
It sounds like you have a cold! Testing voice features for the Interspeech 2017 

Computational Paralinguistics Cold Challenge 

Mark Huckvale
1
, András Beke

2 

1
University College London, London, U.K. 

2
Hungarian Academy of Sciences, Budapest, Hungary 
m.huckvale@ucl.ac.uk, beke.andras@nytud.mta.hu 

 

Abstract 

This paper describes an evaluation of four different voice 

feature sets for detecting symptoms of the common cold in 

speech as part of the Interspeech 2017 Computational 

Paralinguistics Challenge. The challenge corpus consists of 

630 speakers in three partitions, of which approximately one 

third had a “severe” cold at the time of recording. Success on 

the task is measured in terms of unweighted average recall of 

cold/not-cold classification from short extracts of the 

recordings. In this paper we review previous voice features 

used for studying changes in health and devise four basic 

types of features for evaluation: voice quality features, vowel 

spectra features, modulation spectra features, and spectral 

distribution features. The evaluation shows that each feature 

set provides some useful information to the task, with features 

from the modulation spectrogram being most effective. 

Feature-level fusion of the feature sets shows small 

performance improvements on the development test set. We 

discuss the results in terms of the most suitable features for 

detecting symptoms of cold and address issues arising from 

the design of the challenge. 

Index Terms: computational paralinguistics, cold, respiratory 

tract infection, voice 

1. Introduction 

The goal of the Interspeech 2017 Cold Challenge was to 

identify speakers with upper-respiratory tract infections from 

short speech recordings. The training and testing corpus 

(URTIC) was provided by the Institute of Safety Technology, 

University of Wuppertal, Germany and consisted of 

recordings of 630 subjects made in quiet rooms. Each speaker 

completed a health questionnaire (WURSS24) [1] that 

contains 22 seven-point Likert scale questions related to 

symptoms of the common cold. Speakers with a mean score 

greater than or equal to 6 were classed as having a cold, others 

as not having a cold. The individual recordings were then 

divided into 28 652 short (3s-10s) sections and partitioned into 

training, development and tests sets, with no speaker being 

present in more than one set. For further details of the corpus, 

please see [2]. 

 In this paper, we build on previous approaches we have 

investigated for the classification of other paralinguistic 

properties of the voice: for Cognitive Load [3], for Fatigue [4], 

and for Laughter [5]. Our strategy has been to create well-

motivated feature sets that summarise temporal, spectral and 

modulational properties of each recording that are then used to 

train support-vector machine (SVM) or deep-neural network 

(DNN) classifiers. Section 2 of the paper investigates some 

previous voice features used in detecting changes in speaker 

health, which motivates our choice of four different voice 

feature sets. Section 3 describes how we extracted the voice 

features, and Section 4 describes how we built SVM and DNN 

classifiers. Sections 5 and 6 present the performance of the 

features singly and in combination on the challenge 

development and test sets, and discuss the outcomes. The 

paper concludes with speculation about the reasons for 

performance variation. 

2. Choosing Voice Features 

2.1. Features for detecting health changes 

Since speaking engages critical respiratory and neurological 

functions, speech is likely to be affected by almost any 

condition which affects the health of the individual, if only 

because of the added stress on the body. In recent years we 

have seen reported many health issues that supposedly affect 

speech including: acid reflux, adenoid cystic carcinoma, 

asthma, brain cancer, bronchitis, cleft palate, dementia, 

emphysema, hay fever, multiple sclerosis, multiple system 

atrophy, nerve damage to muscles of the vocal cords, 

noncancerous growths (polyps, nodules, cysts, granulomas, 

papillomas or ulcers) on the vocal cords, Parkinson's disease, 

stroke, and throat cancer. Most of these have yet to be 

investigated using computational paralinguistics techniques, 

but there are some studies which have looked at what changes 

such health issues have on speech which we can use to guide 

the choice of voice features. 

From the spectral domain, features such as formant 

frequencies and bandwidths, and other sub-band measures 

have been shown to vary due to Parkinson’s [6] and asthma 

[7]. 

Time-domain features based on pitch (f0 mean, f0 

variation, etc.) or voice quality (jitter, shimmer, HNR, etc.) 

have been widely reported as changing due to brain and 

mental health disorders such as depression, schizophrenia, and 

Parkinson’s [8, 9, 10, 11, 12]. 

Changes in spectral envelope shape and slope are widely 

reported as a consequence of voice pathology [13] or 

Parkinson's [14, 15]. The use of mel-frequency cepstral 

coefficients (MFCC) to describe the short-time speech spectral 

envelope is very common. 

  Combinations of time-domain and frequency domain 

features have also been used for rating the severity of 

Parkinson's [16]. 

For studying the effect of fatigue on voice, Baykaner et al.  

used a combination of time-domain, spectral domain and 

modulation domain features [4]. 
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2.2. Features for detecting common cold 

The common cold has a number of physiological effects which 

may have some effect on the voice. Commonly reported 

symptoms include: cough, hoarseness, sore throat, nasal 

obstruction, sneezing, nasal leakage and nasal stuffiness [17]. 

However studies show a great deal of variability in how the 

common cold affects individuals. Some of this variability is to 

do with differences between the viruses causing the disease, 

some to do with the fact that the frequency of symptoms 

changes as the disease progresses within an individual and 

some to do with differences in the resilience of individuals 

themselves [17]. 

In trying to detect presence of the common cold from the 

voice, there are few studies that can be called on for advice. 

Those that exist seem to be related to issues of whether 

speaker recognition systems are affected by having a cold. For 

example Tull and Rutledge [18] looked at the effect of 

common cold symptoms on the vowel formant frequencies of 

10 speakers. They saw reductions in formant frequencies in 

the cold voice. In a separate investigation Tull et al. [19] 

looked at the effect of cold symptoms on cepstral coefficients 

from digit recordings. They showed that the differences 

between normal and cold speech were mainly in the lower 

coefficients c2 and c3.  

A few studies parallel the cold challenge task.  Barry et al. 

[20] used MFCC and LPCC features and a neural network 

classifier to identify the presence of coughs. For the same 

application, Matos et al. [21] used MFCC features and HMM 

modelling. Larson et al. [22] used PCA features constructed 

from an FFT spectrogram together with a random forest 

classifier to identify coughs in speech samples. 

The cold challenge baseline feature set is based on the 

OpenSMILE features [23] which includes a wide variety of 

temporal and spectral measures together with functionals that 

summarise these parameters over each sample. 

2.3. Choosing Voice Features 

In this study, we chose to evaluate four sets of features which 

broadly relate to the types of features found in previous 

studies on health and cold detection from speech: 

a) Voice Quality features based on variations in the periodic 

temporal structure of the speech signal, such as pitch, 

irregularity, breathiness and effectiveness. These features 

are motivated by expected changes in larynx operation 

with symptoms of cold. 

b) Vowel Spectral features based on differences in the 

resonance characteristics of sonorant sounds. These 

features are motivated by expected changes in vocal tract 

shape, use or obstruction of the nasal cavities caused by 

cold symptoms. 

c) Spectral Modulation features based on changes in the 

character of amplitude modulations in different frequency 

bands. These features are motivated by expected changes 

in the effectiveness of glottal excitation to cause 

modulations at different frequencies, changes in vocal 

tract damping, and changes to articulatory quality and 

speaking rate. These changes might occur over a wide 

range of modulation frequencies. 

d) Distribution of Spectral Envelope features based on 

changes to the probability distribution of spectral 

envelopes. These features are motivated by expected 

changes in the relative frequency of sound elements in the 

recordings, these might include the loss of nasal segments 

or added sounds such as sniffs, coughs & groans. 

3. Extraction of Voice Features 

3.1. Voice Quality Features (VOI) 

To characterize voice quality, we combined a number of 

features generated by a mixture of existing toolkits. The 

occurrence of creaky voice was measured using the Voice 

Analysis Toolkit [24]. The Peak Slope measure [25] calculated 

from a wavelet-based decomposition of the speech signal into 

octave bands was used to differentiate breathy and tense voice 

qualities. To these features we added the following 

parameters: time domain features of zero-crossing rate, 

energy, and entropy of energy; and spectral domain features of 

spectral centroid, spectral entropy, spectral flux, spectral 

rolloff, MFCCs, harmonicity, pitch, and a chroma vector (12-

dimensional representation of the spectral energy).  These 

short-time measurements were then summarised for each 

recording using functionals of mean, standard deviation, 

skewness, and kurtosis to derive a feature vector of 156 

values. 

3.2. Vowel Spectral Features (VOW) 

To extract vowel spectra, the signals were first processed by a 

German phone recognizer (MAUS [26]) to identify the vocalic 

regions. 12 MFCC coefficients plus energy, deltas and delta-

deltas were then extracted over each vowel segment. The 

distribution of the MFCC coefficients across the vocalic 

segments in each recording was then described by 4 functional 

parameters: mean, standard deviation, skewness and kurtosis 

to generate a 156 feature vector. 

3.3. Spectral Modulation Features (MOD) 

The modulation spectrogram is calculated from 18 third-

octave sub-bands of the signal. The signal is passed through a 

filterbank of 4th order Butterworth filters between 125Hz and 

6350Hz. The normalized absolute amplitude is then taken in 

each channel and the modulation spectrum calculated as an 

average of a series of FFTs applied to 500ms Hamming-

windowed sections of the envelope overlapped by 250ms. The 

modulation amplitudes are then log compressed and 

modulation frequencies up to 500Hz preserved, see Figure 1. 

 

Figure 1.  Modulation Spectrogram 
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The modulation spectrogram in the modulation frequency 

range of 0-500Hz is then compressed by taking the first 16 

coefficients of the Discrete Cosine Transform for each 

channel, to generate an 18x16=288 feature vector. The effect 

of the data reduction can be seen in the reconstructed 

modulation spectrogram in Figure 2. 

 

3.4. Distribution of Spectral Envelope features (GPPS) 

To capture differences in the recordings as to the relative 

frequency of spectral events, MFCC parameters were first 

extracted for each recording. These consisted of 19 

coefficients plus energy and their deltas computed every 

10ms. These were then mean and variance normalised per 

recording. A universal background model (UBM) was then 

constructed from the whole training set using a GMM with 

512 mixtures. To extract a feature vector from each recording, 

the posterior probabilities of the 512 mixtures are computed 

from the occupancy counts of the UBM. This vector then 

reflects the relative frequency of 512 spectral "events" in the 

signals, in an analogous fashion perhaps to the "bag of audio 

words" used in the challenge baseline system [2]. 

4. Classifier construction 

4.1. Normalisation 

Our previous computational paralinguistics studies have 

shown the importance of feature normalisation to aid learning 

[3, 4]. Without normalisation, learning may be affected by 

large differences in dynamic range across features, poor 

distributional properties or outlier values. In this study we 

compared three types of normalisation: 

a) Uniform normalisation: where all features are linearly 

scaled to the range 0-1. A possible problem with this 

approach is that a few outliers can significantly affect the 

mapping. 

b) Z-score normalisation: where every feature value is 

measured as a distance from the mean of all feature values 

in units of standard deviation. This reduces the effects of 

outliers on the normalisation mapping. 

c) Gaussianisation: where the rank of each feature value 

among a sorted list of available feature values is used to 

extract quantiles from the cumulative normal distribution 

[27]. This enforces a Gaussian distribution on every 

feature, while losing information about their absolute 

values. 

4.2. Sample Balancing 

The cold challenge corpus is unusual in a number of respects: 

(i) only a minority of speakers (one third) had symptoms of a 

severe cold at the time of recording, (ii) more extracts were 

chosen from non-cold subjects, so that the number of audio 

samples of speakers with cold was only ~18% in the training 

and development sets; and (iii) speakers were not repeated 

across training, development and test sets. We foresaw that 

these issues may cause problems for training an effective cold 

classifier, since the classifier may become too dependent on 

the majority (non-cold) class, or may learn properties of cold 

that were too specific to the speakers in the training set (at 

worst, the classifier may just become a speaker recognizer for 

those speakers in the training set that have a cold). 

To address these problems we investigated the synthetic 

generation of new training samples from the minority class. 

The idea was (i) to balance the number of non-cold and cold 

samples, and (ii) to create "new" cold speakers from mixtures 

of old speakers. In this study we looked at three approaches: 

a) Unbalanced: no change to the training samples. 

b) SMOTE balanced: synthesis of new samples of the cold 

class using the SMOTE procedure [28] in which each new 

sample is computed as an admixture of two randomly 

chosen samples from the minority class. 

c) ADASYN balanced: synthesis of new samples of the cold 

class using the ADASYN procedure [29]. In this 

procedure new minority samples are only generated in the 

area of the vector space where the density of minority 

class vectors is low. To measure the neighbourhood 

density of any vector a k-nearest neighbour measure is 

used based on Euclidean distances.  

4.3. SVM Classifier 

The LIBLINEAR package [30] was used to train and test 

SVM classifiers. Feature vector normalisation of uniform, z-

score and gaussianisation was explored. Balancing was chosen 

from Unbalanced, SMOTE balanced and ADASYN balanced. 

Variations in the "complexity" parameter C were explored in 

powers-of-ten steps from 1e-6 to 10. A linear regression fit 

was used to obtain posterior probabilities. 

4.4. Neural network classifier 

The Microsoft Cognitive Toolkit CNTK [31] was used to train 

and test deep neural network classifiers. Feature vector 

normalisation of uniform, z-score and gaussianisation was 

explored. Balancing was chosen from Unbalanced, SMOTE 

balanced and ADASYN balanced. Network nodes types of 

Sigmoid, Tanh and Rectified Linear were explored. Networks 

had 1, 2 or 3 hidden layers, of 25, 50 or 100 nodes in each 

layer. The output layer had two SoftMax nodes to represent 

class probabilities. A learning rate of 0.5 stepping down to a 

rate of 0.1 over 30 learning epochs was used in all tests, with a 

stochastic gradient descent learning algorithm on a cross 

entropy measure applied in mini-batches of 100. 

4.5. Performance measurement 

The challenge performance measure is unweighted average 

recall (UAR), that is the labelling accuracy assuming not-cold 

and cold detection as equally important. To calculate UAR for 

our systems, we applied the classifier trained on the training 

Figure 2.  DCT Coded Modulation Spectrogram
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set to the development set obtaining a list of posterior 

probabilities for the cold class for each sample. Using the 

correct labelling a threshold value was then chosen to find a 

probability value such that the proportion of cold samples 

labelled as non-cold was approximately similar to the 

proportion of non-cold samples labelled as cold. This is the 

equal-error rate threshold. 

5. Results 

5.1. Development Set 

Since our main objective in this study was to explore the 

difference between feature sets for the detection of symptoms 

of cold in the voice, we report below the performance of the 

best system configurations only. 

Feature set Best SVM Best DNN 

OpenSMILE Baseline 64.00 - 

VOI 66.34 65.58 

VOW 66.47 65.48 

MOD 67.95 67.95 

GPPS 66.07 65.58 

VOI+VOWEL 68.37 66.59 

VOI+MOD 64.88 68.13 

VOI+GPPS 67.34 67.32 

VOW+MOD 67.05 70.02 

VOW+GPPS 69.03 69.11 

MOD+GPPS 67.36 70.97 

 

The best single feature set using the SVM classifier was MOD 

with z-score normalisation, ADAS balancing and C=0.1. The 

best  single feature set using the DNN classifier was also 

MOD with z-score normalisation, using sigmoid nodes in 

100:100:100 layers, but  no balancing. 

 The best feature fusion using the SVM was VOW+GPPS 

with z-score normalisation, no balancing and C=1e-6. The best 

feature fusion using the DNN was MOD+GPPS with z-score 

normalisation, rectified linear nodes in 100:100:100 layers and 

no balancing. 

5.2. Test Set 

To build a system for evaluation on the test set, the system that 

performed best on the development set was retrained using the 

whole training and development sets as training data, and with 

the same set of configuration and learning parameters. Test set 

performance of the system that performed best on the 

development set is shown in Table 2, together with the best 

performing single classifier reported in the baseline 

System UAR % 

Baseline: 

SVM + OpenSMILE features 

70.2 

Best performing development set system: 

DNN + MOD + GPPS features 

62.1 

 

Although our best system considerably outperformed the 

baseline on the development set, performance is considerably 

worse on the test set.  This may be due to some over-fitting of 

the best system to the development set, extreme sensitivity of 

the system to the choice of configuration parameters or some 

other discrepancy between audio samples in the corpus 

partitions. 

6. Discussion 

The outcomes of our evaluation are as follows. In terms of 

normalisation strategy, only small effects were seen, but 

overall z-score normalisation did provide the best UAR scores 

on this task. 

 In terms of balancing, we found little evidence that 

SMOTE or ADASYN balancing improved the UAR scores. In 

some configurations we saw that balancing even had adverse 

effects on the ability of the classifiers to learn the task. 

 In terms of choice of classifier, the two classifiers obtained 

rather similar performance for the different voice features. 

 In terms of classifier configuration, good performance was 

obtained on occasions with a wide range of SVM complexity 

parameters, although performance could vary by as much as 

±5% for one training set across complexity settings. The same 

behaviour could be found for network configurations, with 

both Sigmoid and Rectified Linear units giving good 

performance on different training sets, but with a considerable 

range of performance figures over different network 

configurations. Overall the implication is that this task is very 

sensitive to system configuration, which may explain poor test 

set performance. 

 In terms of the best features sets, while all four proposed 

feature sets performed better than the baseline OpenSMILE 

feature set on the development set, the modulation 

spectrogram features were the best single set. This may be 

because this set captures voice changes at both high and low 

modulation frequencies, relevant to the symptoms of cold 

affecting excitation, resonance and rhythm of the speech. 

7. Conclusions 

The 2017 Computational Paralinguistics Cold challenge was 

particularly difficult for a number of reasons. The fact that the 

training set was based on a large number (10 000) of extracts 

from a few (210) speakers of which only a minority had a cold 

made the training of a classifier sensitive to cold rather than to 

speaker difficult. Since we have already noted that the 

symptoms of cold vary considerably across virus, individual 

and time [17], it is likely that even the speakers in the training 

set with a cold do not form a homogeneous group. The task 

would have been much easier if longer segments of speech 

were available, if duplicate recordings of the same speaker 

were marked, or if recordings of the same speakers with and 

without cold were available. In the last case, it would have 

allowed the training of a joint factor model to separate out the 

effects of cold from the effects of speaker identity, much as 

the same approach is used in speaker recognition to separate 

out effects of channel [32]. 

8. Acknowledgements 

The work conducted here was supported in part by a European 

Space Agency grant: Embedded Psychological Support 

Integrated for Long duration missions – EPSILON, (phase 1 - 

VULCAN). Thanks to the organisers of the Interspeech 2017 

Computational Paralinguistics Challenge for making this study 

possible. 

  

Table 1.  Best development set performance (UAR%) 

Table 2.  Test Set Performance 

3450



References 

[1] Barrett, B., Brown, R. L., Mundt, M. P., Thomas, G. R., Barlow, 
S. K., Highstrom, A. D., and Bahrainian, M. “Validation of a 

short form Wisconsin upper respiratory symptom survey 

(WURSS-21)”. Health and Quality of Life Outcomes, 7(1), pp. 
76, 2009. 

[2] Schuller, B., Steidl, S., Batliner, A., Bergelson, E., Krajewski, J., 

Janott, C., Amatuni, A., Casillas, M., Seidl, A., Soderstrom, M., 
Warlaumont, A., Hidalgo, G., Schnieder, S., Heiser, C., 

Hohenhorst, W., Herzog, M., Schmitt, M., Qian, K., Zhang, Y., 

Trigeorgis, G., Tzirakis, P., Zafeiriou, S., “The INTERSPEECH 
2017 Computational Paralinguistics Challenge: Addressee, Cold 

& Snoring”, in INTERSPEECH 2017 – 18th Annual Conference 

of the International Speech Communication Association, August 
pp. 20–24, Stockholm, Sweden, Proceedings, 2017. 

[3] Huckvale, M., "Prediction of Cognitive Load from Speech with 

the VOQAL Voice Quality Toolbox for the InterSpeech 2014 
Computational Paralinguistics Challenge", Proc. Interspeech 

2014, Singapore, 2014. 

[4] Baykaner, K. R., Huckvale, M., Whiteley, I., Andreeva, S., and 
Ryumin, O., “Predicting Fatigue and Psychophysiological Test 

Performance from Speech for Safety-Critical Environments”. 

Frontiers in Bioengineering and Biotechnology, 3, 2015. 
[5] Gosztolya, G., Beke, A., Neuberger, T., Tóth, L. “Laughter 

Classification Using Deep Rectifier Neural Networks with a 

Minimal Feature Subset”, Archives of Acoustics Vol. 41, No. 4, 
pp. 669–682, 2016. 

[6] Bang, Y., Min, K., Sohn, Y., Cho, S., "Acoustic characteristics 

of vowel sounds in patients with Parkinson disease." 
NeuroRehabilitation 32.3, pp. 649–654, 2013. 

[7] Sonu, R., “Disease detection using analysis of voice 

parameters.” Int. J. Comput. Sci. Commun. Technol, 4(2), 2012. 
[8] Michaelis, D., Fröhlich, M., Strube, H., “Selection and 

combination of acoustic features for the description of 

pathologic voices.” Journal of the Acoustical Society of America 
103, pp. 1628, 1998. 

[9] Cohen, A., Alpert, M., Nienow, T., Dinzeo, T., Docherty, N., 

“Computerized measurement of negative symptoms in 
schizophrenia.” Journal of psychiatric research 42, pp. 827–836, 

2008. 

[10] Alpert, M., Pouget, E., Silva, R., “Reflections of depression in 
acoustic measures of the patient’s speech.” Journal of affective 

disorders 66, pp. 59–69, 2001. 

[11] Proença, J., Veiga, A., Candeias, S., and Perdigão, F., “Acoustic, 
Phonetic and Prosodic Features of Parkinson's disease Speech.“ 

In STIL-IX Brazilian Symposium in Information and Human 

Language Technology, 2nd Brazilian Conference on Intelligent 
Systems (BRACIS 2013), Fortaleza/Ceará, Brazil, 2013. 

[12] Kliper, R., Portuguese, S., and Weinshall, D., "Prosodic Analysis 

of Speech and the Underlying Mental State". In International 
Symposium on Pervasive Computing Paradigms for Mental 

Health (pp. 52–62). Springer International Publishing, 2015. 
[13] Arias-Londono, J. D., Godino-Llorente, J. I., Sáenz-Lechón, N., 

Osma-Ruiz, V., and Castellanos-Domínguez, G. “Automatic 

detection of pathological voices using complexity measures, 
noise parameters, and mel-cepstral coefficients”. IEEE 

Transactions on Biomedical Engineering, 58(2), pp. 370–379, 

2011. 
[14] Benba, A., Jilbab, A., and Hammouch, A., “Detecting Patients 

with Parkinson's disease using Mel Frequency Cepstral 

Coefficients and Support Vector Machines.” International 
Journal on Electrical Engineering and Informatics, 7(2), pp. 

297, 2015. 

[15] Shirvan, R. A., and Tahami, E., “Voice analysis for detecting 
Parkinson's disease using genetic algorithm and KNN 

classification method.” In Biomedical Engineering (ICBME), 

2011 18th Iranian Conference of IEEE, pp.  278–283, 2011. 
[16] Tsanas, A., Little, M. A., McSharry, P. E., Spielman, J., and 

Ramig, L. O., “Novel speech signal processing algorithms for 

high-accuracy classification of Parkinson's disease.” IEEE 

Transactions on Biomedical Engineering, 59(5), pp. 1264–1271, 
2012. 

[17] Tyrrell, D. A. J., Cohen, S., and Schilarb, J. E., “Signs and 

symptoms in common colds.” Epidemiology and infection, 
111(01), pp. 143–156, 1993. 

[18] Tull, R. G., and Rutledge, J.C., "‘Cold Speech’ for Automatic 

Speaker Recognition." Acoustical Society of America 131st 
Meeting Lay Language Papers, 1996. 

[19] Tull, R. G., Rutledge, J.C., and Larson, C.R., “Cepstral analysis 

of ‘cold‐speech’ for speaker recognition: A second look”. Diss. 
ASA, 1996. 

[20] Barry, S. J., Dane, A. D., Morice, A. H., and Walmsley, A. D. 
“The automatic recognition and counting of cough.” Cough, 

2(1), 8, 2006. 

[21] Matos, S., Birring, S. S., Pavord, I. D., and Evans, H., 
“Detection of cough signals in continuous audio recordings 

using hidden Markov models.” IEEE Transactions on 

Biomedical Engineering, 53(6), pp. 1078–1083, 2006. 
[22] Larson, E. C., Lee, T., Liu, S., Rosenfeld, M., and Patel, S. N., 

“Accurate and privacy preserving cough sensing using a low-

cost microphone.” In Proceedings of the 13th international 
conference on Ubiquitous computing (pp. 375–384). ACM, 

2011. 

[23] F. Eyben, F. Weninger, F. Groß, and B. Schuller, “Recent 
developments in openSMILE, the Munich open-source 

multimedia feature extractor,” in Proceedings of ACM MM 2013 
Barcelona, Spain, ACM, pp. 835–838, 2013 

[24] Kane, J., and Gobl, C., “Evaluation of glottal closure instant 

detection in a range of voice qualities.” Speech Communication, 
55(2), pp. 295–314, 2013. 

[25] Kane, J., and Gobl, C., “Identifying Regions of Non-Modal 

Phonation Using Features of the Wavelet Transform.” In 
Interspeech 2011, pp. 177–180, 2011. 

[26] Kisler, T., Schiel, F., and Sloetjes, H., “Signal processing via 

web services: the use case WebMAUS.” In Digital Humanities 
Conference, 2012. 

[27] Chen, S., Gopinath, R., "Gaussianization" Proc. NIPS 2000, 

Denver Colorado,  2000. 
[28] Chawla, N., Bowyer, K., Hall, L. and Kegelmeyer, W., 

“SMOTE: Synthetic Minority Over-sampling Technique.” 

Journal of Artificial Intelligence Research. 16, pp. 321–357, 
2002. 

[29] Wacharasak S., “smotefamily: A Collection of Oversampling 

Techniques for the Class Imbalance Problem Based on 
SMOTE:” https://CRAN.R-project.org/package=smotefamily 

2016 

[30] Fan, R, Chang, K., Hsieh, C., Wang, X. and Lin, C., 
"LIBLINEAR: A library for large linear classification", Journal 

of Machine Learning Research 9, pp1871-1874, 2008 

[31] CNTK toolkit: https://www.microsoft.com/en-
us/research/product/cognitive-toolkit/  

[32] Kenny, P., Ouellet, P., Dehak, N., Gupta, V., & Dumouchel, P., 

“A study of interspeaker variability in speaker verification” 
IEEE Transactions on Audio, Speech, and Language Processing, 

16(5), 980-988, 2008 

 

3451


