moments of the session.

The programming needed for the setting up of the activities was improved
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from the points of view of clarity to the user, efficiency and practicality.
Transferring the programs from the B.B.C. machine which was used in the
pilot study to the APPLE 1IC used in the main research was no trivial task (e.g.
for the APPLE machine, there is no way of linking the text screen to the
graphics screen to make labels). However, Apple Logo Il enabled the
redefining of primitives which made the microworlds much more consistent
with the Logo syntax (e.g. FD outputs "I DONT KNOW HOW TO FD" (appendix
C) in appropriate cases such as the activities in category 2, fig. 6.1.1). The
implementation of colour was also used, mainly in order to counter screen
resolution deficiencies by using a different colour for graphics with different
meaning, i.e. labels, plane description lines, turtle path, location
representations (x - signs). Certain changes were made in the researcher's
intervention strategy in order to clarify and improve the research outcome
(e.g. the frequent encouraging of the children to explain what they were doing
and why, either to their peer or to the researcher).

b Local chan es:

As a result of the pilot study, certain local and detailed changes were made at
task or activity level. For example, in the path 1 initial activities (fig. 6.1.1), the
children could place points (i.e. x - signs) on screen locations and join them
up with lines with the DODOTS command. The DODOTS command was
altered so that the figure did not close automatically unless there was a
placing of a point to do so. In the path two initial activities (fig 6.1.1), the gric
was named systematically (instead of A, B, C, etc.), in order to incorporate the
concept of systematic naming of points on a plane in this pathway. In the
coordinate plane representations, the coordinate axes were extended to the
edge of the screen, to avoid misconceptions regarding the infinity of the
length of the axes. In all the activities where axes appeared, the calibrating
markings were changed to lines of two sizes, in order to make the counting
clearer and therefore avoid mistakes that were due to screen effects. The

introduction to the activities of the second category was changed in order to
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make them more interesting to the children.

6.1.4b The main stud

The main study involved three pairs of children from the logo club, Natassa
and loanna, Maria and Korina, Anna and Loukia. The research was carried
out during school hours in the research room. Each pair of children
participated in three 90 to 120 minute sessions in a total period of no more
than a week for each pair. During the research, the children participated
normally in their Logo club and school program Logo activities. The machine
and the Logo version used for the research was the children's familiar (from
their school activities) Apple [IC and Apple Logo !l respectively. During the
research sessions, they were faced towards the machine, the researcher
seated behind them, so that their collaboration was unrestricted unless there

was an intervention from the rearcher (they had to turn round to face him).

The research data consisted of;

a) audio taping of everything that was said,

b) soft and hard copies of verbatim transcriptions translated in English,

c) soft and hard copies of everything the children typed,

d) hard copies of graphics screen dumps by playing back the dribble files,
and pausing them to print,

e) researcher's notes and children's prompted and unprompted notes on
paper.

During the whole of the research, the children had paper and pens in front of

them to use if and when they wanted. The researcher's notes consisted
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mainly of recording observations that would otherwise slip through the
mechanical data collection net, e.g. the children often used their fingers to talk
about screen locations, either when responding to research questions or
spontaneously. A record of precise moments of spontaneous use of paper
and pen was also kept. When the children spoke words in English (e.g.
names of commands), the words were transcribed in capital letters. The same
convention is used in the presentation of data throughout the study. The
dribble playback facility was used for numerous graphics dumps which,
together with the hard copies of the children's typings facilitated the

transcription of the audio tapes.
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6.2 CATEGORY 1 ACTIVITIES NATASSA AND IOANNA
F RMIN A HEMAF RTHE RDINATE Y TEM

Th hl n

Natassa was characterised by her teacher as a hard worker, but
"irresponsible in her actions and thoughts”, i.e. that she was far from
achieving her potential in school. She was classed as an average student in
general and in mathematics, lacking initiative in her classroom activities.
During the first Logo club year, her teacher F., believed that "through working
with Logo she is beginning to show far more initiative in every day matters".
The researcher believes that negotiating with her peers (Loukia and loanna)
helped her gain confidence in arguing a point in a constructive way. This is
supported by her opinion on what she gained from her Logo club experience:
"With this club, | learn to think and to cooperate. | learn to work out solutions
more easily and quite quickly." However, although she seemed to be
confident with ideas she understood, she felt rather "unsafe" with
experimenting. Her programming attainment in the structured tasks
throughout the preliminary year was above average compared to the other
children in the club (her strategy in the Four Squares task is represented in
figure 5.2, E and F, appendix H)

loanna, although well motivated, was characterised by her teachers as a
below average student. At the beginning of the year 85 - 86, her teacher said
"she was all over the place"” (i.e. disorganised), and had some problems in
communicating with her peers. She was not a dominant personality and in
her Logo club group, preferred to discuss with her peers (Loukia and
Natassa) and compromise as to what is to be done - she would often be upset
when they were not prepared to do so. However, although initially she
showed a lack of initiative to pursue a Logo investigation, her perseverence
grew substantially during the year. Furthermore, she showed progress in her
programming, characterised by a "shift" from group C to group F in figure 5.2,
appendix H.
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22T

The activities involved placing points on the coordinate plane by naming
locations and joining the points up with lines, in the order in which they were
placed on the plane. Initialising the program resulted in the coordinate axes
appearing on the screen, callibrated in units of ten. There was no turtle and
no movement on the screen throughout the activities, nor were there any
labels. There were only two commands that the children could use, PLACE
and DODOTS, which were given to them on paper. The first word placed a
point on the plane, denoted by an x sign. The inputs to PLACE were the two
cordinate values and the numerical order of this particular point. DODOTS
joined the points up in the order they were placed (fig. 6.2.1).

(2)

PLACE -80 0 1

PLACE 0 80 2 (1)
PLACE 8003

PLACE 0-80 4 (5)
PLACE -800 5

DODOTS

(4)

Fiur 21:N. n .:' n rucin h m

This is a non - action environment, where naming a location causes its
graphical representation (an "x" - sign). Consequently, there is no entity to
give operation (action) commands to, number does not mean a quantifier for
an operation (Logo or algebraic), and the signs do not denote operations.
The sequentiality factor (having no strong relation to coordinates) was
imposed partly in order to strengthen the clarity of the research issues, i.e. to
avoid the "noise" caused by its absence. The way it was embedded in the

task was by the ordering of the named points with numbers, and the slowec
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down visible execution of the DODOTS command. Joining up locations gave
on the one hand a meaningful "drawing shapes" element to the activity, and
on the other, an insight into the children's mental image of planned figures,
i.e. the finished version as a consistent reference or imposing a mental image
with intrinsic characteristics by "constructing” the shape in their minds in a

step by step manner as they are placing points on the screen.

The beginning of the activities involved explaining the coordinate system and
the use of the two new words to the children. The third input to PLACE was
explained as denoting sequentiality, the researcher making sure that the
children distinguished the meaning of this input from the coordinate values.

After a few "nudges" from the researcher while the children tried out placing
points of their choice, they were asked to carry out projects of their own. Their
choice of "real - life" (e.g. a bow - tie), abstract (e.g. square, circle) or non -
planned projects and their strategies for making sense of and using the
coordinate system in meaningful contexts was in focus during the
researcher's investigation on the nature of the "thinking schema" they would
adopt.

Fin

6.2.3a Focusin on coordina loc ns versus focu n on coordinate

A

After being introduced to the "mechanics” of the coordinate system (axes and
their names, 10 unit calibration, plus and minus regions of axes), and to the
locating and naming method in the context of using the PLACE command, the
children's strategies for the several trials they made of placing points on the
screen, fell into two broad categories:

a) in focusing on the location first (e.g. by putting a finger on the screen)
and then finding out the coordinates for that location (e.g. by
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"counting” while a finger remained on the location) and,

b) in focusing on the coordinates as numbers or values, and then
looking to see where the location was. Typing numbers in was done
either supposedly at random, or with a focus on particular number cases (e.g.
comparing 130 0 with 130 -0).

The first project was a rhombus, which the children drew on paper
beforehand, and then placed the points on the screen in a clockwise manner,
starting from the left hand point, i.e. -80 0. Their predominant strategy was to
point at a location and then find the coordinates for it. This was a first
indication of the children using a "sequentiality" schema, i.e. realising that the
order in which the points were placed was directly linked to the final effect.
This is illustrated by loanna's comment when they had placed the fourth point
(0 -80), and were considering using the DODOTS command:

I: "No, it won't close, we should go back to the beginning.” (fig. 6.2.1)

The children carried this "sequence" schema on to their next project, the initial
plan for which was to make a circle inside the rhombus, but which, after the
three first points turned out to be in a vertical formation, changed to a bow -
tie. The interest here lies in the planned method for constructing the circle (fig.
6.2.2a), i.e. starting from the left and placing one point after another
progressively closer with no particular focus on equal distance from the
centre (the children drew the point at the centre as an afterthought), and how
this sequential circular formation was applied in the construction
of the bow tie (fig. 6.2.2 a,b,c).
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3
PLACE -30 -30 1 X ’ \2« /
PLACE -30 02
PLACE -30 30 3 / \
5
X 6
(c)

c

It is suggested that this formation for the circle resembles the
sequentiality characteristic of the "intrinsic" Logo method for
constructing circles, with which the children had ample experience in their
club and normal class activities. However, the children did apErentIy attempt
to incorporate the notion of equal distances from the centre when they gave
equal values for the x coordinate (-30) for the first three points (fig. 6.2.2b). It
seems, therefore, that lack of understanding why the first three points were in
a vertical straight line formation, was due to a confusion between a fixed
distance of a point in the plane from the origin and a fixed value for the
partially locating x coordinate. The bow tie construction had the characteristic
that there was no need to "bring in" a property or an idea with which the
children were not comfortable; it only involved the sequential placing of one
point after another in a "circular" fashion (fig. 6.2.2¢). It may be therefore, that
this method for constructing the bow tie was an "extension" of
their strategy for the circle, i.e. one which did not involve taking into
account a property which the children were not clear about in this context.
This is supported by the fact that for their next project, which was a large bow
tie in a clear plane, the children did not place a point on the origin, adopting a

strategy resembling the figure "8" horizontally (fig. 6.2.3).
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(-80 80) (80 80)

3
(-80 -80) 4 (80 -80)
Fi :"Th
fr m

During their first bow tie, the children adopted the method of concentrating on
the location first, by placing a finger on the precise desired point (e.g. -30 30),
and then finding the coordinate values for it by keeping one finger on the
point and "counting" on one axis at a time. Their concentration on the locating
method persisted till the end of this figure. However, in the large bow tie (fig.
6.2.3), there was a shift of focus in the locating method from the first point (-80
80) where the children again counted on the axes, to realising that the values
for each point would either be 80 or -80. They therefore concentrated
more on the plus and minus regions of the axes, rather than the
values themselves.

2 d Dev lo in ameho te co rdina val es 1on

The children then decided to place some points "at random" i.e. without any
pre - specified plan for a shape. The researcher asked the children to show
the positions on the screen after the respective numbers had been typed but
before the children pressed the RETURN key. The children, used to being
asked to provide factual answers, attempted to incorporate
simultaneously, three separate issues:

a) the order of the axes,
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b) the regions denoted by the signs and;
c) the meaning of the numbers, regarding the location.

This seemed a difficult task for the children. For example, for point 33 99 they
pointed at a possible 99 33 point, presumably getting the order of the axes
wrong, but the meaning of the numbers and the axis regions right. Also, at -0
-98 they pointed at a point around -50 -98, disregarding the meaning of the
number in the first coordinate. However, towards the end of the
session, the children started to pay more attention to the method
of reaching the right location, by counting on one axis and holding their
fingers on the spot to count on the other. They seemed to discover for
themselves that what was needed was not a speedy answer, but a correct
one (the researcher did not change the way of asking the questions), and the
means for that was a method with which they were starting to feel more
comfortable.

The children "fell upon" the notion of symmetry for the first time, in their project
to make the letter A (fig. 6.2.4).

, (090)

(-50 0) (50 0)

(-80 -80) 3 (80 -80)
Fiu 6.24:N.an .: Thele er"A"

They placed the three first points on the screen (-80 -80, 0 90, 80 -80),
thinking about the locations first and then putting in the values. Natassa's
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reason for the 90 value in the second point was to make the letter large and
for the third she was quite fluent in what seemed to be an implicit use of the
notion of symmetry regarding the y - axis. She used the notion again later, to
place the final point of the letter A, i.e. to make the line (50 0) (-50 0). In these
two instances, Natassa seemed to focus on the location of the symmetrical
point first, and then think about the coordinate values. However, it is
suggested that after the second time she noticed what happened to the actual
values of the coordinates and formed a theory on those values, of how to
make symmetrical points regarding the y - axis: by changing the signs in both
values. She tried to implement this theory in their next project, a star, having

placed the (-60 60) point and wanting to locate its symmetrical (fig. 6.2.5):

N:"Now... PLACE... 60 -60, i.e. the opposite... and you'll write 5 too in the end
(fifth placement). Now... you'll write... why did it go down there? I told it... 60
from here and -60... right. Oh, | should have said 60 60."

(0 90)
(-60 60) (60 60)

(-80 -80) 1 3 (80 -80)

Fi ure6.2.5:N.andl. : The"S

It is suggested that Natassa's confusion was due to lack of
discrimination between the algebraic meaning of the signs
("...opposite...") and their coordinate meaning, i.e. regions of the
axes. When she realised her mistake, her focus was back on the location

and not on the number values.

The children's first reaction to the problem of finding the location "half way"
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between the second and third point of the letter A (fig. 6.2.4), was typical,
taking into account their minimal experience with investigative informal
learning (see chapter 5): loanna suggested abandoning the whole project
and doing something else. Encouragement to continue, brought Natassa to

place the following two points: 50 0 and -50 0.

Notice how her mind seemed to work: firstly, she seemed to analyse
the location she was looking for into the two coordinate values.
The 0 value for the y axis indicates that she used her knowledge about
coordinates to place the point on the intersection of the x axis and the
segment (0 90) (80 -80), which was invisible at that point. Secondly, once
she decided upon the 50 0 values, she implicitly seemed to use
(in a similar strategy as before for the points -80 -80 and 80 -80) the notion
of symmetry regarding the y - axis. The only value (x coordinate) which
she did not have a logical method to determine, she used her perception and

made an estimate.

ATE RY 1A TIVITIE MARIA AND K RINA
INTE RATING NOTIONS OF A SYSTEMATIC DESCRIPTION
F THE PLANE INT THE INTRIN HEMA

Th Wl n

Korina's teachers thought she was a very hard worker and above average in
all the subjects. However, it seems that she did not particularly like
mathematics and found it difficult, her favourite subject being language "/ like
Greek because | have more of a vocation for it". She was not particularly
dominant, and preferred to work on her own unless she felt "intellectually
superior" to her partners. During her first Logo club year, the researcher felt
that she did not engage very much in her group's projects and did not really
attempt to have a go at the keyboard. Both her peers were boys, one of them
was keen, but of equivalent everyday classroom "ability". However, the

researcher believes that Korina improved in her degree of participation, after
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he encouraged the group to cooperate more closely “we learned to cooperate
as a team and say our opinions to the others. Also to take initiatives and not to
listen to the others only”. During the preliminary year her programming to
solve structured tasks never went beyond direct - drive. However, in the final
"batch" of tasks immediately prior to the beginning of the main research, she
showed clear evidence of using the geometrical ideas involved in the tasks

and being in control of the commands she gave to the turtle.

Maria was characterised a weak student by her teachers. She seemed rather
nervous and hesitant in her interactions with her peers, but was not a passive
member in her Logo club group. At the beginnng of the year, she said she
would prefer to work on her own and in her Logo group she did not get much
hands - on experience, her peers being more dominant. However, in the
essay she wrote at the end of the year, she described the club's activities very
explicitly and summatively showing on the one hand, quite a high degree of
engagement, but on the other, that her perception of her role in the computer
room was that of a member of the club rather than of her group. Although her
programming in solving the tasks did not involve the use of procedures, from
early on she showed evidence of being in control of navigating the turtie and
of using the geometrical ideas embedded in the tasks. Furthermore, her

confidence distinctly increased during the last "batch" of structured tasks.

2T

These activities involved using length and angle measuring instruments to
make shapes with the turtle, by joining points on a simple grid with a "chess -
type" system for naming locations. Initialising the program draws a 4 x 4 grid
of 30 turtle unit squares, the turtle at its centre (fig. 6.3.1). Single numeric
(vertical) and letter (horizontal) labels appear on the screen. Naming ¢
location requires combining a horizontal and a vertical label (e.g. E4). The
children could use the following commands which were given to them on
paper: PR DISTANCE name, PR DIRECTION name, FD DISTANCE name, RT
DIRECTION name, FD quantity, RT quantity, PU, PD.
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A B C D E
Fi ure6.3.1:M.an K. :Iniiai n heta k

These activities involved two new conceptual domains for the children, the
first one being the use of the turtle instruments in simple measurement and
combined "action - measurement" operations (see chapter 7). The second
domain is the method of describing locations. The grid constitutes a

systematic description of discrete plane locations with no origin.

In mathematical terms, the turtle does not know of any other part of the plane
than the 25 locations. It may travel outside the lines formed by the grid but the
only determinant of its path are the locations themselves. The concept of
naming points with numbers and signs is also absent. Although numbers are
involved in the naming process, they are designed so as not to convey an
arithmetical meaning, since they are always joined with a letter (e.g. A1, E4).
The environment is action based with the turtle driven in the plane to draw

figures.

The action characteristic of this environment is directly linked to intrinsic
notions of driving the turtle. The aim of the task is to track the children's
reasoning and the nature of the links they make to prior experience: whether
they maintain a turtle identification pattern and consider everything else
through this perspective, or whether the additional elements of this
environment become the important factors in their programming strategies.
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6.3.3 Findin

6.33 Develo in alocatin method

The realisation that in order to give a name to a point on the screen grid (fig.
6.3.1), one needed to a) combine horizontal and vertical directions and b)
make a name out of two labels rather than one, did not seem to be a trivial
task for the children. When they were first asked to give a name to a point,
they tended to provide a one label answer. The first insight into the naming
method came after they had given the name D for point D4, and were asked

to give a name for D3:

R: "What's the name of that point? (point D3)"

K:"Three.”

M: "It's D because it's vertical...”

R: "Whatis it, D or 37"

M:"D3."

R: "Why D3?"

M: "Eh, because it's in between let's say, it's both D and 3."

It is interesting that the existence of a more sophisticated method
seemed to occur to them only when they came up with a problem
regarding their existing method of single labels, i.e. that they had
the same name for two different points. The children found the new

method satisfactory, having been encouraged to try it out for more points.

Ine ratin meas remenswiththe ¢ n an schema.

Before introducing the measuring instruments, the researcher employed a
technique also used in the P.D.D. microworld study (chapter 7), by asking the
children to take the turtle to a specific point labelled on the screen, in order to
investigate how far they would pursue an "approximation” tactic based on

perceptual cues and to lay the ground for a meaningful introduction to
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measurements. Apart from their lengthy approximating efforts, it seemed
very difficult for the children to realise that there could be some
other method for determining distances or turns than the intrinsic
action - quantity method.

The following incident illustrates the strength of their intrinsic, action - quantity
schema, in their very first use of the DIRECTION and DISTANCE commands.
The researcher had discussed with the children that the turtle has a ruler and
a protractor, as a means to reach a point on the grid accurately. He was about
to tell them about the syntax of the new commands (DIRECTION first) in the
context of taking the turtle from C3 (heading at 0), to D5 (fig. 6.3.1).

Korina did not seem to have yet made a connection between the use of the
protractor and the action - quantity schema; she considered the measuring
instrument as something which would automatically (without realising how)
perform a turtle action:

(R: "So, what do we want to ask her?")
K:"(the degrees)...to get to D5."

However, she soon made an insightful remark, apparently connecting
the protractor with her present strategy for changing the turtie's
direction, and also discriminating the two states of the turtle:

K: "To turn the turtle so that she aims exactly at the place of D5, and, like that,
afterwards..."”

Notice her careful wording: the action is there ("...turn the turtle..."”), but the
determinant of the quantity is an external location (“...at the place of D5..."),
and the reason for using the protractor is accuracy ("...so that she aims
exactly...”). Also, although the final aim is to take the turtle to D5, this is only
the first step i.e. the change of heading. Changing the position is a different
thing ("...and like that, afterwards...").
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Korina's new strategy, however, was challenged by Maria, who's reaction
was to go back to an approximating "perceptual” mode to change the
position. When the children typed in the DIRECTION command and made

exclamatory remarks at the result, Maria's reaction was:

M: "And now let's tell it FD how much?"

K:"FD... fourty...FD..."

M: "If this is 45 this should be..."

K: "But we said we want to arrange with precision how much it should be.”

M: "Eh, then we'll say... we want the ruler.”

It is suggested that Korina initially went back to her old method, but soon
"brought on" her new strategy for state change. It is seen as important that
she seemed to generalise her strategy from direction change and
apply it to position change, and her reason (the phrase "common
denominator” could be used) was to achieve the accuracy that the old method

could not provide.

After practising at taking the turtle to several grid points, the children then
carried out two projects, a square by joining B3, C4, D3, C2 and B3 (fig.
6.3.2), and the letter A by joinning A1, C5, E1, D3, and B3 (fig. 6.3.3). Two
issues will be highlighted here. Firstly the development of the children's
rationale for deciding which state changing method to use, and secondly their
progress from "noticing” certain geometrical properties to using them to
determine the quantities of actions.

For the first issue, a description is given of how the children started off using
the combined action / measurement commands (i.e. RT DIRECTION :D3, FC
DISTANCE :D3). The first incident where they decided to use a geometrical

property and break the commands down in order to use their intrinsic schema
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is then illustrated, followed by a discussion of the progress of such decision -
taking according to their geometrical knowledge concerning the desired state
change.

Having planned the construction of the square by stating the points they
would take the turtle to, the children’'s first decision to use a combined action /
measurement command was in the context of changing the turle's heading
from 0 to face D3, after having taken the turtle to C4 with a FD 30 action -
quantity command (fig. 6.3.2). It is therefore suggested that they did
not simply carry on with the type of command they were using
before (combined action / measurement), but seemed to make a
conscious decision on its use. They adopted this strategy for a while,
turning the turtle, taking it to D3 and back again to C4 (BK DISTANCE :C4)
having forgotten to put the pen down to "draw" the line.

It seems, however, that while the construction of the square was
progressing, the children noticed in an implicit way the
"regularities", or properties of the figure. This is the first incident
where they decided to go back to a simple measurement, and use the

outcome repeatedly, in straightforward action - quantity commands:

(turtle at D3, facing towards C2, fig. 6.3.2)

M: "...but now, to know about the others too (she means lengths) we can ask it
how much..."”

K: "Yes, let's make it appear (she means the measurement outcome) so that
we don't have to bother (waste time)... so PRINT again, PR." (result on screen)
M: "Ah, 42... write it so that we remember... (she writes it on paper) and then
we'll tell it FD.. em... 42...4...2...5...9."
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They then used the same strategy for the turns and finished the square by
changing states with the action - quantity method. For this project, perhaps it
could be argued that the properties of equal sides and turns of a square was
not a great challenge to the children, and therefore they found it quite simple
and straightforward to make one measurement and use it three times in their

familiar action - quantity method.

However, in their letter A project (fig. 6.3.3), where linear and turn properties
were not so obvious, the children surprisingly made intense efforts to
"work out" the quantity in their minds and use it with the move
and turn commands. They developed a strategy of using the instruments
for measurements only when they had a reason to find out the result, and in
combined action measurement mode when they could not work out a quantity
and did not see why the measurement result would be of use to them. The
unexpectedness of their strategy lies in the fact that they did not need to work
out or think about any quantities. They only had to use the combined action -
measurement commands, with which they were quite familiar, and state the
names of points according to desired state changes. It is suggested,
therefore, that the main factor in the children's tendency to work
out the quantities and use them with the move and turn
commands, was the strength of the intrinsic schema in their
minds, i.e. that ultimately, this is what made real sense to them,
and they would only use another method if it had something more
to offer than the old one (e.g. accuracy).
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ASIDE: The large number of decimal places in the numerical outputs
resulting from the use of the DISTANCE and DIRECTION commands could -
with the benefit of hindsight - be seen as a methodological shortcomming.
However, analysis of the data indicated that this did not interfere with the
research issues. Moreover, the researcher asked the children whether it was
a distracting factor and received a negative answer in all cases. This applies

to the whole of the main study, i.e. chapters 6, 7 and 8.

Fr m n m

Indicative of the previous argument, is the relative ease with
which the children seemed to carry the experience of using the
properties of the square, on to their letter A project. Their first
thought in their initial aim to take the turtle to point A1, was to work out the
distance C3 A1 (fig. 6.3.3) by multiplying the number they had found for the
diagonal of a grid square by two.

Another example is their strategy for the turn at the same point. In the square
project, the children had explained the 90 degree measurement outcome as
a two - times 45 degree turn:

(turtle at C2, facing towards B1, the measurement involved the turn from B1
towards B3, fig. 6.3.2)

M: "Because, as it's like that (towards B1, finger on the point), 45 it will go to
the line (finger rotates 45 degrees) and another 45 it will go to the side (finger
rotates another 45 degrees)."

For the turn from zero heading to face towards A1, in the A project (fig. 6.3.3),
Maria used the same strategy of 45 degree finger rotations:

M: "...I'll tell you now... if | turn there it's 45 (finger rotating on screen) and 45
90 and 45... 135. Yes that's right."
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In their square project, the children implicitly seemed to notice and use firstly
the equal sides and then the equal turns property. At the end of the square,
the researcher interviewed them to find out what they thought the property
was and came up with an unexpected answer: the children had not
thought of the "regularity" properties as belonging to the square
under construction, but as belonging to the squares of the
already existing grid. The argument that could be put forward here is that
the grid squares were "concrete" (they existed visually) for the children, since
they were on the screen and they had already had experience of using their
properties when they were practicing the use of the instruments. On the other
hand, the square was under construction, which could mean that at that

moment, using its properties would require abstracting its full image.

6.4 CATEGORY 1 ACTIVITIES ANNA AND LOUKIA
IN  THE INTRIN HEMA T N TR TAND EA
YSTEMATIC DESCRIPTION OF THE PLANE

4.1 The hildr n.

Anna has been characterised by her teachers as "an average - above
average student”. During her everyday school life, she was perceived as
intrinsically motivated and keen to find things out for herself "by

experimenting with what knowledge she had at hand”. She has a confident
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personality and shows“strong leadership qualities”. In the Logo club, Anna
had the experience of trying to cooperate with a very dominant boy who
tended to take over the keyboard, and a very unnconfident girl. Anna was
actively interested in achieving negotiations with both her peers and
discussed the problem with them and with the teacher at hand (researcher or
teacher F). Her programming strategies in solving the Four Squares tasks
involved the use of procedure and showed progress according to the criteria

set in appendix H, illustrated in figure 5.2 by a "shift" from group D to goup E.

Loukia has a very extrovert and sociable personality in her normal class, and
according to teacher F, is sometimes dominant in "a not so positive way". She
was said to be an average student in all subjects except maths, where her
teacher said that “she often had problems". During the first Logo club year,
she met (and caused) a lot of cooperation problems in her group, these
frequently ending in quarrels and crises. However, during the latter part of the
first year and the former of the second, she held a lot of discussions with her
peers (Natassa and loanna) and between them, they devised methods of
much more efficient cooperation. It is the researcher's opinion that Loukia
made a lot of progress in a less egocentric attitude both towards her learning
("usually in our lesson we blame the computer or the turtle while it is us who
made the mistake") and towards her peers (“First | discuss it with my team and
then we all find the answer”). Although her programming in the Four Squares
tasks was above average (progressed from D to F, fig. 5.2, appendix, H), she
programmed in direct - drive for the other structured tasks, and showed a

surprising lack in her use of the embedded geometrical properties.

42T sis.

These activities involved the construction of a simple 2 x 2 square grid with
the use of the POST command (see chapter 3), and the joining of grid points
to make shapes of the children's own choice, by using the DISTANCE and
DIRECTION commands. The children could use the following commands
which were given to them on paper: PR DISTANCE name, PR DIRECTION
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name, FD quantity, RT quantity, PU, PD.

Constructing the grid in this method, on the one hand employs intrinsic
"action - quantification" notions, and on the other, requires an understanding
of the notion of the grid, i.e. its usefulness in location descriptions and its
geometrical properties. The grid provides a description of locations which are
systematically arranged on the plane but without a systematic (logical)
method of naming. The locations are named one by one by a letter label.
Using the measuring instruments to join locations requires separate
measurement and action - quantification activities.

The task was designed to find out what meaning the children gave to
constructing a description of the plane, and how they used their intrinsic
schema to interpret the grid's properties in order to construct it. The aim of the
second part of the activities was to study the extent to which they used and
related their intrinsic schema and the location describing system, in projects
of their own choice.

4.3 Fin In

a Dev lo in method for namin locations.

After the researcher had drawn fig. 6.4.1a on paper, the children's strategy for
constructing the grid was to put a "flag" (POST) on the turtle's position, give it
a name in alphabetical order and move on to the next position (fig. 6.4.1b).
Their method of naming was by alphabetical order, in the order in which the
turtle constructed the grid points, rather than imposing an absolute naming
system, e.g. rows or columns, or A at the centre (fig. 6.4.1c). The actual
order in which they placed the points is indicative of a "drawing"
schema (Hillel, 1986), despite the fact that they not only used the orthogonal
(90 degree turns and equal lengths of 40) properties, but also combined
equal distance with an operation in typing BK 80 to take the turtle from H to
the last point, | (fig. 6.4.1c).
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In discussing what the use of the grid might be, after some vague reasons,
(e.g. to make shapes, to play the game, to join points) Loukia implicitly
suggested the possibility of a plane location determining a state
change.

L: "Let's say | can here write a command which says, go straight away, say
eg.gotoF,gotoE.."

However, although she adopted a direct speech mode, "addressing” the
turtle, she had not thought about a logical method to integrate the
turtle's characteristics with this location - centred state change.

L:"... I don't know how it will be, without you having to make it turn, it turns by
itself. By going there."”

.b Dis riminain bewe nlen th and an mea rements.

The children's first use of the instruments was in the context of taking the turtle
to points of their choice in PEN UP mode, i.e. from | to E, to B, to G. However,

it is suggested that initial lack of confidence with using the instruments
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influenced the children's strategy. They discussed each change of state,
making perceptual and logical efforts to determine quantities, even after
having made a conjecture involving an implicit use of a property (symmetry)
which was less apparent than that of equal distances:

A (why I[E = EB): "Because it's in the same place as the other one."

It seemed, therefore, that the turtle's instruments were used by the children as
a check to see whether their conjectures were right. Their initial
confusions seemed to reveal a lack of discrimination between the
differing meaning of information collected from the ruler and the
protractor (they tried to use length information to turn the turtle) and a lack of
a strict correspondence between the words direction and distance and their
respective uses for angular and linear notions, i.e. they used the word
distance to describe the amount of a turn:

L: "Yes, the distance from here, to turn.”

Their confusions also suggest an unclear distinction between the
heading and the position state of the turtle.

A: "The degrees it has to turn to go to B."”
L: "Yes, to look at B exactly.”

The researcher decided to intervene to explain that the turtle protractor gave
information about right turns, since this was an arbitrary characteristic of the
instrument.

.4.3c Usin eometrical ro erties versus car n out measurements.

The children's first goal was a "well defined", "abstract" (Hoyles and
Sutherland, 1988) rhombus. They made a plan before starting, to join up
points G, E, C, A, G (fig. 6.4.2) and did not seem to have problems in
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developing a strategy for the turtle's actions (right turn and forward move).
However, as their quantity conjectures proved to not always be correct, and
their confidence with using the instruments grew, there seemed to be a
shift in the importance they attributed to the measurement results.

C
BY X~ XD
AX X Xg
X Yg’ X H

Fi ure 6.4.2 A. and L.: The "rhombus"

In the process of constructing the rhombus, they seemed to show the
first signs of a distinction between measurement and action and
of a distinction between the notion of measurement and the
naming of a location, in both angular and linear measurements.
The first of the following examples illustrates this point for the heading and the

second for the position:

(turtle at G, heading upwards fig. 6.4.2a)

L:"Hm. Till E, lets find E. Ok... PR... yes... DIRECTION... (A types, L waits for
her to finish)... and till E." (they wait for the result)

A:"OKk RT..."

(turtle at G, heading towards E fig. 6.4.2b)

L: "Yes but we don't want to make a line yet. We want to find out how much
the distance is."

A:"Yes."

L: "But it will be sure that it's 40."
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A:"Do a PR, can't you see how many we got wrong?"

The children then decided to make another shape. It was a "real world" goal
(Hoyles and Sutherland, 1988) which they drew on paper, Anna called it a
bow tie, Loukia a "butterfly in a field". Their strategy was to join up the
following points: F, D, E, H, F, B, A, |, and F (fig. 6.4.3a). It is suggested that
their increasing fluency in the use of the instruments resulted in a
decreasing confidence to commit themselves to making
conjectures before reflecting, the reflection occasionally encouraged by
the researcher. The only property they used without a measurement was the
equal point distances, e.g. they typed FD 80 to take the turtle from D to H and
from B to |. However, the use of two more properties was invoked by the

children by differing methods.

(b)

Figure 6.4.3 A. and L.: The "butterfly"

Firstly, they explained that the outcome of 45 degrees obtained from a
rotation measurement which they had carried out was due to the rotation
being half that of a 90 degree turtle turn. (turtle position: F, heading
measurement from C to D). Anna used this half turn theory later in a more
complex situation, adding it on to a 90 degree turn to predict the turtle turn at
H (fig. 6.4.3b):
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R: "Who can think how much it will be?"
A:"90... 90 plus...”

L: "90 plus 44.999"

A:"90 plus 45."

Loukia's answer seems to refer to their previous measurement (turtle at F),
rather than the use of a property. This noticing and matching equal quantities
is also the method by which Anna made gradually more confident conjectures
about the length quantities. Her first (on HF) and last (on IF) conjectures

illustrate this point:

A (on HF): "I say 56 to 57. (result on screen) since it's the same when it was
like that... (means FD)"
A (on IF): (before result on screen)"565686." (that was the length of FB)

However, the children did not use the half angle and equal length properties
in slightly different contexts, i.e. in a 225 turn at points B and |, and in linking
the bow - tie slanted lengths to the rombus slanted lengths.

55 MMARY OF THE "PLANE DESCRIPTION" SES IONS

Although the aim of this study was to investigate whether the children could
use their intrinsic schema to understand coordinate notions, it is seen as
useful, for a moment, to isolate the turtle - action issues in order to highlight
those concerning the children’s understandings of the systematic description
of the plane. The analysis of the data indicates three types of issues which the
children did not seem to relate to some specific prior experience, i.e. for them,

they were new:

a) the existence of an organised system for naming locations, its usefulness
and its nature;
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b) the existence of an analytical method of locating points via an origin, i.e.

combining the distances of a location from a horizontal and a vertical axis;

c) the "rules" of the coordinate value system, i.e.

- the order of the values;
- the meaning of numbers as names of places;

- the meaning of signs as regions of the plane;

For example, it is suggested that it did not occur to Anna and Loukia to think
about and devise some systematic naming for the points in their grid since for
them there was only a small discrete number of points to be named.
Moreover, Maria and Korina "discovered" the method of combining horizontal
and vertical directions and using two labels to form the name of a point, only
as the outcome of the conflict created by one - letter labelling, i.e. two points
having the same name. The first group, Natassa and loanna, did not seem to
have much difficulty with any of the "rules” in isolation. Given the children's
age, this finding is not inconsistent with Lawler's research (Lawler, 1985).
Initially, however, they did not seem to adopt an analytical way of working out
the coordinate values of a location, but tried to incorporate all three issues at
the same time. It is possible that the "obligatory" interaction between symbolic
and graphical representations of locations played a role in the children's
developing analytical method.

Another point of interest, highlighted by the study of Natassa and loanna's
work, is how the children seemed to use a sequentiality schema in a context
where seemingly there was no use of an action - quantity schema. It is true
that the notion of sequentiality was embedded in the task. The children,
however, seemed to use it in a convincing way, by treating the third input to
the PLACE command as distinct from the coordinate values and by
perceiving it as denoting the order of the point they were placing. They also
seemed to use a sequence notion by placing the first point of a figure again at
the end to "close" it with the DODOTS command, and by attempting to
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construct a circle (which changed into a bow tie constructed in "circular”
formation) in an intrinsic "polygon approximation" way. It is therefore
suggested that the sequence schema used in this context could have been, to
a substantial degree, a carry over from the children's previous experience

with Turtle geometry, i.e. the sequentiality "pant" of their intrinsic schema.

Regarding the change of the turtle's state, the children initially seemed to be
reluctant to contest, or modify their action - quantity schema and pursued their
approximating efforts to make the turtle reach a point in the plane. Using the
instruments seemed, on the one hand, to involve difficulties in discriminating
action from quantity by focusing on the latter as distinct from the former. On
the other hand, the children seemed to have had a rather implicit
understanding of the existence of two different states and of the difference in
their metric systems. Their schema for changing the turtle's state up till now,
seemed to be "move - steps" or "turn degrees". It is suggested that they had
been using these notions without really having discriminated them, i.e.
analysed them into their component parts (Hoyles and Noss, 1987a). The use
of the instruments, in a somewhat paradoxic manner, seemed to invoke a

more explicit understanding of the two - state nature of the Logo turtle.

The meaning the children gave to the measurements was that of the method
to work out the quantity of an action. They did not seem to question the turtle -
centred way of changing the state and consider the notion of an external point
determining this change. On the contrary, it seemed quite natural for the
children to think in terms of the turtle (or themselves) performing the
measurement to find out the quantity needed to change from its present state
to the next.

Finally, the studies revealed the children's substantial involvement with the
embedded geometrical properties of the orthogonal plane description
systems. For example, Natassa and loanna used notions of symmetry and
built (although in a naive way) "theories" of their own of how to place a point

at the intersection of a line segment with the x axis. Anna and Loukia made
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conjectures about quantities attempting to use the orthogonal properties of
their grid and Maria and Korina went "further", by breaking down the
combined action / measurement commands (e.g. FD DISTANCE :C3) and
"carrying" properties from one project to the other in order to work out
guantities.
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6.6 CATEGORY 2 ACTIVITIES
IN THE RDINATE  MMAND

The first set of activities in this category involved taking the turtle to a specific
location which was shown on the screen, in the coordinate plane, by using
commands which refer directly to the structure of the absolute coordinate and
heading systems. Initialising the program drew the coordinate axes on the
screen, callibrated in units of ten. The turtle was in the initial position, and a
focation was denoted by a small cross ("x" - sign, fig. 6.6.1). The children
could use the following commands which were given to them on paper: SETH
"value”, SETX "value", SETY "value", WRITE "name", PU, PD. The WRITE
command drew the coordinates of a location on the screen if the turtle was on
that location. The children were introduced to the meaning and the syntax of
the commands in a way which provided insight into their initial conception of
non - intrinsic turtle control, and then asked to take the turtle to the point and
label it using the WRITE command.

Fi ure 6. .1:lInitialisin he task

The SETH, SETX and SETY commands provide a non - intrinsic control of the
turtle, in the sense that they do not embody an action - quantification element
on the one hand, and require knowledge of the method of describing
locations via absolute description systems (heading and position) on the
other. The use of these commands refers directly to the structure of the
systems themselves (e.g. SETH 270 refers to a name given to a specific

absolute direction rather than a direction relative to another location).
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However, the turtle retains its position / heading state, by imposing the
restriction that changes of position can only be done in the direction the turtle
is facing.

The aim of this set of tasks was to investigate the extent to which the children
used the coordinate notions to control the turtle and the role their intrinsic
schema played in how they made sense of non - intrinsic turtle control. An
insight was sought, into how they used notions from the locating method, the
naming system, the plane description geometrical properties and the dynamic
non - intrinsic control of the two - state turtle to cause actions on the screen.
The aim was also to throw light on the nature of any misconceptions in their

involvement with this complex environment.

The aim of the second set of activities in this category was to provide the
children with the experience of changing the turtle state by describing plane
locations directly, rather than one coordinate at a time, and to further the
investigation into the issues mentioned in the previous set of activities. The
activities involved taking the turtle to two locations shown on the screen, in
the coordinate plane, by using non - intrinsic commands referring to plane
locations. It also involved measuring the distance between them by using the
turtle's "ruler”, the DISTANCE command. Initialising the program had the
same effect as the previous set of activities, but this time there were two points
on the screen instead of one. The commands which the children could use,
given to them on paper were: SETPOS "name", SETH TOWARDS "name",
WRITE "name”, DISTANCE "name", PU, PD. A similar method of introducing
the meaning and the syntax of the commands was used, as in the previous
set. The children were asked to take the turtle to one of the two points,
measure the distance between them and then take the turtie to the second
point by drawing a line to join the two. They were also asked to label the
points as the turtle reached them.

Controlling the turtle in this environment also requires the plane description

notions mentioned in the previous set of activities. However, use of these
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notions requires a higher level of abstraction, since change of state is
achieved by a direct description of the location of change rather than one
coordinate at a time. For instance, changing the heading does not depend on
absolute directions (e.g. SETH 90), but on descriptions of locations towards
which the end heading should be directed, e.g. SETH TOWARDS [100 0].
Finally, the measurement element was added to the task in order to
investigate the meaning the children gave to the numeric output from the

measurement.

in in

The findings are presented in four main sections (6.6.2a to 6.6.2d). Each of
the first two sections (6.6.2a and 6.6.2b) is divided into three subsections,

each of which involves findings from the activities of one pair of children.

2 F rmin m n h inr

ab lut e s em.

- Anna k D fr ma n rmin hem

Although in the category 1 activities, the children had had experience with the
notion of an external point determining a change of the turtle's heading, their
schema was still that of action and quantification of that action. Despite the
fact that to work out the quantity they needed to take an external point into
account, the meaning the children gave to the result from a measurement
seemed, quite logically, to be that of the degrees the turtle had to turn, i.e. the
amount of the action. This section illustrates the nature of the
children’s initial confusion in changing the heading of the non -
intrinsically controlled turtle, and the way they attempted to use
their action - quantification schema to develop an understanding
of the absolute heading system.
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After the children were introduced to the coordinate system and the SETX,
SETY and SETH commands, they did not seem to have problems with taking
the turtle to the point in the first quadrant. In attempting the next task (the point
was at 80 -60), they typed SETH 90 and SETX 80 (fig. 6.6.2), so their task
was to make the turtle face downwards. The natural way in which Anna
imposed an action - quantity characteristic on the SETH
command is illustrated by the fact that she typed her next command and
uncharacteristically went on to the next one without even looking at the
screen to check the result (fig. 6.2.2).

A:"SETH... 90... (result on screen, Anna confident,
did not even look) and SET... Y..."

L: (looking at screen) "D id it turn?"

A: "Yes. (looks at screen) Noitdidn't..."

80 -60
X ( )

Fi ure 6.6.2: A. and L. : Discussin how o make the turtle face downwards

Their surprise was so great that they tried the same command again, looked
closely this time and were baffled by the result (the turtle wouldn't turn).
When asked what SETH means, Loukia seemingly understood,
implicitly dissociating from the action - quantification paradigm by
referring to an end direction:

L: "To lift me up and to turn me where you'll... to put my direction which you
like."

However, she had not linked the notion of direction to the
absolute system, using the x axis to give the direction.

R: "Where is her nose looking ?"
L: "There, at x."

R: "Where's that?"
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L:"lt's at x."
R: "xis a ruler.”

A: "Forward."”

Anna's answer shows how she linked the turtle's direction to the turtle's body,
thus stumbling into a circular argument. However, their consequent efforts to
answer the question finally lead to a link between the absolute
system and the non - intrinsic control:

L: "Where its nose is."

A: "Where its nose is looking."
R: "Where is it looking?"
A:"Ahl... 180. (smiles)

R: "Where is it looking now?"
A: "Now at 90."

Nevertheless, this link was only made for a moment, since in her explanation
of why SETH 90 hadn't worked, Anna seemed to initially impose a
sequential characteristic to the two headings by "adding on" 90
degrees to describe the 180 direction:

A: "Oh, yes 90 this way. Then again 90 its there..."
L: "This is 180...270..."
A: "Yes, 270, and again... 0. No.... yes 0. 90, 180, 270."

In the next task (point at -90 -40), Anna would not abandon her turn
schema, but tried to use it to form a theory about the absolute
system.

A:"From 0 till 90 its... 0. 90 to 180 is 90. From 180 till 270 is 180 and from 270
till 0 its 270."

She did not abandon the sequentiality schema even later
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however, when her understanding of absolute heading had developed in
that seemingly, she had dissociated from the notion of turn. For example, to
explain the result of SETH 90 on a turile heading towards 270, she said
"She's looking at 90, from here till there, where its 90", and later on in the next
task, to cause the same heading change she typed: SETH 0 SETH 90.

- Maria and Korina: Dissociatin from a se uentialit schema and im osin

n n in n- h in

The first discussion concerning the method of changing the turtle's heading
arose in the context of a mistake, i.e. Maria's apparent unclear distinction
between the two states and the nature of their metric systems (degrees and
length units), resulting in her typing in SETH and then counting on the x axis
for an 80 input (turtle at home, point at 80 -60). The process of discussing
the meaning of the SETH command and its inputin order to
understand the turtle's resulting heading of 80, seemed to favour
the development of an awareness of an external direction as the
determinant of heading change. The following extract illustrates the
apparent carry - over of this awareness to the next task (turtle at -90 0,
heading 270, point at -90 -40, fig 6.6.3):

M: "SETH..."

K: "To show where it's looking, yes..."
(meaning of SETH)

M: "SETH..."

K: "How much... wait... to look downwards..."
(meaning of the input) X
M: "SETH 180."

nin H

However, it seems that this insight in dissociating heading
change from action - quantity, did not incorporate a dissociation
of what has been referred to as the "sequentiality schema", i.e. the

notion the children seem to have built from their turtle geometry experience,
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that a heading change is caused by a turtle action from its previous heading

to the new one.

This can be illustrated by the children's attempt, in the task with the invisible
axes (point at -100 90, turtle at 0 100, fig. 6.6.4), to make the turtle face
downwards, i.e. change its heading from 0 to 180. Although Maria's verbal
expression of her plan seemed to indicate an understanding of relating
heading change to an absolute direction ("...this is 0 now, if we turn and we
say SETH 180..."), she had not really seen the absolute direction as the only
necessary determinant of the change.

(she types in SETH -20, confusing again turtle steps and degrees)

M: "So we should tell it to go 180.
Therefore, 200. Let's see..." X

(types SETH 200)

F 4:M n K.:D n h mak wnw

It is suggested that Maria's mind focused on the rotational
"distance"” from -20 degrees to 180, imposing an input which was
dependent on the previous heading. This sequentiality schema
seemed to have a very strong resistance to change in the children’s mind,;
after discussing the outcome and trying out different inputs to SETH, Maria
did seem to have an insight into the absolute nature of this
method of heading change:

M: "Therefore, however much it is, let's say 5 degrees further, it's not relevant,
let's say we mustn't add it to...".
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K: "We should put it normally (she means just the end heading) whatever it

is.

M: "Good. Now let's tell her... 10 distance.”

Inspite of the different context (change of position) it was seen as important to
put in the last phrase of this dialogue, which seems to indicate that although
Maria had just had an insight into the notion of the end direction
being the important factor in changing the heading, she did not
carry that notion to the change of the turtle's position from (0 100)
to (0 90), focusing on the distance from 100 to 90.

fn the next tasks, the children were introduced to the SETH TOWARDS and
SETPOS commands, and were asked to draw the line and measure the
distance between two points on the screen. Using the heading change
command did not seem to be a straightforward task for the children. The
schema they had formed for changing the heading depended on directions of
an absolute heading system, i.e. the input represented a direction of the
absolute heading system which would be the end heading of the turtle.

In their first attempts to change the heading at point (-90 70) towards point
(100 -40), the children used an approximation "perceptual” technique
concerning absolute directions.

K: "It's not exactly, it's that way eh? It's somewhere... it's a bit above..."
M: “It's a bit further than 180 eh?... in between 90 and 180."

This seems to indicate that the children imposed this absolute
directions schema to the new heading change method in which
the input represented a location of the coordinate system. The
children did not seem to find it easy to dissociate from using this schema,
since, in the previous example, they had just been introduced to the new
method and had used it to change the heading from 0 to face the first point
(-90 70). Moreover, they imposed the schema again on two occasions in the
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next two tasks.

- Natassa and loanna: Contrastin action - uantit absolute and coordinat

n

With respect to changing the turtle's heading, the children seemed to initially
impose an action - quantity characteristic to the SETH command, in trying to
make the turtle face downwards in the second quadrant task (80 O position
and 90 degree heading, see fig. 6.6.2). However, from that point onwards,
dissociating heading change from action - quantity did not seem
to be a major difficulty for the children. it is interesting that they were
quite ready to use explicit wording and indicated a conception of heading

change determined by an absolute, external direction, e.g.

N: "SET... it will be downwards... 180." (turtle at -90 0, head. 270, point at -90
-40, see fig. 6.6.3)

I: "From this way it's... 0." (turtle at -100 0, head. 270, point at -100 90, fig.
6.6.5)

» (-100 90)
F' ree.65:N.an | :Discus in w to make
h fa e u wards

However, it is suggested that Natassa had not thought about
relating or contrasting the two ways of changing the heading. In
the fifth task of joining up two points and measuring the distance between
them, the children were discussing how to change the turtle's heading from a
(0 0) / (-90 70) direction (turtle at -90 70) to face the other point (100 -40) (see
fig. 6.6.10, section 6.6.2d). Natassa's argument was the following:
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N:"..on her (turtle) 180... her 180 is there...i.e. on her own cross..."

She seemed to confuse three things: Firstly she used the turtle's present
heading in a "from here to there" notion, not realising that the only
determinant in an absolute heading change is the end direction, i.e. the

direction the turtle is going to face.

Secondly, she ignored a very important characteristic of the absolute
direction system, i.e. that it is fixed, by imposing the system to match the
direction of the turtle.

Thirdly, she ignored completely the difference in the function of the SETH
TOWARDS command, i.e. that heading change was now caused by external
coordinate locations and not by external directions. This was unexpected
since a little previously she had used sophisticated wording to explain this

function to loanna:

N: "..We'll tell her to turn her head, i.e. to turn towards there so that she's
looking... at the point which is 80 80."

ina s sem.

- Anna kia- Di In from n n nit schema

For the tasks involving points in the first three quadrants, the children had no
serious problems in corresponding intended position changes to the axes
and the plus and minus regions, even though (as illustrated in the next
section) they did have problems with notions regarding the regions and the
axes themselves. This deceiving fluency however, broke down in the fourth
task (point at -100 90) where the absence of the axes on the screen led in ar
"overtaking" of the x coordinate, the turtle taken to -120 instead of -100 (fig.

163



6.6.6a). The strength of the action - quantification schema in the
children's minds is illustrated by the way they imposed a reverse
action notion (note that SETX -120 was momentarily seen as a FD
120 operation) and an operation on the quantity of that action
(120 - 100):

(-100 90)
L:"Ooh!.. it's BK." </
A: "20... | think it wants 20. BK, is there a BK?" a
L: "Why not?"
(they tried BK 20 and got an error message)
A: "We should turn it first. To go forward 120
to go back turn it and move it 20..."
-120 -100 -20
Fi nin h n

They turned the turtle to a 90 degree heading. At that point Loukia demanded
a clarification of the plus and minus regions of the axes, which was provided

by Anna.

L:"So its -20"
A: "Let's see. (result on screen) -207 God!... (laughter)

Despite their implicit use of the region of the x axis (minus sign), their
striking disregard of the notion of the location determining the
change of position was not only illustrated by their surprise, but

also by their initial inability to make sense of the result.

R: (asked where the turtle was on the x axis)
A: "Around the middle."

R: "On which point exactly 7"

A: "l don't know."

L: "In the middle."
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The researcher intervened "giving the answer”, to find out how and if they

would try and make sense of the situation.

R: "What if | said that it's written (on the screen).”
A: "Its on the -20 of the x... | think I've got it, we told it here lift me up and take
me to minus 20 and minus 20 in relation to axis x is here (finger on correct

spot). Say that axis x is lets say here, -20 is here.

Anna's explanation shows the way she dissociated from the
action - quantification schema (lift me up and take me to) and
how she saw the number -20 as a location on the x axis. This gave

her a new insight into the meaning of number as a name for a place:

A: "We should have taken it... lift me and take me to minus 100. If we wanted

to undo the 20... so we have to turn again.”

When Loukia was required to explain the same thing, she again wanted to
clarity the plus and minus regions on the plane (following section). The
explanation came as an outcome of her verbally making sense of the regions,
and is indicative of how she imposed a "distance" notion from the
turtle position to the -100 location:

(turtle in position (b), fig. 6.6.6)

L: "...and from here till there its 100."

A:"No... its 80."

R: "Why?"

A: "Because from the middle its 100 steps, from -20 its 80."

Although Anna had an insight into the relationship between the meaning of
numbers as locations and as distances from the origin, her action -
quantification schema remained separate from the idea of

locations and position changes.
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R: "Ok, but she told her lift me up and take me... -100, and she moves 807
How do you explain that?"
A: "That she didn't move 80 she went to the position... -100."

This distinction in her mind, led to a confusion between amount of turtle move

and region of the axis.

R: "Ah. And how much did she move ?"
A: "80... minus 80.

R: "Ok. Minus 807"

A: "Since it's on the side of the minus?"

Anna seemed to "extend" the application of the meaning she had
given to the minus sign in the coordinate system, onto the notion
of distance. It is not clear, however, whether she thought that distances are
"negative" when they are in a "negative” region of the plane, or whether she
simply assigned the minus sign on the number 80.

In attempting the task with the invisible axes (point at -100 90), the children
took the turtle to a (0 100) point. Their discussion on how to take the turtle tc
(0 90) (fig. 6.6.7), illustrates how the children seemed to impose a
distance notion on changing the position of the turtle:

166



M: "No, it's too much."”

K:"Yes... a bit less."

M:"Em... minus 10. Minus 20, X
therefore 80." (-100 90)
K: "Yes, | said 80 at the

beginning too."

M: "O.K., minus 20 then."

Fi ure6.6.7: M. and K. : Chan n the turtle's osition

The children seemed to be talking about the turtle steps from the 100 to the
80 point, i.e. the distance from the present position, to the position of change.
They also seemed to impose a 'reverse action" notion, of
"undoing” an apparent forward 100 action by subtracting the
distance.

The strength of this "relative distance" (as opposed to distance from the
origin) schema is illustrated by the children's persistance to employ it in their
subsequent activities: at first they typed in -20, forgetting about the SETY
command. After discussing the error message from the SETY -20 command
which led to a turning of the turtle to face downwards, and although Maria had
had an insight into the notion of the end direction being the important factor in
changing the heading (see above), she did not carry that notion to the change
of the turtle's position from (0 100) to (0 90). Focusing on the distance from
100 to 90, she typed in SETY 10, and after the result on the screen, SETY

-10, thinking she had failed to include a "reverse action" element.

The children turned the turtle to face upwards again and then took it to (O 80),
saying forward 80 and typing SETY 80. Only then, did one of them
(Korina) show some indication of dissociating from the relative
distance notion, expressing an opposition to a proposed SETY 10
command (fig. 6.6.8):
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M: "Now. SET... Y... 10." X
K:"10? I say, let's do... 90." (-10090)

Fi ure 6.6.8: M. and K. : The meanin of SETY

However, the children did not explicitly use the notion of position
change caused by giving the end position as an input, in any of

the subsequent tasks in this session.

- Natassa and loanna: A "distance from the ori in" and a "name for a lace"

n n in v

Concerning the change of position, the children met the first difficulties in
trying to move the turtle from a -100 0 to a -110 O position in order to decide
on the x coordinate of the (-100 90) point in the fourth task (the axes were
invisible, fig. 6.6.9). In their effort to explain why their first attempt (SETX -10)
did not work while their second (SETX -110) did, the children constructed

a "theory" for the meaning of the number of the x value.

I:"...we did it again from O till 110 (-100 90)
and it came out."” X
N:"..wecan't do 10 because we've

done 100 already. Plus 10 we want

todo... 110."

I: "She doesn't go... because we've
past 10."

Fi 6.6.9: N.and |. : Chan in the le's o

loanna seemed to suggest two ways of interpreting the meaning of the x
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value: firstly, the value represents the distance from the origin, and
therefore the SETX command operates in such distances, and
secondly it represents a name for a place ("...we've past - the place -
10."). Natassa seemed to take on board the distance from the origin theory.
Notice how she used a specific way to talk about a number when it
represented an x value (by using the word "do" in front of such numbers), and
seemed to implicitly contrast it to the normal meaning of number ("...plus 10,
we want to do...110).

M kin n h in

At the beginning of the activities, the children were introduced to the
"mechanics" of the coordinate system, i.e. the method for giving names to
locations, the names of the axes, the order of the coordinates, the calibration
units and the plus and minus regions on the axes. This section describes the
development of the way they used these "mechanics" in situations of naming
or referring to locations.

Not surprisingly, the children did not seem to have substantial
conceptual problems in understanding the above coordinate
notions. However, an issue that emerged from the data was the lack of
awareness of the importance of arbitrary "rutes”, such as the order of the
coordinate names, and the plus and minus regions of the axes and of the
plane. Regarding this issue, the Logo error messages seemed to have had

some effect in increasing the children's awareness of certain arbitrary rules.

- The ord In nam

For the children, giving a name to a location by stating the x
coordinate first, seemed to be perceived as a given, arbitrary
rule. The first confusion arose when they wanted to print the label of the first
point (60 50) on the screen with the WRITE command. Although they
distinguished between the function of the WRITE command as that of
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labelling and the inputs as the name of the location, Loukia did not
immediately perceive that the order of the inputs was important.
The case was not so for Anna however, despite the fact that she got the order

wrong and, therefore, an "I'M NOT THERE" Logo message.

A "Yes, the WRITE and the name we'll name it."
L:"Yes. 60 50 or 50 60. (types)
A: "50 60 because its 50 first and then 60."

From then on they had no problems getting the order right, making it verbally
explicit for the next two tasks, and using it implicitly after that. They also did

not seem to have a problem assigning the right name to the right axis.

- Pl min n

The children's initially frequent problems regarding this issue were not really
due to forgetting which axis region is which, but rather on not using the minus
sign when needed for the name of an axis location, in the context of naming a
location to change the turtle's state. However, the Logo error messages
pertaining to state changes and labelling, gradually drew the children's
attention to the importance of the sign being correct.

The children's initial strategy was often that of counting in tens
till they got to the respective location. The minus sign was
therefore forgotten.

L (point 80 -60): "Lets count first, one, two..... seven eight... eighty.
A: "Eighty there.

L (on y axis): "One two three... sixty. (they both check)

A: "So, 80 60 we'll name it

However, in the context of giving a name to an axis location, the meaning of
the minus sign did, for them, seem to indicate an axis region.
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A: "Why -80, -80 is this way, this way its plus 80." (on 80 -60)

- PI min h

Although the issue of the regions of a single axis did not seem to be much of
a conceptual problem for the children, the case was not so when the
understanding of a combination of the regions of the two axes was required,
to make sense of the regions of the plane. Although they made several
attempts to explain to each other the regions of "both axes at once", their
verbalisations were confined to one axis at a time rather than a

quadrant as region. For example:

A: "When its this way minus, when its that way plus, when its this way minus
when its that way plus.”

L: "From this side, from the right of Y its 20 30 40 50... and from the left of Y its
minus, on X."

A h W n n n ifi an in

In the fifth task, to join up and measure the distance between (-30 70) and
(100 -40), Anna's intrinsic schema seemed to come into conflict
with her newly acquired schema for non - intrinsic controlling of
the turtle.

The children took the turtle to the first point, turned it to face the second and
used the PRINT DISTANCE command spontaneously, linking it to the notion
of measurement (fig. 6.6.10). Their experience of giving names to a location
to carry out the measurement was employed in this context quite naturally,
despite the fact that the name here was two numbers instead of a letter.
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(-90 70)
A: (types PR DISTANCE)" What name )(\
shall we put..."
L:"100 -40"
A:"Ah yes 100 and -40."

(100 -40)

A.n .:Di h in ETP

The meaning of the numerical output (that of turtle steps) seemed to result in
a shift in the children's minds regarding the method by which they
subsequently attempted to change the turtle's position (i.e. take it to 100 -40):
they seemed to ignore the location - determined characteristic of
the SETPOS command and impose an action - quantity meaning,
by spontaneously typing SETPOS 219.545. The error message

encouraged a first verbal attempt to combine the two notions:

A: "To go... to... point 100 -40... to move 219... these steps, going to the point
100 -40. Thats what it means."

However, Anna did not initially realise that only one notion was
required for that change of state, and tried to use both in one
command typing SETPOS 100 -40 219.545 ("and put her on the point 100
-40 moving 219.545"). Her understanding was prompted by the very fact that
she did not, in effect, have a choice, since the turtle action commands were
inoperative in this session:

R: "Does this turtle know how to move?"

A:"No..."

L: “No she doesn't. She knows how to go from one point to another.”
A: "We found the distance, we don't have to... use it."
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"coordinate turtle control" activities.

The findings from the three pairs of children in this session seem to fall into
two categories. Firstly, the children's developing use of the "mechanics" of the
coordinate system is described. Despite the relatively short time they had
available to them, they began to show an increase in awareness of the
importance of certain "rules" which, to them, were arbitrary, in the sense that
they did not seem to have a meaning (i.e. the order of the coordinate values,
or the plus and minus axis regions). It is believed that the Logo error
messages played a role in this development. Not surprisingly, the children
also found difficulties in their attempts to incorporate all the coordinate "rules”,
in cases where they had to use them to change the state of the turtle.
However, what seems interesting is an indication of a developing
"breakdown” of the children's accustomed attempts to give quick, factual
answers (see preliminary study), in favour of a more analytical approach
which methodically took one coordinate rule into account at a time.

The second category of issues in this session refers to the conflict arising from
the children's attempts to understand the notions involved in changing the
state of the coordinate - controlled turtle. Although the function of the
coordinate state change commands had been explained to them at the start
of the sessions, the children initially seemed to employ concepts based on
their previous turtle geometry experiences. However, in their attempts to
control the turtle, they seemed to dissociate from their intrinsic schema and
develop new schemas for heading and position changes. This development
was not, of course, uniform across pairs or individuals. The children seemed
to have "insights" into parts of the coordinate method at various times during
the activities but, not surprisingly considering the time and the complexity of
the task, no single child seemed to explicitly synthesise the notions into &
concise method of state change.
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Nevertheless, a model of a "coordinate schema" is proposed, which
synthesises the children's insights into the notions involved in the coordinate
controlling of the turtle (fig. 6.6.11). The model consists of heading change
and position change schemas, which the children seemed to be in the

process of building as a result of dissociating from intrinsic notions:

Headin chan e:

a) It is necessarily and sufficiently determined by the end heading. A

dissociation from notions of sequentiality seemed to be involved.

b) The end heading can be described by means of an absolute direction
system. A dissociation from action - quantity notions seemed to be involved

here.

c) The end heading can be described as the direction towards a location of
the coordinate plane. The emerging insights into such changes (the children
had more experience on this issue in the third category activities) seemed to
involve dissociating from action - quantity notions and relating directions to

positions on the plane.

a) It is necessarily and sufficiently determined by the end position. A

dissociation from notions of sequentiality seemed to be involved.
b) A numerical coordinate value has a meaning of either a name of a place
on an axis or the distance from the origin. This involved dissociating from an

action - quantity notion and from a "relative distance" notion.

c) The sign in front of a numerical coordinate value has a meaning of a region

of an axis. This involved dissociating from a "relative distance" notion.
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Although the development of these schemas could be described as
temporally parallel, the children did not seem to relate notions regarding
heading and position changes. Moreover, although they did seem to have
insights into all the described coordinate issues concerning state change, the
children varied in the extent to which they used the new notions in
subsequent situations in this category of tasks, often showing a tendency to re

employ their intrinsic schema. It is true that the children in the study had had
considerable experience with turtle geometry (50 - 60 hours) and therefore
were inclined to employ intrinsic notions tc control the turtle. However, the
coordinate method of controlling the turtle had been explicitly explained to
them at the start of the session and the turle itself was introduced as a
"different being" to the Logo turtle (the words used were "the turtle's sister).
They were also given time to try the new commands out before attempting the
tasks. This finding corroborates Lawler's research which demonstrates the
strength of the intrinsic schema in the attempts of a six - year old child,
experienced with the Logo turtle, to understand simple coordinate notions.
Finally, the process of dissociating from the intrinsic schema and developing
another, seemed to throw light on specific notions the children had built for
controlling the turtle during their 15 - month - long experience with turtle
geometry, thus clarifying components of the intrinsic schema itself. The

following model of these components is proposed (fig 6.6.12):

a) an action - quantity notion, which involved a "turn degrees" notion for

heading changes and a "move steps" notion for position changes, and

b) a sequentiality notion, which involved a notion of "one change after

another" and "a change depends on the immediately previous state".

There is evidence of all six children readily using action - quantity and
sequentiality notions during these activities. This, however, does not imply
that they did not have difficulties with these notions, such as problems with
discriminating between the two states and between an action and its quantity,

or with concentrating on one state change at a time.
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6.7 CATEGORY 3 ACTIVITIES
ATIN ANDMEA RIN INTHET. .MI R W RL

AT kA

These activities involved making decisions on the method of controlling the
turtle, and on how and when to use coordinate notions in order to drive the
turtle on the coordinate plane and make linear and angular measurements.
Initialising the program had the same screen effect as in the category 2
activities, only this time with three points shown on the screen (fig. 6.7.1). The
children could use all the commands of the T.C.P. microworld, which were
given to them on paper, i.e. FD, BK, RT, LT "quantity", DISTANCE,
DIRECTION "name", SETX, SETY, SETH "value", SETPOS, SETH
TOWARDS "name", and PU, PD, WRITE "name".

X

X

Fi ure 6.7.1 Initialisin the task

The aim of this activity was to investigate the children’s strategies in solving a
problem which required an interplay between causing actions and collecting
information which depended on the turtle’'s state. The investigation
concentrated on two types of notions:

a) on the interplay between intrinsic and cartesian notions used to perform
actions and collect information (see conceptual field analysis, section 6.1.3),

and
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b) on the interplay between static and dynamic interpretations of lengths and
angles.

The researcher made sure the children remembered all the commands, and
allowed time for them to try out ones that they were not clear about, before
initialising the program and asking them to join the points with lines, label
them, and find the lengths of the sides and the sizes of the angles of the

formed triangle.

6 7 2 Findin

6.7.2a The chil ren's strate ies for solvin the task

Anna and Loukia's plan, after having been introduced to the T.C.P.
microworld and the triangle task, revealed a substantial degree of separation
between functions whose primary characteristic was that of an action - i.e.
move or turn the turtle, label a point, make a line - and that of a collection of
information (lengths and angles). Their actual strategy was even more clear -
cut: the first part of their activities consisted of a consistent anticlockwise
"labelling and drawing a line" sequence (starting from -20 90, fig. 6.7.2), and
the second part consisted of a sequence of an angle measurement, a line
measurement and a move to the next (clockwise) point. They measured the
angles by giving the turtle "suitable" headings and using the turtle protractor

in information mode for the measurement.

Maria and Korina adopted a strategy of "drawing" the triangle first, without
labelling the points, by using the measuring instruments in information mode
and the outcomes as quantities for the action commands. They then decided
to label the points, and did so by raising the pen and taking the turtle around
the triangle again by directly using the previous measurement information in
a straight forward action - quantity method. Only after the labelling, when they

decided to measure the lengths and angles did they explicitly realise that the
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length information was already collected. To measure the angles, they used
the turtle's protractor again in information mode, after giving the turtle a

"suitable" heading to perform the measurement.

Natassa and loanna seemed to prefer to collect all the information they could
while they were constructing the triangle in a clockwise direction, also starting
from (-20 90) (fig. 6.7.2). For instance, at (70 -70), they labelled the point,
measured the lengths of (-20 90) (70 -70) and (-80 -40) (70 -70) and then the
angle. They used predominantly the SET commands to change the turtle's
heading or position and the measuring instruments mainly to collect the
length and angle information.

(-20 90)

(-80 -40)
(70 -70)

Dr win i rnn

The following episode illustrates how Anna and Loukia at the beginning
of the task, perceived each calibrating line as denoting one unit
instead of ten. During their attempt to take the turtle to the first point (-20
90), Loukia counted on the screen to find the coordinate values. Her counting
the number of lines, rather than the actual units (of ten steps), illustrates how
the notion which was represented by the line calibration (ten units per line),
seemed to give way to a more "realistic", concrete meaning of "number of

lines".
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What is interesting, is the resistance both children showed in
realising the change they had imposed on the meaning of the
calibration line symbol. They both carried on, typing in the command with
-2 9 for the coordinate values (RT DIRECTION -2 9), but although Loukia
realised, in a perceptual way (Hillel et al, 1986), that the turtle did not have
the correct heading, they could not see where they had gone wrong. The
researcher's intervention illustrates how the problem seemed that of a
change of meaning to a symbol, rather than the children forgetting the size of
the calibrating unit.

R: "How much is each little line?"
A:"Ohno...”

L:"Oh, yes.”

A:"So, -20 to begin with."”

It could be argued that the factor for the children's "error", was
the arbitrary nature of the ten - step units, i.e. that in an implicit way,
there was no specific reason for the children, why the distances along the
axes should be counted in tens and not, which for them was more logical, in

units.

After typing in RT DIRECTION -2 9 (turtle at 0 0), Anna and Loukia's
consequent effort to get the heading right (i.e. towards -20 90), illustrates
their confusion regarding the notion of a turtle turn being
determined by an external location, rather than the quantity of a
turtle action. Loukia regarded the problem of the quantity of the next turn as
insoluble, since the turn would be dependent on the "unknown" heading of -2
9, and therefore suggested that they take the turtle to a "known" heading (0)
first. Her use of the notion of the absolute heading was therefore in the
context of overcoming uncertainty due to relative turtle headings. This proved

to be a developing strategy of "when the turtle heading is unknown, take it to
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an upright position"”, i.e. use the absolute system directly, and measure
angles from there: Loukia suggested it again later, as a strategy for
measuring the internal angle at -20 90. However, in the previous problem of
changing the heading from -2 9 to -20 90, Anna challenged Loukia's strategy
by saying that they should do it directly, without the "intermediary" 0 heading:

L: "Yes, but now?"

A: "Eh, never mind she'll find the direction.” (the turtle)
L: "But she's already turned.”

A:"So what?"

L: "She will turn more."

A: "She'll find the direction..."”

Anna seemed to have realised that the point -20 90 would
determine the turtle's turn, i.e. that the turn was independent of
the previous state of the turtle. However, Loukia's sequentiality
schema seemed resistant to change, since she seemed to impose
an action characteristic on changing the heading ("..but she's
already turned...") and a dependency on the previous heading of the
turtle ("...she will turn more...").

Th inrn h

The children's strategies for changing the state of the turtle in order to
measure distances and angles, seemed to reveal the process by which they
formed a non - intrinsic schema in situations which could not be resolved by
the action - quantity method. There are aiso indications of their subsequent
implicit or explicit decisions on which schema to use in particular cases as
they progressed with the task, and of the problems they met in employing
either schema in situations which needed the combined use of both.
Episodes from the activities of all three pairs are used to illustrate the issues
in this section.
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Anna and Loukia completed the "drawing" of the triangle, labelling a point
and then using the combined action - information method to turn the turtle and
move it to the next vertex. Their thinking schema seemed
predominantly to be that of turtle action and quantity of that
action. However, they did use the notions of measurement and
naming of locations as a method to determine the quantity of the
turtle action. Anna's fortunate "thinking aloud" illustrates this point:

A (turtle at -20 90, fig. 6.7.2): "RT how will we know how much... oh, yes, RT...
(counts on the screen to find the coordinates) RT DIRECTION.... space... 80...
(result on screen) Now FD... FD DISTANCE..."

The children decided to start measuring the triangle elements when they had
completed the "drawing” of the triangle, i.e. the turtle was at position -20 90,
heading from 70 -70 to -20 90, (fig. 6.7.3a). The way Anna explained how she
would measure the -20 90 angle reveals a drastic shift from her so far
predominant schema of turtle action and its quantity, to a new

method of changing the turtle's state.

A:"Yes I've got it. Towards where is it looking? a (-20 90)
Towards there. We can measure... (pause)

make it look firstly at 80 -40... -80 -40, and if it's

looking this way it will be able to, from here, see

how much it should be to look towards here."

(-80
-70)

FF re 73Ann ' "Canesianview"of h ro

The nature of Anna’s new schema for the turtle, firstly involved an
identification of the turtle heading via some external direction (“...towards
where is it looking? Towards there..."). Secondly, it involved a conception of
heading changes relying on descriptions of the locations defining the end

turtle headings ("...make it look firstly at 80 -40..."), restricting the use of the
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"from here to there" notion to convey the meaning of measurement. Thirdly,
however, Anna's new method did incorporate the notion of the turtle state,
and the idea of performing a change of that state so that the measurement
would be feasible.

Nevertheless, Anna's strategy did require an intrinsic notion underlying the
measurement: the turtle's heading has to be such that the angle to be
measured is on the right of the turtle, i.e. the information concerns a potential
right turn. To incorporate this notion in her non - intrinsic schema proved to be
a difficult task. It is proposed that the fact that she made a mistake (from -80
-40 to 70 -70 is left) was only the result of her temporary confinement
to a notional "fragment” built to understand non - intrinsic
concepts. Notice how she changed level of precision when she had to use
the "right turn” concept, i.e. she said "...see how much it should be to look
towards..." instead of e.g. "see how many degrees it is to turn right to look
towards...". Moreover, when she was required to show which angle she was
talking about, she moved her finger from one side of the triangle to the other
(fig. 6.7.3b) instead of rotating it on the same spot as she had done several
times before to show a turtle turn.

The degree of disparity of these two notional fragments is
illustrated by Anna's consequent efforts to explain her strategy to
Loukia: she expressed the whole process four times without realising that
the measurement was towards the left of the turtle. In the end, a researcher's
question invoked her intrinsic notional fragment. The purpose was to ensure
that she hadn't confused left and right as such, due to the turtle heading
downwards, but that she had just not thought of it. Her answer not only

clarified this issue, but also resulted in her understanding of her mistake:

R: "Which way do we turn to do that?"

A: "Towards the... left, so it can't be done.”

This realisation invoked a new strategy which was expressed by Anna who
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seemed to make an effort to combine the two fragments, in order to provide

the correct solution:

-20 90
A:"Yes | got it. Instead of taking it from here ( )
(she means towards the left) we'l turn her
this way to look at 70 -70 but without measuring
it. And then we'll tell it to turn, to look there. (-80 -40}
(-80
-70)

Fi ure 6.7.4 Anna' "Intrinsic view" of the roblem

This combination is apparent in Anna's carefully chosen words; to change the
turtle’s heading, she uses an action notion ("...we'll turn her this way...") but
not a quantity one: the action is determined only by an external location on
the coordinate plane (“...to look at 70 -70...").

Notice, however, how fragile this combination was, when in her last phrase,
she imposed a turtle action trying to convey the meaning of a simple
measurement ("...we'll tell it to turn..."). Moreover, this episode seemed to
"bring on" her intrinsic "notional fragment" in deciding firstly to adopt a
"circular" strategy for measuring the other angles and secondly in combining
the right turn property of the "protractor” with a clockwise (right turn) order for

the measurments:

A: "No, from here to there because then we'll have to do... look if we come
there we'll have to do LT to get there, while this way we'll do RT and RT and
RT. Ok, so now I'm finding the distance till 70 -70. From the oposite side the
distance from -20 90 till 70 -70."

In the latter part of the above extract, the first phrase Anna used for length
measurement is notionally consistent with her previous argument: it takes for
granted that the starting point of the measurement is the turtle, i.e. measure
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from the turtle to an external location ("...so now I'm finding the distance till 70
-70..."). This "turtte centred" measurement, has the intrinsic characteristic that
it does not convey information about the location of the turtle's position.
Anna's second phrase shows a spontaneous shift from her
intrinsic to her non - intrinsic fragment: she abandons the turtlie
concept and talks about the distance between two plane
locations. Nevertheless, a "directional” characteristic (from... to) remained

and was consistent with the turtte measurement direction.

The children's next decision, however, seems to indicate a shift
in the meaning of the distance output. To actually move the turtle, they
typed FD 183.569, using the result of a measurement for an action - quantity
operation for the first time. The interest in this activity lies in the fact that this
was the very first opportunity to use such an operation - they wanted an action
from the turtle and they knew the quantity - and the children took it without
hesitation. They then did the same thing for the turn, measured first and then
turned the turtie: PR DIRECTION [-80 -40] (result 130.665) RT 130.665.

Maria and Korina seemed to keep their action quantity schema
separate, in their minds, from the coordinate notions. The
emergence of their adopted strategy of making measurements and using their
outcome in action quantity commands can be clearly illustrated by the
following extract:

(turtle at -20 90, heading towards 70 -70, fig. 6.7.5)

(-20 90)
K:"FD..."

M: "No, we want her to give us the distance.
PR  DISTANCE... (she types that)

right (means O.K.). To the point 70 and -70
(Korina types that, they press RETURN

and write the result on paper) Now... FD... 183 (-80
and 256. (result on screen) Ah, good.” -70)

F M K:M rin wm h myv
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It is suggested that Maria's objection to Korina's apparent intention to perform
an action straight away, was due to her strategy to perform a measurement in
order to find the quantity. It seems that for Maria the method for collecting the
distance information was distinct from the turtle's action (turn) and the
meaning of the output was the distance from where the turtle was to a certain
location. However, it is proposed that her reason for carrying out
the measurement was to find the quantity of a turtle action in spite

of the fact that part of the task required length measurements.

It is also seems likely that she used coordinate notions as part of
the measurement, i.e. as separate from the turtle's action. Korina's

subsequent strategy for turning the turtle seems to support this argument.

K: "Now we have to turn it.. PRINT DIRECTION (-20 90)
towards the point  (they count on screen)..-80 -40."

(result on screen (1), they write it on paper))

M: "Right (she means O.K.)...,RAT..."

K: "Yes RT that's right, RT how much do we want

to take her... (they type the degrees, result on

screen (2))

Good." -70)

M m rin wm h

Notice how she seems to express a global purpose ("...now we have to turn
it...") and then changes to the process of achieving it, which is aparently split
into two parts: first carry out the measurement, write down the result and then
use it for the quantity of the action. It is suggested that the coherent way in
which the children used English for the commands, and continued the same
phrase in their own language, is indicative of their understanding of the

meaning of the commands.

Natassa and loanna seemed to use a non - intrinsic schema for
changing the turtle's state. The schema appeared to incorporate the
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notion of action, but not to emphasise it; the children seemed to often
use action words (e.g. turn, move) to express which state they
would change, rather than the method by which they would make
the change. This is illustrated by the following extract in which Natassa
declared which state she would change first, using the word "turn", and then

gave a very different description of heading change:

(turtle at HOME position, aim to take it to -20 90)

N: "Ok. First I'll turn and put the nose of the turtle to look at this point here, on
the top... top left. SETHEADING TOWARDS SE... (she types) em... -20... (she
types -20 90). Now let's take it up there. With SETPOS."

Notice how her explanation seems to be dissociated from a "from here to
there" notion ("...put the nose of the turtle to look at...") and to regard a specific
location as the only determinant of direction change. It is interesting how she
expressed this idea first, i.e. that a location would make the turtle change its
heading, then started to type the commands in, and only in the end started to
count on the screen to find the coordinate values of the location. This
suggests that Natassa's insight was primarily on the method of
state change via a location on the plane. The argument is supported
by the reason Natassa gave for using the protractor in her first decision to do
so:

(turtle at -20 90, heading from 0 0 to -20 90)
I:"SETH... how much... 20..."

N: "...protractor to see how much it will turn to go there... Now, RT."

The meaning she gave to the measurement was that it provides the quantity
for a turtle action. It is suggested that Natassa may have implicitly compared
the two methods and wanted to use one which would reveal the quantity of an
action.

However, it is questionable to what extent she was aware of the differences
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between the two methods. For instance, having "forgotten” to measure the
(-20 90) (70 -70) distance and having typed SETPOS 70 -70, she imposed a
"reverse action" schema to take the turtle back to -20 90 to do the

measurement:

(turtle at 70 -70, fig. 6.7.7)

(-20 90)
N: "We'll go back... she knows the command BK.
We'll tell her BK 70 -70."
-70)
Fi m nin EP

It seems that Natassa confused the meaning of the SETPOS
command and the state change method underlying it, and
imposed forward - quantity notion on it. That would explain why she
used the BK command, i.e. to counter the forward action, and why she put 70
-70 as an input, i.e. to make the turtle go back the same quantity as it had
come forward. The fact that Natassa did not seem to see anything
strange in this plan of hers supports the view that the action
quantity schema was very easily accessible in her mind.

6.7.2e Schemas em lo ed for d namic and static notions of an le

The first part of this section illustrates Anna's development of
dissociating the notion of an angular quantity from its role as the
quantity of a turn. After having measured the first angle (at point -20 90),
the children took the turtle to the (70 -70) point (fig. 6.7.8a), typed PR
DIRECTION [-80 -40] and then RT 130.665. Their reason for the measurement
was to obtain information about the angle, since they had finished with

drawing the triangle and labelling its vertices. Anna's comment indicates that
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she associated the measurement with the turtle turn.

(-20 90)

A: "We'll find the degrees from here till here.
It will do RT."

-70)

Fi ure6.7.8 A. and L.: Measurin an an le

Although she realised the meaning of the result, (“The degrees it has to turn.
Its the degrees of... which are from 70 -70 till -80 -40, the point 70 -70 till the
point -80 -40."), the employment of her "intrinsic fragment” did not
allow her to discriminate between the external and the internal
angle and she carried on as if the matter was solved. When the
researcher called upon her non - intrinsic fragment, by asking if the result was
the size of the "inside" angle, Anna's attention seemed to immediately "jump”

to an angle notion which was not involved in a turning action.

Initially, her experience with the role of measurements as quantities for
potential turns seemed to lead to an incorrect strategy, (similar to that of point
-20 90) i.e. one which did not take the intrinsic "right of the turtle" property of
the protractor into account.

(turtle at 70 -70, heading towards -80 -40, fig. 6.7.8b)

A:"Ahl... does she know LT? She does.

R: "Why do you ask this ?"

A: "To do itin a different way to turn it from here to turn it to look at -20 90, then
measure it. But it's LT, so it can't be done..."

The difficulty she had had with the same problem (in measuring the angle at

-20 90), i.e. to combine plane locations with the turtle turn, was drastically
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reduced. It was the first time Anna seemed to verbally express the
use of a measurement independent of action. It is suggested that
she employed her intrinsic fragment, first realising the bug in her
strategy, and then how to correct it.

L: "So we take it to zero."
A (heading: towards -80 -40, fig. 6.7.8b): "Like it's now... we'll ask it how much
to look at -20 90."

Loukia's suggested solution indicated that she hadn't changed her strategy of
"when in doubt take the turtle to an absolute "known" heading".

However, Anna's realisation that, in contrast to what she first
thought, there was no need for an action (change of state) for this
measurement, brought about a new stage in her dissociating

action from measurement, as her next activity illustrated:

A:"Oh, yes, why turn? | can count the distance now.”

Her strategy for measuring the third angle is split in two parts, the first
involving a change of state and the second a measurement. As the following
episode illustrates, Anna used an action schema for the former,
implying that the quantity would be determined by a plane
location (-20 90). The command that she typed was RT DIRECTION [-20
90], illustrating how she verbally expressed DIRECTION [-20 90] as "this way"
(fig. 6.7.9).

(-20 90)
A: "We'll turn this way... (she means towards -20 90)
and then from here we'll ask it... we'll say PR
DIRECTION... 70 -70 and she'll tell us."
(-80
-70)
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The latter part of the strategy, was expressed as a non - action
measurement ("we'll ask it... and she'll tell us"). The difficulty Anna had with
explicitly expressing what involved a combination of her intrinsic and non -
intrinsic notional fragments - although implicitly she used it successfuly - is
illustrated by her sudden switch to the summative use of the Logo code
("...we'll ask it... (she doesn't continue her phrase, but changes to Logo
commands) we'll say PR DIRECTION... 70 -70...").

Maria and Korina did not seem to talk about angle measurements
independently of turns, even though their emerging strategy for
measuring the angles was quite sophisticated. Korina's first effort at
forming such a strategy suggests that she had an insight into thinking about
the angle as a quantifiable entity ("...to find the angles, i.e. what they are..."),

but for her, that entity was still the quantity of a turn:

K: "...and to find the angles, i.e. what they are, i.e. if the turtle was here how
much she would turn to go to the other vertex."”

Maria's correct strategy for measuring their first angle (-80 -40, turtle facing
-20 90) indicates an even closer connection between turn and angular
quantity in her mind (fig. 6.7.10).

(-20 90)
M: "We'll turn her to find how much it is.
And like we're turning her she will give us
the angle.”
(-80 -40)
-70)
Fi 71 Mari' mea rtin anan

She seemed to consider the measurement as part of the action ("...turn her to
find how much itis...").
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Natassa and loanna adopted a strategy of collecting linear and angular
information as they reached each point, starting from (70 -70). However,
Natassa had the impression that the turtle's turn at (-20 90) from a (0 0) (-20
90) to a (70 -70) heading was a required angle (fig. 6.7.11). The interest in the

following episode is in loanna's rationale for disagreeing with her peer:

(-20 90)
I: "This isn't an angle because you say
PRINT DIRECTION 70 -70... it's not an
angle... it's how much she'll turn.”
(-80
-70)

Fi ure 6.7.11 loanna's ar ument on the meanin of an le and turn

It is suggested that loanna had two separate notions in her mind,
that of an action (turn) and that of a static angle. She did not seem to
consider the notion of a dynamic angle as an angle at all ("..it's not an
angle..."), but rather as part of the turning action, i.e. its quantity ("...it's how

much she will turn...”).

In her strategy for measuring the angle at (-80 -40) while the turtle's direction
was from (70 -70) to (-80 -40), Natassa seemed to dissociate the
measurement from a turtle action. In spite of her initial confusion in
thinking about employing the absolute heading system rather than a location
oriented heading change, her strategy did not involve a turtle action at all (fig.
6.7.12).
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(turtle at -80 -40, heading (70 -70) (-80 -40))

(-20 90)
N: "It should look upwards, this... ah... I got it... O...

no, what 0... (she types SETH TOWARDS -20 90,
result on screen). Now we'll tell the protractor..."
I: "We'll find the angle now..." (they type PR
DIRECTION 70 -70)

-70)
Fi ure6.7.12 N. and |.: Measurin an an le

She changed the heading with a non action - quantity method, and then
performed a measurement without seeming to relate it to the quantity of an
action ("...now we'll tell the protractor...”). loanna's comment supports the
previous argument of the childrens' conception of a measurement
independently of their action - quantity schema.

.7.2f The children's choice ween the intrinsic d c ordina "n nal

m n

The three groups of children used differing methods to solve the task and
differing commands to perform state changes. Natassa and loanna seemed to
prefer using the SET commands when a change of state was involved and
the measuring commands in "information mode" to carry out the
measurements. Maria and Korina preferred making the measurements first,
initially restricting the use of the outcomes as quantities for the intrinsic
commands (FD, BK, RT, LT), and subsequently incorporating a meaning of
quantities for the required length and angle information. Anna and Loukia
used the combined action - measurement commands (e.g. RT DIRECTION...)
at first, when they were in "action mode" (drawing the triangle), split the
commands in order to make the measurements and subsequently started to
use the intrinsic commands with the measurment outcomes for changing the
turtle's state.
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To make sure that their choice was genuine and not due to their having
forgotten, being unaware of other options for state changes or finding some
difficulty in understanding a particular command, the researcher asked each
group, at a time when they were well engaged in the task, whether there was
a different way of changing some particular state. In all three cases, there was

a near - instant answer, providing the alternative option.

In Anna's and Loukia's case, for instance, the researcher intervened for this
reason, before Anna pressed RETURN to the RT DIRECTION [-20 90]
command (turtie at -80 -40), when the children were near completing the task:

R: "Tell me something Anna... before you do that... do you know any other way
to make her look over there?"
A (straight away): "SET... SETPOS... up there.”

Discussion soon revealed that she really meant SETH, but had forgotten the
syntax for it. However, the fact that she answered immediately
indicates that she was quite aware of the option. Loukia's
explanation of what SETH meant (to Anna) revealed an understanding of a
location determining a state change, but also an unclear distinction between
the two states of the turtle.

L: "Turn me and make me look towards where you want me to go." A: "Ah, so
that's what we want (she types SETH TOWARDS SE -20 90)... isn't it the
same with RT DIRECTION..."

The discussion arising from this point concerned the choice between action -
quantity and coordinate commands. The children were clear about the
"equivalence" between the two, and both said that they preferred the former.
The reasons they gave indicate the links they made between the
notions required by the "action - quantity” paradigm, and their
intuitions:
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"Because it explains it better."”

"Why does it explain it better?"

A:
R:
A: "Because it says... turn... eh... the degrees to go... to look at that point..."
L: "lts explains it in easier words."

R: "Why are these words easier."”

L: "Because we say them more... because they come to our mind easier...
because the rest of the world is used to listening to them more and so it

comes to our mind easier to search and find..."

The main interest here is not that they preferred the intrinsic commands, since
it could be argued that they had had much more experience with them than
with the coordinate commands, but the reasons they gave for their
preference. By means of her statement that the "words" move and turn are
"easier", Loukia seemed to be making a case for the accessibility
of the action notions to the children, providing two reasons for it:
that the notions are frequently used in their environment (..."the rest
of the world is used to listening to them...") and that they provide useable
thinking tools (“...it comes to our mind easier to think and find...").

2 nin

The first point of interest in this section, is the meaning Anna and Loukia gave
to the WRITE command, as that of labelling a point, i.e. giving a name to a
point. This seems to relate to the experience they had had of the process of
labelling from the first session, i.e. placing a marker on the turtle's path to
make future reference to that location possible. The children’s first experience
with labelling, however, was in an intrinsic geometrical environment, where
there was no plane description, more so, it was the label command which
provided such a characteristic. Therefore, the label (marker) was "created" by
the children, the point had no name until it was labelled, and only when it was
marked did it become a "location". The children seemed to transfer this
meaning to the WRITE command, thus missing the point that in the

coordinate plane the locations are already there, they have an
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absolute system of naming, and the WRITE command merely
prints that name on the screen given that the turtie is on that
location. On the other hand, the children did seem to have a precise
meaning for giving a label to a point (unlike the other two pairs) and this
meaning, paradoxically involved the use of the coordinate system itself, and a
substantially clear conception of the notion of a location in the
plane, and the process of refering to that location to cause

actions or collect information.

The strength of this link is illustrated by the way the children said they were
going to use the WRITE command, and by the fact that although they knew its
existence and had used it in the previous session, they used the word POST.
Furthermore, this happened in two instances of considerable time difference
between them, firstly when they were planning their course of action (A: "...lets
go to one of the points first... and to make the POST and then draw the
line..."), and then, in the first time they used it (point -20 90):6

L:"Can | do POST if | want?"
A: "Why don't you write POST, its better, easier."

When they saw that POST was not in the turtle's "repertory”, they typed
WRITE, and the coordinates without hesitation.

Maria and Korina did not seem to think about labelling until they had
completed the "drawing" of the triangle, and that only after a hint from the
researcher that this too was part of the task. It is suggested that this was not
due to problems they might have had with using the WRITE command, but to
the children's lack of experience with the process of labelling in
the previous sessions. For instance, they seemed quite happy to use the
method for locating the triangle points on the coordinate grid while carrying
out measurements and the meaning they gave to the coordinate values did
seem to be that of a name for a location. However, labelling a point did

not seem to have a particular meaning, it was just "part of the
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task". Although there is no indication to support the view that the children
had realised the existence of an absolute locating system, it could be argued
that they did not seem to form a schema for the locations such as the previous

group, i.e. that they existed after having been labelled.

mm n h T. .mi w Il ivi

The first main issue examined in the study of the category 3 activities, was the
nature of the schema or schemas the children used in the process of
controlling the turtle in the composite intrinsic / coordinate "environment" of
the T.C.P. microworld. There can be no conclusive evidence as to the effect of
the differing initial activities on the children's forming of the two schemas, i.e.
the intrinsic and the coordinate. It is interesting to consider, however, the case
of the "path 2" children (fig. 6.1.1), who had had the longest experience with
the integrated action / information use of the measuring instruments (e.g. FD
DISTANCE :D3), which lend themselves to a perception of measurements as
part of an action; Maria and Korina did not attempt to employ their coordinate
schema, maintaining an action - quantity schema throughout the task, and
using notions from the coordinate system only in the process of measuring.
Moreover, they did not seem to realise until half way through the task, that
their measurements offered length and angle information as well as the

quantity of an action.

On the other hand, the "path 3" children, Anna and Loukia (fig. 6.1.1), who
had had the experience of constructing a system to describe plane locations
using an intrinsic method, did not hesitate, initially, to attempt to use their
coordinate schema which (in the category 2 activities) they had formed as a
"contradiction” to intrinsic notions, to change the turtle's state. However, the
conflict created by the composite requirements of controlling the turtle in the
T.C.P. microworld seemed to encourage the children's emerging use of two
disparate schemas, the intrinsic and the coordinate. The children made only
scarce attempts at relating the two and seemed to have a tendency to favour
the intrinsic schema.
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Finally, the "path 1" children, who had had more experience with the
"mechanics" of the coordinate system, but no experience with using
coordinate notions in an action - quantity turtle control method, seemed to
favour the use of their coordinate schema for changing the turtle's state,
regarding the measurements as a process of collecting information. The
evidence indicates that the intrinsic schema was easily accessible to the
children, but that they had very little awareness of the differences in the two
methods of turtle control.

The second main research issue involves the schemas the children built for
the static and dynamic notions of angle required by the task. In the process of
turning the turtle and measuring the internal angles, Anna and Loukia
seemed to discriminate between angle as the quantity of a turn and angle as
an entity in itself. They also discriminated between external and internal
angles of the triangle (this issue is investigated in detail in chapter 7). Maria
and Korina, however, did not seem to discriminate between the two meanings
for angle, assigning a dynamic, "quantity of a turn" meaning to the notion,
both in cases of action and measuring. Natassa and loanna seemed to
consider the two notions as distinct, i.e. that an angle was distinct from a turn.
They mainly used the coordinate command for changing the heading and
seemed to consider angle measurements as independent of heading
changes.

The schemas the children formed for the geometrical notion of angle, seem
related to the schemas for controlling the turtle. For instance, Anna and
Loukia seemed to develop an understanding of a non - turtle - centred notion
of angle via conflicts between their intrinsic schema and the computer
environment. This issue was seen as warranting further investigation, which
was carried out in the following two studies (chapters 7 and 8). Here, it is also
interesting to consider drawing a parallelism between the connections of the
children's emerging angle - schemas with their experiences in the initial

activities, and the respective connections between their schemas for turtie
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control notions described above.

Finally, the other research issues which emerged from the analysis of the
data were:

a) the arbitrariness of the coordinate system "rules", where an example is
given, of the children's using what they perceived as a more realistic "number

of lines" notion to the callibrating units of ten turtle steps,

b) the children's persisting difficulties in discriminating between two notions of
state change, i.e. a sequentiality notion and that of a state change determined
by the end state,

c) the "validation” of the children's choice, i.e. whether they were aware of the
two alternative methods of state change while they were engaged in the task.
This section included a discussion between the researcher and the children,
yielding their reasons for their preference of the intrinsic commands, which
the researcher interprets as being that the action notions of "move™ and "turn”

are frequently used in their environment and are useful tools to think with.

d) the effects of the experience concerning the notion of location which the
"path 2" (Maria and Korina) and "path 3" (Anna and Loukia) children had in
their category 1 activities (fig. 6.1.1), on their perception of this notion in the
T.C.P. microworld activities. Maria and Korina did not seem to attribute a
particular meaning to labelling locations, while the meaning which Anna and
Loukia seemed to have for labelling was that of "constructing” a point, i.e. they
seemed to disregard the absolute nature of the coordinate grid.

VERALLDIS U IONANDC N L DIN REMARK

Although the researcher is aware of the limitations of the applied
methodology (i.e. subjectivity of interpretation, limited grounds for

generalisations), it was felt that it was a justifiable means of acquiring the
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insight into the children's thinking which was needed in order to investigate
the feasibility of their development of understandings of cartesian geometry
by employing the cognitive schema they seem to have built from their
experience with the Logo turtle. As discussed in chapter 4 (section 4.2.8), a
substantial component of the analysis was presented in the form of chosen
"significant" episodes during the children's activities which illustrate the
nature of their insights or confusions related to the research issues.
Throughout this study, the organisation and the choice of the presented
episodes provide an overall picture of the balance of events in kind and in

time. The same also applies to the two subsequent studies.

On the one hand, it is felt that the study was limited by the relatively high
degree of structure of the activities. For instance, the desire to investigate
different aspects of the notions involving the coordinate "mechanics” in the
category 1 activities, restricted the children's experience to the respective
aspects. All three types of notions, however, were important for the children's
understandings in the subsequent tasks, although it is arguable whether they
should have been introduced sequentially or concurrently. A similar argument
applies to the different categories of activities which were presented to the
children sequentially, in the specific (and therefore arguably restrictive) order
of plane description notions, coordinate turtle control and choice of turtle
control.

On the other hand, however, the investigation of detailed aspects of the
children's thinking required a research model which would restrict the
unavoidable research "noise" of more open - ended activities. Moreover,
there was an effort to minimise imposed restrictions, by incorporating some
project work (in category 1) and designing the tasks so that they allow
flexibility in the employing of strategies to solve them (categories 2 and 3). As
a consequence from the previous argument, and as a result from the analysis
of the data, it could be argued that the children engaged in learning activities,

the potential of which this study set out to investigate.
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The study provides a description of the process by which the children
apparently began to build a mental schema with dynamic characteristics, i.e.
one which would enable them to make controlled changes in the coordinate
plane. The schema seemed to emerge in the children's minds, from its
"antithesis" to the intrinsic schema, caused by the coordinate nature of the
category 2 tasks. In the category 3 activities, the children seemed to use the
necessary coordinate notions (labelled "coordinate mechanics" in the study)
either by employing their intrinsic schema (e.g. FD DISTANCE 70 -70) or their
coordinate schema (SETPOS 70 -70). It seems therefore interesting to
consider the potential of the T.C.P. microworld in providing the children with
the opportunity of a dynamic interplay between the two geometrical systems
by means of the option to employ a method to make changes, based on
concepts belonging to either system. The issue of the nature of the criteria
children employ in choosing between the use of intrinsic and non - intrinsic
notions is investigated in chapter 8, in the context of a microworld embedding

intrinsic and euclidean notions.



CHAPTER 7

FROM INTRINSIC TO EUCLIDEAN GEOMETRY

7.1 OVERALL DESIGN OF THE STUDY

7.1.1 Ob’ectives.

As discussed in the review of the literature, Euclidean geometry has mainly
been taught in schools as a "tight” deductive system resulting in most children
achieving no more than a superficial "rote” mastery of the subject. As a
consequence, the role of Euclidean geometry in educational practice has
recently been diminished, at least in the U.K.. However, the case has been
made that, due to its mathematical nature, geometry has substantial potential
as a field within which children can primarily practice inductive inferences
from personal experience, while simultaneously being a field inviting
engagement in deductive thinking (Freudenthal, 1973). Perceiving geometry
in such a role could involve important educational implications since, for
instance, it has been argued that deductive abilities in mathematics must be
based on the practice of inductive inference (von Glasersfeld, 1985a).
However, there is very little evidence of children working in geometrical

environments which might fulfill this potential for geometry in education.

The general aim of this study was to investigate the potential for children to
use their intrinsic schema in a Turtle geometric environment in the process of

forming inductively generated understandings of euclidean geometry.

A pair of children were provided with a microworld enabling them to mark
turtle positions on the screen and make linear and angular measurements
between those positions (the P.D.D. microworld, see sections 4.2.2. and
7.1.4). The study involved a series of activities consisting of both structured
tasks and more open - ended projects with varying degrees of constraint. A

detailed observation of the children engaged in these activities was carried
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out, in order to illuminate the process by which they might use their intrinsic
schema to develop understandings of euclidean geometrical notions. The
children's activities involved the use of the turtle's new tools (adapted from
Loethe, 1985 and incorporated in the P.D.D. microworld) which were
designed to be applicable in both the intrinsic and the euclidean geometrical
systems (chapter 3 and section 7.1.4). In particular, the investigation focused

on,

a) how the tools were firstly adapted to the children's existing schema for
controlling the turtle,

b) how they were used for representing concepts in a euclidean setting, and

c) the way in which this experience influenced the children's strategies in
their own Logo projects.

The children's activities were accordingly split into three groups (the word
"categories" is used in the study). The corresponding specific research
objectives for each "category” of activities were to investigate:

a) the process by which they integrated concepts involved in using the new
tools into their existing knowledge and in particular the extent and the way in

which their intrinsic schema was employed during this process;
b) the development of understandings of the nature of euclidean geometry
and the extent to which the children employed a turtle geometric schema

incorporating the P.D.D. turtle tools for this purpose;

c¢) how and if their experience in making sense of the tools and using them ir

a euclidean setting influenced their thinking in Logo projects of their own.
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7.1.2 Overview of the tasks.

As mentioned above, the children's activities were split into three categories.
Since the findings from each category will be presented separately, an
analysis of the specific tasks in each category will be given at the beginning
of each findings section (i.e. sections 7.2, 7.3 and 7.4). However, it seems
useful at this point to present an overview of the activities involved in each

category.

The aim of the first category was to investigate the process by which the
children integrated the concepts required to use the tools into their existing
knowledge. The tasks initially involved the use of the measuring instruments
only (resembling a turtle "ruler" and "protractor"), the research aim being to
find out how they made sense of linking measurements to turtle actions and
how far they distinguished action from measurement. A final set of tasks
incorporated the use of the POST command, so that the children would make
decisions on which features they wanted to measure in order to construct
figures with particular characteristics. The aim here was to investigate their
process of incorporating the naming of points on the screen and in particular
the criteria by which the children decided to give names to specific points in
relation to future use of the points for measurements (as discussed in chapter
3, a measurement could only be done with the use of a marked point).

The aim of the second category was to investigate the development of the
children's awareness of the essence of the "logical" nature of euclidean
geometry, i.e. the way in which the previous incorporation of the new tools in
their turtle geometry schema, played a part in the growth of this awareness
and in developing an understanding of certain euclidean concepts. The tasks
involved the construction of an isosceles triangle, the investigation of specific
properties of the isosceles triangle and the construction of a generalised
procedure for the isosceles triangle. The investigation concentrated on how

the children used intrinsic and euclidean concepts in the process of solving
the tasks.

205



The third category had as an aim to investigate the influence of the children's
experience in more open - ended Logo projects. The research intention in
their first project (where they had the constraint of using their generalised
isosceles triangle procedure) was to reveal how the children might
incorporate a complex tool, based on euclidean concepts, in their familiar
(see chapter 5) open - ended Logo projects. The children's final project did
not involve the constraint of using the isosceles triangle procedure or the
P.D.D. tools. The aim was to find out what reasons the children might have for
using the tools (if any), i.e. the effect of their experience in using concepts
from both geometries.

7.1.3 Overview of the learnin environment.

The learning environment was designed so that the children would be
provided with a microworld (Hoyles and Noss, 1987b) constructed so that the
use of the intrinsic schema would be applicable for understanding non -
intrinsic, euclidean ideas, i.e. the "tools" could be used for both the intrinsic
and the euclidean representational systems (see section 7.1.4). In this sense,
the structure of the children's activities within this microworld can be
described as a "conceptual pathway" from the intrinsic to the euclidean

representational system.

The technical component of the microworld was designed so that the tools
would be readily usable by the children and they would be seen as
"primitives”, i.e. an extension of the basic turtle functions. In this sense, there
were no concepts embodied within the tools/programs as, for instance in the
“"parallelogram microworld" (Hoyles and Noss, 1987a), discussed in chapter
2, but rather, the concepts were embedded in the use of the tools as primitive
commands. A tool/program which the children would be able to look into and
reflect upon its construction could serve as a microworld within the wider
P.D.D. microworld. This issue is discussed in section 7.5, in the light of the

analysis of the data. The words "post”, "distance" and "direction" were chosen
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so that they have a meaning tightly related to their function (e.g. distance

measures the relation between two positions).

The pedagogical component consisted of the activity structure and the
researcher as teacher. The first priority of the intervention strategy as part of
the pedagogical component was initially to provide the children with a
meaningful way of thinking about the use of the tools, adaptable to their turtle
schema. For example, DISTANCE was introduced as the turtle's ruler, and
PRINT DISTANCE :M was explained as "write me how much the distance to
M is". The aim of the research was to investigate the way in which this was
picked up and used by the children from then on.

Moreover, other pedagogical aims of the researcher's interventions were to
encourage or provoke reflection on children's actions, and to encourage
explicit explanations concerning important points. An important aspect of the
intervention strategy was the frequent encouragement for the children to be
active in their learning, to feel at ease with making conjectures and saying
their thoughts out loud, i.e. to establish the "legitimacy" of a kind of
mathematics learning which, due to the educational system, was very
unfamiliar to the children (chapter 5).

Care was also taken to ease tensions: not only disappointment and
frustration, but also over-enthousiasm leading to lack of concentration; this
affective aspect was partly the result of the unfamiliar learning method. The
children's perspective of the situations was respected so that it often
appeared to the children that what they would do was decided by them, rather
than by the researcher.
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7.1.4 Anal sis of the conce tual field of the P.D.D. microworid.

7.1.4a Tool descri tion.

POST. This provides the ability to name a position of the turtle (and see the
name on the screen). The name can only be given when the turtie is in that

position.

D TANCE This provides knowledge of the distance between the turtle's
current and some previous position. This previous position can only be
specified by a name having been given to it by POST.

DIRE TI N. This provides knowledge of the angle between the turtle's
current heading and the heading required to face some previous position.
The angle is measured from the current heading clockwise. The previous
position can, again, only be specified by a name having been given to it by
POST.

7.1.4 Chan a

It is important to analyse the process of changing the state of this microworld's
mathematical entity (the turtle) in order to clarify how the process relates to
state change in the differential (intrinsic), logical (euclidean) and analytical

(cartesian) geometrical systems.

In Turtle geometry, the state is changed by an action (move or turn) followed
by a quantification of that action. The distinction between action and
quantification plays a crucial part in making Turtle geometry intrinsic. The
action describes the nature of the change which is about to take place (e.g. in

Turtle geometry, change means change of position or change of heading).

In the P.D.D. microworld, change of state is also caused by an action (move

or turn) and a quantification. The difference lies in the method used to
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determine quantities of actions, which depends on being able to "compare"
two not necessarily adjacent states of the turtle’s path by measuring the linear
or angular difference between them. This can only be done between the
turtle's present state and any previous one provided it had been marked
when the turtle was in that position. Comparison between two non - adjacent
turtle states contradicts the differential characteristic of turtle geometry, in that,
here, growth is not necessarily described by change at the growing tip
(Papert, 1980). On the other hand, the action - quantification schema is

maintained, and the use of such measurements is optional.

The dynamic "action - quantification" characteristic is absent in the
mathematical entity of "logical" Euclidean or "analytical" Cartesian geometry,
i.e. the static point. Changing state in these systems is an absolute process,
i.e. dependence on previous states is not necessary. The dependence lies
rather on the notion of the plane (three dimensional geometries are not
considered in the study). In Euclidean geometry, the notion of the plane is
defined, although there is no absolute, systematic description of plane
locations, as is the case in Cartesian geometry (chapter 6). It is therefore
meaningless to talk about changing the state, since points can be placed on

the plane either in an absolute way, or in relation to any other point.

An analysis will now follow of the notion of the plane in the different systems,
in relation to the P.D.D. microworld.

7. .4 Awar ne of ne

The intrinsic nature of Turtle geometry restricts mathematical awareness of
the space around the mathematical entity (i.e. the turtle). In intrinsic geometry,
the position and the heading are not determined by their relationship to any
absolute or imposed, systematic or otherwise, description of the plane. In fact,
mathematically speaking, the turtle "does not know" of any plane at all
(Papert, 1980). It can only do operations that are directly dependent on the
immediately previous state. The turtle's position and heading are generated
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by its own actions.

n the P.D.D. microworld, the dependence on the immediately previous state
is not necessary: the turtle's state can change depending on any previous
position (note that POST does not mark the heading), providing that the
position has been named. Such positions are entirely dependent on the
turtle's path, i.e. there is no absolute description of any location. Furthermore,
the described positions/points in the plane are discrete (not an infinite
number) and (unless imposed as in the T.C.P. microworld study) do not have
a systematic code of naming. The turtle is not conscious of any plane, but of
certain discrete points somewhere where it has been before. Relating to a
position other than the immediately previous implies a notion of relative
location. The turtle's two measuring instruments give a quantification of the
relationship between two states without the constraint of being temporally
adjacent.

7.1.4d An Exam le.

The geometry stemming from this microworld has mainly intrinsic
characteristics. Those characteristics that are not intrinsic by definition, are
constructed so that they constitute a natural (and logical) extension of the
intrinsic abilities of the turtle. For instance, in the command FD DISTANCE
"name (of POST), the turtle's actions are intrinsic. There is the action
command, "move yourself forward" and the quantification command "so
much”. The non - intrinsic extention, is in the nature of the quantifier. There i
no numeric quantity, but a description of the change of position in terms of a
"measurement” that the turtle does. This "measurement” involves the point
that has been "posted”, which contradicts the differential character of Intrinsic
geometry.
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7.1 Methodolo

The pilot study consisted of two phases, the preliminary phase involving
trying out the new primitives, the programs for the tasks and the activities
(whether or not they involved programs). As a result of the preliminary phase,
a trial structure of the learning path was designed and tested out in a detailed
main pilot study.

7.1.5a The main ilot stud

The study was carried out in an English school, with two children aged 13,
one of whom had had three years of Logo experience and the other nine
months (this was the nearest available situation to the conditions of the main
study with respect to age and Logo experience). The children and the
researcher had a room to themselves, which made concentration and taping
feasible. All the activities in the first two categories were piloted. Data was
collected by the following means;

- audio taping,

- transcriptions,

- a record of everything that they typed,
- researcher's notes.

The global changes resulting from the pilot study concern the data collection
method, the structuring of the activities and the researcher's interventions. As
a result of the main pilot study, it was seen as necessary, due to the study's
detailed nature, to implement the following changes in the collection of the
data. Three main forms of data were developed, the children's typing (dribble
files), their verbalisations (audio taping), and revealing graphics outputs
(using the dribble playback facility discussed in chapter 6). It was seen as
important to record what programs the children chose to save on disk, and to
keep a record of when and what they chose to write on paper (paper and pen
were made available at all times). The researcher also developed a strategy
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for identifying and taking written notes on important events which would not

be captured by the data.

The changes in the activity structure were related to the development of three
categories of activities, sensitive to the research issues (section 7.1.1).
Certain changes in the order and the way tasks were presented were seen as
important for conforming to the notion of a conceptual pathway, and for
making the tasks clear to the children. For example, the introduction of POST
was seen as meaningful after learning how to make measurements, since
that was the reason for which POST would be used. Furthermore, introduction
of the new primitives would be made as an answer to situations where they

could be used, rather than at the beginning of a session or activity.

A technique for intervening was developed, in order to conform to the dual
role of researcher / teacher in a way which would be clear for later analysis,
without restricting the research outcome. For instance, the children were often
asked to explain their actions verbally, even when the probability of revealing

relevant information seemed low at the time.

Finally, several detailed changes were made, with respect to the task
programs in category 1, programming complications in the change from
Logotron Logo to Apple Logo Il (e.g. no connection between graphics and
text screen in the latter), clarity in presenting the tasks, and the switch from the
English to the Greek language. For instance, the translation of the word used
for "procedure” was "concept”. This convention was built during preliminary
study, and since it was applied in the children's other Logo activities at the
time of the research, it was maintained in the research sessions (see chapter
4).

7 Th m

The main study involved two children from the Logo club, Philip and Nikos.

The research was carried out after school hours in the research room, in two
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90 minute sessions weekly for five weeks. During their school hours, the
children participated normally in the Logo club and in the school Logo
programme. The machine and the Logo version used for the research were
the children's familiar (from their school activities) Apple IIC and Apple Logo Il
respectively. As in the other case - studies, during the research sessions, they
were faced towards the machine, the researcher seated behind them so that
their collaboration was unrestricted except in the case of researcher

interventions.

The research data consisted of;

- audio taping of everything that was said,

- soft and hard copies of verbatim transcriptions translated into English,

- soft and hard copies of everything the children typed,

- hard copies of graphics screen dumps, acquired by playing back the dribble
files and pausing them to print,

- soft and hard copies of all the procedures the children wanted to save on
disk,

- researcher's notes and children's prompted and unprompted notes on
paper.

During the whole of the research, the children had paper and pens in front of
them to use if and when they wanted. The researcher's notes mainly
consisted of recording observations that would otherwise slip through the
mechanical data collection net (e.g. how the children demonstrated an angle
using their fingers on the screen). For this study, the dribble playback facility
enabled a session to start at the precise point where the previous finished, or

at any other crucial point.

The analysis of the data is presented in three parts corresponding to the three
categories of activities, in order to facilitate the reader. However, the structure
of the presented findings within each category is based on the research
issues, rather than the tasks themselves, and is the outcome of a synthesis of
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"significant" episodes, as elaborated in section 4.2.8. Moreover, a further
synthesis of the findings is discussed in section 7.5, involving a framework of

four perspectives of the children's activities, namely:

a) The nature of their activities from a Logo programming perspective, i.e.
their programming and mathematical strategies and the mathematical nature
of their thinking;

b) The role of the P.D.D. primitives as a mediating tool between intrinsic and

euclidean ideas;

c) The children's use of their intrinsic schema for both intrinsic and euclidean
ideas;

d) The nature of the children's thinking in the context of euclidean geometry.

7.1.6 The children

Nikos was characteri sed by his teachers as a bright child with above
average grades in mathematics. The Logo club teacher (teacher F) was
impressed by his very high motivation regarding computers; "...he is the only
one in the group who takes time between computer sessions to think about
what he'd like to do...". However, he was dominant with his ideas within his
group in the Logo club, apparently striving to be "...looked upon as knowing
the answers...". His answer in the pupil questionnaire on whether he liked to
work on his own or not illustrates this point: "/ like to work on my own because
I want to make anything | like on my own...". As discussed in section 7.6,
Nikos' dominance did cause some difficulties during the research. On the
other hand, Nikos was not hindered by making mistakes, showing a relative
confidence with the process of debugging, as illustrated by an extract from his
essay, "...to make the main part of a program... or to make it perfect and to
correct the mistakes...".Moreover, he showed progress in structuring his

programming. In the "Four squares" task, for instance, this progress is
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illustrated by his shift from D to H, in figure 5.2 (appendix H).

Philip was characterised as an "average - above average" student and as a
"strong personality”, but also a "cooperative and sound

worker". The last point is illustrated by his degree of acknowledging the
cooperative character of his work within his group, given that his peers
showed much less involvement with the group's activities throughout the
year; "Together with my colleagues... we made various and pretty things...".
During the research, he seemed to weather Nikos' "tantrums”, but also
showed that his initiative in expressing his thoughts was not unaffected by
them. His responses to the questionnaire show that he liked mathematics
"because they are the most enjoyable lesson” . His essay illustrates that he
also enjoyed working with Logo. His programming was characterised by a
consistent use of procedures and involved a relatively high degree of
structure (shown by groups F and G in figure 5.2, appendix A). However,
Philip also showed a pér§isting resistance to use subpocedures in the process
of solving a task.
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7.2 CATEGORY 1: MAKING SENSE OF THE TURTLE'S NEW TOOLS

7.2.1 Task anal sis

This category of activities consisted of three sets of tasks (fig. 7.2.1), the first of
which involved the introduction and use of the measuring instruments as a
means of taking the turtle to specific points on the screen, designated by a
cross (to show the point) and a letter (to show the name).

The first task (task 1 set 1, fig. 7.2.1) to take the turtle to a point (prior to
introducing the instruments) was designed to probe the extent of the
children's persistance in trusting a perceptual way of attempting the problem
and to investigate their perception of the problem by means of what tools they
might require for solving it.

Subsequently, (tasks 2 and 3 set 1, fig. 7.2.1) the children were required to
take the turtle from one point to another, after having been introduced to the
measuring instrument primitives and their syntax. The first question simply
involved two points on the right of the turtle's initial heading (task 3), while the
second involved three (task 4), the first being on the left. Thirdly, ten points
appeared on the screen (task 5) and the children were asked to find out
which point was nearest and furthest from the centre. Finally they were asked
to draw a picture by joining up any of the points.

The aim of tasks 2, 3, 4 and 5 (fig. 7.2.1) was to investigate the process by
which the children started making sense of the use of the instruments in the
context of relating the turtle’s state to an external point. The focus in this set
was on using the instruments to cause action (change of state) rather than
carrying out measurements. The plan was to see whether the children would
integrate this action - quantification idea with their intrinsic schema. The
following main concepts were required for the task:
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- distinguishing the function of the two measuring instruments and

understanding the convention of measuring the turn to the right;

- distinguishing the function of an instrument from the "action” turtle moving

primitives;

- distinguishing between a perceptual and an analytical way of calculating

length or turn.

The second set of tasks in this category is more balanced in the importance of
the action or the measurement; two of the three questions require a
measurement outcome, the action now being the means to reach that
outcome. The tasks resemble those in the third category in the T.C.P.
microworld study (fig. 6.1.1). The difference in this case, however, lies in the
conceptual field of the microworld which the children were using and in the

related research issues.

For each task, three labelled points appeared on the screen, and the children
were asked to:

a) join the points up to form a triangle,

b) find the length of its sides and

c) find the size of its angles.

The tasks were designed to find out the strategies that the children would
form to combine turtle actions with the non - intrinsic features of the tasks i.e.
measuring the internal angles and the lengths, turning or moving the turtle in

relation to an external point in the plane. The tasks not only required an

integration of a static and a dynamic concept of angle (Kieran, 1986b) to
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make an angular measurement but also required moving the turtle to such a
position that a measurement could take place, i.e. relating the turtle's state to
a non - intrinsic angle in the plane. Such a measurement could be done
directly or indirectly (by measuring the supﬁementary angle) depending on
whether the turtle's position revealed the internal or the external angle.
Futhermore, more than one measurement could be done without changing
the turtle's state (e.g. two linear and one angular). In what way would the

children relate action to measurement?

The third set of tasks (fig. 7.2.1) involved two tasks to construct geometric
figures, given certain length and angle elements of the figures. The given
elements were drawn on paper by the researcher while he was verbally
stating the task.

The first task required;

a) the construction of a triangle, given the lengths of two of its sides and the

size of the internal angle formed by the two given sides and;
b) finding the size of the remaining elements.

This task was planned as a meaningful context for introducing the marking
and labelling of turtle positions (POST). From this task onwards, the imposing
of absolute points was abandoned, leaving the decision for marking positions
to the children. The aim was to find out, firstly, how and if the children
associate the marking of a turtle position to a means of relating to that position
directly, i.e. in contrast to the intrinsic method of inversing the turtle's
movements. Secondly, the aim was to investigate the strategies they formed
in choosing which turtle positions need marking and which do not. Thinking
about whether a certain position needs posting required an abstraction of the
task in order to determine whether there will be any need for relating to that

position in any future point of the task.
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The second task (task 2, set 3, 7.2.1) required;

a) the construction of a quadrilateral, given the size of three of its sides and
the two angles formed by the three given sides, and;

b) finding the size of the remaining elements of the quadrilateral.

The aim of this task was to pursue the investigation of the development of
children's strategies for using the POST feature in a construction and
measurement context, and give time for the children to make sense of using

POST and the measuring instruments.

722 Fin in

The activities in the first two sets (fig. 7.2.1) in this category are, in effect, very
much related to certain activities concerning the description of the plane in
the previous study. Philip and Nikos did, initially, seem to have the same type
of problems as the children in the T.C.P. microworld study, i.e. in integrating
the measuring instruments in their action - quantity schema, and in
discriminating between i) information from the "ruler" and the "protractor” ii)

the angle and length metric sysytems and iii) the position and heading state.

However, the analysis of the data in this study focuses on a different research
issue, i.e. the illumination of the process by which it was possible for the
children to integrate the POST / DISTANCE / DIRECTION microworld into
their intrinsic schema for controlling the turtle and the extent to which this

integration encouraged a euclidean interpretation of geometrical ideas.
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7.2.2b Relatin erce tual cues to measurement outcomes.

Not surprisingly, before being introduced to the measuring instruments, the
children made lengthy and detailed efforts to take the turtle to a fixed and
labelled point on the screen, using the HT (hide turtle) command repeatedly
as their approximations became "better", so that they could see the end of the
turtle’s path. When they had finished, they seemed convinced by their
perceptual cues that the turtle was precisely on the spot. Despite
the researcher's subsequent repeated questioning of the precision of their
method, the existence of an "accurate" method, or one related to the point
away from the turtle, did not seem to occur to them. Moreover, they did not

seem to see the need for more accuracy, as this dialogue illustrates:

R: "...is it exactly, exactly in the middle?" (of the cross denoting the location)
P: “No, but it doesn't matter.”

It is suggested that the children’s conviction of the accuracy of their method
was not only due to the obvious factor that they were unaware of any means
to acheive more accuracy; it may also have been the case that they had not,
up till that point, come across the need to make changes in the turtle's state

which would require more accuracy than that provided by their perception.

However, the children seemed more convinced of the superior accuracy of
the measurement outcomes, in the process of using the DISTANCE and the
DIRECTION commands. In their means of deciding on length and angle
guantities, they soon seemed to incorporate the treating of the measurement
outcomes as confirmation of these quantities; the first indications of this
change were during the comparison of the distances of the ten points on the
screen from the centre. The children enjoyed measuring to a point where they
became almost obsessive with it; in the ten point task, they wanted to
measure all the distances and the angles from the centre, and then the

relative quantities from point to point.

221



However, as the subsequent tasks revealed, performing the
measurements did not necessarily imply that the children
understood what they were measuring, especially in the case of
angle (e.g. discriminating between the two states, between length and angle
measurements). The process by which the children discriminated their new

tools will be illustrated in the following sections.

7.2.2c Creatin lane loc tions relative to he il ath

Although the children were introduced to the POST command, after the set 1
and 2 tasks, they had already effectively asked for a way to "make points" on
three occasions, (the first being early on, in task 3, set 1) so that they could

carry out some project of their own in the Logo club.

The POST command was introduced after the children’'s approximating efforts
to construct a triangle with two equal sides. This task was used here only as
an opportunity to set up a meaningful context for introducing POST. For the
purposes of this category, therefore, the task was seen as part of task 1, set 3.
However, the children's difficulties in understanding the abstract nature of the
given information were of considerable enough interest to invite analysis,
which is presented within a more relevant context, at a later stage in the
category 2 tasks.

The introduction to POST took place at the end of a session. In the next
session, task 1, set 3 was given to the children (a triangle with two sides of 90
and 70 length, and a 30 degree angle between them) without any mention of
the POST command. Nikos then had the idea of using the command,
and expressed a plan for constructing the triangle (see fig. 7.2.1,
task 1, set 3) which incorporated "posting":
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(draws a triangle on paper)

N:"... the POST alpha, the point alpha, can we make it with points? Beta here,
e.g., this is redundant... but anyway... no this is not redundant, but... and the
gamma, the C. So we'll say, we'll be here (at C), since we know how much
this is (the given elements), we'll be here and we'll tell her to turn to point A.
She turns to point A, and we tell her to go to point A and to tell us as well, so
that we can write it down (he means measure the distance)... and she goes
here (point A) and the triangle is done. And then we can find the angles...

(measure the remaining elements)".

The children used the POST command in their next task (quadrilateral, task 2,
set 3, fig. 7.2.1) in a matter - of - fact manner, without talking about it. They
forgot to put the post on B and took the turtle back from C to do so. Nikos,
however, discussed the necessity of posting B at that point in
time, since the point was "surrounded" by given elements of the
quadrilateral:

P:"Ugh! We didn't put a POST."

N: "Ah, yes? It doesn't matter. We don't need it very much... here, since we
know her, what do we need it? When we're passing through (he means
again, to measure) we'll put a POST."

P: "Yes, but to be sure..."

It is suggested therefore that the children began to develop a use
for the POST command in a meaningful way, i.e. they used it for
changing the turtle's state in relation to the posted point at a later
stage, in order to "close" a figure, something that they now seemed
convinced they could not do with "normal” Logo. During the quadrilateral task,
they also seemed to discriminate the command and its input,
realising that the input was a name for a place rather than some
fixed letter label. After giving the letters A, B, and C for the first three points

of the quadrilateral, for instance, they decided to give the letter N (possibly N
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for Nikos) for the fourth, asking the researcher whether he minded.

7.2.2d Internal and external an le

During their first experiences with measuring angles in the fixed triangle task
(task 1, set 2), the children did not seem to discriminate between
internal and external angles; during the construction of the triangle they
treated the measurement outcomes from the turtle rotations as the
sizes of the angles of the triangle which were required by the task. The
researcher pointed out the internal angles and had to ask whether angle A
looked like a 136.705 degree angle before a conflict was created between
the children's perception and the measurement (136.705 was the "rotation"
measurement outcome, fig. 7.2.2 - a global point about the 3 decimal places
of the numerical outputs has been made in chapter 6). Philip's "theory" about
this "paradox" seemed to show a lack of understanding of the functioning of

the turtle's protractor (i.e. that it measures potential right turns only):

P:"...instead of doing it right, we do it left.”

Philip seemed to keep this implicit and unclear "theory" in his mind
throughout the tasks in this category (category 1), offering it as an
"explanation” when there were difficulties in understanding the meaning of
measurements (i.e. what was being measured), or how to measure specific
angles. In their first angle measurement (angle A, fig 7.2.2), a discussion with
the researcher, who drew the triangle and the turtle's heading on paper led to
the children's mutual decision to employ a method similar to
Anna's method in the T.C.P. microworld study (fig. 6.7.3):
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A 36.705

N: "We turn it there, where it can do RT, b
and then we do it." (He means state b)

722N. n P.:Th fir m m n r

The children then measured the other angles with the same method, Nikos

attempting to express it at the end:

N: "Since we couldn't know the angle when it looked towards AC, we put it to
look towards beta, and like that we could find the angle, and we found it." (fig.
7.2.2)

However, from the second fixed triangle task (task 2, set 2)
onwards, Nikos developed a different strategy for measuring the
internal angles. He measured the external (rotation) angle and
then used the computer to subtract it from 180 (fig. 7.2.3).

(turtle in state a) E

? PR DIRECTION :E

143.18 143.18

? PR 180 - 143.18 '

36.82 a

? RT 143.18 (turtle in state b) D F

Fi ure7.2.3N.andP. :Usin h lementa an les"the remto

nin

In using this method, Nikos seemed to combine the dynamic notion of turr
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with an operation (partitioning) on static angies. He therefore seemed to
be using an angular measurement outcome for both dynamic and
static interpretations of angular notions. Figure 7.2.4 illustrates the
children's use of length and angle measurements to collect information to be
used for notions belonging to both the intrinsic and euclidean

representational systems.

(turtle in state a) E
? PR DIRECTION :D

114.867

?PR 180 -114.867

65.133

? RT 114.867

? PR DISTANCE :D \ F
111.018 —»
111.018 114.867

?FD 111.018
(turtle in state b)

Fi ure7.2.4N and P "Usin uantit information for

"Intrinsic” actions and "Euclidean" measurements

In the 90/30/70 triangle task (task 2, set 3), the children did not realise at
first, that they had the opposite problem of using static angle
information to perform a turtle rotation: they typed RT 30 FD 70 after
posting point B (fig. 7.2.5). Philip recognised that the angle was not 30
degrees, and argued that it was obtuse demonstrating his knowledge on
angle sizes from school geometry. Nikos, however, was the one to
carry over the supplementary angles strategy from the fixed
triangles tasks:
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N:"...shall I tell you (talking to Philip) how much itis? 150.”

R: "Why?"

N: "Because this here is 180, from here till there it's 30 and 30
this is 150 (shows with fingers on the screen along the

two directions a and b)"

Fi 72 N P n inf rm n

to erform a turtle rotation

In the remainder of this task and in the next one (quadrilateral, task 2, set 3),
Nikos seemed to have grasped the relationship between internal
and external angles and what was being measured by the turtle's
protractor. An indication of this is in the following episode in the
quadrilateral task: the children forgot to post point B and took the turtle at
point C, posting the point and turning it right 45 degrees (the internal angle
was given, 135 degrees). They decided to take the turtle back to B, and Nikos
typed RT 135, using the supplementary angles method to perform an intrinsic
turtle turn (fig. 7.2.6).

135

Fi ure 7.2.6 N. and P. : Turnin the turtle backto ost ointB

However, Philip did not seem to connect notions from the two geometries until
the end of the category 1 tasks (fig 7.2.1). Although he had a sound
knowledge of school (Euclidean) geometry and was a good Logo
programmer compared to the Logo club children, he seemed to find it

diﬁicult to combine intrinsic and euclidean notions.
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7.3 CATEGORY 2: USING THE NEW TOOLS TO UNDERSTAND
N EPT F ME LDE ME RY

AT

This category consisted of four activities involving the use of the turtle's new
tools in the construction of an isosceles triangle, in discovering and
generalising some of its properties, and in abstracting properties to write a
generalised procedure for an isosceles triangle (fig. 7.3.1).

The first activity consisted of the task of constructing a triangle for which the
only information / restriction that was given was that it had two equal sides
(fig. 7.3.1, task 1). After the construction the children were required to find the
size of the triangle's elements. The aim of this task was firstly to investigate
the children's use of the new tools to construct a figure for which they had
abstract information and secondly, how they might use the tools to develop
understanding of the generalisability of the two equal angles property
revealed by their measurements.

The second activity (task 2, fig. 7.3.1) was a task to construct an isosceles
triangle in an upright orientation on the screen. The aim here was to
investigate the strategy the children developed for such a construction since
the task required giving the turtle the correct heading before starting to draw
the triangle on the screen and consequently mentally manipulating specific
properties.

The third activity involved the use of a procedure which draws an upright
isosceles triangle. The task involved measurements inviting the use of certain
properties of the figure (task 3, fig. 7.3.1). At first, the children were asked to
make a line that split the triangle in half. The aim was to find out the children's
perception of what bisection means and to investigate if and how the children
used the tools to make a line that would bisect the triangle. A further aim was

to gain insights into their processes of building theories concerning the

228



Yt 10} SY Ul

‘dPueE N g€/3in I

indur yibus| suo pue abue suc yim
S8|80S0S!| UB 10} ainpadoid e axep

v XseL

uorysod
Jubudn, ue ur ejbueus ayi ind

¢ Jsel

syibugj pue
so|bue paw.o} ay} aredwo)
Jey ui s|bueuy ayl lidg

€ Jsel

ainpsaooid & ui §1 Ind

sa|bue s}i pue SapIS SH aINSeapy
sapIs [enba om}

ynm a|bueu) e axep

I )sel

229



following triangle properties: the properties of the bisector of the isosceles
triangle, how these properties do not apply for the other two bisectors, the
equality of the triangles formed by the bisector, the concept of triangle
equality, how these properties may apply to an equilateral triangie,
generalisation of the properties for equilaterals and isosceles, and finally
generalising the turning of the isosceles trinangle in an upright position. For
this purpose, the researcher employed a method of asking the children to
compare angles or lengths and challenging their theories by inquiring into the
extent of the generalisability of their findings.

At a deeper level, the aim of this task was to illuminate the children's interplay
between their intrinsic schema and the euclidean concepts, by using the
turtle's measuring tools in the described context.

In their fourth activity (task 4, fig. 7.3.1), the children constructed a generalised
procedure for an isosceles triangle with one angle and one length input. The
task was based on their attempt to generalise the rule of how much the turtle
should turn at the beginning so that any triangle would be upright. The
request involved constructing a procedure with a variable input for the size of
the equal angles. The aim of the task was two fold; firstly to investigate the
nature of the difficulties and confusions arising from the highly abstract
elements of the task (e.g. understanding that knowledge of one angle is
sufficient while dealing with an abstract variable for that angle). Secondly, to
follow the development of their understanding of the ideas embedded in the

procedure while they used it to make various triangles.
For reasons of clarity, the analysis of the activities is presented under task

headings. It is within each "task" section that findings pertaining to the
research issues are analysed.
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7.3.2 Findin s.

7.3.2a Constructin an isosceles trian le.

- Usin abstract information for a eometrical construction.

The children were not meeting the task to construct an isosceles triangle for
the first time; they had been given the task at an earlier stage, as a means of
introducing the POST primitive. Although the task seemed to have had
success at conveying a meaningful context for the use of the POST command
(see section 7.2.2c), the children had had difficulties in
understanding the abstract nature of the given information. For
instance, they had repeatedly asked the researcher to give them the length of
the two equal sides and decided on a length of their own only after a clear
statement that they could do so. What is more, the variability of the angles
implied by the task seemed even more difficult for the children; they did not
seem to explicitly take account of internal angles and turned the turtle by
giving fixed, "obvious" quantities:

POST "A

LT45FD 60 LT 90

POST "B

FD 60

POST"C

LT 90 LT 45
FD DISTANCE :A

The previous argument becomes apparent from the children's strategy of
turning the turtle after "posting” the third point (C), to face point A. They turned
the turtle the same fixed turn of 90 degrees, as in the previous vertex and then
in a "perceptual” way decided to turn another 45 (which - unfortunately for the
researcher - happened to be the correct turn). It did not seem to occur to
them that the turning quantity was "unknown", despite the fact
that they seemed to assign such a characteristic to the length of
the third side by using the ruler to measure the distance. It is

interesting to consider, however, whether this characteristic came across to

231



the children as being complementary to the given length information, i.e. that
they could see that a length quantity was unknown as a contrast to the given
length information regarding the other two sides of the triangle. Note that the
children attempted this task before tasks 1 and 2 in set 3 (fig 7.2.1), where
they were given fixed information, i.e. the division between "knowns" and

"unknowns" was "concrete".

It is suggested that the children's subs‘%quent experience with
constructing figures by using given restricted information on fixed
lengths and angles and measuring to find the (fixed) "unknown"
quantities (tasks 1 and 2, fig 7.2.1) was essential for their
developing some understanding of the abstract nature of given
generalised information, such as "a triangle with two equal
sides". For instance, when the task was given again to the children in the
fifth session (task 1 fig. 7.3.1), Philip seemed to realise that the angle between
the two "given" sides could vary, and in order to construct the required

triangle it was he who had to "fix" a value for it:

R: "Right, so a triangle, which has two equal sides."

P:"Ah, O.K. (started typing). And then you want us to measure?"

R: "O.K. afterwards, yes." (Philip has typed: POST "A FD 70 POST "B)

P: "Now it doesn't matter how much we'll turn... let's do it... so that it isn't
straight or 90, it will be 135."

This implicit insight (“...it doesn't matter how much we'll turn..."), followed by
Philip's taking of the responsiblity of proposing a fixed value for the turn,
seemed to set the basis for discussing the issue of "bringing in"
their knowledge of a Euclidean theorem concerning angular
quantities (equal angles) to challenge the necessity of measuring them.
This issue is discussed in the following section.
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- Usin measurements to "validate" theorems from school eomet

It was during the construction of the isosceles triangle, after Philip had turned
the turtle 135 degrees and made the second side when Nikos seemed to
make a link between the task and the geometry they had done at
school (they had done that particular topic in the last term of the previous
year):

N: "Shall | say something? | think that in order for a triangle to be isosceles, it

must have two equal angles as well.”

The researcher intervened at that point, in an attempt to encourage the
children to contest this "factual" knowledge by measuring the angles.
Although the children did not seem to doubt the truth of the geometrical
"theorem”, they did seem to give a meaning to the measurements
they made for the two remaining turns, i.e. that of verifying it. For
instance, before the measurement was done, Nikos expressed a rather
elaborate mental calculation providing the size of one of the two equal
angles, by apparently "combining" two theorems:

N:"And | say it will be 22.5. Yes because 22.5 and 22.5 is 45, and this is 135
and 135 and 45 is 180, see?" (fig. 7.3.2)

POST"A B

FD 70

POST "B 70

RT 135 70

FD 70 C
POST"C

RT DIRECTION :A A

FD DISTANCE :A

Fi ure 7.3.2 N. and P. : Constructin the first isosceles trian le

Notice, however, how he did not seem to make the link between

the involved "intrinsic” notion of the 135 degree turn and the non
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- intrinsic notion of an internal triangle, mistaking one for the
other (fig. 7.3.2).

Although the children initially seemed somewhat surprised by the researcher
- proposed idea to contest the "truth" of geometrical knowledge they had
learned at school, they seemed to engage purposefully in the activity of
"verifying” this knowledge by constructing more isosceles triangles for this

reason.

mmin ri

The children constructed several isosceles triangles in direct - drive mode
and decided they wanted to make one which was "upright". Their strategy for
doing this was by a right turn at the start of the construction, the quantity of
which they determined in an approximating perceptual way. Nikos then
had the idea of making a procedure for an isosceles triangle. The
reason he gave for doing this seemed to be to avoid having to write the same
commands again and again, a reason which had been discussed among the
children in the Logo club towards the end of the previous year (see
preliminary study). The children called their procedure Y, and included the
initial right turn they had used before to turn the isosceles triangle in an
upright position (fig. 7.3.3 - 1):

TOY TO Y NIK
RT "NIK

POST "A POST "A
FD 90 FD 90
RT 100 RT 100
POST"O POST"O
FD 90 FD 90
POST"Q POST "Q
PR DIRECTION :A PR DIRECTION A
RT 130 RT 130
FD DISTANCE :A FD DISTANCE :A
END END

1 2

Fi ure 7.3.3N.and P - The first rocedure for an isosceles trian le-

A roximatin the initial turn
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In response to the researcher's taking of this opportunity to set the task of
turning the isosceles triangle in a precise upright position (task 2 fig. 7.3.1),
the children, not surprisingly, decided to apply an approximation
strategy, i.e. by trying out different inputs to the first RT command
of the Y procedure. Nikos then had the idea of using a variable
for the input to RT, seemingly as a result of realising the
tediousness involved in editing the procedure for each new input
(fig. 7.3.3 - 2).

-Aninrin m n

Not surprisingly, for the children, the approximation strategy for finding the
"correct” quantity for the right turn, in order to make the isosceles triangle
upright, seemed quite valid. This validity was strengthened by the fact that -
due to the unsatisfactory quality of the screen resolution - a horizontal line
was perceptually distinguishable from one with the slightest slant (it had no
"dents"). The researcher intervened at that point, firstly to point out the
limitations of their method by drawing links with previous tasks (e.g. task 1, set
1 and task 1, set 2, fig. 7.2.1) and secondly in order to encourage the children

to approach the problem in an analytical way.

The discussion which arose from this intervention proved fruitful, in the sense
that although both children devised a sound argument to "prove"
that the quantity of 40 degrees (which had been decided upon in
a perceptual way) was correct, each child had a fundamentally
different approach to the problem.

Philip's argument, which was based on angle sizes, was that the 90
degree angle (fig. 7.3.4 - 1) consisted of the known angle of the isosceles
triangle plus the one they were looking for and therefore the problem was one
of subtracting the former angle from 90. Nikos' argument, however, was
based on turtle turns. Starting from point A, the turtle facing towards point
O (fig. 7.3.4 - 2), he verbally added up the quantities of the turns at points C
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and Q, and partitioned the turn at point A into a turn of S0 degrees (to make
the turtle face upwards), plus "what's left till 360", which, he said, was the total
turn. It is interesting to consider at this point, that Philip and Nikos had
devised equivalent strategies involving angles and turns respectively in a
previous task involving the sum of the angles of a quadrilateral (task 3, set 3,
fig. 7.2.1).

a=80-b a=c-90

Cc

A A
| 2

Fi ure7.3.4 N.and P. : A"Eu lidean" Phili and an "Intrinsic" Niko

In the outset of their task 3 activities (fig. 7.3.1) the children loaded their Y
procedure of an isosceles triangle on the computer, typed Y 40 to get the
figure "upright” on the screen and were given the task to split the triangle in
half. The perceptual nature of Philip's strategy for solving the task
was immediately challenged by Nikos, who did not seem to be
satisfied by the fact that they did not "know™" a certain quantity:
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o b
perceptual turn
P: "Shall I tell you what I think? (talking to Nikos) frombtoc
Here we'll go here (he means take the turtle from
Ato O (1)) andthere(at point O) tumitthat muchto
gothere.” (shows middle of the base)
N: "Yes, and how do we know how much that t is? (means
the turn) Fromwhereitis (turtle at point o) #could
be 90 degrees, it could be 200. Shall | say my idea?" a Q
P:"Goon."
N: "We'll see how much it is from A till Q, the distance
(he means measure (2)) Welldvide it by
two, that is we'll find half of what it is, we'll turn it O
towards point O, we'll tell it therefore PR DIRECTION O
or RT DIRECTION O, as you like... and we'll take it to

point O. "(He then tyrped RT 180, FD (DISTANCE :Q)/ 2) use "protractor”

fromctod
Q
A c
use "ruler”
frombtoc
P -N m rin
o hallen rce tual strate

Nikos' strategy seemed to have predominantly intrinsic
characteristics, i.e. it seemed to be concentrating on the turtle performing
actions. The interest however, lies firstly in his apﬁarent respect for
the value of employing an analytical method to find an accurate
quantity and secondly the discrimination of when this method was
needed. For instance, he typed RT 180 (fig. 7.3.5 - 2, from state a to b) using
his knowledge for the turning quantity, but used the ruler for an unknown
forward quantity.

The children's strategies for the next step, i.e. to turn the turtle towards the
vertex at point O, were along the same lines: Philip suggested a left turn of 90
degrees and executed the command on the computer, while Nikos verbalised
a doubt for the accuracy of the quantity and decided to "check”, by using the
protractor:
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(Philip typed LT 90, turtle in state d, fig. 7.3.5 - 2)

N: "Let's check too, let's see... PRINT DIRECTION, shouldn't we check?
(Philip agrees, Nikos talks while typing PR DIRECTION :O) To be sure, what
are we going to do, non - straight lines? What kind of engineers will we
become? (Nikos presses RETURN, result on screen: 0.0). Ah, yes, 0 point 0,

that's correct, we're something!"

This was essentially a different use for a measuring instrument, which Nikos
seemed to have picked up earlier, in the first category tasks, with the
researcher's encouragement; using the protractor did not seem to
convey the meaning of measuring the quantity of a potential turn,
or the size of a "static” angle, so much as a notion of verifying a
turtle heading by means of it's relation to an external location.

This time, however, during both the previous episode and the present the
researcher made no interventions, i.e. there was no "prompt" to challenge the
validity of the perceptual strategy. It could be proposed, therefore, that in this
case, Nikos developed, out of his own accord, this "sensitisation”
of the existence of two strategies and of the merits of the
analytical strategy, i.e. it's accuracy. The previous extract illustrates
this point by means of Nikos' wording which seems to reveal his engagement
in the task and his reasons for challenging the "perceptually” obvious (“...to be
sure, what are we going to do, non - straight lines? What kind of engineers
will we become?..").

- Th \Y; n mll

Although Philip did not seem ready at that point in time, to start to
change his predisposition to employ a perceptual schema when he
perceived a problem as a turtle task, the case was not so when he thought of
a problem as a "geometrical" one (i.e. "belonging" to school geometry), as he
seemed to do - eventually - in the next requirement of comparing the angles
formed at the vertex at point O (fig. 7.3.6a).
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a b
Fi ure 7.3.6 N. and P. : Postin the mid- ointto com are
AW W

The children had decided to post the mid - point of the base, in order to name
the angles in question, Nikos realising that they could not take the turtle there
(from point O) along the altitude and deciding to take it via point A (fig. 7.3.6b -
1,2,3). After posting the mid - point (W), they decided to compare the angles
(WOQ and AOW) by taking the turtle to point O in order to measure them (fig.
7.3.6b - 4). Not surprisingly, Nikos seemed to use the relationship between
the angle of 180, and the quantities of the turtle potential turns towards point
Q and point A, verbally demonstrating an understanding of the
relationship between turns and angles (as he had done in previous
measurements during the category 1 activities). The developing
sophistication of his method lies in the avoidance to perform a turtle
action, by measuring two different angles which he then related

to the ones required by the task (fig. 7.3.7)

?PR DIRECTION :A

2PRDIRECTION:Q@  © O 220
133.999 7PR 220 -180
7PR 180 - 139.999 40
40.001
A Q A Q
W W

Fi ure 7.3.7N.and P. :Com arin an lesaandb
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The researcher's probing of the "geometrical" aspect of the task, by asking the
children to draw their conclusions from their measurements brought an
insightful comment from Philip, who seemed to have been thinking of the
problem in a global way:

P: "...if we cut an isosceles triangle in the middle, two equal triangles come

out.

It cannot be easily implied that Philip was actually aware of the generalisation
he had made with respect to the isosceles triangle, since school geometry
was taught in the same "general mode", i.e. general theorems were taught
without, apparently, allowing much ground for the children to make the
generalisations. However, his following comment could be an indication of
reaching his triangle equality conclusion by an implicit
synthesising of the equal quantities they had measured:

R: "Hm. What does equal triangles mean?"
P: "Equal, completely equal. That is, they have the same sides, the same
angles..."”

An interesting point, however, is the difficulty that Philip found in analysing his
answer by providing precise comparisons of the respective triangle elements.
It is proposed that the difficulty lay in the deductive nature of the
argument, i.e. to start from a generalisation in order to compare specific
elements. In support of this argument, when the researcher asked for the
"proof” in a very precise way by asking Philip to compare specific elements,
he did not seem to have problems with providing it. Philip did so for the
angles, and Nikos, who had been taking part in the discussion, seemed to
realise the "essence" of the analytical comparisons process, by volunteering
to "prove" the equality of the lengths:

N: "They are the same, they are the same (excited). This, isn't the triangle
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isosceles? There, these are equal (AO and OQ) then. Isn't it split in two? So,
won't these be equal? (AW and WQ)."
R: "And the third side?"

N: "Eh, that's common for both of them."

It is therefore suggested that the inductive process of reaching a
generalisation as a result of specific comparisons provided a
means for the children to form an understanding of the euclidean
theorem of triangle equality.

- Phili 's attem tto ex andthe a licabilit of a "theorem".

The researcher therefore, decided to prompt their understanding by asking
the children whether this "theorem" applied to other isosceles triangles, apart
from AOQ. During the discussion, after they decided that the "conclusion goes

for all the isosceles", Philip attempted to make another generalisation:

P: "Can | say something? This goes in all... in all the isosceles, all, all, all and
in the equilateral ones. (researcher asks why) Because the equilateral is like
you've got the isosceles, only... only if it was equilateral all would be equal,
and whenever you split it, it would be in the middle of the base because there

are three bases in the equilateral, it would come out always equal."”

Philip seemed to have made a verbal attempt to convey the
meaning of an isosceles triangle as a synthesis of triangle
properties. It could well be that this perspective of an isosceles triangle
played a role in his insightful remark, which in effect, seems to convey the
notion of the equilateral as a synthesis of properties belonging to the
isosceles triangle ("...there are three bases in the equilateral...").
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- Refutin a eneralisation b a counterexam le

The researcher attempted to probe the children's understanding of the notion
of refuting a generalisation by asking them if their conclusion applied for all
the medians, encouraging them to construct the median from point A (fig.
7.3.8). The children constructed the median with the same strategy as before,
i.e. taking the turtle half - way between the O and Q vertices, posting (S) the
point and using the "protractor” to turn to face the opposite vertex (A). In the
discussion that followed, the children found several counterexamples
to the "triangle equality” theorem by comparing elements (for
instance, angles AOS and AQS, sides AO and AQ), as is illustrated by Nikos'
comment:

N: "These angles here, this one and this one (AOS and AQS) are not equal,
nor are these two sides equal (AO and AQ), therefore they're not equal (the

triangles)."

w

Fi ure 7.3.8 N. and P. : Refutin a eneralistionb a counterexam le

An apparent factor in their arguments was their use of "known" elements,
rather than ones which seemed unequal in a perceptual way. Not surpisingly,
however, the notion that one single counterexample was sufficient
did not seem to occur to the children. This would corroborate the view
of Dreyfus and Hadas who argued that this notion is difficult for children even
in secondary school (Dreyfus and Hadas, 1987). Nevertheless, there was
some indication of an implicit contemplation of a "related" notion, since the

children did not proceed with measuring all the elements, but seemed
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convinced with one angular and one length inequality.

¢ Writin rocedure for a eneralised isosceles trian le.

The researcher gave task 4 (fig. 7.3.1) to the children in the context of their
subsequent writing of procedures for isosceles triangles with fixed elements

of different sizes.

- Generalisin the relationshi between an les and turns

The children decided to call their procedure LASER :N :P, the first input
denoting the length of the equal sides, the second denoting the size of the
equal angles. During the process of writing the procedure in the Logo editor -
after having typed POST "I FD :N POST "H - they came across the problem
of working out a relationship between the angle input and the first turtle turn at
point H. Initially, however, they did not seem to realise the nature of the
problem, i.e. it did not seem to occur to them to look for an
underlying generalisable relationship between the turn and angle

quantities, as Philip's comment seems to indicate:

P: "There, we know that this and that will be H
equal (the two sides) these two angles

we know them (equal angles)and this

(angle IHM) will be on its own. What

can we put up there?"

Fi 731 N n P.:Th roblem of rela nshi weenth an
n n

the construction of the isosceles trian le

When the researcher intervened to encourage the children to use a specific

example in order to think about the relationship, Philip responded with ease:
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R: "Why don't we try an example.”

P: "Ah, yes, like that it's easy. Let's say that the two equal angles are 40 each,
the top one would be 100."

R:"The top turn?"

P:"80."

Philip's answer seems to indicate that he could use the
relationship for a specific case - note how he seemed to make the
calculations mentally and provide an instant, coherent answer involving the
results. However, he seemed to be implicitly aware of the difficulty of working
out a generalised form for it (“.../ike that (i.e. through an example) it's easy
(implying perhaps the contrary for the generalisation)...”). When the
researcher probed him to reflect on the method he used for the
example (R: "How did you work that out?”), he did not seem to be able
to do so, answering that the turn would be different if he tried
another angle. However, the researcher's subsequent attempt to probe

Nikos to reflect on this issue was more successful:

N: "These two... these will be equal (the angles HIM and IMH), you can add
them, that is you can multiply them by two, yes, and subtract them from 180,

and then, whatever it finds (the computer) subtract it from 180."

Nikos' first argument seems to refer to the relationship between the internal
angles, and the second seems to link the internal angle at the H vertex (fig.
7.3.10) with the turn. It is proposed that the sophistication in Nikos' answer
lies in the fact that he seemed to have an insight into a general
relationship, i.e. he seemed to make an generalisation from the
previous example. In an attempt to preserve the focus of attention on the
relationship problem, the researcher wrote the algebraic / Logo symbols of
Nikos' strategy on paper, as Nikos was expressing it (the children had not
had experience with such formalisations in school). The researcher then

probed the children's ability to distinguish between a calculation and an
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action, since Nikos had typed the algebraic expression in as an input to a
PRINT command, i.e. PR 180 - (180 - (2 * :P)):

"R:"That (the PR command and its input) will just tell us how much that is."
P:"Ah, yes. But it won't do it for us will it?"

N:"No... RT, can | do it?"

P: "But can we do RT the subtraction?"

The children's response illustrates how they seemed ready to use an action -
quantity schema, i.e. how they seemed to perceive the outcome of the
"calculation” as the quantity of the turtle turn, which could
indicate that they related the algebraic expression to their
strategy. What was not apparently obvious to Philip, however,
was the use of the action - quantity schema when the quantity is
reached by some method, rather than given as a straight
numerical input. It seems interesting, therefore, to consider Philip's extent
of relating his experience of measurements while using the P.D.D. microworld
(if one draws a parallel between the previous numerical calculation and a

"measuring” calculation), to the intrinsic schema of action - quantity.

TO LASER N :P

POST "l H
RT90- P

FD :N

POST "H input (N)

RT 180 - (180 - (2 *:P))

FD :N

POST "M

RT DIRECTION :I M
FD DISTANCE :I

RT 90

END

N. P-Th hil n" LA R

fora eneralisedis elestrian le
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- Discriminatin the meanin of the an ularin ut

In spite of the analytical method by which the children constructed the LASER
procedure (fig. 7.3.11), it took them a relatively long time to
discriminate the concepts involved in its execution (i.e. use) on
the computer. The children seemed to have a difficulty in
understanding the nature of the angular input (i.e. angle or turn)
and in connecting it to the elements (angles and turns) of the
figure which the procedure constructed. Philip seemed to reveal
limitations in his understanding of the relationship between the internal equal
angles (e.g. HIM, fig. 7.3.10) and the turn at the H vertex, while Nikos showed
bemusement with the result of his (correct) calculations when, thinking that

the input was a turn, did the calculations with the complementary quantity.

The children's initial efforts to understand how the LASER
procedure "worked", however, seemed product - oriented, i.e. it
did not seem to occur to them to use an analytical step - by - step
method. It is interesting to consider the consistency of this finding with the
findings from the T.C.P. microworld study where the children tended to try tc
incorporate all the coordinate factors in one go. This finding could be related
to the Greek educational system, regarding the relative lack of focus on
investigational activities.

The researcher intervened twice taking the role of the teacher, in order to
encourage the children to think of the relationships between the angular
quantities in an analytical way. The first intervention did not seem to have
much effect in the children's discrimination process. However, there was a
difference in the nature of the second intervention; the researcher asked
the children to think in terms of turtle actions, attempting to
encourage the employment of their intrinsic schema. Philip's

response and Nikos' "debugging" of the response was as follows:

P: "It (the turtle) puts a POST, it goes forward as much as we've put the
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variable, then it does a POST again, then it does... a subtraction... it does the
angle times two, it subtracts it from 180 and what it finds it subtracts it from
180... so that it can find the top angle.”

N: "I think Philip said something about the top angle. | think it's the top turn.”

It is interesting on the one hand, but perhaps not so surprising, that adopting
a sequential strategy involving the use of the intrinsic schema (in
the T.C.P. microworld study a sequantiality schema is proposed as a
component of the intrinsic schema) seemed to provide the children with
the means of discriminating component parts of a generalised
conceptual tool, such as the LASER procedure. On the other hand,
however, it may be useful to consider how, in the process of thinking
about sequential turtle actions, the children seemed to use other
mathematical notions, such as a "primitive” notion of variable ("...it goes
forward as much as we've put the variable..."), or a geometrical relationship
derived from "euclidean" axioms and theorems (relating two equal angles of
the isosceles triangle to the sum of the angles of a triangle). Moreover, during
the children's subsequent executions of the procedure with different inputs,
and their discussion on the meaning of the inputs in relation to the graphical
outcomes (fig. 7.3.11), Philip seemed to make the connection
between turtle turn and internal angle for the first time on his own

accord, i.e. not as an agreement to a comment from Nikos:

(they had just executed LASER 50 89, the discussion starting with the
researcher asking why the figure on the screen was a triangle)

P: "Because the top angle isn't zero... look these two are 89. 89 plus 89, 178.
178 minus 180, 2.

N:"178 - 180 is minus 2. You've said it the other way round. But this, why is it
like that?" (he means line distortion due to screen resolution)

P: "Look it turns 2 degrees, | mean the angle is 2 degrees, it turns 178
degrees..."”

What Philip seemed to realise here was the importance of distinguishing
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angle from turn, i.e. he seemed to discriminate the two notions not as
a result of being asked to, but on his own initiative, in an
explanation to his peer.

- Generalisin an an le relationshi to make the isosceles trian le

The issue of turning the isosceles triangle in an upright position was put
forward by the researcher regarding a specific triangle (LASER 50 3), while
the children were trying out different inputs to LASER. Philip seemed to apply
his strategy of 90 minus the internal angle (see fig. 7.3.4) in this specific case,
by actually typing in RT 90 - 1.5 (the fact that the size of the angle - 1.5 - is
incorrect is not relevant) in the generalised LASER procedure in the Logo
editor (fig. 7.3.11). It seems, therefore, that Philip had been able to
"transfer” the application of his strategy from one specific case to
another - note that there was a considerable length of time (15 days) in
between. However, as the following extract illustrates, Philip seemed to have

an insight into a genaralised application of his strategy:

R: "So how will we make the triangle straight?"

P:"We'll tell it... 90 minus... 1.5 (he went into the Logo editor and typed RT 90
- 1.5 in the LASER procedure, fig. 7.3.11). Ah, this thing to make any
isosceles?... I've got it sir... (he deletes the previous and types in RT 90 - :P).

Shall we do it?" (he means execute the procedure).

It could be argued that Philip's insight into a generalised use of a
relationship seemed to be a result of a synthesis of the previous
specific applications. It is interesting to consider the role of the LASER
procedure in this case, since it could be that the generalised angular input
"required” from the children to think in general terms in order to debug or add
things in LASER.
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7.4 CATEGORY 3: DECIDING ON THE USE OF THE TOOLS
INPER NALPR E T

741 T

The two types of activities involved in this category are in the form of
children's own Logo projects ("investigations" was the name used in the
school Logo program, see appendix B). The aim was to gain insight into the
role of their experience so far with the microworld on if, how and why they
used the tools in "personalised" activities, and on the geometrical ideas they
used while they were engaged in such projects.

The first two activities had the restriction of using the children's generalised
procedure for an isosceles triangle. The task was presented in the familiar to
them way i.e. an "investigation with an initial idea", the "idea" being the
procedure (see chapter 5 and appendix B). The aim of the task was to gain
insight into the way they integrated the concepts involved in using the

procedure with conventional Logo ideas.

The two subsequent "investigations" had no restrictions at all, and this was
stressed to the children. The aim was to gain insight into if and how they
would use the tools for their own purposes and into the geometrical ideas
underlying their activities. The presentation of the results begins with an
analysis of how the children built a "naive" geometrical theorem during their
first investigation. A summary of the children's activities during the remaining
three "investigations" is then presented, in order to allow for a subsequent

analysis of research issues across "investigations".
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7.4.2 Findin s.

7.4.2a The first "Investi ation": Usin Lo o to build a ersonal eometrical

h m".

After an introductory discussion with the researcher concerning the notions of
an "investigation" and an "initial idea" and incorporating examples from the
children's Logo club activities, Philip and Nikos decided to construct a shape
made of "nested" triangles and drew the figure on paper (fig. 7.4.1). Their
strategy, which incorporated a substantial degree of the use of perceptual
cues and an organised "approximation” technique, was predominantly from

the smallest triangle "outwards", i.e. to larger ones.

"Inv

The first part of the investigation consisted of the children's attempts to solve
the problem of determining the quantities of the interfacing commands
between the first and the second triangle, and the length input to LASER for
the second triangle. Their approximating "trials” on the computer
seemed to have an implicit modular structure, i.e. a "module” (trial)
involved:

a) near - constant length inputs to LASER for the first triangle,
b) a constant strategy for the interface involving a horizontal and a vettical

change of position, using 90 degree turns and changing the quantities of the
FD and BK commands (fig. 7.4.2), and finally,
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LT 90
FD (changing quantity)

RT 90
BK (changing quantity) t
F 7.42N P. - Fir "Inv n" "N ri " Th

between the first and the se ond trian le

c) changing the length input to LASER to determine the size of the second
triangle. In table 7.4.1, the numerical quantities which the children gave in
each trial are presented.

Length input to Length input
Trial Input to FD Input to BK LASER for the increment from first
second triangle to second triangle
1 5 0 55 5
2 5 5 65 15
3 10 5 50 5
4 20 5 65 20
5 20 5 85 40
6 20 P 20 8 40
7 20 55 80 35
8 40 20 85 40
9 40 20 125 80
10 40 20 105 60

T bl 7.4.1 N. and P. : First "Investi ation":"Nested trian les" A roximations
h rf h fir n h iz

the second trian le

It is interesting that, although at first the children’s trials do not seem to have a
specific organisation, one could argue that there seem to be underlying
decisions on holding at least one of the variables "steady" as, for instance, the
input to LASER from the 5th to the 8th trial (table 7.4.1 a) and the input to FD
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from the 4th to the 7th (table 7.4.1 b). It is useful to consider, however, that the
decision for the three quantities was not simultaneous for each trial, i.e. the
children had time to see the effects of an input and then make a decision for
the next. Although the children were finally satisfied with the first two
triangles, they seemed rather frustrated with the tediousness of their method,
i.e. having to clear the screen and re - type the commands for another trial.
The researcher decided to make an intervention, adopting the role of the
teacher, feeling that this was an appropriate moment to suggest the use of a
Logo programming idea, in the sense that the context and the timing provided
an opportunity for the children to use it in a personally meaningful way. The
suggestion was to make a procedure for the two triangles, so that they could
carry on with their trials for the third. Although there are limited explicit
comments illustrating the children's appreciation of the power of
"superprocedures”, the children did decide to follow up the suggestion, called
their procedure BAM ("...because it makes two triangles with a 'bam’"- Greek
for "bang"), and made comments while using it, suggesting enthusiasm, but
also a rather implicit understanding of the procedure's

"summative"” power:

R: "What would happen if we didn't have the ‘concept'? (procedure)" N:

"Goodnight... (laughter). We would waste all our time..."”

The children, however, did seem to integrate the use of this new
tool in their strategy for constructing the third triangle; the strategy
retained the organised approximations characteristic, involving the use of
perceptual cues and a "modular" structure. However, the modularity was
incorporated in the BAM procedure, since the children (after checking
that BAM had no bugs) went into the editor to add another "module” of
interfacing commands and the LASER procedure (fig. 7.4.3). Their trials,
therefore, consisted of a process of observing the graphical output from the
execution of BAM and entering the Logo editor to change the relevant
quantities involving the construction of the third triangle within the BAM
procedure.
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TO BAM

LASER 45 50

PU

BK 20

LT 90

FD 40 H
RT 90

PD

LASER 105 50

PU

BK 40

LT 90 M
FD 80 M
RT 90

PD

LASER 125

END

Fi ure 7.4.3 N. and P. : First "Investi ation": "Nested trian les" The first "trial"
hi

When the children were satisfied with their third triangle (the quantities of their
trials are presented in table 7.4.2), the researcher - through the
encouragement of a relevant discussion - attempted to prompt the extent and
the nature of the organisation of the children's approximations trying not to

impose his own organisation.

angle input  increment from
trial input to BK  inputto FD  to LASER second triangle

1 40 80 125 20
2 20 40 105 0
3 20 40 165 60
T 742N P.:Fir "Inv n" "N A xim

for the interface between the second and third trian le and for the

hir n

The children's response indicates that during the trials of the

third triangle, they seemed to have started to look for a "theory",
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or a consistent "rule” which would generalise the "transition” from
one triangle to the next. The "theory" which they decided on in the end,
incorporated all three variable quantities and could summatively be
described as follows: there was a constant "displacement” of the position of
the turtle for the interface between triangles (i.e. BK 20 LT 90 FD 40 RT 90)
and a constant additive increase of 60 in the length input of a "new" triangle. It
is interesting that alithough it seemed evident from the children's comments
and from their typed approximations (tables 7.4.1 and 7.4.2) that they had
implicitly made a generalisation of a transition from one triangle
to the next, they found it difficult to express their theory in a
generalised form, i.e. they did not seem to be able to avoid using

numerical examples.

7.42 Th hil h "inv A

th Ir activities.

A summary of the children's activities during the remaining three
"investigations" is presented at this point, in order to allow for a subsequent

analysis of research issues across "investigations”.

- The "Stri ed Trian le".

Philip proposed the topic of this "investigation”, drawing the figure on paper.
The children decided to construct a triangle with the LASER procedure and a
"stripe”, in order to subsequently try out the "FILL" command, newly learned at
the "Logo club”. After executing the LASER procedure, they took the turtle
along side IH and then decided that a POST was needed at the "opposite”
side, in order to take the turtle there with accuracy (fig. 7.4.4 - 1,2,3,4). They
took the turtle back along side IH, used the measuring instruments to take it to
their posted point (D) (fig. 7.4.4 - 6,7), and then followed a similar strategy for
the second segment of the stripe: they posted a point on side IM (point E), at a
distance of 20 from (D), took the turtle at the same distance from the first
segment on side IH, and then took it back to the posted point (E) using the
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measuring instruments (fig. 7.4.4 - 8,9,10,11,12,13). The children then filled
the stripe in with colour.

The episode analysis involves the children's use of geometrical notions
embedded in the LASER procedure, a description of an episode where they
meaningfuly used the P.D.D. microworid primitives out of their own initiative
and their use of static angle and length notions to work out the quantity of
turtle actions.

-Th P mi

The children decided to make a "3 - dimensional" pyramid, using the LASER
procedure for the central part and perceptual "projections" of triangles for the
other two "visible" surfaces (fig. 7.4.5). They decided to use perceptual cues
for the slant and the base of the triangle on the left, after an apparent conflict
between reality (i.e. that the surfaces of the pyramid would be equal) and 3 -
D representation on a 2 - D surface (fig. 7.4.5). After forgetting to put the pen
down when they took the turtle to point H (fig. 7.4.5 - 2) and realising they had
not posted the previous point, they decided to take the turtle on a "known"
path in order to "draw" the remaining side of the triangle on the left (fig. 7.4.5 -
2,3,4,5,6). They did so by either using the measuring instruments in "action"
mode or direct Logo commands. For the triangle on the right, they made a
base symmetrical to the one on the left and took the turtle to H.

The episode analysis involves the children's use of static angle relationships
to work out the quantity of the turn which was necessary for the symmetrical
construction of the base of the right - hand triangle.

- The "Sailin Boat"
The children decided to post the turtie's starting point (point A, fig. 7.4.6), in
order to be able to "close" the "bulk" of the ship. After constructing the "bulk",

they took the turtle along points A, B and C again (they had forgotten to post
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the last vertex of the "bulk") by using the instruments only when they had
forgotten a quantity, made the ship's mast and tried out different methods to
construct a triangular sail (fig. 7.4.6b, c). The analysed episodes involve the
children's initial decision to use the POST command and their methods of

constructing the triangular sail.

LASER 85 50

RT 40

FD 50

RT 90

RT 90

FD 50

RT 230 3 D 4
FD (DISTANCE :M/ 2)

FD (DISTANCE :M) / 2

POST "D a H
BK (DISTANCE :M) / 2 6

BK (DISTANCE :M) * 2

PE

FD DISTANCE i

PD

LT 50

FD 50 s 5
RT DIRECTION :D

FD DISTANCE :D

RT DIRECTION M 11 H
FD 20

POST "E

FD DISTANCE :M

RT 230

FD DISTANCE :H

RT DIRECTION I M
FD 15

RT DIRECTION :E D
FD DISTANCE :E

Fi 744N. n P.:Th "Inv " Th Tri
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LASER 50 70

LT 90 H

PR DISTANCE :M

(34.202)

RT 30

FD 34.202

PE 4

BK 14.2027

RT DIRECTION :H M
FD DISTANCE :H

RT DIRECTION :I H

FD DISTANCE |

PD

BK DISTANCE :H

FD DISTANCE :H

FD DISTANCE :|

RT DIRECTION :M -

RT 180

RT 30 Mg
FD 20 10 H
RT DIRECTION :H

POST "E

FD DISTANCE :H

RT DIRECTION :M

FD DISTANCE M

LT 100 E

FD 20

RT DIRECTION :H

FD DISTANCE :H

Fi ure 7.4.5N. and P. : The hird "Investi ation"- The "P ramid"

F 74. N n P.:Th h"lnv n": Th ilin
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7.4.2.c A contrast between the nature of two eometrical activities.

In the first "investigation" ("Nested triangles"), the children did not seem
to focus on notions embedded within the LASER procedure, but
seemed to treat the procedure as an object. In the "Striped triangle
investigation", however, the focus seemed to shift from the start, the children's
discussion involving the form of triangle they wanted to construct, i.e. they
decided to make it large and non - equilateral. The inputs they gave to the
LASER procedure and their subsequent initial commands seem to reveal the
emerging of a coherent use of geometrical properties by the
children, as a means of reaching a personal objective. For instance,
the children gave inputs of 85 and 50 for their "large and non - equilateral”
triangle and after they decided to take the turtle 50 steps along side IH (fig.
7.4.7), implicitly used the angle properties to turn the turtle to face H:

N: "85 the side (of the triangle).O.K,, H
we'll take 50 on the side, O.K.?"
P: "Yes, it will go there (shows with finger)."

N:"Only..."
P: "How we'll turn...”
N: "50... is this angle... aren't these two M
angles 507 We'll turn 40."
Fi 747N. n P.: h n "lnv n": Th Tri

The children's first use of the eometrical ro erties within the LASER

It seems interesting to contrast the ways in which the children seemed to be
engaged in geometrical activities in this and the previous "investigations”, i.e.
an investigative conjectural approach, leading to the formation of
a naive personal theory involving "nested" triangles versus a
more knowledgeable use of geometrical theorems and properties.
This distinction between the two styles of geometrical activities is not meant to
question the validity of one or the other, but rather to highlight the versatility of

the potential of using more complex tools (such as the LASER procedure) in
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investigational work.
7.4.2d "Personalised" uses of the P.D.D. microworld.

Initially, the children did not seem to have a pre - planned strategy to draw the
first segment of the "stripe". They took the turtle to a 50 step distance from
point | (fig. 7.4.8) and turned it 90 degrees right. The following two
extracts illustrate a difference between Philip and Nikos in the
approach of the problem of drawing the segment, the discussion
triggered off by Nikos, who stopped after typing FD - apparently realising the
absence of a non - perceptual way to take the turtle to the opposite side (fig.
7.4.8):

N:"FD... Oh!"
P: "What Oh? Put whatever, and then we can...
do FD and then guess about how much...
and if it's more... we'll put PE and when we
hit the spot... (researcher asks how he can H
be sure he hit the spot) wecantelitto
look towards M, and if it's..."

N:"Ildea. | found it. We'll go to iota (1) over here, M
we'ltell it to go... fromiotatomi (M)...
till half way. And from there we'll make a point...
and the rest we will know... we'lltake it (the turtle)
up here (he means back to where it was when the
discussion started)  and we'll make... well take it to
the point..."

FF re748N andP -Th sec nd"Inv sti ation": The"S ed Trian le". A
Xim hili " f Nik

olve he roblem

Before analysing Nikos' answer, it seems interesting to consider the
resistance of Philip's perceptual schema to change. Even though
Nikos seemed to "provide" the awareness of the possibility of a different
option by stopping short before typing an "approximation quantity", Philip
seemed to insist on a strategy which, although organised and logical, offering

a "checking" technique which brought on the precision offered by the use of
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the P.D.D. microworld, was nevertheless based on perceptual cues. This
point is not necessarily made as an indication of a "lack" of
understanding of a "knowledgeable" method on Philip's behalf -
on the contrary in a subsequent pan of the discussion he verbally agreed at
least on the legitimacy of such a method. It is however proposed that, at
that point in time, the perceptual schema seemed to retain a high
status of priority in Philip's mind, i.e. Philip seemed to attribute

equivalent degrees of legitimacy in perceptual and "knowledgeable"
methods.

Nikos' strategy on the other hand, seems to reveal a preference for the use of
"known" factors. In Nikos' verbalisation of a plan of his strategy (fig. 7.4.8),
and the subsequent application of the plan (see fig 7.4.4, a), the "known"

factors which he seemed to use fall in two categories:

a) use of geometrical properties, theorems and axioms:

In his verbal plan, for instance, the use of geometrical notions was rather
implicit, since Nikos' argument centred on the posting of a point on the
"opposite” side of the triangle. However, he seemed to refer to "known"
geometrical factors in the process of taking the turtle to the point and back
(“...and the rest we will know... we'll take it up here..."). The commands he
typed for turtle rotations illustrate a more explicit use of angle and turn
relations (fig. 7.4.4a,)

b) use of the P.D.D. microworld primitives for "signposting"” and
quantity measurements

The "essence" of Nikos' strategy involved the use of the P.D.D.
primitives in order to ensure the accuracy of a turtle change of
position, when the intrinsic method of action - quantity was
insufficient and, apparently, Nikos could not use euclidean
geometrical notions to determine the quantity of the turtle action.
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It could be argued that his idea to measure the required distance by taking
the turtle to the "opposite side" to put a marker, and then back again to make
the measurement, involved a substantial degree of precise planning and
"foresight". In that sense, it seems useful to consider the role of the P.D.D.
primitives in processes of planning and the involved thinking about "abstract"

notions.

A relevant episode took place at a later session, at the beginning of the
children's "Sailing Boat investigation” (fig. 7.4.6). After drawing a plan of the
boat on paper and taking the turtle at a "suitable" starting position (bottom
right of the screen), Philip suggested that that position should be posted. His
argument to Nikos' challenge on the need for a post, was that it would make
the closing of the shape of the "bulk" "smoother", since the turtle would be
able to refer to the post with the use of the measuring instruments. The first
point which seems important here, is that the suggestion came from
Philip, who apparently for the first time initiated the consideration
of a non - perceptual method as a priority. Secondly, it was the
first time the use of the POST command was suggested before a
conflicting situation arose (posting point E in the "striped triangle"
seemed to be a result of posting point D which was discussed after a
conflicting situation).

7 4 2e The rol of P.D.D. mm on nder ndin of he on e
h

Nikos' plan for taking the turtle to the "opposite" side of the triangle to place a
post, involved moving the turtle from point | to half way between | and M (fig.
7.4.9). Nikos used a FD (DISTANCE :M) / 2 command, apparently adopting
the same strategy as in the construction of the median in the isosceles
triangle tasks (task 3, fig. 7.3.1).

In attempting to take the turtle back from the newly posted point (D) to point |,
however, the children did not seem to realise the dependence of
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the state - changing method of measuring the quantity of an
action (i.e. FD (DISTANCE :M) / 2) on an external point (e.g. point M in
this case):

(having typed FD (DISTANCE M)/ 2) H

N: "POST... D, that's fun (types POST "D)

Ah, we should have asked."

P: "What?"

N: "How much the distance is, now we

have to go back.” 2 D 1
P: "Yes, with BK DISTANCE."

(Nikos types BK (DISTANCE :M) / 2)

Fi 4 N n P Th "Inv :Th Tri n

Im osin an Intrinsic schema on distance

It could be argued that in this episode, the children used their
intrinsic schema of a turtle action and its quantity in order to
reverse the outcome of the turtle having moved forward, i.e. "the
turtle has gone forward a specific quantity, now it will go back the same
quantity" (see also chapter 6, Anna and Loukia). The children's "mistake"
could imply a lack of having discriminated between the
geometrical notions embedded in the two methods of determining
the quantity of a turtle action, i.e. a "turtle - centred" numerical
quantity depending entirely on the turtie's present state and a
quantity derived from a measurement involving the turtie's state
and an external location.

Further analysis of the data, however, revealed another factor which may
have played a role in the children's confusion, i.e. the abstract
nature of a quantity derived by a measurement, when the
measurement is performed in conjunction with the action, e.g.
using the DISTANCE command in a combined "action - information™ mode
(see category 1 activities) rather than making a measurement, and using the

specific numerical outcome in a direct action - quantity command.
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The following episode is described in support of the argument, since, in the
process of constructing the second segment of the "stripe", and having to deal
with specific numbers, Nikos seemed to combine the notion of a
"turtle - centred” quantity with that of a quantity depending on an
external point. The episode took place when, after having posted point E at
a distance of 20 units from D (fig. 7.4.10), the children were discussing how
much to move the turtle from the point at the H vertex, on the "opposite" side
of the triangle, in order to subsequently "use" post E to draw the second
segment. Nikos then seemed to make a mental calculation on known length
quantities in order to find how much the turtle should move from point H, to be
at a 20 step distance from the ("unposted") intersection between IH and the

first segment (for convenience named "(A)" by the researcher, fig. 7.4.10).

(turtle at point H, facing towards |,

Nikos addressing Philip)

N: "I'll take it 15 forward... you know why? 35 H
Look... this is 50... this is 35... we want it

to go 20 don't we? Since all this is 85,

that's 35, we'll take 20, 15..." 50

20

F 7.41 N.andP.:Th e ond"Inve ation": The "Stri d Trian le".
W rkin fin h in FD

The apparent objective of Nikos' operation on specific length quantities
involved the relationship of a turtle - centred command (FD 15) to
an external point, i.e. point (A), a relationship which he had not
perceived when having to deal with "unknown" abstract quantities
such as the length of IMand IM/ 2.

A broader point could be raised here, therefore, of the potential role of the
P.D.D. commands as tools with which the children could address problems
involving operations on both concrete and abstract quantities. On the one

hand, the interplay between concrete and abstract values could be
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reinforced in environments such as the above, where the children
have to deal with both in subsequent situations. On the other hand,
the interplay between using the measuring instruments in information and
action - information modes (see category 1) could enable the children to
perceive abstract quantities or relationships between quantities,

as abstractions of concrete cases.

7 4 2f m n m w rk rnin

On the subject of relating static angle notions with rotational quantities of
turtle turns, the children showed distinct differences in their approach. Philip,
on the one hand, with the perceptual approximation method still high in his
priority list, seemed to be lacking in developing connections
between his knowledge of angle relationships and the quantities
of turtle turns. Although he agreed on such connections made by Nikos,
engaged in discussions involving the relationships and often helped Nikos
work out a relationship between angles, his predisposition was either to use

perceptual cues or the turtle's "protractor”, the DIRECTION command.

Nikos, on the other hand, seemed to further develop his preference
in using the direct action - quantity commands when he perceived
the possibility of working out a respective quantity, the
developement referring to the degree of complexity in the respective
geometrical problem Nikos had to face. The following three episodes
illustrate this developing complexity in the situations in which
Nikos seemed to be prepared to work out a quantity.

The first two episodes took place during the striped triangle project. Firstly, on
the way to place a post (D) in the middle of IM, and in order to turn the turtle at
point |, to face towards peint M (fig. 7.4.11) Nikos, rather than using the
DIRECTION command added the two angular components of the respective

right turn (from a to b, fig. 7.4.11), explaining his strategy to Philip:
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(turtle in state a, Nikos addressing Philip)

N: "RT... 230. You know why I'm putting 2307

Because 230... look... from here to here it's

180 isn'tit? (P. agrees) This angle, isn't

it 507 (P. agrees again) O.K., 180 and 50 H
doesn't it make us... for the turtle to go

woop, woop and it does us 2307"

180

Fi ure 7.4.11 N. and P. : The second "Investi ation": The "Stri ed Trian le".

A in w

Notice how Nikos made an angle calculation ("180 and 50 doesn't it make
us..."), seemed to pause to think and finally seemed to change to talking
about the outcome of the calculation as if it was the quantity of a turtle turn
("...for the turtle to go... and it does us 230.").

The second episode took place in the process of taking the turtle from point |
on segment IH to draw the second stripe. Nikos added the two components of
the right turn at point H (fig. 7.4.12), in this case calculating the internal angle
involved, by using the respective properties of the triangle:

(turtle in state a)
N: "Turmn it... 260. You know why? This is 180

a
and this is 80, you know why it's 80? 50 180
plus 50... 100, and 80... 180." H
R: "And how much would it turn left?" b
N: "Left? Shall | say... | think | got it... 100."

M
D E

Fi 7412N n P - Th "Inv n" Th Tri n

Workin outacom onentofanan le

It could be argued that, in using the isosceles and general triangle properties,

Nikos seemed to be drawing upon his experience from the category 2
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activities, and in particular the ones involving the construction and use of the
LASER procedure. In this case, however, the focus of attention was not on the
isosceles triangle but, rather, on the problem in hand, i.e. to turn the turtle and
eventually draw the second segment of the "stripe”. It is therefore interesting
to consider firstly Nikos' use of a theorem and an axiom in a context different
to the one he first learned them in, and secondly the difference between
the nature of this activity and the ones in category 2, regarding
the control of the learner over the learning situation, since in this

case, the children were pursuing personal goals.

The third episode took place during the "pyramid" project (fig. 7.4.13) in the
children's attempt to draw the third surface of the pyramid and while they
were discussing how much to turn the turtle at point M (fig. 7.4.14 - 1) so that

the base would be symmetrical to El (they did not use the term or the notion

explicitly).
H H 3
E
c=110
E
M M
Ny ,
H 4
E = c=110
M
b M b=70
74 P -Th hir n"-Th "P W kin

he com onent of a left turn

The complexity in Nikos' solution of the problem he had to face, lay firstly in
organising the potential left turn into two components, i.e. in effect, implicitly
"extending" the segment IM so that the required angle split into two "soluble”
quantities (a and b in fig. 7.4.14 - 2). The second difficulty lay in working out

component b (fig. 7.4.14 - 2), since Nikos was apparently not aware of the
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relevant theorem of equal corresponding angles. His "explanation” to Philip of
how he worked out angle b, could be described as a specific case of a

general proof of the theorem:

N: "Look, this we said is 70 and that is 180, so all of that is 110 (fig. 7.4.13 - 3,
angle c). O.K. This here, oop (rotates pencil on point M on the screen, towards
the left, starting from the turtle's state) is 180 (fig. 7.4.13- 4). We take away that
here... (means angle c) the 110 which was like that, wasn't that 110?"

P: "Yes, it makes us 70."

N: "70. And from here... 70 won't we go here, straight (means horizontal)?
Plus 30 which we had put over here (means symmetrical angle at l). 70 plus
30is 100 isn't it?" (Nikos then typed LT 100)

Setting aside the complexity of Nikos' angle calculations and his apparent
implicit use of the sum of the supplementary angles theorem twice, it seems
interesting to consider the learning potential of such an episode
in a broader sense. On the one hand it could be argued that the dialectic
between "personalised” and mathematical activities seems to have played a
role in Nikos' readiness to involve himself in relatively complicated
mathematics, in the context of an open - ended "investigation" with no
"teaching" interventions or specific teaching intentions. On the other hand, if
Nikos' strategy for solving the problem is perceived as a specific case of a
general proof of a theorem, such a situation could be suitable for a "teaching"”
intervention with the aim of encouraging Nikos to generalise his solution and
ultimately to convey the meaning of proof.

742 AL r n an "LA ER"

A situation generating similar potential arose towards the end of the
children's fourth "investigation”, the sailing boat, during their efforts to
construct the sail. The discussion on how to make the sail started when the
turtle was at the top of the "mast” (fig. 7.4.14 - 1) since, although both children

agreed on a triangular shape, they had a different proposition on the method
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of constructing the triangle.

- Sensitivit to eometrical relations durin ersonalised ac ivities: a

rin

Nikos' idea was to make an equilateral triangle in the "classic"
Logo method, apparently drawing from his experience in the Logo club and
school Logo program activities (see chapter 4). He tried his idea out first,
typing REPEAT 3 [RT 120 FD 50], the turtle being in the state shown in figure
7.4.15 - 1. From his reaction to the result on the screen it became apparent
that he had not achieved what he was implicitly aiming, i.e. the triangle to be
in an "upright" position, it's median being a part of the "mast". Nikos did not

pursue his idea by debugging the triangle but allowed Philip to try out his

proposal.
REPEAT 3 [RT 120 FD 50] LASER 65 60
20
65
C C
—_
B A B A
2
Fi 7414N n P -Th h "Inv " Th ilin

"L o" Trian an "LASER" trian

Philip's suggestion was to use the LASER procedure, firstly
taking the turtle in a "suitable" starting position (fig. 7.4.15 - 2). He
expressed his decision to make an equilateral before giving an input of 60 for
the angle. However, although the value of 80 was mentioned for the length

input (no reason was explicitly expressed), Philip's opinion was that it would
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be too large in comparison with the length of the "mast", which was 50 (fig.
7.4.15 - 2) and so he typed 65. His rationale against an input of 80 was not
incorrect, since the top vertice of the triangle would be higher than the top of
the mast. It seems, however, to show his priority for more obvious
features - incorporating not only perceptual, but also "logical”
conjectures - rather than ones with a more complicated structure, as for
instance, what would happen to the triangle constructed by LASER by
altering the length of its side. It could also be argued that Philip had not yet
developed the sensitivity to the mathematical nature of the LASER procedure
which he would need in order to incorporate less obvious features of the
procedure in the process of an open - ended activity, where those features
are not focused upon.

It may therefore be useful to consider a "teaching" intervention at
that point in time with the purpose of bringing into focus the
mathematical notions embedded within LASER, i.e. increasing
the awareness of the relationship between mathematics, LASER
and the ship's sail. It is not argued that such an intervention would
necessarily be specific, since the graphical outcome of executing the
procedure with the "wrong" input could play an important role in creating a
conflict which in turn could spark a rich mathematical discussion. The
intervention could, in such a case, be restricted to encouraging or
"legitimising" such a discussion. It is, however, suggested that insensitivity to
the situation from a teaching perspective could jeopardise the opportunity for
the children to make such relations between mathematical notions and
context. For example, the children's reaction to the execution of LASER 65 60
was to "try out" the alternative LASER 80 60 without explicitly discussing or
reflecting on the reasons why the latter "worked".

Finally, it seems useful to analyse the geometrical context of a similar
situation which had arisen beforehand, when the children seemed to "switch"
from Nikos' "classical" Logo triangle to Philip's "LASER" triangle for the sail. In

the construction method for the former triangle there are embedded "intrinsic"
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geometrical ideas, such as the notion of turtle state - changes depending on
the immediately previous state, the notion of iterating a constant module of
move and turn (the triangle could be seen as a "crude" circle approximation),
and the notion of total turn. The construction method for the LASER triangle,
however, depends on euclidean geometrical notions, such as state changes
determined by external points (a parallel could be drawn here of constructing
the median, or the altitude of a triangle), and quantities determined by internal
relationships of the figure, which in Euclidean geometry are in the form of

axioms and theorems.

In that moment in their investigation, however, it did not occur to Philip and
Nikos to consider relations or contrasts in the two triangle procedures. A
teaching intervention, perhaps to suggest the debugging of the
"intrinsic" triangle procedure regarding the figure's position and
the construction of a second sail using the LASER could have
proved fruitful in sparking off a powerful mathematical discussion
which, although restricted to the context of triangles, would, in
effect, consider the relationships between the two geometrical
systems.

The main aim of the category 3 activities, however, was their "open -
endedness”, in order to investigate the extent and the way in which the
children would use Logo, the P.D.D. microworld and the euclidean LASER
procedure. A microworld designed to "bring to the surface” the issue of the
relationships between intrinsic and euclidean geometry within a specific
context was used in the third study of the research (chapter 8), in order to

investigate the children's perceptions of such relationships.
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DISC ION

This chapter has analysed the children's mathematical thinking primarily
within the contexts of intrinsic and euclidean geometry. However, the analysis
implicitly concentrated on a broader four perspectives of the children's

activities, i.e.;

1) The nature of their activities from a Logo programming perspective, i.e. in

relation to:

a) the programming and mathematical strategies children seem to
develop in investigative Logo environments (such as the Brookline,
Chiltern and Logo Maths projects - see section 2.1.3 -, but also as in the

preliminary phase of the present study, chapter 5), and;

b) the mathematical nature of their thinking, in the sense of Hoyles and
Noss (Hoyles and Noss, 1987a).

2) The role of the P.D.D. primitives as a mediating tool between intrinsic and
euclidean ideas.

3) The children's use of their intrinsic schema for both intrinsic and euclidean
ideas and;

4) The nature of the children's thinking in the context of euclidean geometry.

Rather than attempting to (artificially) strictly classify the children's activities in
the four desribed apsects, it was seen as more meaningful to present an
integrated analysis of detailed "significant” episodes and to subsequently
attempt a synthesis of the four perspectives of the children's activities, which
is presented in this section.
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7.5.1 The Lo © environment

The analysis has presented evidence that the environment created in the
study preserved the general characteristics of Logo microworld environments,
such as the ones mentioned above. The children built personalised strategies
in the process of making sense of new tools (either primitive commands or
newly written procedures) as, for example, in using the P.D.D. instruments for
measuring quantities (category 1 activities), or trying out the LASER
procedure (category 2 activities). They also engaged in goal - oriented
activities, the goals set either by the researcher (e.g. splitting the isosceles
triangle in half, in category 2) or by themselves (e.g. deciding to make a
"pyramid" for one of their projects). They used programming ideas, such as
procedure and variable, either on their own initiative, or after the researcher's
suggestion. An example of child - initiated use of procedure and variable is
the first procedure they wrote for an isosceles triangle and the variable they
added to the procedure to make approximations for the required initial right
turn in their attempts to make the isosceles triangle upright (a strategy called
"homing in" by Noss, 1985). Examples of prompted use of programming ideas
are the generalised procedure for an isosceles triangle (named LASER by
the children), and the procedure for the "Nested triangles investigation”
(named BAM).

The children seemed to develop programming strategies in a manner familiar
from previous work on the issue in terms of the structure in their programming
(Leron, 1983, Hillel and Samurcay 1985b, Sutherland and Hoyles 1987). Not
surprisingly, the children's programming generally lacked in structure, as for
example in the case of their "pyramid investigation", where the modules
would involve the turtle going over the same line more than once (Noss,
1985, Hoyles and Sutherland, in press). Moreover, the initial use of a
superprocedure in the "nested triangles investigation" involved a "nudge”
from the researcher, even in a context where, in the researcher's eyes, there
was an evident functional advantage in using this idea. However, there are

instances of implicit modular structure in the children's programming, as in
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the case of their nested triangles procedure ("BAM", fig. 7.4.3), where they
used a generalised procedure, LASER :N :P, as a fixed subprocedure for the
variant module (by giving it different inputs), but did not show a clear

perception of the invariance of the interface as an entity in itself (Noss, 1985).

What was the nature of the children's activities from a mathematical
perspective? Although due to the inductive nature of the research (see
chapter 4) there was no a-priori attempt to employ a theoretical model to
interpret children's behaviours, certain notions embedded in the U.D.G.S.
model of mathematical learning (see section 2.1.3) provide a useful tool for
understanding the mathematical nature of Philip and Nikos' work. For
example, the use of concepts such as angle, for functional purposes involving
the measurement of an angle quantity via the DIRECTION command, seemed
to relate to the discrimination of their components as in the case where the
outcome of a measurement could mean the size of an angle and/or the
quantity of a rotation. Using a concept also seemed to relate to
generalisations involving the concept in question, such as Philip's extending
of the relationship between supplementary angles from the "fixed triangle”

tasks to the quadrilateral task, in the category 1 activities.

It is interesting here, to consider the role of the children's LASER procedure
for a generalised isosceles triangle, as a component of a "Triangle
microworld", in the sense of the proportion and parallelogram microworlds
proposed by Hoyles and Noss in recent research (Hoyles and Noss, 1986
and 1988) attempting to restrict and specify the mathematical content of
children’s Logo activities. Although in this study, the LASER procedure was
constructed by the children as part of an on - going process of investigating
isosceles triangles, having thus started the investigation at an earlier "level”,
the children's activities with the procedure seem to have a qualitative
resemblance to those of the children using the proportion and parallelogram
microworlds. After constructing the LASER procedure, the children's use of it
enabled them to:
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a) discriminate certain embedded concepts, such as the meaning of the

angular input in relation to other angles within the figure,

b) generalise concepts embedded within the procedure - such as the angle
relationship toc make the isosceles triangle upright - and the LASER
procedure itself, e.g. by consciously using it to construct equilaterals, and by

extending its use to their own projects.

7.5.2 The role of the P.D.D. commands

The main characteristic of the conceptual field of the P.D.D. microworld is that
it provides the means to use notions from both the intrinsic and the euclidean
geometrical systems. The study, however, concentrated on how the
microworld’s tools would be used by the children. There is evidence from the
study of the children’s developing use of the turtle's new tools as:

a) a set of means to change the turtle's state with accuracy, when such
accuracy was perceived by the children as unobtainable by the "normal”

action - quantity commands;

b) a way of measuring angle or length quantities on the plane, either simply to
determine a respective size, or with the purpose of using the quantity for a
turtle action.

Throughout their work, there seemed to be a developing change in their
priorities, regarding their use of perceptual cues to change the turtle's state. It
seems as if the availability of tools with which they could achieve accuracy
raised their level of awareness of the difference between accurate plane
figures and products of approximations or "homing in" strategies. It could also
be argued that there is evidence of an increasing appreciation for accuracy;
for example, in their own projects and without any intervention from the
researcher, they seemed to be increasingly prepared to use knowledge of
close proximity on the one hand, and on the other, to reflect or analyse a
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problem to impressive lengths in order to decide whether to use the
instruments or the direct action - quantity commands, as for instance in Nikos'
complex manipulation of angle properties in the "pyramid investigation”. This
argument is an extension of, and supported by, evidence from the T.C.P.
microworld study, where the children showed increasing awareness of
properties of plane figures during their "plane description" activities which
involved the use of the P.D.D. commands (the path 2 and path 3 children, fig.
6.1.1).

From the perspective of the geometrical content, the role of the P.D.D.
commands seemed to be that of extending the range of usable concepts
available to the children, from those of the strictly defined intrinsic geometry to
concepts belonging to euclidean plane geometry. For example, the
construction of an isosceles triangle by means of the intrinsic Logo
commands is either impossible, if no knowledge of plane geometry is
assumed, or can only be achieved if the euclidean angle and length
relationships embedded in the figure are already known. The ability to place
markers on the plane and measure quantities relating the turtle's state to the
markers, opens a "window" onto limited awareness of the plane, for the
otherwise "blind" intrinsic turtle. Furthermore, it is the user who determines

which plane properties the turtle needs to be aware of.

For the children, this provided the opportunity to measure angles or lengths -
instead of using perceptual cues whenever complete knowledge of all the
angular and length relationships was unavailable - and therefore construct
the figure accurately, by using a limited span of its properties. For example,
they constructed an isosceles triangle using as the only property, the equality
of two segments. Furthermore, the accurate construction enabled them to
make further measurements resulting in "discoveries" of further properties
and investigations of the relationships between them. This, in turn, provided
them with knowledge of euclidean concepts which rendered the use of the
P.D.D. commands redundant. For example, in the beginning of the "striped
triangle investigation” the children typed LASER 85 50 and then RT 40,
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instead of using the DIRECTION command to turn the turtle towards point H,
(fig. 7.4.4). In the study, however, they were left to decide when to use the
instruments according to their perceptions of which properties they knew.
They did not realise, for example, the redundancy of the DIRECTION
command in their LASER procedure, since the level to which they had
generalised the angle relationships permitted an intrinsic turn (i.e. RT 180 -
‘P, instead of RT DIRECTION :, fig. 7.3.11).

In this sense, the role of the P.D.D. commands could be described as a
"support” for the understanding of euclidean concepts and properties. In a
figure such as the isosceles triangle, embedding a complexity of geometrical
relations, the instruments provided the opportunity to address a limited
number of ideas at a time within the wholeness of the figure. In the structure of
the LASER procedure (fig. 7.3.11), for example, the redundancy of the
"supporting” role of the DIRECTION command had been "achieved" as
discussed above, but the need for support on length relations still remained,
providing the potential for further mathematical activities.

7. .3 The use of the in rinsic schema.

The study provides evidence of the children's use of an intrinsic schema to
drive the turtle on the screen in a similar way, and to a similar extent as in
children's activities with "standard" Logo. It seems helpful to use the model -
description of the intrinsic schema provided by the T.C.P. microworld study
(fig. 6.6.12), in order to understand the schema used by Philip and Nikos. In
the Brookline project (Papert et al, 1979), the lack of differentiation between
angle and length inputs is the main "axis" for the describing of observed child
behaviours regarding the qualitative role of number inputs. However, there is
no explicit analysis of whether children who realised that angle and length
inputs are different, understood the nature of this difference by discriminating
the meaning of the inputs. In the preliminary study of the present research
(chapter 5), there was evidence of quite deep confusions on this issue, in
most of the children.
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The "action - quantity" part of the turtle schema (fig. 6.6.12) formed by Philip
and Nikos, not only seemed to retain the duality of the turtle's state, but the
nature of the P.D.D. instruments - i.e. a meaningfully different command for
the "ruler and the "protractor" - seemed to play a catalytic role in further

discrimination between:

a) move and turn actions,

b) the equivalent importance of heading and position as turtle states (the
preliminary study revealed a relatively limited awareness of the heading as a
state - entity);

c) the qualitatively different role of number inputs, as representing quantities
in different metric systems, i.e. unit length and degree (the preliminary study

also revealed confusions in discriminaring angle from length inputs);

However, there was a development in the "sequentiality” part of their intrinsic
schema. Although the notion of "one change after the other" was retained
and, in a sense, emphasised by the focus on process encouraged by the
P.D.D. commands, the dependency of a change on the immediately previous
state did not remain essential. Determining the quantity of an action could
involve the end turtle state, if a measuring instrument was used. However,
when the quantity was measured, it was used as part of the action, in an
intrinsic manner. The children seemed to develop quite quickly a
differentiated use of measurements either as part of the process to perform a
state change, or as detached from action, with the purpose of obtaining
information about a certain size. Supported by the evidence from the T.C.P.
microworld study, it could be argued that the clear discrimination of the two
described roles for a measurement is an indication of the strength of the
intrinsic schema in the children's minds.

A different perspective of the children's use of the schema as a whole seems
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helpful at this point. It involves the integration of the intrinsic schema with the
perceptual and analytical schemas dimension proposed by Kieran, Hillel and
Erlwanger (1986). A useful way of describing the children's conventional
Logo activities is that they seem to develop an intrinsic schema for controlling
the turtle and use it either in a perceptual or in an analytical way. That is, they
may identify with driving the turtle on the screen, but it doesn't follow that they
use mathematics to do so. Seen through this perspective, three

developments have been observed in the children's behaviour in this study:

a) an increasing level of awareness of the difference in using perceptual or
analytical cues;

b) an increasing level of priority in using analytical cues, and;

c) an increasing breadth of concepts (extending from intrinsic to both intrinsic
and euclidean geometry) used by the children as a result of using analytical
cues.

Indications of the emerging of such developments are also shown in the
plane description activities of the children participating in the T.C.P.
microworld study (fig. 6.1.1).

7. .4 The use of Euclidean Geomet

The study provides evidence of the children's developing use of concepts
belonging to euclidean geometry. The measuring of angular and length
quantities, enabled the children to conjecture, reflect on and manipulate
properties and relations within the domain of triangles. Their developing
awareness of the existence of geometrical relations in the environment they
were working in, encouraged an increase in their readiness to use and reflect
on them.

The difficulties of understanding Euclidean geometry as argued by other
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researchers and mathematicians (Freudenthal, 1985, Von Glasersfeld, 1985,
Dreyfus, 1987) is that it requires a level of deductive thinking usually not
achieved by children, even till the end of secondary education. While not
claiming that Nikos and Philip engaged in deductive euclidean thinking, this
study rather illustrated how euclidean concepts became available for the
children to use in an inductive way as part of the development of their general
mathematical strategies. It is perhaps worthwhile to speculate on the role of
the accessibility of euclidean concepts for inductive thinking on the children's
experience vis - a - vis their later understanding of deductive euclidean
thinking.

ONCLUDING REMARKS

Claiming that the children engaged in mathematical thinking of some "higher
order" would be both misplaced and irrelevant to the objectives of the study.
The researcher not only recognises the limitations of in - depth investigations
of the mathematical thinking of a small number of children, but the study itself
reveals differences in the thinking of the two participating children. Nikos
seemed always ready to attempt links between turtle geometry and plane
geometry, while Philip, although possibly a higher, by certainly not a lower
achiever in each of the two domains, was in general more reluctant to do so. It
is difficult to comment on the reasons, however, since this could be a
characteristic of the collaborative environment built by the children, rather
than a characteristic of their conceptual abilities - something which has been
obseved in other studies (Hoyles and Sutherland, 1986b). For example, it
could be hypothesised that the dominant character of Nikos implicitly
imposed the formation of such links, Philip being content to leave this issue to
his partener rather than face interpersonal conflict.

The study depended on providing evidence of the existence of four aspects of
the children's activities, two of which have already been observed and

analysed in children programming in conventional Logo, i.e. their developing
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programming / mathematical strategies and their intrinsic schema for
controlling the turtie. The other two aspects, i.e. the children's use of the
P.D.D. microworld and of the content of euclidean concepts, provide an
extension of the conceptual field available to chiildren engaged in
conventional Logo activities. It was not an aim of the study to show
outstanding achievements in any one of these aspects, but rather, to
investigate the potential of an integrated existence of all four aspects. That is,
to investigate whether the children would carry on developing their
programming and mathematical strategies and using their intrinsic schema,
as they would do with conventional Logo, while extending the geometrical
content of their activities to concepts belonging to both intrinsic and euclidean
geometry. Although the evidence provided by the study answers the question,
it does not throw enough light on the children's awareness of working in a

dual geometrical context.

A further issue, therefore, addressed in chapter 8, was the need for
investigating children's explicit critical perceptions of relationships between
the two geometries by illuminating their choices of which geometrical system
to use for representing concepts in a functional way.
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CHAPTER 8
INTRINSIC VERSUS EUCLIDEAN GEOMETRY
8.1 OVERALL DESIGN OF THE STUDY
.1.1 Ob’ecives

There has been little evidence from previous research (see chapter 2) that
children form disparate microviews for intrinsic and plane representations of
specific geometrical concepts, as for example, in the dynamic and static
representation of angle (Kieran, 1986b). This evidence has been
corroborated by the findings of the present research (chapters 6 and 7). Little
is known, however, about the nature of the criteria children use in choosing
between intrinsic and non - intrinsic representations of geometrical concepts
in Turtle geometric contexts where both representations have been a part of
the children’s mathematical experience.

Consequently, the general aim of the Circle microworld study was to
investigate the criteria children develop for choosing between intrinsic and
euclidean representations of geometrical ideas within the context of Turtle
geometry.

A pair of children participated in the study which consisted of two phases; the
first involved a learning sequence concerning four distinct methods for
constructing a circle, each method involving the use of specific intrinsic or
euclidean ideas (see section 8.1.3). The sequence involved phases where
the children constructed the procedures and phases where they used them in
personal projeats (8.'1.2a). In the second phase, the children were given a
sequence of structured tasks, each involving the construction of a geometrical
figure consisting of a composition of circles. Within each figure certain
geometrical notions were embedded so that the figure could be constructed

either by using intrinsic or euclidean notions or combinations of both (fig.
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8.3.1, section 8.3.1). The children could choose which of the four circle
procedures they would use and were asked to solve the task individually at
first and then collaboratively.

In effect, the set of four circle procedures in conjunction with the standard
Logo commands embodies the conceptual field of a Circle microworld (see
section 8.1.3). Accordingly, a partial aim of the first phase of the study was for
the children to construct the new tools of this microworld and use them in
meaningful contexts so that the embedded intrinsic and euclidean notions

could become part of their mathematical experience.

However, the first phase of the study also provided a context for the
researcher to carry out a preliminary investigation of the initial stages of the
children's developing choices between intrinsic and euclidean notions. The
foliowing two issues were cd‘sequently investigated during phase 1:

a) the nature of the geometrical notions which were implicitly or explicitly
used by the children during the phases of construction of the circle

procedures;

b) the extent to which and the way the geometrical notions characterising

each circle procedure were used by the children during their own projects.
During phase 2 of the research, the following main issues were investigated:
¢) the extent to which the children used the geometrical notions embedded in
the structured tasks and the nature of the notions they used for constructing

the tasks' figures;

d) the nature of the children's implicit or explicit criteria for choosing intrinsic
or euclidean geometrical notions in their constructions.
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8.1.2 Overview of the stud

8.1.2a Phase 1

As mentioned above, the first phase consisted of a learning sequence
involving four distinct methods of constructing a circle in Turtle geometry.
Each construction method employed intrinsic and/or euclidean ideas and was
embodied within a procedure. The first procedure involved intrinsic notions
for constructing the circle (fig. 8.1.1). The second procedure incorporated the
notions of the radius and the centre through the variable input which
represented the length of the radius (fig. 8.1.2). The third procedure took the
radius as input, but also involved the centre as the point of state transparency
of the turtle (fig. 8.1.3). Finally, the fourth employed a construction method
representing the euclidean definition of a circle as the set of points
equidistant to the centre point (fig. 8.1.4). In order to set up a meaningful
context for the construction of each of the procedures, a structured task
embedding geometrical ideas to be used for the procedure's construction
was given to the children (fig. 8.1.6). After each procedure construction and
subsequent construction of the task figure, the children were asked to carry
out projects of their own choice with the restriction of using their new
procedure to make circles of various sizes.

The four circle procedures as constructed by the children, constituted the
Circle microworld's special primitives, which were then used in the second
phase of the study. The conceptual field embedded in the Circle microworld is
analysed in the following section (8.1.3). An analysis of the structured tasks
given to the children during the first phase of the study is presented in section
8.1.4a). Finally, an overview of the learning environment for the first phase of
the study is given in section 8.1.5.
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812b Phase 2

This phase consisted entirely of the administering of structured tasks to
construct figures involving compositions of circles. Each figure consisted of
circular formations within which certain geometrical notions were embedded
so that the figure could be constructed either by using intrinsic or euclidean
notions or combinations of both (fig. 8.3.1, section 8.3.1). A detailed analysis
of each task is presented in section 8.1.4b). The aim of administering the
tasks was firstly to investigate whether the children would use the embedded
geometrical ideas at all, in order to construct the figures. Secondly, the aim
was to investigate which geometrical notions they used with respect to their
intrinsic or euclidean nature and their criteria for choosing these particular
ideas in their construction.

.1.3 Anal sis of he conce tual field

ir

i n

The Circle microworld consisted of all the conventional Logo commands and
four distinct procedures, each constructing a circle in a different way. The
children used the Circle microworld, i.e. an environment where the four circle
procedures were primitive commands, in the second phase of the study. A
partial objective of the first phase was for the children to construct and use the
microworld's new tool's for themselves. Since the tools of this microworld are
not simple as, for instance, the POST, DISTANCE and DIRECTION
commands in the T.C.P. and P.D.D. microworlds, it was essential for the
children to develop an awareness of the geometrical ideas embedded in
using the tools, so that they would be in a position to make a meaningful

(rather than a random) choice in the second phase of the research.
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Circle rocedure 1.

TO ANYCIRCLE :V /,4
REPEAT 36 [FD :V RT 10] 5
END

ANYCIRCLE 6

Q Denotes a turtle state during the execution of the procedure

r Denotes the turtle's state of transparency

ASIDE: The names of the microworld's tools used in this section belong to
the researcher and were also used in the document given to the children
during the first phase of the study (appendix E.2). In the subsequent "findings”
sections, however, the names the children gave to the procedures as they
were constructing them are used, since these names were referred to in the
collected data and the former ones - not surprisingly - were ignored.

In figure 8.1.1, the procedure ANYCIRCLE, the REPEAT command and the
variable input have been used for an intrinsic construction of a circle. There is
no reference to any point outside the immediate vicinity of the turtle and each
change of state depends on the previous state. The input determines the
change of position between turtle turns.

ircle rocedure 2.

Q
TO NEWCIRCLE V 50
REPEAT 36 [FD :V * 3.14 / 18 RT 10]
END

NEWCIRCLE 50
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Procedure NEWCIRCLE seemingly constructs the circle by an intrinsic
method, since the turtle repeats a constant change of position and change of
heading. However, the quantity of the turtle's change of position does not
depend on the action itself, but on information involving a specific point on the
plane - the circle's centre - outside the turtle's path. This information involves
the relationship between the length of the radius and the length of the turtle's
change of position between each turn. This relationship can be derived
through the relationship between the circumference and the diameter of the
circle, i.e. the number (pi) = 3.14... The length of the radius is given as an
input to the procedure and the input to the FD command is calculated so that

the constructed circle has a radius of length equal to the numerical input.

In order to provide a context inviting the children to feel in control while
investigating the crucial relationship between the radius and the length
between each turtle turn, special turtle commands were designed and
presented to the children as primitives. The commands represented
measuring instruments - one to measure the circumference and one to
measure the diameter of the circle. The programming for the commands is
given in appendix E.1, the way they were introduced and used by the children
is apparent from the worksheets (appendix E.2); the emerging issues related

to the research are incorporated in the respective "findings" section (8.2.1).

The visual effects from measuring the two elements of the circle "required” an
upright orientation of the figure constructed by the NEWCIRCLE procedure
which, in effect, is a polygon approximating a circle. This would imply a
"correction” of the turtle's orientation by half the amount of turn in the module
generating the curvature (i.e. 5 degrees), before starting to trace the
circumference. This could be achieved by the commands RT 5 and LT 5,
respectively before and after the construction of the polygon - circle. This
correction was applied by the children after they constructed their procedure
and following a discussion generated by the researcher, concerning polygon
approximations of circles. It is referred to in the respective "findings" section
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where relevant to the research issues.

Finally, in relation to this turtle method of constructing the circle, another
example of information referring to distant points in the plane and used to
determine the quantity of a turtle action is given in chapter 3, where
knowledge of euclidean properties is used in constructing the diagonal of a
square (section 3.1.1). This procedure, therefore, employs both intrinsic and
euclidean ideas, i.e. the "curvature" or "polygon approximation" method of
constant position and heading changes and the use of the length of the
radius and consequently the reference to the circle's centre. The input to the
procedure (:V) determines the length of the radius of the circle.

Circle rocedure 3

TO CENCIR :V Q
LT 90 PU FD :V PD RT 90

REPEAT 36 [FD :V * 3.14 / 18 RT 10]

RT 90 PU FD :V PD LT 90

END CENCIR 50

The method for constructing the circle in procedure CENCIR is the same as in
procedure NEWCIRCLE. The difference lies in the turtle's state transparency
(i.e. the turtle's state before and after execution of the procedure). In this case,
the turtle starts and finishes in the centre of the circle. Execution of the
procedure, therefore, has the effect of a circle drawn around the turtle.
Determining the inputs to the turn and forward commands used to take the
turtle to the edge of the circle and back (i.e. 90 degrees and :V steps) requires
the use of euclidean properties of the circle (i.e. perpendicularity of tangent
and radius).
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Circle rocedure 4

TO DOTCIR =V t <
REPEAT 36 [PU FD vV PD DOT PU BK:V RT 10 -59-“5--)
END T
DOTCIR 50
F 1.4

This procedure uses the euclidean definition of a circle, i.e. that a circle is the
set of points which are equidistant to a point in the plane. This point, i.e. the
circle's centre, is the turtle's state of transparency. The tracing of the circle's
curvature is not embedded in this procedure. Rather, the turtle "jumps" to the
edge of the circle and leaves a trace of its position (i.e. makes a dot). The
approximation factor in this case does not involve polygons, but the proximity
between the points of the curvature, depending on the length of the radius

and on the amount of turn.

8.1.3b An exam le involvin the use of the Circle microworld's tools.

The following example is meant provide some clarification of how the Circle
microworld's tools might be used in the construction of a geometrical figure.
All four circle procedures can be used to construct figure 8.1.5. In using circle
procedure 1, however, there is no reference to any point outside the turtle's
immediate vicinity (e.g. ANYCIRCLE 5 RT 180 ANYCIRCLE 5), i.e. the
construction method employs intrinsic notions only. The NEWCIRCLE
procedure embodies an intrinsic method of constructing the figure, since the
turtle traces along the curvatures executing action quantity instructions
without the need of a reference to external points for the interface between
circles (e.g. NEWCIRCLE 50 RT 180 NEWCIRCLE 50). However, there is an
embedded reference to an external point in the plane in determining the input
to the procedure. In using the CENCIR procedure, euclidean information is
required for the interface between circles, e.g. CENCIR 50 RT 90 PU FD 100
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PD LT 90 CENCIR 50. Use of the DOTCIR procedure involves a euclidean
definition of a circle for the circles' construction and a reference to euclidean
information for the interfacing commands.

In using the Circle microworld's tools, therefore, the choice is open regarding
intrinsic or euclidean notions to be employed in figures involving circles.
However, according to embedded relationships, certain figures invite the use
of one microworld tool rather than another. This issue is analysed in relation
to the study, in section 8.1.4b).

Fi ure Anex m leof fi urewi r les

.1.4T kanal sis

.1.4a Pha

The four tasks in this phase were designed so that they would encourage a
focus on the intended geometrical ideas to be used by the children for
constructing a circle by means of writing the respective circle procedure. This
analysis presents these ideas and the way in which they are embedded in the
task figures.

Th firs ta

The task figure consists of five circles of different sizes which could be
constructed by executing an intrinsic circle procedure with inputs of different
sizes respectively, without any interfacing commands between the

procedures (fig. 8.1.6a)). An embedded intrinsic notion is the non -
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requirement of reference to any point in the plane away from the turtle's
vicinity and the point of state transparency of the turtle for the whole figure,
being the circles' point of connection.

The second task

The figure for this task is two concentric circles. A fixed "distance” between the
circles was given in the worksheet (fig. 8.1.6b) and appendix E.2). There are
two notions embedded in the task which require reference to the plane; the
circles' centre and the notion of the distance between two curves. If the
distance is perceived as the difference between the lengths of the two radii,
then both notions (radius and centre) are euclidean (Abelson and diSessa
would say that the notions are intrinsic to the circle, but for the present
research this use of the word "intrinsic" has a different meaning, see section
2.2.5). If the distance is perceived as an absolute distance between two
curves, the notion of distance is euclidean but not connected to the circles
themselves. Constructing this figure could consequently encourage writing a
circle procedure which would provide the means of using the radius (and/or
the centre) of the circle. Using circle procedure 2 (section 8.1.3) would involve

the use of the radius in the form of the input given to the procedure.
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The third task

This task does not depend so strongly on the figure itself, but rather on the
process of constructing it. The requirement is to make a 30 - steps long line
and from that position of the turtle, to construct various circles of different
sizes, erasing them until a circle of a perceptually satisfactory size is found, so
that the figure looks like a tree (fig. 8.1.6c)).

In effect, the tasks require the construction of concentric circles with the
restriction that the turtle has to start and finish each circle situated in the
centre. The embedded idea in the task is the focus on and the use of the
centre point of the circle as an integral part of the circle itself. Using circle
procedure 3 would facilitate solving the task compared to a laborious use of
circle procedure 2 where interfacing with the centre point would have to be
carried out in direct drive.

Th fou ta

The task is intended to encourage a focus on the centre point - via the
construction of the clocks hands - and on points of equal distance to the
centre (fig. 8.1.6d)). The two previous circle procedures could be used by
instructing the turtle to trace the curvature in PENUP mode and interrupt every
total turn of 30 degrees to make a trace of its position. However, the figure can
also be constructed by making a module where the turtle "jumps" a fixed
distance (i.e. moves in PENUP mode), makes a trace of its position and then
"jumps” back the same distance. By repeating the module with the
appropriate 30 degree right turn interface, the turtle remains in its state of
transparency, the centre, from which the clock's hands can be drawn. The
task prompts a reflection on the method of constructing the figure and

subsequently suggests constructing it via the latter method.

292



8.1.4b Phase 2

As mentioned above, each task figure in this phase consisted of circular
formations involving geometrical notions embedded so that the figure could
be constructed either by using intrinsic or euclidean notions or combinations
of both (fig. 8.3.1, section 8.3.1).

An important feature in tasks 1, 2, 4, 6, and 8 is the position of the circles’
centres. Figures 1, 4 and 8 do not have linear cues connecting the centres,
i.e. there is no explicit reference to the centre points embedded in the tasks.
Furthermore, there are specific relationships among the lengths and the
positions of "important” radii of the circles of these figures. For instance, the
radii on the points of connection of the circles in task 4 determine the length of
the sides of the equilateral triangle formed by joinning the three centre points.
A discriminatory factor between figure 1 and figures 4 and 8 is the absence in
the former of connections among the circles' curvatures.

\
Tasks 2 and 6 involve line segments joining the centres of the circles' in the
figures. The radii in this case are only important for constructing circles of
equal sizes. The positioning of a radius or its actual length are not important
factors for the construction of the figures. A difference between task 2 and task
6 is that in the latter, the actual length of the segments joining the centres is
important for the construction of the figure. This is not the case in the former
task.

The figure in task 3 can be perceived as a variation of the figure in the first
task in phase 1 of the study (8.1.4a), fig. 8.1.6a)). The difference in that case
would be the existence of a right - turn interface between the circles in the
figure in task 3. This parallelism is only made to highlight the important factors
in constructing the figure, e.g. their curvatures' connecting on a specific
common point. Consequently, constructing the figure does not require
reference to radii or centres of the circles. A means of altering the size of a

circle is required, but there is no need to relate the size to the circle's radius.
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Tasks 5 and 9 involve figures positioned in circular formations. In figure 9
there is a linear cue (a circle) embodying the circular placement of eight line
segments by connecting their ends. The figure is open to various methods of
construction. One set of methods, for instance, could involve a separate
construction of the circle and the segments, while another could incorporate
both formations in one module. In either set of methods intrinsic or eulcidean
(or both) notions can be used. In the latter set, for instance, the turtle could be
instructed to trace along the curvature and interrupt to turn and make a line
segment. Alternatively, points equidistant to the centre could be drawn for an

arc, followed by a segment after an appropriate number of points.

The absence of a linear cue to denote the circular formation of the small
circles in the figure in task 5 allows for a choice of which circle to perceive as
important for the positioning of the small circles; although the position of the
circle's centre would be quite obvious, the radius could connect to any useful
point in the small circles' curvatures (e.g. the point closest or furthest to the
centre or the point which makes the radius tangent to the small circles).
Furthermore, the circle need not be perceived in connection to a centre and a
radius at all; the turtle could be instructed to make a large curvature,
interrupting at the appropriate intervals to make smaller circles by turning to
the right or to the left. An additional feature of this figure with respect to the
one in task 9, is that the shapes in circular formation are circles themselves
and therefore open to constructions involving intrinsic or euclidean notions.
An interesting issue is to what extent the method used to construct one of the
circular formations (the large one or the small circles) mathematically restricts
the method used for the other. This issue is analysed with respect to the
children's constructions in section 8.3.3.

Finally, constructing the line segment in the figure in task 7 is the only factor
which requires the employment of euclidean notions in constructing the
semicircles; if the segment was absent, the connecting curvatures could be

drawn intrinsically. However, in order to join the two edges of the figure,
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reference to the diametrical distance of a semicircle is required in some form
or another. For instance, the reference could be achieved through the input
signifying the length of the radius in circle procedure 2, or through a centre -

oriented circle construction via circle procedure 3 or 4.

It is evident from the above analysis that the 9 figures of the tasks
administered during the second phase of the study allow a high degree of
flexibility regarding the geometrical notions which can be used in their
construction (with the exception of task 3). The tasks were designed in this
way so that the children would have the choice of which notions to use in their
attempts to construct the figures - in the case, of course, that they would use
geometrical notions in the first place.

An rvi w rnin - nvi

In general, the learning environment was designed under the same principles
as in the previous study (section 7.1.3). Even though, as discussed above, the
children actually used the Circle microworld only in the second phase of the
study, for the purposes of describing the learning environment the broader
meaning of "microworld" (Hoyles and Noss, 1987b) will be used for both
phases.

The pedagogical component in phase 1 firstly consisted of the worksheets
(appendix E.2) designed to lead the children to activities on and off the
computer. The latter activities involved questions designed to encourage
reflection at key points during the construction of the new circle procedures.
Secondly, the pedagogical aspect involved the researcher's interventions.
During the phases of the construction of new circle procedures the
intervention strategy was of a relatively directive nature, in accordance with
the principles underlying the corresponding parts of the worksheets.
However, the researcher generally attempted to allow the children to take
initiatives in their learning, restricting his interventions only to cases where it

was necessary. For example, although in the worksheet a procedure for g
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circle with a variable is given (page 2, appendix E.2), the researcher did not
show the worksheet to the children until they had decided how they would
write the procedure themselves. Where relevant, such instances become

apparent in the respective "findings" section (8.2.1).

During the children's projects in phase 1, however, the researcher's
interventions were restricted to non - directive principles discussed elsewhere
(e.g. as in the category 3 activities in chapter 7). Furthermore, during the
second phase of the research, interventions were oriented towards
illuminating the children's thinking and reasons for their actions according to

the research issues.

As in the previous study, during both phases of the present one, an important
aim concerning intervention was to encourage or provoke reflection on the
children's actions and to encourage their explicit explanations, either to their
peer or to the researcher, concerning important research points. A key aspect
of the intervention strategy was the frequent encouragement for the children
to be active in their learning, to feel comfortable in making conjectures and
speaking their thoughts out loud, i.e. to establish the legitimacy of a learning
atmosphere which was unfamiliar to the children due to the educational
system (see chapter 5).

Methodolo

.1.6 Ateachin ex erimentusedasa re ilo u

In 1985, a teaching experiment was carried out by the researcher (Kynigos,
1985), the content of which involved the first two circle procedures and two of
the structured tasks (the circles in a tangential triangular and square
formation as in tasks 4 and 8, fig. 8.3.1). The experiment involved two pairs of
11 - 13 year old English children with considerable Logo experience and
lasted for 2.5 hours in total for each pair. As a result of this study, which was

considered as a pre - pilot study for the present research, the following
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changes were made and carried out in the main pilot study;

- The learning sequence incorporated the third circle constructing procedure
(and the respective task encouraging the construction) as mentioned above,
in order to further the employment of euclidean notions involving the
definition of a circle.

- Detailed changes in the teaching sequence were made in order to enhance
clarity for the children and provide them with the opportunity to use each
circle procedure in a project of their own. Consequently, substantially more
time was allowed both for the construction of the procedures and for the

children's own projects.

- The tasks, investigations and requests for projects were documented (see
appendix E.2), in order to provide more scope for the researcher to
concentrate on the research issues. The documentation was in the form of
"worksheets", with on and off - computer activities. The documentation of the
"N" tasks (Hoyles and Noss, 1986) was used as a basis for the worksheets'
format and style.

- Additional structured tasks were designed for the second phase of the study
(9 in total) in order to probe further the children's criteria for choosing a circle
procedure to solve the tasks.

1 6b The main Pilot s ud

The main pilot study was carried out in the same English school as the
respective studies described in chapters 6 and 7. Two 13 year - old children
with considerable Logo experience participated in the study. All the activities
of phase 1 and phase two (involving the three first circle procedures) were
piloted. Data was collected by the following means;

- audio - taping,
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- dribble files of the children's typing,
- the chidren's procedures saved on disk,
- the children's written responses to the "worksheets",

- researcher's notes.

As a result of the main pilot study, the teaching sequence was changed to its
final form which consisted of a module for introducing to the children a
meaningful context for constructing a circle with each of the methods
described above and using each construction in a project of their own choice.
Each module involved one of the four methods for constructing the circle. All
the modules had the following structure;

a) describing a structured task encouraging the construction of a particular
circle procedure;

b) investigating the construction method for the circle and writing a circle
procedure incorporating the respective method;

c) solving the task with the use of the new circle procedure;

d) carrying out a project with the use of the procedure.

It was decided to include a fourth circle construction involving a more
"extreme" euclidean method (points of equal distance to a specific point in the
plane), in order to probe further the children's choices in the second phase of
the study. The teaching module for the fourth construction was piloted as in
the former part of the main pilot study and detailed changes in the task and
the presentation of the worksheet were made.

The primitives for measuring the circumference and the diameter of the circle
to be used for the construction of circle procedure 2 were modified so as to
increase clarity in their function and to achieve a rigorous consistency with
the function of Logo commands in general (see appendix E.1).
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Use of the dribble playback files was added to the data collection, in order to
acquire screen dumps which proved useful in analysing the children's
projects in particular. There was a further increase in the time allowed for the
study, in both phases.

Finally, in phase 2, it was decided to present one figure at a time to the
children and to allow a whole 90 minute session for each task. Time was
allowed for the children to write how they would construct the figure
individually on paper, before attempting to solve the task collaboratively. After
each construction, time was left for a discussion of the children's choice of
procedure.

Two children from the Logo club participated in the main study, Valentini and
Alexandros. The research was carried out immediately after school in the
research room during two 90 minute sessions a week for eight weeks (not
including holidays, e.t.c.). As in the case of the children participating in the
other studies, Alexandros and Valentini took part, as normal, in the Logo club
and in the school program. The computer, the Logo version and the research

setting were as in the previous study (section 7.1.5b)).

The research data consisted of;

- audio taping of everything that was said,

- soft and hard copies of verbatim transcriptions translated from the audio
tape into English,

- hard copies of graphics screen dumps, acquired by playing back the dribble
files and pausing them to make printouts,

- soft and hard copies of all the procedures the children wanted to save on
disk,

- the researcher's notes and the children's prompted and unprompted notes
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on paper,

- the children's written responses to the worksheets of the learning sequence
and,

- their written plans for their strategies in constructing the figures in the
structured tasks of phase 2 of the study.

The researcher's notes involved any relevant incidents which would
otherwise escape the "net" of data collection, as for instance, the children
referring to points on the screen by pointing at them. Printouts of the graphics
screen were crucial during the children's own projects, since it was
sometimes hard to visualise the effects of superprocedures they wrote, with
several layers of subprocedures embedded within them. The printouts were
also used in a subsequent "findings" section (8.2.2) in cases where
reproduction of the figures by the researcher could not be achieved with
accuracy.

During phase 1, the primary factor determining the content of the activities
was the children's reading of the worksheets rather than the researcher's
verbal comments. The administering of a structured task in phase 2, involved
the following procedure:

a) A copy of the figure was given to each child; the figures were drawn on
paper by the researcher with the use of compass and ruler in order to avoid
biases towards one or the other method of construction due to screen
resolution effects or differences in circles constructed by different circle
procedures;

b) the children were given time to think and write a plan for constructing the
figure; they were requested to write their plan in the forms of commands /

procedures and written language;

c) they were then requested to exchange plans and explain them to each
other before trying out both plans on the computer;
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d) in cases of difficulty with constructing the figure time was allowed for the

children to cooperatively discuss and work out how they would solve the task;

e) after constructing the figure, the researcher carried out a semi - structured
interview probing further issues concerning the children's solutions and
investigating their views on using alternative geometrical notions or strategies

1o solve the task.

The analysis of the data is presented in two sections (8.2 and 8.3),
corresponding to the two phases of the study. In the first section (8.2), it was
decided that it was more relevant to the research issues to present the
findings from the learning sequence in two parts; the first part reports on the
children's activities during the phases of solving the four tasks and
constructing the respective circle procedures; the second part presents an
analysis of the geometrical notions they employed during their personal

projects involving the use of a respective circle procedure.

The structuring of section 8.3 is based on the research issues which emerged
from the analysis of the data, rather than on a chronological account of events
during the administering of the tasks. The structure is therefore a result of a
synthesis of "significant" episodes, as elaborated in section 4.2.8. A further
synthesis of the findings is discussed in section 8.4.

1.7 The hil ren

Valentini was characterised by her teacher as "very bright in all subject
areas". Her favourite topic at school was mathematics "because I like to use
my brain” , as she wrote in response to an interview question at the beginning
of the year. However, she showed a tendency to dominate over her peers
during the first year of the Logo club where, for instance, she would
monopolise the use of the keyboard. She was enth usiastic about her

activities in the club and described them with precision - in relation to her
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peers' descriptions - in the essay she wrote at the end of the year. Her
perception of what she had learned from participating in the club was "to use
our mind more practically and overall to cooperate”. Her comment is not only
indicative of a progressing self - awareness of her dominant character, but
also of a characteristic of her thinking which influenced her projects and her
performance in the structured tasks; she would "drift" into unnecessarily
complicated routes in her thinking, without trying out things on the computer
or standing back to look for simple solutions. In her programming to solve the
structured tasks, however, she used procedures and was one of the three
children to use subprocedures in the process of constructing the four squares
in the third batch of tasks (see fig. 5.1 F and G, appendix H).

Alexandros, on the other hand, was a practically - minded child, perhaps as a
consequence of his distinct difficulty in thinking out things in the abstract, as
for example, in his writing of procedures in the editor without trying them out.
His teacher perceived him as bright, but dominant and self - centred,
concious about "failure”. However, although during the club activities he took
the role of the "leader" among his peers, this was not the case in his
partnership with Valentini during the research. Furthermore, his open and
likeable character contributed to the investigative atmosphere created during
the research sessions. Alexandros' programming in the structured tasks was
in the same category as Valentini's (fig. 5.1 F and G, appendix H).

N R TIN L Ml RLD’ N
THEMINPER NALPR E T

As mentioned in section 8.1.1, a partial aim of the learning sequence in
phase 1 of the Circle microworld study was to prepare the children for taking
part in phase 2, i.e. to provide them with the opportunity to construct and use
the microworld's tools in meaningful contexts so that they might form
understandings of the intrinsic and euclidean ideas embedded in the circle
procedures. However, the process by which the children formed these

understandings and used the geometrical notions in their own projects,
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provided the researcher with a context to carry out a preliminary investigation
of the initial stages of the children's developing choices between intrinsic and
euclidean notions. The two aspects of this investigation are formulated in

section 8.1.1 (issues a and b).

In an attempt to keep a balance between the presentation of the findings in
the two phases of the study and the importance attributed to the findings with
respect to the research issues, it was seen as appropriate to state here only
the key issues emerging from the analysis of the data from phase 1. However,

a detailed presentation of the analysis is given in appendix G.

The construction phase was characterised by an apparent disparity between
the intrinsic and the non - intrinsic schema in the children's minds. In
constructing the circle procedure representing the Euclidean definition (circle
procedure 4), for instance, the children's insight into the euclidean method
came from an experience during a previous project which had no relevance
to circles or intrinsic notions embedded within them (appendix G, section
8.2.1d). Furthermore, there were indications of this phenomenon in the
children's use of the procedures and not only during their construction. For
instance, after a lengthy construction process of a circle procedure employing
the euclidean notions of radius and centre, the inputs the children gave in
their first executions of the procedure indicate how they apparently ignored
the euclidean notions (appendix G., section 8.2.1b).

Not surprisingly, the notions the children used in constructing the task figures
seemed to be functional to the task figures rather than the notions embedded
in the circle procedures to be constructed. At specific points indicated in the
presentations of the findings (see appendix G., sections 8.2.1a, b, ¢ and d),
the researcher had consequently to intervene to focus the children's attention
on the notions related to the circle procedures. Furthermore, the children
seemed to have varying degrees of awareness of the notions they were
using. For instance, in constructing the first circle procedure, the important

factors became progressively more explicit through discussion (appendix G,
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section 8.2.1a).

The children's projects (see section 8.1.1, issue b) were characterised by an
infrequent use of the notions embedded in the construction of each circle
procedure. It could be the case, that the children's fascination with their
progress in programming, e.g. their superprocedure - building strategies
(appendix G, figs. 8.2.4, 8.2.7, 8.2.9, 8.2.14) and their progressing familiarity
with saving and loading files on disk and using the files in subsequent
sessions, influenced their focus on these issues rather than the geometrical
ones. However, it could also be the case that the children saw no functional

reason to use geometrical notions more often than they did.

In support of the latter argument is that in occasions where using geometrical
notions was fuctional for the project, as in the snowman project (appendix G,
fig. 8.2.13), the "clocks" project (appendix G, fig. 8.2.15) and the circle of
targets project (appendix G, fig. 8.2.9), the children did appear to use the
geometry. For instance, during their snowman project, the use of geometry
seemed a lot richer than in their circle rotations project with the CIR9
procedure (appendix G, fig. 8.2.6).

A final issue is the children's use of intrinsic and non - intrinsic notions which
were not specific to a circle procedure and in certain cases were of a different
nature to those embedded in the respective circle procedure. In using the
intrinsic CIR4 procedure (circle procedure 1), for example, the children's
project involved the use of a non - intrinsic method for constructing their
planned figure, i.e. they constructed the four sets of circles in the form of a
cross - or two perpendicular directions - rather than using a turle rotation
interface (appendix G, fig. 8.2.4a). Conversely, in their first project with the TC
procedure (circle procedure 4), they constructed a square formation of "target”
figures and used the intrinsic method for constructing the square (appendix G,
fig. 8.2.14).

Although it is not within the objectives of the present study to evaluate the
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learning sequence for constructing the four circle procedures, it seems
relevant to consider how the sequence might have influenced the children's
learning in relation to the research objectives. For instance, the researcher's
participation in the children's learning process was very important - the role of
the worksheets was only complementary to the researcher's interventions.
However, interventions are very difficult to make; the preciseness of the circle
procedures to be taught required at some points directive interventions not
closely tied to the context, as in the case of correcting the orientation of the
"circle - polygon" constructed by the CIR9 procedure (circle procedure 2, see
appendix G, section 8.2.1b). However, flexibility was also required so that if
the important embedded notions within the procedures were used, room
would be allowed for the children's personal ideas, as for instance in their
idiosyncratic construction of the DOT subprocedure (see sections 8.1.3a and
appendix G, 8.2.1d). During the children's projects on the other hand, the
general strategy of relative non - directedness had the drawback that children
could have been encouraged to use the circle procedures' embedded
notions more than they did.
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8.3 USING INTRINSIC AND EUCLIDEAN NOTIONS
T LVE TR T REDTA K

1 n n

As in the previous two chapters, the primary factor in structuring the
presentation of the results from this phase of the study, has been the research
issues emerging from the analysis of the data (see section 8.1.1, issues ¢ and
d), rather than the way in which the actual research sessions were organised.
The episodes used to convey the findings, therefore, are not presented in the
chronological order they occurred which is represented by the numerical
order given to the tasks in figure 8.3.1. Furthermore, the phase within the
solving of a task, during which a presented episode took place, is made
obvious during the respective presentation. Finally, a reference to the
following two sections might be useful at this point; a) the analysis of the tasks
used in this phase of the Circle microworld study, given in section 8.1.4b, and
b) an outline of the research procedure following the administering of each

task (section 8.1.6c).

Two main research findings are analysed and discussed, namely the
children's use of both intrinsic and euclidean notions within
mathematical situations and secondly their priorities in choosing

the geometrical notions they used.
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TASK 2
TASK 1

TASK 3 TASK 4

TASK 5 TASK 6

Continued in the following page
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TASK 7 TASK 8

TASK 9
F Th k
.2 Th fin wi hin m
sit ations

2a Formin theorem in action while no erceivin

m r
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an embedded

In constructing the figure in task 1 (fig. 8.3.1), the children seemed to use the
centre point, focusing on its particular role in this figure by using the CIR19
procedure from the outset, initially with fixed inputs and then incorporating a

variable input for their superprocedure (fig. 8.3.1b). This unquestioning



use of the centre, however, could have been a consequence of
the children's construction of the same figure, in effect, during
their own projects.

TO G5 TO V2 :S

CIR19 10 CR19 S/5*5
CIR19 20 CIR19 S/ 5 * 4
CIR19 30 CIR19 :S/5*3
CIR19 40 CIR19 :S/5*2
CIR19 50 CIR19 S/ 5 * 1
END END

Fi ure 8.3.1b The children's ro rams in task 1

Not surprisingly, the children's initial strategies for constructing the
figure in task 4 (fig. 8.3.1) did not seem to incorporate the use of
the geometrical idea embedded in the positioning of the circles'
centres. They both started from constructing the two bottom circles and
found difficulties in working out the interface with the third circle, i.e. how to
place it in the "correct" position with respect to the other two. Alexandros
adopted a strategy based on perceptual cues. He used CIR9 (fig.
8.2.2c) to construct the first two circles and the intrinsic idea of a 180 degree
rotation for the interface between them (fig. 8.3.2a). Apparently having
planned to use CIRS again for the third circle, he used his perception to take
the turtle to the starting point, by typing in FD 10 (fig. 8.3.2b).

TO 3CIR

CIR9 20

RT 180 +—— a

CIR9 20

RT 180

FD 10 @— b 3
LT 90

CIR9 20

END

Fi ure 832 Al xandro tra ina 4
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Valentini adopted an analytical strategy. After making the first two
circles with the CIR19 procedure and an interface between the circles
employing the use of the radii in order to take the turtle to the "correct"
position (fig. 8.3.3a), her task was to work out the interface between the
second and third triangle. Apparently perceiving the third circle as being in
the centre and above the other two, she took the turtle upwards twice the

length of the radius and towards the left one length of the radius (fig. 8.3.3b);

V: "It goes forward the radius of the circle, it's looking upwards, and then it
does another radius, the equal one, it turns towards the left and it goes to the

middle of the future circle..."

TO V2 TO V
PU RT 90
FD 100 PU
LT 90 FD 100
FD 50 LT 30
RT 90 END
END
TO V.KAIMAKI 3 t‘—‘l
CIR19 50 '
Vv <4+— 2
CIR19 50
V2 4——
CIR19 50
END
Fi res8. Val inf' inta k4

The children subsequently discussed and tried out other perceptual and
analytical strategies, deciding that they were not "the right ones"

perceptually, by looking closely at the screen.

inv Ivin h n

One of their later strategies, i.e. just before they saw the connection

between the positions of the three centres, was interesting vis - a - vis
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the intrinsic ideas they used. Their main idea was to make the top and
bottom right circles using the CIR4 command and a 180 degree rotation
interface and then trace backwards along the curve of the bottom right circle

for the interface between second and third circle (fig 8.3.4).

F 4Th hl n rin in k 4

Valentini's explanations to Alexandros (the strategy was her initiative)
and her two programming attempts on the computer (fig. 8.3.5a
and b) illustrate her strategy;

(these comments refer to her first programming attempt, fig. 8.3.5a)

V: "...then we'll use CIR4. We do the circle, we then do one sixth of the circle
(refers to the interface between second and third circle), we know how much it
will go forward (refers to the constant input to FD in the CIR4 procedure), we
do one circle..."

A: "Yes, the CIR4, do you know where it finishes?"

V: "Yes, at the place where it started... as it's turning towards there (i.e. to
make the first circle, fig. 8.3.4 - 1) it will make another circle turning towards
the left... (i.e. the second circle, fig. 8.3.4 - 2) and then it does one sixth of the
circle... (i.e. the interface between second and third circles, fig. 8.3.4 - 3)"

A: "How will we tell it to do one sixth?"

V: "Instead of saying 36 we'll say 36 divided by 6." (refers to the input to the
REPEAT command)
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RT 45 RT 45

CIR4 5 CIR4 5

REPEAT 36 [FD 5 LT 10] LT 180

REPEAT 36 /6 [BK 5 LT 10] CIR4 5

REPEAT 36 /6 [FD 5 LT 10] REPEAT 36 / 6 [FD 5 RT 10]
LT 180
CIR4 5

a
b
F Th hl n mmin m

in their intrinsic strate  in task 4

Valentini's first effort involved rewriting curvature commands with left turns for
curves extending to the turtle's left. Her perception of the graphical feedback
as "incorrect", however, was followed by a second attempt using the same
strategy, but only right - turn curves and the appropriate interfaces (fig.
8.3.5b).

It is suggested that Valentini's strategy for the interface between second and
third circles employed different geometrical ideas than in the previous
strategies. In her analytical attempt to find some geometrical
connection between the position of the second and third circles,
she did not use any notions referring to a part of the plane
outside the turtle's path. The shortcoming of her strategy with respect to
the outcome, was a result of the only instance where she used her
perception, i.e. in deciding that the arc formed by the points of connection
between the circles was one sixth of a circle (this may have been
geometrically correct, but Valentini did not show signs of using analytical
cues).

A similar strategy was employed by Alexandros in task 7 (fig. 8.3.1).
He wrote a procedure incorporating three semicircular curves by using the
REPEAT command with a suitable input and the appropriate turtle turns (fig.
8.3.6). He used perceptual cues to decide on the length of the
vertical line segment, i.e. his overall strategy did not seem to
employ analytical reference to points outside the turtle's path.
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TO 3CIR

FD 100

LT 90

REPEAT 180 [FD 1 LT 1]
REPEAT 180 [FD 1 RT 1]
REPEAT 180 [FD 1 LT 1]
END

Al n k7

Adopting a strategy of the turtle tracing along a curvature,
however, did not necessarily imply lack of analytical reference to
points outside of the turtle's path. Valentini's strategy in task 7
illustrates how, on the one hand, she used the notion of curvature in
modifying the CIR9 procedure to construct semicircles involving right and left
turtle turnings and on the other, how the inputs to her semicircle
subprocedures referred to the centres of the semicircles (each input
represented the length of the radius) and were such that the sum of the three
diameters was equal to the length of the vertical line segment joining the
edges of the figure (fig. 8.3.7).

TO CIR10 R

RT 5

REPEAT 18 [FD R * 2 * 3.14 / 36 RT 10]

LT 5

END TO 3C9
RT 90
CIRi1 15
CIR10 15
CIR11 15
LT 90
FD 90

TO CIR11 R END

RT 5

REPEAT 18 [FD :R * 2 * 3.14 / 36 LT 10]

LT 5

END

7V ini'
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A hin rin n n wihin

Returning to the children’'s strategies for constructing the figure in task 4 (fig.
8.3.1), the following episode illustrates how the children saw the
connection between the positions of the centre points of the three
circles. After the children seemed to abandon their intrinsic "curvature -
tracing” strategy, the researcher prompted them to think about the interface
between the first and second circle. Alexandros then seemed to spot the
uniformity of the lengths of the interfaces between the circles by turning the
piece of paper with the figure twice, so that a bottom circle would go to the top
and vice versa. Although the children seemed enthusiastic about their
"discovery" concerning the connections between the radii, they still did not
consider the positions of the centres; although they had decided on the length
of the second interface, they turned the turtle 45 degrees to the left (fig. 8.3.8),

apparently using their perceptual cues.

CIR19 40
RT 90
PU

FD 80
LT 90
PD
CIR19 40
LT 45

Fi 8.3. The hildr n's rc tuals 4

The researcher decided to prompt a focus of attention on the uniformity of the
figure they had noticed from Alexandros' turning of the piece of paper. Their
dialogue at this point illustrates their first use of the centres of the circles;

V: "You know what I'm thinking? Why should it be 457 (the turn) You know
why? Since, if we join the three dots... a triangle is been done (formed)... an

equilateral.”

314



A: "Equilateral."

V:"ER?"

A: "And the sum of the angles of a triangle... is 1807"

V: "Look. It goes forward. It goes left, you know how much? It goes left 360
divided by 3. So, how much is it? 3... 120. It goes left 120... it goes forward
and does the circle... (she observes that the turtle's current heading is zero)...
120... 30 because | was thinking that it's like that, so 90 plus 30... (she types
LT 30)."

This new strategy involves a rather complicated but coherent use
of both intrinsic and euclidean notions. The reference to the two
radii forming the sides of a triangle and the centres of the circles
forming its vertices implies the use of euclidean ideas. On the
other hand, deciding on the turtle's turning after constructing
each circle was based on a partitioning of a total turtle turn.
Furthermore, Valentini's argument for turning the turtle left from a zero
heading to face the top vertice of the triangle, was based on partitioning the
turtle's turn into a 90 plus 30 degree turn, a strategy which has a striking
similarity to an intrinsic strategy used by Nikos in chapter 7 (fig. 7.3.4,- 2).

.3.2 The children's differin er e tions of whi h notions were necess
n n

The children's use of intrinsic or euclidean ideas was, of course, not always
related to the ideas embedded in the tasks. Valentini's strategy for
constructing the figure in task 3 (fig. 8.3.1) is an example of this point.
Although in choosing the CIR9 procedure she used the figure's property of
the circles' connecting on a specific point, her choice also implied a
reference to the centre of the circles which was not "necessary" in
order to construct the figure (fig. 8.3.9a). Furthermore, she seemed
to "impose" an additional property on the figure with the use of
her perception, by deciding that the turtle's total turn after
constructing the circles was 90 degrees. In her strategy, she
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partitioned the 90 degree turn into four parts (and later corrected the bug,
dividing 90 by 3) before starting to write her program. Alexandros' strategy of
using CIR4 with a consistently increasing input for the circles and a 30 degree
right turn for the interfaces between them, did not imply the use of euclidean
ideas (fig. 8.3.9b). However, it is not clear whether Alexandros had

realised that euclidean ideas were not necessary for constructing

the figure.
TO SHELL TO 4CIR
RT 90 CIR9 20
CIR9 60 RT 30
LT 22.5 CIR9 40
CIR9 45 RT 30
LT 225 CIR9 60
CIR9 30 RT 30
LT 22.5 CIR9 80
CIR9 15 END
END
a b
Th hil
2 D rimin n m fri m iff

circle cons ruction

In the process of constructing the figure in task 5 (fig. 8.3.1), and during the
subsequent interview, the children used euclidean ideas concerning the

circle and distinguished them from intrinsic ideas.

The programs and the written explanation Valentini wrote on paper illustrate

her strategy for constructing the figure;

I will use the CIR9 and a little bit, in a way, (I will use) the TC, because it suits
me to go forward and then to make the circle (she means the small circles)
from the side. However, the way in which the circles are formed, it's like the
TC. (fig. 8.3.10)
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TO C
PU
FD 50

LT 90
PD TO CLOCK

CIR9 20 REPEAT 8 [C RT 45]

RT 90 END
PU

BK 50

PD

END

Fi ure 8.3.10 Valentini's srate intask 5

Up until that point, throughout the whole of the study, neither
child had made explicit the euclidean method of constructing a
circle which was embedded in the TC procedure. During the
children's discussion of their programs, however, Valentini
verbalised what seemed to be a context - specific version of the
euclidean definition of a circle, in the process of explaining to
Alexandros why she had chosen to use the CIR9 procedure for the small
circles instead of the CIR19. The reason she gave for using CIR9 was that the
small circle would be drawn directly from the turtle's position after moving it
away from the centre in PENUP mode. The following dialogue illustrates her

perception of the euclidean definition of the circle;

V: "...that where the turtle will stop, that's where it will turn and make the
circle.” (she means the small circle)

R: "Hm. And why does that help you?"

V: "Because | know the distance here will be exactly 50 (50 was the radius of
the large circle)"

R: "Ah. Why?"

V: "If | put here 50, there 60, there 70, it won't be a circle because a circle is
when we take it from the middle and we measure from all the sides
continually round and round, from the same place, if we measure..."

A: "From the centre."
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V: "Yes the centre, round and round and round the same length and we put a
little marker we'll get the circle.”

It is suggested that although Valentini used the euclidean
definition of the circle in explaining her method for constructing
the figure, she had not synthesised the notions of the centre and
the radius between the contexts in which the children had used
them so far and in this new conception of the circle. Notice, for
instance, how she seemed to refer to a specific point in the plane rather than
make an explicit reference to the centre of the circle before Alexandros drew
her attention to the significance of the point she was talking about.
Furthermore, although she explained quite clearly about equal distances, she
did not mention the word radius, not even after the researcher's direct
question on whether this distance had a name; she said "/ don't know" and

continued talking about the radius to complete her argument.

Valentini's case for using the CIR9 procedure and not the CIR19
involved her discriminating of the process by which the circle is
constructed in each case. In order to support her argument, she used the
similarity between the construction process involved in the CIR4 procedure
with that of the CIR9 procedure, in the context of making one of the small
circles:

V:"...the CIR4 and the CIR9 are the same, because..."

R: "The same?"

V: "I mean that they are related in this shape in particular. | mean that it goes
there, | turn left again, | give it a number, it does the circle again | turn it right
and take it back.”

R: "So what is it that makes them almost the same ?"

V: "Right. That... of course in one we know the precise... in the other one we
don't know it, but here in both cases we turn and we make the circle as usual,
while if | said that CIR4 and CIR19 were the same... they are not the same
because in CIR19 it starts from the middle like TC and in those two it starts
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from the edge.”

[n her argument, Valentini referred to the turtle's action in constructing the
circle. She consequently seemed to refer to the CIR4 and CIR9
procedures as a product of the turtle's action, implicitly de -
emphasising how this action is quantified. Her criterion for
distinguishing the CIR4 and CIR9 procedures from the CIR19 and the TC
involved the notion of where the turtle started (and ended) constructing the
circle, i.e. on the curve itself or on a point away from the curve.
Consequently, there seemed to be an implicit use of the notion of
the circle's centre and a de - emphasising of the radius, an
interesting contrast with other occasions where the converse
occurred (e.g. in the construction of target figures resembling that of task 1,

during the children's projects in the previous phase of the study).

D rim n w n inrin m

ns ruc n he circle

It seems useful to consider the geometrical ideas used by the children in the
two previous episodes in conjunction. In constructing one figure (i.e. in the
same context), they seemed to use both intrinsic and euclidean ideas in a
coherent way in order to solve the task; Both Alexandros and Valentini used a
euclidean method of equal distances from the centre in order to place the
small circles in a circular formation, and the latter explicitly referred to a

curvature - tracing turtle in the construction of the small circles.

A researcher's probing of the children's perception of the "status”
of the centre in connection to the circle at that point in time,
seems to indicate, at least, their acknowledgement of its
existence as an integral part of the circle.

R: "Which is a nicer part of the circle, the centre or the edge?”
A: "The centre.”
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: "The centre.”

- "Why ?"

' "Eh, because the centre is one, the edge is continually 360 times..."
: "And that's nicer?”

: "Because there are infinite... we can find edges.”

> <D SIS

: "While there's one centre for one circle.”

This incident, in connection with the two previous episodes concerning this
task, corroborates the argument that the children did not seem to find a
qualitative difference in the geometrical nature of intrinsic and
euclidean ideas in the way they were used in this context. A further
probe by the researcher, asking the children which of the three procedures,
CIR4, CIR9 or CIR19 was easier resulted in a rather categorical statement that
they were of the same difficulty. In the emerging discussion, Valentini
seemed to dissociate from a turtle - oriented method of
constructing a circle, accepting that it exists, but not that it is the
only valid method; in explaining why she thought CIR4 and CIR9 were
"equally easy", she said:

V: "Because both of them make a circle. A 36 - agon that is. Especially from
the turtle's point of view, the turtle would say that 4 is easier. Because 4 is
completely clear, you tell her 'go forward turn, go forward turn’ while in CIR9 it
does all that thing.”

R: "So, for the turtle CIR4 is easier. Does that mean that for you CIR9 is
easier?"

V:"It's the same.”

A: "It's the same."
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8.3.3 Priorities in the children's choices

W in rin n

The above analysis (section 8.3.2) has indicated that the children's criteria for
using intrinsic or euclidean notions were not primarily related to inherent
characteristics of the notions themselves, but rather on aspects of the broader
mathamatical situations generated during the sessions. This issue is further
investigated in this section; the focus of analysis is on the nature of the criteria
used by the children, i.e. on which aspects of the mathematical situations
were important in forming their choices between employing intrinsic and

euclidean notions. The titles in this section accordingly refer to these aspects.

8.3.3a The se of he intrinsic schema

In planning their strategy for constructing the figure in task 6 (fig. 8.3.1),
Valentini used the geometrical relation connecting the positions of the centres
straight away; she wrote a modular procedure for the figure with a variable
input for the radius of the circles and a fixed triangle side (fig. 8.3.11). The
words she wrote illustrate her use of the connection between the
three centres:

| used the CIR19, because at the place where one of the lines of the triangle
ends and the other one starts, is the point which is in the middle of the circle.

TO TR S

RT 30

REPEAT 3 [CIR19 :S FD 50 RT 120]
END

Fi ure8311V lenini'sstrae in ask6
Indicative of her perception of the equilateral property of the

figure is also the fact that she made the division 360 / 3 on the
piece of paper next to her procedure.
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Alexandros, however, did not seem to perceive a geometrical
connection between the centres, in spite of the fact that he used
the CIR19 procedure; his attempts to turn the turtle after each circle were
perceptual. Before trying out Valentini's program, the researcher asked
Alexandros to explain his strategy;

A: "My idea is that I'll use CIR19. I'll make each circle from those three circles,
where's the shape... (picks up paper with figure on it) I'll do one and then I'll

move to form the triangle, each side of the triangle.”

It is interesting that even though he seemed to perceive of the
figure as a triangle he did not think of the geometry involved in
turning the turtle to construct it; in continuing with his verbal plan, he
stated that he would turn the turtle 45 degrees each time and even after
Valentini’s protests that “it's wrong"” and the researcher's prompting for a more
careful consideration of the amount of turn, his answers were based on
perceptual cues - admitted in the end by Alexandros himself:

A:"It's 30 Mr. Chronis..."”
R: "Why should it be 30, because it looks like it, or for any other reason?"
A: (short pause) "It looks like it."

Although children's difficulties with synthesising ideas across contexts has
been well researched (for example, see section 2.1.4), it is interesting that the
children had essentially solved the same problem in task 4, in a more
"difficult" form, i.e. without linear cues between the centres and with the
additional "misleading” property of connecting circles. However, Alexandros'
lack of synthesis between the two tasks could be attributed to Valentini's
initiative in solving the former task, i.e. to the questionable (with the benefit of
hindsight) degree to which he had internalised the involved geometry.

In her subsequent explanation of her strategy to her peer, Valentini said that
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there were three turns which were "not more than 360" and therefore dividing
360 by 3 gave 120 degrees for each turn. The researcher intervened in an
attempt to further investigate the nature of the microview Valentini employed

in using the notion of 360 degrees;

R: "Why are they 360 degrees?"

V: (short pause) "...because the three angles, em... (short pause) because if
we take the triangle... (short pause) you know, | don't know how to explain it..."
R: "Never mind, we're in no hurry."”

V: (looks at the paper with the figure) "I think it's like the circle is where the
circle all round is 360 degrees, all its angles are 360 degrees. And like that
(pause)..."

R: "What do you mean all its angles are 360 degrees.."

V:"Like in TC... she turns 360 times."

R: "Who does?"

V: "The turtle. Em... | mean if we go one by one degree and we go forward
and make a dot, eh, and we do that 360 times we will get a circle. Did you get
it?"

R: "So what does the turtle do in total?"

V: "She does one turn around herself."”

Valentini's failure to pursue her initial argument may have been a
consequence of her attempt to employ knowledge based on
triangle properties, an area with which the children had not had much
experience, at least in Turtle geometry. In her second attempt, however,
she clearly seemed to use her turtle schema - notice how she
switched from referring to "the circle" to referring to turtle actions “...she turns
360 times...". Her explanation consists of an interesting coherent
combination of intrinsic and euclidean notions. From the beginning,
she seemed to be referring to a total turtle turn being 360 degrees. However,
in her clarification involving turtle action, she employed the idea of a
euclidean construction of the circle using the paradigm of the TC
procedure to convey an example of the turtle's total turn.
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It is suggested that what made sense to Valentini at that point,
was primarily to use the turtle metaphor, i.e. to think of turtle
actions rather than to employ intrinsic geometrical ideas because
euclidean notions did not make sense. The geometrical notions
she employed were a combination of intrinsic and euclidean
ideas, which in this context she seemed to find "compatible" with
her turtle schema.

hinkin

The researcher was interested at that point to probe further the nature of the
children's criteria for using intrinsic or euclidean ideas. If the indications up till
then were that within the Turtle geometric context of the Circle microworld, the
children were quite prepared to use both intrinsic and euclidean notions in
planning and explaining turtle actions, what was their view on employing
knowledge of euclidean properties acquired in different contexts (e.g. in the
classroom). For instance, the researcher had established that earlier in the
school term, the children had been told about the sum of the angles of a
triangle during their geometry lesson in their classroom. What criteria
would they employ for choosing between the total turtle trip
theorem and the euclidean internal angles theorem?

The children's experience with the former theorem up till that point, however,
had only involved context - specific applications of a geometrical rule. It could
not be therefore assumed that they would be aware of the existence of a
generalised total turtle turn theorem. Asking the children to make
critical remarks on the two theorems could consequently have
very little meaning at that point in time.

The researcher therefore intervened to encourage the children to reflect on
the generalisability of the total turn rule which they had applied in the context

of the equilateral triangle during the previous incident; at the end of the
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discussion, the children were required to express the general rule. After an
attempt from both of them, the researcher asked them to explain how this rule
applied to the triangle. Valentini's attempt is presented as an example, since
their verbalisations were of equivalent coherence.

V: "If the turtle starts looking e.g. upwards and she makes a shape, eh...
turning both right and left and she stops looking again upwards. Then...
definitely, the turns... the degrees... the sum of the degrees is zero." (the
children had already engaged in discriminating between zero and 360
degree rotations during the discussion)

R: "O.K., and this conclusion, why is it of use to us in this shape?"

A: " That the sum of the angles (apparently means quantities of turns and not
internal angles) of this triangle will have to be either 360 or zero."

The logical sequence imposed by the researcher in this case was
of a deductive nature, i.e. from the general theorem to the paricular
application. As discussed above, the aim was for the next question to have
meaning for the chiidren; checking that they remembered about the internal
angles theorem, the researcher then asked the children which of the two
theorems they thought was more powerful. The aim of the question was to
investigate the meaning they would give to the word powerful (in an attempt
to probe their criteria), rather than try and impose the researcher's view of the
word's significance.

R: "Which of these two rules seems to you more strong. More powerful. And
why."

V: "What do you mean more powerful?"

R: "I don't know. You'll tell me."

A: "For me, it's the 360. Because for me it makes more sense that starting at
the same place where it finished is 360... | think that geometry forces you to
believe that it's 180. Nobody says that the triangle necessarily has to be 180
degrees, otherwise you're dead. The best thing for me is that since she

started and she finished there, it's like she hasn't done... zero. or she's done a
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turn around herself.”

R: "So... | understand what you're trying to say, you're trying to say that the
360 rule... what does it have?"

A: "It's more convincing."

R: "Hm. And you Valentini?"

V: "I'm with the 360 too but for another reason.”

R:"Go on."

V: "Because | think that in a square, the sum of the angles of the square isn't
180, i.e. only in the triangle it's 180...while in any (stressed) shape...eh... if we
make that turning, i.e. that thing with the 360... it's 360, over and out.”

A: "It's geometry that forces you to say 'the triangle’'s it will be 180, otherwise
it's not a triangle’.”

Valentini's answer seems to indicate an appreciation of the
notion of generality; she preferred the total turtle turn rule because it was
more general, which for her seemed to mean more widely applicable, than
the internal angles rule. It is suggested that the fact that she seemed
to consider generalisability as a powerful property, could be
attributed to experience she had had in turtle geometry in using
the total turn rule in different occasions. Her conception,
therefore, of the generalised total turtle turn theorem seemed to
have been a consequence of inductive thinking. In support of this
argument, her answer incorporated examples where the "superiority” of a
more general rule was evident (e.g. the construction of a square being

possible only with the use of the more general theorem).

Alexandros' answer seems to support this argument more clearly. The
employment of the turtle schema seemed to make intuitive sense to him;
furthermore, his answer incorporated a general statement rather than some
specific application of the rule. It is suggested that this general
statement emerged from inductive thinking, i.e. in connection to
previous specific applications of the rule. The internal angles

theorem did not make so much sense because Alexandros did not
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have specific examples of applying the theorem available to him.

8.3.3c Ui knowled e based on ersonal ex erience

An incident providing similar indications of the children's priority of
preference in doing geometry based on personal experience
rather than using notions from the intrinsic or the euclidean
geometrical system occurred in an interview after the construction of the
figure in task 8 (fig. 8.3.1).

Valentini's strategy was similar to the one she adopted in task 6, i.e. a fixed
modular procedure for a square incorporating CIR19 as a subprocedure with
the "correct” input (half the size of the input to the FD command). Alexandros
did use the geometrical relation connecting the four centres of the circles
even though it is not clear whether he perceived of the relation as connected
to a square figure. Furthermore, it could be the case that either child may
have drawn upon their experience with a similar figure during their project
involving the use of the TC procedure (fig. 8.2.14).

During the subsequent interview, the researcher attempted to investigate the
issue of the nature of the criteria the children used to choose between using
intrinsic and euclidean notions once more, by probing which method for
determining the turtle's turn in constructing the square made more sense to
them and why. It seems useful to present the emerging discussion in full in
view of the subsequent analysis.

R: "How can we know that she turns 907"

V: "How can we know? 4 times 90 makes us 360, equals zero. What we had
said last time..."

R: "What was that?"

V: "Which says that when she makes a turn around herself, it's like she's done
either 360 or zero.”

R: "Hm. Isn't there another way? (to figure out that she turns 90 each time)?"
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V:"Hm... (long pause).”

R: "What's 907"

V: "A right angle. Yes, 90 degrees is a right angle. And since a square is all
right angles..."”

R: "Ok, this is another way..."

V:"Yes."

R: "Why did the first way come to your mind?"

V: "Because we're used to it more, because from all tis geometry and all these
things... they say 90, because it's 360 divided by 4 and it should be 360
and.."

R: "l don't understand.”

A: "Like the other time."”

V: "I mean that they tell us, that definitely it's 360 and that's it, you can't say
anything, it's definitely 360 | know and you can't ask, you can't do a thing."”

A: "It's like | told you the other time. That geometry forces us, we can't ask
her... this, since it's been discovered that this is that much, that much we'll
write it. We can't ask why is it like that and why is it like this because they'll tell
us because that's what it want's to be.”

R: "Ok, for you what's the best way."

A: "For me it's the first one.”

R: "Why?"

V: "Because it's more natural... yes it's more natural, now [ thought of that...
anybody can understand it, that..."

A: "Even if he doesn't know turtle at all.”

R: "Tell me something. What does someone have to know to understand this
thing ?"

V: “Nothing."

In this discussion, the children were effectively asked two questions: why did
the total turn method come to their minds instead of the internal
angles and which method did they prefer and why?

Before the first question, the researcher had probed the children's perception
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of the analytical cues they had used to determine the turtle turnings after each
circle. Valentini's answer suggests a reference to a generalised theorem in
order to justify a specific application of the theorem. Notice how she mentions
the specific application first (..."4 times 90 makes us 360, equals zero.") and
then refers to the theorem, synthesising from another situation - that of solving
task 6, which was actually two sessions before - ("...what we said last time...").
The researcher's probing of whether she was actually referring to the
generalised theorem was followed by her answer which confirmed the point.
Her answer, which seemed to be explicitly referring to a turtle action and
involved the use of intrinsic notions only, was mathematically rigorous
("...when she makes a turn around herself, it's like she's done either 360 or

zero.").

Not surprisingly, the researcher had to subsequently impose a focus on the
internal angles of the square before Valentini perceived the euclidean
notions of angle embedded in the figure. The aim of the first question was to
probe the children’s perception of why the intrinsic method had come to their
mind. A pant of the answer was, of course, an implicit acknowledgement that
they had had more experience with the intrinsic method. However, the
interest lies in the other argument in which both children contributed and
reflects on the kind of geometry they were doing in their normal mathematics
lessons. Their criterion for rejecting euclidean notions was the lack
of personal experience and meaning in the way they had been
taught; both children's utterances seem to refer to the Euclidean
theorem as if it belongs to others, e.qg. ("...they tell us that definitely it's
360 and that's it, you can't say anything..."), (... since it's been discovered that
this is that much, that much we'll write it. We can't ask why is it like that and

why is it like this because they'll tell us because that's what it wants to be....").

Finally, the children's response to the second question seems to reveal
indications of the intuitive nature of their intrinsic schema. Their justification of
the statement that the intrinsic method is "more natural" (they used the word

without any hint or intervention by the researcher during that situation or in
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any other part of the study) involved the criterion that “...anybody can
understand it... even if he doesn't know turtle at all...". It could be that what the
children meant with this statement is that what they perceived as formal
geometrical knowledge was not a prerequisite for understanding
an idea based on turtle action - i.e. the idea is based on
experiences which already existed not as an immediate result of
instruction. In support of this last point is Valentini's view that in order to

understand the total turn theorem one does not need to "know" anything.

Th mmin n

Up till this point, the presented findings suggest that the children's criteria for
choosing intrinsic or euclidean notions in solving the circle tasks were based
on issues which did not seem directly relevant to the geometrical nature of the
notions themselves, but rather, on issues related to the broader mathematical
situations the children were in. For example, in task 6, the children's
preference of using an intrinsic theorem was based on the situation within
which this theorem was derived which involved inductive thinking.
Furthermore, their case for rejecting the Euclidean theorem was related to the
nature of Euclidean thinking rather than the use of the euclidean notions
themselves. An example of another aspect of a mathematical situation which
played a role in the children's choice of intrinsic or euclidean notions - the
aspect of programming - is presented through the episcde of the
children’s solving of task 9.

The children's strategies for constructing the figure in task 9 (fig. 8.3.1)
illustrate a diversity vis - a - vis the intrinsic or euclidean notions they used.
Valentini initially thought about adopting a strategy of the turtle tracing the
curvature and interrupting after each total turn of 45 degrees to make a line
segment perpendicular to the turtle's current heading (as she explained
during the interview). In her written plan, however, while preserving the same
modular structure of iterating an arc followed by a ray, she used the euclidean

method of equal distances from the centre for both arc and ray (fig. 8.3.12a).
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In her apparent lack of clarity of how her program would "work",
Valentini had another idea which she tried out straight away on the computer,
abandoning her written plan; her idea involved changing the modular
structure of her program altogether, i.e. she decided to use the method
of constructing a circle with TC in order to make the 8 rays and then use the

CIR19 procedure in order to make the circle (fig. 8.3.13a).

TO M S TO M2 S
PU PU
FD S FD :S
PD PD
FD 1 FD 20
PU PU
BK S + 1 BK S + 20
PD PD
END END
TO SUN :S
REPEAT 8 [REPEAT 44 [M :S RT t M2 :S RT 1]]
END
a
TO MOVET1
PU
FD 40
PD TO TIC
ED 20 REPEAT 360 [REPEAT 8 [MOVE1 RT 45]]
PU END
BK 20
PD
END
b

Fi ure 8.3.12 The children's strate iesintask 9

Like Valentini, Alexandros attempted to combine circle and rays into one
module in his written plan. The procedure he wrote on paper, however,
illustrates his difficulty in thinking about the construction process and in
perceiving of the precise modules without feedback from the computer;

although the main ideas seem to be present, such as the global plan beeing
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the construction of a circle (i.e. the input of 360, fig. 8.3.12b) and the module
consisting of iterations of a subprocedure for the ray followed by the "correct"
turn, he seemed to employ intrinsic notions for the former (the circle) and
euclidean for the latter which clashed vis - a - vis the construction method.
Inspite of the geometrical notions involved in Alexandros' confusion, it is
suggested that the main cause of the problem was his well
established difficulty in constructing modular programs in the
abstract, i.e. without trying them out on the computer.

TO M2 S

PU

FD :S TO SUN S

PD REPEAT 8 [M2 S RT 45]
FD 20 CIR19 :S

PU END

BK S + 20

PD

END

\% ini' mmin k

In fact, both the children's written plans imply some difficulty with
the modular structure of incorporating the curvature and the rays
in the same module. In the interview that followed, Alexandros seemed to
focus on the problem in a way which supports the above suggestion;

comparing one modular structure with the other, he said:

A: "..by making these lines, repeating them and afterwards the circle too,
that's easier than making both lines and circle together... | mean that on the
big shape you have to have both the circle and the lines... to get them in a
thingie, where they are both together. So, in this way Valentini said now, it
separates them a bit."

Furthermore, the researcher's prompt into the geometrical notions
involved in the "curvature - ray" iteration structure was followed by a coherent

answer by both children, each using different geometrical notions:
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V: "We tell her 36 divided by 8, we tell her the 36 divided by 8... therefore the
45... every 45 we tell her to go 90 and make a line too, tak tak. " (shows with

finger)

A: "She makes this shape with CIR4. To... she makes the circle and each...
she'll divide the 8 with the 360 and each... yes it's 45 and each time she will

turn 45, she will turn 90 and make the line..."

Valentini's answer seems to be referring to one of the curvature tracing
procedures (either CIR4 or CIR9) interrupted by a 90 degree turn after every
45 degree arc in order to construct the ray ("..every 45 we tell her to go 90
and make a line too..."). Alexandros’ answer explicitly refers to the intrinsic
procedure (CIR4) and to the turtle action of turning - his explanation in this
case is more accurate than Valentini's ("...each time she will turn 45 she will

turn 90 and make the line...").

It could therefore be the case that the children's difficulty with
this structure was the nature of the structure itself rather than the
involved intrinsic or euclidean notions. In separating rays from
circle construction, the children could think of each module of
their program as an object which they could understand - they
had had experience with constructing both shapes before (the ray -
type circle had been a part of their own projects with the TC procedure).

Valentini's remark seems to support this argument:

V: "I think that first of all it's much simpler. You make two separate things. You
use both CIR19 and TC. With the TC you make only one thing to make these

rays and then with a very simple... way it makes the circle...".
This episode has therefore been an example of the difficulties
related to an aspect of the mathematical situation the children

were in, i.e. the modularity of their programming, which
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influenced the geometrical notions they used to construct the
figure. After discussing the structure of the curvature - tracing strategy, the
children wrote a procedure for the figure based on CIR4 (fig. 8.3.14). In their
subsequent discussion comparing circle procedures in the context of this
particular task, they pointed out the similarity in the construction methoed

between CIR4 and CIR9, de - emphasising the nature of the input:

A: "Of course it's only the variable which changes. In CIR4 it's the size... the

distance from a step, that's the variable, and in the other one we take its

radius.”
TO BLA
LT 90
FD 20 TO 4SUN
BK 20 REPEAT 8 [REPEAT 45 [FD 1 RT 1] BLA]
RT 90 END
END
F Th hil  n' inrin k
Th

The following final episode is used to illustrate the existence of another
aspect of the mathematical situations which the children generated, which
also seemed to influence the geometrical notions they used, namely their
progressing appreciation of using analytical cues for their
constructions, a phenomenon which was also observed during the
previous studies, as for example in chapter 7 during Philip's and Nikos' own
projects within the P.D.D. microworld. The episode took place during the
interview following the construction of the figure in task 2 (fig. 8.3.1), where
both children had used analytical cues in constructing the line segment
between the two circles. In discussing the possibility of using CIR4 for the
figure, the researcher probed the strength in the children's justification for

using analytical cues;
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R: "What about CIR47?

V: "CIR4... we wouldn't know where the middle is with CIR4 so that we can
start to make... (Alexandros makes agreeing sound)”

R: "O.K., so | take the turtle more or less in the middle.”

V: "Eh, we want to be exactly in the middle."”

A: "Exactly in the middle... because it doesn't look pretty too..."

V: "That is, it could be pretty if we go more or less in the middle here, but we
wouldn't go to the middle there either (means centre of second circle). And so

it will be a mess."”

In agreement with the findings from the other two studies, it would be
reasonable to suggest that although the use of perceptual cues seemed
entirely legitimate to the children, through their experience with the
microworld environments in which they were working, they progressively
incorporated the use of analytical cues in their strategies - at least to an
equivalent "status" with the use of perceptual cues with respect to their
priorities in deciding which of the two to employ. Although the general
aspects of this issue are discussed in chapter 9, it seems relevant here to
suggest that the children's criteria for choosing intrinsic or euclidean notions
in their strategies for constructing the task figures were not influenced in
favour of one kind of geometrical notions or the other. However, the more
frequent use of analytical cues seemed to encourage more
frequent use of the geometrical notions embedded in the circle
procedures and in the task figures, than that which was observed
during the children's own projects in the first phase of the study.
In the previous extract, for instance, the children perceived the line segment
to connect the centres of the two circles by looking at the figure drawn on
paper. Furthermore, their criteria for using the geometrical notions involved
seemed to be of a functional, personalised character ("...we want to be exactly
in the middle... because (otherwise)it doesn't look pretty... and so it will be a
mess...").
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8.4 DISCUSSION AND CONCLUSIONS

8.4.1 Discussion

The first phase of the study partially functioned as a learning sequence for the
children to construct and use specific circle procedures. However,
investigating the situations within which the children started to develop an
integrated use of intrinsic and euclidean notions resulted in the illumination of

issues related to the research (issues a and b, section 8.1.1).

For instance, the indications of the disparity between the intrinsic and the non
- intrinsic schema in the children's minds which characterised the findings in
the previous two chapters, were also present in the case of the present study,
both during the phases of constructing the circle procedures and during the
children's own projects (see section 8.3.2). During the construction phases
the children seemed to focus on notions functional to the specifics of each
task, which were not always the intended geometrical notions related to the
respective circle procedure. Moreover, although during their own projects the
children did use the notions embedded in the respective circle procedures,
they did so in varying degrees of density over time, in relation to the
functionality of the notions for the specific project the children were engaged
in. Furthermore, there were indications of their use of intrinsic and non -
intrinsic notions which were not specifically related to the notions embedded

within the circle procedures.

In the presentation of the findings in phase 2 of the study, episodes
concerning the mathematical situations within which the children used
intrinsic and/or euclidean notions to solve the structured tasks were analysed
with a particular focus on the actual geometrical notions used or ignored by
the children. Indications of the children's varying degrees of use of the
geometrical ideas embedded in the tasks were given. On the one hand, for
instance, both children found difficulty in perceiving the relationship between

the positions of the centre points in task 4 and Alexandros ignored the
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diametrical properties of the line segment in task 7. On the other hand, both
children used the notions embedded in the figure in task 5 in a relatively
rigorous way. Instances were also elaborated where the children imposed
"unnecessary" geometrical properties, or where it was not clear whether they
were aware of which notions were necessary for constructing the figure and
which were not, as in the episodes during the constructon of the figure in task
3.

Furthermore, instances of the chiidren's coherent use of both intrinsic and
euclidean notions in the construction of a figure were elaborated. For
instance, the children's final construction of the figure in task 4 involved the
employment of an intrinsic perception of the "global" structure of the task, i.e.
an intrinsic method for constructing the embedded equilateral triangle, and
the use of the euclidean notions of the radius and the centre of a circle in
order to construct the three circies of the figure. A contrasting strategy was
adopted in task 5, where the children perceived the global structure of the
figure as a circle defined as points equidistant to the centre, and used
arguments employing intrinsic notions for the construction of the small circles
of the figure.

The first section in the presentation of the findings of phase 2 of the study
yielded indications that the children's criteria for using intrinsic or euclidean
notions were not primarily related to inherent characteristics of the notions
themselves, but rather on aspects of the broader math¢matical situations
generated during the sessions. This issue was further investigated and
presented in more detail in section 8.3.3, where the focus of analysis was on
the nature of the criteria used by the children, i.e. on which aspects of the
mathematical situations were important in forming their choices between
employing intrinsic and euclidean notions. The relationship between these
aspects and the children's choices is further discussed at this point.

Firstly, the children seemed to see sense in using their intrinsic schema to
represent both intrinsic and euclidean notions. Whether a situation invited the
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use of the intrinsic schema or not seemed to be an important criterion for
using a geometrical notion in the first place. However, there were strong
indications that they did not seem to favor one kind of notion or the other as a
consequence of having used their intrinsic schema to represent it. An
example of the children employing their intrinsic schema in order to use
geometrical notions of a contrasting nature was their turtle - oriented
verbalisations of their plan during the figure in task 6, which incorporated both
intrinsic notions (e.g. using the total turtle turn rule to determine the amount of
turn at the vertices of the triangle) and euclidean notions (e.g. perceiving of
the centres of the circles as the vertices of the triangle and consequently
using the appropriate circle procedure).

A second aspect concerning the employment of the intrinsic schema was
iluminated by the children's verbal opinion about its nature, expressed in the
context of the interview after having constructed the figure in task 8. Although
researchers have made insightful contentions concerning the intuitive nature
of the intrinsic schema (Papert, 1980, Lawler, 1985), there has been very little
hard evidence of children's perceptions on this issue. It could be suggested
that Valentini's and Alexandros' opinion that “...it's more natural... anybody
can understand it... even if he doesn't know turtle at all... (he would need to
know) ...nothing", indicates that they considered thinking with the turtle
schema not to require knowledge coming from the outside, i.e. that the
prerequisites for using the schema were already there, as part of experience
the children would acquire irrespective, for instance, of their schooling. It is
recognised that this would be a very strong claim in relation to the presented
evidence in isolation. However, it is suggested that the context of the specific
mathematical situation within which this dialogue took place and the more
general context of the children's considerable experience with the turtle
strengthen the significance of the children's comments and consequently
support the argument, rather than contradict it.

Consequently, two factors concerning the role of the intrinsic schema in the

children’s criteria for choosing between the use of intrinsic and euclidean
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notions emerged from the analysis of the data; firstly, they saw sense in
employing the schema and did not seem to favour one kind of geometrical
notion or the other as a consequence of having employed it; secondly, their
criteria for using the schema tended to relate to its intuitive nature rather than

to the use of geometrical notions.

it seems worthwhile at this point, to draw the reader's attention to the
distinction between employing the intrinsic schema and using geometrical
ideas. For instance, it does not necessarily follow from the above argument
that using the intrinsic schema implied using geometrical notions; from the
beginning of the study, there is strong evidence that the children considered
the use of perceptual cues as a valid method to decide on inputs to turtie
action commands. However, it could be argued that their increasing
appreciation of using analytical cues through their experience with the Circle
microworld's tools seemed to strengthen the relationship between using the
intrinsic schema and using geometrical ideas. In support of this argument is
the episode which took place after the construction of the figure in task 2,
where the children gave personalised reasons for using analytical cues, i.e.
that the shape would be "pretty”, whereas in the converse case it would be "a
mess". As discussed in the "findings" section, however, this aspect of the
progressive use of analytical cues did not seem to relate more to one kind of

geometrical notions or the other.

Another aspect of the mathematical situations influencing the chiidren's
choices was the programming and modularity involved in the construction of
the tasks' figures. Although the structuring of the programs for a figure
seemed, in general, to influence the nature of the geometrical notions used,
the children's choice of strategy seemed to relate more closely to the involved
programming rather than to whether the notions to be used were intrinsic or
eulcidean. The episode during the solution of task 9 illustrates the children's
change of strategy from a procedure incorporating an integrated module of
the two perceived "elements" of the figure (the rays and the circle), to a

procedure consisting of two separate moduies for each element. The children
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seemed to have decided to change their program on the basis of the clarity of
the involved modularity, since they coherently used both intrinisc and
euclidean notions both before and after changing their strategy.

The children's criteria for criticising generalised rules involving intrinsic and
euclidean notions seemed to be based on how this generalisation had been
derived, rather than on inherent characteristics of the notions themselves. The
interviews after the construction of the figures in tasks 6 and 8 illustrate how
the children's criteria for perceiving the respective intrinsic theorems as more
powerful than the eulcidean were mainly based on the inductive method with
which the former were derived. The arguments against the latter did not seem
to be related to difficulties in understanding the involved geometrical notions,
nor to possible differences in the amount of experience the children had had
with one kind of notions or the other. Rather, the children referred to the way
in which the theorems had been derived, i.e. by generalising context - specific
applications of a rule, or by being presented with the generalised theorem
from the outset.

Finally, a further aspect related to the children's arguments for or against the
intrinsic and Eulcidean theorems, was the extent to which they perceived that
the notions involved in the theorems had been "personalised". Alexandros
expressed the argument better in his statement that "...geometry (meaning
formal geometry) forces us, we can't ask her... since it's been discovered that
this is that much, that much we'll write it...). It is suggested that through this
argument, the children were not referring to the Euclidean notions as such,
but rather to the way they had been presented to them through the school
system. In support of this argument is their relatively rich and coherent use of
euclidean notions in the turtle geometric context of the study and their
comments in other occasions (e.g. during the interview after constructing the
figure in task 5), stating that euclidean and intrinsic notions are equally easy
to understand.
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8 4 2 Concludin remarks

The investigation in the present study concentrated on the nature of the
criteria the children developed for choosing between the use of intrinsic and
euclidean notions within a Circle microworld. The children had already had
experience in using such notions to construct circle procedures and employ

them in personal projects.

The children's use of both intrinsic and euclidean notions was identified and
elaborated within mathematical situations generated during the solving of the
tasks in phase 2 of the study. Investigation of the children's criteria for
employing a geometrical notion provided evidence that the children did not
seem to perceive qualitative differences between the nature of intrinsic and
euclidean notions. However, their decisions on which notion to use were
influenced by broader aspects of the mathematical situations which were
identified and discussed.

Although the present study provides further indications of the intuitive nature
of the intrinsic schema, it also provides evidence that within the Circle
microworld, employment of the schema did not seem to be tightly connected
to the use of geometrical notions belonging to intrinsic geometry, or to a
particular geometrical system. The study therefore provides a support to the
argument that there is rich educational potential in creating environments
which on the one hand invite children to use their intrinsic schema and on the
other consist of microworlds embedding a range of geometrical ideas

substantially wider than the one provided by intrinsic geometry.
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CHAPTER 9

OVERALL DISCUSSION AND CONCLUSIONS

9.1 SUMMARY

The aim of the present study was to investigate the potential for children to use
the turtle metaphor in developing understandings of intrinsic, euclidean and

cartesian notions. Four aspects of the problem were investigated:

a) the nature of the schema children form when they use the turtle metaphor in

order to drive it on the screen:

b) the possibility for them to use the schema in order to gain insights into

certain basic principles of cartesian geometry;

c) how they might use the schema to form understandings of euclidean

geometry developed inductively from specific experiences;

d) the criteria they develop in order to choose between using intrinsic and
euclidean notions;

Three case - studies were carried out to investigate the above issues, each
involving the use of a turtte microworld by (a) pair(s) of children from the total of
ten who participated in the main research. The findings from each case - study
are summarised below. A synthesis of the findings is undertaken and
discussed in section 9.2. The subsequent sections will consider the limitations

of the research and propose some implications for further research.
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.1.1 The findin s from the T.C.P. microworld stud

Issues a) and b) (section 9.1) were investigated by means of the T.C.P.
microworld study (chapter 6) in which three pairs of children took part. The
specific objectives for each of the three categories of activities in the study

(each pair of children took part in all three categories - see section 6.1) were:

1) aim of category 1: to illuminate the process by which the children formed
understandings of a systematic description of the plane (the activities here

were different for each pair of children);

2) aim of category 2: to illuminate the nature of the children's understandings of
the absolute coordinate and heading systems, while using a coordinate
method to control the turtle;

3) aim of category 3: to investigate if and how they used their intrinisic schema

in order to relate intrinsic and coordinate notions while choosing a method of

changing the turtle's state in the coordinate plane.

The analysis of the data from the category 1 activities indicates three types of
notions which the children did not seem to relate to prior experience;

i) the existence, usefulness and nature of an organised system for naming
locations,

ii) the existence of an analytical method for locating points and;
iii) the rules of the coordinate value system, i.e. the order of the values, the

meaning of numbers as names of places and the meaning of signs as regions
of the plane.
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The analysis of the category 1 activities indicates that the children began to

make sense of these notions in the context of changing the turtle's state.

1.1 Fin m

As a result of the analysis of the findings of the category 2 activities, the notions
the children used in the process of discriminating between intrinsic and
cartesian methods of controlling the turtle were identified. Action - quantity and
sequentiality were the two important facets of the children's "intrinsic schema”,
i.e. the set of theorems-in-action the children seemed to have formed in using
the intrinsic turtle commands. This finding was specifically related to issue a),

section 9.1.

The notions the children used in controlling the turtle via the coordinate
commands available in the category 2 activities were similarly analysed. An
important aspect of the children's "coordinate schema" was that of changing
the turtle's state by means of describing the position or the heading in which
the turtle would end up after the change, i.e. the end state. Heading changes
involved the description of a location or a direction. Changes of the turtle's
position involved the description of a location. Signs and numbers were usec
for location descriptions and were given special meanings related to the

coordinate system.

The discussion of the findings from category 2 in section 6.6.3, concentrated on
evidence of a disparity of notions belonging to one schema from notions
belonging to the other. That is, the children - at least initially - seemed to
employ ideas derived from distinctly different sets of previous experiences in
order to control the turtle with the use of the intrinsic or the coordinate

commands respectively.
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91 1c Findin s from cate or

During the final T.C.P. microworld activites (category 3), there were indications
of a balanced use of notions between those belonging to the intrinsic and
those belonging to the coordinate schema, i.e. no pair of children seemed to
have a predominent preference between using one set of notions or another.
However, there was very little trace of children making links between these two
kinds of notions. Where the forming of such links was identified, it was of a
context - specific nature, as for example, in the case of Anna and Loukia
discriminating between a dynamic and a static perception of angle (section
6.7.2e). The findings suggest that the main factor influencing the forming of
such links may have been the amount of opportunity each pair of children had
had to be in control of the turtle in the outset of their activities; the identification
of instances of an integrated use of intrinsic and coordinate notions by Anna
and Loukia, may have been related to the fact that their initial activities

(category 1) were the most turtle - centred of the three pairs of children.

The analysis of the data from the whole of the T.C.P. microworld study provides
a description of the process by which the children began to form a dynamic
coordinate schema (i.e. one with which they made changes to the
environment) in order to make controlled changes of the turtle's state in the
coordinate plane. The analysis suggests that the conflict created between the
intrinsic schema and the use of coordinate notions was catalytic to the
children's forming of their coordinate schema. Intrinsic and coordinate
schemas remained separate in the children's minds for the most pan,
throughout their activities. There were some indications, however, of the
forming of notional links between the two schemas; use of the intrinsic schema

seemed to encourage such links.
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912 The findin s from P.D.D. microworld stud

The P.D.D. microworld study (chapter 7) focused on the investigation of issue
c) (section 9.1) in the context of a pair of children's activities within the P.D.D
microworld which enabled angle and distance measurements between turtle
states (section 7.1.4). The specific objectives for each of the three categories of
activities in the study (section 7.1.2) were to investigate:

1) aim of category 1: how the children integrated concepts involved in using the
new tools of the P.D.D. microworld into their existing knowledge, and in
particular, the extent and the way in which they employed their intrinsic schema
in doing so;

2) aim of category 2: the process by which the chiidren developed
understandings of euclidean notions and the way in which they incorporated

the use of the P.D.D. turtle tools into their intrinsic schema during this process;

3) aim of category 3: how and if their experience in making sense of the tools
and using them in a euclidean setting influenced their thinking in Logo projects
of their own.

The analysis of the data indicates that the children's initial use of the
microworld's tools was characterised by activities involving the discrimination
between the two forms of turtle action (i.e. to move and to turn) and the metric
systems for their quantification (i.e. turtle steps and degrees). Furthermore, the
children began to discriminate between measurement and action and to
develop an awareness of the quantity which was being measured on the
plane. Their intrinsic schema seemed to retain its characteristics of action -
quantity and sequentiality, the measurements partly perceived as a means tc
quantify turtie actions.
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9.1.2b Findin sfromcate 0 2

The children's activities in the initial stages of category 2 consisted of
constructing a procedure for an isosceles triangle with fixed dimensions,
placing it in an upright orientation on the screen, drawing the bisector and
measuring resulting internal relations of angles and lengths. The analysis
suggests that the children's activities were characterised by an increasing use

of analytical cues to decide on turtle actions involving either;

i) the use of geometrical properties (involving intrinsic and/or euclidean
notions) perceived by the children or,

ii) the use of the tools to measure quantities which they perceived as otherwise
unobtainable.

Their former use of analytical cues (i) began to progressively substitute the
latter (ii) in cases where the children generalised from their measurements.

The children's initial attempts to construct their generalised procedure for an
isosceles triangle (the LASER procedure, fig. 7.3.11) were hindered by their
difficulty in generalising from using the relevant internal properties in specific
cases. Furthermore, even after they made the relevant generalisations and
incorporated them in their procedure, their first executions of the procedure
were characterised by a lack of discrimination of angular properties related to
the respective input.

1.2 Fin m

During the category 3 activities, the children engaged in four projects of their
own choice, titled "Nested triangles", "Striped triangle", "Pyramid” and "Sailing
boat". The analysis of the data indicates that during their first project, the
children used the LASER procedure as an object / building block and certain
structured programming techniques, in the process of developing a
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personalised geometrical rule. During their second project, the analysis
highlighted cases of their meaningful use of the P.D.D. tools out of their own
initiative and their use of static angle and length notions to work out the
quantity of actions. This last issue was elaborated by means of the findings
from the "Pyramid" project. Finally, analysis of the data from the "Sailing boat"
project focused on the children's personalised reasons for using the POST
command and their use of triangle properties in order to construct the ship's

sail.

2 h fin in h m w rl

The specific findings from the three categories of activities were related to the
general issue investigated by the study (i.e. issue c, section 9.1) by means of
putting forward the case that the analysis of the data throughout the P.D.D.
microworld study provided evidence of an integrated existence of four aspects

of the children's activities;

"Making sense of' and goal - oriented activities were identified. There is
evidence that the chidren's programming strategies, such as their use of
procedure and modularity, were not a-typical of the strategies observed in
studies involving similar Logo environments. Furthermore, it was found that
their mathematical thinking could meaningfully be characterised by activities of
using, discriminating and generalising ideas. Such activities have also been

observed in other studies of children working within Logo environments.

Th h irin h n llin

The schema which the children used to control the turtle seemed to preserve
the characteristics of action - quantity and sequentiality described in the
previous study. The children's use of the P.D.D. tools in the process of

determining quantities of actions involved further discrimination of ideas
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embedded in the intrinsic schema (see findings of category 1). Furthermore,
the employment of the schema involved the use of intrinsic and euclidean

notions (see findings of gategory 2).

iii The use of the microworld's tools to develo nderstandin eu ean

n

The findings indicate that the children mainly used the P.D.D. commands as
mediating tools for the developing of understandings of euclidean notions. This
process involved the children's progressive substitution of the employment of
the tools in order to determine quantities of turtle actions, by the use of
geometrical notions which had been generalised by means of earlier

measurements.

iv The hildr n' an m

The analysis of the data suggests that the children's use of intrinsic and
euclidean notions was of an inductive nature, i.e. that they used and
generalised notions from within the context of their activities (such as the
properties of the isosceles triangle, section 7.3), rather than starting from
generalised hypotheses.

1.2 rviow h fin fr m P.D.D.m  wor

The analysis of the data focused on the four aspects of the children's activities
outlined above, in section 9.1.2d. The integrated existence of all four aspects of
the children's activities suggests that a turtle geometric environment involving
the use of the intrinsic schema was generated, it was of a dynamic
mathematical nature, predominantly involving inductive thinking, and the
geometrical content available to the children within this environment was
extended from intrinsic to both intrinsic and euclidean geometry. The first two
aspects have been previously observed and analysed in conventional Logo

environments. The latter two aspects provide an extension of the conceptual
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field available to children in conventional Logo activities.

The findin s from Circl microw rl

The Circle microworld study (chapter 8) focused on the investigation of issue
d), section 9.1. The study involved a pair of children and consisted of two
phases. In phase 1, the children participated in a learning sequence involving
the construction and use of four circle procedures, each of which embedded
specific intrinsic and/or euclidean notions. In phase 2, the children were given
structured tasks involving the construction of figures consisting of compositions
of circles. They had the choice of which of the four circle procedures to use in
constructing the figures (section 8.1). The specific objectives of the research in

phase 1, which was of a preliminary nature, were to investigate:

phase 1, a) the nature of the geometrical notions which were implicitly or
explicitly used by the children during the phases of construction of the circle
procedures;

phase 1, b) the extent to which and the way the geometrical notions
characterising each procedure were used by the children during their own
projects.

The objectives in phase 2 were to investigate:

phase 2, a) the extent to which the children used the geometrical notions
embedded in the structured tasks and the nature of the notions they used for

constructing the tasks' figures;

phase 2, b) the nature of the children's implicit or explicit criteria for choosing

intrinsic or euclidean geometrical notions in their constructions.
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9.1.3a Findin s from hase 1

The findings from phase 1 highlighted the disparity between the intrinsic and
non - intrinsic schema in the children’s minds observed in the previous studies.
They seemed to focus on notions functiona! to the specifics of each task rather
than the intended geometrical notions. During their projects they used the
geometry of the circles in varying degrees, often focusing more on the use of
structured programming techniques, rather than the use of geometrical ideas.
At the end of the learning sequence they seemed aware of the functioning of
the four circle procedures but rather lacked in explicit awareness of which

geometrical notions were embedded within each circle construction.

9.1.3b Findin from hase 2

In phase 2, the analysis of the children's choices between using intrinsic and
euclidean notions in constructing figures consisting of circle compositions
provided evidence of a balance in their use of both kinds of notions, i.e. the
children seemed to be quite prepared to use both intrinsic and euclidean
notions in planning and explaining turtle actions. The process by which the
children used geometrical notions was illuminated within a perspective of the
broader aspects of the mathematical situations generated by the children.
Evidence was provided of a relatively rich use of the notions embedded in the
figures. However, evidence was also given of cases where the embedded
notions were ignored by the children, or where they imposed notions which
were not intended by the researcher to play a part in the figure's construction.
Furthermore, the children also used personal naive strategies in their
constructions.

The indications that the children's criteria for using intrinsic and euclidean
notions were not primarily related to inherent characteristics of the notions
themselves, but rather on aspects of the broader mathematical situations
generated during the research, lead to a further prompting of which of these

aspects were important in the forming of the children's choices and why.
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Two factors concerning the role of the intrinsic schema in the children's choices
emerged from the analysis. Firstly, they found employing the schema
meaningful and did not seem to favour one kind of notion or the other as a
consequence of having employed it. Secondly, their criteria for using the
schema tended to relate to its intuitive nature rather than to the use of
geometrical notions. The programming and modularity involved in the
children's strategies also influenced their choices on which notions to use.
However, their priorities in their decisions lay with the programming rather than
with what kind of geometrical notions to use. The children's critical remarks on
generalised rules involving intrinsic and euclidean notions referred to whether
the rules had been derived via an inductive method or not, rather than on
which kind of generalised rules were easier to understand. Finally, the children
expressed a preference of employing notions which they had previously used
in personally meaningful contexts than those presented to them through the
school system. Their distinction between "personalised” and "impersonal”
notions, however, did not seem to be related to the distinction between intrinsic

and euclidean notions.

The analysis of the data from the Circle microworld study suggests that the
employment of the intrinsic schema by the children did not seem to be tightly
connected to the use of geometrical notions belonging to intrinsic geometry or
to a paricular geometrical system. The children did not seem to perceive
qualitative differences between the nature of intrinsic and euclidean notions.
However, their decisions on which kind of notions to use were influenced by

the broader aspects of the mathematical situations generated in the study.
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9.2 DISCUSSION AND IMPLICATIONS

9.2.1 The context of the research

The present study is located within the context of recent research focusing on
both the geometrical content learned by children doing Turtle geometry and on
their learning process (Hillel, 1985b, Kieran, 1986b, Lawler, 1985, Hoyles and
Sutherland, in press, Hillel et al., 1986). Furthermore, from a methodological
perspective, it is situated within a series of studies involving the detailed
observation of pairs of children working collaboratively with the computer
(Hillel and Samurcay, 1985, Kieran, 1986a, Kieran, Hillel and Gurtner, 1987,
Hoyles and Sutherland, in press).

The summary of the findings given in the previous section suggests that within
each specific microworld environment generated in the research, there is a
strong potential for children to use their intrinsic schema to learn intrinsic and
cartesian, or intrinsic and euclidean geometry. The discussion which follows
attempts a synthesis of the issues emerging from the research across the three

studies.

2.2 Th childr n

Throughout the three studies, there is strong evidence that the children
considered the use of perceptual cues as at least an acceptable and valid
method to make decisions on turtle commands and their inputs. This finding

corroborates the results from Hillel et al's research (Hillel et al., 1986).

However, in the present research, the children progressively incorporated the
use of analytical cues in their priorities. Moreover, there is evidence that the
children in the P.D.D. and Circle microworld studies, which were of longer
duration than the first, developed personalised reasons for using analytical
cues instead of their perception, such as an appreciation of the accuracy of

their constructions.
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This could be attributed to more than one factor. Although there is no
conclusive evidence that the researcher's interventions encouraged the use of
analytical cues, there is also no evidence of the contrary. It is suggested that
there were two important factors influencing the use of analytical cues. Firstly,
the nature of the microworlds, i.e. it could be argued that the embedded
geometrical ideas were dense and more specific compared to conventional
Logo, both because of the geometrical nature of the new primitives and due to
the designed activities for the children. For instance, although during the first
phase of the Circle microworld study, the children were asked to carry out four
projects of their own, they were required to use the respective circle procedure

/ microworld tool, which in turn embedded specific geometrical ideas.

Secondly, the microworlds incorported a wider range of geometrical notions
(than just those belonging to intrinsic geomerty) made available to the children
via the use of the new tools. For instance, the P.D.D. microworld tools enabled
them to measure quantities on the plane without requiring knowledge of
geometrical properties in advance in order to decide on the quantities of turtle
commands. Nikos and Philip's perception of using the measuring instruments
was that they provided a tool with which to achieve accurate turtle actions.
However, noticing the outcomes of their measurements led to conjectures
about quantities, which the children tested by subsequent measuring.
Confirmation of their conjectures was often followed by abandoning the
instruments and using the geometrical notions involved in order to decide on

the quantity of an action.

It is suggested that, on the one hand, the conceptual field of conventional Logo
may lack in density of embedded geometrical notions and on the other, the
available intrinsic notions are too restrictive. It may be the case, therefore, that
finding it difficult to synthesise the required geometrical knowledge from their
normal curriculum and also finding the process of using geometrical properties
to make shapes on the screen not functional, children prefer to use their

perception. It could be argued that these impediments enhance the use of their
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perception and could be a catalyst for their use of a "drawing schema",
observed by Hillel (Hillel, 1986). The children from the study had had
considerable experience with conventional Logo and this not surprisingly
influenced their use of perceptual cues, especially during the initial phases of
the three studies.

It is therefore suggested that the use of analytical cues was not conceptually
beyond the children's thinking, but rather, involved the use of a different
framework of knowledge than the one which they had developed in using
Logo. The argument that children's "naive" thinking is often a matter of the
framework of knowledge which they use (Booth, 1981) is therefore

corroborated by the present study.

Furthermore, the children's increasing use of analytical cues within the three
geometrically rich microworlds of the study would corroborate Vergnaud's
contention that there is a need to design conceptual fields where the children
would be able to form and refine theorems-in-action (Vergnaud, 1982).

Th hil n' inrin h

Previous research has tended to perceive children's schema for controlling the
turtle as integrated with the use of geometrical notions (Papert, 1980, Lawler,
1985). Furthermore, the notions which have been associated with the use of
the intrinsic schema were predominantly those of intrinsic geometry (Papen,
1980).

The indications from the present research showed that although the children
often seemed to identify with the turtle during their Logo activities, their use of
geometrical notions was infrequent, as discussed above. This finding would
support the argument that it is far from 08vicusthat when children identify with
the turtle to drive it on the screen, they are necessarily engaging in geometrical
activity. On the other hand, the study shows that there is ample potential for

children to use embedded geometrical notions in geometry - rich microworld
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environments such as the ones in the three studies in the research.

The findings from the three studies show that the children seemed to see sense
in identifying with the turtle and using experience based on bodily motion in
order to control it on the screen. The theorems in action they formed,
elaborated in the T.C.P. microworld study are corroborative evidence for this
view; it could be argued that their use of action - quantity and sequentiality
notions was not perceived by the children as using geometry, but as using
experience which they had acquired irrespective of intended imposition of
knowledge from the outside. This argument would be further supported by
specific findings in the Circle microworld study, where the children themselves
expressed the view that no knowledge is required in order to understand the
intrinsic total turtle turn theorem.

The findings therefore corroborate Lawler's view that the intrinsic schema is
built on intuitions related to bodily movement which, as Lawler states, can be
traced back to the sensori - motor period. Moreover, the disparity between
intrinsic and non - intrinsic schemas in the minds of the children in the study
(this issue was given special attention in chapter 6) seems to support Lawler's
contention that intrinsic and coordinate ideas originate from disparate
microviews (Lawler, 1985). The links between notions from the two domains
made by the children in the present study and their progressive use of non -
intrinsic notions within their employment of the intrinsic schema, could be
attributed to their age with respect to the six - year old child in Lawler's study; it
could be argued that 11 year old children have had much more experience at

making links between the different elements of the sensori - motor system.

The model of the intrinsic schema proposed in the T.C.P. microworld study
provides a synthesis of the theorems in action used by the children during their
activities. As discussed in chapter 6, no one child was aware of a synthesised
set of rules to control the turtle; furthermore, the children's difficulties in
discriminating between the elements of the model and synthesising notions

across the two turtle states supports, rather than contradicts, the view that using
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their intrinsic schema did not necessarily mean that they were explicitly aware

of using geometrical notions.

24Th m m n h inrin h m

and the use of eome rical notions

As mentioned above, the research indicates that using the intrinsic schema did
not necessarily imply the use of geometrical notions. This argument, however,
does not in turn imply that the children did not use the embedded geometry
before and during the research. Furthermore, the analysis indicates that their
increasing use of analytical cues was accompanied by an increasing use of
geometrical notions. The geometrical nature of these notions is discussed in
this section.

The findings suggest that initially, the set of experiences which the children
seemed to employ in order to control the turtle seemed disparate to the
experiences used to think about notions refe ring to the plane. The children's
activities with the microworlds, where notions refe ring to the plane were
embedded in controlling the turtle, enabled them to begin to incorporate such
notions in their intrinsic schema and in turn to modify the schema itself. In the
case of coordinate geometry, the analysis of the data from the T.C.P.
microworld study showed that this modification was rather extreme, since the
two primary notions of action - quantity and sequentiality were abandonned by
the children. It is suggested, however, that the antithesis between the intrinsic
and the coordinate schema as portrayed in chapter 6, rather helped the
children to discriminate between intrinsic and cartesian notions, than hindered
them. It could be argued that what the children found in common in the two
schemas, and therefore used their experience from one schema to form the
other, was the ability to fall back to enactive symbolising by means of the same
vehicle, i.e. the turtle.

The schema the children formed in order to use euclidean notions did not

involve such drastic changes to their intrinsic schema. Action - quantity and
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sequentiality were preserved, but the euclidean notions were used in deciding
on quantities and in referring to parts of a figure away from the turtle's position.
Here too, however, the common basis for using intrinsic and euclidean notions
was the ability to use the turtle schema, i.e. to think in terms of the turtle
changing its state on the screen.

In this context of employing the intrinsic schema to use intrinsic, euclidean and
cartesian notions, the study has shown that it is possible for children to
generate learning environments akin to the ones generated in studies of
children using conventional Logo. This issue, which was in focus during the
P.D.D. microworld study in the context of euclidean geometry, gives credence
to the argument that turtle geometric environments need not be restricted to
intrinsic geometry if they are to preserve their dynamic characteristics. In
support to this case, the findings from the Circle microworld study indicate that
euclicean and intrinsic notions did not seem to have inherent qualitative
differences when the children used them in the context of employing their turtle
schema.

Furthermore, the study has elaborated that the children did not seem to find
inherent qualitative differences in using intrinsic, euclidean and cartesian
notions to control the turtle in the respective microworld environments.
Employing the intrinsic schema did not necessarily imply that the children were
aware of using geometrical notions. Furthermore, when geometrical notions
were used, they were not necessarily intrinsic. This finding contrasts with
Papert’s implications that using turtie geometry invites using intrinsic geometry
and not eulcidean and cartesian.

As discussed in chapter 2, educational practice has so far mainly involved the
teaching of geometry as a tight deductive system, or in a reduced role of a
practical topic, with not so much emphasis on its mathematical nature. It has

been contended that an important factor in children's superficial learning of
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geometry has been their difficulty in mastering the deductive structure of
geometry as it was taught (van Hiele, 1959, Freudenthal, 1973). There have
been arguments, however, for the potential of geometry as a means for
children to do mathematics if it is seen through a wider perspective, i.e. as a
field for engaging in both inductive and deductive thinking. Freudenthal has
stressed the potential for such a role for geometry due to its mathematical
nature, while von Glasersfeld has argued that a means to master deduction is

through wealth of experience with induction (von Glasersfeld, 1985).

Although there was an initial enthusiasm regarding the potential of Logo for the
learning of geometry, evidence from children's activities with the turtle has not
been very encouraging in that the children did not seem to use geometrical
notions embedded in Turtle geometry (Hillel, 1986, Hoyles and Sutherland, in
press).

The present study has indicated that under certain circumstances, such as, for
instance, widening the span of geometrical notions embedded in Turtle
geometry and creating microworld environments inviting children to use
geometry in a functional way, Logo may have an important role to play in
providing children with the tools to engage in inductive geometrical thinking.
The investigation of this potential in the P.D.D. microworld study provided
evidence of the children's incorporation of euclidean notions into their
developing use of geometry during their activities with the microworld. The
children predominantly engaged in inductive thinking by using geometrical
notions which they had generalised through specific observations made while
measuring distances and angles on the plane and using the information to
decide on quantities of turtle actions.

26 R la nshi h intrinsi

min

In the present research, the geometrical aspect of the children’s activities has

been analysed in distinction to the programming aspect. Earlier studies of
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children engaged in Logo activities have varied in the degree to which they
have perceived those two aspects separately. It is not within the scope of this
study to take a position on a general strategy of perceiving programming and
geometrical activities in separation or not. Differentiating from the Brookline
research (Papert et al., 1979), Noss argued that activities with Logo can
generate integrated programming / mathematical environments and that
programming is an essentially mathematical activity (1985). While not in
contention with this point, it is argued here that there is still a need for the
illumination of subtle features concerning the programming and the
mathematical aspects of children's Logo activities, with emphasis on the latter.
Recent research seems to support this view (Hillel, 1986, Kieren, 1987).

In the present study, the distinction between the children's use of geometrical
and programming notions, served as a means to focus on geometrical issues
of the children's activities. The children's programming strategies were
analysed through the perspective of how they related to the children's use of
geometrical notions.

During the P.D.D. and Circle microworld studies, the children not surprisingly
showed an increasing fluency in using procedures, subprocedures and
variables. However, the relationship between their increasing mastery of
structured programming and their use of geometry was not always positive. For
instance, Nikos' and Philip's use of geometry and programming during their
own projects in the later stages of the P.D.D. microworld study seem, at least in
some cases, to contrast. For example, the striped triangle project, while not
involving the use of modular programming, did involve a relatively
sophisticated use of the geometrical notions embedded within the triangle. On
the other hand, their building of the BAM superprocedure by means of adding
executions of the LASER procedure with fixed inputs involved very little use of
the geometry related with the isosceles triangle constructed by the LASER
procdure (see section 7.4.2). Furthermore, Valentini and Alexandros' fluent
superprocedure - building strategies during their projects in the Circle
microworld study, often involved very little use of the geometry embedded in
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the circle procedures. In contrast, their project involving the most use of
geometrical notions (the "Snowman" project) did not involve structured
programming (see section 8.2).

A factor which might have influenced contesting uses of geometry and
programming for Nikos and Philip, could be the nature of the P.D.D. microworld
tools. Measurements on the plane in order to decide on inputs to specific direct
- drive action commands may initially have encouraged direct - drive
programming. A further factor may have been the relationship between
structured programming and regular figures, such as a square or an equilateral
triangle. In mathematical terms, regular figures can be constructed via
consistent intrinsic rules (such as REPEAT 4 [FD 50 RT 90]) which do not
require reference to the plane. The children's use of euclidean notions enabled
them to write procedures for a wider span of geometrical figures (such as the
LASER procedure for an isosceles triangle), which however, could not involve
internal programming structure (section 7.3.2). Furthermore, when using
procedures for figures involving euclidean notions during their projects, the
children often focused on the inside of the figures, possibly since they were
now able to use the internal geometry to make accurate shapes. A
consequence was that in several cases they did not use the figure procedures
as an object / building block for structured programming (section 7.4.2).

On the other hand, this may have been a consequence of the children’s limited
investigations of external geometrical properties of the figures in question. An
instance when this issue arose was, for example, during Nikos' and Philip's
efforts to place an isosceles triangle on a bisecting line segment in order to
make the sail of their ship (section 7.4.2g).

The findings from this research highlight the complexities involved in the
relationship between the programming and geometrical aspects of children's
Logo activities and consequently support the view that we need to know more
about ways in which children can be helped to make links between the two

aspects and to use them in a complementary way for the development of their
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mathematical thinking.

927 Thelearnin environment

The crucial role of interventions made by researchers and teachers in Logo
environments involving small croups of children working with a computer, has
become increasingly obvious in recent research (Hillel and Samurcay, 1985a,
Noss, 1985, Hoyles and Sutherland in press, Sutherland, 1988). In the present
study, the researcher's attempt to maintain a balance between directive
interventions and interventions which left control to the children highlighted the
difficulty of this task. Inspite of an explicit intervention strategy outlined in the
research design sections, the analysis of the data revealed subtleties in
specific situations leading, in some cases, to interventions which were
inconsistent with the researcher's intentions. The most frequent type of such
intervention was over - directedness in cases where there was ground for the

children to find out things for themselves.

There was a consistent attempt, however, throughout the study, to maintain
awareness of the type of interventions made. It is suggested that awareness of
the geometrical issues which were of interest to the study provided a valuable
means of holding back over - directive interventions involving the learning of
these issues. A broad distinction of the interventions made during the
research, which proved a useful tool for deciding on when and how to
intervene, was between those perceived by the researcher as part of the
teacher component of the respective microworld and those aiming to clarify the
research issues by asking the children to express what they were doing and
why. With the benefit of hindsight, however, it is suggested that the latter
influenced the children's learning. Without this type of intervention, the children
may have restricted their verbal communication, thus keeping ideas which
became explicit, at a level of implicit awareness. On the other hand, there were
instances where persistent questionning of the children on their activities was
counterproductive for their learning. There were also occasions, however,

where if such an intervention had been made, a potentially important issue
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may have been revealed during the interpretation of the data and/or the
children might have made some idea more explicit than they did during the

research.

The researcher attempted to maintain explicitness about the perceived
influences of his interventions on the children's learning, particularly with
respect to illustrated episodes used as examples of research findings.
However, it is recognised that the presented episodes were within a context of
vivid interrelation among the researcher, the children and the computer
feedback. On the other hand, it is also argued that this research involved
microworld environments incorporating a teacher component. The difficulties of
distinguishing between teacher and researcher have been highlighted in

previous research (Hoyles and Sutherland, in press, Weir, 1987).

92 The role of the microworlds and the d si d activitie

hin h mi  w

The designed activities within the three microworlds played the dual role of
learning sequences for the children and a means for creating a research
environment, i.e. a setting encouraging the relevance of the children's thinking
to the research issues. The study indicates the importance of activities
involving a balance among children's own projects, activities in the form of
solving structured or semi - structured tasks and teaching episodes with
specific objectives. The findings support Noss' contention that children should
be given ample time to explore ideas for themselves (Noss, 1985), but also
indicate the importance of focusing the children's activities on mathematical
and/or programming ideas so that they progressively incorporate them in their

strategies.

The children's use of the primitives of the three microworlds in the study
illustrated the importance of designing such primitives to be conceptually
consistent with the Logo language. That is, the syntax, the error messages and

the functioning of the new primitives was consistent with the principles
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underlying turtle commands, by involving ideas easily understood by the
children and consistent with the turtle metaphor. Furthermore, it is suggested
that it was important for the introduction and the use of the new primitives to be
carried out in a meaningful context for the children, so that they would find a

functional purpose to use them.

LIMITATIONS OF THE RE EARCH

The limitations of the present research can be grouped into two types:

a) limitations related to general issues concerning the qualitative methodology

of the research;

b) limitations which involve issues specific to this research only.

a) The context specificity of the research has the obvious limitation in the
generalisability of the findings. There were different aspects to the context in
which the research took place, each one limiting a respective type of
generalisability. Firstly, the participating children were from within a particular
educational system. In spite of the fact that the researcher attempted to
organise and take part in a year long "preparation” period, so that the children
might participate actively in their learning during their activities with the
microworlds of the main studies, there are limits to which this experience
affected the children. On the other hand, it is argued that an acceptable
informal atmosphere could have been almost impossible if the children had
learned Logo in a directive manner during the preliminary phase. Secondly,
the school in which the research took place was particularly priviledged and
the family backgrounds of its children of above - average socio-economic
status; such technology in the time the research was carried out was in any
case not available in schools from the state system. Thirdly, the generated
microworid environments involved a specific intervention strategy, a tightly
designed set of activities for the children and restricted conceptual fields

embedded within the use of the primitives of each microworld. It was not
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possible therefore within the scope of the study to investigate children's
activities with the same microworids, but in more open - ended settings. An
issue, for example, which was not investigated, was if and how children might
use the microworlds’ primitives in the absence of the researcher. Furthermore,
the unavoidably subjective nature of the interpretation of the results adds to the
studies' limitations. Finally, the small number of children (ten) participating in
the study, on the one hand limited the generalisability of the results, but on the
other, enabled an in-depth analysis of the children's learning not easily
achievable by quantitative research methods.

b) The model of the intrinsic schema proposed in chapter 6 was the outcome of
a synthesis by the researcher of the notions which the children seemed to have
adopted as a result of their previous experience with Logo, since the intenlion
was to identify the theorems-in-action the children actually used. The issue of
the children's difficulties or misunderstandings regarding the notions required

to control the turtle would therefore warrant further investigation.

A further point regarding the limitations of the model of the intrinsic schema is
that it refers to a rather specific environment where the children found
themselves in conflict with their experience so far. Although this conflict
contributed to the explicitness of the children's ideas about controlling the
turtle, thus making things clearer for the researcher to interpret, it may also
have limited the validity of the model; the situations of conflict may have
influenced the children by encouraging them to discriminate ideas further than
they would have done by using the intrinsic commands only. It was not within
the aims of the study, however, to examine the extent to which children are
unaware of the geometrical ideas embedded in conventional Logo
environments.

The model resulting from the children's use of coordinate notions to control the
turtle is limited by the time allowed for the children to develop understandings
of these notions. It was not, however, within the aims of the study to investigate

the question of which coordinate notions were only temporarilly difficult for the
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children to understand, maybe as a result of their relatively overwhelming
experience with the intrinsic commands, and with which notions the children
would find pursuing difficulties.

in the P.D.D. microworld study, limited time was allowed for the children to
carry out their own projects during the first two categories of activities. Although
this was in line with the objectives of the research, i.e. to investigate children's
learning in a euclidean setting, there was no investigation of how the children
might use the microworld's tools in unstructured environments from the outset.
This in turn could limit the strength of the argument that the children adopted
the use of the P.D.D. tools in a natural way.

Furthermore, the question of whether the children would increase their use of
euclidean notions within the microworld environment but not in the context of
structured activities remains open. Although the children seemed to find the
use of the tools relatively straightforward, it is not clear how much they would
use them to measure euclidean figures had they not been asked to do so early
on in their activities.

A final point concerning the P.D.D. microworld study is the relatively limited
geometrical content covered. Although the researcher suspects that similar
activities could be designed and similar results may be obtained from the
emerging environents (given the limitations pertaining to the qualitative

methodology of the research), this question remains open to investigation.

The above point would also apply to the Circle microworld study. The tools of
the Circle microworld consisted of constructions of the same figure by methods
employing different geometrical notions. Although there was a relatively rich
generating of mathematical activities within this environment, it is not obvious
whether this could be achieved in the case of similar microworlds involving
different methods of constructing figures other than the circle. The researcher
suspects that the geometrical content of such microworlds would have to be

restricted to figures which can be constructed via an intrinsic method, i.e.
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regular figures, such as a square, an equilateral triangle, reguiar polygons
et.c.

The learning sequence in the Circle microworld study depended on the extent
to which the children would perceive the important geometrical notions in order
to construct a new circle procedure facilitating the construction of a task - figure.
Not surprisingly, however, interventions were in some cases essential to
encourage the children to perceive or use the important notions. This could
limit the applicability of such a learning sequence without the participation of a
teacher/researcher.

The children's choices between using intrinsic and euclidean notions to solve
the structured tasks in the second phase of the Circle microworld study were
related to the notions embedded in the task figures. This was in line with the
objective of the study which was to investigate the nature of these choices.
However, an investigation of the children's choice of notions in unstructured

environments was not within the scope of the present study.

4 IMPLI RTHER RE EAR H

It is suggested that the generally diminishing role of geometry in mathematics
curricula limits the importance for research into ways of creating Logo
environments where the children might synthesise notions between the
contexts of Turtle geometry and an established geometry curriculum, as for
example in the case of algebra (Surtherland, 1988). Nevertheless, there is
need to investigate ways of creating geometrical environments within the
context of the clasroom, which encourage a synthesis between the dynamic
and procedural aspect of children's learning and geometrical content in ways
similar to the ones generated in the present research.

This study has provided examples of Logo microworld environments where
Logo - experienced children have had the opportunity to use their cognitive

schema for controlling the screen turtle in order to develop understandings of
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geometrical notions belonging to intrinsic, euclidean and cartesian geometry.
Further research is needed in order to map out content areas which could be
catalytic to the creation of such environments. There is ground for more work
on designing generalised microworlds offering a wide span of geometrical
ideas for children to explore, such as the P.D.D. microworld. However, work
also needs to be done in creating more specialised microworld environments
for the children to develop understandings of "tighter" sets of geometrical ideas
(an example from the study was the microworld generated with the use of the
LASER procedure for the isosceles triangle). The latter microworlds could be
perceived within the former ones, as in the case of the above example, or
independently, as in the case of the Circle microworid.

There is also need to investigate the potential for generating geometrical
microworld environments among younger children, possibly from the
beginning of their primary schooling since computer technology might become
increasingly available in schools in the near future. The indications from the
present research that the children found the process of using their intrinsic
schema not to require knowledge provided from some outside source support
the argument initially put forward by Papert and Lawler that use of the schema
bears upon children's intuitions related to enactive representations of ideas. It
is therefore suggested that there is a need to find ways of exploiting these
intuitions through turtle microworlds, so that children who are trying to make
sense of ideas within mathematical situations have a means of employing

enactive representations of these ideas.

The children in the present study engaged in inductive activities involving the
use of geometrical notions previously perceived as only belonging to a
deductive system. It is suggested that an area for further investigation would be
to find ways in which children with considerable experience in using geometry
in an inductive way, might use the same geometrical ideas in environments
requiring deductive thinking. Computer environments allowing a dynamic
manipulation of geometrical ideas within conceptual fields characterised by a
deductive structure have recently been designed (e.g. the "CABRI" software by
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Laborde and Laborde) and could consequently be used in such an

investigation.

Certain specific points raised within the microworld environments of the
present research warrant further investigation. As discussed in the previous
section, the study illustrates how it is possible for children to use their intrinsic
schema in order to form a schema for controlling the turtie via the coordinate
commands. It was conjectured that microworld environments such as the T.C.P.
microworld, i.e. which provide a choice between controlling the turtle with the
intrinsic commands or via reference to coordinate systems, may enhance
children's understandings of intrinsic and cartesian geometrical ideas. Such a
conjecture warrants further investigation which could profitably employ a
research design similar to that of the P.D.D. microworld study.

It is suggested that the P.D.D. microworld could be used to generate
mathematical environments with similar characteristics to the one in the
present study, over a considerably wide range of geometrical content.
However, there is still much work to be done in finding out about ways of
encouraging children's use of geometrical ideas within functional mathematical
activities. It is felt that designing activities which allow a balance of directed and
open-ended work for the children and finding out about efficient ways of
intervening so as to stimulate them to form their own understandings leaves
ample ground for further investigation. With respect to these two factors, there
is need for both in-depth analysis of their effects on children's learning and for
the longitudinal tracing of such learning within classroom settings. It is
suggested that the present study has contributed to the argument that such
research should be now seen as integrated with a systematic mapping out of

geometrical content within microworld environments.

The P.D.D. microworld study consisted of a learning sequence involving the
construction of a procedure embedding powerful geometrical properties of an
isosceles triangle and the use of that procedure in personal projects. In effect,

the Circle microworld study consisted of a learning sequence incorporating
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four such learning modules respectively involving four procedures.
Furthermore, the structured tasks given in the second phase of the study
encouraged the children to discriminate and generalise ideas embedded
within the circle. An area for further research which could be seen as a specific
case of the issue suggested above, is the design of such learning sequences
in connection to generalised procedures embedding properties of geometrical
figures. When, how and how often should such activities take place within Logo
activities in a classroom setting?

To make a more general final point, it is not suggested that children'’s activities
with Turtle geometry should be seen as related to geometry and programming
only. Even in the present study, where the focus was on the geometrical nature
of the children's work, there was ample use of other mathematical notions,
such as decimal and negative numbers arising from the outputs to distance
and angle measurements, arithmetical operations carried out by the children
throughout the study and the notion of variable in relation to variable inputs to
procedures. It is therefore suggested that research should be carried out intc
finding ways of encouraging children to synthesise ideas within Turtle
geometry, but across mathematical domains.
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Note 1: The following section provides samples of the data collected during the
preliminary phase of the research. The "Pupil profile" questionnaires and the "record
sheets" were filled in by teacher F in English. The "Pupil questionnaires” and the "Logo
logs" are translated here from Greek to English. An original sample of a "Logo log" ic
given. With the exception of "Structured task 5", the items were adapted from the Logo
Maths Project and translated into Greek - where applicable - by the researcher. The

following reference was used:

Hoyles, C., Sutherland, R. and Evans, J., (1985), A Prelimina Investi ation of the
P r h L rnin f L in h h
MAthematics Clas om 83 -1984 , The Logo Maths Project, University of London

Institute of Education.
N The analysis of this data was carried out on an informal basis, in line with the

methodilogical placing of the preliminary phase within the whole of the present study.
The present appendix is referred to in chapters 4 and 5.
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A1:A P fil I
Pu i, Profile

AGCEEXS

Please wrize briefly about the named pupil covering the following
points:

Tour general view of the pupil as a person.

Your view of the pupilts ability.

Your view of the pupil's general attitude to work and school.

Any information ycu have on pupil!s ability in different subject areas.
Any evidence that you have that the pupils discuss their Logo
programming activity outside their mathematics lessons.

Pupil ... AR koK



A2:Th P r

A questionnaire was given to each child after their first five sessions with the Logo club.

The following questions were asked:

- Which was your best moment with Logo so far? Why was it the best?
- What would you like to be able do with Logo in the furture?
- Do you prefer to work on your own or with others in the club? Why?
- What do you like to do in your free time?
- Which lesson do you like best in school? Why?
- Which lesson do you like less in school? Why?
- When you are doing mathematics:

a) what do you like most and why?

b) what do you like least and why?
- What would you prefer to design with Logo: a difficult but pretty house, or an easier
one, but less pretty?
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Th
A Logo log was given to each child during each Logo club session, in the last five
minutes of the session. The three questions were:
a) What did you like and what didn't you like during this Logo hour?
b) What did you do during this Logo hour?
¢) What would you like to do in the next Logo hour?
The (typical) answers in the sample given bellow are as follows:
a) In this Logo hour | played very nicely with my friends.

b) | gave commands to the turtle to go forward 9,999.

c) | would like to play again.
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4-Th h

Working at syntactical [evel:

Dats;
YES MO
; -
Level of Motivation
Humber of procedures written: o gl

Level of Collaboration

o

Making Sense of.

YES NO

1]

Level of Motivation I YES, which processt

fow gl

Level of Collaboration
o nigh

lo obvious goal Brief description:
yithin goal directed activity

iuilding up to a goal
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Goal Nirected |
Initiated t‘!:l'- PUDHS Teacher CDngg

YES NO
‘el of Motivation Type of goal: Picture Abstract

Precise

. ague
Lrgh
Level of Lollaboration How far do you think the pupils understood
what they were doing?
o gk very little  Partially  Very well

pupils achieve original/modified goal? YES NO

Pupil decision External decision Other

[0, why not?

Directional: Not Requested Requested

Not Requested Requested Nudge
jivation
Factual
lection Powerful/
m/al ideas
Jeeling

388



A Th k

In the second administering of the task, the four squares were in a vertical formation.
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The present document is a report of the so far three - year progress of the Psychico
College computer program whose general aim is to integrate the use of new
technology into the school culture with the purpose of cultivating powerful ways of
meeting existing and future educational needs. One of the primary aims of the program
is to foster environments where the children take active control of their learning, to
encourage original and independent thinking and to develop their mathematical

thinking.

Before fully implementing the program, two years were spent in preliminary studies
and applications in order to establish the integration of the technology into the present
culture of the school. Full implementation of the program started in 1987/88 and may
last for four academic years, i.e. till the year 1990/91. | would now like to outline the

progress of the program to date.

imin

The year 85/86 was devoted to studying the feasibility of such a program. For that
reason, the teachers had ample access to the computers and were encouraged to
have some hands - on experience with Logo whenever they could. They also had
meetings discussing their reactions to this "novelty" of computers, and preparatory
seminars. Moreover, during that year, 20 eleven year old children participated in a
Computer Club outside the regular curriculum. The club partially served as a "pilot" to
determine existing educational needs not emphasised by the curriculum. | visited the
club three times, took the role of the teacher for 15 hours in total and carried out some

detailed research on the children's progress.

- they had a lot of "computer anxiety"
- many of them were not interested to learn how to program
- there was concern about the utility of teaching programming to young children

- there was grave concern about whether the teachers were qualified to teach
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programming

- there was worry about the mathematics involved in turtle graphics

- Logo was often regarded as a "body of knowledge" (a new language) to be learned
by the teachers so that they could teach it

- most of them were well disposed to learn about this "novelty”

n frm ri

- the children would expect the teachers to provide answers to everything

- they did not realise at the beginning that almost all the problems could be solved if
they thought about and discussed them

- they were conditioned to treat everything as right or wrong

- the members of the group could not communicate ideas and suggestions

- they would not take initiatives to undertake new projects, often asking the teachers to
provide new ideas

- they would not pursue an idea but would abandon it at the first difficulty

- they would not use their creativity to elaborate or expand a project

- they would show signs of "improvement" in taking control of their learning when the
teacher did not play up to their game

The results from the preliminary year's experience of the teachers' reactions and the
Computer Club, enabled me to pin - point and clarify the educational objectives and
the design of the program. The céentral aim of the program is for the computers to
become a classroom tool in the hands of both teachers and students, for encouraging
and actively exploring the social and cognitive aspects of learning. This implied using
Logo and an informal, investigative, group - work type classroom setting, in order to
achieve an atmosphere encouraging:
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a) active thinking (e.g. to solve own problems)
b) initiative (in thinking, creativity and decisions)
c) cooperation (cognitive, effective, social)

The setting is as follows. There is one computer room with ten Apple IIC's, each linked
to one of three printers. One computer period a week is allocated for each class of 30
children, during which they work in freely formed but permanent groups of three, with
their own teacher encouraging an informal educational atmosphere according to the
aims described. Each group uses one machine, disk and writing book. There is free
collaboration and the groups are responsable for presenting resuits. The role of the
teacher is to provide an educational environment rich in opportunities for encouraging
the development of the educational aims.

For this purpose, in September 1986, | gave a series of intensive seminars in which all
the teachers participated. From the beginning of 86/87, all the children were introduced
to the program, each class by its own teacher. The program extends from the third to
the sixth year inclusive, i.e. it involves around 500 children and 16 (24) teachers. The
program depends on a working framework within which a free educational atmosphere
is sought. As you know, the Greek educational system is highly centralized and
extremely formal compared, for instance, to England; so it will come as no surprise that

the informal atmosphere we seek has not arisen automatically.

A major component of this framework is based on coliaborative "investigations" carried
out by the children, aimed at developing a question and encouragement technique (no
"answers" or formal teaching / passive learning). These investigations consist typically
of a 4 lesson project, which is either totally up to the group or is based on an initial idea
or drawing set by the teacher. Thoughts, activities, results and manner of collaboration
are recorded by the children. Every four or five weekly periods, each group is
responsible for giving a "presentation” of their investigation, i.e. a report consisting of a
printout of drawings and comrhands / procedures and a group essay on activities,

thoughts, collaboration, further ideas and conclusions.
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A major advantage of these presentations of the children's work is, on the one hand,
the opportunity they give to both the children and the teachers to reflect on what they
learned / taught and how they learned / taught it. This is proving to be a powerful way
of increasing the awareness of an active, investigative and cooperative kind of
learning. It is also a sophisticated means for the children to express their work,
enabling them to adress the classroom and hold fruitful discussions. On the other
hand, the presentations are advantageous from a point of view of dissemination, due to
quantity (there are 160 presentations every 6 weeks, roughly 640 per year), quality and
clarity for anyone concerned: parents, educators, other children, authorities. Finally,
they serve as a powerful data base for research into a multitude of issues concerning
the use of technology in primary education, and also other related educationali
problems (e.g. a teacher is interested in carrying out research into the sociological

aspects of learning in small groups).

Informal analysis of this data base, together with research regarding the teachers'
difficulties during the preliminary year and their view on what the children carried out
from the program into their normal classroom activities, provided useful information for
reformulating the program for the first year of the program's full application. The most
important conclusion from the preliminary year experience, was that the process of
assimilating the legitimacy of an informal classroom atmosphere and the teaching
objectives of cooperation, initiative and active thinking, was much slower than
anticipated (for teachers and children). However, such an "atmosphere" was achieved
very often, in all the classes.

- there was a certain confusion between the planned teaching objectives and the
objective of teaching a programming language for both teachers and children

- most teachers were hesitant to comment on the children's reports

- the idea of an investigation was often not put across clearly to the children

- the younger children found it difficult to realise that a project lasted for four periods
often treating each period as a new project
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- more time was needed to get the idea of investigations across, especially at the
beginning

- time was needed after each investigation for groups to discuss their presentations
with their peers in the classroom context

- presentations could not be prepared in the computer room

- the program needed to show more sensitivity to the age and experience to the
children

- initial ideas for investigations would sometimes be confused with teacher required

tasks

Th fir m 7

In the light of the experience of the preliminary year, the program was reformulated
firstly to clarify to the teachers the activities, the emphases and a framework of
techniques for establishing the desired classroom atmosphere. Secondly, the
uniformity of the program across year groups was broken down to year level; the
program was made more sensitive to the age of the children, providing the younger
ones with more time to clarify the idea of investigative work. Thirdly, the content
regarding the technology (e.g. the programming aspect, the use of the printers) was
clarified for each year. Also, documents were prepared for the teachers regarding
technical difficulties encountered during the first year of application, and the syntax of
certain commands. However, the fourth and most important aim of the reformulation
was to stress that the emphasis remains on using the technology for existing
educational needs (active thinking, cooperation, initiative) which were also the first
priority in reformulating the program. In September 1987 | gave an intensive seminar tc
the teachers, analysing the content of the program for every year. All the teachers were

present in the seminar.

| visited the school in late March 1988 and observed all the teachers in action; | spent
one teaching period with each teacher and class in the computer room during their
normal Logo program activities. Analysis of my observations revealed the following

points.
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C nclusions from the first ear ofthe ro ram 1987/88

- in all the classes the open - ended, child-in-control atmosphere was satisfactory

- the degree of the teachers' awareness and control over the program was generally
higher than that of the previous year

- the children's presentations were supervised in a much more satisfactory manner

- the suggested reformulation of the program was implemented by all the teachers

- in general, | was impressed by the increasing level of confidence amongst the
teachers considering their original lack of expertise

- several teachers have already started to to develop their own personal style of
intervention

- much more work needs to be done on the teachers method of commenting on the
children's presentations

- the structure of the presentations was not always satisfactory

- although classroom management has improved there are still some problems

- there are certain problems with the maintenance of the hardware

- the teachers now seem ready for an advancement of their understanding of the
mathematics involved in the children's activities

- they are consequently ready to receive further training on how to use the program to

improve the children's performance in mathematics
In this way, from the year 1987/88, the design of a specific curriculum for each year has

started to develop, maintaining and refining the original pedagogical objectives, but

also shaped by the increasing experience of both teachers and children.
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Primitives of the T.C.P. microworld stud

Cate or ath 1.

PLACE :(number x) :(numbery) :(number a)

Execution of this command places a point on the plane, denoted by an "X" sign. The

inputs signify the two coordinate values and the numerical order of this particular point.

DODOTS

Execution of this command joins the points up in the order they were placed.

The following screen dump was taken from the children's activities.
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Cate o ath 2.

The following commands were available:
PR DISTANCE (name)

PR DIRECTION (name), as in the P.D.D microworld, and
FD, BK, LT, RT, PU, PD as in conventional Logo

The following screen dump was taken from the children's activities.

5
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Cate or ath 3
The following commands were available:

POST (name), PR DISTANCE (name), PR DIRECTION (name), as in the P.D.D.
microworld, and

FD, BK, RT, LT, PU, PD, as in conventional Logo.

The following screen dump was taken from the children's activities.
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Cate 0o 2

The following commands were available for group of tasks D (fig. 6.1.1):
SETH (value), SETX (value), SETY (value), WRITE (name). The first three commands
as in conventional Logo, except that execution of either SETX or SETY sends

the following error message where applicable:

- 'M NOT HEADING TOWARDS THE PLACE YOU WANT TO TAKE ME

From this point onwards, the SETY, SETX, and SETPOS commands give
the same error message where applicable.

Execution of the WRITE command draws the coordinates on the screen if the turtle is

on the respective position. Otherwise, it gives the following error message:

- I'M NOT THERE

The following commands were available for group of tasks E, fig. 6.1.1:

SETPOS (name), SETH TOWARDS (name), WRITE (name), PU, PD. The SETPOS
command provides the above error message if the turtle's orientation does not
coincide with the orientaton of its trajectory. The SETH TOWARDS command sets the
turtle's heading towards the position given via the coordinate inputs. The WRITE
command as above.

In the activities of category 2, execution of the conventional intrinsic
Logo commands, i.e. FD, BK, RT, LT, outputs the error message used in
the Logo language for execution of non-primitive and non-defined
commands, i.e.:

- 1 DON'T KNOW HOW TO (whatever has been typed)

The following screen dumps were taken from the children’s activities in group D and E
of figure 6.1.1 respectively.
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Cate 0 3
The following commands were available:
Conventional intrinsic Logo commands: FD, BK, RT, LT, PU, PD
Commands from the P.D.D. microworld: DISTANCE, DIRECTION

Coordinate commands, as defined above: SETH, SETY, SETX, SETPOS, SETH
TOWARDS, WRITE

The following screen dump was taken from the children's activities.

( oo b

B )

'l

(7 Fo
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The

T3 ZTART
SETPC

BRID 120 140
EMD

T4 BEGIN
HT

SETEG |
SETPC @
EMD

TG GRID :m :BE
HT

Ml R

LT 20

Ml :B

LT %0

EHD

TO M1 oL

BK L

REPEAT :D = 2
RT 0 FD 3 BK 3
BK :D

END

T0 MO

RT 20 FD 3 BK 3
RT 90 FD 2.5 BK
END

TO MKDS
HT MAKE
PU

EMD

"D [1]

T0 DODATS

PU SETPOS THING
SETPC 2

DDT

EMD

T0 DDT

PD SETPOS THING
WAIT 30

MAKE "D BF :D
IF { COUNT :D
END

TO POSTZ :N

ro rams written forthe T C P microworld stud

© 20 [HM01]
U

LT @0 FD {0
2.3 LT 90 FO 10

FIRST :D

FIRST :D

= 0 [STOP] [DOT]

MAKE N LIST xCOR YCOR

END

T0 PLACE :m B
HT PU SETPOS SE
POSTZ2 :C

MAKE "D SE D

:C

in 3B
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zETPC 4 FO
RT 45 REPEAT 2 [FD 5 BK 10 FD 5 RT 201 RT {20 LT 45 FU SETPC 0
ENED

TO CHECK

PLACE %0 90 1
PLACE -90 %0 2
PL&CE =70 -%0 3
PLACE ~0 -%0 4
PLACE 90 0 5
PLACE 0 90 &

PLACE -90 ¢ 7
PLACE 0 -90 %
PLACE 90 0 3
END

TO FILUP

PU HOME PD

REPEAT 4 IRT 45 PU FD S PD FILL PU BK 5 PD LT 45 RT %01
SETPC 0

END

T0 SQ :x
0P X # :X
EMD

TO DISTANCE M
0P SQRT ¢ 8@ ¢ XCOR - FIRST :MN ) » + ¢ 50 ¢ YCOR - LAST N )
END

TO DIFF.a :» :B

IF A4 - B < 0 [OP 380 + :2a - :Bl
IF &5 - B » 360 [OP :a - B - 3401
0P :» - :B

EMD

TO DIRECTION :P
OP DIFF.A TOWARDS SE FIRST :P LAST :P HEADING
END
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Cate or ath 2

TO START il
LABGR i
DRGRID W
VISLAB W
END

TO
LT
RT
LT
EMHD

X

HE
FD 15 Bk
FD :¢ BK

W oo woI
o O
U0

f o]

TO LMM
LM :S
RT 180 JuMP 15 RT
END

[’y

——
0
o

TO LHM
L i€
ET 180 JUMP IS5 RT 120
END

o

TO LOO
LO :¢&

RT 180 JUMP 1S RT 180
END

(91

TO LCC :5

LC :5

RT 180 JUMP 15 RT 180
END

TO LPP
LP :&
RT 180 JUMP {5
RT 180

EMD

P

TO TRY
RUN [L& 13 LB 20 LC 5 LD 5 LE 10 LF 10 LG 5 LH 10 L1 10 LJ 5 LK 10 LL 10 LM 10 LN
5 LP 20 L@ 5] (0

RUN [RT 90 JUMP 20 LT 90 LR 20 LS 10 LTT 10 LU 5 LV 13 LW 10 LX 13 LY 13 LZ 10]
END

TO LABGR :2

PU SETPOS SE 0 15

MAKE "DO [AS B5 C5 D5 ES A4 B4 C4 D4 E4 A3 B3 C3 D3 E3 A2 B2 C2 D2 E2 Al Bl C1 DI
HT FD 2 # :Z LT 90 FD 2 * :2 RT 180 Er
FIVEL :2 4 -
ST PD

EMND

TO HFIVEL :2

BK 4 %= :2 RT 90 FD :2 LT %0 MAKE "DO BF :DO
END

TO HPOST :NAME
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BKE :HAME LIST XCOR YCOR
=MD

T3 FIVEL 2 :CO
HPOST FIRST 0O
FD :2
MAKE "CO o 00 -
HMAKE "00 BF 00
IF 0 . 1 [HPO
22 LT 90 STOP3
EiD

RST DO HFIWEL 2 IF ¢ COUNT :DO » . 1 {LT 90 FI 2 + :Z RT 20
.74 TETUEL = 000 — ,
EL 2 433 [FIVEL 2 :CO1 '.02*

ST
:
L

Fi
Fiu

T3 DRGRID .«

HT SETPC 0 PU SETPOS SE O 15 PD ME ix
REFEAT 4 [UNIT :xX LT 201

RT 120

MS in

RT 180

ST

EMD

T3 UMIT s
REPEAT 2 [FD 4 % :4 RT 90 FD :x RT %0 FD 4 = :+ LT 20 FD 14 LT 901
EMD

TO MS
BK 2 % 12X LT 90 FD 2 + :xX RT %0
END

. T0 VISLAB :x
. HT SETPC 5 PU SETPOS SE 0 15 UNJ 3 PU RT 180 FD 2 < :x RT 90 FD 2 < :X LT 90 PD
Ud 15 RT 180 .LABEL "A
JUMP X - 15
.LABEL "B
JUMP K - 15
.LABEL "C
JUMP 14 - 15
.LABEL "D
JUMP s - 15
.LABEL "E
PU LT 90 FD 15 FD 4 # X RT 90 UNJ 7 UJ 13
M1 7 UNJ 10 UJ :x
N2 10 UNJ 10 UJ X
N3 ? UNJ 10 UJ :X
Nd 10 UNJ 10 UJ X
N3 10 UNJ 10
RT 180
PU
SETH O
SETPOS SE 0 15
PD ST SETPC 2
END

TO SETL

MAKE "ALPHA [A BCDEFGHIJKLMNOPRRSTUYVWIXY Z] '@
MAKE "BETA ( LIST [LA 131 ILB 201 [LC S1 [LD 51 [LE 101 [LF 1031 [LG 51 [LH 107 (LI
LJd 51 [LK 101 [LL 107 [LM 103 [LN 101 CLO 51 [LP 201 [LQ 51 [LR 201 [LS 101 [LTT
LUST (LY 133 LW 103 [L¥ 133 [LY 131 [LZ 101 . 'Cﬁ

412



EMD

TO KLIK MEMBER :LIST

IF NOT MEMBERP :MEMBER :LIST [OUTPUT 01
IF :MEMBER = FIRST :LIST [OUTPUT 11
QUTPUT 1 + KLIK :MEMBER BF :LIST

END

TO COMYV :LTR
0P ITEM KLIK :LTR :ALPH& :BETA
EMD

TO .LABEL :LTR
RUN O RUN [COMM :LTRI 0
END

TO UJ D
PU FO :L PD
EMD

T UMJ :F
RT 180
JUMP :F
RT 180
END

TO RBLOB :5
RT 20 FD :5 BK :5 LT 90
END

TO NI :S
LSETSCRUNCH 1.3
RE :5 / 4 FD :8
LT 110 FD :5 ~/ 4
BK :5 / 4 RT 110
BK :5
.SETSCRUNCH 1
JUMP 10

END

TO N2 :5

.SETSCRUNCH 1.3

RT 180 JUMP 2.5 RT 180
PU

FD 2 % 1§ / 4

PD FD :S / 4 BK :5 / 4 RT 90
€C:5/ 41 RT 20

PU

BK :S ~ 4

PD BK :5 ~ 4

RT 90 FD :8 / 3

BK :5 / 3 LT %0

JUMP 2.5

.SETSCRUNCH |

JUMP 10

END

TD N3 1S
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KT 180 JUMP 2.5 RT 120

PUFD 2 » S » 4 PD

BT 90 € :% - 4 1 RT 20

PU BK :5 » 2 PD

RT %0 C :5 - 4 1 RT #0

PU BK :S - 4 PD

JUMP 10

EMD

TO N4 S

FD :S » 2 BK 5 « 4

LT #0 BK 5 - 4 FD % 2 RT 78

RT 3 FO 2 + 5 / 3 BK 2 + :& 2 LT S
LT 20 BK :& » 4 RT 70 BK :% 4

JUMP 10

EMD

TO NS 5

PU FD & / 4 FD

FT 90 C 2 /7 4 1| RT 90

PU FD £ ~ 4 PD

FD 5 » 2 RT 90 FD 5 » 3 BK :2 / 2 LT 70
PU BK :8 FD

JuMp 10

END

TO RE :&

REPEAT Z [RBLOB :5 RT {201

END

TO N7 :S

RT 180 JUMP 2.5 RT 180

RT 30 FD :5 LT 120 FD :S / 2 BK :58 ~ 2
RT 120 BK :5 »/ 2 LT 30 RE :5 / 4 RT 30

BK :§ ~/ 2 LT 30

JUMP 2.5

JUMP 10

END

TO N8 :5

PU FD :5 . 4 PD

C :87 42

PUFD 7 %= :8 / 12 PD
€ :5./42

FU BK 10 = :5 / 12 PD
JUMP 10

END

TO Né :8

FUFD S/ 4 PD € :5 ~ 4 2
PU LT 90 FD :5 / 4 RT 90 PD

FD 2 » :& 7/ 3 RT 90 FD :5 / 2 BK :§8 7 2 LT 90 BK 2 + :8

PU RT 90 FD :5 / 4 LT %0 BK :5 ~ 4 PD
JUMP 10
END

TO N? :S
PU FD 11 # :5 / 12 PD RT 180

414

L



HNe 1§

RT 180 PY BK 11 =+ :5 »
JUMP 20

EMD

TO NO &

,SETSCRUNCH 1.o PU FD
€8+ 42

PU BK :8 . 4 PD

.SETSCRUMCH
END

TO NOB :5

1

.SETSCRUMCH 1.4

PU FD 5 » 2
LT 90 C :5 ~
PU BK :5 ./ 2
.SETSCRUNCH
JuMp 7

EMD

TO NCB :&

1

PD
21 LT 90
PD

.SETSCRUNCH 1.4
JUMP 5 PU FD :5 / 2 PD

RT 20 C :5 ~
PU BK 15 » 2
.SETSCRUNCH
END

TO JUMP :S

!

21 RT 90
PD

RT 90 PU FD :8 PD LT 90

END

TO MIN :§

PU FD :58 ./ 2
PU BK :8 / 2
JUMP 10

END

TO C :R :P
PU LT 90 FD
RT 5 PD
LOCAL "M
MAKE "M 2 =
REPEAT 18 #
LT S

PU RT 90 FD
END

TO L2 :S

. SETSCRUNCH
LT 90 BK :8
LNN :€

FD :5 RT %0
. SETSCRUNCH
JUMP 15

END

i€ 0 4

PD RT 20 FD :5 / 2 LT 90

PD

:R RT 70

iR % 3.1416
:P [FD :M RT 101

:R LT 20 PD

t.

1

s 36
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A

P L sz

BU RT 90

Fir v s 2 -
2 AR

TO LW
PUFD
LM 5
rUFD
JUMP 1S
EMHD

o
pa)
3
+
[

TR0

to

RT 70 FD

[x]
4+

ot
+

i

RT 20 PO

TO LY x
LSETSCRUNCH @,
PU RT %0 FDO . :5
LT 30 FDO :5 -
FD :z » 2 RT
PU FD + :5 ~
RT @0
.SETSCRUNCH 1
JUMP 1S

END

=0 LT 20
2 RT 90

eh

PU

o~
r
Lot

TO LU &
LSETSCRUNCH 2

PU REFEAT . [FD :S
C :5 1

RT 130

PU REFEAT 2
LSETSCRUNCH
JUMP 15

END

o

RT 201

[FD :2 RT %01
1

A
m

i
[

BK
JUMP 13
END

70 LS ::z

PU REPEAT 2 [FD :8 / 4 RT 901 LT %6 PD
REFEAT 2 [C :5 » 4 1 RT 90 PU FD :§ / 2
FU RT 90 RezPEAT 2 [FD :o . 4 RT 203 RO
JUMP 15

EMD

LT %0 PDI

0 LR 1o

416

FL



+
E

m
b-—~l-—~'—‘
w

Lt toe O on
N 0
=
[
(s
(e )
o (R

wm

r oo
=

b mw e

[ G R
[
o

BK 1.2 « 15/ Z
LSETSCRUMCH |
JUMP 15

EMD

TO LG :&
LOO :5

PU RT %0 FD
LT 45 FD :&
PU LT %0 FD
JUMP 1S

EMD

BK

S LT 20 PO
$ RT %0 PD

L
RN V]
o

V]
k]

TO LP S
LSETSCRUMCH 0.5
FD 3 = :S » 4

RT 20 C 5 7 4 1
RT %0

FD 5 7 4

BK :&
SETSCRUNCH 1
JUMP 13

END

T0 LO :S

PU REPEAT 2 [FD :3 RT 201 PD

RT 180

£ :82

RT 180 PU REPEAT 2 [FD :5 RT 201 PD
JUMP 15

EMD

TO LN :S

FD :S RT 150

FD :8 ~ COS 30

LT 150 FD :8

PU LT 20 FD ( SIN 30 / COS 30 ) # :S
RT 90 BK :8 PD

JUMP 15
END
TO LM :8

FD :8 RT 130 FD :S

LT 120 FD :8 RT 150 FD :S

RT 90 PU FD 2 =+ :S % SIN 30 » PD
RT #0

JUMP 15
END
TO LL :S

FD :5 BK :%
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RBLOB :8 / 2
JUMP 15
END

TO LK :8
FD :S BK :
AR 1 8
LT 90 BK :
JUMP 15
END

RT %0
COS 40

(GRS
A ~
e "~ Ty

TO LJ :5
.SETSCRUNCH 2

PU FD :S RT 180 PD
€ :5 0.5

BK :5 ¥ 2 FD :5 = 2
RT 90 PU BK :S PD
SETSCRUNCH 1

JUMP 15

END

TO LI :8

FD :S RE :§ / 2 BK :§&
RE :8 7/ 2

JUMP 15

END

TO LH :S

FD :S / 2 RT 90

REPEAT 2 [RE :S 7 2 FD :8 RT 1801
LT 90 BK :8 / 2

JUMP 15

END

TO LG :58

LCC :§

PU RT 90 FD :S LT 20 PD

FD :5 RT 90 FD :5 / 4 BK S / 2 FD :8 / 4 LT 90 BK :S
PU LT 90 FD :S RT %0 PD

JUMP 15

END

TO LF S

REPEAT 2 [FD :S / 2 RBLOB :5 / 2]
BK :8

JUMP 15

END

TO LE :S

REPEAT 2 [FD :5 / 2 RBLOB :5 / 2]
BK :8

RBLOB 8 / 2

JUMP 15

END

D :§

0
D2 # :5 BK :S RT 90
i

o -
[N SV
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RT 90 EK :
JUMP 15
END

(S

T0O LC :5

PU REPEAT 2 [FD :
RT 90

C:5 1

RT %0

PU REPEAT 2 [FD :S RT %01 PD
JUMP {5

END

re

RT %01 PD

TO LB :§

LPP :5
LSETSCRUNCH 0.5
FD :5 / 4

RT ?0 C :S ~ 4 1
RT 70

BK :5 / 4
LSETSCRUNCH
JUMP 15

END

TO LA S

.SETSCRUNCH 0.9

FD :5 / 2 RT 30 REPEAT 3 [FD :S / 2 RT 1201

RT 40 FD :S / 2 RT 90 FD :S / 2 PU RT 90 FD :8 / 2 RT %0 PD
.SETSCRUNCH 1

JUMP 15

END

TO DIRECTION :P
0P DIFF.A TOWARDS SE FIRST :P LAST :P HEADING
END

TO DISTANCE :N
OP SGRT ¢ 8@ ¢ XCOR - FIRST :N > » + ( 8@ ( YCOR - LAST N >
END

TO SG :X
OP :X = X
END

TO DIFF.A :A :B

IF :A - :B < 0 [OP 340 + :A - :Bl
IF sA - :B > 340 [OP :A - :B - 3401
gP :A - :B

END

MAKE "SE [40.0 -40.01
MAKE "5D [30.0 -40.01
MAKE "5C [0.0 -40.01
MAKE "5B [-30.0 -40.01
MAKE "5A [-40.0 -40.01
MAKE "4E [40.0 -30.01
MAKE "4D [30.0 -30.01
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Cae or ath 3

™ BEGIM
SETBRG 1
SETFC 2
FU

EMD

—{

0
<o

—
T
[ei s o}

iT ¢

d
I

m A
[CI S
jad)
Pt
rf
—
-
©

{D

TO0 wR S
LT 30 FD
RT &0 FD
LT 20
END

BK :
Bk

oo
o oen

TO LMM 5

LM sc

RT 130 JUMP [S RT 120
END

TQ LMW
LN :&

RT 120 JUMP 1S RT 180
END

(X8}

TO LCO
LD 5

RT {30 JUMP 15 RT 180
END

[5g)

TO LCC :5

LE :S

RT 180 JUMP 13 RT 180
END

TO LPP :5

LP :5

RT 180 JUMP 15
RT 180

EMD

TO SETL

MAKE "ALPHA (A BCDEFGHIT JKLMNOPQRRSTUNWXY ZI LeTi073

MAKE "BETA ( LIST [LA 131 [LB 201 [LC S [LD 5] [LE 101 [LF 101 [LG 51 [LH 101 [
LJd 91 [LK 101 CLL 107 [LM 103 [LN 101 [LO S1 [LP 201 [LG 5] [LR 201 [LS 101 [LTT
91 [LY 137 [LW 101 [LX 131 {bLY 1371 [LZ 101 ) (
END [LTT OJ

TO KLIK :MEMBER :LIST

IF NOT MEMBERP :MEMBER :LIST [QUTPUT 01
IF :MEMBER = FIRST :LIST [OUTPUT 11
QUTPUT & + KLIK :MEMBER BF :LIST

END

70 COMNM LTR
OP ITEM KLIK :LTR :ALPHA :BETA
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END

TO TRIZ

HT

PU SETPOS SE -40 -20 PD POST "D
PU SETPOS SE 50 30 PD POST "E
PU SETPOS SE 70 -33 PD POST "F
PU HOME PD

5T

END

TO TRI

HT

PU SETPOS
PU SETPOS
PU SETPOS
PU HOME PD
5T

END

-75 50 PD POST "A
&0 33 PD POST "B
10 -50 PD POST "C

w3 W
mmm

TO PLOMKI1O

PLOMKI

PLONKZ

PLONK2

HT

PU SETPOS SE -10 -10 PD POST "G
PU SETPOS SE ~100 -20 PD POST "H
PU SETPOS SE -50 -40 PD POST "I
PU SETPOS SE &0 -40 PD POST "J
PU HOME PD ST

END

TO PLONK3

HT PU SETPOS SE 40 70
PD

POST "D

PU SETPOS SE -40 70 PD
POST "E

PU SETPOS SE 40 -30 PD
POST "F

PU HOME PD ST

EMD

TO PLONK2

HT PU SETPOS SE -50 30
PD

POST "B

PU

SETPOS SE 20 &0
PD

POST "C

PU

HOME

PD ST

END

TO PLONK1
HT PU SETPOS SE 50 S50
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-
[ ]

DIFF.& m iE

M
I
]
o
[P L=

[ e B
S e |
I
|

o
]

7O DIRECTION :P
0P DIFF.& TOWARDS
EMD

SE FIRST P LAST :F

TO RE :
REPEAT
END

ta

[RELOE

i
s

-4
[,
£
o]
—i

TO POST :LTR

MaKE LTR POS

LOCaL "Wa

MaKE "0 HEADING

PD SETPC 4

HT SETH & RT 45 RE 2
SETPC 5
LABEL!
S5ETPC 2
5T pPU
EMD

(W

LT 90 RE 3 RT 45

LTR

TO .LaABEL :LTR
RUN { RUN CCOMV
END

tLTRI

TO LABELI
PU
IF YCOR

LTR

» 0 [IF XCOR » 0 [SETH 0 JuMP 21

HEADING

(seTd

[SETH 180 JUMP 15 SETH 031 [IF XCOR

3 JUMP 13 SETH 01 [SETH 135 JuMP 20 SETH 011

.LABEL :LTR
FU
SETH W@

SETPOS SE FIRCT THING :LTR LAST THING :LTR

PD
END

TO € R :F
PU LT 20 FD
RT § PD
LOCAL "M
MAKE "M 2 #
REPEAT 18 =
LT §

FU RT 20 FO
END

R RT 20

tRo% 3,1418 »
1P IFD

34
M ORT 101

0

LT #0 RO
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o

s

LA )

CR
Er

B

g
e

—

L
ET
o)

[
.
il

Lan)
=

MW so

FD 2 RT 70
LSETSCRUNCH 1
JUMP 1%

ERMD

-—
=

LA

TO LY
PU RT %
FD 5 - 2
PU LT 70 F
JUMP 15
EMD

[ BN E Y]

F

D ,
AR 1€ ¢ 2
D <

(1)

[4n]

TO LK S
RT 20 FD
AR 15+ 2
RT 120 AR 1= - 2
RT 20 FT 2 -
JUMP 15

END

L
tu
-
—

TO L4
PU FO
LM &
PU FD
JUMP 15
END

o

i

(1]

RT ¢0 FD 2

TO LYV :S
LSETSCRUNCH 0.9

PU RT 90 FD ( :§8 ~
LT 30 FC :8 / 2 RT
FD :3 .7 2 RT 30 FD
PU FD ( 5/ 2 5 #
RT 20

.SETSCRUNCH 1

JUMP 15

END

TO0 LU :5
LSETSCRUNCH 2

PU REPEAT 2 [FD :S
C 51

RT 180

PU REPEAT 2 [FD :5
L,SETSCRUNCH |

JuMpP 15

END

el
m
(23]
[£8]

JUMP 135
END

RT 90 FD 2 4

2 . + COS &0 LT 20 FD
BK 5 o 2
2+ (08 &0 RT 20 PD
20
150
# ( 15 « SIN 30 » RT 20 PD
# . 18 % 5IN 30 » RT 90 PD
2y % COS 40 LT 20 PD
20 FD :S / 2 BT 20 PU FD :%
:S 2 RT &0
C0S &0 PD

RT 201

RT 201
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TO LS :¢
PU REPEAT 2 [FD

REPEAT 2 [C :S&

PU RT 90 REPEAT
JUMP 13
END

TO LR :&
LPP :S
.SETSCRUNCH
FD 1.2 = :5
RT 155

FD :8 7 1.8

BK :8 7 1.4

LT {55

BK 1.2 # :5 7 2
.SETSCRUNCH 1
JUMP 15

EHD

Lowe]
w

FJ

TO L@ :S
LOO :5

PU RT 90 FD
LT 45 FD :5 ~
PU LT %0 FD 2
JUMP 15

END

ta
* W A4

TO LP :S
.SETSCRUNCH 0.5
FD 3 # :§ 7 4
RT 90 C :8 7 4 1
RT <0

FD :5 / 4

BK :S
.SETSCRUNCH 1
JUMP 15

END

TO LO :5

PU REPEAT 2 [FD :5 RT 901 PD

RT 180
C :8 2

¢S 7 4 RT 201 LT 90 PD
4 1 RT 90 PU FO :8 / 2 LT 90 PDI
2 [FD 5 / 4 RT %01 PD

:S LT 20 PD
BK :§ FD 2 =
:S RT 20 PD

:S / 3 RT 45

RT 180 PU REPEAT 2 [FD :S RT 901 PD

JUMP 15
END

TO LN :5

FD :5 RT 1350
FD :S ./ CDS 30
LT 150 FD :5

PU LT %0 FD ( SIN 30 ~ COS 30 > = :S

RT 90 BK :8 PD
JUMP 15
END

TO LM :S
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el
e

L)

-

-
0w o=
o0
i

FDO 1w
RELCE
JUMP 15
EMD

h

s 2 RT 70
aR (o5 . © CO05 &0
LT 20 BK
JUMP 15

EMD

e -
Fr g G

(8]

TO LI =
.ZETSCRUMCH 2

PU FD :S RT {80 PD
C 15 0.9

Bk S5 = 2 F 15 = 2
RT 70 PU BK :2 PD
.SETSCRUMCH 1

JUMP 15

END

il
e}
w s

RE :
JUMP 15
END

TO LH :5

FD :5 » 2 RT 90
REPEAT 2 [RE :5 » 2 FD :S RT 1801
LT 90 BK 5 ~« 2

JUMP 15

END

TO LG :S
LCC :5
PU RT 90 FD :8 LT 20 PD

FD :5 RT 90 FD :5 / 4 BK 15 / 2 FD S / 4 LT 90 BK :

PU LT 90 FD 5 RT 90 PD
JUMP 15
END

TO LF :5

REPEAT 2 [FD :5 » 2 RBLOB :§ » 21
BK :5

JUMP 15

END

TO LE :%
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REPEaAT 2 IFD :C < . RBLOE . kS
BK o2

RELOB :_ .z

JUHMP 1S

EHD

T2 LD 2

LD

FD 2 =« S BK 3o RT 70
9
7

)
1
-
[aa]
oL
(XN}

Pl REPERT = [FD := RT 201 PD

RT 20

PU REPEAT 2 [FD :
JUMP 15

EMD

o

RT 201 PO

L)

w

LSETSCRUMCH 0.5
FG oS . 4

RT 20 C :5 » 4 1
RT 70

BK :5 » 4
»SETSCRUMCH 1
JUMP 15

END

T0 LA :S

.SETSCRUNCH 0.9

FD :5 - 2 RT 30 REPEAT 2 [FD :5 / 2 RT 1201

RT 40 FD :5 / 2 RT 90 FD :S / 2 PU RT 90 FD :S / 2 RT 90 PD
LSETSCRUNCH |

JUMP 15

END

T0 80 :X
OP 14 % X
END

TO DISTANCE :N NG
IF AND HEADING - ¢ TOWARDS SE FIRST :M LAST :M 3 £ 0.5 HEADIMG - . TOWARDS SE FIRS
AST M ) > -0.5 [SETH TOWARDS SE FIRST :M LAST :N OF SOGRT ¢ SQ ¢ XCOR - FIRST N )

3@ ¢ YCOR - LAST :MN » 31 [OP [I°M NOT HEADING IMN THAT DIRECTIONI STOPI >+_(
END

TO JUMP :5

RT 20 PU FD :8 PD LT %0
END
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Cate 2

T3 DIRECTION :P
OP DIFF.A TOWARDS SE FIRST :® LAST P HEADIMG

MO

TQ DIFF.A 1n B
IF 1n - B < 00
IF im - B . =
0P = - B
EHD

T
[a]
wa CF
“+
T
i
Lo o
ko

[}
[

TO DISTAMCE M

IF HEADIMG =  TOWaRDS SE FIRST M LAST M - [0OP 2QRT ¢ 38 ¢ COR - FIRST :H » » 4
¢ fCOR - LAST N o 1 [OP SE [I°M MOT HEADIMNG TOWARDS1 N STOPI (SQD
EMD

T0 S0
OP 11 ¢ 1%
END

TO BEGIM
MSETL
SETL

FIx

END

TO NSETL

MAKE "GAaMMA [0 10 20 20 40 50 &0 70 80 90 100 110 120 130 1401

MAKE "DELTA . LIST [ONJ] [N10J1 [N20] [N301 [N403 [NSOGI [N&01 [N701 [NBO] IN®01 [NIO(
107 [N1201 IN1301 [N1401

END ' ANA
TO SETL
MAKE "ALPHA [ABCDEFGHIJKLMNOPGRSTUVWXY 2] 10)

MAKE "BETA ¢ LIST [La 137 [LB 201 [LC 51 [LD 51 [LE 101 [LF 101 [LG 51 ILH 101 [LI
LJ 51 [LK 107 [tb 107 [LM 101 [LN 101 [LO 31 [LP 201 [L& 51 [LR 201 [LS 103 ILTT I
51 [LV 131 [LW 101 [LX 131 [ty 131 [LZ 101 » JLeu

END

TO START
SETBG 1

GRID 120 140
END

TO GRID :A :B
UNFIX HT SETPC O
Ml :A

LT 90

M1 :B

RT 990

ST

SETPC 2

FIX

END

TO M1 :D
BK [
REPEAT :D % 2 / 20 [MO1]
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RT 90 FD S BK 5 LT 70

gk D

EMD

T3 M

RT 90 FD S BK T LT 0@ FL 14
RT 90 FL 2.5 BK 2.5 LT %0 FD 10
EHE

TO RBLOE

RT ®0 FL :& Bk :5 LT ®0
EMD

T0 RE :5

REPEAT - [RBLOB := RT 1201
EMD

TG 1140
ML 7

Hd 10
MO 10
EMD

T0 M130
Hi 7
M3 9
MO 10
END

TO N120
WL 7
B2 10
HO 10
END

TO W110
ML 7

N1 7

N0 10
END

TO M100
N1 7

MO 10
NO 10
END

TO N9 :5

PU FD 11 « :5 12 PD RT 180
Né :&

RT 120 PU BK i1 # :8 / 12 PD
JUMP 20

END

TO0 MN?0
H? 10
MO 1d
END
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TO NB :
PU FD

C oz~
PUFD 7 + 5. (2 FD

o O

L 1S - 4
PU BK 10
JUrMP 1¢
ERD

PR e ]
S
0
L

TO N8O
He 1d

NO {0

END

TO N7 &

RT 180 JUMP 2.3 RT ..

RT 30 FD :S LT 120 FD :S ~/
ST IO BH S o 2 LT 30 RE
BK 5 » 2 LT 30

JUMP 2.5

JUMP 10

EMD

AN RV

BK

(O N}

(A1)

=
nrn
_4 -
o

Lt

TO N70
N7 10

NO 10

END

TO N6 :5
PUFD 5+ 4 PDC S/ 42
PU LT 90 FD S ~ 4 RT 90 PD

FD 2 # :S / 3 RT 90 FD :8 / 3 BK :5 ~ 3 LT 90 BK 2 + :8 ~/

PU RT 90 FD 5 / 4 LT %0 BK :5 / 4 PD
JUMP 10
END

TO MN&0
N6 10
NO 10
END

TO N5 :§

PU FD :S5 ~/ 4 PD

RT 90 C :S 7 4 | RT %0

PU FD :S / 4 PD

FD :S /7 2 RT 20 FD :8 / 3 BK :8 / 3 LT 90
PU BK :S PD

JUMP 10

END

TO NS
N3 10
NO 10
END

TO M4 :5
FD :S / 2 BK 15 4
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LT 70 BK
RT 5 FD 2 : :
LT 90 BK :5 ./ 4 RT 90 BK :5 7/ 4
JUMP 10

EMD

4
o
"
u
(dn]

TO M40
M4 10

NO 10

EMD

TO N3 :S

RT 180 JUMP 2.3 RT 180
PU FD 2 # 15 / 4 PD

RT 90 C :5 ~ 4 | RT 90
PU BK :S8 ./ 2 PD

RT 90 C :8 / 4 1 RT 90
PU BK :& -~ 4 PD

JUMP 10

EMD

TO Nad
N3 9
MO (0
END

TO N2 :S5

.SETSCRUMCH 1.3

RT 180 JUMP 2.5 RT 180
PU

FD 2 # :S / 4

PD FD :S © 4 BK :8 7 4 RT 90
C:57 41 RT 90

PU

BK :5 / 4

PD BK :5 7 4

RT 90 FD :S ~ 3

BK :8 / 3 LT 90

JUMP 2.5

.SETSCRUNCH 1

JUMP 10

END

TO N20
N2 10
NO 10
END

TO N1 :S
LSETSCRUNCH 1.3
RE :5 / 4 FD :%
LT 110 FD :S ~ 4
BK :53 7 4 RT 110
BK :8
.SETSCRUNCH 1
JUMP 10

END
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TO MIO
HL 7
HO 10
EMD

TO NO :s
LSETSCRUMCH L. &
LSS 42

PU BK % .
. SETSCRUMCH !
JUMP 10

END

TO ON
N0 10
END

TO KLIK :MEMBER :LIST

IF NOT MEMBERP :MEMBER :LIST [OUTPUT 01
IF :MEMBER = FIRST :LIST [OUTPUT 1]
QuTPuT | + KLIK :MEMBER BF :LIST

EMND

TO NCONY :N.O
OP ITEM KLIK
EMND

.0 :GAMMA (DELTA

TO MIN :5
PU FD
PU BK
JUMP 10
END

RT 90 FD :5 # 2 LT %0

s/ 2 PD
s 2 PD

i 5
H)

TO NCB :5
.SETSCRUNCH 1.4
JUMP 5 PU FD :5 / 2
RT 90 € :5 7/ 2
PU BK 5 ./ 2 PD
.SETSCRUNCH 1
END

PD
1 RT 90

TO N.LABEL :N.OM
IF :N.OM < 0 [MIN 10 RUN <
END

RUN INCONV -

TGO NOB :5

.SETSCRUNCH 1.4

PU FD :S / 2 PD

LT 90 C :S/ 21 LT 90

PU BK :§ / 2 PD
.SETSCRUNCH 1

JUMP 7

EMND

TO JUMP :S

RT 90 PU FD :5 PD LT 90
END
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TO WRITE :m B
UMFI® HT

LaCaL "uWa

HMAKE "iJQ HEADIMG
S4POST "4

SETPC S

IF aMD = = #COR
P 10 M.LABEL :B WC
PU .SETSCRUMCH 0.8
SETPGS :@

SETH W@

8T SETPC 2 PD

FIx

END

YCOR [SETH O PU LT 90 FD 30 JUMP 10 RT 70 PD NOB 10 M.LABE!

B =
B 101 I[PR [I'M MOT THERE] FIX §T PD SETPC 2 STOP] Ju

TO S4POST :MAME
MAKE sNAME LIST XCOR YCOR
END

TO GAMEI
PLCROSS &0 50
END

TO FIX
FIxX1
FIX2
FIX3
FIX4
FIXS
FIXé
FIX?7
END

TO CROSS :Q
RT 45 RE :Q LT 90 RE :Q RT 45
END

TO UNFIX
UNFIX1
UNF 12
UNFIX3
UNFIX4
UNF1X5
UNFIX&
UNFIX?
END

TO GAMEZ2
PLCROSS 80 -40
END

TO GAME3
PLCROSS -70 -40
END

TO GAME4

PLCROSE -100 0
END
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TO UNFIX7
COPYDEF "OLDLT "LT
END

TO UNFIXé
COPYDEF "OLDRT "RT
EMND

TO UNFIX5
COPYDEF "OLDBK "BK
EMD

TO UNFIx4d
COPYDEF "OLDFD "FD
END

TO UNFIX3
COPYDEF "OLDSETPQOS "SETPOS
END

TO UNFIX2
COPYDEF "OLDSETY "SETY
EMD

TO UNFIx!
COPYDEF "OLDSETX "SETX
END

TO HELP3 :C :B
OLDSETPOS SE :C :B
END

TO PRMES

PR [1“M NOT HEADING TOWARDS THE PLACE YOU WANT TO TAKE ME]
END

T0 C :R :P

PU LT 920 FD :R RT 90

RT 5 PD

LOCAL "™

MAKE "™ 2 % R % 3.1418 / 36
REPEAT 18 # :P [FD :M RT 101
LT S

PU RT 20 FD :R LT 90 PD

END

TO HELP2 :D :E
0P TOWARDS SE :D :E
END

TO NEWLT :S
PR [1 DONT KNOW HOW TO LTI
END

TO FIX?7
COPYDEF "LT "OLDLT
COPYDEF "NEWLT "LT
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EMD

TO NEWRT ::3
PR [1 DONT HWNOW HOW TO RT]
EMND

TO Fixe

COPYDEF "RT "CLDRT
COPYDEF "MEWRT "RT
END

T0 MEWBK :§
PR [1 DONT KNOW HOW TG BK1
END

TO FIX3

COPYDRDEF "BK "OLDBK
COPYDEF "MEWBK "BK
END

TO MNEWFD ::
PR [1 DONT KNOW HOW TO FDI
END

TO F1x4

COPYDEF "FD "OLDFD
COPYDEF "NEWFD "FD
END

TO NEWSETPOS :C :B
IF POS = SE :C :B [STOP] [IF { TOWARDS SE :C :B » = HEADING [OLDSETPOS SE :C :BI

STOP1] CPRMES
END

TO FI1X3

COPYDEF "SETPOS "OLDSETPOS
COPYDEF "MEWSETPOS "SETPOS
END

TO NEWSETY :S P
IF YCOR = :5 [OLDSETY :S1 [IF YCOR > :S [IF HEADING = 180 [OLDSETY :S] [PRMES STC
HEADING = 0 [OLDSETY :S] [PRMES STOP11]

END

TO FIX2

COPYDEF "SETY "OLDSETY
COPYDEF "NEWSETY "SETY
END

TO NEWSETX :8

IF XCOR = :5 [OLDSEX :S51 [IF XCOR » :S [IF HEADING = 270 [OLDSETX :51 [PRMES STOF
HEADING = 90 [OLDSETX :S1 [PRMES STOP11]
END

TO FIXH

COPYDEF "SETX "OLDSETX
COPYDEF "NEWSETX "SETX
END
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TO GAMES
PLCROSS -70 70
PLCROSS 100 -49
EMD

TO GAMES
PLCROSS 20 @20
PLCROSS -30 -10
END

TO GAME?
PLCROSS 20 0O
PLCROSS 70 0
END

TO GAMER
PLCROSS 20 80
PLCROSS 30 -70
END

TO PLCROSS :/ :B
UNFIX HT PU SETPOS SE :A :B
SETPC 4
>K/PD CROSS 5 PU
SETPOS SE 0 O
SETPC 2
ST
FIX
END

TO GAME?
PLCROSS 0 -110

PLCROSS 0 -70
END

MAKE "BETA [[LA 1S
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4 8¢
S -0 -1l0

PLCROSS sl --0
D
TO GHMEL L
PLOROSS - -0 %0
PLCROSE -=0 -40
PLCROSE 70 =70
END

TQ GHME?
PLCRDOSS & -110
PLEROZS 0 =70
END

TO BAMES

PLCRGSS 20 80
PLEROSS 20 -70
END

7O GAME?
PLCROSS 90 O
FLCROSS 70 0O
END

TO GAMES
PLCROSS 20 90
PLCROSS -30 -10
END

TO GAMES
PLCROSS -90 70
PLCROSS 100 -4
END

TO NEWSETX 15

IF XCOR = :5 [OLDSEX
HEADING = 90 [OLDSETX
END

TO MEWSETY :5

IF ¥COR = :S5 [OLDSETY
HEADING = 0 [OLDSETY
END

TO MEWSETPOS :C :B

IF PGS = 8E :C

STOP1]

END

TO NEWFD 18

1B [STOPT [IF ¢

Cate o

:51 [IF <COR

7

:S [IF HEADING = 270 [OLDSETX

151 [PRMES STDP111

:81 [IF YCOR :

:5 [IF HEADING =

:51 [PRMES STOPI1]

PR [1 DONT KNOW HOW 7O FDI

EMD

TO NEWBK :&

TOWARDE SE :C :B ) =
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FR LI DOMT HMOW RHOW TO BK]
EMD

TO MEWRT ::I
PR [1 DOMT KMOW HOW TO RTI
EMD

TO MEWLT ¢
PROLI DOWNT EWROW HOW TO LT1
N

TO HELPZ D :E
0P TOWARDS SE :L :E
END

TO PRMES
PR [1'M WOT HEADING TOWARDE THE PLACE %OU WANT TO TaKE ME]
EMD

TO HELFZ :L :B
OLDSETPOS SE :2 :E

EHD

TO GAME4
PLCROSS -100 20
END

TO GaAMEZ
PLCROSS -20 -40
END

TO GAMEZ
PLCROSS 80 -s0
END

TO UNFIXY
COPYDEF “OLDLT "LT
EMD

TO UNFIXé
COPYDEF "OLDRT "RT
END

T3 UNFIXS
COPYDEF "OLDBK "BK
END

TO UNFIX4
COPYDEF "OLDFD "FD
END

TO UNFIX3
COPYDEF "CGLDSETPOS “"SETPOS
END

TO UNFIx2
COPYDEF "OLDSETY "SETY
EME
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TO UNMFIXI
COPYDEF "OLDSETH "SETH
EMD

TO0 CROSS &
RT 43 RE :G LT 20 RE :G RT 4%
EMND

TO FIX?

COPYDEF "LT "COLDLTY
COPYDEF "MEWLT "LT
END

TO Flxé

COPYDEF "RT "OLDRT
COPYDEF "MEWRT "RT
END

TO FIXS

COPYDEF "BK "CLDBK
COPYDEF "MEWBK "BK
END

TQ Flx4

COPYDEF "FD "OLDFD
COPYDEF "MEWFD "FD
END

TO FIX3

COPYDEF "SETPOS "OLDSETPOS
COPYDEF "NEWSETPOS "SETPOS
END

TO FIxz

COPYDEF "SETY "OLDSETY
COPYDEF “NEWSETY "SETY
END

TO FIX1

COPYDEF "SETX "OLDSETX
COPYDEF "MEWSETX "SETX
END

TO PLCROSS :~ :B

UNFIX HT PU SETPOS SE :~ :B
SETPC 4

.'PD CROSS 5 PU

SETPOS SE 0 0O

SETPC 2

5T

FIX

END

FECRAE co 50

END
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TO 34POST :HAME
MAKE :MAME LIST XCOR YCOR
END

TO WRITE :m :B

UNFIX HT

LOCAL W0

MAKE "{0 HEADIMG

ZETPC S O Al
IF { AND im - <COR + 9.5 :m - <COR - -0.5 :B - COR - 0.5 :B - ¥COR » -0.5 » [SETH
LT 90 FD 30 JUMP 10 RT %0 PD MOB 10 M.LABEL :~ JUMP 10 N.LABEL :B NCB 101 [PR [I'M
HERE] FIX ST PD SETPC 2 STOP) NoT
PU .SETSCRUNCH 0.2

SETPOS SE :m :E

SETH :W0

5T SETPC 2 PD

FIx

END

TO HOB :%&
SETSCRUNCH ! .4

PU FL :5 » 2 PD

LT 20 C :& / 2 1 LT 90
PU BK v PD
LSETSCRUNCH |

JUMpP 7

END

(%)

TO MN.LABEL :N.OM

IF :N.OM < 0 [MIN 10 RUN ¢ RUN [NCONV - :N.OMI >] [RUN ¢ RUN [NCONV :N.OM] )]
END

TO NCB :S

.SETSCRUNCH 1.4

JUMP S PU FD :8 / 2 PD
RT 20 C :5 / 2 1 RT 90
PU BK :5 / 2 PD
«SETSCRUMCH 1

END

TO MIN :5

PU FD :S / 2
PU BK :8 / 2
JUMP 10

END

PD RT 90 FD :5 ~ 2 LT 20
PD

TO NCONV :N.O
OP ITEM KLIK :N.O :GAMMA :DELTA
END

TO KLIK :MEMBER :LIST

IF MNOT MEMBERP :MEMBER :LIST [QUTPUT 01
iF :MEMBER = FIRST :LIST [CUTPUT 11
OUTPUT 1 + KLIK :MEMBER BF :LIST

END

TO NS 35
PU FD :5 / 4 PD
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RT 90 C :S ~» 4 1 RT 20
PU FD :8 / 4 PD

FD 5 . 2 RT 90 FL :5 / 2 BK ::2 3 LT
PU BK :5 PD

JUMP 10

EMD

oMY s

RT 180 JuMP 2.3 RT 180

RT 20 FD :5 LT 120 FD :¢

> BK
)/ :

(XN Y]
L
o wm
-1
L
D tu

RT 120 BK :5 » 2 LT 30 RE
BK :€ . 2 LT 20
JUMP 2.5

JUMP 10

END

TO ME :5

PU FB :& .~ 4 PD

C :5 4 2

PU FD 7 =~ 15 ~ 12 PD
£ :5 /42

PU BK 10 « :S5 7 12 PD
JUMP 10

END

TO JUMP 5
RT 90 PU FD :8 PD LT %0
END

TO Né :8

PUFD :§ 4 PDC S5/ 42

PU LT 90 FD :5 ~/ 4 RT %0 PD

FD 2 # :8 / 3 RT 20 FD :8 / 3 BK :§ / 3
PU RT 90 FD :S / 4 LT 90 BK :8 ~ 4 PD
JUMP 10

END

TO N9 :5

PU FD 11 % :5 / 12 PD RT 180
Né :5

RT 180 PU BK 1! # :§ .~ 12 PO
JUMP 20

END

TO N2 :5
.SETSCRUNCH 1.3
RT 180 JUMP 2.5 RT 180

PU

FD 2 + :5 / 4

PD FD :8 » 4 BK :5§ / 4 RT 90
C 85~/ 41 RT 90

pu

BK :5 ./ 4

PD BK :8 / 4

RT 90 FD :8 ~ 3

BK :5 7~ 3 LT 90

JUMP 2.5

.SETSCRUNCH 1
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JUMP 10
END

TO N2 S

RT 180 JUMP 2,3 RT 120
PU FD 3 = : 4 PO

RT 90 C : 4 1 RT @0
PU BK PD

RT 90 C < 4 1 RT 20
PU BK :S 4 PD

JUMP 10

END

T

o
R { Y I 5 }
rJ

TO NO =S

LSETSCRUNCH 1.6 PU FD :S ~ 4 PD
C:s5~/ 42

PU BK :£ + 4 PD

.SETSCRUNCH 1

JUMP 10

END

TO N4 %
FD :S 2 BK ¢
LT 90 BK :& » 4 FD
RT 5 FD 2 +

LT 90 BK :§ / 4 RT @
JUMP 10

END

TO N1 :S
.SETSCRUNCH 1.3
RE :5 / 4 FD :5
LT 110 FD :8 / 4
BK :5 » 4 RT 110
BK :§
.SETSCRUNCH 1
JUMP 10

END

TGO RE :S
REPEAT 2 [RBLOB :S RT 1801
END

TO RBLOB :S
RT 90 FD :5 BK :5 LT 90
END

TO MOI

RT 90 FD 5 BK 5 LT 90 FD 10

RT 90 FD 2.5 BK 2.5 LT 90 FD 10
END

TG ML D

BK :D

REPEAT :D # 2 / 20 [MO11]
RT 90 FD 5 BK 5 LT @90

BK :D

END

441



TO UNFIX
UNFIX1
UHFTHZ
UMFIA3
EMD

T8 GRID :m

UHFIX HT SETPC O

ML s
LT <90
Ml B
RT 90
5T
SETPC 2
FIX
EMD

TQ START
SETBEG !

GRID 120 140
END

T0O C R :F
PU LT 90 FD
RT 5 PD
LaoCal ™M
MAKE "M 2 =
REPEAT 18 =
LT 5

PU RT 90 FD
END

TO M1i40
N1 7
N4 10
NO 10
END

TO N130
M1 7
N3 ?
NO 10
END

TO N120
N1 7
N2 10
NO 10
END

TO N110
N7

N1 7

NO 10
END

TO N1OO

‘R RT 20

R 3.1416 -+ 38
:P [FD M RT 101

:R LT 20 PD

442



Ml 7
NO 10
NG 10
END

TO N?0
N% 10

HO 10

EMD

TO N8O
M8 10

NO 10

EMD

TO N70
N7 10

N0 10

END

TO N&0
Né 10

H0 10

END

T0 W50
N3 10
NO 10
END

TG N40
N4 10

NO 10

END

TO N30
N3 ¢
NO 10
END

TO M20
N2 10

NO 10

END

TO N10
N1 7
NO 10
END

TO ON
N0 10
END

TO FIX
FIX1
FIX2
FIX3
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EMD

TO SETL i
MAKE "AlLPHA [ BCODEFGHI Ik e MNOPAIRETUVW A2 IC
MAKE "BETA « LIST [LAa 131 [LE 201 [LC =1 [LD 51 [LE 103 [LF 103 [LG 52 [LH 101 [LI
LJd 51 [LK 103 [fer 103 CbM 101 oW 103 [LO 53 [LP 201 [LO 53 [LR 2071 [LS 100 [L7T7 !
31 DLV 131 [LW 163 fLx 133 [iy 131 fed 101 P
EMD [ -U

TO MSETL

MaKE "GaMMa [0 10 20 30 40 S0 &0 70 80 90 100 110 120 130 1401

MaKE "DELTa  LIST [OWN] [MNI0J IW203 [M30] [N401 NS0 [NS0] [M701 I[MEOI I[MSD] [H10
107 [M1201 [N1301 IN1401 o

END

TO BEGIN
MSETL
SETL

Fix

EIND

TO S92 :x
0P 1 =
END

TO DISTANCE :N ‘N
IF AND HEADING - + TOWARDS SE FIRST :N LAST :N ) < 0.5 HEADING - . TOWARDS SE FIRS

AST :N ) » -0.5 [SETH TOWARDS SE FIRST :N LAST :N OP SGRT ¢ S@ ( XCOR - FIRST :N )
S@ ( YCOR - LAST :N ) )1 [OP SE [I°M NOT HEADING TOWARDS] :N STOP]

END

TO DIFF.A A :B
IF 4 - B < 0 [OP 380 + A - :BI]

IF 4 - B > 380 [0OP A - :B - 3401
0P 4 - B
END

TO DIRECTION :P
0P DIFF.A TOWARDS SE FIRST :P LAST :P HEADING
END

444



APPENDIX D

Th P.D D microworld
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The rimitives of the P.D.D. microworld stud

POST "(letter)

Execution of this command places a list consisting of the coordinates of the turtle's
current position into the computer memory, labels the list according to the letter given
and displays the letter on the screen in the proximity of the turtle's position. It also
signifies the exact position by placing an "x" sign on it.

DISTANCE :(letter)
Execution of this command outputs the distance in turtle steps betwen the current
position of the turtle and the position signified by (letter).

DIRECTION :(letter)
Execution of this command outputs the number of degrees the turtle would have to turn

towards the right from its current heading in order to face the position signified by
(letter).
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The rocedures initialisin the tasks

in Vi PDDmi w

The procedures PLONK1, PLONK2, PLONKS, PLONK10, cause the turtle to move to a
number of positions on the screen (the numbers at the end of PLONK show how many
for each procedure) in PENUP and HT mode, label the positions and return to the
starting position, changing the mode to ST and PD. These procedures were used in
the activities labelled SET1, in figure 7.2.1.

The procedures TRI and TRI2, cause the turtle to place three points on the screen (as

in the PLONK procedures), in the formation shown in figure 7.2.1. The two procedures

were used for the SET2 activities in category 1, fig. 7.2.1.
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The ro rams forthe rimitives and the tasks in the P.D.D. microworld

TQ .LmBEL :LTR
RUM ¢ RUN [COWY LTRI
EHD

TO CONV iLTR
QP ITEM KLIK :LTR :ALPHA :BETA
END

TO SETL ~

MAKE "ALPHA [ABCDEFGHIJKLMNOPGRSTUVWXY Z] ‘O.

MAKE "BETA ¢ LIST [La 131 [LB 201 [LC 51 [LD 51 CLE 101 [LF 101 [LG 51 [LH 101 ILI

LJ 51 [LK 101 [LL 101 [tM 103 [LW 103 [LO 51 [LP 201 [LG@ S1 [LR 201 [LS 101 LLTT
LAST LYV 131 [LW 103 [L¥X 131 LY 121 [LZ 101

END

70 KLIK :MEMBER :LIST

IF NOT MEMBERP :MEMBER :LIST [OUTPUT @1
IF :MEMBER = FIRST :LIST L[OUTPUT {1
QUTPUT 1 + KLIK :MEMBER BF sLIST

END

TO LR :5

LPP :&
.SETSCRUNCH 0.5
FD 1.2 « 38 » 2
RT 133

FD :8 / 1.é§

BK :8 / 1.6

LT 159

BK 1.2 % :§ ~ 2
.SETSCRUNCH 1
JUMP 15

END

TO LB :5

LPP :5
.SETSCRUNCH G.5
FD :5 / 4

RT 90 € :S 7 41
RT 20

BK :8 / 4
.SETSCRUNCH !
JUMP 15

END

TO LG :5

LCC :S

PU RT 90 FD :S LT 90 PD

FD :5 RT 90 FD :S / 4 BK 5 / 2 FD :§ / 4 LT 90 BK :8
PU LT 90 FD :S RT %0 PD

JUMP 15

END

TO LG :5

LOO :5

PU RT %20 FD 2 = :S LT 20 PD

LT 45 FD :8 / 3 BK 8§ FD 2 = :§ / 3 RT 45
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PU LT 90 FD 2 « :§ RT %0 PD
JUMP 15
END

0 LD :5
D « :S BK :
C 51

RT 70 BK :5
JUMP 13

END

RT 20

o

T
F

wrro I

TO LZ :%
LSETESCRUNCH 1,
LT 90 BK :5
LNN :5

FD :S RT %0
LSETSCRUNCH |
JUMP 15

END

cn

TO LS :S
PU REPEART 2 [FD :5 v 4 RT 201 LT 20 PD

REPEAT 2 IC :5 .~ 4 1 RT 90 PU FD :5 / 2 LT 90 PD]

PU RT 90 REPEAT 2 [FD :8 / 4 RT 901 PD
JUMP 13
END

TO LW 15

PU FD :S RT 90 FD 2 = ( :8 # SIN 30 » RT 90
LMM :8

PU FD :5 RT 90 FD 2 # ( :5 % SIN 30 ) RT %0
JUMP 15

END

TO LA :5

.SETSCRUNCH 0.7

FD :S / 2 RT 30 REPEAT 3 [FD :S ~/ 2 RT 1201
RT 60 FD :§ ~ 2 RT 90 FD :S / 2 PU RT 90 FD
.SETSCRUNCH !

JUMP 15

END

TO LV :S

.SETSCRUNCH 0.9

PU RT 90 FD ¢ :8 / 2 > % C0S 40 LT %0 PD

LT 30 FD :5 / 2 RT 30 FD :8 / 2 RT 90 PU FD
FD :S / 2 RT 30 FD :8 / 2 RT 40

PU FD ( 58 / 2 ) = CO0S &0 PD

RT 90

.SETSCRUNCH 1

JUMP 15

END

TO LU :8

.SETSCRUNCH 2

PU REPEAT 2 [FD :S RT 901
C :51

RT 180
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PU REPEAT 2 L[FL ::o RT 707
LSETSCRUNCH 1

JUMP 13

EMD

C R P

LT 90 FU :R RT 20

RT S PD

LOCAL "M

MAKE "M 2 + R % 33,1414 o 2¢&
REPEAT 18 % P [FD :M RT 101
LT 5

PU RT 70 FD R LT 70 POL

END

TQ
Py

TQ LJ :5
.SETSCRUNCH 2

PU FD :S RT 120 PD
£ 5 0.5

BE 52+ 2 FD S = 2
RT 90 PU BK :S5 PD
.SETSCRUNCH |

JUMP 15

ERD

TO LX :S

RT 20 FD :8 ~ 2 LT 20
AR 5 2

RT 180 AR :8 / 2
RT 30 FD :5 ~ 2 RT 150

JUMP 15
END
TO LY :S

PU RT 90 FD ¢ :8 / 2 » # COZ &0 o7 90 PO
FD 5 . 2 AR 5 / 2 BK :& » 2

PU LT 90 FD ¢ :S5 ~/ 2 ) % COS &0 RT %0 PD
JUMP 15

EMD

TO AR &
LT 20 FD
RT &0 FD
LT 30
EMHD

BK
BK

oorin
o

T0 L
FD
aGR
LT 70
JUMP 153
EHD

-
P Ay

L
tJ

RT %0
Cas &

ta

[4x)
.
(NI

K

neg o g «-

TO LE :S

REPEAT 2 [FD ::z - 2 RBLOBR :2 - 21
BK :%

RBLOB :& - 2

JUMP 15
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END

TO LF :
REPEAT
Bk ¢
JUMP 13
EMD

Fo N

r
i
[on]
i

ot
A
m
e
[
ca
(]

TO LTT
FD o
RE
BK
JUHp 135
END

o

rJ

oo N

T
Le]
oL
S T
I o
o
(X%
8]
=x
(41

RE :Z .
JUMP 13
EMD

TO RE :8
REPEAT 2
END

TO LH :S

FD 5~ 2
REPEAT 2 [ =T
LT 90 BK :5 » 2

JUMP 15

END

TO RBLOB :
RT %0 FD :
EMD

ww

BK :5 LT %0

TO LL :5
FD :5 BK :5§
RBLOB :§ ~/ 2

JUMP 15
END
TO LP S

.SETSCRUNCH 0.5
FD 3 ¢« :§ 7 4
RT 90 C :§ ~ 4 1
RT 90

FD :S 4

BK :5
LSETSCRUNCH 1
JUMP 15

EMD

TQ LPP :5
LP :8

RT 180 JUMP 15
RT 180

END
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TO LO :5

PU REPEAT 2 [FD :S RY %01 PD

RT 180

C :82

RY 180 PU REPEAT 2 [FD :5 RT 901 PD
JUMP 13

END

TO LOO :5

LO :E

RT {80 JUMP 13 RT 180
END

TO LC :§

PU REPEAT 2 {FD :S RY 901 PD
RT %0

C :81

RT 90

PU REPEAT 2 [FD :¢ RT %01 PD
JUMP 15

EMD

o

TO LCC :S

LC :8

RT 180 JUMP 15 RT 180
END

TO LN :§

FD :5 RT 150

FD :5 ~ COS 30

LT 150 FD :S

PU LT 20 FD ( SIN 30 ~ COS 30 ) # :§
RT 90 BK :5 PD

JUMP 15

END

TO LNN :5

LN :S

RT 180 JUMP 1S RT 180
END

T0 JUMP :S
RT 90 PU FD :5 PD LT 90
END

T0 LM S

FD :S RT 150 FD :S

LT 120 FD :8 RT 150 FD :S

RT 90 PU FD 2 # ( :5 # SIN 30 » PD
RT 90

JUMP 15

EMD

TO LMM :8

LM :5

RT 180 JuUMP 1S5 RT 180
END
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MHKE TEETA [ILF ~—

T oIy

R

EMD

TG DIFF.A = B

F oim - B . 0O LGP 280 t tm - :BEI

IF 1w = 18 > 580 [OP 34 - B - 203

0P = - B

EHD

TO DISTaANCE i

Q0P SGRT « 8@ { «COR - SIRET M ¢ + 0+ 30 ¢ YCOR - LAST i

EMD

TG DIRECTION :F
QP DIFF.As TOWARDS SE FIRST :P LAST P HEADING
EMD

Td POST LR

MAKE :LTR POS

LOCAL "l4g

MAKE "WQ HEADING

HT SETH 0 RT 45 RE 3 LT ?0 RE 2 RT 45
LABELL :LTR

sT

EMD

TO LABEL! :LTR

PU

IF YCOR » 0 [IF XCOR > 0 [SETH 0 JUMP S) [SETH 130 JUMP 15 SETH 033 [IF XCOR > O
5 JUMP 13 SETH 01 [SETH 135 JUMP 20 SETH 011 =T

LABEL :LTR [EX:TH
PU

SETH W@

SETPOS SE FIRST THING :LTR LAST THING :LTR

PD

END

TO PLONK1

HT PU SETPOS SE 30 SO
PD

POST "A

PU

HOME

PD ST

END

TO PLONKZ

HT PU SETPOS
PG

PQST "B

PU

SETPOS SE 20 &0
PD

=OsT "C

PU

HOME

(1]
m

-30 30
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'S SE 4§

=MD

TO OPLOMNKZ

HT PU SETPRS
PD

POST "0

RPU SETPOS SE
POST "E

PU SETPOS :-E
FDET "F

PU HOME PO ST
END

0 PLOMKIO
PLOMK
PLOMRZ
PLOMKZ

HT

FUIOSETPROS :2E
FU SETPOS SE

Sl
PU
PU
END

TO
HT
PU
PU
PU
PU
5T
END

TO
HT
PU
PU
PU
PU
=T
END

SETPOS SE
SETPOS SE

HOME PD ST

TRI

SETPOS S
SETPOS SE
SETPOS SE
HOME PD

TRIZ

SETPOS
SETPOS
SETPOS
HOME PD

LN
mm m

-

KRt

-40 "0 PL

4 -34 <3N

-10 =10 PD PO=T "3
-100 -20 PD POST
~-50 -asi PD POST "1
&0 -40 PD POST "J

-75 50 PD POST
60 35 PD POST
10 -50 PD POST

l|'q
n B
HC

-40 -2Z20 PD POST "D

50 30 PD POST
70 -33 PD POST

MAKE "5 91,7898

I|E
IIF

"H
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APPENDIX E

The Circle microworld
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Primitives of the measurin instruments for a circle's circumference and its diameter

The screen effect in using the measuring commands was that of the turtle carrying out
the measurement by tracing the distance to be measured and pausing to print the
distance covered to the current position. The children firstly drew a circle on the screen,
using their CIR4 procedure and an input of their choice (for the number of turtle steps
between each turn). They then measured the circumference using the
COUNT.LENGTH command with the same input; execution of the command caused
the turtle to re-trace the curvature and pause after each change of position, printing the
distance covered from the beginning to the current position. The children then
measured the diameter of the circle via the COUNT.WIDTH command and the same
input; execution of the command caused the turtle to re-trace half the curvature and
then turn towards the starting position and move towards it in PEN - UP mode, pausing
every ten steps to print the distance covered for the diameter (where applicable) and
giving the final number for the distance in the end. If the children whished to see the
diameter drawn on the screen, they could use the SHOW.WIDTH command with the
same input, which caused the turtle to go through the same procedure as in the
COUNT.WIDTH command with the difference that there was no counting and the pen
was down.

1) To measure the circumference:
COUNT.LENGTH (input)

2) To measure the diameter:
COUNT.WIDTH (input)

3) To show the diameter:
SHOW.WIDTH (input)
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Th ro rams for the measurin  rimitives of the Circle microworld stud
TO COUNT.WIDTH :STEP
LOCAL "M
POST2 "M
SEMCIRZ :STEP 10
POST2 "T
PU
RT 290
COUNT W M T
PD
END

TO SHOW.WIDTH :STEP
RT @0 FD DISTANCEZ :T LT 0
END

TO COUNT.L :C :5
1F :C » 3& [STOP]
FD :8 RT 10
PRINT 1S5 = :C
WAIT 20

COUNT.L :C + | :8
EMD

TOQ .PRINT :C
PRINT ¢ ROUND < 100 = :Q > » . 100
EMD

TO COUNT.LENGTH :STEP
RT S

COUMT.L 1 :STEP

LT S

END

TO COUNT.W M =T

LOCAL "S

MAKE "S DISTANCEZ :M

IF 18 < 10 fWAIT 20 FD :5 RT 90 PRINT DISTANCEZ :T7 ST0P]
WAIT 20 FD 10 WAIT 10 PRINT DISTANCEZ :T COUNT.W :M :T
END

TO SEMCIRZ :STEP :ANGLE

RT :ANGLE ~/ 2

REPEAT 18 L[FD :STEP RT :ANGLE WAIT 101
LT :ANGLE ~ 2

END

TO POSTZ M
MAKE :N LIST XCOR YCOR
END

TO SG2 :n
OP 14 % 14
END

TO DISTANCEZ :N

OP SEGRT ¢ 5Q@2 ¢ XCOR - FIRST :N > > + { SQ2 ( YCOR - LAST :N ) »
END
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The worksheets for the learnin se uence

1Y write a procedure to draw this circte on the computer
clue: imagine you're the turtle and you want to go round a circle

My procedure:

Now try 1t out on the computer.

2) The circle below 1s larger than the one you have just drawn.
wWithout using the computer, write down what you think you
should change in your procedure to draw a larger circle.

To draw this circle, | had to
change:

Explain your answer to question 2 here:
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3) Write a procedure tg draw a smaller circle.

o

\_o-'"-

My procedure:

Try your procedure out on the
computer.

4) Now, using your circle procedure, try to write 8 procedure to
draw this shape:

clue: In Logo, instead of writing a different
procedure to draw a different circle, you can
have the same procedure with a variable
input for the value you want to change, for
instance: TO ANYCIRCLE SIDE

REPEAT 36 [ FD :SIDE RT 10]

END
when you want to use this procedure to draw
acircle with, say, a SIDE of 30 units, you
just type in: ANYCIRCLE 50

Now try, using the ANYCIRCLE procedure, to draw the shape.

5) Write aprocedure todraw a8 shape with circles of different sizes
using the ANYCIRCLE as your tool

My procedure:

Try out your procedure on
the computer.

459



6) Try to draw this shape on the computer, using ANYCIRCLE

The two circles

are at g distance
of 30 unmits from
gachather.

You may have managed to draw a shape looking like this, or you
may not

68) Do you think it is possible to draw the shape accurately
if you use ANYCIRCLE?

6b) What tool (procedure) would you like to have so that
you know your solution is accurate?

Explain your answer to question 6a) here:

. Explain your answer to question 6b) here:
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7) How about this tool
A procedure, call 1t NEWCIRCLE, that takes
as an input, the radius of the circle. Using this tool would mean
that NEWCIRCLE 100 would draw a circle with radius 100-umts.
78) Would this tool solve the problem?

Explain your answer to 7a) here:

8) Compare these two procedures:

TO ANYCIRCLE .SIDE TO NEWCIRCLE :RADIUS
REPEAT 36 [FD RT 10]  REPEAT 36 [ FD RT 10]
END END

8a) what do you need to find outl to complete NEWCIRCLE?
Make your answer as accurate as possibie.

Give your snswer to 88 here:
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9) There must be a connection between the SIDE and the RADIUS.
Lets collect more information about these two quantities

3a) what connection does the side have to the length (perimeter)
of the circle?

Give your answer to 9a) here:

Ob) what connection does the RADIUS have to the width (diameter)
of the circle?

Give your answer to 9b) here:
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10) Let's try to discover a conneclion between the length and the
width of a circle.

108) Draw a circle on the computer, using the ANYCIRCLE procedure,

say ANYCIRCLE 30
1) The computer can count the length of this circle:
I you press the orange key "fp", you will see
COUNT LENGTH.OF CIRCLE

writlen on the screen
Type in the SIDE of the circle you have drawn (in this example
you have a SIDE of 30, so type in 30) and press RETURN
The computer will give you the length of ANYCIRCLE 30,whichis 1080

11) The computer can count the width of this circle:
If you press the orange key "fy’, you will see
COUNT WIDTH OF CIRCLE
written on the screen.

Type in the SIDE of the circle you have drawn (in this exampl
you have a SIDE of 30, so type in 30) and press RETURN.
The computer will give you the width of ANYCIRCLE 30, which is 34421

10b) You need to find 8 conneclion between the length and the
width You need to compare them. How much bigger is
the tength than the width? Can you think of a number

operation that will tell you how many times the fength
is bigger than the width?

Give your answer to the second question of 10b) here

10c) Press the orange key “f," on the keyboard The word
CONNECTION

will appear on the screen.
Now type in the operation that will tell you how many
times the length is bigger than the width. For example,
if your answer to 10b) was “division”, type 1n the lenath
that you found from i) divided by the width that you found
from ii). This means that for ANYCIRCLE 30, you type in:
1080 / 344 21

10d) Do the same thing for more circles and fill in the tabie on
the next page

463



11) Investigation to find a connection between the length and
the width of a circle

Table of results

SIDE  length  width connection

- O O~y

1 1a) Can you find the connection by looking at the last columr
If not, try another connection rule.
If yes, write in words ywhat you have found.

Give your answer to t1a) here

Turn now and look at your answers to 9a) and Sb).
Copy your answers here

My answer to Sa)

My answer to 9b)

11D0) Can you think of 8 way to combine these three results,
to find out how many RADIUS's (radii is the right word)
go into one SIDE?
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:

Try to make your answer to 11b) g5 accurute as possioie

wy)

[

e

Give your answer to 11b) here

12) Look at 8) and compare the two procedures again Can you
complete NEWCIRCLE now?

128) Write down the complete NEWCIRCLE procedure

Give your answer to 12a) here:

13) Try NEWCIRCLE out on the computer

14) Now draw the shape in page 3, using your NEWCIRCLE
procedure

15) Write a procedure to draw a shape with circles of different
sizes, using the NEwWCIRCLE as your tool

My procedure:

Try out your procedure
on the computer.
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16) Let's try to draw a tree, starting from its trunk, say, 30 turtle
steps length

Nowy draw & circular bush whose centre is at the top of the tree
trunk (where the turtle is now) Make your circle viith s
radius of, say, 29 turtie steps

17) Erase this circle (hint use PE and PD) and draw another one
with 8 smaller radius so that it realy looks like a tree. Try

out different sizes for your bush, until 1t looks right

18) Now try to think a bit about the circle procedure that you are
using. Are you satisfied with it® Can you change it so that
this task becomes egsier? wWrite down your thoughts on how
to do this.

3) Try to write g procedure that draws a circle around the turtle.
(imagine the turtle is at the centre of the circle before and
after it starts drawing it). Clue:

TO CENCIR RADIUS
GOTOEDGE :RADIUS
NEWCIRCLE RADIUS

GOTOCENTRE :RADIUS
END

Can you write the GOTOEDGE and GOTOCENTRE procedures?
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10) Now draw a tree of any size you like, using your CENCIR procedure
You can make 1t look nicer by drawing two branches at the top
of the tree trunk, like this:

) Is it easier to draw the tree in this way using the CENCIR
procedure? Give reasons for your ansyer here:

) Carry out your own project drawing circles of different sizes
using your CENCIR procedure. Write down the procedure(s)
you used to do your project.
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23) Tryto write a procedure to draw o clockface, like this

Clue: write a procedure that draws a dot and use it for your
clockface.

24) 15 it easier for the turtie to start at the centre of the clockface
or at the edge? Give your reasons below:

25) Think about this procedure:
TO DOTCIR RADIUS

REPEAT 12 [ KEY :RADIUS RT 20]
END

write what you think KEY :RADIUS should be so that DOTCIR :RADIUS
draws the clockface. Give your answer here:

26) Draw the clockface using your DOTCIR procedurs and then carry out
your own project using DOTCIR. Write down the procedurss yjou
wrote for your project.
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Asam le a e fromthe Greek version of the learnin se uence

1) PTIxEE pix EVVOlX TTOV Vox {OVPxX$ICEL EVc KUKAD GTNY 080VN
ZNU. ¢XVTIXGCOV TTWE EITxI N XEAWVX Ko<l BEAELS Vox TTPOX WPNGELS
YUPW XTI0 EVEX KUKAD.

H evvolx jov:

< PEAT 20 [Fo L o 3

AOKIUXGE TO TWPX GTOV
UTIOAOVIGTN

2) 0 KUKAOGC xVUTOS Eivel BEVXAUTEPOS oxTI0 X UTOV TIOU E$TIXEES
KOpi¢ v XPNOGLPOTIOIEIC TOV UTOAOVIGTT, VPXWYE Tl
XPEIXCETXL V' KANKEELS GTNV EVVOIX GOV VIX VX $TIKEELS EViex
HEYVXAUTEPO KUKAOD.

MNx v ¢TIXEW XUTOV TOV KUKAOD,
XPEIXGTNKE ¥ XAAXEW: T TOo-

LS ton DOECEY NG 00
' i

\1(‘;0\(‘\“%\ o\ %NQ&(\ HIOHe

ASCERIVTIel! OO WO (%'K\Q’

S -
Vo TS KCWOU\,)Q, (‘,ﬁ_(-‘D\b:;\’_\,‘ SN

1
vooC » T~ (v (Ve

Qo "ael a0 Gveo e AROTECG

469



The structured tasks of Phase 2 of the Circle microworld stud

An A4 piece of paper was given to each child, with the respective figure drawn on it by
means of a pen and via a "compass and ruler" construction method. A computer
printout of the figures constructed in Logo or otherwise was avoided because of the
inaccurate representation of curvatures. As a result of the pilot study, it was decided
that a methodological shortcomming could arise from the children either guessing
which circle procedure had been used (if the circles of a task figure were constructed ir
Logo) by the researcher, or not perceiving intended circle shapes as circles, due to the

"jagged line" effect on the screen. The sample figure given here was the one in task 4.
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APPENDIX F

A am le of the collected data durin the main resear
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MNikos ~nastezopoulas - Philip Chrysikopoules

53T1ONAPCO8. 12 o

Ri "Tell me, -~ werr feow words, snat vo. we done ¢

far, bur sar that I dont Know much about Lzgo, and that I ve

no clue of what you we done zo far.
Mi: "Mo clue? Triangles!
Pt laughs
My "Whats =o funny, didnt do triangles-

Re "OK, co 7 have a first go at 't. It isnt easy.

P: "Ves., We made triangles we find its sides=,

angles... and r each angle .cormer’ we put it lets say a
flag, a point... then we made, we made zome triangles, i.e.
not vou... and... we made t-~iangles and we counted the sides
too... then we =tarted to make... oh, res then we -tartde to
count... we counted al' the... we found that a1 the turns
are 350 degrees, that all the angles of a triangle are
i80... ves, and... we made a quadrangle, to find out how
much its iturns were... and in the end we made em... with a
very ztrong program, « very strong concept, we made « shape
with three triangles one on top of the other lets call it,
and then we made another one, that sas an isosceles and in
the middle were two lines, that... we put it a special
command (FILL: and t fi'led up.

R: "Good. Shall we go? (N2
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M o tves, R =t to asd something, do rou means
ou 2ald 5 3 -2w words 2 Pzsad . t, .r 'zss,

R: "tg thzt  as o, about Vike F szaid Y. Lhkat ,ou ve

t, “earned, mainly about triangles, we

f'rst Tearned Y- to f.nd the sides ind the angles -+ 3

TToangle Yo zpeci:! commands, wasnt t DIRECTICN and
DISTAMCE... =23, =2m, then, em... :hor- : R e -
*IN omans e2csore, &g tre~ A madi Ioncept that can made
a°  Iantiauous tensed .. =2.3... & zzzze ez - squilatera’
trrangle, straight., =-%er ¢ had done =+ mary * rcs and .
“rund out how to maKe <t stiraight. EZm... and then did

some, we sp'it some t-iangles .n the middle...

B "Before.

Wi "OK, sec before, zorryv 1 didnt zay it in the right
order, .e =pli* some trianglss n the middle and we Kept
finding the other triangles equal... and... and in the end
we made... we learned a command that zan make... {means
FILL

R: "Ok. Now tell me something. In all those times, what
was, take Logo, Ok? What was that, which gave us the ability
to do all those things. I.e. wh ch were <“e mos: mpor-ant
things we learrnt,

N: "I think that the most important cnes were how we

can invest gate a3 triangle... and... and to find smal’er
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Itzs - e z ez -0 b, ., and to o split
g — ddle anz these ‘h.ng3.
R R - z = mgst mportitc ot TG,
= Te:oc3sh o omziftitt oez,.. Ve Y Wozozallaa.
. " 4z -2t care atzut What Nikes za. g, for oIo, K7
=, rg, =3, = "at. Fhem 2Ra.. o= Well -ditg
guery 2737 - g . des, we Kepi ¢ nding the -lements the
PR DR S 4 - ZoTmands, that thoz helped .3 Z2ooatl fhat,
T: "€z owhat a- th: mportant thing?
= 3t 2 ound... omztovow tzoo zothe =rgle, th
Chenl And tz be aple . f d the zostance from oone poatt
-5 the gother, And atso to Ze able to... +e dont Know the
dis-ance, to make... to mzde, ‘etz say with s command and
the “.rtle does it. l.e. from there...
¢ "Y.e. *o learn how to investigate the instruments...
R. "Whz*, what did you zay Philip?
S; “Crem there, I Rz eve that we started... vas the
nost  —portant {basicl.
Ry "I.e. which?
©: "That, to measure the angles. I.e. and the = s
R: "Iz that what rou think was most important?

P:

h:lped vs 2 .wlT...

N

think

w8 CIn

"o, that wasnt the important but that was what

s under=*anc them more.
"Hm,
"can I say zomething? ! think P means that, and I
i+, that when I said before, em... that . th wiich

‘nueztigate the t- ang’es, I meant, what P zaid i.e.
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0w we Can

TR0MTaAR
R
N
=
‘mportan
R
IR
R:
R
R:
wasnt an
N:
R:
the
all that
N
difficul
P:
N:
P:
able to.
great d:
coyrse

forward.

"“lot the most

rotameter,

vee the nstruments of the tirtle. Iz an
t...
“the most ‘mportant?

mpartant.

"ikat was that for cou”

"'t was important, wery important. Perhaps the most
t, I dont ¥now.

"Jhat instruments.

""he rotameter, and the ruler,

"Did we .cse anything else

"No.

"Just the ruler and the -otameter? Any worag that

irstrument. 1!

caid something about +liags

"&h, ves, vou mean the FOST?

"Ck. So,

?

1

Pe

"No.
tv.
"She wouldnt be able to.

"1 sav that she could.

"l.e. to make a

lets say if

§4

b

I

s
.

]
Tt
b

—
Wi

a1

whatever veu like...

triangle.

if we didnt have the fiags,

it was simple sides...

it vou wrote FD I...
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P said that, not me.

the ruler and

., normal Logo, could the turle have done

.e, she could with great great great

zhe would be

i.e, with

?0 and id did you...

if it was on the spot, and then you had to do back,



Wi "&b, ,es correct, * asnt... how _an ryou Know how
many degrees exactly...

9 ',,, .e ‘* could be FC comma ¥7...7S, ‘etz sar...

MN: "How can ae Know that.
®: “How can one find at.
R: "8o7
Ni: "Zo, we could do anything withoput the instryments,
23 this iz the most "—portant.
ey

=z Jhat we said.

R: “See :hat 2 words czn do? because you can <o
whatever you like... we did triangles, vou could do whatever
with those. Whenevr -he wantz, the turtle can put a flag,
and xfter *that 'f she wants tc measure the distance or the
directior she does it, ves?

Ni: “Yez, but can I ask <ou something? This though, iznt

n onormal —cgo...

n

¢ hat cze is 't toc .z, t*o Tearn
geometry?

R: ‘What use was 't to »ou
tH o learn a bit about *~ianglez, ¢~ rather not a
bit, a lot, spec al trigonolog sts (laughtsry...

%: ‘Did you enjoy 1t, did ryou have a good time?

"2 headaches!
P: "1 didnt have time tc do my homework some* mes, but
. did as much az 1 could.
Ni "In the bus.

Cem -

t CA, what we re going to do no, okK?

-~
=
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Ry '"T'a ezt of lhe zeszszozr, ccu ' daoan
nvest Sat or, ¢ which ¥ou 17 discuss what wou re go g b
do in the bewginning, #tc., .t doesnt have an - %13l Zza,
but you have = abi! ty and the choice, to worx with s mple
~ogo, or with ruler or with rotameter, or w th POST,
shatever ,co "iKe, eh?

iy Whataear we T Ke.,

B 235,
My "a car, & Parche,

e
r

P: "We czn do, lets sar zomehing *hat has to do w
triangies.
Ni "Yes, but the car has got tyres,
p: "es, s sou can do 't a REPEAT...
M: "fes, thats right. Ipause:
P: "4dhat do sou want, a Porche?
i "ldhat are sou laughing -cr? What do you want”
P: "I want something that s related tc...
M: "Triangie.

P: "“es,

Mi "Lets make a prramid., ves, I did that once... gﬁﬁﬁmd;;;ég“‘*-

P: "0Of Egrpt. E;#EX .

Mi: "Yesg!
p: "Go con then.
"ty "ot Eqwpt. I mean not a prramid, I mean taller than

a prramic. [they piclt up paper) Like the obelicgks, 1ike
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those Obeli. makes, but more..., more sgquare., Mot like that,
zquare, ‘et me :zhow ,:.,

P: "Rectangle.

N: {paper, Jraws) "LiKe *=at, like that, 1ike that, so
that rcu can see "irs an obelisk, 1ike thatwou cant, but...
T mean zomewar that you can. But I dont Know Low to do t,
Not how t- Z¢ it in Logos, oo the paper so that I ¥Know mhow
to make it in Logo, .e. thats very important too.

R

Shurel, . pause’

rd
L

ook, Tike that, e ttat... o5 papers = ...
something ! ke that, ..e.. zomethhing 1ike that,

P: 'There this.

N: "Shall we do i t7

P: “shal? we do it?

R: "Yes, and that "‘ne iz nice too {(cutting triangle)
Hm?

P: "Its not because "ts difficult., .laughs?

N: "It isnt. No, 17 do the line,

P: "As wou likKe,

N: "0k,

=: But we 11 use the LASER. We havent done SETPREFIX,
have we? [they "oaded their file {KITSGS)) {res) BAM...
there’s LASER. Now... (types) Lets make it 40... and...

N: "éand... and... can [ say my idea? 30, MHo... 40, 40

P: "55.

M: "o, 20 and 40,
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[F ]

P: "Z8. Ch, .ts got FIE7S cswei!. “problem for picture
i “lzvermind, =ary the PCGETES are -ot there.

P: "I zay "ets Zc .1 more "iKe that...

M: "Yes, =zo put it 30... 40 3C.

P: "Mo, long and thin, i.e., we’1’ put 't 50, the least,

N: "But 20. Mow it wil' be good. Th, zorry. Ah, res 'ts
the angle, but what am I saying, I thought 't was the turn.
=t 3 70 there. .res?

P: "2h! 0BG,

H: "This is too much. Put &5.

P: "70, .~es) Ok, Mow we’1” do that eh? the less. And
then lie that...

N: "look... this and... sorry a pyramid has got 2 or 4
thingies?

P: "4 {laughs)

R: "Some of them have 3 sides some of them 4.

P: "4, its a 4 sided.

N: "Wait. if we’'re going to make a big one and then a
small one, isnt it the same if we make a big one first and
here a small one? (means a big one covering pyr primeter,
and the nested smaller one) {paid no notice’

R: "Right. So is this one the big one or the small one?

P: "The small one.

n: “The small one sir.

P: "Now lets turn it...

N: "RT ?0. Ah, no, we’ll put a... ah, no.

P: "_ete do an LT 45, do you agree?
b
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0. 43 sou know how that will go? Here te ¢0, here

Y -

a

: 25, do e .ant to go her
- = e Sere. énd then we want Y . go here. To go
25, to go half...

N: "0k, cut whatever you wint, put 45. Sut SC,

Pty “trypes LT 45 FD 207

Sasitat on, tike % waz oz coutine

toomg, R7 DIRECTION nad FD DISTANCE.

[=3 "

: "For the time being... Its terrific, do you Know
what it Tooks 1ike? Like that thing .= form behind. .2 dimi

Mi "Shall 1 tell vou what it looks 'ike? I dont "ike
it, its Tike a jet. Its like a jet isnt "t? S0, "ook...

R: "Why dont nyou finish off the pyramid?

N: "Yes, but it isnt, Its doing the pyramids not right

{ctraight?) Look, one side iz like that and *the other one do

a

¥ou Know how much it is? Like that. !shows =t = -e’

o
3
pyg
m
3

! suggest we measure E till Mi, and to make as much

o
W
—+
or
o
-+

iz, this. <left Tined

Py "vez I agree.

N: “Zrase it then. We’'.2 nothing ‘o loose, have we?
tthey cdid 1) (P types) 234 comma fsaid it) We’1! put 324, ok?

Ps "No, lets be acurate. Lets put RT somehow... not

stertt mﬁm
%m me
very much 1.e., 'ess than what we had put... so that .is a

bit higher. It was 30, lets make it RT 30. (res) (they

Taugh
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ot

T "Zo the ather Zzze <z zer, eh?

[ - -

i L

P: raizes zcreen accuracy e¥fect, "ine looKs Ligger

than =T &ight "ime, thew measured with their ruier then the:
=~azed the * e, P twpes. Then M types, for scomewhile, bug,
. ~.
then does BK.{ﬁ'then suddenly: " dont have a 2087 there.
R: "hat did you say? V)

23 "T zaid that “here znt & post over there. -2

. —
cant go BE., e

ot

M: “and what do we mind ¥ there”

m

a post? Do we mind?

g
]

K, go BK.

Wi "And how much will I oge? e
= y‘
r‘y\‘ /

" e ) .. X > f-\’Cy
P: "Eh, that's what m tell pgaltp -

Ny "Yez, btut I want to see... can I see zomething? We

g, say from here.

N: “From there?

P: "Yes.,

N: LASER S0 70 ... (says somethingy 507

Fi: "Hm.,.. this one _ 27,

N: ‘Eh?

P: "This one is 20, 20, —/

N: "What do we do now?

P: "Chat' 1 tell szu what we do?

M: "Mo, dont put CS pleace. éF(UﬁQ%yk

P: Shall I tell you? e can *ake t back to I etc. —7 EPWV;’ o J
plhi
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R: "Wait ait, ? had an idea, ,ou'r2 not listening <NJ).

2: "I said lets do RT DIRECTIZM lowarde [ and 'ets go
there.,. and then we Know how much that -ide /s...

fN: "Right.

Ry "He’=z in great form today. (P types) (they make
mistake, they gc Oh, .tc, then they correct. {While P twvpe=
2R DIRECTION HD

My "hy Zidnt you put = PR TISTANCE... ~ou would gain
‘v letters., they Kept on twpingd (they got to !

P: "2%' now “ow ¢s we turn’? — povi STvr
N:  How much will we turn?

P: "Ch, ro...

R: "Mice eh? .Taugh?

’ A
P: "Wery eazy, we ate you' (N laughs' How much is this ;fﬁyé&& A
here.,., how much does it 'ook towards M, and we’11 tell it (KD o
_/_—"’——"-- it
- )

180, and then I remember how much... l’ve got brains... 30.

oo e ot

Thats why. Do you agree? (P types, till FD 203 "Shall we
better make....

N: “Yes, fhat; shat 7 othink tco, se’d better make a
POST.

P: "Eh, aok. [® comtinues® "Mr + we did PY, would it
write the POST? {(conti-ues) (he talked abcut pyramid image,
they called ¢ poivgon py-~amid) (M iypes , turtle head to M)

N: "Towards M its looking.

R: "0k, I didnt zee.
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M ccontinues? lsteops at "t ocsey fause to think?
Jight... ‘pauze’ We d: =... 120, An LT 120, -ct, IZT

P: "Why, how do vou Ynow iz 120,

N: "Wanna ftetl

R: "Tell us why.

M: <pause) "I’m not very sure., I'm mixed up r
something, can I do a ctrl 77 Because if 1 zee I'11 ¥now how
much to do. With a 31t of & complicated way “ut it doesnt
matter, (He ‘coKs, & cant see as far back as he wants C8?
Oh! =h, then, wait, just a minute... I found... I'm finding
it. ‘pause’ Good. 82... this 's... 10... this ¢ 72... th.s
180! ‘he means answer)

R: "Why?

M: "This here, from what I saw .s 70, because .o had

put... ves., From here %o there its 180, so this here ic 110,

ammpr et —aee

116, zo “rom 180 which is all of that, we take away 110...

cck, this is 180, this is 110, therefore... and it comes

N ——

out 0. T2 this over here. And here the 30 that we had done

aa b N .

gver there, 100,
—,W
R: "Ah, so vou‘re doing 1* directly? Did vou get what
he =aid?
2: "MNot wery much,
R: "Go on then tell us again.
P: 71 got it, That the whole of the ang’'¢ s 70, and

all this is 12C0... we take away and it comes out 110...

R: "Whats 110,

i)

P: "1 we take awar 4rom .20
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s, ~ight, but what iz 1107

P: "The turn, But then | didnt get the 10 wher: @

)
found %,
Wi "Look this we caid iz 70 and that iz 180, 0 a'i of
éthat is 110. Right. This here, coop (look at notes) is 180, .
e t:Ke awvay that here... v A
P: “Which,
W "This, the 117 that was ke that, :asnt that 0107
P: "Yes, .t makes a3 7L,
Ne "7., "2 from here... 70 wont we go nere, ziraight?
And 23 that we had put over nere, /70 plue 30 15 100 ismt it?
P: "Yes ves ves., (M types»
Ne: "D 20 how much did rou put, 20. (P types: FD
DISTANCE H. (thev enjored res and lookKed at it for a while)
"It could be a« vedalia, couldnt "2 It could be a motorway
tac, 25K, Here is the road...l!then they usanted *< i1}
central =zhape, they did it> <N called it an aerop =zne, F
called .t a greek zwest, N called the turtle the p lot, and ,
1 7
vts got a mustache - inverted colors) @Uj e \?‘jﬁ]’w‘&‘v‘
®: "2k, ‘4en something else. (they fooled around for x A
S \
while, making suggestions, portrait, computer, video,
chip,..) \\//

N: "Bo, ™~at =z-e we going to make?

Py "%4,,. an old ship.

Nt "Yes. Draw i1t -0 that se can zze how....
P: (draws on paper zide &)

N R}

M: "What will [t be, pirate, mearctant..,
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pEy

[ #]
]

“: “What z-e .cu drawing it for then,

-

Zra g "Something T .Ke that, sou F-ow, with th o=zar -

an the top...
i vk rot
@i 'Wes, Dut ' mp'e sai'=, not make a thingie that goes

phiiiou, and...

Sy "IN, then ot nt ovau start,
M "Right Tzok - tte =z iTs w007 be. drawel

P: "Triangular.

M: "ER?

P: "Triangular, the sails will be., And the mast, make
it with FILL.

R: "Wait, we’'1l think about the FILL in the end.

MN: draws,

P: "Look, Miko, "zrts marke it like that, like that,
Tike that {repeats that several times, drawing’... and here
two sails as you did. Right, shall we start? First I think
lete take it a bit cack =o that "t fits on the screen.

N: "Yes. (typing?

P: "0k,

N: "Mo. Here, arent we going to take it? Will the ship
be 1ike that?

P: "0k (typing)

N: "Right, lets start. Right, look what we’re going to
tell her...
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(419

P: "L.sten., Tan I teil you? T: maKe thjings easier for

Us... do <zu mind very much i+ we put POST ‘o mel, do you

Nt "Why should we put FPOST?
P: "Here, to... hecause atterwards when we’17 get here,

we dont Fhave to -earch for....

—r
an

"Sarry, can 1 say something? Wiil the ship be jike
that?

P: "Yes, the back wont te straight.

N: "Wiil t be "iKe that? Or will it be anvear... i.e.
the front more pointed {symmetry?)

P: "A bit more pointed the front and a bit more 1ikKe
that the back.

N: "This you mean presumably. I.e. and the back will
be... Tike that, =ztraighter.

P: "Just a bit. 0K?

R: "Exr’ain to ™ why rou need POST,

P: "Because, the minute we get here... and we make a
guadrangle, we can ‘u~n * comfortably .smoocthlyl here. And
I think, to make these supposedly i‘meanz hor lines), to do
these we should put POST ) 's) here too,

N: "Yes but thece that we learned about the turns, cant
we maKe .t without.., =077

o: "What we learned about®?

M: "The turns...



V.
(¥}

N: "lkhat’

R: "ai*, how do , cu mean, liiKo, Secause P zaid

P: "You agree”

Ni: "Yes I agree. t¥ping)

Sy "Lets put onvEm arden, re3, hecause we 77 need
zeveral POST{ =0 ITtwpinge

N: Mr C does the zcreen extend right to the end,
because then we can make the back. "they decicded t2 make
130 in the end:

Ps <200 'This <= too much.

N: "Yes because we zant make the nose. FE...

P: typed He did 2. {typing-

M: 0T, how much, 1307

20, that 30 there., Put it 50. No 40.

Wi "Look, 20 15 enough. Look, .t wont be nice likKe

P: "Yes, bSut afterwards it wil! have the sails and it
wont show that much.
Wi "Yes and if we do that it will go there and... ok,
do as vou like. styping®

: iz, we have to do now,
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g

‘o =] =

—
L ony

o

P

it) MNow

N

P

M

"y

"I thin¥ wou
straignt, we

[T3K 2 - .
I3 that hou

yi
~y
-t
V-
m

[}

hould put BT OTT

e
(N}

T
o
-+
[ER]
Lo}

-
U
o]
[ 8
a

=T T8, To

can put an LT 90 and "t wil

we 77 oTake it stiraight?

"7 think straight.

"Itz straight in = ship.
"ahy oK. FD put . ot overy big, 0.
"UT, arent we going to put Tt oa bit...

"es, 0. Oh

T A

s it looks very crude.

T unow thate what I'm telllng you.

"yt BK 5.
"1 szay &, Lo

"& T.ttle b

ok, Sere its good

t more. Lets put...

"S5 more, 4 more,

hé

"To get there. More than

More than what?

"&hy how much is that?

"Thate 30.

"Right.
"1ts good, i

do... now it

ts good {they had

. t0 o come Zown

z
=

"Yes, and how will 1 do that?

"Lets tel]

*1 think ¢

t to zshow towards

goes 135 LT. I do
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R: "Ah, we want to maxe head topleft.

e ez, Tttt R T A T
put DI, ght, tecause te-~e 't was ! He that agsin,
stralZht down P TcookHed, a7z we went like that and we did
that anc th = “ere goes ke that, the =zame thing that "=,
St D ohaye s-_ther thein Ttat tezrz, whare Y T:... from
gre to o kere s 93, and ~om sy 27T rers 2 g hald,
“al4 : right angle, therefore 'tz 43, ‘us 70 125, =nt "7
Lete zee, We’ll check cf cource.

R "How w'll you do that?

N: "PR DIRECTION. ¢he types, it comes cut wrong? Oh, it
did 7... I nade & mistake b 7 degrees.

R: "0k, whats wrong here.

e "7 cng.

R: "Why?

P: "Because he asks... when Niko asks he asKs how much
it did it from the left, While, normaiiy, how it would do it

frem the ~ight... (not shurel...

v

N: "This doesnt matter, I think.

R: "Why”?

M: "Because koth from the left and fr
should have got 00.

R: "sh, =z, whys s it wrorg, there mu

M: "Can I say? Because here 1ic more
I think. “-om here to go there, this here

489
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e
i
m
=]
e

‘rom that itz-e, -zcausse zr the thingiez. This side

A H * . » - -,
s 2ha, er thap o ttat side here think. .. "types HT:

R; Za, --e we :zhure that the turtle ic exact’  on the

MN: "Not at all.
2 "CF cocorse not. Mo,

R: "So thats whyv.

*i tvpes RT 353.:2 "37 and FD DISTAMCE... (types)
2y "I, tiow that ooz

M: "RT... RT 1307 I think we =hould put 120,

R: "Why?

P: "Secauze, here we had turned S0... the turn and the
angle is 40...

R: “Which angle is 437

P: "This cne here,

R: "How can we name 17

P: "ABC.

N: "ABC res.

Ry "Ail tha*s 407

M: "Mo, the turn it makes...

P: "The turn 1= 50.

N: "No, - ght, res shat rou say is right, but I'm
saying it for another reason. This here is on the zame
stra.gh* line as this, and this we want to make it be aon *he
same straight line as this, like that, toc be parailel I
think, zomething ' e that. Eh, this then. and this =
130...
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Pr "They were bul we put ther L35t 7 that,

My "FDLL . cot DISTANCE, imr otcow omuch had o2 oput d
~emember” trapexzium?

F: "Yes, but, itz angie 13 smailer

Wi "Ch, res, -Zorrect. .iypingd Now the =ails, Will

“ave *'me to make them?

O "FD Sow tuch? Mmmm, .2 zhould have Kept =z SRINT.

P "k, i8ts go *his way and make the sail 'ike ih

N: "Yes thate what 1 =sar *co. FS DISTANCE... the *-

I téhought of that too, but ! didnt zay it becauze 1 was

Ut

thinking that perhaps there-

Py FD SC?

P: "But we said it will make the first =zail.

e
.

"20, 30 how much? -
P: "20, <(type) I-~esz, mazt s Neat
N: "Meat. —

°: "Lets make ¢ doubls., lpause)

vy "Eh,.., sha 1 we 1ce the LASER?

]
P: "Ehy we cant it will do it on the top. Zhall we ma¥e

N: "I think that we can make an equilaterail...

e i e

P: "No because it will make one sail on top of the

N: "Mo, look, one can go ther, make one 1ike that
thazt and 1ike that..,
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)
tJ

o what are rou going to 43 now?®

ns "An eguiiateral., An equiateral =nd two i:zoscell,

Sgu.itatera’l., Wait I7.e got an idea, e can do... if we make
an equiiateral, which =2 wiil spiit and "t will become two
isosceli, wont :*,.. i+ we =21 ¢ zn equi ateral... look '+

B

‘te

L

qui ateral, =ach angle wi’ be 120, I< its 120, this

*

will Se &0 and 40... why don* we put an RT &0, here an RT

SZl... enh... RT IZ0L.. 257 Fight zhall I de T Can rsou go
E. C Tz oDrought to-iTz Zack te tocp of mast)
¥i "2K, MNikKos idea .zz ‘o maKe an egui‘ateral,

N: "Yes.
R: "What was ® idea.
P; "1 dont agree with {hat, iKe thiz was here, one

.

sa " 111 be made iikKe that... then, .f this goes 1 ke that

too, 't will go " Ke that the doesnt Tike 't st notec zide B
bottom right:

g "IK, -3 what do sou -ay?

P: "Lets go back, I dont Know how much... Lets go about
there <on mast, micdway) and tell t.., LASER...

N: "Can . say someth ng? I4 the zai': join ' '¥e that I

think the shape will be nicer becqause if the sails arent
Joined TookK how t will be. It wi™" be 7 Ke a chinese...

Sha ' I start? RT *27 ..

: "1 say it shouid logd ‘3 the other zide, -Zo that it

-

he-e and does an equilateral.,

: "It will do the zame now....
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o
Pi "Yes, zot the _MBER _*arziz,.. :ztarte from the right.
» ozafve gzt ot oput Y Loaoe
Mi fMever m nc... goes I0
R: "dait, ~.ore not T ztening to |, 2" =.iggrztion do
rou have?
et oput... OhY D ocould make 1% owith REPEAT ‘oo,

P: "Yes, but we can make "¢ th the LASER.

R: "likate 2r vou like,

43 "Jhat 2o rou say?  pause.

P "MaKe one zail with REPEAT and another with LASER.

P: "I“11 make the one ith LASER though.,

: "But if he does t now 3 r... and he should put
torward first and then turn... ah, noth -g.

N: "Shall I do %7 “res) Oh!

mtl

—ike 3 flag.

Ni "I mads 2 mistake, I put REPEAT, thats a mistake.

i ... the types, erases)¥es and now BK...

P: "Pu* it S0,

MN: {typee) "And from here we 11 start, dont move it
forward. From here we 77 start. (P trpes to left) Hice!

-

mi "Wait, T=2ts see what hs

"

thinKing.,.. [trpes: He’s
got something in his mind...
p: "I know, and 1’ve forseen it. (types) Isnt 't thisg?

But hz2re I dort ¥now the angle.
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; cour<:., Tont sou want =0 equisataral, or an

SCSCe i es

2]

R: "y equiletersl

=

7: "lsosce'es.

.

R: "So0, naow e have to Jecide, eauilatera’. aor

ispsceles, and why?

My “lzosce’es,

1
m.
L
~
a
-+
D
-1
P13

a1

"Why equi.aterals’

g

"To makKe "i‘e easier.

e e

“Why wiii .t be easier?

P: "Em.. I dont ¥now.

Nt “Shail I te'" vou? Becaus if we make an equilateral,
we we have to go both here like that like that, and iike
“hat, © Ke that. .e. I *hipK that if we maKe an
equilateral, it will qgo ke that I think...

R: "How wit® it go, f iz equi’ateral®

M: "1 dont Know... If it ncdces a. equilateral, do ~ou
Know whare * will start from® It will go either ' 'kKe that,
or if he puts RT “first it will go ' Ke that.

R: "Yes tut thats the ~,. aterz’ that , -y made. P
makes it in another wsayv.

Nt "Ah, zhow me how he does ...

R: "There, dont rou zee?

N: "Ah, ,es, 407

P: "Yes, but if we put it i1cosceies...
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R: "Thate the problem. I# we put it isosceles now, or
equiltateral, what difference wiil it make, will it make a
d fference?

Ni "No. (R 1 probed problem, but there was no time to
do .t right. N said something about the top angle, P sars

that r they make *th sail 30 !t will be bigger than the

=

i

t, becsuse thats S0, said aboutl 40... 83. They cid it
wrong, they erased, did it right, not very much came out. N
said: + we makKe that 45, .hen the :zide shoulJ be 32.5...

they cere ‘oo tired to continue I thought, time was 5.35)
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APPENDIX

CONSTRUCTING THE [IRCLE MICROWORLD'S TO LS AND USING
MINPER NALPR E T
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NTENT OF APPENDIX

G. (8.2.1)The phases of construction
G4 (8.2.1a))Circle procedure 1
&.4d 8.2.1b) Circle procedure 2
G.{c 8.2.1c) Circle procedure 3
G.14 8.2.1d) Circle procedure 4

.2 8.2.2 The children's projects involving the use of each of the Circle
microworld's tools

G.2x 8.2.2a) Circle procedure 1
-9¢ 8.2.2b) Circle procedure 2
G.2c. 8.2.2¢c) Circle procedure 3
6.2d 8.2.2d) Circle procedure 4
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G.1 8.2 The hases of construcion
G1a 2 .a Cirle rocedure 1

Before being given the task, the children were required to construct a
procedure for a circle drawn on paper and think about how they would alter
the procedure to change the circle's size (appendix E.2). Not surprisingly, the
first procedures they subsequently wrote and tried out were fixed - they did
not have a variable (fig 8.2.1a). They decided, however, to make a circle
procedure with a length variable when they were shown the task figure, and
they called their procedure CIR4 (fig. 8.2.1b). They constructed the task figure
by writing a superprocedure (CIR5, fig. 8.2.2b) consisting of a sequence of
fixed CIR4 procedures with increasing inputs. The main relevant
geometrical ideas raised during the process of constructing CIR4
involved the factors changing the size of the circle and the issue

of polygon approximation.

TO CIR
REPEAT 120[FD 1 RT 3]
END

TO CIR2

REPEAT 90 [FD 1 RT 4] _
END TO CIR4 S

REPEAT 36 [FD :S RT 10]

END
TO CIR3

REPEAT 36 [FD 10 RT 4]
END b

TO CIR3
REPEAT 36 [FD 10 RT 10]

Fi 8.2.1 The hildren' fir 1r ro

Perceiving the quantity of thé turtle's changes of position as a determinant of

the size of the circle was not a triviality for the children; they initially suggested
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the input to the REPEAT command as a factor for changing the size, before
deciding on the amount "the turtle goes forward between each turn" and

explicitly stating the positive relationship between "forward move" and size.

TO CIR5
CIR4 1
CIR4 3
CIR4 5
TO CIR4 :S CIR4 7
REPEAT 36 [FD :S RT 10} CIR4 9
END END
a
b
CIR9 50
PU
RT 90
FD 5
TO CIR9 R LT 90
RT 5 PD
REPEAT 36 [FD :R * 2 * 3.14 / 36 RT 10] CIR9 45
LT 5
END
c

511



TO CIR17 S
LT 90

PU

FD :S

RT 90

PD

END

TO CIR19 :S
CIR17 S
CIRg S
CIR18 :S
END

TO TC S

TO CIR18 S
RT 90

PU

FD S

LT 90

PD

END

TO CIR20 S
CIR17 S
PE

CIRg S
CIR18 :S
PD

END

REPEAT 360 [MOVE :S RT 1]

END

TO MOVE S
PU

FD :S

PD

FD :S/:S

PU

BK S+ :S/:S
PD

END

Fi 2.2Th

hil n'
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FD 30 TO CIR21 S
CIRig 35 FD 30
CIR20 35 CIR19 :S
CIR19 18  RT 45
CiIR2o 18 FD S /2
CIR19 45 BK: S /2
CIR20 45 LT 90
CIR1g 25 FD: S /2
CIR20 25 BK :§7/2
CIR1g 19 RT 45
END
TO TIME :S
REPEAT 12 [MOVE :S RT 30]
END
TOH S
RT 15
FD (S /8 *5 . ¢
BK ((S/8 *5 o J
LT 15 - .
BK (S /8 *7 .
FD (S /8)*7 °
END * e
Cirl mi row 1 and heir



Although after the researcher's question for other means of changing the size,
the children were quite coherent in verbalising the inverse relationship
between turtle turn and size of circle, they explicitly juxtaposed the two "rules”
only after the researcher's prompting. Furthermore, it seemed that although
they verbalised and used the relationship between the input to the REPEAT
command and the turtle turn in specific instances, they found it hard to think of
the relationship's generality; an indication of this is that when asked which
factor they would like to use as input - the length or the turn - they preferred
"moving the steps forward more" because "...there isn't a lot of confusion...
(otherwise) we have to do all the operations (means each time) to find... how
much we'll turn.”" This comment seems to imply that the children
thought they would have to make the operation to find the
relationship between the two inputs each time they changed the
value of the turn input.

After they completed the task, the researcher prompted a conversation
on the polygonal nature of the figures constructed by circle
procedures, by drawing the children's attention to the relationship of the
number of sides of the polygon and the input to the REPEAT command. In
order to explain what happens when by increasing an input of 4 a square
shape "becomes” a circle, the children used an intrinsic notion of turtle turn in

their implicit attempt to convey the meaning of curvature;
"Because we round up the angles...”

A:

R: "Hm. What does that mean."

A: "...we reduce the deijrées il the turn of the circle..."
V:

"Yes, that is, it turns less ahd this it does more times... it becomes bigger.”
The researcher's qiibbtionifig of the figures drawn by increasing inputs to
REPEAT seemed to lead the children to conclude that the figure drawn

by the CIR4 procedure was "a 36 - agon” which "looked like a
circle".
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The construction of the second procedure of the Circle microworld involved a
relatively lengthy investigation, described by the relevant worksheets
(appendix E.2). Not surprisingly, the children initially made perceptual
attempts to construct the task figure using the CIR4 procedure. In
their attempt to specify the problem, Valentini made an insightful remark, i.e.
that they needed some means of identifying the "size" of the circle. It took
some time, however, before the children decided on a new meaning for the
notion of "circle size", i.e. that of the length of its diameter. They subsequently
re-formulated the problem as that of finding a relationship between the "side"
and the "radius", Valentini's insightful perception of the meaning of
"relationship" being "how much one fits into the other". They consequently
seemed to use the turtle's instruments for measuring the perimeter and the
diameter of a circle in a meaningful way, enjoying the process of recording
the outcomes of their measurements (see appendix E.2). The researcher
intervened to help the children with the manipulation of the parameters of the
relationship (the children had not had any experience with equations), so that
it would "fit" the input to FD in their new procedure. He also intervened to
generate a discussion leading to the children's adding of the turns before and
after the construction of the circle in order to "correct” its orientation (see also
sections 8.1.3a), 8.2.3 and fig. 8.2.2¢).

Two issues of direct relevance to the study's objectives arose during the
children's first executions of their new procedure (which they named CIR9, fig.
8.2.2c) and during their blving of the task.

During the investigation, the children often showed explicit awareness of the
objective of constructing a procedure which would take the radius as an input.
However, in their fitst execution of the new (CIR9) procedure, they
gave an input of 3, f.e. the kind of input which they would have
given to the CIR4 procedure. Their genuine surprise with the outcome

was followed by more trials, slowly increasing the input, but not
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understanding what was going on.

V: (types CIR9 50)

A: "Now it made it normal... (means the size)"

V: "Now it made it like, let's say we would make the 5, the 6 (means the input
if they used CIR4)"

The incident could be attributed to a disparity of intrinsic and non
- intrinsic notions (in the context of constructing a circle) in the
children's minds; although they had spent two and a half hours
constructing a circle procedure with the radius as input, the notion they used
for the input when executing the procedure was the intrinsic quantity of turtle
steps. It could well be that the context within which the children were used to
constructing circles with the turtle involved intrinsic constructions. However,
incorporating the use of the radius in that context was far from automatic.
Furthermore, such an interpretation would corroborate the difficulties the
children found in linking intrinsic and non - intrinsic notions in other contexts

(e.g. angle and turn, triangle) described in the previous two chapters.

The children made the connection of the situation at hand (the circle drawn by
executing CIR9 50) with the problem they had solved, when the researcher
focused their attention to the input:

R: "So, what on earth is that 50 folks?"
A: "The radius! Of course!"
V:"Eh, yes."”

It is interesting, however, that their next action was to turn the turtle to the right
and in PENUP mode move ft forward 50 steps to "confirm" their answer, by
using their perceptual cues to check whether the turtle was in the
centre of the clttle. In their consequent solving of the task,
however, their use of the length of the radius of the two required
circles was quite coherent; after typing in CIR9 50 PU RT 30 FD 5 LT 90
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PD, fig. 8.2.2d) Valentini said;

- "How much will we do it?" (she typed CIR9 45)

- "Why 457"

: "Because this is 45." (means segment from centre to turtle's position)
. HSO?H

- "Eh... the radius... the 45 is the radius, since before it was 50, minus 5 is

"

A SIS IS

In the third task, the children soon perceived a need to write procedures
which would make the process of drawing and erasing circles with a fixed
centre less laborious. It was not surprising, however, that their initial
attempts involved writing procedures which were functional to the
task and not to the intended geometrical hidden agenda; since the
problem arose at the moment when a circle had been drawn, the function of
their first "task - facilitating” procedure (CIR16, fig. 8.2.3) was to erase the

circle drawn by the CIR9 procedure and move the turtle to the fixed centre.

TO CIR16 :SIDE
PE

CIR9 :SIDE

RT 290

PU

FD :SIDE

PD

LT 90

END

At this point, the researcher intervened and suggested they make a circle
whose centre would be 4t the turtle's present position. Valentini then decided
to make the following prbcedure:
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V: "...to make a program that tells the turtle to turn left... to go to the place

where we want to start the circle.”

She then wrote the CIR17 procedure in the editor (fig. 8.2.2e), and typed
CIR17 25 CIR9 25. She then went into the editor and wrote the CIR18
procedure (fig. 8.2.2e), subsequently typing CIR18 25. (In Apple Logo I,
entering the editor leaves the graphics screen unaffected). The children
subsequently used the three procedures typing CIR17 25 PE CIR9 25 CIR18
25 to erase the previous circle and started to make one with a different radius
(typing CIR17 18 CIR9 18). At this point, they seemed to perceive the
modularity embedded in the use of their three procedures,
deciding to make two superprocedures (CIR19 and CIR20, fig. 8.2.2e) which
for them were equally functional for the task; one - CIR19 - caused the turtle to
make a circle and the other - CIR20 - to erase a circle. In both procedures, the
state of transparency was the circle's centre. The children solved the task,
appreciating the usefulness of their two superprocedures in making and
erasing circles until they decided on a size which they liked (fig. 8.2.2f).

On administering the fourth task, the children initially held a relatively long
discussion on solving the problem. The plans they verbalised to each
other involved using thelr familiar intrinsic method to take the
turtle along the curve In PENUP mode and interrupt to make the dots for
the clock. They impfititly referred to using the relationship between the input
to FD and the radius ih dtder to be able to then take the turtle to the centre to
make the clock hands. Irispite of the researcher's suggestion to try and think
of another way to m#ike a cifcle with which they could make the clock very
easily, the children tgok & long time proposing ideas which involved the turtle

tracing the curvature.
The interest in thélr subsequent insight into using the notion of
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equal distances from the centre is that their idea did not involve
the circle at all but rather, a recent incident which had taken place during
their previous project involving the use of the CIR19 procedure, i.e. the
"Snowman” (fig. 8.2.13). In making the snowman's broom (fig. 8.2.13a), the
children used a sequence of moving the turtle forward and back a fixed length
and turning a fixed angle. In the clock task, they specifically stated that they

would use the same idea to make the dots for the clock:

A: "...to make what we did in the snowman..."”

R: "What did you do in the snowman?"

V:"The broom."

A: "The broom... it had a centre.”

V:"Yes, only it drew that time, now it won't draw..."”

A: "We'll put a REPEAT thatis...”

V: "Yes it will lift the pencil, it will go to the top, it will do the dot, it will go down,
then again from the middle it will start... do 12 times lift your pencil go forward,
do the dot go back and turn as much as I tell you..."”

A:"30."

This incident could be interpreted as an indication of the disparity
in the children's minds, of notions involved in the intrinsic and
the euclidean construction of a circle. Their previous experience with
circles in turtle geometry predominantly involved intrinsic constructions of
turtle move and turn sequences along a polygon approximation of the
curvature. Although their recent experience during the study involved non -
intrinsic notions such as reference to the radius and the centre, it did not
involve the use of the euclidean definition of the circle for its construction. It is
not surprising, therefore, that their insight into a euclidean
construction did nbt 8eem to come from their microview of circles,
but from a different experience: that of making five "rays" to
complete their broom. The notions of "centre" and "radius” were
implicitly used both for the broom and for the clock. However, the
children initially dild not seem to perceive those notions as part of
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a circle.
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2.2 Th hil nv lvin h h h Ir

microworld's tools

G.2a 82 2a Circle rocedure 1

For their project with the use of the CIR4 circle procedure, the children used
CIR5 - the procedure which made the task figure (fig. 8.2.2b) - as the main
module for making their shapes. In constructing CIR6 (fig. 8.2.4a), Valentini
used an intrinsic notion related to the CIR5 shape as a whole, in

order to explain the turtle's turning between the first and second CIR5 shape:

V: "Yes, there's no problem. We'll do one, (CIR5 shape) then we'll do 180 left
or right, then the same..."”

A: "For what reason?"

V: "Say it stops here. (after the first CIR5 shape). And it has done it like that. It
starts like that, it finishes like that (state transparency). Then, it goes, it turns

downwards and does the same thing. Exactly.”

Implicitly, Valentini used the notion of the turtle's state - transparency in the
CIR5 shape and the notion of the right hand side of the turtle after a 180
degree rotation. However, the overall construction of the CIR6
shape implies the use of a non - intrinsic notion, i.e. that of
perpendicularity in the plane; the first two CIR5 shapes were in a horizontal
formation and the next two in a vertical formation. The children subsequently
wrote a superprocedure (CIR7, fig.8.2.4a) consisting of two executions of
CIR6 with a 45 degree right turn interface between them. The researcher
attempted to probe the children's readiness to perceive a global
intrinsic construction of the CIR6 figure by suggesting that they could do
what they usually did in their classroom and Logo club activities: "tidy - up"
their program, i.e. the term used in the sense of reflecting on the modularity of
a procedure. The children consequently changed their method for
constructing the CIR6 and CIR7 shapes (fig. 8.2.4b). In their new method,
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the only underlying geometrical notion linking the CIRS shapes
was the turtle rotation.

TO CIR6
CIR5
RT 180
CIR5

LT 90
CIR5
RT 180
CIR5
END

TO CIR7
CIR6

RT 45
CIR6
END
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TO CIR6

REPEAT 4 [CIR5RT 90]
END

TO CIR7
REPEAT 2 [CIR6 RT 45]
END



Fi ure 8.2.4 The children's ro ects

inv vin ir

The children's programming indicates the beginning of an
increasing appreciation of the power of subprocedure and
modularity; as mentioned below, they predominantly used a bottom - up
approach throughout their projects, starting from the circle procedure and
building several levels of superprocedures involving circle combinations.
However, it does not necessarily follow that there was an
increase in the degree to which they used geometrical ideas
related to the circle, as will be discussed below.

G.2b 8.2.2b Circle rocedur

The first of the next set of projects involving the use of the CIR9 procedure
was based on a real - life object, a "koulouri", i.e. a circular bun covered with
sesame seeds. Alexandros took the initiative (it was his idea) and used the
CIR9 procedure to make two concentric circles, making correct operations for
the inputs to CIR9 and the distance between the circles. He then started to
take the turtle to different points between the circles with the use of perceptual
cues, and to make small circles (the sesame seeds) with the use of the
previous circle procedure, i.e. CIR4 (fig. 8.2.5). This could be an
indication that at that point, he had not yet discriminated the
difference between using CIR9 and CIR4 in geometrical terms,
but used CIR9 for the large circles only because the procedure
was functional for that specific figure.
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-
~"‘-..___ "
CIR9 50 CIR4 0.0004
PU PU
ST FD 10
RT 90 PD
FD 30 CIR4 0.0004
LT 90 RT 90
PD PU
CIR9 20 FD 5
PU PD
FD 1 CIR4 0.0004
FD 10 END
FD 10
PD
Fi 2 Th hil n' fir
inv lvin ir e 2
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The second project involving CIR9 was similar to the first project with CIR4, in
the sense that the children used the circle procedure as the bottom
level of a sequence of superprocedures. A difference from a
programming point of view is that they made a first - level superprocedure
with a variable input - CIR10 :S (fig. 8.2.6) - consisting of a CIR9 procedure
and a fixed interface. In their first attempts to make the "target” shape,
Valentini tried to work out the proportional decrease in the length of each
radius in relation to the larger length. Her laborious attempts, however, did
not involve trying the procedure out - she tried to figure the relationship out in
her mind, while they were in the editor. This could be attributed to her
experience with normal classroom practices, focusing more on deductive
methods rather than building on personal experience (see chapter 5). The
researcher's intervention, suggesting that they try out each circle first was
followed by their trying out circles of a fixed decreasing radius in direct - drive,
and then writing the CIR10 and CIR11 procedures (fig. 8.2.6).
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TO CIR10 S
CIR9 S

RT 90

PU

FD 5

LT 90

PD

END

inv Ivin

h
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TO CIR11

CIR10
CIR10
CIR10
CIR10
CIR10
CIR10
CIR10
CIR10
CIR10
CIR10
END

edure Z

50
45
40
35
30
25
20
15
10
5



Figuring out length relationships between radii, however, seemed
to be the only instance of the children's use of a non - intrinsic
notion involving the circle. With respect to the radius, the children
seemed to focus on its length as a line segment, rather than
perceiving the radius as "belonging"” to a circle. Furthermore, they
did not seem to refer to the centre of a circle, either in connection
to the radius or not. In their subsequent programs, they showed more
interest in the idea and the screen effects of superprocedures, rather than in
specific geometrical ideas concerning the circle (fig. 8.2.7). Implicitly,
however, they used the relationship between the input to the REPEAT
command and the turtle turn, as for example in their CIR12 procedure (fig.
8.2.7).
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TO CIR12

REPEAT 4 [CIR11 RT 90]
END

TO CIR13

REPEAT 2[CIR12 RT 45]
END

- '-:-'..: a l'l
-~ d'd.:.'-.-l

— T

TO CIR14

REPEAT 8 [CIR12]
END

TOCIR15

REPEAT 2[CIR12LT 45]
END

Fi ure 8.2.7 The children’'s third ro ect

inv lv h
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Their first project with the CIR19 procedure also involved a target figure
repeated in a circular formation. This time, however, the children's plan was
for the outer circles of the target shapes to connect tangentially. Their
previous lack of perceiving a radius and a circle's centre as
connected to a circle could be the reason for the first "bug” in
their CIR23 procedure, consisting of the target figure and the interface for
the next target (fig. 8.2.8). After completing the first target, the children movec
the turtle to the edge of the outer circle and typed the procedure for another
target. The figures' overlapping on the screen focused the children's attention
to the centre and the radius of the outer circle of the target.

V: "Right look (to Alexandros). We'll make this circle which is... here in its
middle, here the turtle stops here and the radius is 7." (about target figure)
A:"Whyisit7?.. yes yes."

V: "Because the largest circle is 7. So, we'll tell it to go forward 7 but also to
turn and another 7 to go to the middle of the circle again... so that afterwards
with the program we've made it will go there and it will make other circles,
and then the same again..."
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TO CIR22
CIR19 7
CIR19 3.5
CIR19 1.5
END

TO CIR23
ClIR22
PU

RT 10
FD 7

PD

END

TO CIR23
CIR22
PU

RT 10
FD 7

RT 10
FD 7
PD

LT 10
END

Fi ure82. The hil ren' firt roect

inv lvin h edure 3

It is interesting how Valentini seemed to separate the radius of the outer circle
of the first target from that of the second which had not yet been drawn on the
screen. It could be suggested that this was the first instance where
there was a use of the notions of radius and centre as tightly
connected to a circle. However, the children implicitly used the

intrinsic curvature construction of a circle with respect to their
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last procedure - CIR24 (fig. 8.2.9) - where the input to the REPEAT
command was in accordance with the turtle's turn in the interface between

targets, so that a circle of target shapes would be formed on the screen.

N s
TO CIR24
REPEAT 36 [CIR23]
END
F 2. Th fin fi m fr m
he children's first wi h ircle rocedur

The children carried out three projects with the CIR19 procedure. In their
second project they decided to make an apple tree, possibly inspired by the
previous task figure. Their first procedure, T (fig. 8.2.10), made a rectangular

trunk and a large circle tangentially connected to the midd!e of the top side of
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the rectangle. During the typing of the interface between rectangle and circle,
the children made it verbally clear that this was what they intended, i.e. for the
circle to "touch” on the top centre of the tree trunk. Moving the turtle forward
40 steps above the rectangle, therefore, was part of the plan to then make a
circle with a radius of 40. In this case, the children seemed to
implicitly use the notion of a circle's radius and centre in order to
construct the circle.

From then on, however, the children changed turtle positions in direct drive
and in a perceptual way, using CIR19 and a small numerical input, made
circles for the apples on the apple tree (fig. 8.2.10). In this case,
employing the CIR19 procedure did not seem to involve using
geometrical ideas for constructing the circles, resembling the way in
which Alexandros had used the CIR4 procedure to make circles for the
sesame seeds in his "koulouri" project.
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TO T
PU

BK 50
PD

REPEAT 2 [FD 50 RT 90 FD 10 RT 90]

FD 50
RT 90
FD 5
LT 90
PU
FD 40
PD
END

T hil

involvin the use fcircle
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TO TC
T
CIR19 40
CIR19 5
PU

FD 20
CIR19 5
LT 130
PU

FD 30
CIR19 5
LT 100

cedure 3

PU

FD 30
CIR19 5
LT 90
PU

FD 20
CIR19 5
PU

FD 20
CIR19 5
END



The most interesting project, however, was the next one, where the children
decided to make a snowman. The interest lies in the children’'s
construction of the two outer circles, i.e. the torso and the face of
the snowman, and in each case in their use of the radius to drive
the turtle knowledgeably inside the outer circles to complete the
project. For instance, the children first made the torso and the snowman's
buttons. They typed in CIR19 40 and then took the turtle to the bottom edge of
the circle. Alexandros had the idea of using the REPEAT command to make
the buttons and the interfaces between them. After executing the REPEAT
command in direct - drive, the children's plan to take the turtle to the centre of
the next circle for the face indicates an implicit use of the radius in two tangent

circles of different size:

(turtle at point 3, fig. 8.2.11, after running the REPEAT command)

V: "It will be 20, the other one. Therefore, FD 40. The other radius will be 20.
Therefore FD 40, CIR19 20 and its done that and that..."”

A:"And it's in the middle. And then CIR19 5.”

V:"Why 57"

A: "To make the nose.”

CIR19 40

PU

BK 40

PD

REPEAT 3[PU FD 20 PD CIR19 5]
PU

FD 40

ni

wman”

Alexandros' explicit acknowledgement that the turtle would be in

the centre seems to indicate a meaningful use of the centre point

533



of the circle, i.e. that they could make the nose straight away, without
interfacing commands. The children explicitly decided to move half the length
of the radius in both cases of the following interface before making the left eye
(fig. 8.2.12a). The interface between the right eye and the mouth involved the
turtle moving back to the central axis of the figure (8.2.12b). In the next
interface between mouth and broom, however, they did not go back to the
central axis, taking the turtle downwards 50 steps:

V: "Right look what | say we should do. LT 90...PU, FD how much... this is 40...
(means the radius of the circle for the torso) 50." (correctly implies that the

distance between mouth and edge of face is 10, fig. 8.2.12c¢)

Nevertheless, the input to the next FD command (fig. 8.2.12d), so that the
turtle would go to mid - way along the implied horizontal radius seems to
indicate that the children were aware that the turtle was not in the central axis
of the figure; they typed in the difference between half the length of the radius
and the turtle's distance from the central axis, i.e. FD 15.
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TO X

CIR19 40

PU

BK 40

PD

REPEAT 3[PU FD 20 PD CIR19 5]
PU

FD 40

CIR19 20

CIR19 5

CIR19 3
RT 90
PU

FD 20
PD

a = interface between nose and left eye
b= interface between right eye and mouth

CIR19 3

PU

LT 90 \
FD 10 b
LT 90

FD 20

RT 90

PD

FD 5

BK 10

LT 90

U T
FD 50

LT 90

FD 15
END

c

c= interface between mouth and beginning of broom

d= input to FD for beginning of broom

Fi re8212Th hil n

h wm
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ro res

Finally, in the construction of the broom, Valentini used a geometrical idea
and Alexandros an idea involving modularity. In the former case, Valentini
explicitly partitioned a 90 degree angle into three, in order to decide how
much to turn the turtle between the rays of the broom. The researcher's
suggestion that the broom might look nicer with five rays instead of three was
followed by her attempt to devide 90 by 5 in her mind. Alexandros, however,
suggested they "make the turtle do the division" and typed PR 90 / 5. He also



suggested they use the REPEAT command and have a ray and a turn as ¢
module. It was the process of the turtle's construction of the rays of the broom
that seemed to have brought their subsequent insight into a euclidean

method for constructing the circle, as discussed above (fig. 8.2.13a).

- e
f-:s =
L o
__:—-F—{ e _
- Trem, __k"
A 3 e
Ea .=’- 3
wa §
!' . j
L ’q._.ﬂ a’z
l-...- _'-'
—n =
TO X CIR19 3
CIR19 40 PU
PU LT 90
BK 40 FD 10
PD LT 90
REPEAT 3[PU FD 20 PD CIR19 5] FD 20
PU RT 20
FD 40 PD
CIR19 20 FD 5
CIR19 5 BK 10
PU LT 90
FD 10 PU
LT 90 FD 50
FD 10 LT 90
RT 90 FD 15
CIR19 3 LT 45
RT 90 PD
PU FD 40
FD 20 a LT 45
PD T REPEAT 5[FD 15BK 15RT 18]
END

a= commands for the broom
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Fi ure 8.2.13 The full version of the children's "Snowman" ro'ect

The snowman project was presented in some detail in order to
provide an overall picture of the children's increasing use of the
notions of radius and centre of a circle. In this case, the children did
not use the programming - oriented bottom - up superprocedure building
technique adopted in previous projects. They started off by defining a
procedure (X) to make the torso and the buttons, and then programmed in
direct drive for large parts of the figure while keeping a written record of their
commands. They added a new set of commands on to the X procedure only
in two instances, i.e. after making the mouth and after completing the broom
(fig. 8.2.13).

The following two projects involved using the TC procedure, which embodied
a euclidean construction of a circle. The first project mainly involved
superprocedure - building from their initial procedure TIME, a variation of
the TC procedure used for their clock task (fig. 8.2.2g and h). The first figure
consisted of a set of concentric "circles" - the TIME procedure made twelve
dots on the screen in a circular formation. The children's subsequent
programs consisted of superprocedures of combinations of target figures, as
in their projects with the CIR9 and CIR4 procedures. An interesting sub -
project was their procedure F7, involving "circles" in a square
formation achieved by an intrinsic method of repeated turtle
moves and turns REPEAT 4 ["circle” RT 90 FD 41], (fig. 8.2.14). In this
case, the children seemed to implicitly use the notion of the
radius in deciding on the length of the side of the square, since the
radius of the target shape was 41.
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TO F4
PU
FD 40
PD
FD 1
PU
BK 9
PD
BK 32
PU
END
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A . iﬁ.l ] g g "I X,
T phE o L
TO F5
REPEAT 24 [F4 RT 15] TO F8
END F7
RT 45
FD 82
TO F7 i
REPEAT 4 [F5 RT 90 FD 41]
END END

Fi ure 8 2 14 The children's first ro'ect

inv lvin r roc dure 4
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The final project involved a more explicit use of the radius and
the centre in two occasions. The shape the children wanted to make was
a rectangular frame the size of the screen, a large "clock" in the middle of the
frame and four smaller "clocks" tangentially connected to the four "corners".
Their programming method was similar to that adopted in their snowman
project in the sense that they would try out a set of commands in direct drive
and then put them in a procedure. In this case, however, they wrote a new
procedure for each set of commands. In two instances, they "collected" their
procedures into a superprocedure, resulting in an "untidy" (from a

programming point of view) superprocedure consisting of subprocedures of
different levels (fig. 8.2.15).
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TO MO

TO MOV PU TO MO2
PU FD 130 MOV
BK 115 RT 90 MO
AT 90 FD 115 TIME 60
FD 130 PD END
RT 180 END
PD
REPEAT 2[FD 260 RT 90 FD 230 RT 90]
END

REPEAT 2 [TIME 20 PUFD 188LT 90 TIME 20 PUPD 218 LT 90 PD]

END

TO MO3

PU TO MO5
BK 115 MO2
RT 90 MO3

FD 109 MO4
LT 90 END
FD 21

PD

END
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Fi ure 8.2.15 The children's second ro ect with circle rocedure 4

The geometrical notions used involved the relationship between the
dimensions of the frame - which the children had decided by trial and error to
be 260 x 230 - and the clocks' radii, in connection to their position in the four
corners. In constructing the first clock in the bottom right hand corner of the
frame, the children wanted the dots to touch the perimeter with precision. In
their attempt to place the turtle at the centre of the clock, they took into
account the centre's distance from the vertical right hand side of the frame
and the horisontal bottom side, (fig. 8.2.16). In doing so, they seemed for
the first time to use the radius in two positions in order to identify
the position of the centre. In their attempt to achieve more accuracy in
their shape, they took into account the length of the dots of the TC figure so
that it would be tangential to the sides of the frame. Furthermore, it was
Alexandros' idea to construct a modular subprocedure (MO4, fig.
8.2.15) in order to make the four small clocks at the edges of the
frame. The children had previously carefully calculated the respective
lengths, so that the turtle would move forward from clock centre to clock
centre. They did so by subtracting the total length of the side of the frame by
twice the length of the radius.

F .21 centr ndra iu

rin hit n' k"
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APPENDIX H

The children's ro rammin strate ies in solvin the "Four s uares" tasks
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In general, the researcher found it difficuit to analyse the data so that the
findings would represent the progress of the group of 20 children in a
collective and organised manner. This was due to the wide diversity of the
children's processes of working at the task, an issue which is corroborated by
related research findings (Papert et al, 1979, Hoyles and Sutherland, in

press).

At the time of the first occasion on which the task was set, where the children
worked in groups, they had not yet been introduced to the REPEAT command
or to procedures. Their direct - drive collaborative attempts to construct the
figure showed that most groups, although starting off with no clear global
plan, became progressively aware of the geometrical properties of the figure.
For instance, five out of the eight groups constructed squares of equal size
and showed evidence of realising that the distances between the squares

were equal.

In analysing the data from the subsequent two administerings of the task, the
researcher found it useful to focus on the children's programming strategies,
i.e. on the process by which they attempted to construct the figure in
connection with the programming method they used. Even then, diversity
characterised the children's efforts, even when they used the same
"programming techniques" (a procedure, for example) to solve the task.
Figure 5.2 represents a summary of the children's strategies regarding their

programming, for the second and third administering of the task.

The first two categories of the children's strategies involved direct - drive
programming. Evidence of using the geometrical properties and some
awareness of the structure of the task distinguished the second category from
the first. A substantial proportion of the children (9 in the first occasion and 6
in the second) did not choose to use REPEAT or procedures, even though all

the children had used these techniques in their group projects.

The third category consisted of the children who used the REPEAT commanc
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to construct the squares, but otherwise programmed in direct - drive.

The subsequent three categories represented in figure 5.2 involved children
writing one procedure to construct the whole of the figure. Three children in
the first occasion and one in the second, completed the task in direct drive
first, and then wrote a procedure, mainly consisting of the commands used in
direct drive (fig. 5.2, D). Two children in each occasion started the
construction in direct - drive and at some point, apparently acquiring
confidence from the emerging figure on the screen and/or developing an
awareness of the structure of the figure, abandoned their direct - drive efforts
and started anew within a procedure (fig. 5.2, E). However, two children in the
first occasion and seven in the second, started off by defining a procedure,
either attempting to construct the whole of the figure from the start and then
debug the procedure, or constructing a small part (e.g. one square), running
the procedure on the screen, and then "adding on" another feature of the
figure, trying it out on the screen, etc. (fig. 5.2, F)). A substantial proportion of
children wrote a procedure for the figure (7 in the first occasion and 10 in the
second) and there was a substantial increase in the children confident
enough to start off by defining a procedure (from 2 to 7).

No children wrote subprocedures or more than one procedure for the task
during the first of the two occasions. The strategies of the 4 children who did
so during the second, however, are presented in some detail. All four of these
children participated in the main case studies (see chapters 7 and 8). One
child (Philip) wrote one procedure to construct the task (fig. 5.3 - 1, 2 and 3),
his programming initially appearing to be under figure 5.2, F. After
completion, however, he wrote one procedure for the interface (fig. 5.3 - 4)
and one for the squdre (fig. 5.3 - 5) and then a superprocedure initially
consisting of a "linear" iteration of the two subprocedures (fig. 5.3 - 6 and 7).
Finally, he used the REPEAT command for the two subprocedures (fig. 5.3 -
8) and "added" direct - drive commands for the initial positioning of the turtle
(fig. 5.3 - 9). This was the only instance of a developing use of subprocedure
and modularity (fig. 5.2, Q).
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Three children, however, adopted a modular approach from the beginning.
Valentini wrote one subprocedure incorporating both square and interface
(fig. 5.4 - 1 and 6), and a separate subprocedure for the initial positioning of
the turtle (fig. 5.4 - 4 and 5). Figure 5.4 illustrates the order in which she wrote
the procedures and consequently how she de-bugged them. Alexandros
began by perceiving three modules, the initial turtle positioning (fig. 5.5 - 2),
the square (fig. 5.5 - 3) and the interface between squares (fig. 5.5 - 4), writing
a subprocedure for each of the three and using the REPEAT command for the
two latter subprocedures in his superprocedure for the task (fig. 5.5 - 5). Nikos
defined only one subprocedure for the square (fig. 5.6 - 1), but seemed to
perceived the modular structure of the task in writing the superprocedure (fig.
5.6 - 2, 3 and 4).

Since the task was not completed on all occasions, the researcher had some
difficulty in "classifying" incomplete efforts. When it was felt that a pupil using
a specific programming strategy (for instance, starting off with a procedure)
was well on the way to overcoming a difficulty or completing the task, the
effort was classified according to the used programming strategy. More often
was the case, however, when a pupil would start off by defining a procedure,
but due to confusion involving the programming technique or the geometry
(or both), finally revert back to direct - drive.

Although the data indicated some correspondence between children using
the geometrical properties involved in the construction of the figure and the
sophistication of their programming strategy, it was not always the case that
one followed from the other. Some efforts indicated a clear idea of the
geometry involved, but did not go beyond direct - drive programming as, for
instance, in loanna's strategy (fig. 5.7). In some cases, a child would be ready
to define a procedure and build or debug it in overcoming confusions due to
the geometrical structure of the task, as for example, is illustrated by the
changes Nafsika made to her SUPERWOMEN procedure (fig. 5.8).
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1

[U GREAT
REPEAT 4 [FD 30 BT 20]
FT Qi
FD 40
REPEAT 4 [FD 30 RT 20}
RT an
FD 40
END

2
TD GREAT
REPEAT 4 [FD 30 RT 90]
RT 90

PU
FO 4n
PD
LT 90
REFEAT 4 [FD 30 RT 20}
RT 30
Pu
FD 40
PD
LT90
REFEAT 4 [FD 30 RT 20)
RT an
PU
FD 40
PD
LT 30
REPEAT 4 [FD 30 RT 90]
END

6

TO SUPERGREATS

GREATH 7

GREATZ2

END TO SUPERGREATS

GREAT!
GREATZ
GREAT!
GREAT?2
GREATI
GREAT2
GREAT!
GREAT2
EMD

4

TO GREATH
RT 90

PU

FD 40

FD

LT an

END

8

TO SUPERGREATS
REPEAT 4 [GREAT! SREATZ]

END

3

TO GREAT

PU

RT 90

BK S0

PD

LT 90

REPEAT 4 [FD 30 RT gui
RT 20

Fi

FD 40

PD

LT an

REPEAT 4 [FD 30 RT 30])
BT 90

P

FD 30

PD

LT30

REPEAT 4 [FD Z0 RT 20}
T an

=

FO 43

£D

LT 90

FEPEAT 4 [FDr 30 RT @0}
END

5

TO GREATZ
RPEFEAT 4 [FD 30 RT 20]
END

9

TO SUPERGREATS

RT 90

FU

BK 60

PD

LT @D

REPEAT 4 [GREAT! GREATZ]
EMD

(the procedures are numbered in the order n which Philip wrote them?

Figure 3.3 Philip's programming strategy for the
four squares task
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1

2
O LOUARES o )
PEFEAT 4 [FD 40 RT 30] (0 SGQUARES
LT an REPEAT 4 [SQUARES]
P EMD
BK &l
PD
END
3
TO SSQUARES
MOYE
REFEAT 4 [SOUARES]
EMD
4 6 2
o MOYE 70 SOUARES TO MOQVE
LT 20 REPEAT 4 {FD 40 RT 390} PU
Fhr 120 LT 90 LT 90
END pu FD 120
BK &0 RT 90
PD PD
RT 90 END
END

{the procedures are numbered in the arder in which ¥alentini «rote them)

Figure 3.4 %alentini's programming strategy_

for the Four Squares task
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1

TG MOYEIL
LT 230

PU

FO 30

RT 20

PD

EMD

{the procedures are numbered in the order in which Alexandros wrote them)

2
To MOvE!
LT 20
PU
FU &b
RT 20
PD
EMND

3

T0 SQUARE
REPEAT 1 [FRO
END

TO SAUARES

MOYE1

REPEAT 4 BOQUAREMOYEZ2

END

4

TO MOVEZ
RT S0JRT @0

FO 20

PU

FD 10

LT 90

PD

END

Figure 5.5 Alexandros’ programming strategy
for the Four Sguares task
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2

L S i T HIK
REPEAT 4 [FD 30 RT 90] REPEAT 4@ LT 90 PU FD 60 RT 90 FOJ
4
3
T NIK
T0 NIK ﬁL 20
RT 90 o 50
P PD
FD 30 LT 90
REPEAT 4 [N LT 90 PU FD 60 RT 90 PD]

REPEAT 4 [N LT 90 PU FD 60 RT 20 PD]

END END

{ the procedures are numbered in the order in which Nikos wrote them)

Fiqure 5.6 Mikos' programming strateqy
for the Four suares task
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Pl
BEK 10

5K -0

BE 10

=]

REPEAT 4 (FD 20 RT 20
P

FD I0

REREAT 4 {FD 20 BT 90
Ty

REFPEAT 4 [FD 20 RT 20]
FU

FD 30

REPEAT 4 [FD 20 RT 90)
PU

FD 30

REPEAT 4 [FD 20 RT 90]

Figure 2.7 loanna's programming strategy_
for the Four Squares task
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1

TO SUPERWOMEN
REFEAT 4 [FD 10 RT 10]
END

2

TO SUPERWOMEN
REFEAT 4 [FD 10 RT 90]
END

5

TO SUPERWOMEN
REPEAT 4 [FD 25 RT 30)
PU

RT 20

FD 35

LT 90

REPEAT [FD 25 RT 20)
END

7

TO SUPERWOMEN
LT 30
FD 30
RT 90

{(the procedures are numbered in the order Nafsika wrote them)

3

TO SUPER'WOMEN

RE
EN

FEAT 4 [FD 25 RT 30]
b

4

TO SUPERWOMEN
REPEAT 4 [FD 25 RT 20]
PU

RT 20

FD 35

REPEAT [FD 25 RT 30]
END

6

TO SURPERWOMEN
REPEAT 4 [FD 25 RT 90]
PU

RT 90

FD 35

LT @0

PD

REFEAT [FD 25 RT 90]
Fu

RT 90

FD 35

LT S0

PD

REPEAT 4 [FD 25 RT 90]
PU

RT 90

FD 35

LT 80

PD

END

Figure 5.8 Phases of Nafsika's attempts to solve
the Four Squares task
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