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SUPPLEMENTARY	METHODS	

Computational	model	

We	developed	a	simple	signal	detection	model	(to	understand	how	joint	accuracy	(fraction	of	correct	
joint	 decisions)	 varies	 with	 differences	 between	 group	members’	 expertise	 and	mean	 confidence	
and	 to	 establish	 an	 optimal	 benchmark	 against	 which	 empirical	 group	 performance	 could	 be	
compared	(Figure	3).	The	model	assumes	that	three	cognitive	processes	govern	confidence:	 (i)	 the	
agent	receives	noisy	sensory	evidence,	(ii)	the	agent	computes	an	internal	estimate	of	the	evidence	
strength	and	(iii)	the	agent	maps	the	internal	estimate	onto	a	response	(decision	and	confidence)	by	
applying	a	set	of	thresholds.	The	level	of	sensory	noise	determines	the	agent’s	expertise	and	the	set	
of	thresholds	determines	the	agent’s	mean	confidence.	

Model	description	

We	 assumed	 that	 on	 each	 trial	 an	 agent	 receives	 noisy	 sensory	 evidence,	 𝑥,	 sampled	 from	 a	
Gaussian	distribution,	𝑥 ∈ 𝑁(𝑠, 𝜎().	The	mean,	𝑠,	 is	the	difference	in	contrast	between	the	second	
and	the	first	display	at	the	target	location.	As	such,	𝑠	is	drawn	uniformly	from	the	set	𝑠	 ∈ 𝑆 = {−.15,
−.07, −.035, −.015, .015, .035, .07, .15}	 –	 the	 sign	 of	 𝑠	 indicates	 the	 target	 display	 (negative:	
1st;	positive:	2nd)	and	 its	 absolute	value	 indicates	 the	 contrast	 added	 to	 the	 target.	 The	 standard	
deviation,	𝜎,	describes	the	level	of	sensory	noise	and	is	the	same	for	all	stimuli.	

We	modelled	the	internal	estimate	of	the	evidence	strength	as	the	raw	sensory	evidence,	𝑧 = 𝑥.	The	
internal	 estimate	 thus	 ran	 from	 large	negative	 values,	 indicating	a	high	probability	 that	 the	 target	
was	 in	the	first	display,	through	values	near	0,	 indicating	high	uncertainty,	to	 large	positive	values,	
indicating	a	high	probability	that	the	target	was	in	the	second	display.	We	chose	this	formulation	for	
mathematical	 simplicity	but	note	 that	our	 analysis	would	 show	 the	 same	 results	 for	 any	model	 in	
which	the	internal	estimate	is	a	monotonic	function	of	the	sensory	evidence,	including	probabilistic	
estimates	such	as	𝑧 = 𝑃(𝑠 > 0|𝑥).			

We	 assumed	 that	 the	 agent	maps	 the	 internal	 estimate	 onto	 a	 response,	 𝑟,	 by	 applying	 a	 set	 of	
thresholds,	𝜽.	As	 in	our	experiments,	 the	responses	 range	 from	-6	 to	 -1	and	1	 to	6	–	 the	sign	of	𝑟	
indicates	 the	decision	 (negative:	1st;	positive:	2nd)	and	 its	absolute	value	 indicates	 the	confidence	
(𝑐 = |𝑟|).	The	thresholds,	𝜽,	determine	the	probability	distribution	over	responses	

𝑝> ≡ 𝑃 𝑟 = 𝑖 =

	𝑃 𝑧 ≤ 𝜃CD 𝑖 = −6
𝑃 𝜃FCG < 𝑧 ≤ 𝜃F
𝑃 𝜃CG < 𝑧 ≤ 𝜃G

		−6 < 𝑖 ≤ −1, 2 ≤ 𝑖 < 6
𝑖 = 1

𝑃 𝑧 > 𝜃J 𝑖 = 6

	.	

There	 is	 no	 criterion	𝜃D,	 because	 𝑟 = 6	 corresponds	 to	 𝑧	 exceeding	 𝜃J.	 There	 is	 a	 one-to-one	
relationship	between	thresholds	and	probabilities,	so	it	is	easy	to	find	the	thresholds	corresponding	
to	a	given	response	distribution	(as	we	will	do	shortly).	

Deriving	accuracy	for	an	agent	

We	calculated	the	accuracy	(fraction	of	correct	decisions)	of	an	agent,	given	a	level	of	sensory	noise,	
𝜎,	and	a	response	distribution,	𝑝>,	where	𝑖 = ±1,2, … , 6,	as	follows.		

We	 first	 calculated	 the	 thresholds,	𝜽,	 that	 produced	 the	 response	 distribution	 𝑝> 	 over	 the	 entire	
stimulus	set	𝑆 = {−.15, −.07, −.035, −.015, .015, .035, .07, .15}.	In	particular,	we	found	(using	
MATLAB’s	‘fzero’	function)	thresholds	𝜃>,	where	𝑖 = −6, −5, … , −1,1,2, … 5,	such	that		

𝑝M
MN>

=
1
8

Φ(
𝜃> − 𝑠
𝜎

)
Q∈R

	



	

where	Φ	 is	the	Gaussian	cumulative	density	fucntion.	We	then	calculated	for	each	stimulus,	𝑠 ∈ 𝑆,	
the	predicted	response	distribution,	denoted	𝑝>,Q,		

𝑝>,Q =

Φ
𝜃CD − 𝑠
𝜎

𝑖 = −6

Φ
𝜃> − 𝑠
𝜎

− Φ
𝜃>CG − 𝑠

𝜎
−6 < 𝑖 < 6

1 − Φ
𝜃J − 𝑠
𝜎

𝑖 = 6

	.	

Thus,	the	accuracy	of	an	agent	was	given	by		

𝑎agent = 	
𝑝𝑖,𝑠6

𝑖=1 +Q∈R,QZ[ 𝑝𝑖,𝑠−1
𝑖=−6Q∈R,Q\[

8 	

Deriving	joint	accuracy	for	a	pair	of	agents	

We	calculated	the	joint	accuracy	(fraction	of	correct	joint	decisions)	for	a	pair	of	agents	as	follows:		

We	 computed	 the	 predicted	 response	 distribution	 for	 each	 stimulus	 𝑠 ∈ 𝑆	 for	 group	 member	 1,	
𝑝>,Q,G,	and	group	member	2,	𝑝>,Q,(.	We	 then	calculated	 for	each	stimulus	𝑠 ∈ 𝑆	 the	probability	 that	
group	member	1	makes	response	𝑖G	and	group	member	2	makes	response	𝑖(	as	𝑝>],>^,Q =	𝑝>,Q,G𝑝>,Q,(.	
The	response	combinations	that	yield	a	correct	response	for	a	positive-mean	Gaussian	distribution	
are	 those	 for	 which	 𝑖G + 𝑖( > 0.	 The	 response	 combinations	 that	 yield	 a	 correct	 response	 for	 a	
negative-mean	 Gaussian	 distribution	 are	 those	 for	 which	 𝑖G + 𝑖( < 0.	 Additionally,	 response	
combinations	for	which	i1+i2	=	0	–	that	is,	confidence	ties	–	yield	a	correct	response	with	probability	
.5.		

The	join	accuracy	of	a	pair	of	agents	is	thus	given	by		

𝑎_`Fab =
1
8

𝑝>],>^,Q>]c>^Z[
+
1
2

𝑝>],>^,Q>]c>^d[𝑠∈𝑆,𝑠>0

+ 𝑝>],>^,Q>]c>^\[
+
1
2

𝑝>],>^,Q>]c>^d[𝑠∈𝑆,𝑠<0
	

	

CONFIDENCE	LANDSCAPES	

Calculating	a	set	of	maximum	entropy	distributions	

For	 a	 given	mean	 there	 are,	 obviously,	many	possible	 distributions.	Here	we	 choose	 the	 one	 that	
maximized	the	entropy,	denoted	𝐻,	

𝐻	 ≡ − 𝑝>log	𝑝>

D

>dG

	

The	maximum	entropy	distribution	is	found	using	Lagrange	multipliers,	

𝜕
𝜕𝑝>

𝐻 +	𝜆G 𝑝> − 1
D

>dG

+ 𝜆( 𝑖𝑝> − 𝑐	
D

>dG

= 0	

𝜕
𝜕𝜆G

𝐻 +	𝜆G 𝑝> − 1
D

>dG

+ 𝜆( 𝑖𝑝> − 𝑐	
D

>dG

= 0	

𝜕
𝜕𝜆(

𝐻 +	𝜆G 𝑝> − 1
D

>dG

+ 𝜆( 𝑖𝑝> − 𝑐	
D

>dG

= 0	



	

where	𝑐	is	the	mean.	Solving	these	equations	gives	the	maximum	entropy	distribution,	subject	to	the	
constraints	 that	 the	 distribution	 sums	 to	 1,	 𝑝> = 1,D

>dG 	 and	 has	 the	 right	 mean	 confidence,	 c,	
𝑖𝑝> = 𝑐D

>dG 	 and	𝑝> ≥ 0.	 For	 𝑐 = 1	 the	 unique	 distribution	 that	 satisfies	 these	 constraints	 is	𝑝 =
(1,0,0,0,0,0).	 Similarly,	 for	𝑐 = 6,	𝑝 = (0,0,0,0,0,1)	 is	 the	 solution.	 For	 any	 intermediate	 value	 for	
the	mean,	1 ≤ 𝑐 ≤ 6,	the	solution	is	

𝑝> =
𝑒>l^

𝑒Ml^D
MdG

	

with	𝜆(	chosen	by	solving	the	constraint	

𝑐 =
𝑗𝑒Ml^D

MdG

𝑒Ml^D
MdG

	

which	can	be	done	with	MATLAB’s	“fzero”	function.	We	transformed	confidence	distributions	(1	to	
6)	to	response	distributions	(-6	to	-1	and	1	to	6)	by	assuming	symmetry	around	0.	 	



	

SUPPLEMENTARY	NOTES	

Comparing	observed	to	optimal	joint	accuracy	

In	 Figure	 3D,	 we	 show	 that	 the	 ratio	 of	 the	 observed	 joint	 accuracy	 to	 that	 expected	 under	 the	
optimal	 solution,	𝑎nop/𝑎`pb,	 approaches	1	as	 the	 ratio	of	 the	accuracy	of	 the	 less	accurate	group	
member	to	that	of	the	more	accurate	group	member,	𝑎oFa/𝑎ors,	approaches	1	–	a	pattern	which	is	
expected	under	confidence	matching.	This	analysis	is,	however,	subject	to	potential	confounds.	Our	
aim	here	is	to	explain	what	these	confounds	are	and	show	that	each	of	them	can	be	ruled	out.		

First,	we	might	find	a	divergence	between	the	observed	joint	accuracy	and	that	expected	under	the	
optimal	solution	because	the	only	source	of	response	variation	in	our	model	is	sensory	noise;	unlike	
participants,	the	model	never	makes	response	errors	or	has	 lapses	of	attention.	To	correct	for	this	
potential	mismatch,	we	re-defined	joint	accuracy	under	the	optimal	solution	as:	

𝑎`pb = 	 𝑎`pb − (𝑎tFb − 𝑎nop)	

where	𝑎`pb	is	the	maximum	of	a	given	confidence	landscape	as	before	and	𝑎tFb	is	the	joint	accuracy	
derived	under	group	members’	observed	response	distributions.	The	additional	term,	(𝑎tFb − 𝑎nop),	
corrects	for	any	‘overestimation’	of	joint	accuracy	introduced	by	our	modelling	procedure.	Critically,	
when	re-defining	optimality	as	𝑎nop/𝑎`pb,	we	still	observe	a	positive	correlation	between	optimality	
and	the	similarity	of	group	members’	accuracy	(r(80)	=	.682,	p	<	.001,	Pearson).		

This	 analysis,	 however,	may	 still	 be	 subject	 to	 two	additional	 confounds.	 First,	𝑎`pb	might	diverge	
from	𝑎nop	simply	because	𝑎`pb	was	derived	under	maximum	entropy	distributions,	which	–	for	any	
given	 mean	 confidence	 –	 usually	 reduces	 the	 number	 of	 confidence	 ties.	 Second,	 the	 level	 of	
optimality	 itself,	 𝑎nop/𝑎`pb,	 might	 be	 smaller	 for	 similar	 group	 members,	 𝑎oFa/𝑎ors ≈ 1,	 than	
dissimilar	 group	 members,	 𝑎oFa/𝑎ors ≪ 1,	 due	 to	 range	 effects.	 For	 the	 most	 dissimilar	 group	
members,	 the	 difference	 between	 the	 minimum	 and	 the	 maximum	 value	 of	 a	 given	 confidence	
landscape	is	about	.1.	In	contrast,	for	the	most	similar	group	members,	the	difference	between	the	
minimum	and	the	maximum	value	of	a	given	confidence	landscape	is	only	about	.05.	Thus,	there	was	
less	room	for	the	latter	to	deviate	from	the	joint	accuracy	expected	under	the	optimal	solution.		

We	therefore	repeated	the	above	analysis	but	now	re-defining	optimality	as:	

𝑎nop/𝑎`pb = (𝑎orsnab − 𝑎rabF)/(𝑎`pb − 𝑎rabF)	

where	 𝑎rabF	 is	 the	 minimum	 value	 of	 a	 confidence	 landscape	 and	 𝑎orsnab	 is	 the	 value	 of	 the	
landscape	 coordinate	 indexed	 by	 group	 member’s	 observed	 mean	 confidence.	 First,	 by	 using	
𝑎orsnab	 instead	of	𝑎nop	 in	the	numerator,	we	control	not	only	for	model	misspecification	but	also	
for	 the	 use	 of	 maximum	 entropy	 distributions.	 Second,	 the	 subtraction	 of	 𝑎rabF	 in	 both	 the	
numerator	and	denominator	controls	 for	range	effects.	 Importantly,	 in	 line	with	the	above	results,	
we	still	find	a	positive	correlation	between	optimality	and	the	similarity	of	group	members’	accuracy	
(r(80)	=	.469,	p	<	.001,	Pearson).	 	



	

	
Supplementary	 Figure	1	 |	 Evidence	 for	matching	of	 confidence	 variability	 and	 confidence	distributions.	a,	
Correlation	in	confidence	variability.	The	axes	show	the	variance	of	group	members’	confidence,	var(𝑐G)	and	
var(𝑐().	The	results	indicate	that	group	members	adapted	to	each	other’s	confidence	variability	in	the	social	
task	only.	Each	dot	 is	a	group.	Each	 line	 is	the	best-fitting	 line	of	a	robust	regression;	because	the	sorting	of	
group	members	 into	1	and	2	 is	arbitrary,	we	show	the	p-value	for	the	slope	of	the	best-fitting	 line	averaged	
across	 105	 separate	 regressions,	 for	 each	 randomly	 re-labelling	 the	 members	 of	 a	 group	 as	 1	 and	 2.	 b,	
Convergence	in	confidence	variability.	The	y-axis	shows	the	absolute	difference	between	the	variance	of	group	
members’	confidence,	|var 𝑐G − var 𝑐( |.	The	results	are	not	conclusive;	in	EXP1,	EXP5	and	EXP6,	there	are	
only	trends	towards	convergence	in	confidence	variability	in	the	social	task	compared	to	the	other	tasks.	Each	
black	dot	is	data	averaged	across	groups.	Each	coloured	dot	is	a	group;	the	lines	connect	group	data	when	the	
same	 pairing	 of	 group	 members	 was	 used	 in	 two	 conditions.	 Error	 bars	 are	 1	 SEM.	 c,	 Convergence	 in	
confidence	 distributions.	 The	 y-axis	 shows	 the	 Jensen-Shannon	 divergence,	𝐷z{,	 between	 group	 members’	
confidence	distributions.	The	results	provide	strong	support	for	convergence	in	confidence	distributions	in	the	
social	task	compared	to	the	other	tasks,	except	in	the	case	of	EXP6.	In	EXP3,	the	continuous	confidence	values	
were	discretised	to	the	range	1	to	6	in	steps	of	1.	Each	black	dot	is	data	averaged	across	groups.	Each	coloured	
dot	 is	 a	 group;	 the	 lines	 connect	 group	 data	 when	 the	 same	 pairing	 of	 group	 members	 was	 used	 in	 two	
conditions.	Error	bars	are	1	SEM.	See	Supplementary	Figure	3	for	complementary	permutation-based	tests.	 	
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Supplementary	Figure	2	|	Results	from	Experiment	1	split	by	condition	order.	The	x-axis	shows	the	current	
condition,	 the	y-axis	 shows	 the	measure	of	 interest	and	 the	colour	denotes	whether	groups	 first	performed	
the	 isolated	 condition	 (blue)	 or	 the	 social	 condition	 (red).	We	 tested	 the	 effect	 of	 condition	order	 using	 an	
ANOVA	with	the	measure	of	interest	as	within-subject	factor	(isolated	versus	social)	and	the	condition	order	as	
between-subject	 factor	 (isolated	 first	 versus	 social	 first).	 The	 interaction	 between	 the	 two	 factors	was	 only	
significant	for	the	differences	between	the	variance	of	group	members’	confidence	(variance:	F1,28	=	4.160,	p	=	
.041;	all	others:	F1,28	<	0.700,	p	>	.400.	DJS:	Jensen-Shannon	divergence.	 	

n=30

first condition



	

	
Supplementary	 Figure	 3	 |	 Null	 distributions	 for	 permutation	 testing.	 We	 created	 for	 each	 measure	 of	
interest,	𝜗,	a	distribution	under	the	null	hypothesis,	𝑝(𝜗),	by	randomly	repairing	participants	and	computing	
the	mean	of	measured	values	for	each	set	of	repaired	participants	(we	simulated	106	sets	in	total).	By	asking	
whether	the	observed	mean	value	(red	line)	for	a	given	measure	was	smaller	than	95%	of	the	values	from	the	
null	distribution	(i.e.,	p	<	.05,	one-tailed),	we	could	test	whether	the	observed	mean	value	was	specific	to	the	
true	pairing	of	group	members	–	we	would	expect	this	to	be	the	case	if	it	was	the	result	of	dynamic	interaction	
between	 group	 members.	 The	 permutation-based	 approach	 unequivocally	 shows	 that	 the	 mean	 values	
observed	in	the	social	task	are	specific	to	the	true	pairing	of	group	members.	The	plots	show	the	probability	
density	function	for	each	measure	of	interest.	The	dotted	line	shows	the	mean	of	each	null	distribution.	The	p-
value	indicates	the	proportion	of	values	from	the	null	distribution	that	were	smaller	than	the	observed	mean	
value.	Mean:	|𝑐G − 𝑐(|.	Variability:	|var 𝑐G − var 𝑐( |.	DJS:	Jensen-Shannon	divergence. 	
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Supplementary	Figure	4	|	Maximum	entropy	distributions.	The	x-axis	shows	the	confidence	levels.	The	y-axis	
shows	the	proportion	of	times	that	each	confidence	level	is	selected.	We	transformed	confidence	distributions	
(1	 to	 6)	 to	 response	 distributions	 (-6	 to	 -1	 and	 1	 to	 6)	 by	 assuming	 symmetry	 around	 0.	We	only	 display	 a	
subset	of	the	maximum	entropy	distributions	(full	set:	1	to	6	in	steps	of	.1).	  



	

	
Supplementary	 Figure	 5	 |	 Comparison	 between	 empirical	 and	 model	 psychometric	 functions.	 The	 x-axis	
shows	the	stimulus.	The	y-axis	shows	the	proportion	of	times	that	the	second	display	was	selected	for	a	given	
value	of	the	stimulus.	The	plots	were	created	by	fitting	psychometric	functions	to	the	empirical	and	the	model	
data.	We	computed	R2-values	across	participants	(mean	±	SD)	to	evaluate	the	model	fits:	EXP1-S:	R2	=	.825	±	
.358;	EXP2:	R2	=	.892	±	.089;	EXP3:	R2	=	.947	±	.030;	EXP4-I:	R2	=	.844	±	.135;	EXP5-S:	R2	=	.823	±	.405;	EXP6-S:	R2	
=	 .862	 ±	 .193.	 Black	 line:	 empirical	 psychometric	 functions	 averaged	 across	 participants.	 Red	 dots:	 model	
psychometric	 functions	 (best	 fits)	 averaged	 across	 participants;	 dots	 only	 shown	 for	 the	 stimuli	 used	 in	 the	
experiments.	Shaded	area/error	bars	are	1	SEM	(not	visible	in	these	plots).	 	
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Supplementary	 Figure	 6	 |	 Comparison	 between	 empirical	 and	 model	 response	 distributions.	 The	 x-axis	
shows	 the	 response	 values	 (from	 -6	 to	 1	 and	 1	 to	 6).	 The	 y-axis	 shows	 the	 proportion	 of	 times	 that	 each	
response	was	made.	The	 title	of	each	 subplot	 indicates	 the	experiment	and	 the	 stimulus.	We	computed	R2-
values	across	participants	(mean	±	SD)	to	evaluate	the	model	fits.	EXP1-S:	R2	=	.606	±	.354;	EXP2:	R2	=	.777	±	
.136;	EXP3:	R2	=	.838	±	.078;	EXP4-I:	R2	=	.613	±	.251;	EXP5-S:	R2	=	.761	±	.146;	EXP6-S:	R2	=	.635	±	.206.	The	
reason	why	the	empirical	and	the	model	response	distributions	are	not	identical	is	that	the	model	was	fitting	
using	 the	 response	 distribution	 observed	 across	 all	 stimuli.	 Grey:	 empirical	 response	 distributions	 averaged	
across	participants.	Red:	model	response	distributions	(best	fits)	averaged	across	participants.	Error	bars	are	1	
SEM.	 	
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Supplementary	 Figure	 7	 |	 Confidence	 landscapes.	 The	 title	 of	 each	 plot	 indicates	 the	 experiment	 (E),	 the	
group	(G)	and	the	range	of	 joint	accuracies.	The	axes	show	the	mean	confidence	of	the	worse,	𝑐oFa	 (x-axis),	
and	the	better	group	member,	𝑐ors	(y-axis)	–	with	this	division	determined	by	comparing	their	fitted	levels	of	
sensory	 noise.	 Each	 mean	 indexes	 a	 maximum	 entropy	 distribution	 associated	 with	 a	 specific	 mean	
confidence.	The	grey	dot	indexes	the	joint	accuracy	expected	under	the	distributions	associated	with	the	group	
members’	 observed	 mean	 confidence,	 𝑎orsnab.	 The	 white	 dot	 indexes	 the	 joint	 accuracy	 expected	 under	
confidence	 matching,	 𝑎orb}~,	 here	 the	 pair	 of	 confidence	 distributions	 associated	 with	 the	 average	 of	 the	
group	 members’	 mean	 confidence.	 The	 black	 dot	 indexes	 the	 joint	 accuracy	 expected	 under	 the	 optimal	
solution,	𝑎`pb.	The	values	of	each	landscape	were	normalised	to	the	range	0	(blue)	to	1	(red).	 	



	

Supplementary	 Figure	 8	 |	 Confidence	 matching	 in	 Experiment	 4.	 The	 plot	 shows	 the	 probability	 density	
function	 over	 our	 measure	 of	 confidence	 matching:	 ∆𝑚 = |𝑐pr�bF}FprabF�`�rbn� − 𝑐pr�ban�| − 𝑐pr�bF}Fprab�`}Fr� − 𝑐pr�ban� .	
The	 empirical	 observations	 (x-axis)	 are	 overlaid,	with	 each	 dot	 corresponding	 to	 a	 group.	 The	 difference	 in	
mean	 confidence	 was	 smaller	 in	 the	 social	 blocks	 than	 prior	 to	 interaction	 ( 𝑐pr�bF}Fprab�`}Fr� − 𝑐pr�ban� <
|𝑐pr�bF}FprabF�`�rbn� − 𝑐pr�ban�|:	t(151)	=	-5.066,	p	<	.001,	paired).	
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Supplementary	Figure	9	|	Serial	dependence	in	confidence.	a,	Mutual	influence.	The	axes	show	the	influence	
of	the	partner’s	confidence	on	trial	𝑡 − 1	on	the	participant’s	confidence	on	trial	t.	Each	dot	is	a	group.	The	line	
is	the	best-fitting	line	of	a	robust	regression;	because	the	sorting	of	group	members	into	1	and	2	is	arbitrary,	
we	show	the	p-value	 for	 the	slope	of	 the	best-fitting	 line	averaged	across	105	separate	regressions,	 for	each	
randomly	re-labelling	the	members	of	a	group	as	1	and	2.	b,	Short-range	serial	dependence	 in	 isolated	task.	
The	y-axis	shows	coefficients	from	a	linear	regression	encoding	the	degree	to	which	a	participant’s	confidence	
on	 trial	 𝑡	 depended	 on	 their	 partner’s	 confidence	 on	 trial	 𝑡 − 5	 to	 𝑡 − 1	 in	 the	 social	 task.	 We	 tested	
significance	by	comparing	the	coefficients	pooled	across	participants	to	zero	(trial	𝑡 − 3	 to	𝑡 − 1:	all	t(103)	<	
1.6,	all	p	>	.010,	one-sample	t-test,	null:	0).	We	included	the	stimulus	on	trial	𝑡 − 5	to	𝑡	and	the	participant’s	
own	confidence	on	trial	𝑡 − 5	 to	𝑡 − 1	as	nuisance	predictors.	The	data	 is	 from	EXP1-I,	EXP5-I	and	EXP6-I.	c,	
Noisy	read-out.	We	used	our	learning	model	(see	Methods)	to	simulate	data	under	different	degrees	of	serial	
dependence	(i.e.,	different	adaptation	rates,	x-axis)	and	applied	a	standard	measure	of	metacognitive	ability	to	
the	data,	meta-d’	(see	REFs	in	main	text).	This	measure	identifies	the	level	of	sensory	noise	that	corrupts	‘first-
order’	decision	performance,	d’,	and	then	asks	how	much	more	noise	is	needed	to	account	for	‘second-order’	
confidence	 performance,	meta-d’.	 The	 standard	 interpretation	 is	 that	 such	 additional	 noise	 reflects	 a	 noisy	
read-out	 of	 the	 first-order	 information	 and	 thus	 lower	 metacognitive	 ability.	 The	 plot	 shows	 that	 higher	
adaptation	 rates	 are	 associated	 with	 higher	 differences	 between	 d’	 and	 meta-d’	 (y-axis).	 Importantly,	 by	
design,	 there	 is	 no	 noisy	 read-out	 in	 our	 learning	 model;	 only	 the	 mapping	 function	 is	 changing.	 It	 would	
therefore	be	wrong	to	attribute	a	higher	difference	between	d’	and	meta-d’	to	a	noisy	read-out;	the	read-out	
is	 only	 noisy	 from	 the	 perspective	 of	 the	 experimenter.	 In	 a	 way,	 differences	 between	 d’	 and	meta-d’	 can	
reflect	higher	metacognitive	ability	when	 they	are	driven	by	dynamic	 changes	 to	 the	mapping	 function	 that	
make	sense	given	the	current	context.	In	our	simulations,	we	assumed	that	that	a	pair	of	agents	had	the	same	
levels	 of	 sensory	 noise	 (s	 = 	 .10);	 that	 their	mapping	 functions	were	 updated	 so	 as	 to	maintain	maximum	
entropy	over	confidence;	and	that	 the	 learning	 rate	was	 fixed	 (𝛼	 = 	 .12)	 for	both	agents.	 In	each	simulated	
experiment,	the	agents	performed	160	trials,	with	stimuli	drawn	as	in	our	task.	To	control	for	random	response	
variation	due	to	sensory	noise,	we	averaged	across	103	simulated	experiments.	 	
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data	 condition	 mean	accuracy	(SD)	 mean	confidence	(SD)	

GROUP	1	

participant	

isolated	 .711	(.052)	 	 2.697	(.613)	 	

ALCL	 .727	(.062)	 	 3.079	(.649)	 	

ALCH	 .717	(.068)	 	 3.566	(.675)	 	

AHCL	 .714	(.065)	 	 2.659	(.538)	 	

AHCH	 .720	(.053)	 	 3.313	(.610)	 	

virtual	partner	

ALCL	 .653	(.054)	*$	 2.427	(.092)	*$	

ALCH	 .659	(.053)	*$	 4.582	(.096)	*$	

AHCL	 .792	(.059)	*$	 2.417	(.069)	*$	

AHCH	 .784	(.054)	*$	 4.572	(.097)	*$	

GROUP	2	

participant	

isolated	 .715	(.042)	 	 2.832	(.702)	 	

ALCL	 .713	(.056)	 	 3.121	(.776)	 	

ALCH	 .730	(.055)	 	 3.685	(.669)	 	

AHCL	 .726	(.045)	 	 2.796	(.512)	 	

AHCH	 .719	(.063)	 	 3.412	(.646)	 	

virtual	partner	

ALCL	 .639	(.046)	*$	 2.043	(.081)	*$	

ALCH	 .666	(.051)	*$	 4.083	(.100)	*$	

AHCL	 .800	(.033)	*$	 2.046	(.056)	*$	

AHCH	 .789	(.041)	*$	 4.023	(.067)	*$	

Supplementary	Table	1	|	Manipulation	checks	for	Experiment	4.	The	summary	statistics	are	shown	separately	
for	 the	 first	 and	 the	 second	 group	 of	 participants	 (19	 in	 each	 group).	 We	 used	 two	 generic	 confidence	
distributions	to	specify	the	confidence	of	the	computer-generated	partners.	For	the	first	group	of	participants,	
we	 used	 the	 following	 confidence	 distributions:	𝑝�`� = [.35, .27, .15, .11, .08, .04]	with	mean	 =	 2.42	 and	
𝑝~F�~ = [.04, .08, .11, .15, .27, .35]	with	mean	=	4.56	–	where	the	first	element	corresponds	to	confidence	
level	 1,	 the	 second	 element	 corresponds	 to	 confidence	 level	 2,	 and	 so	 forth.	 For	 the	 second	 group	 of	
participants,	we	used	the	following	confidence	distributions:	𝑝�`� = [.44, .30, .14, .06, .02, .04]	with	mean	
=	2.04	and	𝑝~F�~ = [.10, .12, .14, .16, .18, .26]	with	mean	=	3.86.	The	second	set	of	confidence	distributions	
were	set	so	as	to	better	fit	those	of	the	first	group	of	participants.	We	used	paired	t-tests	(one-tailed)	to	test	
whether	the	data	of	participants	were	significantly	different	from	that	of	the	virtual	partners.	*:	data	of	virtual	
partners	significantly	different	from	that	of	participants	at	baseline	(isolated	task).	$:	data	of	virtual	partners	
significantly	different	from	that	of	participants	in	a	given	social	condition	(social	task).	 	



	

	
condition	

gender	
	(1=female)	

like		
(0-100)	

cooperation		
(0-100)	

more	accurate	
(1=yes)	

more	confident	
(1=yes)	

GROUP	1	

ALCL	 0.75	 65.25	 70.40	 0.20	 0.13	

ALCH	 0.26	 57.15	 69.00	 0.25	 0.73	

AHCL	 0.55	 72.50	 75.10	 0.73	 0.15	

AHCH	 0.20	 58.00	 69.85	 0.65	 0.90	

GROUP	2	

ALCL	 0.65	 73.17	 67.50	 0.33	 0.06	

ALCH	 0.24	 61.11	 64.83	 0.31	 0.81	

AHCL	 0.76	 77.89	 81.39	 0.75	 0.14	

AHCH	 0.24	 70.00	 76.11	 0.72	 0.86	

COMBINED	

ALCL	 0.70	 69.00	 69.03	 0.26	 0.09	

ALCH	 0.25	 59.03	 67.03	 0.28	 0.76	

AHCL	 0.65	 75.05	 78.08	 0.74	 0.14	

AHCH	 0.22	 63.68	 72.82	 0.68	 0.88	

Supplementary	 Table	 2	 |	 Questionnaire	 data	 from	 Experiment	 4.	 Participants	 were	 asked	 to	 complete	 a	
questionnaire	 about	 each	 partner	 after	 each	 social	 block.	 They	 were	 asked	 to	 indicate:	 (1)	 whether	 they	
thought	the	partner	was	male	[0]	or	female	[1];	(2)	how	much	they	liked	the	partner	[0-100];	(3)	how	well	they	
performed	as	a	group	[0-100];	(4)	whether	the	partner	was	less	[0]	or	more	[1]	accurate	than	they	were;	and	
(5)	 whether	 the	 partner	 was	 less	 [0]	 or	 more	 [1]	 confident	 than	 they	 were.	 The	 table	 shows	 the	 average	
responses.	See	Supplementary	Table	1	for	difference	between	the	first	and	the	second	group	of	participants.	


