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Abstract 

With the discovery of next generation sequencing techniques the landscape of 

pathogenic gene discovery has shifted drastically over the last ten years. For the 

purpose of this thesis, focus was applied on finding genetic causes of inherited 

neuropathies, mainly Charcot-Marie-Tooth disease, by using both old and new 

genetic techniques and the accompanying functional investigations to prove the 

pathogenicity of these variants. Mutations in ATPase 6, the first mitochondrially 

encoded gene responsible for an isolated neuropathy, were found in five families 

with CMT2 by a traditional Sanger sequencing approach. The same approach was 

used to expand the phenotype associated with FIG4 mutations, known as CMT4J. 

Compound heterozygous mutations were found in a patient with a proximal and 

asymmetric weakness and rapid deterioration of strength in a single limb, mimicking 

CIDP.  

 

Several appropriate cohorts were screened for mutations in candidate genes with the 

traditional Sanger sequencing approach; however, no new pathogenic genes were 

found. In the case of the HINT1 gene, the originally stated frequency of 11% could 

not be replicated and a founder effect was suggested, underlying the importance of 

considering the ethnic background of a patient when screening for mutations in 

neuropathy-related genes. After the incorporation of exome sequencing, five CMT 

families were provided with a genetic diagnosis due to mutations in three novel 

genes and two previously known pathogenic genes. Many more families are 

currently under investigation and candidate genes have been found in some.  

 

Lastly, a series of divergent functional techniques was used to investigate the 

pathogenicity of IGHMBP2 mutations in 11 families with CMT2. IGHMBP2 

mutations normally lead to SMARD1 and fibroblast and lymphoblast studies 

indicate that the IGHMBP2 protein levels are significantly higher in CMT2 than 

SMARD1, but lower than controls, suggesting that the clinical phenotype differences 

correlate to the IGHMBP2 protein levels.  
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GSK   Glycogen synthase kinase 

GTP   Guanosine-5'-triphosphate 

HBT   Human brain transcriptome 

HBSS   Hank’s balanced salt solution 

HCC   Hypomyelination and congenital cataract  

HD   Huntington’s disease 

HEK293  Human embryonic kidney 293 

HEPES  4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid 

HGK   Hepatocyte progenitor kinase-like 

HIV   Human immunodeficiency virus 

HMSN   Hereditary motor and sensory neuropathy 

HRP   Horseradish peroxidase 

HSAN   Hereditary sensory and autonomic neuropathy 

HSP   Hereditary spastic paraplegia 

IEM   Inherited erythromelalgia 

IGF1   Insulin-like growth factor 1  

ION   Institute of Neurology 

IP   Immunoprecipitation 

IPS (cell)  Induced pluripotent stem (cell) 

KDa   Kilodalton 

LB   Luria broth  

LDS   Lithium dodecyl sulfate 

LOD   Logarithm (base 10) of odds 

LS   Leigh syndrome 

MAF   Minor allele frequency 

MAPS   Motor action potentials 

MELAS Mitochondrial encephalomyopathy, lactic acidosis, and stroke-

like episodes 

MERFF  Myoclonic epilepsy with ragged-red fibers  

MES   2-(N-morpholino) ethanesulfonic acid 
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MILS   Maternally inherited Leigh syndrome 

MLPA   Multiplex ligation-dependent probe amplification 

MNCV  Motor nerve conduction velocity 

MND   Motor neurone disease 

MRC   Mitochondrial respiratory chain 

MRC (Centre)  Medical Research Council (Centre) 

MRI   Magnetic resonance imaging 

mRNA   Messenger ribonucleic acid 

MT   Mitochondrial transcript 

mTOR   Mammalian target of rapamycin 

NA   Not applicable 

NAD
+ 

  Nicotinamide adenine dinucleotide (oxidised) 

NADH   Nicotinamide adenine dinucleotide (reduced) 

NARP   Neurogenic muscle weakness, ataxia, and retinitis pigmentosa 

NCBI   National centre for biotechnology information 

NCS   Nerve conduction study 

NCV   Nerve conduction velocity 

NF   Neurofilament 

NGS   Next-generation sequencing 

NH2-terminus  NH2-terminus 

NHNN   National hospital for neurology and neurosurgery 

NMD   Nonsense-mediated decay 

NP40
+
   Nonyl phenoxypolyethoxylethanol 

NSC   Neuronal stem cell 

OMIM   Online mendelian inheritance in man 

OXPHOS  Oxidative phosphorylation 

PBMC   Peripheral blood mononuclear cell 

PBS   Phosphate buffered saline 

PCR   Polymerase chain reaction 

PD   Parkinson disease 

PDC   Pyruvate dehydrogenase complex 

PEI   Polyethulenimine 

PEPD   Paroxysmal extreme pain disorder 

PET   Positron emission tomography 
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PFA   Paraformaldehyde 

PI   Phosphatidylinositol 

PNS    Peripheral nervous system 

POLG   Polymerase (DNA directed), gamma 

PTC   Premature termination codons 

qPCR   Quantitative polymerase chain reaction 

RAN   Repeat-associated non-ATG  

RC-DC  Reducing agent and detergent compatible 

RNA   Ribonucleic acid 

ROS   Reactive oxygen species 

RPMI   Roswell park memorial institute 

RT   Reverse transcription 

RT-qPCR  Real-time reverse transcription polymerase chain reaction 

RTT    Rett syndrome 

SCA   Spinocerebellar ataxias 

SDS   Sodium dodecyl sulphate 

shRNA  Short hairpin ribonucleic acid 

SIFT   Sorting intolerated from tolerated 

siRNA   Small interfering RNA  

SMA   Spinal muscular atrophy 

SMA-LED  Spinal muscular atrophy with lower extremity predominance 

SMARD1   Spinal muscular atrophy with respiratory distress type 1 

SNP   Single nucleotide polymorphism 

TBE   Tris/borate/EDTA 

TCA   Tricarboxylic acid 

TLC   Thin layer chromatography 

TMRM  Tetramethylrhodamine methyl ester 

TNF   Tumour necrosis factor 

tRNA   Transfer RNAs 

TTX   Tetrodotoxin 

UCL   University College London 

UCSC   University of California, Santa Cruz 

UMN    Upper motor neurone 

UTR    Untranslated region 
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UPR   Unfolded protein response 

UV   Ultraviolet 

WES   Whole exome sequencing 

WGS   Whole genome sequencing 

WT    Wild type 

∆Ψm   Mitochondrial membrane potential 
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Chapter 1:   

Introduction  

1.1 Phenotypic spectrum of peripheral neuropathies  

1.1.1 The peripheral nervous system 

The main function of the peripheral nervous system (PNS) is to transfer information 

from the limbs to and from the central nervous system (CNS), which consists of 

brain and the spinal cord. The nerves responsible for this include the cranial nerves 

that link to the brainstem and 31 pairs of spinal nerves with their roots and rami that 

branch out between each of the vertebrae of the spine, connecting to the spinal cord. 

Considering this is a two-way system, a division is made between the afferent nerves 

that convey information from the sensory organs and limbs to the brainstem and the 

spinal cord – the sensory nerves – and the efferent nerves that transfer information 

from the brainstem and the spinal cord to the neuromuscular junctions at the muscles 

– the motor nerves. Working in conjunction with this, there is the autonomic nervous 

system that extends out of the CNS and regulates the visceral organs, which is also 

regarded as part of the PNS (Hubbard et al., 1974).  

 

Characteristic of the peripheral nerves are the long axons, extending to the 

extremities of the body. The axons can be both unmyelinated and myelinated and are 
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organised in multiple bundles or fascicles, together with their supporting elements, in 

the peripheral nerves. Unmyelinated axons are solely enveloped by a single layer of 

Schwann cell cytoplasm whilst myelinated axons are surrounded by concentric 

layers of the Schwann cell plasma membrane which form the myelin sheath. This 

myelin sheath serves as an insulating layer resulting in a higher conduction velocity 

depending on the diameter of the sheath. In the context of peripheral neuropathies, 

abnormalities can be found in both the axon and the myelin sheath, causing different 

phenotypes (Hubbard, 1974). 

1.1.2 Peripheral neuropathies   

Whether abnormalities are found in the axon or the myelin sheath or in the cell body, 

the covering term for diseases affecting the PNS is peripheral neuropathies. Causes 

for peripheral neuropathies can be multiple, such as hereditary, infectious, 

inflammatory, exposure to toxins, metabolic or traumatic. These mainly result in an 

overall phenotype of muscle weakness and/or sensory loss and sometimes pain. 

Depending on the cause of disease, peripheral neuropathies can have an acute or 

chronic progression. When only one single nerve is affected, the term 

mononeuropathy is used and localised trauma or infection is suspected to be the most 

likely cause of disease. The myelin sheath or part of the axon can be damaged due to 

long-term pressure on a nerve due to swelling or injury. Multiple mononeuropathy or 

mononeuritis multiplex is characterised by two or more nerves being affected 

simultaneously or sequentially where the pattern is asymmetric. These can be caused 

by multiple medical conditions, such as diabetes mellitus, lupus erythematosus or 

HIV, and are sometimes difficult to distinguish from the polyneuropathies when 

their progress becomes more symmetrical (Dyck, 1927).  

 

Polyneuropathies such as Charcot-Marie-Tooth (CMT) disease and Chronic 

Inflammatory Demyelinating Polyneuropathy (CIDP) are characterised by the 

involvement of multiple nerves and the effects can encompass the whole body. 

Peripheral neuropathies can be manifested as part of a more widespread neurological 

or multisystem disorder or they can be the sole part of disease (Dyck, 1927). For the 

purpose of this thesis, the main focus will be on the latter and in particular on the 

different forms of Charcot-Marie-Tooth disease (CMT).  
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1.1.3 Charcot-Marie-Tooth disease  

CMT, also known as hereditary motor and sensory neuropathy (HMSN), functions as 

a term covering a group of clinically and genetically heterogeneous inherited 

neuropathies (Skre, 1974).  Their prevalence in the general population can vary but 

has an overall estimation of 1 in 2500. Depending on the genetic defect, the severity 

and age of onset, the disease can be extensively divergent. Clinical symptoms are 

determined by the type of peripheral nerve that is affected (Harding et al., 1980). 

This results in a broad primary classification in the following three groups:  

 CMT, both motor and sensory nerves are affected  

 Hereditary Sensory and Autonomic Neuropathy (HSAN), predominantly 

sensory and autonomic features are affected  

 Distal Hereditary Motor Neuropathy (dHMN), only motor neurons are 

affected.  

A clear distinction cannot always be made between these different groups and 

especially patients presenting with dHMN on first examination can develop sensory 

symptoms later on in life and be classified as having CMT.  

 

Due to the phenotypic variability, classification of CMT is not only based on clinical 

presentation, but also on neurophysiology and/or genetic testing. An important 

concept in this classification is motor nerve conduction velocity (MNCV). 

Uniformly slow MNCV less than 38 m/s in the arms is characteristic for 

demyelinating CMT1 while MNCV above this cut-off is typical of axonal CMT2. 

The intermediate form of CMT has intermediate electrophysiological features, i.e. 

MNCV from 25 to 45 m/s (Harding et al., 1980).   

 

1.2 Genetic diversity and classification of CMT  

Next to the phenotypic variability seen in patients with CMT, there is also a very 

heterogeneous genotypic presence that characterises this disease. Mutations in more 

than 80 genes have been found so far and more are being unravelled. The genetic 

background plays an important role in the classification of the disease and will be 

crucial to find common pathways to explain the characteristic features seen in most 

patients. In this section, the different subgroups of CMT will be discussed and the 
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most important causative genes that have been involved in each of these subgroups 

will be highlighted (Braathen, 2012).  

1.2.1 Demyelinating CMT 

For the demyelinating form of CMT, genes are often associated with Schwann cells 

and the myelin sheath surrounding the axon (Table 1.1), although their function can 

be very disparate, which causes a phenotypic heterogeneity (Nave et al., 2007; 

Berger et al., 2006). Inheritance can be dominant, recessive or X-linked and the 

autosomal dominant form of demyelinating CMT is often referred to as CMT1, 

accounting for at least two thirds of all patients with CMT.  

PMP22 as the most common mutated gene in CMT1  

The most prevalent  mutation, which occurs in more than 70% of the European cases 

with autosomal dominant inheritance, is the duplication of a region containing the 

Peripheral myelin protein 22 (PMP22) gene on chromosome 17, and is classified as 

CMT1A (Raeymaekers et al., 1991). This duplication results in the presence of three 

copies of the PMP22 gene instead of two and it is believed that the higher levels of 

PMP22 result in CMT1A (Lupski et al, 1992). These altered levels of the protein 

have been shown to influence the production of cholesterol, causing reduced myelin 

thickness and shortened internodes during the development of peripheral nerves. 

This may partially explain the slowed conduction velocity observed in CMT1A (Li 

et al., 2013).  

 

Patients with autosomal dominant CMT1A present in the first two decades with a 

classical CMT phenotype, starting with foot deformities and difficulty walking. 

There is mainly distal involvement with wasting and weakness of the muscles and 

sensory loss. This occurs more prominent in the lower limbs than the upper limbs. In 

the absence of the duplication, CMT1 can also be caused by missense mutations in 

the PMP22 gene, which results in a more severe phenotype in the patients and a 

classification of CMT1E (Reilly, 2007). In contrast to the duplication, mutations in 

PMP22 result in protein aggregates in Schwann cells and are believed to exert a 

toxic gain of function (Li et al., 2013).   
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Mutations in MPZ cause CMT1B  

Another important protein involved in autosomal dominant CMT is Myelin Protein 

Zero (MPZ), which causes CMT1B. In comparison to CMT1A, patients present with 

a more severe and earlier onset of the disease or a milder late-onset form. MPZ is the 

major component of myelin, comprising up to 50% of the myelin sheath (Siskind et 

al, 2013). Mutations in this gene have been shown to disrupt the myelination process 

and the compaction of myelin, subsequently failing to be incorporated in the plasma 

membrane or disrupting its structure due to a dominant negative effect (Berger et al., 

2006). 

Rare causes of AD CMT1  

The remaining cases of autosomal dominant CMT1 can be explained by mutations in 

the Lipopolysaccharide–Induced TNF Factor (LITAF), Early Growth Response 2 

(EGR2) or Neurofilament Light Chain (NEFL) genes, each on its own being a very 

rare cause of CMT1 with only few families reported (Houlden et al., 2006). The role 

of EGR2 protein in myelination is crucial and mice harbouring mutations in this 

gene present with nerves devoid of myelin. EGR2 serves as a transcription factor 

directly working on MPZ, which explains its involvement in demyelinating CMT.  

 

Mutations in LITAF are known to affect ubiquitination, sorting and/or degrading of 

the myelin, but the exact pathway that causes the CMT1C phenotype is not known 

yet (Berger et al., 2006). This is in contrast with the NF-L protein, which was 

originally described in the context of axonal CMT2. It has an important role within 

the cytoskeleton of axons and it has been speculated that it exerts an effect on the 

myelin sheath via the axon-myelin interactions (Houlden et al., 2006).  

Autosomal Recessive CMT4  

The occurrence of autosomal recessive CMT1, also known as CMT4, is relatively 

rare in the general population, although this varies depending on the community 

(Schenone et al., 2011). The autosomal recessive neuropathies tend to have an earlier 

onset and a more severe progression than the autosomal dominant varieties. Except 

in the case of consanguinity, they appear only in sibs or as simplex cases (Espinos et 

al., 2012). So far, fifteen genes have been described that cause an autosomal 

recessive inheritance pattern and several different molecular genetic subtypes of 

demyelinating AR CMT have been identified. These molecular genetic subtypes all 

http://www.ncbi.nlm.nih.gov/books/n/gene/glossary/def-item/autosomal-recessive/
http://www.ncbi.nlm.nih.gov/books/n/gene/glossary/def-item/autosomal-dominant/
http://www.ncbi.nlm.nih.gov/books/n/gene/glossary/def-item/consanguinity/
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show a demyelinating phenotype but often have distinct clinical and nerve biopsy 

features (Reilly et al., 2011). Some of the genes implicated in the autosomal 

dominant form of CMT, such as PMP22, EGR2 or MPZ, are predominantly found in 

patients with CMT1, but are known to also cause the recessive variant in rare cases. 

Others are only found to cause the recessive form but have a distinctive link to 

demyelinating features. One example of the latter is Periaxin (PRX), part of the 

complex responsible for linking Schwann cells to the basal lamina.  

 

Whilst all the above-mentioned genes appear to be involved in myelin pathways, a 

considerable number of genes play a role in the mitochondrial compartment.  One of 

these has been shown to cause autosomal recessive CMT1. Ganglioside-induced 

Differentiation Associated Protein 1 (GDAP1) is a tail-anchored protein in the outer 

mitochondrial membrane, implicated in mitochondrial fission. Mutations in this 

protein cause a range of early onset demyelinating, intermediate, and/or axonal 

forms of CMT (CMT4A, CMTRIA, CMT2K). Since mutations in the Mitofusin 2 

(MFN2) gene - involved in mitochondrial fusion - are the main cause for axonal 

CMT, it is surprising that mutations in this mitochondrial fission protein mainly lead 

to a demyelinating neuropathy. It has been established that mitochondrial dynamics 

are a very important feature in the maintenance of the nerves and have a significant 

role in the pathogenicity of axonal neuropathies. It remains a mystery so far how 

these mutations in GDAP1 correlate with a primary myelin defect in the peripheral 

nerves (Berger et al., 2006; Tazir et al., 2013).  

 

Apart from these two examples, there are many more genes responsible for 

autosomal recessive CMT (Table 1.1), for which I will not go into further detail. 

However, as mentioned before, the majority of these have specific clinical features 

that can be of guidance in finding a molecular diagnosis. For example, mutations in 

the SH3 domain and tetratricopeptides repeats 2 gene (SH3TC2) are often found in 

patients with severe scoliosis and recent reports have suggested mutations in this 

gene to be the commonest form of autosomal recessive CMT (Houlden et al., 2009).  
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CMT1 Gene/Locus Function 

Autosomal dominant 

CMT1  

  

CMT 1A Dup 17p (PMP22) Myelin structure and formation 

CMT 1B MPZ Myelin structure 

CMT 1C LITAF Vesicular transport 

CMT 1D EGR2 Transcription factor, including myelin 

proteins 

CMT 1E PMP22 (Point 

mutations) 

Myelin structure and formation 

CMT 1F NEFL Cytoskeleton component 

Autosomal recessive 

CMT1  

  

CMT4A GDAP1 Mitochondrial dynamics 

CMT4B1 MTMR2 Vesicular transport, Active phosphatase of 

PI(3,5)P2 and PI(3)P 

CMT4B2 MTMR13 Vesicular transport, Inactive phosphatase of 

PI(3,5)P2 and PI(3)P 

CMT4B3 MTMR5 Vesicular transport 

CMT4C SH3TC2 Endocytic recycling  

CMT4D NDRG1 Signalling protein 

CMT4E EGR2 Transcription factor, including myelin 

proteins 

CMT4F PRX Myelin structure 

CMT4G (HMSN 

Russe)  

HK1 Glucose metabolism 

CMT4H FGD4 Cytoskeletal remodelling  

CMT4J FIG4 PI (3,5)P2 5-phosphatase / endocytotic 

recycling 

AR CMT1 PMP22 (point 

mutations) 

Myelin structure and formation 

Other SURF1 Assembly factor of OXPHOS complex  

CCFDN CTDP1 Phosphatase in transcription 

Table 1-1 Classification of demyelinating CMT according to genotype. AR, autosomal recessive; 

Dup, duplication; PMP-22, peripheral myelin protein 22; MPZ, myelin protein zero; LITAF, 

lipopolysaccharide-induced tumour necrosis factor; EGR2, early growth response 2; NEFL, 

neurofilament, light polypeptide 68 kDa; GDAP1, ganglioside-induced differentiation-associated 

protein 1; MTMR2, myotubularin-related protein 2; MTMR13, myotubularin-related protein 13; 

MTMR13, myotubularin-related protein 5; SH3TC2, SH3 domain and tetratricopeptides repeats 2; 

NDRG1, N-myc downstream-regulated gene 1; PRX, periaxin; HK, Hexokinase 1; FGD4,  FYVE, 

RhoGEF and PH domain containing 4; FIG4, Phosphoinositide phosphatase 4; SURF1: Surfeit locus 
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protein 1; CCFDN, Congenital Cataracts, Facial Dysmorphism & Neuropathy Syndrome; CTDP1, 

carboxy-terminal domain RNA polymerase II polypeptide A phosphatase subunit 1. 

1.2.2 Axonal CMT 

Autosomal dominant CMT2  

Several genes are known to cause AD CMT2, but only a quarter of the patients 

receive a molecular diagnosis. There is no main gene responsible for the majority of 

cases in the way that PMP22 is the main gene explaining the AD CMT1 phenotype. 

From a genetic point of view, point mutations in the MFN2 gene account for 20% of 

patients and are the most common cause of CMT2 (Zuchner et al., 2004). Eleven 

additional genes have been identified to date causing the dominant variant of this 

disease, most of them ubiquitously expressed (Table 1.2). The majority of these 

genes were not specifically associated with the function of the axon before mutations 

were discovered. By discovering these mutations, important pathways were revealed 

that are necessary for maintaining the axonal integrity; for example the 

mitochondrial fusion and fission process, in which not only MFN2 but also GDAP1 

participates (Patzkó et al., 2011), alterations of the cytoskeleton, mitochondrial 

dynamics and endocytosis, have all been found to be affected by mutations that 

cause CMT2 (Niemann et al, 2006).  

Classic CMT2 phenotype 

A distinction between three different subtypes can be made according to the clinical 

presentation of the patients. Most patients present with the classical CMT phenotype, 

and differentiation between AD CMT2 and CMT1 is difficult before 

neurophysiology is performed. The presence of reduced motor action potentials 

(MAPS) with normal or near normal NCVs will confirm the diagnosis of CMT2 

(Reilly, 2007). The majority of these patients will be diagnosed with mutations in the 

MFN2 gene, which frequently results in an early-onset, more severe phenotype. 

Interestingly, up to 20% of mutations in MFN2 are de novo, making it more difficult 

to decide on the pathogenicity of a new variant. MFN2 is a GTPase located in the 

outer mitochondrial membrane and serves as a regulator for mitochondrial fusion 

and tethering to the endoplasmic reticulum. Together with MFN1, homo-oligomeric 

and hetero-oligomeric complexes are formed between opposing mitochondria to 

facilitate fusion of the outer membrane (Milone et al., 2012). Disruptions in this 

process lead to increased mitochondrial fragmentation, where part of the fragmented 
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mitochondria lose their membrane potential and show impaired mitochondrial 

transport (Chen et al., 2003). In the context of disease, it has been suggested that this 

altered physiology and/or lack of healthy mitochondria at the distal parts of the 

axons could lead to the degeneration of the axons (Niemann et al., 2009). 

 

Apart from MFN2 mutations, the classical phenotype can also be caused by 

mutations in three genes known to cause CMT1: NEFL, MPZ or GDAP1 - although 

this accounts for only a very small percentage of patients (Reilly et al., 2011).  

 

After the myelin and mitochondrial groups of genes, recent discoveries found 

mutations in a range of tRNA synthetase genes, causing CMT. One of these, the 

Alanyl tRNA synthetase (AARS) gene, can also be responsible for the typical CMT2 

phenotype. However, an accurate estimate of the prevalence of these mutations has 

not been established yet (Latour et al., 2010; Mclaughlin et al., 2012). Other tRNA 

synthetase genes have been found in different CMT phenotypes and will be 

discussed in section 1.3.6. Even though it was first only found to be involved in the 

recessive form of axonal neuropathies, mutations in the leucine rich repeat and 

sterile alpha motif containing 1 (LRSAM1) gene were reported in several families 

with a dominant inheritance, suggesting the phenotypes of these mutations might 

expand further than causing recessive CMT2 (Weterman et al., 2012; Nicolaou et al., 

2013). Lastly, a mutation in the dehydrogenase E1 and transketolase domain-

containing 1 (DHTKD1) gene was found in a large Chinese family with five affected 

generations. This gene has been implied to have a role in the degradation pathways 

of several amino acids, but no further investigations regarding to disease pathways 

have been made (Xu et al., 2012).  

CMT2 with prominent sensory features  

Patients with CMT2 can also present with more prominent sensory features. Two 

main genes have been described causing this phenotype: Ras-related protein 7 

(RAB7A) and Serine palmitoyltransferase, long chain base subunit 1 (SPTLC1). 

Characteristically, patients suffer from lack of sensation and complications of 

sensory loss leading to ulcerations, osteomyelitis, and even amputations. This is very 

similar to patients with HSAN and it can be difficult to distinguish between the two 

forms, especially since patients with mutations in SPTLC1 are frequently classified 
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as having HSAN. These patients often suffer from neuropathic pain, which is the 

main determining feature that differentiates them from patients with mutations in 

RAB7A (Houlden et al., 2006).  

CMT2 with major motor involvement  

The last phenotype associated with AD CMT2 has a large overlap with dHMN, since 

patients present with major motor involvement due to mutations in six different 

genes: Glycyl tRNA synthetase (GARS), heat shock protein beta-1 (HSPB1), heat 

shock protein beta-8 (HSPB8), Transient receptor potential cation channel subfamily 

V member 4 (TRPV4), dynein, cytoplasmic 1, heavy chain 1 (DYNC1H1) or ATPase 

6. Whilst mutations in the heat shock protein genes are a very rare cause of AD 

CMT2 and are more frequently known to cause a purely motor phenotype, mutations 

in TRPV4 not only cause CMT2C, but can lead to a spectrum of inherited 

neuropathies with varying clinical features. However, caution has to be applied 

before diagnosing these patients since asymptomatic carriers and polymorphisms in 

the gene have been reported (Zimon et al., 2010; Fawcett et al., 2012).  

 

It was not surprising when mutations in dynein were reported to cause CMT, 

considering it is the primary motor protein responsible for retrograde axonal 

transport in neurons. Mouse model studies have shown that mutations affect the 

processivity of the protein and the ability to move along the microtubule (Ori-

McKenney et al., 2010; Weedon et al., 2011).  

 

As mentioned before, a small subset of genes mutated in CMT encode mitochondrial 

proteins, the most common of which is MFN2. All of these are encoded by the 

nuclear DNA, but our research recently showed that mutations in the mitochondrially 

encoded ATPase6 gene could lead to axonal neuropathy with predominantly motor 

involvement. More detail can be found in Chapter 3.  

 

Mutations in GARS cause CMT2D, which can be distinguished by involvement of 

the small hand muscles (Reilly et al., 2011). GARS was the first aminoacyl tRNA 

synthetase identified in 2003 by Antonellis et al. to be causative for a human genetic 

disease and after its discovery, five more aminoacyl tRNA synthetase genes have 

been implicated in CMT disease, one is which is the AARS gene, mentioned before. 
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Table 1-2 Classification of axonal CMT according to genotype. KIF1Bβ: kinesin family member 1B;  

MFN 2: Mitofusin 2; RAB7: Ras-related protein 7; TRPV4: Transient receptor potential cation 

channel subfamily V member 4;  GARS: Glycyl tRNA synthetase; NEFL: neurofilament, light 

polypeptide 68 kDa; HSPB1: Heat Shock Protein 27 kDa; MPZ: myelin protein zero; GDAP1: 

ganglioside-induced differentiation-associated protein 1; HSPB8: Heat shock protein, 22 kDa; DNM2: 

Dynamin-2; AARS: Alanyl tRNA synthetase; DYNC1H1: dynein, cytoplasmic 1, heavy chain 1; 

CMT2 Gene/locus Function 

Autosomal dominant 

CMT2  

  

CMT 2A KIF1Bβ Axonal transport 

CMT 2A MFN 2 Mitochondrial dynamics 

CMT 2B RAB7 GTPase in vesicular transport 

CMT 2C TRPV4 Calcium homeostasis 

CMT 2D GARS Aminoacyl synthetase 

CMT 2E NEFL Cytoskeleton component 

CMT 2F HSPB1 Heat shock protein/cytoskeleton 

remodelling 

CMT 2G 12q12-q13.3  

CMT 2 I/J MPZ Myelin protein 

CMT 2K GDAP1 Mitochondrial dynamics 

CMT 2L HSPB8 Heat shock protein/cytoskeleton 

remodelling 

CMT 2M DNM2 Instability of microtubule and endocytosis 

CMT 2N AARS Aminoacyl synthetase 

CMT 2O DYNC1H1 Axonal transport  

CMT 2P LRSAM1 E3-Ubiquitin Protein Ligase 

CMT 2Q DHTKD1 Degradation of AA  

 MT-

ATPase6  

ATP production  

Autosomal recessive CMT 2    

CMT 2B1 LMNA Intermediate filaments protein 

CMT 2B2 MED25 Transcription regulation 

CMT 2H GDAP1 Mitochondrial dynamics 

CMT 2P  LRSAM1 E3-Ubiquitin Protein Ligase 

CMT 2R TRIM2 E3-Ubiquitin Protein Ligase 

ARAN-NM HINT1 Purine phosporamidase  
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LRSAM1: leucine rich repeat and sterile alpha motif containing 1; DHTKD1: dehydrogenase E1 and 

transketolase domain-containing 1; LMNA: Lamin A/C; MED25: mediator complex subunit 25; 

TRIM2: tripartite motif containing 2; HINT1: histidine triad nucleotide–binding protein 1 

 

It has been suggested that mutations in this gene lead to an impaired GARS enzyme 

activity and a GARS localisation defect that is predominantly present in the longest 

axons due to a higher need in localised protein synthesis (Antonellis et al., 2006).  

Autosomal recessive CMT2 

Axonal autosomal recessive neuropathies are very rare and most cases found to date 

have been restricted to specific geographical areas or families. In a recent study, 

mutations in the histidine triad nucleotide–binding protein 1 (HINT1) gene have been 

found in 11% of AR CMT patients with neuromyotonia, comprising a new disease 

identity. In patients with AR CMT2 and neuromyotonia, this percentage went up to 

76%. Most of these families were eastern European and presented with the same 

homozygous mutation, suggesting a founder effect (Zimon et al., 2012).  

 

In North Africa, multiple families were found with mutations in Lamin A/C 

(LMNA), causing CMT2B1. LMNA mutations can cause a variety of phenotypes, 

ranging from peripheral neuropathies and cardiac disorders to lipodystrophy and 

premature aging disorders. More than ten different phenotypes have been shown to 

be caused by mutations in this gene and many of them show overlapping clinical 

features (Tazir et al., 2013).  

 

Only one large consanguineous Costa Rican family was found with a mutation in the 

mediator complex subunit 25 (MED25) gene (Leal et al., 2009), classifying this as a 

very rare cause of AR CMT2. In very few cases, GDAP1, normally causing AR 

CMT1, can also be found to cause AR CMT2. One paper by Guernsey et al. 

investigating a large Canadian family suggested a missense mutation of a splice site 

acceptor in the leucine rich repeat and sterile alpha motif containing 1 (LRSAM1) 

gene as cause of the disease. This encodes for an E3-Ubiquitin protein ligase 

important for vesicle fusion. More recently, this gene has also been found to cause 

the autosomal dominant form, as mentioned above.  
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In 2013, a patient was reported with a mutation in the tripartite motif containing 2 

(TRIM2) gene, which also encodes for an E3-Ubiquitin ligase (Ylikalio et al., 2013). 

Loss of either of these proteins in mouse models leads to neurodegeneration, 

indicating an important role for these proteins. In rare cases, genes known to cause 

the dominant form of the disease are found to be the responsible gene in families 

with a recessive inheritance, such as NEFL (Abe et al., 2009), HSPB1 (Houlden et 

al., 2008) and MFN2 (Polke et al., 2011).  

 1.2.3 Intermediate CMT  

So far, five genes and one locus are known to specifically cause dominant 

intermediate CMT, whereas the recessive form can be caused by three different 

genes (Table 1.3). Intermediate CMT is characterised by patients having NCS values 

in the intermediate range (25-45 m/s). In rare cases, genes that normally cause a 

demyelinating or axonal form of disease can mimic intermediate conditions and be 

classified as intermediate CMT. Patients with mutations in MPZ normally have 

NCV< 38m/s,  however more recently several missense mutations have been shown 

to results in NCV of the motor median nerve varying from <38 m/s to normal (De 

jonghe et al., 1999; Banchs et al., 2010). 

 

Similar results have been shown for mutations in GDAP1, where NCVs were 

between 25 and 35 m/s and peripheral nerve pathology showed axonal as well as 

demyelinating changes (Senderek et al., 2003). Apart from mutations in genes 

implicated in the myelin pathway and mitochondrial dynamics, dysfunction of 

cytoskeleton can also lead to intermediate forms of CMT. Dynamin-2 (DNM2) has a 

dual role in the regulation of the dynamic instability of microtubules and in 

endocytosis. Different mutations can have their effect on either of these pathways 

and result in intermediate CMT (Tanabe et al., 2012). So do mutations in inverted 

formin-2 (INF2), a member of the diaphanous-related formin family involved in 

remodelling the microtubule cytoskeleton and actin (Rodriguez et al., 2013). Whilst 

a connection with CMT is apparent in these patients, the pathologic mechanisms that 

cause intermediate CMT in patients with mutations in the other genes such as GNB4 

and PLEKHG5 are not known yet (Azzedine et al., 2013; Soong et al., 2013).  
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Table 1-3 Classification of intermediate CMT according to genotype. DNM2: Dynamin-2; YARS: 

tyrosyl tRNA synthetase; MPZ, myelin protein zero; INF2: inverted formin, FH2 and WH2 domain 

containing; GNB4: guanine nucleotide binding protein (G protein), beta polypeptide 4; GDAP1, 

ganglioside-induced differentiation-associated protein 1; KARS: lysyl-tRNA synthetase; PLEKHG5: 

pleckstrin homology domain containing, family G. 

 

Three years after the discovery of the GARS gene, mutations in the tyrosyl tRNA 

synthetase (YARS) gene were found, making it the second aminocyl synthetase 

responsible for causing CMT. A dominant-negative effect on the normal function 

and distribution of YARS in the neuronal endings was observed when the protein 

was mutated. Even though the exact pathway leading to CMT is still a mystery, the 

specific subcellular localisation of YARS to the nerve endings – which was not 

observed in other tRNA synthetases studied – indicates an important function at the 

neuronal endings (Jordanova et al., 2006). Four years later, another tRNA synthetase 

gene was discovered to be involved in intermediate CMT - lysyl-tRNA synthetase 

(KARS). In these cases, compound heterozygous mutations resulted in a loss-of-

function effect on the protein (McLaughlin et al., 2010). The presence of a null allele 

in combination with a hypomorphic allele significantly reduces the charging activity 

Intermediate CMT Gene/locus Function 

Dominant intermediate CMT 

(CMTDI) 

  

CMTDIA 10q24.1-

q25.1. 

 

CMTDIB DNM2 Instability of microtubule and 

endocytosis  

CMTDIC YARS Aminoacyl synthetase 

CMTDID MPZ Myelin structure  

CMTDIE INF2 Cytoskeletal remodelling 

CMTDIF GNB4 Signal transduction 

Recessive intermediate CMT 

(CMTRI) 

  

CMTRIA GDAP1 Mitochondrial dynamics  

CMTRIB KARS Aminoacyl synthetase 

CMTRIC PLEKHG5 Signal transduction 
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to a level were barely any functionality remains, effects that have also been seen in 

several GARS mutations (Antonellis et al., 2008). 

1.2.4 Hereditary Sensory and Autonomic Neuropathy 

Patients presenting with mainly sensory involvement and autonomic features are 

classified as having HSAN. Sensory loss, insensitivity to pain, a variable degree of 

muscle weakness and wasting, as well as autonomic features have been observed. 

This can occur in both dominant and recessive form and can be subdivided into six 

different groups according to the age of onset, inheritance and characteristic clinical 

features (Rotthier et al., 2010; Table 1.4).  

Autosomal Dominant HSAN 

All dominant forms are classified under the HSAN1 subtype and can be caused by 

mutations in five known genes and one locus for which the gene has not been found 

yet. As mentioned above, there is a significant overlap with some of the AD axonal 

phenotypes with predominantly sensory features and mutations in SPTLC1 and 

RAB7A are known to cause phenotypes with varying degree of motor involvement. 

These two phenotypes are very similar, apart from an overall sensory loss in the 

somatosensory system in patients with RAB7A. Next to mutations in subunit 1 of the 

serine palmitoyltransferase, mutations in subunit 2 can cause the same phenotype, 

which are indistinguishable. The presence of lancinating pain can differentiate these 

patients from others (Rotthier et al., 2010).  

 

Two other genes are known to cause autosomal dominant HSAN: Atlastin-1 (ATL1), 

which has a role in ER formation, and DNA methyltransferase 1 (DNMT1), 

important in DNA methylation and gene regulation. Most of these genes act in the 

cell body, but a common pathway for these genes resulting in HSAN has not been 

established (Rotthier et al., 2012). Some families present with sensory loss, cough 

and gastroesophageal reflux, also classified as HSAN-1B, but no gene responsible 

for this phenotype has been found so far and linkage has narrowed it down to 

chromosomal location 3p22–p24 (Kok et al., 2003). 

Autosomal Recessive HSAN 

While all phenotypes of autosomal dominant HSAN are classified under the HSAN1 

subtype, there are several different sub classifications for autosomal recessive 
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HSAN. HSAN II is characterised by distal numbness and progressive loss of pain, 

temperature and touch sensation and can be caused by mutations in three different 

genes: WNK lysine deficient protein kinase 1 (WNK1), involved in sodium, chloride 

and potassium homeostasis; Family with sequence similarity 134, Member B 

(FAM134B), a component of the cis-golgi matrix, and kinesin family member 1A 

(KIF1A), which has a role in anterograde axonal transport. So far, a link between 

these different genes has not been documented, although an interaction has been 

found between KIF1A and the domain of WNK1 that is primarily mutated (Riviere 

et al., 2011).  

 

HSAN III is also known as Riley-Day syndrome or Familial Dysautonomia and is 

caused by mutations in the inhibitor of kappa light polypeptide gene enhancer in B-

cells, kinase complex-associated protein (IKBKAP). This gene encodes for the IκB 

kinase complex-associated protein (ELP1), an important subunit of the RNA 

polymerase II complex, necessary for transcriptional elongation. Disruptions in this 

gene result in prominent, widespread autonomic disturbances, as well as small-fibre 

sensory dysfunction and are almost solely seen in patients with eastern European 

Jewish ethnicity. Only three mutations have been found so far, of which one 

accounts for more than 99% of the patients, suggesting a founder effect.  

 

Patients with a more severe form of this disease, also involving prominent autonomic 

features, are classified as having HSAN VI, linking to mutations in Dystonin (DST). 

The neuronal isoform of DST has been shown to link actin filaments to the 

microtubule to maintain the neuronal cytoskeleton organisation. Interestingly, DST 

is upregulated in fibroblasts of patients with mutations in IKBKAP, suggesting a 

compensatory mechanism. The RNA polymerase II complex has been shown to 

interact with the microtubuli and microtubule disorganisation was observed in 

fibroblasts, explaining the possibility of a compensatory mechanism by DST 

(Edvardson et al., 2012).  

 

In some cases, HSAN is accompanied by insensitivity to temperature and pain and 

generalised anhidrosis, known as congenital insensitivity to pain with anhidrosis 

(CIPA) or HSAN IV. Several families of different ethnicities and more than 40 

different mutations have been found with mutations in the neurotrophic tyrosine 
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kinase, receptor, type 1 (NTKR1) gene. This encodes for the high-affinity nerve 

growth factor receptor Trk-A protein, a kinase involved in neurotrophin signalling 

supporting neurite outgrowth and survival of neurons.  

 

HSAN Gene/Locus Function 

Autosomal Dominant HSAN   

HSAN-I SPTLC1 Sphingolipid biosynthesis pathway 

HSAN-I SPTLC2 Sphingolipid biosynthesis pathway 

HSAN-I ATL1 GTPase in the Endoplasmatic 

Reticulum 

CMT2B/HSAN-I RAB7A GTPase in vesicular transport 

HSAN-I with dementia and 

hearing loss 

DNMT1 DNA methylation, gene regulation 

HSAN-IB 3p24–p22  

Autosomal recessive HSAN   

HSAN-II WNK1 Regulator of ion channels 

HSAN-II FAM134B Structural protein of the cis golgi-body 

HSAN-II KIF1A Axonal transport 

HSAN-III IKBKAP Scaffold protein for transcriptional 

elongation 

HSAN-IV NTRK1 Neurotrophin signalling  

HSAN-V NGFB Neurotrophin signalling 

HSAN-VI DST Adhesion junction protein 

HSAN with spastic paraplegia CCT5 Molecular chaperone  

Table 1-4 Classification of Hereditary sensory and autonomic neuropathy according to genotype. 

SPTLC1: Serine palmitoyltransferase, long chain base subunit 1; SPTLC2: Serine 

palmitoyltransferase, long chain base subunit 2; ATL1: Atlastin-1; RAB7A: Ras-related protein 7; 

DNMT1: DNA methyltransferase 1; WNK1: WNK lysine deficient protein kinase 1; FAM134B: 

Family with sequence similarity 134, Member B; KIF1A: kinesin family member 1A; IKBKAP: 

inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase complex-associated protein; 

NTRK1: neurotrophic tyrosine kinase, receptor, type 1; NGFB: nerve growth factor, beta-subunit; 

DST: Dystonin; CCT5: chaperonin containing TCP1-complex subunit 5. 

 

A very similar phenotype is seen in patients with HSAN V, although patients suffer 

from hypohidrosis instead of anhidrosis. This phenotype is also caused by mutations 

in a gene important in neurotropin signalling, called nerve growth factor (NGF), 
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encoding for the β-NGF protein. β-NGF serves downstream as a ligand for Trk-A, 

which will autophosphorylate to activate downstream signalling pathways 

(Einarsdottiret al., 2004; Carvalho et al., 2011).  

 

The last phenotype associated with recessive HSAN is accompanied with spastic 

paraplegia and can be explained by mutations in the chaperonin containing TCP1-

complex subunit 5 (CCT5) gene. This protein is important for the protein folding and 

assembly of a range of proteins, and it has been suggested that disruptions in this 

process lead to protein misfolding and ER-stress, causing the phenotype (Bouhouche 

et al., 2006). Previous reports have also shown that this particular subunit is 

important for the binding of the CCT5 protein to actin and tubulin (Llorca et al., 

2000). Patients with this phenotype can also be classified as having Hereditary 

Spastic Paraplegia (HSP), when the lower extremity spastic weakness is the primary 

clinical symptom (Fink, 2013).  

1.2.5 Distal Hereditary Motor Neuropathy  

In contrast to patients with HSAN, a significant group of patients present with 

predominantly motor involvement. Distal hereditary motor neuropathy (dHMN) is 

characterised by the selective loss of motor neurons and/or their long axons in the 

peripheral nervous system. Apart from the absence of sensory abnormalities, distal 

HMN closely resembles axonal CMT2 and clinical overlap is ever-present, often 

dependent on the stage of disease and the age of the patient. Recurrently, mutations 

in the same gene may cause either dHMN or CMT2. In some cases, minor sensory 

involvement is present, comparable to the symptoms seen in other motor neuron 

diseases such as Amyotrophic Lateral Sclerosis (ALS), Spinal Muscular Atrophy 

(SMA) or Kennedy’s disease. dHMN is often referred to as distal Spinal Muscular 

Atrophy (dSMA) or Spinal CMT, since various hypotheses have suggested that the 

primary pathological process is located in the cell body of the anterior horn.  

 

Similarly to the previous subgroups, dHMN is also classified according to 

inheritance, age of onset and phenotype, even though multiple genes can cause the 

same subtype of dHMN (Table 1.5). Seven subtypes of dHMN have been described, 

which will be discussed below depending on their mode of inheritance (Rossor et al., 

2012). 
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Autosomal dominant dHMN  

Of the seven subtypes of dHMN, four have an autosomal dominant mode of 

inheritance: Types I, II, V and VII. Patients presenting with typical dHMN 

phenotype are classified as type I or II, depending on whether they have a childhood 

or adult onset respectively. Clinical features are very similar to CMT2, apart from 

the absence of sensory abnormalities.  

dHMN I and II  

The childhood onset (dHMN I) can be caused by mutations in either HSPB1, 

HSPB8, GARS or dynein, cytoplasmic 1, heavy chain 1 (DYNC1H1). As seen before, 

all these genes have already been implemented in respectively CMT 2F, CMT 2L, 

CMT 2D or CMT 2O. Depending on the development of sensory signs, these will be 

classified amongst dHMN or CMT2 and a significant amount of overlap can occur.  

Interestingly, mutations in the HSPB1 and HSPB8 genes can also cause the adult 

onset subtype of dHMN II. Both of these genes encode for small heat-shock proteins 

and are part of a group of stress-induced chaperone proteins that are ubiquitously 

expressed. When mutated, protein aggregates are formed and it has been suggested 

that mutations also influence the chaperone function (Carra et al., 2010). By using a 

candidate gene approach screening, mutations in the heat-shock protein 27-like 

protein (HSPB3) were also found to be responsible for the adult onset subtype (Kolb 

et al., 2010). 

 

Apart from faulty chaperones, dHMN II can also be caused by mutations in the 

Berardinelli–Seip Congenital Lipodystrophy type 2 gene (BSCL2), known to cause 

Congenital Generalised  Lipodystrophy type 2 in a recessive manner. BSCL2 

encodes for Seipin, a glyco-protein present in the Endoplasmatic reticulum (ER). 

Previous reports have suggested that malfunction of Seipin leads to incorrect folding 

and activation of the Unfolded Protein response (UPR) in the ER, a pathway implied 

in many neurodegenerative diseases (Ito et al., 2008; Liu et al., 2003).  

 

Lastly, a recent paper by Sumner et al. in 2013 reported mutations in F-box protein 

38 (FBXO38) to cause an adult onset of dHMN.  
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dHMN V 

In the event of more predominant upper limb symptoms, classification will lean 

towards dHMN V. This can be caused by both the GARS and BSCL2 genes. The 

latter protein has been implied in a variety of diseases, such as classical Silver 

Syndrome, severe spastic paraplegia with amyotrophy predominantly affecting the 

lower limbs, dHMN II as mentioned before and dHMN V (Irobi et al., 2006). Inter- 

and intrafamilial variability has been shown in 14 unrelated Austrian families, which 

raises the question of modifying factors (Auer-Grumbach et al., 2005). In both cases, 

families with a recessive inheritance have been found which will still be classified as 

dHMN V. More recently, a new splice site mutation was found in receptor accessory 

protein 1 (REEP1) in a family with dHMN and dHMN V. Missense mutations in this 

gene normally lead to HSP, due to a loss-of-function mechanism. Whilst the 

majority of mutations found in HSP result in nonsense-mediated decay, the 

suspected skipping of exon 5 would not result in a frameshift, which could account 

for the difference in phenotype (Beetz et al., 2012).  

dHMN VII 

The last autosomal dominant dHMN subtype is characterised by an adult onset of 

upper limb before lower limb involvement and the main distinguishing feature is the 

presence of vocal cord paralysis. Four loci have been found to be linked to the 

dHMN VII phenotype, three of which have been narrowed down to a specific gene. 

The first gene encodes for the P150Glued subunit of Dynactin (DCTN1), a 

microtubule motor protein important in the retrograde axonal transport. As seen 

before, compromised axonal transport is an important molecular pathway leading to 

disease and previous reports have shown that mutations in DCTN1 interfere with the 

binding of dynactin to the microtubule (Puls et al., 2003).  

 

The second locus overlapped with one of the genes already known for CMT2; 

TRPV4. Whilst mutations in dynactin lead to issues with axonal transport, TRPV4 

encodes for a non-selective cation channel. In normal conditions it exhibits a 

moderate permeability to calcium, which will be affected when mutations are 

present. There have been contradicting studies about the effects of mutations on the 

calcium import, but recent studies in neuronal derived cell lines have shown a toxic 
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gain of function, with a higher level of calcium import in comparison to basal levels 

(Fecto et al., 2011).  

 

The most recent gene responsible for the dHMN VII phenotype is the solute carrier 

family 5, member 7 (SLC5A7). This is a choline transporter in the cholinergic 

neurons, dependent on sodium and chloride. A dominant-negative mutation was 

found, resulting in reduced protein levels (Barwick et al., 2012).  

SMA-LED  

A separate entity of patients shows autosomal dominant inheritance with muscle 

weakness predominantly affecting the proximal lower extremities and is classified as 

SMA-LED. This can be caused by two different genes: DYNC1H1 and bicaudal D 

homolog 2 (BICD2). Dynein has already been implicated in CMT disease and is 

known to have an important role in axonal transport. The BICD2 protein was 

discovered by three groups simultaneously (Oates et al., 2013; Peeters et al., 2013; 

Neveling et al., 2013) and is known to bind to the dynactin-dynein complex to 

transport cargo such as mRNA, Golgi, and secretory vesicles. Mutations in BICD2 

affect the binding to this complex and the small GTPase RAB6 and will be more 

extensively discussed in Chapter 5.  

Autosomal recessive dHMN 

The remaining three subtypes of dHMN have a recessive pattern of inheritance and 

are classified as subtypes III, IV and VI. For both dHMN III and IV, the causative 

gene has not been found yet. Classification of these two subtypes depends on the 

severity of disease and the presence of diaphragmatic palsy (Harding et al., 1980; 

Pearn et al., 1979). Both have been linked to the same locus on chromosome 11q13, 

which encompasses the immunoglobulin μ binding protein 2 (IGHMBP2), 

responsible for dHMN VI. However, genetic studies rule out this gene as the 

causative factor for disease and further studies in multiple families managed to 

narrow down the linkage area to a region of 1Mb, telomeric to the IGHMBP2 gene. 

Ten known genes are located in this area, but none of these were shown to segregate 

with disease (Viollet et al., 2004).  
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dHMN Gene/Loci Function 

Autosomal Dominant 

dHMN 

  

dHMN I HSPB1 Heat shock protein 

HSPB8 Heat shock protein 

GARS Aminoacyl synthetase 

DYNC1H1 Axonal transport 

dHMN II HSPB1 Heat shock protein 

HSPB8 Heat shock protein 

HSPB3 Heat shock protein 

BSCL2 Glyco protein in the Endoplasmatic Reticulum 

FBXO38 Neuronal axon outgrowth and repair 

dHMN V GARS Aminoacyl synthetase 

BSCL2 Glyco protein in the Endoplasmatic Reticulum 

REEP1 Olfactory receptor binding  

dHMN VII DCTN1 Axonal transport 

TRPV4 Calcium homeostasis  

SLC5A7 Choline transporter 

2q14  

SMA-LED  DYNC1H1 Axonal transport 

BICD2 Motor adaptor protein 

Autosomal recessive 

dHMN 

  

dHMN III 11q13  

dHMN IV 11q13  

dHMN VI IGHMBP2 ATP-dependent helicase in RNA translation 

Table 1-5 Classification of Distal Hereditary Motor Neuropathy according to genotype. HSPB1: Heat 

Shock 27kDa Protein 1; HSPB8: Heat Shock 22kDa Protein 8; GARS: Glycyl tRNA synthetase; 

DYNC1H1: dynein, cytoplasmic 1, heavy chain 1; HSPB3: Heat Shock 27kDa Protein 3; BSCL2: 

Berardinelli–Seip Congenital Lipodystrophy type 2; FBXO38: F-box protein 38; REEP1: receptor 

accessory protein 1; DCTN1: P150Glued subunit of Dynactin; TRPV4: Transient receptor potential 

cation channel subfamily V member 4; SLC5A7: solute carrier family 5, member 7; BICD2: bicaudal 

D homolog 2; IGHMBP2: immunoglobulin μ binding protein 2. 
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As mentioned in the previous paragraph, dHMN VI is caused by mutations in the 

IGHMBP2 gene and results in a phenotype of Spinal Muscular Atrophy with 

Respiratory Distress 1 (SMARD1). Patients typically present in early childhood with 

a very severe neuropathy and diaphragmatic paralysis and rarely survive the first 

decade. IGHMBP2 functions as an ATP-dependent 5′–3′ helicase and unwinds RNA 

and DNA duplexes. Further detail can be found in Chapter 6 of this thesis.  

1.2.6 X-linked CMT 

Demyelinating CMTX1  

The second commonest form of CMT is characterised by an X-linked inheritance 

and mutations in the Gap Junction Protein Beta 1 (GJPB1) gene, encoding for the 

connexin 32 protein (Cx32). Consistent with an X-linked disease, males typically 

present with a more severe phenotype than females. Central nervous system 

manifestations can also occur in these cases.  

 

Connexin 32 is expressed by Schwann cells and oligodendrocytes that fail to 

assemble functional gap junctions or assemble defective gap junctions when 

mutated. Being important for myelin homeostasis, disruptions in the function of 

these gap junctions will lead to a demyelinating neuropathy (Scherer et al., 2012). 

CMTX2 and CMTX3  

One family with CMTX2 has been studied by Ionasescu et al., showing a disease 

phenotype similar to CMT1 but showing both demyelinating and axonal 

involvement in electrophysiological studies. This family showed an infantile onset, 

with two out of five affected individuals having mental retardation and carrier 

females being unaffected. Linkage analysis showed peak scores on Xp22.2 (Table 

1.6).   

 

So far, three families have been reported with CMTX3 (Ionasescu et al., 1991; 

Huttner et al., 2006; Brewer et al., 2008). All families presented with juvenile onset 

of distal muscle atrophy and weakness and electromyography data showed variable 

NCVs, both above and below 38 m/s. Again, carrier females were unaffected. In two 

of the families, the majority of patients reported pain and paraesthesia as the initial 

sensory symptom before the onset of sensory loss. Linkage analysis carefully refined 
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the locus to a 2.5-Mb region on Xq26.3-27.1, consisting of 10 genes that showed no 

variants.  

Axonal CMTX 

Three other types of CMTX are predominantly axonal: CMTX4, CMTX5 and 

CMTX6. CMTX4 - also known as Cowchock syndrome - is characterised by early 

onset polyneuropathy, sensorineural hearing loss and mental retardation, caused by 

mutations in the apoptosis- inducing factor (AIF) gene (Rinaldi et al., 2012).  

 

Rosenburg-Chutorian syndrome, CMTX5, is caused by mutations in the 

phosphoribosyl pyrophosphate synthetase 1 (PRPS1) gene. Patients present with a 

very severe neuropathy, deafness and optic atrophy and can also be referred to as 

having Rosenberg-Chutorian syndrome (Kim et al., 2007). 

 

The last X-linked axonal form has only been found in one family so far and has been 

linked to mutations in the Pyruvate dehydrogenase kinase, isoenzyme 3 (PDK3) gene 

(Kennerson et al., 2013).  

X-linked dHMN  

So far, only one gene has been found to be responsible in families with X-linked 

dHMN. ATPase, Cu++ transporting, alpha polypeptide (ATP7A) encodes for a 

copper-transporting ATPase 1 that is located to the transmembrane from the golgi in 

response to copper. When mutated, there is a significant accumulation of this protein 

at the plasma membrane, interfering with the copper metabolism (Kennerson et al., 

2010). Originally, mutations in this gene were found to cause Menke’s disease, 

characterised by an infantile onset of cerebral and cerebellar neurodegeneration, 

failure to thrive, kinky hair and connective-tissue abnormalities. The mutation 

spectrum of Menke’s disease does not include either of the mutations found in the 

dHMN families, which suggest the mutation spectrum might have an influence on 

the phenotype.  
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1.3 Pathogenic pathways involved in Charcot -Marie-Tooth  

1.3.1 Myelin assembly and Schwann cell dynamics  

Not surprisingly, the first genes involved in CMT were found to be part of the 

myelin pathway. In a normal situation, myelin will reduce the capacitance of the 

internodal axonal membrane and cluster ion channels at nodes to facilitate saltatory 

conduction. Demyelination increases internodal capacitance and disrupts the 

organisation of ion channels in the nodal region, resulting in conduction slowing and 

even conduction block. 

 

The majority of demyelinating neuropathies result from defects in the development 

and functioning of Schwann cells and the myelin sheath they produce by mutations 

in genes such as PMP22, MPZ, GJB1 and PRX.  Axonal loss will occur as a 

secondary outcome, displaying a higher correlation with the severity of disease than 

the initial demyelination (Fledrich et al., 2012). Demyelination can be the result of 

disrupted structure of the myelin sheath (MPZ), formation of aggresomes and 

actin/PI4-5P2 positive vacuoles (PMP22), retention of the proteins in the ER 

(PMP22), alterations of the gap junctions between compact and uncompact myelin 

(Cx32) or interruption of the Schwann cell-ECM connection (PRX, PMP22). 

Different mutations in the same gene can lead to distinct effects, as is the case for 

X-linked Gene/locus Function 

X-linked CMT   

CMTX1 GJB1 Myelin assembly/Myelin transport 

CMTX2 Xp22.2  

CMTX3 Xq26  

CMTX4 AIF Apoptotic pathway 

CMTX5 PRPS1 Purine metabolism and nucleotide biosynthesis 

CMTX6 PDK3 Regulation of glucose metabolism 

X-linked HMN  ATP7A Copper-transporting ATPase 

Table 1-6 Classification of X-linked CMT. GJB1: Gap Junction Protein Beta 1; AIF: 

apoptosis- inducing factor. PRPS1: phosphoribosyl pyrophosphate synthetase 1; PDK3: 

Pyruvate dehydrogenase kinase, isoenzyme 3; ATP7A: ATPase, Cu++ transporting, alpha 

polypeptide. 
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MPZ: depending on the location of the mutation, there is disruption of the myelin 

structure or direct axonal loss, thought to arise from aberrant Schwann cell-axon 

interactions (Berger et al., 2006). The effects do not limit themselves to the structure 

of myelin. For example, mutations in PMP22 will also result in misregulation of 

apoptosis. How and whether this will be a determining factor for the observed 

phenotype has not been established yet.  

 

As evidenced by the pathogenic results of the altered dosage of the PMP22, protein 

levels have to be tightly regulated to control myelination. An important transcription 

factor in this pathway is EGR2, which is likely to control the expression of myelin 

proteins such as MPZ (LeBlanc et al., 2006). Mice lacking this gene are devoid of 

peripheral nerve myelin, and the phenotype in humans with mutations generally 

results in severe demyelination or dysmyelination.  

1.3.2 Altered protein synthesis, sorting and/or degradation  

The internalisation and subsequent endosomal trafficking or recycling of proteins 

and membrane along the endocytic pathway is a fundamental cellular process. Cells 

can internalise components in diverse ways, such as phagocytosis, caveolea or 

clathrin-dependent endocytosis (CDE). Along the latter pathway, several genes have 

been found to result in a CMT phenotype when mutated (Fig. 1.1). At the early 

stages, DNM2 is involved as a large GTPase to constrict and deform membranes; 

including pinching off newly formed clathrin-coated vesicles. Mutations are mainly 

located in the pleckstrin-homology domain and can either cause axonal or 

intermediate versions of CMT. This results in a reduced binding of DNM2 to 

vesicles, leading to a reduction of CDE (Zuchner et al., 2005; Durieux et al., 2010).  

Few mutations will maintain the membrane localisation but instead affect the 

microtubule-dependent membrane transport (Tanabe et al., 2012).  

 

Further in the endocytic pathway at the late endosome-/lysosome state, a small 

GTPase, RAB7, regulates endosomal sorting, biogenesis of lysosomes and 

phagocytosis (Zhang et al., 2009). Mutant forms of the protein exhibited lower 

GTPase activity, with a predisposition for GTP binding leading to a more activated 

state of RAB7 (Spinosa et al., 2008).   
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Figure 1-1 Proteins of the endocytic pathway implicated in CMT. ERC = Endocytic recycling compartment.  
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As mentioned in section 1.2.2, the axonal phenotype with prominent sensory features 

that originates from mutations in RAB7A has an extensive similarity with the 

SPTLC1-phenotype, involved in sphingolipid synthesis, suggesting the pathogenic 

mechanism originates from the transport or endocytosis of sphingolipids. Another 

small GTPase, RAB11, interacts with SH3TC2 to target the intracellular recycling 

endosome, responsible for the recycling of internalised membrane and receptors 

back to the plasma membrane. Mutant forms of SH3TC2 are unable to associate with 

Rab11, resulting in a loss of recycling endosome localisation. Phenotypically, this 

will result in progressive demyelination of the peripheral nerves (Roberts et al., 

2010).  

 

Recently, one more autosomal recessive demyelinating form of CMT, linked to 

mutations in the NDRG1 gene, has also been implicated in vesicular transport. Even 

though the exact function is not known yet, evidence shows localisation to the 

recycling/sorting endosomes for E-cadherin transport and recycling (Kachhap et al., 

2007). 

 

As a whole, the endocytic pathway is subject to regulation by phosphoinositides 

(PIs), phosphorylated versions of phosphatidylinositol, a minor component on the 

cytosolic side of cell membranes. Whilst phosphatidylinositol-4,5-bisphosphate 

[PI(4,5)P2] is the main PI present, accountable for initiation of clathrin-coated pit 

(CCP) formation, generation of phosphatidylinositol-3,4-bisphosphate [PI(3,4)P2] 

and dephosphorylation of [PI(4,5)P2] later in the pathway are necessary for the 

regulation of CCP maturation and vesicle uncoating. [PI(3)P] is localised on early 

endosomes and, together with [PI(3,3)P2], can be dephosphorylated by active 

myotubularins such as MTMR2 and MTMR13. Mutant forms of these enzymes in 

demyelinating CMT show reduced phosphatase activity and indicate a necessity for a 

tight control of PI levels along the endocytic pathway (Berger et al., 2002). 

[PI(3,5)P2] is one of the other PIs localised on the endosomal membranes, although 

in a concentration almost 100-fold lower than [PI(4,5)P2]. Concentration of 

[PI(3,5)P2] is tightly regulated by the PAS complex, containing both a 

phosphoinositide kinase and phosphatase. Part of the phosphatase contains the FIG4 

protein, mutated in recessive demyelinating CMT (McCartney et al., 2014) and will 

be more extensively discussed in Chapter 4.  
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Regulating the same pathway, SIMPLE/LITAF was first linked to the late endosome, 

identifying as an E3 Ubiquitin ligase due to a C-rich domain resembling the RING 

finger motif. However, recent studies suggest it is an early endosomal membrane 

protein, regulating cell signalling by promoting endosome-to-lysosome trafficking 

and degradation of signalling receptors (Lee et al., 2012; Chin et al., 2013). 

Mutations will result in mislocalisation to the mitochondria, inhibiting endosomal 

trafficking and lysosomal degradation of proteins (Lacerda et al., 2014). Again, this 

will lead to a demyelinating phenotype.  

 

Lastly, LRSAM1 has been identified as an E3 Ubiquitin ligase exhibiting an 

opposite effect on the pathway. Ubiquitination by LRSAM1 will cause the 

disassembly of sorting complexes, leading to a prolonged signalling of the activated 

receptors (Engeholm et al., 2014). Mutant forms will lead to an axonal phenotype in 

patients, with both dominant and recessive cases being reported (Guernsey et al., 

2010; Engeholm et al., 2014). The regulation of cell surface receptors throughout the 

endocytic pathway will modulate the intensity and duration of signal transduction in 

cells.  

 

None of these proteins are exclusively expressed in neuronal cell types and the 

occurrence of demyelinating CMT indicates Schwann cells might be particularly 

susceptible to defects in endosomal trafficking. Whilst in some cases, direct links 

could be found with ERK1/2 activation, leading to demyelination (Lee et al., 2012), 

the link between endocytic dysregulation and axonal neuropathies is less clear.  

1.3.3 Axonal transport Altered Transport Processes 

Axonal transport regulates the movement of different cell organelles such as 

mitochondria, vesicles or lipids and proteins throughout the axon in a bidirectional 

way. Anterograde transport directs the cargo from the cell body to the periphery, 

with retrograde transport being responsible for transferring cargo along the 

microtubule from to periphery to the cell body.  

 

Anterograde transport uses a class of motor proteins called kinesins to drive the 

cargo over the microtubule towards the plus end, located at the periphery (Fig. 1.2). 
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Each step is catalysed by the hydrolisation of ATP into ADP, releasing energy 

(Hirokawa et al., 2005).  Multiple members exist in the human kinesin superfamily, 

exhibiting individual functions. In relation to CMT, only one family has been found 

with a mutation in the KIF1B gene, causing axonal neuropathy (Zhao et al., 2001). 

Two different isoforms are encoded by the KIF1B gene and show affinity for 

different cargos. KIF1B-α mediates transport of mitochondria, while KIF1B-β 

associates with synaptic vesicles precursors. The mutation is located in the ATP 

binding domain, which is part of both isoforms but heterozygous mice only showed 

a defect in synaptic vesicle transport together with progressive muscle weakness. 

This led to the suggestion that haploinsufficiency of the protein and impaired 

transport of synaptic vesicle precursors could lead to the axonal neuropathy. Many 

years later, truncating, recessive mutations in KIF1A were linked to patients with 

HSAN. All mutations were found downstream of the motor domain, in an 

alternatively spliced exon of KIF1A mainly expressed in the nervous system. KIF1A 

is responsible for fast anterograde transport of synaptic vesicles and Y2H studies 

indicated KIF1A interacted with the HSN2 exon of WNK1, another gene implied in 

HSAN (Riviere et al., 2011).  

 

In the same way for retrograde transport, dynein-dynactin complexes function as 

motor proteins, transporting the cargo from the periphery to the cell body. The first 

mutation was reported in DCTN1 in 2003, in patients with dHMN (Puls et al., 2003). 

Dynactin links the specific cargo with the microtubule and cytoplasmic dynein. 

Mutant forms have shown a lower affection for microtubule, impairing the dynactin 

function and leading to aggregates that associate with mitochondria and induce cell 

death (Levy et al., 2006). Axonal transport will both be inhibited by the lower 

interaction and the toxic gain-of-function effect from the aggregates, leading to 

axonal neuropathy. More recently, mutations in DYNH1C1, the heavy chain of 

dynein, were found in CMT2 patients (Weedon et al., 2011). One year later, different 

mutations in the same gene were appointed as the cause for SMA-LED (Tsurusaki et 

al., 2012). All of these mutations are located in the homodimerisation domain, 

resulting in a decreased affinity of dynein for the microtubule during the ATP step, 

impairing motor domain co-ordination and subsequently reducing dynein-driven 

retrograde transport (Harms et al., 2012).  
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Figure 1-2 Proteins in axonal transport or cytoskeleton, implicated in CMT. 
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Further research showed profoundly modified mitochondrial morphology and 

respiration due to these mutations, indicating that dynein is required for the 

maintenance of mitochondrial morphology (Eschbach et al., 2013). Whilst dynein is 

ubiquitously expressed, motor neurons seem to be most vulnerable to defects in 

dynein function.  

Important factors in the regulation of dynein-based vesicle motility, function and 

localisation are a group of proteins called Bicaudal D. These were first identified in 

Drosophila flies and have two homologs in mammals: BICD1 and BICD2 (Kardon 

et al., 2009). Mutations in the latter have been found in patients with a very similar 

phenotype to DYNC1H1-associated SMA-LED, indicating the pathogenicity of these 

mutations (Oates et al., 2013; Peeters et al., 2013; Neveling et al., 2013). This will be 

further discussed in Chapter 5.  

 

Another way to regulate mitochondrial transport is through the levels of Ca
2+

 along 

the neuron. High Ca
2+

 levels will recruit more mitochondria to take up the excess 

Ca
2+

 through the uniporter into intracellular stores. Mutations in TRPV4, a cation 

channel mediating calcium influx, result in a dominant axonal neuropathy and 

different hypothesis have been suggested in regards to the pathomechanism of these 

mutations. Whilst initial studies showed a loss of function due to cytoplasmic 

retention of the channels and decreased calcium channel activity of the mutant form 

(Auer-Grumbach et al., 2010), other studies proposed a gain of function mechanism, 

showing physiological localisation and an increased calcium channel activity, 

leading to an increased intracellular calcium influx (Fecto et al., 2011). Apart from 

causing dominant axonal neuropathies, mutations in this gene can lead to a range of 

skeletal and neuromuscular disorders, with a high variability even within families 

(Auer-Grumbach et al., 2010).   

1.3.4 Alterations of the Cytoskeleton 

Not only can mutations occur directly in the molecular motors for axonal transport or 

their modulators, mutations in proteins of the cytoskeleton can indirectly influence 

the working of axonal transport. Alterations in the cytoskeleton will result in an 

impaired axonal transport, reduced axon diameter and a reduced capacity for nerve 

regeneration. One of the major components of the neuronal cytoskeleton is 
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neurofilament, which functions to provide structural support and regulate the axon 

diameter (Lariviere et al., 2004). Neurofilament is built from three building blocks, 

with names based on the molecular weight of each subunit: Neurofilament light 

chain (NF-L: 62 kDa), medium chain (NF-M: 168 kDa) and heavy chain (NF-H: 200 

kDa). After synthesis in the cell body, neurofilament will be transported along the 

microtubule to the nerve terminals, where NF-L functions as a scaffold for the 

assembly of NF-M and NF-H (Ching et al., 1993; Xia et al., 2003). More than a 

decade ago, the first mutations in the neurofilament light chain gene (NEFL) were 

found to cause axonal CMT2, with further reports expanding the phenotype to 

demyelinating CMT1 (Mersiyanova et al., 2000; Jordanova et al., 2003). Different 

NEFL mutations exert various effects on NF biology, such as interference with the 

transport of mitochondria, axonal transport of mutant neurofilament and 

neurofilament assembly (Brownlees et al., 2002; Perez-Olle et al., 2004), but no 

genotype/phenotype correlations have been established so far (Miltenberger-Miltenyi 

et al., 2007). NEFL knockout mice did not exert a CMT2 phenotype, whilst the 

introduction of missense mutations led to a severe peripheral neuropathy, indicating 

the dominant missense mutations do not cause loss-of-function (Zhu et al., 1997; Lee 

et al., 1994). In one of our families with axonal neuropathy, mutations were found in 

the neurofilament heavy chain, which will be discussed in Chapter 5. Interestingly, 

studies have shown that dynein is partially responsible for the movement of 

neurofilament along the axons, via an interaction with NF-M. Inhibition of the 

dynein/dynactin complex leads to accumulation of neurofilaments in the axon 

(Wagner et al., 2004; Motil et al., 2007).  

 

The organisation of the neurofilament network requires the assistance of small heat 

shock proteins such as HSP27, encoded by HSPB1, that regulate interactions that 

occur between filaments in their cellular networks (Perng et al., 1999). Mutations in 

HSPB1 disrupt the neurofilament network (Evgrafov et al., 2004) by 

hyperphosphorylation of the neurofilaments, reducing anterograde transport and 

subsequently leading to dominant axonal neuropathy or dHMN (Holmgren et al., 

2013). The role of HSP22, another protein implicated in CMT, has not been 

characterised as extensively. Even though it does not directly interact with 

neurofilament, it might play a role in the architecture of the cytoskeleton via 

interaction with HSP27 (Sun et al., 2004). NF-L metabolism is also regulated by 
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TRIM2, an E3 Ubiquitin ligase. Studies have shown TRIM2 is responsible for the 

ubiquitination of NF-L and mutant forms lead to a reduction of NF-L ubiquitination 

with subsequent NF-L accumulation in aggregates (Balastik et al., 2008). Only one 

patient with axonal neuropathy has been found so far with compound heterozygous 

mutations in this gene (Ylikallio et al., 2013).  

 

Most of the mutated genes implied in the neuronal cytoskeleton metabolism will 

result in axonal CMT with the exception of NF-L, which has been shown to also lead 

to demyelinating CMT. However, no consistent differences could be found in 

between the mutations causing either axonal or demyelinating CMT, with several 

mutations causing both (Miltenberger-Miltenyi et al., 2007).  

 

A characteristic component of the cytoskeleton for all cell lines is microfilament, 

consisting of linear polymers of actin which, in neurons, are located at nodes of 

Ranvier and post synaptic densities and in dendritic spines. They are situated right 

under the plasma membrane of the axon and provide mechanical strength to the cell 

or link transmembrane proteins to cytoplasmic proteins. Multiple genes have been 

found to be mutated in demyelinating CMT or HSAN that influence the actin 

cytoskeleton as mentioned before, such as CCT5  –involved in the folding of actin–, 

DST –linking actin filaments to microtubule-, and FGD4 –mediating actin 

cytoskeleton changes (Bouhouche et al., 2006; Edvardson et al., 2012; Delague et al., 

2007). All of these present with a recessive mode of inheritance but so far, none have 

been extensively studied to hypothesise the pathogenic pathway involved.  

1.3.5 Mitochondrial network dynamics and ATP production 

Another concept important in the maintenance of axons is the dynamics of the 

mitochondrial network. Due to high energy requirements and low intrinsic energy 

reserves, neurons require a constant delivery of mitochondria, producing ATP. Not 

only low ATP levels, but also high Ca
2+

 levels attract a flux of mitochondria, which 

will take up the excess Ca
2+

 through the mitochondrial Ca
2+

 uniporter, as mentioned 

before. Mutations in different genes affecting the function, transport, fusion, fission 

or interactions with mitochondria have been found in patients with CMT. 

Mitochondria are known as the ‘Powerhouses of the cell’ and defects in their 

function can lead to a broad spectrum of diseases, most commonly called 
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mitochondrial diseases. Mitochondrial diseases tend to present as multisystemic 

disorders and are generally progressive. Despite the phenotypic variability, more 

cases of neurodegenerative disorders due to mitochondrial defects are being 

discovered, such as Alzheimer’s disease, Amyotrophic lateral sclerosis, Huntington 

disease and hereditary spactic paraplegia (Lin et al., 2006; Schon et al., 2011).  

 

Whilst initially these disorders were mainly characterised by defects in 

mitochondrial respiration, genes are being discovered that lead to faults in 

mitochondrial trafficking, interorganellar communication and quality control defects 

when mutated. Section 1.3.3 already showed examples of cases were the transport of 

mitochondria was affected due to mutations in motor proteins, but many more are 

implied in the context of CMT. As mentioned before, MFN2 is a GTPase located in 

the outer membrane of the mitochondria and regulates mitochondrial fusion and 

tethering. The fusion/fission process plays a critical role in maintaining healthy 

mitochondria, for example after metabolic or environmental stress. Fusion will help 

to diffuse stress by mixing contents of healthy mitochondria with partially damaged 

mitochondria, whilst fission is needed to create new mitochondria. Mutant forms of 

MFN2 will not only cause defects in the fusion of mitochondria (Detmer et al., 

2007), but also compromise the axonal transport of mitochondria leading to 

mitochondrial clustering in the perikaryon (Baloh et al., 2007). Axonal degeneration 

correlated with the alteration of proper mitochondrial distribution along the axon, 

due to disruption of local axonal energy sensing and positioning mechanisms. Initial 

hypothesis explained the vulnerability of long axons to the delay or prevention of 

newly synthesised mitochondria from reaching the most distal ends, but more recent 

data suggests this might be due to a deficit in the regulation of local transport and 

distribution of mitochondria (Misko et al., 2012). Additionally, mutations in MFN2 

resulted in a reduced mitochondrial membrane potential together with an energetic 

coupling defect (Loiseau et al., 2007). 

 

Even though mutations in MFN2 lead to axonal CMT, mutations in the 

mitochondrial fission protein GDAP1 most frequently lead to demyelinating CMT 

and in some cases to intermediate or axonal forms.  Phenotypically, recessive 

mutations result in a more severe disease than dominant mutations. Recessive mutant 

forms have lost mitochondrial fragmentation activity (Niemann et al., 2005), whilst 
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dominant forms interfere with mitochondrial fusion and result in an increased 

production of reactive oxygen species (Niemann et al., 2009). Silencing of GDAP1 

also influences Ca
2+

 homeostasis by reducing Ca
2+

 inflow through store-operated 

Ca
2+

 entry (Pla-Martin et al., 2013). However, the exact pathological changes that 

lead to axonal or demyelinating changes have not been elucidated yet. Knockout 

mouse models have been developed, showing progressive decreased nerve 

conduction velocities, accompanied by mild hypomyelination. Investigations show 

larger mitochondria in knockout mice axons and cultured sensory neurons showed 

impaired mitochondrial transport (Niemann et al., 2014).  

 

GDAP1 fission is dependent on Drp1 (also known as DNM1L), a highly conserved 

mitochondrial fission factor that regulates the interaction between mitochondria and 

ER, and silencing Drp1 expression resulted in mitochondrial elongation and reduced 

fragmented mitochondria (Niemann et al., 2009). Whilst mutations in this gene are 

lethal, one of the upstream regulators, inverted formin 2 (INF2), has been shown to 

be mutated in intermediate CMT. One postulation is that ER-localised INF2 

assembles actin at the mitochondria-ER constriction sites, providing initial 

mitochondrial constriction and enhancing further constriction by Drp1 before rapidly 

depolymerizing actin (Korobova et al., 2013). Originally, mutations in INF2 were 

found to cause focal segmental glomerulosclerosis (FSGS) after which the phenotype 

was expanded to dominant intermediate CMT with FSGS (Boyer et al., 2011).  

 

Secondly, mutations can also interfere with the production of ATP in the 

mitochondrion itself. When pyruvate is transported along the mitochondrial 

membrane it enters the Krebs cycle after conversion to acetyl CoA, and results in 

ATP and reduced FADH2 and NADH that will be transported to the electron 

transport chain. CMT2-causing genes have been found at different stages of this 

process, all leading to a neuropathy. The first step of oxidative decarboxylation of 

pyruvate is catalysed by the pyruvate dehydrogenase complex (PDC). PDC 

deficiency normally leads to developmental delay, hypotonia, seizures and abnormal 

cerebral neuroimaging with selected cases associated with peripheral neuropathy 

(Patel et al., 2012). This complex is regulated by four pyruvate dehydrogenase 

kinase isoenzymes (PDKs), each exhibiting tissue-specific expression. PDK3, the 

isoenzyme expressed in brain and spinal cord, has been found mutated in one family 
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with X-linked CMT, resulting in overactivity of the isoenzyme leaving PDC in a 

predominantly phosphorylated inactive state, which may lead to impaired ATP 

production (Kennerson et al., 2013).  

 

Although extremely rare, cases have been reported with mutations in the enzymes of 

the Krebs cycle, leading to metabolic diseases (Rustin et al., 1997). The first and 

only mutation leading to axonal neuropathy was found in the dehydrogenase e1 and 

transketolase domains-containing protein 1 (DHTKD1) which has been postulated to 

function as a 2-oxoglutarate-dehydrogenase E1 component in the Krebs cycle. 

Silencing of this protein resulted in severely reduced levels of ATP and NADH and 

haploinsufficiency due to rapid mRNA degradation via nonsense mediated decay of 

the nonsense mutation is suggested to lead to insufficient energy production and 

dysfunction of peripheral nerves (Xu et al., 2012). 

 

In Chapter 3, the mitochondrial oxidative phosphorylation system and discovery of 

mutations in complex V will be discussed extensively. There we found mutations in 

CMT2 patients in the mitochondrially encoded ATP6 gene, normally known to cause 

mitochondrial disorders such as Leigh syndrome or NARP. Not long after that 

discovery, mutations in a different gene in the same pathway that normally causes 

Leigh syndrome were found in patients with recessive, demyelinating CMT 

(SURF1). All three patients presented with an isolated peripheral neuropathy and 

very little multisystem involvement (Echaniz-Laguna et al., 2013). SURF1 is one of 

the at least 6 assembly factors of Cytochrome c oxidase (COX), also known as 

complex IV in the electron transport chain, and mutant forms result in a markedly 

reduced assembly and activity of COX. The exact pathways that lead from a COX 

defect to an isolated peripheral neuropathy have not been elucidated yet.  

1.3.6 tRNA synthetase genes  

Aminoacyl tRNA synthetases are enzymes responsible for charging the appropriate 

amino acid to their cognate tRNA before transferring the amino acid onto a growing 

peptide. The first amino-acyl tRNA synthetase discovered to cause axonal 

neuropathy was glycyl tRNA synthetase (Antonellis et al., 2003). This led to the 

subsequent discovery of an additional five amino-acyl tRNA synthetases implicated 

in peripheral neuropathy: tyrosyl-tRNA synthetase (Jordanova et al., 2006); alanyl-
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tRNA synthetase (Latour et al., 2010); lysyl-tRNA synthetase (McLauglin et al., 

2010); histidyl-tRNA synthestase (Vester et al., 2013) and methionyl-tRNA 

synthetase (Gonzalez et al., 2013). Different hypothesis have been suggested to 

explain the pathogenicity of mutations in tRNA synthetase genes and have been 

predominantly studied in GARS, due to the earlier discovery and the majority of 

mutations being located in this gene. Considering the mutation in AARS was present 

in the editing domain, misincorporation of amino acids has been observed, leading to 

misfolded proteins and the activation of the unfolded protein response which could 

lead to the observed neurodegeneration (Lee et al., 2006). However, GARS does not 

have an editing domain since the active site is conformationally constrained to only 

accept glycine and only few mutations would adjust the dimer interface leading to 

misincorporation, suggesting this would not be the pathological mechanism (Stum et 

al., 2011). Most functional approaches to prove pathogenicity of these ARS enzymes 

involve aminoacylation and yeast growth assays. When performed on nine different 

GARS mutations, all mutations affected the aminoacylation activity of the protein in 

comparison with wild type and the majority of mutations also dramatically reduced 

yeast cell viability (Griffin et al., 2014). Whilst this indicates pathogenicity of novel 

mutations and insight in the functional consequences, it provides no further 

elucidation about the pathomechanism in axons. Research has suggested a role in 

local translation in axons (Giuditta et al., 2002) and studies have shown a punctate 

structure of wild type endogenous GARS in peripheral axons, which is impaired in 

certain mutated forms (Griffin et al., 2014). However, additional research needs to be 

performed to establish a link between impaired function and the observed axonal or 

intermediate neuropathy in these six ARS found so far.  

1.3.7 Unknown pathways 

Apart from the previous recurring themes in the pathogenicity of peripheral 

neuropathies, there are multiple genes involved that do not fit in any of these 

pathways or have not had their pathogenic role clarified yet. Some of them affect the 

same pathway, indicating the importance in neuropathy; others stand alone with a 

function not related to other proteins mutated. Examples are proteins involved in 

RNA metabolism (HINT1, IGHMBP2, CTDP1), sphingolipid biosynthesis (SPTLC1, 

SPTLC2) or development (WNK1, IKBKAP,FBXO38) or isolated proteins such as 

LMNA, HK1 or SLC5A7. The majority of genes implicated in CMT are not restricted 
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to one specific function and in many cases, it is not clear which exact function is 

impaired in the mutant forms of the protein.  

 

1.4 Thesis aims  

The aim of this thesis was to contribute to the knowledge of the genetic 

heterogeneity and mechanism of disease of inherited neuropathies, in particular, 

CMT. My work combined the use of genetic studies and functional analysis with the 

overall aims of: 

1. Investigating the presence of mutations in the mitochondrial genome leading 

to CMT (Chapter 3). 

2. Estimating the frequency of newly discovered genes in selected cohorts 

(Chapter 4). 

3. Screening new candidate genes in appropriate cohorts by the use of Sanger 

sequencing (Chapter 4). 

4. Using exome sequencing to establish the genetic cause of disease in 

undiagnosed families with inherited neuropathy (Chapter 5). 

5. Investigating the molecular mechanism of mutations in IGHMBP2 leading to 

both SMARD1 and CMT2 (Chapter 6). 
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Chapter 2:  

Material and methods 

Materials: The country of origin is only indicated for companies that do not have 

registered UK subsidiaries. 

2.1 Genetic studies  

2.1.1 Ethical approval and patient selection 

This study has been granted ethical approval by the National Research Ethics Service 

Committee of the National Hospital for Neurology and Neurosurgery (NHNN) in 

Queen Square, London, UK. Written informed consent was obtained from all 

patients, parental guardians and/or included family members. Patients were 

identified by Professors Mary Reilly and Henry Houlden primarily and 

collaborations were made with several additional clinicians around the world.  

2.1.2 DNA extraction 

DNA extraction was performed in the neurogenetics lab by the clinical diagnostic 

service of the National Hospital for Neurology and Neurosurgery. This was 

performed using either automated purification of DNA from 1–5 ml or 5–10 ml 

samples of fresh or frozen whole blood using Autopure reagents on the Autopure LS 

or by manual extraction with the Qiagen Flexigene kit (Qiagen).   
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2.1.3 DNA concentration and purity  

DNA concentration and purity were assessed using the NanoDrop ND-1000 

spectrophotometer as per the manufacturer’s instructions (NanoDrop Technologies). 

Concentration was assessed at 260 nm. Purity was estimated by the 260/280 and 

260/230 absorbance ratios, to assess contamination with respectively proteins or 

other contaminants such as phenol, ethanol or other compounds. Absorbance ratios 

between the spectrum of 1.8-2 and 1.8-2.2 respectively were required for DNA of 

decent quality.  

2.1.4 Polymerase Chain Reaction (PCR)  

Human genome sequences were obtained from Ensembl Genome Browser 

(http://www.ensembl.org/index.html), genome assembly build 37 (GRCh37; 

GCA_000001405.14).  Transcripts were chosen according to the project, depending 

on previous papers or the full length of the transcript. Genes for which the whole 

gene was sequenced are listed below (Table 2.1). Transcripts for exome sequencing 

variants were chosen according to the exome data.  

 

Gene  Transcript  

MT-ATP6  ENST00000361899 

MT-ATP8 ENST00000361851 

FIG4 ENST00000230124 

C9orf72 ENST00000380003 

HINT1 ENST00000304043 

ARL1 ENST00000261636 

ARL6ip1 ENST00000304414 

SCN9A ENST00000409672 

BICD2 ENST00000356884 

TRAK2 ENST00000332624 

ADD3 ENST00000356080 

IGHMBP2 ENST00000255078 

Table 2-1 List of transcripts used for sequencing of genes. 

Designing of primers   

Primers were designed using the Primer3 software (http://primer3.ut.ee/, Rozen and 

Skaletsky, 2000) unless stated otherwise, to amplify the exons and exon-intron 

boundaries. Primers were chosen to be a length of 18-23 basepares long, resulting in 
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a product size between 500-700 basepares. Melting temperatures were between 57°C 

and 62°C and the percentage of G or C bases in the primer was  ̴50%. Primers with a 

high self-complementarity were excluded. All primers are available on request.  

Nuclear DNA  

PCR reaction mix was made up to a volume of 25 μL with sterile deionised H20 and 

included 10 μmol of each primer, 20 to 50 ng DNA and 12.5 μL of FastStart PCR 

master (Roche). When necessary, 10% DMSO was included in the PCR reaction. 

PCR was performed on an Eppendorf Mastercycler thermal cycler at a previously 

determined optimal annealing temperature. Cycling conditions used for PCR 

amplification reactions are described in Table 2.2. PCR reactions were maintained at 

4°C after cycling and stored at -20°C.  

 

Step Reactionstep Time Temperature 

1 Initial denaturation 10 min 95°C 

2 Denaturation  30 sec 94°C 

3 Annealing primers  30 sec  60°C (-0.4°C/cycle) 

4 Elongation  45 sec  72°C 

5 Denaturation  30 sec 94°C 

6 Annealing primers  30 sec 50°C 

7 Elongation  45 sec  72°C 

8 Final elongation  10 min  72°C 

Table 2-2 Standard 60-50 touchdown PCR reaction. Steps 2 to 4 were 

repeated 25 times; steps 5-7 were repeated 12 times. Annealing temperature 

in step 3 was 60°C (-0.4°C/cycle) for the majority of exons sequenced. 

Mitochondrial DNA 

The whole length of 841 nucleotides of the ATPase 6 and ATPase 8 genes, with a 

surrounding hundreds of nucleotides, was divided into three overlapping fragments 

(Table 2.3). Primer sequences were originally designed as a set to screen the 

complete mitochondrial genome in overlapping segments and the remaining primers 

are available on request. All forward primers had a -21 M13 primer tail 

(TGTAAAACGACGGCCAGT) and all reverse primers a M13 reverse tail 

(CAGGAAACAGCTATGACC). PCRs were made up to a volume of 25 μL with 

sterile deionised H20 and included 10 pmol of each primer, 50 ng DNA and 12.5 μL 

of Amplitaq Gold 360 Mastermix (ABI) with conditions listed in Table 2.4   
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Fragment Primer Forward  Length 

(nt) 

Nucleotide 

location Primer Reverse 

1 5’- acagtttcatgcccatcgtc-3’ 530 8196-8726 

3’- gttcgtcctttagtgttgtg -5’  

2 5’- ccgactaatcaccacccaac -3’ 598 8646-9244 

3’- ggttttactatatgataggc -5’  

3 5’- atccaagcctacgttttcac -3’ 593 9151-9744 

3’- ctgaggcttgtaggagggta -5’  

Table 2-3 Primer sequences for the ATPase6 and 8 genes. 

Step Reactionstep Time Temperature 

1 Initial denaturation 10 min 95°C 

2 Denaturation 30 sec 95°C 

3 Annealing primers 30 sec 58°C 

4 Elongation 30 sec 72°C 

5 Final Elongation 7 min 72°C 

Table 2-4 PCR reaction. Steps 2 to 4 were repeated 30 times. 

2.1.5 Agarose gel electrophoresis of PCR products 

1.3% w/v agarose gel was prepared by adding 1g of agarose powder (Roche) to 75 

mL of 1xTBE buffer (10x TBE: 121.1 g Tris (Sigma-Aldrich), 61.8 g anhydrous 

boric acid (Merck-Millipore), 7.4 g EDTA (VWR), made up with dH2O; pH to 8.3) 

and heating up the mixture in the microwave to dissolve. After cooling, 2 μL of 10 

mg/mL ethidium bromide (Promega) was added to visualise DNA by intercalation 

between the strands. After PCR amplification, length of PCR products was verified 

by loading 5 μL of the PCR product mixed with 2 μL Orange G loading dye (60% 

glycerol, 40% dH2O, teaspoon of orange G powder (Sigma-Aldrich)). 

Electrophoresis was run on 80V for 30 minutes to allow a good separation of the 

bands and visualised under a UV transilluminator. Digital photographs were 

obtained using the Syngene GeneGenius image acquisition system and GeneSnap 

software (Synoptics).  

2.1.6 DNA purification  

To ensure PCR products were free of unincorporated single strand DNA 

oligonucleotides and dNTPs, two different methods were used. Millipore 
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multiscreen
hts

 PCR filter plates were used up until 5/2/13, after this date ExoSap was 

used.  

Millipore  

Vacuum at 25 inches Hg was applied for 5-10 minutes after which the samples were 

reconstituted in 50 μL of nanopure water. Samples were mixed on a plate mixer for 

30 minutes, where after the purified PCR product was retrieved from each well.  

ExoSap 

PCR products were purified using 2μL of Exo-Fast (50µL Exo I, 200µL Fast-AP, 

750µL Water) per 5 µL of amplified DNA by incubating at 37°C for 30 minutes and 

80°C for 15 minutes. The resulting product was stored at 4°C before sequencing 

reaction was performed.  

2.1.7 Sequencing 

Bi-directional sequencing was performed using a DNA sequencing kit (Big Dye 

Terminator 3.1; Applied Biosystems). Each reaction was made up to 10 μL of sterile 

deionised H2O and included 3.2 μmol of primer, 3.5 μL of PCR product, 2 μL of 5X 

BigDye Terminator v3.1 sequencing buffer (Life Technologies) and 0.5 μL of 

BigDye Terminator v3.1 reaction mix (Life Technologies). The cycling conditions 

were the following: (96°C, 10 sec.; 50°C, 5 sec.;  60°C,4 min) x25. 

2.1.8 Clean-up reaction 

To remove unincorporated dye terminators from the sequencing reaction, two 

different methods were used. Before February 2013, the dye terminator removal kit 

(Thermo Fisher Scientific) was used according to the manufacturer’s protocol. 

Before loading onto the separation plate, samples were adjusted to 20 μL with water. 

After centrifugation for 3 min at 950xg the samples were collected in a sterile 96 

well plate.  

 

After February 2013, Corning® FiltrEX™ 96 well filter plates, 0.66 mm glass fibre 

filter, polystyrene (Sigma-Aldrich) were used and columns were manually created 

with 350µL of Sephadex G-50 Bioreagent (Sigma-Aldrich) by dissolving 1.9g of 

Sephadex in 40mL of sterile deionised water per plate. Plates were spun for 3 

minutes at 750xg before adding the samples. After adding the entire volume of the 
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sequencing reaction (10µL) onto the Sephadex columns, plates were spun for 5 

minutes at 910xg and samples were collected in a sterile 96 well plate.  

2.1.9 Sequence analysis  

Samples were run on the ABI PRISM 3730xl Genetic Analyzer and were manually 

analysed using the SeqScape v2.5 program (ABI).  

2.1.10 Restriction endonuclease analysis 

 A fragment of the ATPase 6 gene, which includes the mutation site, was amplified 

using the sense mismatch primer (9,161-9,184) 

ACGTTTTCACACTTCTAGTGGGCC, and antisense Primer (9,273–9,253) 

AGAGGGCCCCTGTTAGGGGTC, hereby introducing a BSP12OI restriction site 

(GGGCCC) in the mutant but not in the wild type mtDNA. To calculate the 

percentage of heteroplasmy, a FAM fluorophore (6-carboxyfluorescein) was 

attached to the 5’ end of the antisense primer. The same conditions as stated above in 

Table 2.4 were used, with an annealing temperature of 57°C and a repetition of steps 

2-4 for 18 times.  

 

Following amplification, restriction enzyme digestion by 10 units of BSP12OI was 

performed to cleave the 113 nucleotides PCR product of mutant DNA into 89 and 24 

nucleotide fragments. The reaction mix was then incubated for two hours at 37°C.  

To denature the PCR products, 12μL of formamide was added to 1 μL of product. 

0.3 μL of Liz 600 (ABI) was used as a size standard. The resulting mixture was 

heated at 95°C for 3 minutes, after which it was put on ice immediately. It was then 

loaded on the 3730xl DNA analyser and the ratio of cut to uncut DNA was 

calculated with the GeneMapper (ABI) program. This was all performed in triplicate, 

after which the mean value was calculated.  

2.1.11 Fragment analysis to look at the C9orf72 expansion repeat  

The repeat expansion was assayed with a repeat-primed PCR which included a gene-

specific fluorescently labelled forward primer in the C9orf72 exon 1a and two 

reverse primers. The use of triplet-primed PCR (TP-PCR) for the detection of repeat 

expansions was first suggested by Warner et al. in 1996, with the principle of the 

technique relying on the use of locus-specific PCR primers in combination with a 

primer designed across the repeated sequence. After PCR reaction, products of 

different sizes will be produced, according to the number of repetitions. If an 
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expansion occurs, a continuous ladder of PCR amplification fragments exceeding the 

normal range will be visualised. For this project, one reverse primer consisted of four 

GGGGCC repeat units and an anchor sequence, while the second reverse primer 

contained the anchor sequence. Before PCR reaction, a primer mix was constituted 

according to volumes stated in Table 2.5. 1 µL of this primer mix was used in 

combination with 10 µL of Extensor mix, 10 µL of Betaine and 1 µL of DNA. PCR 

conditions are stated in Table 2.6. A cohort of 185 patients with dHMN was 

screened.  

 

Primermix  V (μL) 

F1: 6fam-agtcgctagaggcgaaagc 20 

R1: tacgcatcccagtttgagacgggggccggggccggggccggggccgggg 10 

R2: tacgcatcccagtttgagacg 10 

H2O 50 

Table 2-5 Primer sequences for the C9orf72 expansion repeat (5’ to 3’). 

Step Reactionstep Time Temperature 

1 Initial denaturation 10 min 98°C 

2 Denaturation  35 sec 97°C 

3 Annealing primers  2 min  53°C  

4 Elongation  2 min  68°C 

5 Denaturation  35 sec 97°C 

6 Annealing primers  2 min 53°C 

7 Elongation  2 min  68°C 

8 Final elongation  10 min  68°C 

Table 2-6 PCR reaction for the C9orf72 expansion repeat. Steps 2-4 were 

repeated 10 times, steps 5-8 were repeated 25 times.  

To denature PCR products, 9.2μL of formamide was added to 1.5 μL of product. 0.3 

μL of Liz 500 (ABI) was used as a size standard. The resulting mixture was heated at 

95°C for 3 minutes, after which it was put on ice immediately. It was then loaded on 

the 3730xl DNA analyser and allele identification and scoring was accomplished 

using GeneMapper v3.7 software (ABI). 

2.1.12 Exome Sequencing  

Enrichment of coding exons and flanking intronic regions was performed externally 

with the use of the Illumina’s TruSeq Exome Enrichment Kit, Nimblegen EZ 
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Capture og Agilent SureSelect in combination with HiSeq2000 sequencing. Poor 

quality samples were repeated with the same technology or done in-house with the 

HiSeq 2500 in High output mode. Primary data analysis including image analysis, 

base calling, alignment and variant calling, copy number variations and structural 

variations was performed by AROS or in-house. The exome sequencing performed 

in-house by Dr Deborah Hughes and Dr Alan Pittman at the UCL ION was mapped 

to the human reference genome build UCSC hg19 by Novoalign Software 

(Novocraft, Malaysia). After removal of PCR duplicates using Picard 

(http://picard.sourceforge.net) as well as reads without a unique mapping location, 

variants were extracted using the Maq model in SAMtools and filtered by the 

following criteria: consensus quality >30, SNP quality >30 and root mean square 

mapping quality >30. These variants were further filtered against the dbSNP 135 and 

1000 Genomes databases by use of Annovar (http://www.openbioinformatics.org 

/annovar/). The data filtering of the results were performed by me. Depending on the 

location in the genome, some genes, exons or genomic areas may not be covered 

fully by the hybridisation probe design, leading to a variable number of independent 

reads at a particular base pair, the read depth. Therefore, gene coverage and read 

depths of known disease-associated genes and candidates genes were determined by 

exploring BAM files using the GenomeBrowse software (Golden Helix, USA). A 

base was considered poorly covered if it had less than 15-20 times coverage. These 

were still included in the analysis but were regarded as potentially false positives. 

  

After confirming known mutations causing CMT disease or variants in candidate 

genes were not present, SNPs present in public databases with a frequency higher 

than 0.5% or a segmental duplication region higher than 0.96 were omitted, as 

variants within these regions are frequently false positive calls. Synonymous SNPs 

were excluded and the appropriate disease model was applied to the remaining list of 

variants. Shared variants files were made in the event where multiple patients were 

available. Further prioritising of variants was done by combining linkage analysis 

results or based on individual gene function and expression. In-silico predictions of 

pathogenicity and conservation between species were assessed and details of gene 

expression in various tissues and location of the mutated amino acid within the 

protein were examined to prioritise candidate gene lists.  
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2.1.13 Linkage analysis  

Genotyping was performed on the Illumina CytoSNP 12 array with a complete panel 

of 200,000 genome-wide tag SNPs and markers targeting all regions of known 

cytogenetic importance.  Raw data was processed using GenomeStudio software 

(Illumina, San Diego, CA). Uninformative markers with low call rates (<90%) and 

monomorphic SNPS (MAF <0.5%) were removed and a subset of 5000-6000 

randomly select markers was extracted for use in linkage analysis with PLINK 

(Purcell et al., 2007;  http://pngu.mgh.harvard.edu/purcell/plink/). Parametric linkage 

analysis was run on MERLIN (Abecasis et al., 2002) for an autosomal dominant 

model, specified with an estimated allele frequency of 0.0001 and 90% penetrance.  

2.1.14 Haplotyping  

Haplotype sharing analysis between families with the c.Cys46Ter mutation in 

IGHMBP2 was performed using five microsatellite markers (D11S1889, D11S4178, 

D11S4113, D11S4095, D11S4139) surrounding the IGHMBP2 region. These were 

amplified with fluorescently labelled primers (Table 2.7) and denatured by adding 

9.2μL of formamide to 1.5 μL of PCR product. 0.3 μL of Liz 500 (ABI) was used as 

a size standard. The resulting mixture was heated at 95°C for 3 minutes, after which 

it was put on ice immediately. It was then loaded on the 3730xl DNA analyser and 

the results were analysed with the GeneMapper (ABI) program. 

 

Microsatellite 

Marker 

Chromosome 

location 

Allele size Primers  Sequence  

D11S1889 11:67313143-

67313325 

183-207  Forward 5’- agctggactctcacagaatg - 3’ 

  Reverse 5’- caagaggctggtagaaggtg- 3’ 

D11S4178 11:68189108-

68189359 

237 - 260 Forward 5’- caggcccagtctcttg - 3’ 

  Reverse 5’- cgtgtccagatgaaagtg - 3’ 

D11S4113 11:68765634-

68765859 

218 - 262 Forward 5’- acctcacggtgtaatccc - 3’ 

  Reverse 5’- cttgaagcccatctttgc - 3’ 

D11S4095 11:69268159-

69268361 

173 - 205 Forward 5’- tccctggctatcttgaatc - 3’ 

  Reverse 5’- cttgactgggtccacg - 3’ 

D11S4139 11:70504269-

70504461 

151 - 195 Forward 5’- tatagacttcagccctgctgc - 3’ 

  Reverse  5’- cctctgtaggatgcagttgg - 3’ 

Table 2-7 Microsatellite markers used for haplotyping of the c.Cys46Ter mutation in the IGHMBP2 

gene. 
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2.2 Cell Culture  

2.2.1 Fibroblast culture  

With ethical approval and informed consent, punch biopsies were taken from the 

upper arm of controls, carriers and affected individuals using a standard technique. 

This tissue was dissected and the fibroblasts grown under standard tissue culture 

conditions at 37 °C in 5% CO2 in DMEM with 1% L-Glutamine (Invitrogen) 

supplemented with 10% fetal bovine serum (Heat-inactivated, Life Technologies) 

and 1% PenStrep (Penicillin + Streptomycin; Invitrogen). Controls were obtained 

from the MRC Centre for Neuromuscular Disorders Biobank Dubowitz Centre, UCL 

Institute of Child Health (ICH) by Dr Diana Johnson, or were sent to us by our 

collaborators. Patients and controls for the ADD3 project were provided by Dr. 

Kruer’s lab. Patients II.1 and II.2 of family O were send to us by Dr. Vedrana Milic 

Rasic and patient S1 was a contribution of Prof. Rita Horvath. S2 was obtained from 

GOSH and S3 + S4 were send to us by Dr. Katja Von Au from Germany.  

 

Cells were grown in standard 75 cm
2
 flasks and media was changed every 2-3 days. 

Cultures were passaged after reaching 70-80% confluency. Media was removed from 

the flasks and 5mL of sterile NaCl/Pi (Life technologies) was used to wash. 2 mL of 

0.05% 1x Trypsin-EDTA (Life technologies) was added and flasks were placed in 

the incubator at 37°C for 5 minutes. In case of unsufficient detachment, flasks were 

tapped against the surface before adding 7 mL of pre-warmed media to stop the 

reaction. To split cells, 3 mL was added to three new 75 cm
2
 flasks and medium was 

topped up to 15 mL. To freeze cells, contents of the flask were collected and 

centrifuged at 1,200 rpm for 5 minutes after which media was discarded. Cell pellet 

was resuspended in 3 mL of FBS with 10% DMSO (Sigma-Aldrich) and added to 

cryovials (1 mL per cryovial). Cryovials were placed in a Mr. Frosty freezing 

container (Thermo scientific) to achieve a rate of cooling very close to -1°C/minute, 

the optimal rate for cell preservation, and frozen at -80°C. For long-term storage, 

cells were transferred to liquid nitrogen. For usage, cells were defrosted in a 37°C 

water bath and resuspended in 5 mL of media before centrifugation at 1,200 rpm for 

5 minutes. Supernatant was removed, 5 mL of media was added to the pellet and 

cells were seeded in a new flask.  
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2.2.2 HEK293T Cell culture 

HEK293T cells were obtained from ATCC (line identifier CRL-1573) and grown 

under standard tissue culture conditions at 37 °C in 5% CO2 in DMEM (Invitrogen) 

supplemented with 10% fetal bovine serum (Life Technologies). HEK293 cells are a 

specific cell line originally derived from human embryonic kidney cells grown in 

tissue culture and were chosen due to their easiness to work with and to transfect. 

Cell culture techniques were the same as fibroblast techniques, although grown in 

175 cm
2
 flasks. For passaging, 3 mL of .05% 1x Trypsin-EDTA (Life technologies) 

was added and flasks were placed in the incubator at 37°C for 5 minutes. 9 mL of 

pre-warmed media was added to stop the reaction and 4 mL of the solution was 

added to three new 175 cm
2
 flasks to split cells. These were topped up to 25 mL.  

2.2.3 Lymphoblast cell culture  

Peripheral blood mononuclear cells were isolated from ACD blood by the Ficoll-

Hypaque method (BD vacutainer CPT) and were send off to the European Collection 

of Cell Cultures (ECACC) for transformation with the Epstein Barr Virus. Two 

immortalised SMARD1 lymphoblastoid cell lines were send to us by Dr. Katja Von 

Au. Immortalised cells were grown in suspension in 75 or 175 cm
2
 flasks in an 

upright position, in approximately 15 or 30 mL of RPMI-1640 (Invitrogen) medium 

that contained 2 mM L-glutamine and  20% (v/v) fetal bovine serum (FBS) and 

maintained in a humidified 5% CO2 incubator at 37 °C. Media was routinely 

changed every 2 days by removing the medium above the settled cells and replacing 

it with an equal volume of fresh medium. Cells were counted by adding 10 µL of 

suspension to 10 µL of 0.4% trypan blue (Sigma-Aldrich). The result was pipetted 

onto a disposable slide and counted with an automated cell counter (Life 

technologies). For freezing, 1 mL of freezing media, consisting of RPMI-1640 with 

10% DMSO, was added per 6 million cells and placed in a microvial.  

 

2.3 Molecular biology  

2.3.1 Constructs and generation of mutations by site-directed mutagenesis 

FLAG epitope tagged wild type IGHMBP2 construct was a kind contribution of 

Prof. Fischer in Germany. The backbone for this construct was a pCMV-Tag 4b 

(Fig. 2.1). To generate mutant forms of IGHMBP2, site directed mutagenesis was 

carried out using the QuikChange II mutagenesis kit (Agilent, Santa Clara, CA, 
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USA) according to the manufacturer's instructions. PCR product was then incubated 

with the restriction endonuclease Dpn1 for 1 hr at 37 °C to digest the parental 

supercoiled dsDNA and subsequently transformed into competent Top10 cells 

(Section 2.3.2). Constructs were sequenced prior to use and primer sequences used 

for the mutagenesis are listed in Table 2.8. 

 

Figure 2-1 Circular map of the pCMV-Tag 4 vector. 

Source: Instruction manual catalog #211174, Agilent 

technologies.  

 

Mutation Primer  Sequence 

c.238A>G 

 

Forward 5’ – cgcggcagctcttcccggtaacagctttacttc – 3’ 

Reverse  5’ – gaagtaaagctgttaccgggaagagctgccgcg – 3’ 

c.1591C>A 

 

Forward 5’ – ggtggacgctggtgttacagcccgtg – 3’ 

Reverse  5’ – cacgggctgtaacaccagcgtccacc – 3’ 

c.1738G>A 

 

Forward 5’ – ccgtgatactgtccttcatcagatccaacaggaaa – 3’ 

Reverse  5’ – tttcctgttggatctgatgaaggacagtatcacgg – 3’ 

Table 2-8 Primer sequences for mutagenesis of the IGHMBP2 construct. 

2.3.2 Heat-shock transformation of competent Top10 E.Coli  

Constructs were transformed into One Shot TOP10 Chemically Competent E.Coli 

cells (Invitrogen) using the manufacturer’s protocol. 50 ng of DNA was added to 25 

µL of competent cells and kept on ice for 30 minutes. The mixture was then placed 

in a 42°C water bath for 30-40 seconds to perform the heat-shock and returned on ice 

for a further 2 minutes. 200 µL of LB medium without antibiotics (20 g of LB broth 
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powder (Sigma-Aldrich) dissolved in 1 L dH2O, followed by autoclaving) was then 

added under sterile conditions and was incubated in a shaker for 1 hour at 37°C. 

After this, transformed bacteria were grown on kanamycin-selective LB-agar plates 

(35 g of LB agar powder (Sigma-Aldrich) dissolved in 1 L dH2O, followed by 

autoclaving) by spreading 100 µL of the mixture on the plate and incubating it at 

37°C overnight.  

2.3.3 Purification  

Single bacterial colonies from agar plates were selected from LB-plates and added to 

5 mL of LB broth containing 50 µg/mL of kanamycin. The cells were incubated 

overnight at 37°C under constant agitation. 2 mL of the resulting mixture was 

pelleted by centrifugation at 9000g for 3 minutes and DNA was extracted using the 

Qiagen GenElute
™

 Plasmid Miniprep Kit (Qiagen) according to the manufacturer’s 

protocol. Glycerol stocks were made by adding 500 µL of 50% glycerol to 500 µL of 

bacterial mixture.  

 

For large scale purification, 5mL of LB broth from the bacterial colony was 

incubated for 8 hours before inoculating a larger flask consisting of 150 mL of LB 

broth and containing 50 µg/mL of kanamycin with 300 µL of starter culture. This 

was incubated with vigorous shaking overnight and harvested the next morning by 

centrifugation at the maximum speed for 20 minutes. DNA was extracted using the 

Qiagen QiaFilter Plasmid Maxi kit (Qiagen) according to the manufacturer’s 

protocol. Pelleted DNA was resuspended in 50 µL of sterile deionised water and 

concentration/ purity was measured according to section 2.1.2.   

2.3.4 Stable transfection for Co-immunoprecipitation  

2 µg of plasmid DNA and 4 µL polyethylenimine (PEI, Polysciences, Warrington, 

PA, USA) were each dissolved in 250 µL DMEM in a separate sterile eppendorf 

tube before mixing the two solutions together and leaving them to incubate for a 

minimum of 20 minutes at room temperature. During this incubation period, one or 

more 80% confluent 175 cm
2
 flasks of HEK293T cells were trypsinised and 

collected in a 15 mL sterile tube. One 175cm
2
 flask is sufficient for four 10 cm

2
 

dishes. After 20 minutes, the resulting mixture was plated on the appropriate number 

of 10 cm
2
 dishes by covering the surface with drops. 3mL of suspended HEK293T 

cells were added to one 10cm
2
 dish and media was topped up to 10mL. Transfected 
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cells were incubated for 48 hr post-transfection to obtain maximal levels of gene 

expression. PEI solution treated HEK293T cells were used throughout the study as 

control samples.  

2.3.5 Stable transfection for ATPase assay   

10 µg of plasmid DNA and 20 µL polyethylenimine (PEI, Polysciences, Warrington, 

PA, USA) were each dissolved in 500 µL DMEM in a separate sterile eppendorf 

tube before mixing the two solutions together and leaving them to incubate for a 

minimum of 20 minutes at room temperature. During this incubation period, three 

80% confluent 175 cm
2
 flasks of HEK293T cells were trypsinised and collected in a 

50 mL sterile tube. One 175cm
2
 flask is sufficient for two 15cm

2
 dishes.  After 20 

minutes, the resulting mixture was plated on the appropriate number of 15cm
2
 dishes 

by covering the surface with drops. 5mL of suspended HEK293T cells were added to 

a 15 cm
2
 dish and media was topped up to 20mL. Transfected cells were incubated 

for 48 hr post-transfection to obtain maximal levels of gene expression. PEI solution 

treated HEK293T cells were used throughout the study as control samples.  

 

2.4 Protein Biochemistry for HEK293T cell lines  

2.4.1 Cell harvesting for Co-immunoprecipitation  

Forty-eight hours after transfection, 10 cm
2
 dishes of transfected HEK293T cells 

were washed with 2mL of ice-cold phosphate buffered saline (NaCl/Pi) prior to lysis. 

Cells were gently scraped off in NaCl/Pi, placed in a sterile Eppendorf tube and spun 

down for 1 minute at 4000 rpm. Pellet was resuspended in 350 µL of NP40
+
 buffer 

(50 mMTris pH 8, 150 mM NaCl, 0.5% NP40
+
) containing 1 ×  complete protease 

inhibitor cocktail (Roche, Indianapolis, IN, USA). Subsequently cell lysates were 

incubated for 10 minutes at 4 °C and freeze-thawed twice before spinning them at  

14 000xg for 10 minutes to remove cell debris by centrifugation at maximum speed 

for 10 minutes. Supernatant was used straight away or stored at -80°C. 

2.4.2 Co-immunoprecipitation  

Lysates were thawed on ice or used straight after harvesting. 0.2% (v/v) RNase A 

was added and incubated at 37°C to detect RNA-independent interactions. 

Meanwhile, 30µL of ANTI-FLAG® M2 Affinity Gel (Sigma-Aldrich) was washed 

with 1mL of NP40
+
 buffer for 10 minutes at RT. Beads were spun down by 

centrifugation at 8000 rpm for 1 minute. 250 µL of the wild type and IGHMBP2 
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transfected cell lines was added to the beads and incubated overnight at 4 °C. The 

remaining 100 µL was kept for western blotting purposes. Depending on the species 

of the primary antibody (Table 2.9), goat anti-mouse IgG-HRP or goat anti-rabbit 

IgG-HRP was used in a 1:5000 dilution for the secondary antibody (Santa Cruz).  

 

Primary antibody Species Concentration 

Hint1, (Sigma-Aldrich) Rabbit Polyclonal 1:1000 

TDP43, clone AC-40 (Proteintech) Rabbit Polyclonal 1:3000 

FUS, AV40278 (Sigma-Aldrich) Rabbit Polyclonal 1:10 000 

SOD1, ADI-SOD-100 (Enzo Life sciences) Rabbit Polyclonal 1:1000 

HSP27, #2402 (Cell Signalling)  Mouse monoclonal 1:500 

LAS1l, SAB1409160 (Sigma-Aldrich) Mouse polyclonal 1:5000 

Table 2-9 Antibodies used for western blotting to detect interactions with the IGHMBP2 

protein after Co-immunoprecipitation. 

2.4.3 Cell harvesting for ATPase assay  

Forty-eight hours after transfection, 15 cm
2
 dishes of transfected HEK293T cells 

were washed with ice-cold phosphate buffered saline (NaCl/Pi) prior to lysis. This 

was achieved by gently scraping off cells in 3 mL of NaCl/Pi, placing the solution in 

2 sterile Eppendorf tubes and spinning down for 1 minute at 4000 rpm. Pellet was 

resuspended in 1 mL of NP40
+
 buffer (50 mMTris pH 8, 150 mM NaCl, 0.5% 

NP40
+
) containing 1 ×  complete protease inhibitor cocktail (Roche, Indianapolis, 

IN, USA). Subsequently cell lysates were incubated for 30 minutes at 4 °C and 

freeze-thawed twice before spinning them at 14 000xg for 10 minutes to remove cell 

debris by centrifugation at maximum speed for 30 minutes. Supernatant was used 

straight away or stored at -80°C. 

 2.4.4 ATPase assay 

Frozen down lysates were thawed on ice or used straight after harvesting. 900 µL of 

the wild type and mutant IGHMBP2 supernatants were incubated with 40 µL ANTI-

FLAG® M2 Affinity Gel (Sigma-Aldrich) overnight at 4 °C, after preparing the 

beads by washing 2x with cold PBS. The next day beads were washed 2 ×  in each of 

three wash buffers (20 mM Tris, 1000-200 mM NaCl, 1% Triton) before being 

eluted in elution buffer (50 mMTris pH 8, 150 mM NaCl, 0.5% NP40
+
, 1x protease 

inhibitor cocktail) with 150 ng·μL−1 FLAG peptide (Sigma-Aldrich) for 40 minutes at 
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4 °C. Eluted protein was then incubated with assay buffer (20 mM Hepes, pH 7.2, 

2 mM MgCl2, 1 mM dithiothreitol and 0.05% BSA) and [α32P]ATP (5 μCi; Perkin 

Elmer, Waltham, MA, USA) was added to each reaction. Samples were incubated at 

37 °C with vigorous shaking and 2 μL aliquots were removed at time points from 0 

to 120 minutes and spotted onto TLC plates (Sigma-Aldrich). Samples were then 

subjected to rising TLC under 1 M formic acid and 1.2 M LiCl. After drying the 

plates they were exposed to Kodak biomax films (Kodak, Rochester, NY, USA) 

overnight and developed the following day using a Kodak developer. The remaining 

samples were denatured in 4 ×  SDS loading buffer (NuPage SDS sample buffer, 

Life Technologies) with 1% DTT at 75 °C for 10 minutes and loaded onto 4–12% 

Bis Tris gels (Life Technologies). Proteins were then transferred to Hybond ECL 

Nitrocellulose membrane (GE life sciences), blocked with 5% milk in NaCl/Pi-

Tween (NaCl/Pi + 1% Tween-20) and probed with primary antibodies at 4 °C 

overnight (1: 1000 Mouse anti-IGHMBP2, clone mAb11-24, millipore). The next 

day membranes were washed three times in NaCl/Pi-Tween and incubated for 1 h 

with secondary antibodies in 1% milk in NaCl/Pi-Tween at room temperature 

followed by another three washes and incubation with Pierce ECL substrate. Finally 

membranes were exposed to Kodak biomax films (Kodak, Rochester, NY, USA) and 

developed on a Kodak developer according to the manufacturer's instructions. 

 

2.5 Protein biochemistry for fibroblast cell lines  

2.5.1 Cell harvesting for mRNA extraction  

2 mL of 0.05% 1x Trypsin-EDTA (Life technologies) was added to a confluent 

75cm
2
 flask of fibroblasts and placed in the incubator at 37°C for 5 minutes. In case 

of unsufficient detachment, flasks were tapped against the surface before adding 7 

mL of pre-warmed media to stop the reaction. Cell were pelleted by centrifugation at 

1200 rpm for 5 minutes and resuspended in 6mL of media. 1mL was added in 

duplicate to 1 well of a 6 well plate and remaining solution was used to passage the 

cell line. After 24-48h, cells were harvested by adding 1mL of cold NaCl/Pi on ice, 

gently scraping off the cells to transfer to a new sterile Eppendorf tube and spinning 

down the pellet by centrifugation at 4000 rpm for 1 minute. Pellet was resuspended 

in 350 µL of QIAzol
® 

reagent (Invitrogen, United States) and used straight away or 

kept at -80°C.  
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2.5.2 mRNA extraction  

RNA was extracted from fibroblasts using the miRNeasy Mini kit (Qiagen). An 

amount of 1 million cells was used, correlating to the amount of cells in a confluent 

well of a 6-well plate. A volume of 350 µL of 70% ethanol was added to the 

QIAzol
®
 cell suspension and mixed well by pipetting up and down. Sample was 

transferred to a RNeasy mini spin column placed in a 2mL collection tube and 

centrifuged at 8000g for 15 minutes. RNA was extracted following the 

manufacturer’s protocol, and eluate was suspended in 50 µL of RNase-free water. 

Concentration and purity was estimated as stated in section 2.1.2 with altered 

absorbance ratios for RNA. Samples were expected to have a value of >2.0 for the 

260/280 ratio and in the range of 2.2-2.2 for 260/230.  

2.5.3 cDNA synthesis  

cDNA was synthesised using 500 ng total RNA, random primers and SuperScript II 

reverse transcriptase (Invitrogen, United states) following the manufacturer’s 

protocol. The resulting cDNA was used to perform a standard PCR reaction with 

cDNA primers spanning the exon/intron boundaries. Subsequent agarose gel 

electrophorese was used to confirm the expression of cDNA in the fibroblasts. 

Sequencing analysis was performed to investigate the presence of genomic DNA 

mutations in the RNA of patients and to assess nonsense mediated decay.  

2.5.4 Quantitative PCR  

The IGHMBP2 cDNA transcript levels were determined in triplicate using 

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and hypoxanthine 

phosphoribosyltransferase 1 (HPRT1) as reference genes. 1µL of cDNA at 500 

ng/µL was added to 12.5 µL of SybrGreen, 1 µM of each primer and topped up to 25 

µL with RNase-free water. Primers used for IGHMBP2 cDNA levels were used from 

the paper by Guenther et al., in 2009. Reference genes primers were validated 

beforehand by other groups in the department. Accumulation of PCR products was 

monitored through SYBR green incorporation on an Stratagene/Agilent MX3000P 

with the protocol stated in Table 2.10.  
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Step Reactionstep Temperature Time  

1 Carryover prevention 50°C 2 min 

2 PCR initial activation step 95°C 10 min 

3 Denaturation  95°C 15 sec 

4 Annealing primers  60°C 30 sec 

5 Elongation  72°C 30 sec 

6 Final elongation 72°C 10 min  

Table 2-10 Protocol for quantitative PCR. Steps 3-5 were repeated 40 times. 

Relative quantities were calculated with the ΔΔCt method (Schmittgen et al., 2008) 

in relation to the two housekeeping genes. Gene expression levels were calculated by 

the ratio between the amount of target gene and two endogenous reference genes, 

which is present in all samples. The Ct threshold value is chosen as the cycle in 

which there is a significant increase in reporter signal. This value is related to the 

initial amount of DNA in inverse proportion to the expression level of the gene (Fig.  

2.2). Firstly, the ΔCt between the target gene and the reference genes was calculated 

for each sample (ΔCt = Cttarget – Ctreference gene). Then the difference between the ΔCt 

of the patient and the ΔCt of the controls was calculated, giving the ΔΔCt value: 

ΔΔCt = (Cttarget – Ctreference)control – (Cttarget – Ctreference)patient. The normalised target 

amount in the sample is then equal to 2
-ΔΔCt

 and can be used to compare expression 

levels in samples. The data were depicted as a mean with standard deviation.  

 

Figure 2-2 Sample plot of the amplification curves (left) and the dissociation curves (right) for the 

selected primers of the qPCR experiment in lymphoblasts. The orange-coloured curves not reaching 

the threshold of detection represent the “no template” controls. 
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2.5.5 Cell harvesting for western blot  

2 mL of 0.05% 1x Trypsin-EDTA (Life technologies) was added to a confluent 

75cm
2
 flask of fibroblasts and placed in the incubator at 37°C for 5 minutes. In case 

of unsufficient detachment, flasks were tapped against the surface before adding 7 

mL of pre-warmed media to stop the reaction. Cell were pelleted by centrifugation at 

1200 rpm for 5 minutes and washed in 1 mL of cold NaCl/Pi. Cells were pelleted 

again by centrifugation at 4000 rpm for 1 minute and resuspended in 50 µL of NP40
+
 

buffer (50 mMTris pH 8, 150 mM NaCl, 0.5% NP40
+
) containing 1 ×  complete 

protease inhibitor cocktail (Roche, Indianapolis, IN, USA). Subsequently cell lysates 

were incubated for 10 minutes at 4 °C and freeze-thawed twice before spinning them 

at 14 000xg for 10 minutes to remove cell debris by centrifugation at maximum 

speed for 10 minutes. Pellet was stored in -80 °C and supernatant was used straight 

away or stored at -80°C. 

2.5.6 Protein estimation   

1 µL of each sample was pipetted in triplicate on a 96-well plate together with a 

BSA standard ranging from 0-7 µg/µL. 1 µL of NP40
+
 buffer was added to each well 

of the standard to account for background signal. RC DC™ Protein Assay (BioRad) 

was used according to the manufacturer’s protocol and cell sample protein 

concentrations were calculated from the standard curve prepared by plotting the 

average blank-corrected 562nm measurement for each BSA standard vs. its average 

concentration in µg/µL. 

2.5.7 Western blot  

60 μg of protein was mixed with 1x NuPage LDS sample buffer (Invitrogen), 1% 

DL-Dithiothreitol (Invitrogen) and made up to the same volume with the NP40
+
 

buffer before denaturation at 75°C for 10 minutes. Samples, accompanied by a 

marker, were run on a 4-12% Bis-Tris gel for 90 minutes under 150 V in 1xMES 

running buffer (100 mL 20x NuPAGE MES SDS running buffer (Life Technologies) 

in 1,900 mL dH2O.). All gels were electro-blotted to Hybond ECL membrane (GE 

lifesciences) in transfer buffer (20% methanol, 10% Tris-glycine electroblotting 

buffer 10X (National Diagnostics, USA) and 70% dH2O) and the membrane was 

immersed in Ponceau red (Sigma-Aldrich) to verify protein transfer. Blocking was 

performed in 5% (w/v) milk powder in 1x NaCl/Pi (1 PBS tablets (Life 

Technologies) dissolved in 500 mL of dH2O) for 1 hr at room temperature. 
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Membranes were incubated overnight with the primary antibody at 4°C, diluted to 

their respective concentrations in 1% milk in NaCl/Pi-Tween (Table 2.11).  The 

following day, after 3x washing in 1x NaCl/Pi –Tween for 10 minutes, the membrane 

was incubated for 60 min at room temperature with horseradish peroxidase-

conjugated secondary antibody (Santa Cruz). Depending on the species of the 

primary antibody, goat anti-mouse IgG-HRP or goat anti-rabbit IgG-HRP was used 

in a 1:5000 dilution. An ECL kit with each ECL reagent at a 1:1 ratio (Thermo 

Fisher Scientific) was used as a substrate and antibody binding was detected in a 

dark room on Super Rx X-ray film (Fujifilm, Japan) in an Amersham 

autoradiography cassette (GE Healthcare). β-Actin was used as a loading control for 

normalisation and analysis was performed with the ImageJ program (Rasband, W.S., 

ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, 

http://imagej.nih.gov/ij/, 1997-2014).  

 

Primary antibody Species Concentration 

IGHMBP2, clone mAb11-24 (Millipore)  Mouse monoclonal 1:1000  

Β-Actin, A3853 (Sigma-Aldrich) Mouse monoclonal 1:20 000 

TDP43, clone AC-40 (Proteintech) Rabbit polyclonal 1:3000 

Table 2-11 Primary antibodies used for western blotting. 

2.6 Immunocytochemistry  

2.6.1 Subcellular localisation of proteins in patient fibroblasts  

Fibroblasts were cultured onto 13 mm autoclaved glass coverslips in 24-well plates 

in standard DMEM + Glutamax media supplemented with 10% FBS and 1% 

PenStrep after placing the plate under UV light for at least 20 min. After 24h, cells 

were washed with cold NaCl/Pi and fixed in 4% paraformaldehyde (PFA) for 15 

minutes. Cells were washed again with NaCl/Pi and permeabilised in 0.05% Triton 

X-100 for 10 minutes. After three more washes with NaCl/Pi, cells were then 

blocked in 10% FBS in NaCl/Pi for one hour. Cover slips were incubated with 40 µL 

of primary antibody for 60 minutes (Table 2.12), washed three times with NaCl/Pi 

and incubated with the appropriate Alexa Fluor secondary antibody for 60 minutes 

(Invitrogen, United States).  Following, the cover slips were washed with NaCl/Pi 

and mounted on microscope slides with Prolong Gold Antifade with 4’,6-diamidino-

2-phenylindole (DAPI) (Life Technologies) and imaged using a Zeiss 710 confocal 
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microscope (Carl Zeiss AG, Germany) with the 63x oil immersion objective. A 

negative control (incubated overnight in blocking solution only, with no primary 

antibody) was included to assess the specificity of the secondary antibody. 

 

Antibody Species Concentration 

TRAK2 Antibody 13770-1-AP (Protein Tech)  Rabbit polyclonal 1:1000 

TDP43, clone AC-40 (Proteintech) Rabbit monoclonal  1:3000 

IGHMBP2, clone mAb11-24 (Millipore) Mouse monoclonal 1:1000 

Alexa Fluor 488-A11008 secondary antibody Goat anti- rabbit  1:2000 

Alexa Fluor 488-A11001 secondary antibody Goat anti-mouse 1:2000 

Alexa Fluor 555-A21428 secondary antibody Goat anti-rabbit 1:2000 

Table 2-12 Primary and secondary antibodies used for Confocal imaging. 

2.6.2 Colocalisation  

Fibroblasts were prepared as described in section 2.6.1. After cells were blocked in 

10% FBS in NaCl/Pi for one hour, cover slips were incubated with 40 µL of the 

combined primary antibodies for 60 minutes (Table 2.12), washed three times with 

NaCl/Pi and incubated with a combination of Alexa Fluor secondary antibodies for 

60 minutes (Invitrogen, United States).  Following, the cover slips were washed with 

NaCl/Pi and mounted on microscope slides with Prolong Gold Antifade with 4’,6-

diamidino-2-phenylindole (DAPI) (Life Technologies) and imaged using a Zeiss 710 

confocal microscope (Carl Zeiss AG, Germany) with the 63x oil immersion 

objective. A negative control (incubated overnight in blocking solution only, with no 

primary antibody) was included to assess the specificity of the secondary antibody. 

Image processing and evaluation were performed using the Volocity software 

(Perkin Elmer). Thresholds were set manually by drawing a region of interest and the 

global Pearson’s correlation coefficients were extracted. The experiment was 

performed in triplicate and the average global Pearson’s correlation coefficient of 

selected cells of the field of view was calculated from 3 images per cover slip.  

2.6.3 Endocytosis investigation  

Fibroblasts were grown overnight on 13 mm cover slips in standard DMEM + 

Glutamax media supplemented with 10% FBS and 1% PenStrep. Cover slips were 

then incubated at 37°C in labelling medium (F12 containing 10 mM HEPES, pH 7.3 

and 0.2% w/v BSA) for 1h, where after they were labelled for 1h on ice with 50 
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μg/mL Alexa-Fluor 488-transferrin (Invitrogen) in labelling medium. Excess label 

was washed off by rinsing twice with warm labelling medium and cells were 

incubated for either 20 or 30 minutes at 37°C to allow transferrin uptake. Following, 

the cells were fixed with 2% paraformaldehyde in NaCl/Pi for 30 minutes at room 

temperature, washed twice with 1x NaCl/Pi and mounted on microscope slides with 

Prolong Gold Antifade with DAPI and imaged using a Zeiss 710 confocal 

microscope (Carl Zeiss AG, Germany) with the 63x oil immersion objective.  

Image processing and evaluation were performed using the Volocity software 

(Perkin Elmer). The experiment was performed in duplicate and triplicate for the 

respective incubation times of 20 and 30 minutes and the average fluoresce/volume 

of selected cells of the field of view was calculated from 9 images after an 

incubation time of 30 minutes.  

2.6.4 Basal mitochondrial membrane potential  

The basal mitochondrial membrane potential (ΔΨm) was measured using the 

tetramethylrhodamine methyl ester (TMRM) lipophilic cationic dye. This dye 

accumulates in the mitochondria and is released in the cytosol when the 

mitochondria become depolarised, which results in a decrease of signal intensity. 

The fluorescence intensity of the dye is representative of the ΔΨm as a more 

polarised (more negative) ΔΨm will accumulate more dye and give a stronger 

fluorescence signal, whereas depolarised mitochondria accumulate less dye and 

exhibit a lower TMRM signal. Patient and control fibroblasts were grown in standard 

media and plated overnight on 25 mm cover slips in 6 well plates. An extra cell line 

with fibroblasts from the patient with the p.Ser700Ile variant was used as a control. 

Fibroblasts were incubated for 40 minutes at room temperature with 25 nM TMRM 

(Invitrogen) in a HBSS solution composed of 156 mM NaCl, 3 mM KCl, 2 mM 

MgSO4, 1.25 mM KH2PO4, 2 mM CaCl2, 10 mM glucose and 10 mM HEPES; pH 

adjusted to 7.35 with NaOH.  The dye was present throughout the experiment. The 

Zeiss 710 confocal microscope (Carl Zeiss AG, Germany) was used to obtain z-stack 

images using a 63x oil immersion objective and a 560 nm laser to excite the dye. 

Data was analysed using the Zeiss image analysis software (Zeiss). To control for 

mitochondrial mass, the TMRM signal was averaged across all the voxels 

corresponding to mitochondria whose fluorescence was greater than the set 

threshold.  
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2.6.5 Response to mitochondrial toxins  

For analysis of response to mitochondrial toxins, 25 mm cover slips were used after 

measurement of the mitochondrial membrane potential. Images were recorded 

continuously from a single focal plane and a time-series was used to add the 

mitochondrial toxins. After measuring baseline TMRM intensity for 2-3 min, 

oligomycin from Streptomyces diastatochromogenes (2 g/mL; Sigma-Aldrich) was 

added and fluorescence measured until a plateau was reached, after which rotenone 

(10 M; Sigma-Aldrich) was added. Lastly, 1 M FCCP (≥98%; Sigma-Aldrich) 

was added and recordings were stopped when the mitochondria had fully 

depolarised. The effects of each drug are the following:  

Oligomycin:  Complex V inhibitor  

If ATPase function is reversed to maintain the ΔΨm, there will be a 

decline in TMRM fluorescence  

Rotenone:  Complex I inhibitor 

This will cause a small decline in TMRM fluorescence; if cells rely 

more on complex I than complex II, there will be a greater decline.  

FCCP:  Uncouples oxidation from phosphorylation so ATP synthesis cannot 

occur. This will result in an immediate depolarisation of the ΔΨm and 

loss of fluorescence.  

Time-series data were analysed using the Zeiss Zen software (Carl Zeiss AG). A 

total of 10-20 areas were selected for analysis and the average dye intensity across 

these areas was plotted on the y-axis against time on the x-axis. The change in 

TMRM intensity after addition of each toxin was expressed as a percentage of basal 

intensity (basal=baseline Δψm - Δψm after FCCP).  

 

2.7 Statistical analysis  

All statistical analyses were performed using GraphPad Prism version 6.00 for 

Windows/Mac (GraphPad Software, La Jolla California USA, www.graphpad.com). 

For comparison of means of two groups, parametric student t-test was used and 

statistical significance expressed as * p < 0.05; ** p < 0.01. For comparison of 

means of > two groups, a bonferroni post-hoc analysis was used after a one-way 

analysis of variance (ANOVA). Unless otherwise stated, experiments were 
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performed at least three times and data presented as mean ± standard error of the 

mean (S.E.M.). 
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Chapter 3:  

Mitochondrial mutations 

in CMT2  

3.1 Introduction 

3.1.1 A role for mitochondria in neurodegenerative diseases  

As seen in Chapter 1, an essential process in the maintenance of neurons is the 

provisioning of ATP, which will maintain the neuronal plasma membrane potential. 

As mitochondria are the main source of ATP, correct mitochondrial function is 

crucial for efficient axonal transport of all cargoes (Schon et al., 2011). Since the 

central and peripheral nervous systems have intense metabolic requirements and are 

particularly ATP dependent, any deficit in energy generation can have catastrophic 

effects on neural functioning. It has already been shown that mitochondrial 

dysfunction plays a relevant role in the pathogenesis of neurological and 

neuromuscular diseases such as CMT (Palau et al, 2009) and apart from the 

dysfunction of mitochondrial dynamics that can lead to CMT, impaired 

mitochondrial function, communication with other organelles and mitochondrial 

turnover can lead to neurodegenerative diseases such as Parkinson's disease (PD), 
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spinocerebellar ataxias (SCA), HSP, Huntington's disease (HD), Amyotrophic lateral 

sclerosis (ALS) and progressive epilepsy (Zsurka et al., 2013).  

3.1.2 The oxidative phosphorylation system  

The oxidative phosphorylation system (OXPHOS) is a set of biochemically linked 

multisubunit complexes (complexes I to V) and two electron carriers 

(ubiquinone/coenzyme Q and cytochrome c) that, together with the tricarboxylic acid 

(TCA) cycle,  provides a mechanism for the production of ATP through a proton 

gradient (Fig. 3.1). The complexes form an electron transport chain (ETC) in the 

inner mitochondrial membrane, where complexes I-IV reduce molecular oxygen to 

water by the sequential transfer of electrons, called oxidative phosphorylation. These 

redox reactions release energy to form a proton gradient across the inner 

mitochondrial membrane that will catalyse the formation of ATP from ADP and 

inorganic phosphate by the ATP synthase or respiratory chain complex V (Capaldi et 

al., 1994; Nijtmans et al., 1995). 

 

Complex I is the first enzyme in the ETC and is responsible for the oxidation of 

NADH by transferring electrons to ubiquinone, a lipid soluble electron carrier 

embedded in the lipid bilayer of the inner mitochondrial membrane. It is made of 45 

proteins of which seven are encoded by the mitochondrial genome. This enzyme 

consists of three different domains and is also known as NADH-coenzyme Q 

oxidoreductase. The dehydrogenase domain will transfer two electrons from reduced 

Nicotineamide Adeninedinucleotide (NADH), oxidizing it to NAD+, via Flavin 

mononucleotide (FMN) to iron sulphur clusters. In the hydrogenase domain, these 

will reduce ubiquinone to ubiquinol. This electron transfer is coupled to the transfer 

of 4 protons in the transporter domain from the inner membrane of the matrix to the 

intermembrane space (Lenaz et al., 2006; Fato et al., 2008). Complex I can be 

inhibited by more than 60 different families of compounds, one of which is rotenone, 

regularly used as an inhibitor of complex I in mitochondrial membrane imaging.  

 

Complex II, also known as Succinate-Q oxidoreductase, consists of four subunits 

and is the only complex in the ETC that lacks subunits encoded by the mitochondrial 

genome. It is also the only enzyme that plays a role in both the ETC and the TCA 

cycle, linking the two essential energy-producing processes of the cell.  
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Figure 3-1 The oxidative phosphorylation system in the inner mitochondrial membrane. Cyt c= Cytochrome c; FAD= Flavine Adeninedinucleatide; NAD= Nicotineamide 

Adeninedinucleotide; Q= Ubiquinone; QH2= Ubiquinol. 
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As part of the TCA cycle, complex II oxidises the metabolite succinate to fumarate 

in the mitochondrial matrix by transferring the electrons to flavin adenine 

dinucleotide (FAD), resulting in the formation of FADH2. The two electrons 

generated will enter the ETC by passing them on to three Fe-S clusters and 

cytochrome b and sub sequentially transforming ubiquinone to ubiquinol in the 

mitochondrial inner membrane (Cecchinni, 2003; Kluckova et al., 2013). 

 

Complex III is composed of 11 subunits; cytochrome b is encoded by mitochondrial 

DNA, with the remainder of the subunits being encoded by nuclear DNA genes. This 

enzyme is a dimer, with each subunit complex containing the 11 protein subunits, an 

iron–sulfur cluster and three cytochromes: one cytochrome c1 and two b 

cytochromes. Also known as Q-cytochrome c oxidoreductase, this complex will 

catalyse the transfer of electrons from reduced ubiquinone to cytochrome c and will 

utilise the energy to translocate protons from the mitochondrial matrix to the 

intermembrane space, adding to the proton gradient (Berry et al., 2000; Barel et al., 

2008).  

 

Complex IV is the last complex of the ETC, also known as cytochrome c oxidase. 

This complex contains three mitochondrial encoded subunits and ten nuclear 

encoded ones and has a complicated structure that includes two copper-containing 

redox centres, and two cytochromes, aa3, containing heme a moieties. It catalyses 

the oxidation of cytochrome c and the reduction of oxygen by transferring electrons 

to the terminal electron acceptor oxygen, reducing it to water. This will again 

contribute to the proton gradient (Calhoun et al., 1994). 

 

Human F0F1-ATP synthase (Complex V of the oxidative phosphorylation system) 

couples the synthesis of ATP from ADP and inorganic phosphate with the passage of 

protons from the intermembrane space to the matrix (Noji et al, 2001; Jonkheere et 

al., 2012) (Fig. 3.2). This complex is comprised of 16 subunits, of which 14 are 

encoded by the nuclear genome and two by nucleotides 8527-9207 of the 

mitochondrial genome (ATPase 6 and ATPase 8). Complex V is a massive structure 

consisting out of a ‘stalk’ - the F0 particle – that is embedded in the mitochondrial 

membrane and forms the proton channel, and a ‘head’ - the F1 particle – as the site 

of ATP synthesis. During ATP synthesis, protons are transferred through the 
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channel, causing rotation of the F1 particle, which condenses ADP and inorganic 

phosphate to form ATP.  

3.1.3 Mutations in the OXPHOS genes in patients with peripheral 

neuropathy  

Peripheral neuropathies have been linked to mutations in the OXPHOS genes; 

however, the neuropathy is rarely the presenting or predominant clinical 

manifestation of the disease. In contrast, patients presenting with mutations in 

nuclear-encoded mitochondrial genes such as MFN2 or GDAP1 typically present 

with an isolated peripheral neuropathy.  

 

 

Figure 3-2 The human ATP synthase. F1 is composed of three copies of each of subunits α and β, and 

one each of subunits γ, δ and ε, forming the central stalk. Fo consists of a subunit c-ring and one copy 

each of subunits a, b, d, F6 and the oligomycin sensitivity-conferring protein (OSCP). Subunits b, d, 

F6 and OSCP form the peripheral stalk which lies to one side of the complex. A number of additional 

subunits (e, f, g, and A6L), all spanning the membrane, are associated with Fo. 
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In the scope of this thesis, we investigated an extensive family with mitochondrial 

disease and axonal neuropathy in which the index case presented with a pure motor 

neuropathy in childhood evolving into motor-predominant CMT2 in later life and 

found a pathogenic missense mutation m.9185T>C in ATPase 6, encoding the ATP6 

subunit of the mitochondrial ATP synthase (OXPHOS complex V). This segregated 

with disease in affected members of the pedigree. 

3.1.4 Mutations in ATP synthase  

Mutations in respiratory chain complex V are known to cause Leigh syndrome or 

Neurogenic muscle weakness, Ataxia and Retinitis Pigmentosa (NARP) (Holt et al., 

1990; Rahman et al., 1996; De Coo et al., 1996). In our study, we found two 

mutations in the gene encoding for respiratory chain complex V, located on the 

mitochondrial genome: m.9185T>C, substituting a leucine for a proline and 

m.8993T>C, causing the same AA-substitution. The presence of these mutations 

confirms the link between mitochondrial dysfunction and neurodegeneration and the 

importance of this system in CMT.  

In order to examine the prevalence of this mutation and the importance of other 

variants in the mitochondrial genome, I investigated a large number of patients with 

CMT2, HMN and HSAN for mutations in the ATPase 6 gene and the partially 

overlapping ATPase 8 gene, the only other mitochondrially encoded subunit of 

complex V of the respiratory chain. Since the overall phenotype in the CMT2 patient 

was a severe axonal neuropathy, a number of CMT1 patients was included, to 

examine whether this mutation could influence the severity of the neuropathy.  

3.1.5 Mitochondrial genetics in humans  

Following the endosymbiotic theory, mtDNA is derived from the circular genomes 

of the bacteria that were engulfed by the early ancestors of today's eukaryotic cells. 

This separate evolutionary origin gives rise to some distinct features that distinguish 

nuclear from mitochondrial DNA.  

Each mitochondrion present in human cells will contain several copies of the 

circular, covalently closed, double-stranded mitochondrial DNA. This results in the 

presence of 100-10,000 separate copies of mtDNA per cell. There are no histones or 

any other proteins associated with mitochondrial DNA and the genes contain no 

introns. As a consequence of this lack of protective histones and the highly oxidizing 
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environment there is a much higher rate of mutations than nuclear DNA (Wei et al., 

1998; Sigurgardottir et al., 2000).  

The mitochondrial genome  

The mitochondrial genome encodes for 37 genes and contains around 16,600 base 

pairs. These genes encompass mitochondrial ribosome subunits, transfer RNAs and 

subunits of the ETC. Twenty-eight out of 37 are located on the mitochondrial heavy-

strand (H-strand), so called due to its high content of guanine. The opposing light 

strand (L-strand), mainly consisting of cytosines, encodes the remaining nine genes. 

For replication and transcription, the mitochondrial DNA relies on a set of nuclear 

gene products, after having lost the self-provisional qualities it had as a prokaryote.  

The genetic code is, for the most part, universal, with few exceptions: mitochondrial 

genetics includes some of these. For most organisms the "stop codons" are “UAA”, 

“UAG”, and “UGA”. In vertebrate mitochondria “AGA” and “AGG” are also stop 

codons, but not “UGA”, which codes for tryptophan instead. “AUA” codes for 

isoleucine in most organisms but for methionine in vertebrate mitochondrial mRNA 

(Barrell et al., 1979). 

Inheritance of mitochondrial variants  

In contrast to nuclear DNA, mitochondrial DNA gets passed on to future generations 

by maternal inheritance only. An oocyte will carry around 100,000- 1,000,000,000 

mtDNA copies, whilst a spermatozoid will only carry 100-1000 copies, which will 

be degraded by ubiquitination (Sutovsky et al., 1999).  

 

An important concept in mitochondrial inheritance is the existence of the genetic 

bottleneck. Only a fraction of the mtDNA copies in the germ-cell precursor are 

amplified to generate the approximately 105 mtDNA copies present in the mature 

oocyte. During maturation, this specific subpopulation of genomes will be rapidly 

replicated. Depending on which oocyte will be fertilised, this can result in different 

populations of mtDNA in the offspring. In the presence of mutated mtDNA, a 

different mutant load can be found between family members (Taylor et al., 2005).  

Recent evidence also suggests a higher selectivity against nonsynonymous changes 

in protein-coding genes, resulting in a reduction of mutations in following 

generations. Differences have been found between different sites of mutations, 

resulting in levels that cause no phenotype at a lower level but can cause a disease-
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like phenotype at higher levels (Taylor et al., 2005; Stewart et al., 2008; Samuels et 

al., 2010).   

Mitochondrial diseases  

Several disorders affecting the nervous system, the muscles, or both are caused by 

mutations (acquired or inherited) in mitochondrial DNA or in nuclear genes that 

code for mitochondrial components; these may be collectively called mitochondrial 

diseases. Mitochondrial abnormalities have been found in several neurodegenerative 

disorders, in multiple sclerosis and in an increasing number of axonal inherited 

neuropathies (Chinnery, 2010).  

 

Mitochondrial diseases take on unique characteristics both because of the way the 

diseases are inherited and because mitochondria are so critical to cell function. 

Along with regulation of apoptosis, mitochondria also modulate cell pathogenesis by 

means of energy production, heme synthesis, heat production, reactive oxygen 

species (ROS) generation, and calcium buffering. Patients with mitochondrial 

diseases typically present with multi-system involvement, due to the critical 

importance of ATP for all the organ systems. Primary symptoms can range from 

seizures and liver failure, to cerebellar ataxia and myopathy. In the case of peripheral 

neuropathies, these can either manifest as primary or additional features and NCS 

usually point towards a predominantly axonal sensorimotor polyneuropathy 

(Chinnery, 2010).  

 

Since every cell in the human body has several copies of the mtDNA, mutations 

residing within the mtDNA can exist in a homoplasmic state, where all the mtDNA 

molecules are either wild type or mutated, or in a heteroplasmic state, where varying 

levels of mutated and wild type mtDNA can coexist in one single cell.  

 

The vast majority of mtDNA mutations require high levels of mutated mtDNA 

necessary before a phenotype is observed in cells. The threshold effect is suggested 

to result from a loss of wild type mtDNA molecules, and below a critical level of 

wild type mtDNA, a functional defect within a cell is likely to be obtained (Lax et al, 

2011). As mentioned before, mitochondrial DNA is only transferred by the ovule 

during the impregnation, which means that mitochondrial diseases will show a 
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pattern of maternally inherited syndromes. Since the precursor cells for the ovule 

only replicate a limited amount of mitochondria, which are randomly distributed, 

different ovules encompass a range of mutant mtDNA levels, causing offspring to 

have variable disease severity (Taylor et al., 2005).  

Leigh Syndrome 

The pathogenic mutations found in our group of patients, m.9185T>C and 

m.8993T>C, are known to cause Leigh syndrome and NARP. Leigh syndrome is an 

early-onset progressive neurodegenerative disorder with a characteristic 

neuropathology consisting of focal, bilateral lesions in one or more areas of the 

central nervous system, including the brainstem, thalamus, basal ganglia, cerebellum, 

and spinal cord. The lesions are areas of demyelination, gliosis, necrosis, spongiosis, 

or capillary proliferation. Clinical symptoms depend on which areas of the central 

nervous system are involved, but often include hypotonia, spasticity, movement 

disorders, hypertrophic cardiomyopathy, cerebellar ataxia, and peripheral 

neuropathy. Onset of disease is typically between 3 to 12 months, frequently 

following a viral infection (Dahl, 1998; Thorburn et al., 2003).  

 

Leigh syndrome is a progressive disease, often with poor prognosis. Death occurs 

usually within the first decade of life, frequently due to respiratory failure due to 

brain stem lesions or cardiac failure. No effective treatments have been established 

so far and management of the disease mainly includes education and support for the 

patients and their family, whilst monitoring progression of neurologic, 

ophthalmologic and cardiologic features. Seizures, dystonia, acidosis, 

cardiomyopathy and other complications are treated separately when appropriate 

(Koene et al., 2011).  

 

A high genetic heterogeneity exists between patients with Leigh syndrome and 

transmission can be X-linked recessive, autosomal recessive or mitochondrial 

(DiMauro et al, 1996), though approximately 30% of all Leigh syndrome is mtDNA-

associated (Rahman et al, 1996). Patients with Leigh syndrome caused by a mtDNA 

mutation are often referred to as having “maternally inherited Leigh syndrome” 

(MILS) (Ciafaloni et al., 1993).  
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Apart from mutations in the ATPase6 gene, Leigh syndrome can also be caused by 

mutations in eleven additional mitochondrial encoded genes. Genetic testing is 

usually initially performed in muscle tissue to look for the two most common 

mutations in the ATPase 6 gene (m.8993T>G and m.8993T>C). If negative, whole 

mitochondrial genome screening is performed.  

NARP 

NARP (Neurogenic muscle weakness, Ataxia, and Retinitis Pigmentosa) is 

characterised by proximal neurogenic muscle weakness with sensory neuropathy, 

ataxia, pigmentary retinopathy, seizures, learning difficulties and dementia (Holt at 

al., 1990). Other clinical features include short stature, sensorineural hearing loss, 

progressive external ophthalmoplegia, cardiac conduction defects (heart block) and a 

mild anxiety disorder (Santorelli et al., 1997). Ataxia and learning difficulties often 

present in early childhood and patients can be relatively stable for many years. 

Similar to Leigh syndrome, management consists of treatment for individual 

manifestations (Koene et al., 2011).   

 

The T-to-G transversion (m.8993T>G) is most common in NARP, but a T-to-C 

transition (m.8993T>C) has also been described. Together they account for up to 

50% of NARP patients. Individuals with moderate levels (~70%-90%) of the 

m.8993T>G mutation present with the NARP phenotype, while those with mutant 

loads above 90% have maternally inherited Leigh syndrome (Fig. 3.3). Individuals 

with levels lower than 60% will be asymptomatic. The transition is a less severe 

mutation than the transversion, and virtually all symptomatic individuals have 

mutant loads of more than 90% (Thorburn et al, 2011). Patients with the T>C 

mutation tend to present with milder symptoms but a higher frequency of ataxia 

(Fujii et al., 1998).  

 

For most mtDNA mutations, it is difficult to distinguish a simple correlation between 

genotype and phenotype not only because of the difference in heteroplasmic levels of 

mtDNA. The clinical expression of a mtDNA mutation is also influenced by the 

pathogenicity of the mutation itself, the variation in mutant load among different 

tissues, and the energy requirements of brain and other tissues, which may vary with 

age (Thorburn et al, 2011). 
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Figure 3-3 Genotype-phenotype correlation for the m.8993T>G transversion.  

Since this phenotype-genotype correlation is very important in mitochondrial 

diseases, I performed a quantitation of the mutant load for several individuals in this 

thesis to investigate whether this could have an influence on the severity of the 

neuropathy in our cohort of patients.  

 

In contrast to Leigh syndrome, no additional genes have been reported to cause 

NARP. However, one paper recently stated that mutations in the mitochondrially 

encoded MT-TL2 gene result in an overlapping phenotype of Myoclonic epilepsy 

with ragged red fibres (MERRF) and NARP in one patient (Martin-Jimenez et al., 

2012).  

3.1.6 Structural results of mutations in the ATPase 6 gene   

In humans, the mitochondrially encoded ATPase 6 and 8 genes together with the 

nuclear-encoded ATPase 9 form the F0 membrane-spanning portion of the ATPase 

complex. Membrane topology of Subunit 6, also known as subunit a, suggests the 

presence of six transmembrane domains. The fourth transmembrane helix of subunit 

6 (Atp6p) is juxtaposed with the first transmembrane helix of subunit 9 and serves as 
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a proton pump. The m.8.993T>C mutation replaces the highly conserved leucine 

residue of subunit 6 that resides opposite an essential glutamate residue of subunit 9 

to a proline residue and thus interferes with the energy-driven ATP synthesis. 

Studies in yeast have shown a 40-50% decrease in the rate of ATP synthesis in the 

mitochondria of the mutant yeast strain, due to a less efficient incorporation of the 

Atp6p region, modified by the m.8993T>C mutation (Kucharczyk et al., 2009). The 

m.9.185T>C mutation results in a leucine to proline change in the fifth 

transmembrane helix adjacent to the outer membrane. The leucine residue at position 

220 is a well conserved residue in all animal species (Kaneko et al., 1993) and the 

substitution of a very poor alpha-helix former, proline, for a good alpha-helix- 

former, leucine, may make the fifth transmembrane structure unstable or distorted in 

configuration and thus interfere with the proton pump. This is the third substitution 

of a Leucine to a Proline in the suggested transmembrane helix that is known to 

cause Leigh Syndrome (Castagna et al, 2007).  

 

3.2 Results  

3.2.1 Genetic screening of the ATPase 6 and ATPase 8 genes resulted in a 

mutation frequency of 1.4%   

Standard PCR reaction was performed to amplify the overlapping ATPase 6/8 genes 

in a cohort of 673 patients. Of those patients, the majority (40.6%) was diagnosed 

with CMT2, and HMN and HSAN in respectively 172 (25.6%) and 133 (19.8%) of 

the patients. 93 (13.8%) patients were diagnosed with CMT1 and were primarily 

screened to examine whether mutations in the mitochondrial DNA could be a 

modifying factor for the demyelinating phenotype.  All patients with CMT2 were 

negative for mutations in MFN2. The majority of patients with CMT2 were also 

screened for mutations in MPZ, HSPB1, HSPB8, TRPV4, and GJB1 where 

appropriate. Patients with dHMN were negative for mutations in HSPB1, HSPB8, 

and TRPV4, and selected patients were negative for mutations in BSCL2 and GARS. 

 

Mutations in the ATPase 6 gene that are known to cause Leigh Syndrome were 

detected in five individuals diagnosed with CMT2. As mentioned before, the 

investigation of an extensive family with mitochondrial disease and axonal 

neuropathy in which the index case presented with a pure motor neuropathy in 
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childhood evolving into motor-predominant CMT2 in later life resulted in the 

discovery of a pathogenic missense mutation m.9185T>C in ATPase 6. This 

mutation was detected in three further unrelated probands by our genetic screening. 

Considering 275 CMT2 index cases were analysed, the representing frequency for 

this specific mutation in the ATPase 6 gene results in a percentage of 1.4% amongst 

CMT2 patients.  

 

No pathogenic variants were found in patients with dHMN, HSAN or CMT1, and no 

pathogenic mutations in ATPase 8 were found in either of the groups. The 

m.8993T>C mutation, which substitutes a leucine for proline, was found in one 

patient diagnosed with CMT2. When looking at the chromatographs of the four 

patients with the m.9185T>C mutation, a clear difference can be observed between 

patients with a heteroplasmic mutant load and patients with a homoplasmic (or high 

heteroplasmic) load (Fig. 3.4).  

 

 

 

 

 

 

 

3.2.2 Segregation analysis and the use of heteroplasmy investigation  

Segregation analysis of these mutations all showed the presence of the pathogenic 

mutation in the affected cases. Three of these probands were part of a large family, 

creating the opportunity to compare the percentages of heteroplasmy with the 

severity of the phenotypes and the sequencing results. Different tissue samples were 

used to compare the mutant load in the different organs. This was mainly performed 

to analyse whether blood samples could be representative of muscle samples, to 

reduce the need of muscle biopsy.  

3.2.3 Family A 

The first family consisted of four generations, with three generations of affected 

individuals (Fig. 3.5). Blood samples were available for seven members of the 

A B C 

Figure 3-4 Sequencing results for the m.9.185T>C variant. A: Homoplasmic wild type; B: 

heteroplasmic wild type/mutant; C: homoplasmic mutant. 
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family, while muscle samples were provided for three members. The index case also 

provided a urine sample.  

Clinical details of family A are compatible with a diagnosis of motor-predominant 

CMT2 

The index case (Patient III-5) presented in the first decade with recurrent falls and 

foot drop at age 6 after normal early development. Electrophysiologically, the 

neuropathy was a pure motor neuropathy/neuronopathy, however, sensory signs have 

since developed, making the diagnosis clinically compatible with motor-predominant 

CMT2. Recent clinical examination at age 21 showed distal muscle wasting of the 

legs, pes cavus, and clawing of the toes. Muscle strength was normal in the upper 

limbs with mild proximal lower limb weakness and moderate distal lower limb 

weakness. Ankle jerks were absent. Plantar responses were extensor. Pinprick 

sensation was normal, but vibration detection was reduced to the knees.  

Extra clinical features present in Family A suggesting mitochondrial involvement  

Apart from a pure motor neuropathy in all affected patients and minor sensory 

involvement in patient III-5, several patients also suffered from learning difficulties, 

sensorineural hearing loss and retinal degeneration. Two patients died due to sepsis 

at the ages of 9 (Patient IV-1) and 16 (Patient III-2). This type of rapid 

decompensation is distinctive for Leigh syndrome, suggesting mitochondrial 

involvement. The neuropathy was particularly severe in 2 adults with wheelchair 

dependence in the third decade (patients II-3 and III-1). 

Genetic analysis of family A indicate a homoplasmic m.9.185T>C mutation  

After mitochondrial DNA sequencing the homoplasmic presence of the m.9185T>C 

mutation was revealed, which segregated in the whole family. This causes a 

missense change from leucine to proline at amino acid position 220 of the ATP6 

protein (Leu220Pro). Affected individuals all presented with a mutant load of 100% 

in blood, whereas unaffected family members had lower levels of mutant load. The 

mutation was also quantified in two muscle samples and one urine sample, which 

showed an equivalent mutant load of 100% (Fig. 3.5). 

Blue native gels of Family A show abnormalities in comparison to controls  

Blue native gels for complex V of the respiratory chain were also performed 

elsewhere for three of the patients (Patients III-2, III-3 and IV-2). These both showed 
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reduced activity as well as impaired assembly of the complex in muscle samples 

(results not shown).  

 

 

 

 

 

 

3.2.4 Family B  

Clinical details of Family B show several generations with CMT2 and individuals 

with solely Upper Motor Neuron signs  

The second family has a history of four generations presenting with CMT2 (Fig. 

3.6). Patients presented in their first or second decade with typical features of 

inherited neuropathy, following a gradually progressive clinical course but 

experienced rapid decline in mobility in their fifth and sixth decades with wheelchair 

dependence from unaided walking over a 5-year period. Electrophysiological studies 

in patient III-9 pointed towards a pure motor neuropathy at age 29, but repeated 

studies at a later age showed sensory involvement, characteristic of CMT2. 

Generation III also included two individuals who displayed upper motor neuron 

(UMN) signs without a peripheral neuropathy. 

 Heteroplasmy analysis showed a difference in the mutant load between patients 

with CMT2 and individuals with UMN signs  

Restrictive enzyme analysis suggested a mutant load of 100% in all patients of 

Family B characterised with CMT2, whereas both of the patients with UMN signs 

Figure 3-5 Pedigree of Family A. Black symbols specify patients with CMT2, light grey symbols 

specify patients with unknown clinical status.  Arrow indicates index patient. b = blood; m = muscle; 

u = urine.  



103 

 

had a mutant load between 70-80%. The index patient (III-9) also had a skin and 

muscle biopsy, both showing the same level of mutant DNA. 

 

Figure 3-6 Pedigree of family B. Black symbols represent patients with CMT2, dark grey symbols 

represent individuals with upper motor signs. Arrow indicates the index patient. b = blood; f = 

fibroblasts; m = muscle. Asterisks indicate affected individuals that were not examined locally. 

Blue native gel of the index patient of Family B shows abnormalities in 

comparison with controls.  

Blue native gel of patient III-9 suggested a reduced activity of complex V in 

comparison with controls (results not shown).  

3.2.5 Family C.  

Clinical details of Family C are consistent with CMT2 

The third family consisted of three generations of affected individuals (Fig. 3.7). 

Patient III-16 had NCS compatible with a sensorimotor axonal neuropathy, whilst 

studies in patient IV-2 showed a pure motor neuropathy. Patient IV-2 also presented  

with learning difficulties, behavioral problems, and wheelchair dependence by early 

adulthood. Patient III-16 had motor-predominant CMT2 with pyramidal tract signs 

and proximal muscle weakness, which developed in later life.  

 

A history of insulin-dependent diabetes mellitus existed in the family, presenting in 

both generation II and III. This was not seen in patients with CMT2 and appeared to 

come from the father’s side of the family. 
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Heteroplasmy analysis showed different levels of mutant load in the whole family  

Both patients characterised had a mutant load of 100%. Two individuals in the 

family (III-5 and IV-1) had an unknown clinical status and had a mutant load of 

respectively 75% and 45%.  

 

 

Figure 3-7 Pedigree of Family C. Black symbols represent patients with CMT2, light grey symbols 

represent individuals with unknown clinical status, blue symbols represent individuals with Insulin-

dependent diabetes melitus. b = blood. Triangles with numbers indicate multiple individuals with 

unknown gender; small square with slash = still birth; small triangle with slash = miscarriage. 

Asterisks indicate affected individuals that were not examined locally. 

3.2.6 Sporadic case    

Clinical details indicate a sensorimotor axonal neuropathy 

The fourth patient presenting with the m.9185T>C mutation appeared to be a 

sporadic case in the family, suggesting a de-novo mutation (Fig. 3.8). He presented 

in the first decade and was characterised with sensorimotor axonal neuropathy, 

confirmed by NCS. EMG showed proximal and distal lower limb denervation with 

no evidence of myopathy. DNA of the parents was not available for sequencing.  

Heteroplasmy content showed levels lower than 100%  

Chromatographs indicated a heteroplasmic content of mutant DNA. Restrictive 

enzyme digest resulted in a mutant load of 92%. 
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Figure 3-8 Pedigree of the sporadic case. 

Black symbols specify patients with CMT2. 

b = blood.  

3.2.7. Estimating pathogenicity of unknown variations in the mitochondrial 

genome   

Since the mitochondrial genome consists of numerous variations, a list of steps has 

been followed to exclude non-pathogenic variations amongst all the variants found in 

our cohort of patients (See appendix I). Mitochondrial DNA has few regulatory 

sequences; therefore all synonymous or non-coding variations were excluded, 

together with known polymorphisms. Subsequently, variations were entered into 

four separate databases of control individuals, available online or internally. The 

largest database, mitowheel, consists of 3735 human mtDNA sequences 

(Zsurka,Gábor and Csordás, Attila; MitoWheel, visualizing the human mitochondrial 

genome. Available from Nature Precedings, 2009). Variations found in more than 

five control individuals were excluded. Other databases used were: mtDB (Ingman et 

al., 2006), HmtDB (Rubino et al., 2012) and the NHNN database (Internal database). 

Variations found in fewer than five controls, but associated with haplotypes or 

proven to be non-pathogenic were also excluded.  

Mutation # Patients Diagnosis Conservation # Controls  

m.8381A>G: Thr-Ala 1 CMT2 Changed to I in monkey 

and elephant  

2 

m.8516T>C: Trp-Arg 1 CMT2 Conserved in all species  1 

m.8605C>T: Pro-Ser 2 CMT2 Changed to Q in 

Dormouse  

1 

m.8828A>G: Asn-Ser 1 CMT2 Conserved in all species   

m.9025G>A: Gly-Ser 2 CMT2 + HSAN Conserved in all species 1 

Table 3-1 Possible mutations amongst variants found in the ATPase 6/8 genes in the mitochondrial 

genome. Mutation in bold was found in heteroplasmic levels in one patient.  
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Additionally, the conservation of basepairs was analysed by using the mtSNP 

database search (Fuku et al., 2005). Only variations with high conservation 

remained. This elimination led to a list of five possible mutations (Table 3-1). The 

m.8605C>T mutation was found in two CMT2 patients, one with seemingly 

heteroplasmic levels of the mutation.  

 

3.3 Discussion  

We identified five patients with mutations in the ATPase6 gene. In our genetically 

undefined cohort of CMT2 patients, this results in a prevalence of 1.8% harbouring a 

mutation in the ATPase 6 gene. Considering only one out of four patients with 

CMT2 receives a molecular diagnosis, this is a notable result. Several lines of 

evidence support the indication that this mutation is the cause of the phenotype.  

3.3.1 Clinical details  

All patients were seen by experienced clinicians and were considered to have a 

CMT2 phenotype based on clinical and electrophysiological parameters. Each of the 

pedigrees are compatible with a maternal lineage, however patients were never tested 

for mutations in this gene since they had isolated involvement of the peripheral 

nerves. Since there are four different families with the same mutation, the question 

arises if these families are related. While screening the families for mutations, 

polymorphisms were found in two of the four families, indicating these families are 

not related.  

3.3.2 Pattern of disease severity  

Three out of four patients were homoplasmic for the mutant DNA, the remaining 

patient had a mutant load of 92%. The pattern of variable disease severity matching 

with the levels of heteroplasmy is characteristic for diseases caused by mutations in 

the mtDNA. The consistency of mutant load in the different tissue samples implies a 

redundancy for skin or muscle biopsies, since heteroplasmy could be estimated with 

blood samples only. This is only demonstrated in patients with a mutant load of 

100%, so caution is needed when applying this to patients with a less severe 

phenotype. To evaluate whether the presence of extra symptoms relates to the 

heteroplasmic content in other tissues, mutant load characterisation in post mortem 

brain tissue and peripheral tissue would be desirable.  
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Considering all of the CMT2 cases with a mutant load between 92% and 100% had 

predominantly motor axonal neuropathy, it implies that all affected individuals with 

neuropathy present with levels higher than 92% of mutated DNA. Whether all of the 

patients truly have 100% mutated DNA is not guaranteed, as we have to allow for 

the detection level of the method. Reverse restriction enzyme experiments, in which 

wild type DNA was cut rather than mutant DNA could rule out the presence of any 

wild type DNA present.  

 

According to the levels of mutated DNA, patients could be broadly subdivided in 

four clinical groups (Fig. 3.9):  group 1, affected individual with symptoms and signs 

of predominantly motor axonal neuropathy (100-92% mutant load); group 2, affected 

individuals with clinical symptoms and signs of UMN involvement without 

neuropathy (91%−80% mutant load); group 3, asymptomatic individuals with upper 

motor neuron (UMN) signs detectable on examination only (79%−64% mutant 

load); and group 4, unaffected individuals (<64% mutant load). Patient I-2 from the 

first family does not seem to fit in this classification, since she had a mutant load of 

88%, without clinical features. However, this patient has never been examined and 

therefore cannot be excluded as a potentially affected individual.  

 

Figure 3-9 Correlation between heteroplasmic content of  

mutant DNA and severity of the disease. 

 

These cut-off percentages are very characteristic for mitochondrial diseases, 

supporting the pathogenicity of mutations in ATPase6 in CMT2 disease. To correctly 



108 

 

estimate the boundaries between the different phenotypes, more patients with 

different loads of mutant DNA need to be characterised, but estimations can be 

made. 

3.3.3 Blue native gels  

The use of an E.coli model for the m.9185T>C mutation in previous studies indicates 

a 70% decrease in ATP synthetic ability (Ogilvie and Capaldi, 1999), and studies in 

fibroblasts have shown a decrease of ATPase activity in patients with Leigh 

syndrome (Castagna et al., 2007). Similarly, in this study, the effects of the 

c.9185T>C mutation on complex V were studied in 4 different patients originating 

from 2 different families. These all showed impairment in the assembly and stability 

of the complex and/or the activity of the enzyme. This data supports the 

pathogenicity of the c.9185T>C mutation and indicates that this mutation is 

important in mitochondrial dysfunction, adding to the role of mitochondria in CMT2 

disease.   

 

The identification of the m.8993T>C mutation in a patient with CMT2 also adds 

supportive evidence for pathogenicity of mutations in the ATPase 6 gene. This 

mutation is not as extensively studied as the more common m.8993T>G mutation, 

which produces a more severe phenotype in mitochondrial diseases. BN-page has 

previously been used to prove the pathogenicity of the c.8993T>G mutation, where 

an impaired assembly and activity of the enzyme indicates the deleterious effects of 

the mutation. The same studies were done for the m.8993T>C mutation in this study, 

which only showed a substantial decrease of ATP synthesis in fresh muscle biopsies 

of patients and not in fibroblasts cell cultures. Unfortunately, no muscle tissue was 

available for this patient. 

3.3.4 Explanation for the phenotypic spectrum is unknown 

Since these mutations are also known to cause Leigh syndrome and NARP, other 

factors influencing the phenotype must be present, although the exact relationship 

between phenotype and genotype still has to be explained. The existence of 

modification factors could explain this broad phenotype spectrum, but this requires 

further research. Considering this is the first mitochondrial gene associated with a 

pure neuropathy, sequencing of the whole mitochondrial genome would be 
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appropriate to investigate whether more mutations in mitochondrial genes can be 

associated with neuropathy.  

3.3.5 Guidelines for mutational analysis in patients with CMT2   

With the emergence of next generation sequencing and whole exome or genome 

sequencing, a decision has to be made whether it is worth screening for mutations in 

the mitochondrial DNA as well. Although most patients presented with a typical 

CMT2/dHMN phenotype, mutations in ATPase6 should be particularly considered in 

the following cases: 1) an evolving clinical phenotype from a pure motor to a motor-

predominant axonal neuropathy in the third and fourth decades; 2) early proximal 

lower limb muscle involvement despite mild distal weakness; 3) multisystem 

involvement in the patient or relatives; 4) UMN signs in affected or asymptomatic 

relatives; 5) rapid clinical decompensation in affected individuals after viral or septic 

illness. 

3.3.6 Cohort study 

After exclusion of non-pathogenic mutations, five possible mutations remained. 

These cannot be excluded with the pre-existing information available. One way to 

determine if these mutations are pathogenic would be to measure the ATPase activity 

in vitro, by the use of blue native gels, but this could not be performed in the time 

available.  

 

Mutation #Patients Diagnosis Conservation #Controls 

m.8605C>T: P-S 1 CMT2 Changed to Q in Dormouse 1 

m.8828A>G: N-S 1 CMT2 Conserved in all species  

m.9025G>A: G-S 2 CMT2 + HSAN Conserved in all species 1 

Table 3-2 Variants of unknown significance found in the ATPase 6 gene in our cohort. 

Since mitochondrial DNA is very prone to variations, it is expected that most of 

these mutations will be polymorphisms. Considering the absence of definitely 

pathogenic mutations in the ATPase 8 gene, we only focused on the variants found in 

the ATPase 6 gene (Table 3.2).  

 

The familial history of the m.8605T>C variant showed a pattern of paternal 

inheritance, which makes it highly unlikely that this is the causative mutation for the 

phenotype, unless two different causes of disease are present in one family. One 
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patient with CMT2 had a novel variant m.8828A>G, causing a missense change 

from asparagine to serine at amino acid position 101 of the ATP6 protein 

(Asn101Ser). Unfortunately, there was no muscle tissue available from the patient 

for BN-PAGE; thus, the potential pathogenic nature of this variant remains 

uncertain. The m.9025G>A variation was also of particular interest, and since 

additional information did not exclude this variation from our list of possible 

mutations, this variation was checked for ATPase activity using blue native gel. 

However, no abnormalities were found.  

 

To conclude, mutations in the ATPase6 gene in patients with CMT2 add to the 

expanding evidence for the involvement of mitochondria in axonal neuropathy and 

suggest the mitochondrial genome should be screened for mutations in patients with 

axonal neuropathy.  
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Chapter 4 

Candidate gene screening 

in patients with CMT2 

4.1 Introduction  

4.1.1 Expanding clinical spectrum of known disease genes  

Due to the phenotypically heterogeneous nature of CMT, a significant amount of 

genetic overlap can be found between subtypes of CMT. As genetic testing becomes 

more widely available, mutations in one single gene have been found to cause 

multiple phenotypes and different modes of inheritance; for example, mutations in 

HSPB1 can cause CMT2 and dHMN in both an autosomal dominant and autosomal 

recessive manner. Genetic advances such as WES and WGS in recent years have 

broadened the phenotype of CMT and related neurodegenerative disorders (Gess et 

al., 2014; Robusto et al., 2014; Liu et al., 2014; Mathis et al., 2014; Schabhutti et al., 

2014; Azzedine et al., 2013). Not only can an entire new phenotype be found for the 

same gene, but broadening the already known phenotype can be beneficial to the 

understanding of disease pathways.  
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FIG4 

CMT4J is a rare subtype of demyelinating CMT, responsible for ∼20% of recessive 

Charcot–Marie–Tooth disease and 0.4% of all Charcot–Marie–Tooth disease. It is 

caused by recessive mutations in the phosphoinositide phosphatase FIG4 gene, and 

characterised by childhood onset with accelerated proximal and distal weakness and 

muscle atrophy in both proximal and distal muscles. Examination may reveal 

decreased response to touch, pin prick, or vibration distally (Zhang et al., 2008). The 

first mutations in the FIG4 gene were found in the ‘pale tremor’ mouse model, 

presenting with a multi-organ disorder with neuronal degeneration in the central 

nervous system, peripheral neuronopathy and diluted pigmentation, caused by an 

insertion in intron 18 of FIG4. The first screen of FIG4 in 95 CMT2 patients 

revealed four unrelated patients with recessive mutations consisting of a combination 

of a missense mutation p.Ile41Thr in exon 2 and a protein truncating mutation. Few 

mutations have been reported in FIG4 so far, and the majority of CMT4J patients 

have the compound heterozygous genotype FIG4I41T/null that was originally 

described in four families and has reached an allele frequency of 0.001 in the 

Northern European population whilst carriers remain clinically unaffected. 

Homozygotes have not been observed, showing that the presence of a null mutation 

on the other allele is required to manifest disease (Nicholson et al., 2011). The 

p.Ile41Thr mutation results in an impaired interaction with VAC14, required for the 

stability of the protein in vivo. As a result, protein levels in mice and patient 

fibroblasts are extremely low.  To date, 18 cases have been described with FIG4 

mutations. 17 of these had the FIG4I41T/null genotype. The remaining patient had a 

FIG4L17P/null genotype (Lenk et al., 2011). A recent paper in 2014 by Menezes et 

al. describes one of these patients as carrying the FIG4I41T/null genotype. However, 

the mother of the index patient seemed to present with a homozygous p.Ile41Thr 

mutation. When looking into more detail, a deletion of exon 2 was established on the 

other allele. This indicates that caution has to be taken in families with two affected 

generations that would usually be regarded as dominantly inherited forms of CMT. 

Other explanations can be possible, such as recessive inheritance due to three 

mutations segregating within the family. 

 

Besides CMT4J, heterozygous mutations in FIG4 have been found in patients with 

ALS (Chow et al., 2009) and homozygous null mutations have been shown to cause 
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Yunis-Varon syndrome, a severe autosomal-recessive congenital disorder affecting 

multiple tissues (Campeau et al., 2013). The clinical phenotype of CMT4J shows a 

significant amount of overlap with patients characterised with CMT4B1 and 

CMT4B2, due to loss-of-function mutations in MTMR2 and MTMR13 respectively. 

These overlapping clinical symptoms of CMT4B with CMT4J might result from 

either less [PI5P] or elevated [PI3P] or misregulation of [PI(3,5)P2]. 

 

No mutations have been found in VAC14 and mutations in PIKfyve result in Fleck 

corneal dystrophy (FCD), a rare autosomal dominant disease characterised by 

numerous tiny, dot-like white flecks scattered in all layers of the corneal stroma. 

Most patients are asymptomatic with normal vision, although photophobia has been 

reported in a small subset (Li et al., 2005).  

 

The FIG4 protein removes the 5-phosphatase from the low-abundance signalling 

phosphoinositide [PI(3,5)P2], which  is localised on the cytoplasmic surface of 

vesicles of the endosome/lysosome pathway. As mentioned in Chapter 1, [PI(3,5)P2] 

is one of the lowest abundant phosphoinositols present, making it difficult to study. 

Concentration of [PI(3,5)P2] is tightly regulated by the PAS complex, containing the 

PIKfyve, Vac14 and FIG4 proteins in mammals, in which PIKfyve functions as a 

kinase. Interestingly, activation of PIKfyve requires catalytic activity of FIG4, 

resulting in a tight coordination between synthesis and turnover of [PI(3,5)P2]. There 

is a significant role for this complex in an amount of pathways, such as the traffic of 

cell surface receptors to lysosomes, ion channel function or exocytosis (McCartney 

et al., 2014). Besides this, [PI(3,5)P2] also serves as a precursor for [PI5P]. This 

requires the presence of proteins with 3-phosphatase activity such has MTRMRs. 

MTMR2, another protein mutated in CMT4B1, acts on the same substrate as FIG4 

but with opposing effects. It is suggested that an imbalance of [PI(3,5)P2] might be 

at the basis of the excessive myelin growth and hypermyelination (Vaccari et al., 

2011). However, there are still alternative hypotheses that indicate generation of 

[PI5P] by PIKfyve (Shisheva, 2012).  

 

In mice, the imbalance of [PI(3,5)P2] leads to accumulation of enlarged vesicles 

derived from the endosome/lysosome pathway in fibroblasts and neurons, similar to 

the vesicle accumulation that can be seen in fibroblasts from a patient with CMT4J 
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(Chow et al., 2007; Zhang et al., 2008; Ferguson et al., 2009). Pale tremor mice also 

exhibit impaired autophagy with accumulation of p62/ubiquitin-positive inclusion 

bodies in astrocytes and neurons (Ferguson et al., 2009). The original mouse model, 

consisting of a homozygous insertion in intron 18 of FIG4 has been shown to 

survive for 4–6 weeks and exhibits extensive spongiform neurodegeneration in brain 

and peripheral ganglia, as well as loss of large diameter-myelinated neurons in 

sciatic nerve (Chow et al., 2007). A severe reduction in protein levels in comparison 

with the transcript level can be observed and is thought to originate from the protein 

instability caused by impaired interaction of the mutant protein with VAC14. This 

result was also confirmed in patient fibroblasts. A transgenic model expressing the 

CMT4J variant FIG4I41T on a FIG4 null background was later developed and 

exhibits dose-dependent rescue of mutant phenotypes, including neurodegeneration 

in the brain and dorsal root ganglia, and myelination of the sciatic nerve (Lenk et al., 

2011).  

 

Disease onset in patients varies widely from early childhood to the sixth decade, but 

so far no correlation with the mutation spectrum has been found. Proximal weakness 

in patients with CMT4J can be used to distinguish from typical CMT that is 

predominantly distal. Most patients show asymmetric weakness and in several cases 

trauma, such as a fall, can trigger the initial symptoms or cause a period of rapid 

progression. There is major reduction of motor nerve conduction velocity affecting 

both upper and lower extremities with frequent progression to severe amyotrophy. 

Sensory findings are uniformly less severe than motor findings but can progress to 

total loss of sharp sensation and reduced joint position sense with sensory nerve 

action potentials being reduced and becoming unobtainable with time. Most patients 

are also areflexic and few have shown signs of cranial nerve involvement. 

Neurophysiologic studies show severe combined axonal and demyelinating 

neuropathy, with major reduction of motor nerve conduction velocities, much slower 

than expected from denervation alone and often showing a decrease in amplitude 

(Chow et al., 2007; Zhang et al., 2008; Nicholson et al., 2011).  

 

EMG shows evidence of active and chronic denervation, including fibrillation 

potentials, positive sharp waves and reduced recruitment patterns. Sites of muscle 

atrophy correspond to the sites of weakness. Sural nerve biopsies show loss of large-
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diameter myelinated fibres, onion bulb formations, and progressive loss of axons in 

most patients. 

 

Chronic inflammatory demyelinating polyradiculopathy (CIDP) typically presents 

acutely, often with a patchy, non-homogeneous, predominantly motor neuropathy 

with associated demyelinating features on nerve conduction studies. Rapid 

progression of weakness in a single limb usually suggests an acquired inflammatory 

neuropathy like CIDP. It is becoming more recognised that patients who were 

previously thought of having an inflammatory neuropathy such as CIDP are being 

diagnosed with CMT (Houlden et al., 2009; Michell et al., 2009); hence we screened 

a cohort of 35 patients in this study with an early onset demyelinating neuropathy 

and distal motor neuropathy/neuronopathy for mutations in the phosphoinositide 

phosphatase FIG4. Cases were selected where the disorder was progressive and 

asymmetrical, as these would normally be interpreted as CIDP in comparison with 

the more symmetrical pattern expected from inherited neuropathies. 

C9orf72 

Two separate studies simultaneously reported the discovery of a GGGGCC repeat 

expansion in the first exon and promotor region of the C9orf72 gene in families with 

genetic linkage to chromosome 9p21 and a phenotype of  FTLD-ALS (DeJesus-

Hernandez et al., 2011; Renton et al., 2011). Amyotrophic lateral sclerosis (ALS) 

and frontotemporal lobar degeneration (FTLD) are two fatal neurodegenerative 

diseases without effective therapies. ALS is the most frequent motor neuron disease 

and is characterised by the degeneration of upper and lower motor neurons, leading 

to muscle weakness, spasticity and atrophy. FTLD is a common cause of early onset 

dementia, resulting from the degeneration of frontal and temporal lobes, and 

encompasses a group of disorders distinguished clinically by abnormalities in 

behaviour, language and personality. Both are part of a spectrum of disorders that 

have overlapping clinical, pathological and genetical features (Verma et al., 2014). 

After screening the appropriate cohorts, it was shown that the GGGGCC repeat is the 

most frequent genetic cause of both conditions. Further research found C9orf72 

expansions in patients with Parkinson’s disease (PD) (Lesage et al., 2013), 

progressive supranuclear palsy (Origone et al., 2013), ataxic syndromes and 

corticobasal degeneration (Lindquist et al., 2013). Most controls possess either 2,5 or 
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8 repeats on each allele, as does the non-expanded allele in patients whilst the 

disease allele has more than 400 repeats, usually up to 2000. The maximum number 

of repeats in controls was estimated at 25-30 repeats, depending on the study. Since 

the expansion repeat exceeded the upper detection limit of the assay in two of the 

studies, a minimum length of 60 repeats was suggested (DeJesus-Hernandez et al., 

2011; Renton et al., 2011; Gijselinck et al., 2011). A classification was suggested 

with repeats under 30 being non-pathogenic, repeats between 30 and 60 possibly 

pathogenic and repeats over 60 definitely pathogenic. More research is being 

performed on the grey zone below 60 repeats, where the number of repeats is not 

clearly pathological, but outside the typical range of healthy control repeat size. In 

rare cases, there have been reports of repeat lengths lower than 30 segregating in 

families (Gomez-Tortosa et al., 2013; Millecamps et al., 2012), even though these 

numbers have also been found in controls in other studies (Ratti et al., 2012; Simon-

Sanchez et al., 2012; Beck et al., 2013). Different disease mechanisms have been 

suggested which include toxicity induced by repeat-containing RNAs forming 

nuclear RNA foci that interact with various RNA-binding proteins causing 

transcriptome defects, RAN-translation of the c9orf72 transcript leading to 

accumulation of RAN proteins in cytoplasmic aggregates in affected brain regions or 

decreased mRNA expression leading to loss of C9orf72 function (Gendron et al., 

2014). Whilst the exact mechanism of pathogenicity is not yet known, studies 

indicate the clue can be found with repeat-containing RNAs. The normal function of 

C9orf72 has only recently begun to be elucidated and co-expression studies suggest 

it might be involved in ubiquitin-dependent protein degradation (Bieniek et al., 

2013), whilst others suggest a role in endosomal trafficking due to colocalisation 

with Rab proteins implicated in autophagy and endocytic transport such as Rab7, 

also implicated in CMT. Since CMT is also a neurodegenerative disorder, it was 

questioned whether the disease mechanism could stretch as far as being the cause for 

peripheral neuropathies.  

4.1.2 Frequency of genetic subtypes  

Dealing with a genetically heterogeneous disease has the consequence that new 

genes will be discovered continuously and the search can seem never-ending. The 

majority of these genes are found in few families with a very specific phenotype and 

estimations of the frequency of the genetic subtypes are difficult to make. These 
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frequencies can also differ significantly depending on the population and can 

demonstrate a founder effect in different ethnic groups. In the event new genes are 

discovered by other research groups, screening appropriate cohorts to estimate the 

frequency of the gene and diagnose some of the patients present in the in-house 

databases is a good opportunity and can provide a useful tool for clinicians to 

determine which genes to screen first.  

 

In a large study by Saporta et al including 787 CMT patients, it was estimated that 

67% of CMT patients receive a genetic diagnosis, and out of these 92% has either 

the PMP22 duplication or mutations in PMP22, MPZ, GJB1 or MFN2 (Saporta et 

al., 2011). The same percentage was established in a study by Murphy et al in 425 

patients with CMT (Murphy et al., 2012). A more recent study by DiVincenzo et al 

estimated the amount to be 94,9% of genetically diagnosed patients (DiVincenzo et 

al., 2014). All other genetic subtypes accounted for less than 1-3% of the total CMT 

patients with a genetic diagnosis, depending on the study (Saporta et al., 2011; 

Murphy et al., 2012). Whilst only 1.8% of patients with CMT1 were left without a 

genetic diagnosis in the study in Detroit, the study in London reported a genetic 

diagnosis in 80% of CMT1 patients. For CMT2, 34.5% of patients in Detroit and 

25,2% of patients in London received a genetic diagnosis, indicating there are still 

multiple genes to be discovered in axonal CMT.  

HINT1 

In 2012, Zimon et al. reported a new gene called Histidine triad nucleotide-binding 

protein 1 (HINT1) in which loss-of-function mutations cause an axonal neuropathy 

with neuromyotonia in 33 families. Neuromyotonia is a rare neuromuscular disorder 

that can either be acquired, paraneoplastic or hereditary. It results from 

hyperexcitability of peripheral motor nerves, characterised by spontaneous muscular 

activity at rest (myokymia), impaired muscle relaxation (pseudomyotonia), and 

contractures of the hands and feet. In hereditary cases it usually has an onset in late 

childhood or early adulthood. The authors stated a frequency of 11% for mutations in 

HINT1 in patients with autosomal recessive or sporadic CMT.  

 

HINT1 is a 126 amino acid protein that is ubiquitously expressed and functions as a 

homodimeric purine phosphoramidase and lysyl-adenylate generated by lysyl-tRNA 



118 

 

synthetase (LysRS) (Chou et al. 2007). HINT1 is also a member of the evolutionarily 

conserved family of histidine triad proteins that acts as a haplo-insufficient tumour 

suppressor, participating in several apoptotic pathways (Weiske et al, 2006). Eight 

different mutations were originally described to cause the same phenotype of axonal 

neuropathy with neuromyotonia (Zimon M et al., 2012). The most prevalent 

mutation is the p.Arg37Pro, with a later study in Czech patients showing a presence 

of 95% (Laššuthová et al., 2015). The same study reports a significant under-

recognition of neuromyotonia in patients, with only three out of 19 patients with 

neuromyotonia being characterised before molecular diagnosis. Most patients 

described with mutations in HINT1 come from eastern-European countries, 

suggesting a founder-effect (Zhao et al., 2014; Caetano et al., 2014).  

 

Yeast complementation assays resulted in reduced viability or no growth of the 

transformed strains, due to protein instability. Lymphoblast cultures of patients 

showed negligible expression of the HINT1 protein due to post-translational 

degradation. How this leads to neurodegeneration has not been established yet but 

transcriptional regulation and/or RNA metabolism have been implied (Zimon et al., 

2012). The original study was performed in a cohort with predominantly eastern 

European patients with autosomal recessive or sporadic CMT. To examine the 

frequency of mutations in HINT1 in the UK population, a cohort with predominantly 

recessive CMT2 was selected from the cases available at Queen Square for this 

study.  

SCN9A 

Pain disorders can be severe, debilitating conditions, which affect almost 10% of the 

worldwide population. Currently, treatment of these disorders remains unsatisfactory 

(Lampert et al, 2010). The most essential nociceptive or pain-signalling sensory 

neurons are located in the dorsal root ganglia (DRG) and trigeminal ganglia and 

constitute the peripheral entry point of the pain pathway. When stimulated, these 

neurons produce a series of action potentials, allowing information about the external 

sensory world to be transmitted to the brain. Injury to these neurons causes them to 

become hyperexcitable, thus giving rise to abnormal, unprovoked spontaneous action 

potentials or pathological bursting, which results in chronic pain (Fisher et al, 2010).  

Two distinct phenotypes involving chronic pain are caused by gain-of-function 
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mutations in SCN9A, while loss-of-function mutations have been found in patients 

with a congenital insensitivity to pain (CIP). Despite SCN9A mutations having been 

a long-established cause of pain disorders, we screened a cohort of our patients for 

mutations in the gene. A large number of SCN9A mutations have been reported in 

this highly polymorphic gene, but little estimation has been made about how 

frequently mutations occur in these disorders. For example, a study in 19 patients 

with pain disorders resulted in a positive result in SCN9A in only two of the patients 

(Klein et al., 2013).  

 

Inherited erythromelalgia is characterised by episodic symmetrical red congestion, 

vasodilatation and burning pain of the feet and the lower legs, mostly provoked by 

exercise, long standing or exposure to warmth. Relief could be obtained with cold 

(Michiels et al, 2005). The severity of this disorder can progress with age, and the 

symptoms may extend over a larger bodily area and become constant (Mandell et al, 

1977). In the absence of an underlying cause (such as myeloproliferative diseases or 

as a side effect of medication), it is referred as‘Primary erythromelalgia’, which is 

known to be an autosomal dominant disorder (Fisher et al, 2010).  

 

Paroxysmal extreme pain disorder, also known as familial rectal pain, is 

characterised by paroxysms of rectal, ocular, or submandibular pain with flushing 

(Fertleman et al, 2006). These pain attacks start as early as infancy and are 

accompanied by autonomic manifestations such as skin flushing. The severity of 

pain is worst in the lower part of the body and can be triggered by bowel movements 

or probing of the perianal area. Attacks can also be accompanied by tonic 

nonepileptic seizures, bradycardia, and/or apnea, which appear to be more common 

in infancy and young children. The cause for the seizure-like activity and cardiac 

symptoms is not well understood (Fisher et al, 2010).  

Why IEM patients experience pain in the feet and hands, triggered by warmth, while 

PEPD patients experience pain in the perianal area, triggered by rectal stimuli, 

perimandibular and/or periocular pain, is not currently known (Fisher et al, 2010).  

 

In the case of loss-of-function mutations in SCN9A, which produce truncated, 

nonfunctional proteins (Fisher et al, 2010), the resulting phenotype is congenital 

insensitivity to pain (CIP). Patients display painless burns, fractures, and injuries of 
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the lips and tongue and were reported never to have felt pain in any part of the body 

in response to any injury or noxious stimulus. Other sensory modalities are preserved 

and the remainder of the patients’ central and peripheral nervous systems are intact 

by report. Patients did not appear to exhibit any autonomic or motor abnormalities, 

and reportedly had normal tear formation, sweating ability, reflexes, and intelligence. 

(Fisher et al, 2010).  

 

Voltage-gated sodium channels are important in the generation and conduction of 

action potentials. These are integral membrane proteins and are comprised of a large 

α-subunit, which forms the voltage-sensitive and ion-selective pore, and smaller 

auxiliary β-subunit(s) that can modulate the kinetics and voltage dependence of 

channel gating (Catteral et al, 2000). There are 9 isoforms known of the sodium-

channel α-subunit (Nav1.1–Nav1.9), each with a unique central and peripheral 

nervous system expression profile. These different sodium channels share a common 

structure but are encoded by different genes and manifest distinct voltage-dependent 

and kinetic properties (Catteral et al, 2005). All α-subunits share the same general 

structure of six transmembrane segments (S1 to S6) present in each of four domains 

(DI to DIV), which are connected by intracellular peptide linkers. Voltage-gated 

sodium channels are members of the P-loop channel superfamily, which also 

includes voltage-gated potassium and calcium channels. 

The voltage sensors in these channels are formed by the S1 to S4 transmembrane 

segments in every domain, while the walls of the permeation pathway are formed by 

the S6 helices. S4 is characterised by a series of positive gating charges that are 

crucial for sensing changes in the membrane potential (Lampert et al, 2010).  

 

Nav1.7, Nav1.8, and Nav1.9 are the sodium channels known to be expressed 

neuronally. They are preferentially expressed in DRG and trigeminal ganglia 

neurons, most of which are nociceptive. The Nav 1.7 channel is expressed in almost 

all DRG neurons at various levels while the Nav1.8 and Nav1.9 channels are 

primarily expressed in small DRG neurons that include nociceptors (Fisher et al, 

2010). Although Nav1.3 channels are not expressed above background levels in 

adult DRG neurons, the Nav1.3 channel has been shown to be upregulated in DRG 

neurons following injury. Therefore, along with the Nav1.8 and Nav1.9 channels, 

Nav1.3 has been suggested to play a role in neuropathic pain (Black et al, 1999). The 



121 

 

various voltage-dependent sodium channels present in these neurons can not only be 

differentiated by their gating kinetics and voltage dependence, but also by their 

sensitivity to the voltage-gated sodium-channel blocker tetrodotoxin (TTX) (Drenth 

et al, 2007). The Nav1.8 and Nav1.9 channels can be distinguished from the Nav1.7 

channel by their resistance to TTX (Dib-hajj et al, 1999), while the Nav1.7 channel 

produces a rapidly activating and inactivating current that is sensitive to 

submicromolar levels of TTX. Here, we will focus on the first of the α-subunits, 

Nav1.7, because of its critical role in pain sensation. 

 

Nav1.7 is encoded by SCN9A, a 113,5-kb gene comprising 26 exons. The coding 

region accounts for 1977 amino acids, which are organised into the typical structure 

of four domains each with six transmembrane segments. This particular sodium 

channel is predominantly expressed in the dorsal root ganglion neurons and 

sympathetic neurons (Toledo, 1997). The large majority of DRG neurons that 

express this channel are pain sensing (nociceptive), suggesting a role for Nav1.7 in 

the pathogenesis of pain.  

 

Nav1.7 is characterised by slow transition of the channel into an inactive state when 

it is depolarised, even to a minor degree, a property that allows these channels to 

remain available for activation with small or slowly developing depolarisations. 

Thus, Nav1.7 acts as a “threshold channel” that amplifies small, subtle 

depolarisations such as generator potentials, thereby bringing neurons to voltages 

that stimulate Nav1.8, which has a more depolarised activation threshold. Nav1.8 

then produces most of the transmembrane current responsible for the depolarising 

phase of action potentials (Renganathan et al, 2001). In this regard, Nav1.7 is 

proposed as a molecular gatekeeper of pain detection at peripheral nociceptors 

(Waxman, 2007). 

 

A number of SCN9A gene point mutations are associated with human genetic pain 

disorders. Mutations causing a loss of function of Nav1.7 have been found in 

individuals with CIP. Conversely, 22 distinct mutations of Nav1.7 causing a gain of 

function have been found in individuals suffering from the pain syndromes IEM and 

PEPD. All 14 CIP-inducing mutations identified so far introduce a stop codon, 

which leads to premature protein truncation. The majority of patients are 
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homozygous, although some are compound heterozygotes with two different 

mutations, one on each allele. Mutations for IEM and PEPD on the contrary, are all 

missense mutations. The 13 mutations described for IEM were all identified as 

mutations located in highly conserved regions, while the substituted amino acids in 

PEPD lie in channel sections essential for fast inactivation, namely the linker 

between domains III and IV containing the IFM sequence motif that constitutes the 

inactivation particle and the inactivation particle receptor site (Lampert et al, 2010). 

4.1.3 Mouse models as an example to screen new genes  

Apart from accumulating additional knowledge about already known genes, further 

data can also be extracted by comparison with already known genes in animal 

models. The discovery of new animal models which are phenotypically similar to 

existing models or resemble the phenotype in patients invoke the need to screen 

relevant patient groups, to investigate whether these could also result in disease in 

humans.  For most cases, animal models were generated after the discovery of the 

gene, but a handful of mouse models have been described with motor 

neurodegeneration where initially there was no causal gene known. Examples of this 

are the motor neuron degeneration 2 (mnd2) mouse (Jones et al., 1993) or the motor 

neuron disease (mneu) mouse (Miyata, 1983). Over the years, some of these cases 

were solved by finding the causative gene such as for the neuromuscular 

degeneration (nmd) mouse (Cox et al., 1998), the peripheral motoneuronopathy 

(pmn) mouse (Martin et al., 2002) and the legs at odd angles (loa) mouse 

(Hafezparast et al., 2003). In these three examples, patients were found with 

mutations in the same genes, leading to a similar phenotype.  

 

Through collaboration with the MRC functional genomics unit in Oxford, a mutation 

in the ADP-ribosylation factor-like protein 1 (ARL1) gene was found in a mouse 

mutant. This mutation caused a progressive tremor and loss of fibres in the nerves, 

which points towards demyelination. ARL1 is known to be localised on the trans-

golgi and has been proposed to have a function in both exocytosis and in retrograde 

traffic from endosomes (Lowe et al., 1996). In this context, myelin biogenesis and 

maintenance is a complex process involving coordinated exocytosis, endocytosis, 

and cytoskeletal dynamics. Faults in the myelin protein trafficking and/or turnover 

could lead to demyelinating neuropathies in humans (Scherer et al., 2008).   
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In the same pathway, a mutation in the ARL6ip1 gene was found in-house in a family 

with spasticity, neuropathy and mental retardation. This gene has previously  been 

suggested as a HSP candidate gene, as a homozygous frameshift variant was found 

in a large family with the disease (Novarino et al., 2014). ARL6ip1 encodes a 

membrane protein found in the ER, implicated in the formation of ER tubules. A 

zebrafish knockdown resulted in a phenotype of both touch-induced and spontaneous 

locomotion behaviour, as previously reported for other HSP candidate genes (Fassier 

et al., 2010). In combination with the results from the mouse model, the presence of 

mutations in two genes of the same pathway leading to neurodegeneration 

encouraged us to screen different cohorts for mutations in these genes.  

 

4.2 Results  

4.2.1 FIG4 

Primer sequences were obtained from the lab of Prof. Timmerman in Belgium and in 

the selected cohort of 35 patients, one case was found to be a FIG4 compound 

heterozygote carrying the previously reported p.Ile41Thr missense mutation and the 

protein truncation mutation p.Lys278YfsX5 (Fig. 4.1). A further nine variants were 

found in the cohort, six of which were intronic (Table 4.1). All but one were present 

in a high frequency in the EVS server database. One novel variant, c.289+5G>A, 

was predicted to affect the splicing site by spliceport. However, since CMT4J is a 

recessive disease, the presence of an additional mutation is required. Investigation 

showed no extra variants in this patient.  

 

Figure 4-1 Electropherograms of compound heterozygous mutations found in FIG4. 
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Variants dbSNP No Info 

c.67-7T>C rs56378532 Intronic 

c.289+5G>A   Intronic 

c.647-18C>A rs2273752 Intronic 

c.877-54_877-50delTCATT rs57291908 Intronic 

c.1948+3A>G rs10499054 Intronic 

c.1961T>C rs9885672 High frequency 

c.2180+63G>T rs9384723 Intronic 

c.2559G>A rs1127771 Synonymous 

c.*29G>A rs10659 High frequency 

Table 4-1 Variants found in the FIG4 gene. 

Clinical details  

A 26-year old man diagnosed with a congenital hypomyelinating neuropathy 

(CMT1), with early onset progressive weakness in all 4 limbs, was referred to clinic 

with rapid development of a wasted left arm over a period of 2 years. Following 

normal pregnancy and delivery, he had walked late at 26 months of age. He was the 

youngest of four brothers in a non-consanguineous Scottish family with no family 

history of neuromuscular disease. Both parents previously had normal clinical and  

neurophysiological examinations. In early childhood, progressive weakness, starting 

distally and advancing proximally, was observed. At 13 years of age, he started using 

a wheelchair and he became completely wheelchair dependent following a fracture 

of the left femur at 22 years of age. Two years prior to presentation, he developed 

rapidly progressive distal weakness of the left upper limb that progressed proximally. 

The left hand has been left functionally useless, whilst before there was only mild 

symmetric weakness and function was preserved function in both hands. No 

improvement was seen despite a 5-day course of 500 mg methylprednisolone.  

 

On examination, he had a wasted, flaccid clawed left hand with wrist drop. There 

was no movement on finger extension or in the intrinsic muscles of the left hand and 

strength at the elbow, wrist and the intrinsic muscles of the left hand was lower than 

the right hand. There was mild weakness of hip flexion. He was areflexic. Vibration 

sense was normal in the right hand, reduced to the metacarpophalangeal joint in the 

left hand, and to the costal margins bilaterally in the lower limbs. Proprioception was 
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reduced to the right metacarpophalangeal joint, left wrist, and knees bilaterally. 

Sensation for pinprick was reduced to the wrist and ankles bilaterally.  

 

Due to the rapidly progressive distal weakness of the left upper limb and the lack of 

a response to anti-inflammatories, a neoplastic cause was also suspected, particularly 

involving the left brachial plexus. An MRI of both brachial plexuses was normal and 

a T1 weighted MRI of the left upper limb at latest presentation demonstrated fatty 

infiltration of muscles, more marked distally, with sparing of biceps compared with 

triceps (Fig. 4.2).  

 

 

 

 

 

 

 

Figure 4-2 MRI of the patient. At the level of the upper humerus (A) there are 

streaks of fat infiltration in deltoid muscle.  At the level of the lower humerus (B) 

there is extensive fat infiltration of triceps (black arrowhead) with less infiltration in 

biceps (white arrowhead).  In the forearm (C) there is extensive fat infiltration of all 

muscle compartments.  Image orientation is the same for all images. 

Nerve conduction studies were performed at the age of 13 years, 19 years and at the 

latest presentation at age 26 years (Table 4.2). These showed a demyelinating 

neuropathy with dispersed proximal responses and a fall in the conduction velocity 

in the right median nerve from 16 m/s to 4 m/s over 6 years. In the latest studies, 

there was a significant asymmetry in the CMAP, with low amplitudes in the right 

median and ulnar nerves, and absent amplitudes on the left. There was evidence of 

conduction block in the right median nerve. 

 

The most recent EMG showed no spontaneous activity and wide polyphasic units 

firing at high rates in relative isolation, consistent with severe chronic denervation, in 

the right triceps, right first dorsal interosseous (FDIO), left deltoid, left biceps, left 

triceps, and left extensor digitorum communis muscles. EMG of the left FDIO 
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showed frequent fibrillations and positive sharp waves and no motor units under 

voluntary control. A sural nerve biopsy was performed at 14 years of age and 

showed a severe demyelinating neuropathy with complete absence of large regularly 

myelinated axons in the resin semi-thin section and electron microscopy (Fig. 4.3).  

 

 13 years 19 years 26 years 

Motor conduction    

Median (R)    

  DML                 7.6 ms 12.0 ms 9.2 ms 

  CMAP (Wrist)      2.3 mV 4.4 mV 3.9 mV 

  CMAP (Elbow) 0.5 mV (dispersed) 2.4 mV (dispersed) unobtainable 

  CV                     16 m/s 4 m/s  

Median (L)    

  CMAP (Wrist)   absent 

Ulnar (R)    

    DML                   6.8 ms 7.6 ms 15.6 

    CMAP (Wrist)   1.4 mV 1.3 mV 0.7 mV 

    CMAP (Elbow) unobtainable unobtainable 0.4 mV (dispersed) 

    CV                        4 m/s 

Ulnar (L)    

    CMAP (Wrist)  absent absent 

Posterior Tibial (R)    

    CMAP (Ankle) absent   

Common Peroneal (R)    

    CMAP (Ankle) absent   

Sensory conduction    

Median (Right) absent absent  

Ulnar (Right) absent absent  

Radial (Right)  absent  

Median (Left)   absent 

Ulnar (Left)   absent 

Sural (Right) absent   

Table 4-2 Nerve conduction studies at ages 13,19 and 26. L = Left; R = Right; DML = distal motor 

latency; CMAP = compound muscle action potential; CV = conduction velocity. 
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There were relatively frequent large and medium-sized thinly myelinated fibres 

surrounded by concentric layers of Schwann cell profiles in keeping with onion 

bulbs. Several axons within the onion bulbs were devoid of myelin sheaths. No 

inflammation was present. 

 

Figure 4-3 Sural nerve biopsy at age 14 years. (A and B) Semi-thin resin sections, stained with 

methylene blue azure – basic fuchsin. One single fascicle with absent large normally myelinated 

fibres and frequent large thinly myelinated fibres surrounded by concentric Schwann cell profiles (red 

arrowheads). (C) Electron microscopy showing demyelinating fibres losing their myelin sheath (blue 

arrowheads) (D) Electron microscopy showing frequent onion bulbs consisting of concentric 

multilayers of Schwann cell processes (blue arrowheads). The Schwann cell processes within the 

onion bulbs are separated by densely packed collagen bundles. Scale bar: 200 μm (A), 100 μm (B), 

2.5 μm (C), 5 μm (D).  

4.2.2 C9orf72 

A cohort of 185 dHMN patients was screened for the repeat expansion in C9orf72.  

No patients presented with a pathological repeat expansion that was significantly 

over the threshold. Different amounts of repeats were found in the cohort with the 

longest repeat length consisting of 17 repeats, found in two patients (Fig. 4.4). 
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Whilst the pathogenic cut-off for the repeat expansions remains debatable, repeat 

sizes of 17 are commonly found in controls and are regarded as non-pathogenic.  

 

Figure 4-4 Example of fragment analysis in C9orf72. Upper panel = control. Lower panel = CMT2 

patient. A repeat size of 17 repeats was found, which has been shown to be non-pathogenic. 

4.2.3 HINT1  

We investigated a cohort of 127 patients with predominantly recessive CMT2, but no 

mutations in the HINT1 gene were found (Table 4.3).   

 

Phenotype #Patients  

CMT2 84 

Intermediate CMT 15 

CMT1 2 

Unclassified CMT 4 

CMT2 plus 7 

CMT1 plus 2 

dHMN 11 

HSAN 2 

Table 4-3 Phenotype for the 127 patients 

analysed for mutations in the HINT1 gene. 

In the whole cohort, four variants were found, two of which were intronic and two 

synonymous; all were present in the EVS at a high frequency (Table 4.4). A cohort 

of 33 samples with CMT2 of Spanish origin was investigated by Dr. Alex Horga, a 

fellow PhD student, which also resulted in no pathogenic variants (In press). 
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Variants dbSNP No. Info 

c.57T>C rs4696 Synonymous 

c.111+37T>G rs2278060  Intronic  

c.159G>A rs199716973 Synonymous  

c.216+37T>C rs17165688 Intronic  

Table 4-4 Variants found in the HINT1 gene. 

4.2.4 SCN9A 

Three patients with CIP and twelve patients with IEM were selected for screening of 

SCN9A (Table 4.5).  

 

Cases Sex Diagnosis Clinical features 

1  F CIP AR neuropathy, lack of sensation hands and feet, parents are 

cousins 

2 F CIP CIP, AR neuropathy, very early onset, lack of distal sensation 

mainly to pain. 

3 M IEM Stinking, painful and bright red feet felt to be consistent with 

erythromelalgia. 

4 F CIP Neuropathy, pain loss distally. 

5 F IEM Facial flushing provoked by heat, wheat and spicy food. 

Episodes associated with burning dypaesthenia. Episodic 

bilateral facial aedoma. Onset age 13.  

6 F IEM FH of narcolepsy and pes cavus. Small fibre neuropathy. Painful 

feet with redness.  

Checking for mutations in SPTLC and RAS7.  

7 F IEM Arms and face associated with face pain and headache. 

8 M IEM Painful neuropathy. Redness and discolouration. Negative for 

SPTLC1. 

9 F IEM Painful feet and cold feet. 

10 F IEM Familial neuropathy. Pain and numbness. 

11 M IEM Painful erythromelalgia and redness. 

12 F IEM Episodic pain + redness in feet. 

13 M IEM History of pain & redness - episodic - both feet. Some 

improvement with carbamazepine. 

14 M IEM Painful erythromelalgia and redness. 

15 F IEM Sister also affected. Very painful neuropathy with erythema. 

Table 4-5 Patient cohort for the screening of SCN9A. 
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No known mutations were found in either of the two groups. However, 18 intronic 

and 15 coding variants were found, seven of which were synonymous (Table 4.6). 

No further investigations were made for the intronic variants, since none of them 

were located close to a splice site. Out of seven synonymous variants, only one was 

novel, which was not located anywhere close to a splice site hence no further 

investigations were made. Seven out of eight coding, nonsynonymous variants were 

prevalent in the EVS and ExAc databases. The remaining novel variant was the 

c.4645T>C (p.Trp1549Arg) missense variant in patient no.9, suffering from IEM 

with painful and cold feet (Fig.4.5). This variation is situated in the S2 

transmembranic segment of domain four and changes tryptophan 1549 to arginine. 

So far, no other mutations have been found in any of the S2 segments. Few 

mutations, causing either CIP or PEPD have been found in domain four. Both 

PolyPhen2 as SIFT prediction programs were used, resulting in a contradicting 

outcome. However, prediction programs are often not very accurate, and when 

known SCN9A mutations are entered, they can also be predicted as being benign. 

Tryptophan 1549 is conserved amongst higher species and the change of an aromatic 

aminoacid to a negative would suggest that this might be a pathogenic mutation.  

 

Synonymous changes  Coding nonsynonymous 

c.174G>A  rs6432901 c.684C>G rs71428908 

c.444A>G rs9646771 c.2971G>T rs4369876 

c.1119T>C rs13414203 c.3329G>A rs74401238 

c.1266A>G  rs13402180 c.3448T>C rs6746030 

c.1287T>A rs6747673 c.4612T>C rs202084411 

c.3642C>A rs77144869 c.4645T>C   

c.4812G>T   c.4741+16T>A rs10180721 

  c.5725A>G rs3750904 

Table 4-6 Coding changes found in the SCN9A gene. 
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Figure 4-5 Missense variant  in SCN9A. (A) Electropherogram of the c.4645T>C 

missense variant in patient 9. (B) Conservation of the tryptophan aminoacid at 

position 1549 in SCN9A. 

4.2.5 ARL1 and ARL6ip1 

Screening of ARL1  

A cohort of 35 patients with CMT1 was selected for screening of ARL1, but no 

coding variants were found. Five variants were found outside the coding regions, 

with four of them located deep in the introns of the gene (Table 4.7). The last variant 

was located three base pairs from the stop codon but showed a high prevalence in the 

EVS database.  

Variants dbSNP no  

c.1-82G>C rs76432489 

c.225-58T>G  rs17500203 

c.336+74A>G   

c.337-18A>G rs73159756 

c.*3C>A rs201219157 

Table 4-7 Variants found in the 

ARL1 gene. 

Screening of ARL6ip1 

45 patients with a CMT2 phenotype were selected for screening of ARL6ip1. Results 

showed three intronic variants and one coding, synonymous variant present in the 

EVS database (Table 4.8).  
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Variants RS no 

c.36+104delC rs141868228 

c.170+12A>T rs17663173 

c.204C>T rs138748723 

c.409-18T>C rs71382566 

Table 4-8 Variants found in the 

ARL6ip1 gene.  

4.3 Discussion  

4.3.1 FIG4 

Multiple reports have shown cases of patients with CMT and mutations in GJB1, 

SH3TC2 or SPTLC1 mimicking CIDP by showing asymmetric or proximal weakness 

(Houlden et al., 2006; Houlden et al., 2009; Michell et al., 2009). When combined 

with a progressive course and a poor response to treatment, the possibility of CMT 

might arise. The presence of a proximal and asymmetric weakness and rapid 

deterioration of strength in a single limb in our patient suggested the presentation of 

CIDP with an underlying genetic neuropathy, which would have been expected to 

improve with immunosuppressant medication. However, two compound 

heterozygous mutations in the FIG4 gene were found resulting in the FIG4 

I41T/K278YfsX5 genotype. One patient has been described with the same genotype 

before, and has also been treated with immunosuppressant medication (Nicholson et 

al., 2011). He had been diagnosed with Dejerine-Sottas syndrome at age 5 and 

progressed to wheelchair dependence over a period of 30 years, then developed a 

rapidly progressive weakness of his left arm at age 41. Sural nerve biopsy also 

showed features of onion bulbs and extensive loss of large diameter myelinated 

fibres. Improvement with corticosteroids was not sustained, and there was no 

response to intravenous immunoglobulin.  

 

This leads to the conclusion that compound heterozygous mutations in FIG4 can be a 

rare cause of Charcot-Marie-Tooth disease where initially inflammatory 

demyelinating neuropathy is suspected. Early onset and progressive proximal and 

distal weakness in a single limb with chronic denervation changes on EMG are 

clinical clues that could suggest the diagnosis.  
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4.3.2 C9orf72 

There was an absence of C9orf72 repeat expansions in the dHMN cohort screened, 

which helped to define the spectrum of C9orf72 expansion-associated 

neuropathology. Repeats above 60 are normally considered pathologic; repeat sizes 

between 30-60 remain debatable as intermediate alleles and their significance has not 

been clarified yet. The longest repeat size found in our cohort was 17 repeats, 

regarded as being non-pathogenic. Therefore it could be concluded that repeat 

expansions in C9orf72 are highly unlikely to be responsible for a CMT phenotype.  

4.3.3 HINT1  

The original report by Zimon et al. stated a frequency of mutations in HINT1 of 

11%, which could not be replicated in our study. Only 33 families with a very 

specific phenotype were originally screened in the paper, explaining the high 

frequency. It is remarkable that even in a large cohort of more phenotypically 

heterogeneous CMT2, no mutations were observed. This suggest that mutations in 

HINT1 might not be as frequent as stated in CMT and predominantly occur in 

families presenting with a specific phenotype of axonal neuropathy and 

neuromyotonia. Screening of a Spanish cohort resulted in the same negative results 

and together with the observation that from a total of 73 patients with HINT1-related 

neuropathies reported to date, 59 (81%) are from the Czech Republic, Austria, 

Serbia, Bulgaria and Turkey, the presence of a founder-effect is highly likely. This 

geographical distribution together with mutation distribution and haplotype studies 

suggests the presence of founder effects that may explain the prevalence of the 

disorder in those areas. HINT1-related neuropathies are not widely distributed but 

mostly confined to specific European populations, although additional studies are 

needed to confirm this observation. This conclusion underlines the importance of 

considering the ethnic background of a patient when screening for mutations in 

neuropathy-related genes. 

4.3.4 SCN9A 

Only one potentially pathogenic variant was found in the 15 patients with pain 

disorders. This patient was seen in clinic only once and was diagnosed with a small 

fibre painful neuropathy at late onset in adulthood. She had no family history and is 

now in her seventies. Unfortunately, the patient did not return for further clinical 

investigation and DNA from the family was not available for segregation. Whilst the 
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prediction programs were contradictionary, the absence of the mutation in controls 

and the relatively high conservation indicate the potential pathogenicity of the 

variant. None of the other patients with CIP or IEM showed any possible pathogenic 

variants in the exons of the SCN9A gene and will be investigated further for 

mutations that could explain the phenotype.  

4.3.5 ARL1 and ARL6ip1 

Although no mutations were found in our cohort for the ARL1 or ARL6ip1 genes, 

this does not rule out these genes as causative genes for peripheral neuropathies. The 

presence of a progressive tremor and loss of fibres in the nerves in mutated mice 

indicates demyelination and further studies in undiagnosed families with similar 

phenotypes might reveal mutations in these genes. 

4.3.6 Overall discussion  

Recent advantages in next-generation sequencing have dramatically changed the 

process of Mendelian disease gene identification. Past identification of Mendelian 

disease genes was carried out by Sanger sequencing, with candidate genes being 

selected due to resemblance of genes in similar diseases, predicted protein function 

being relevant or positional mapping pointing to a genomic region. The rise of next 

generation sequencing techniques has resulted in a move from the use of Sanger 

sequencing for a general search of causative genes towards more targeted 

resequencing. There is no longer a need for complex and time-consuming processes 

for gene-identification and in the future, more advanced techniques will become 

faster and more affordable, leading to the disappearance of single gene testing. In the 

meantime, diagnostic guidelines are used to target specific genes in undiagnosed 

families or cohorts.  
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Chapter 5 

Whole exome sequencing 

5.1 Introduction  

5.1.1 Previous ways to identify disease genes 

Historically, before the use of mapping information, the discovery of pathogenic 

mutations in genes started with position-independent methods based on the 

knowledge of the gene product. Approaches ranged from the generation of a cDNA 

expression library out of amino acid information, animal models or detection of 

repeat expansions in the case of anticipation of disorders along generations. When 

techniques such as linkage analysis became available to estimate the approximate 

chromosomal location, positional cloning techniques were used to identify the causal 

gene. Clones were established for the whole of the candidate region and a transcript 

map was used to identify all genes within the candidate region. This list of genes was 

further prioritised by appropriate expression pattern, function, or homology to a 

relevant paralogous or orthologous gene. In rare cases, chromosomal abnormalities 

such as translocations or deletions provided an alternative method of localising a 

disease gene.  Mutation screening, restoration of the normal phenotype in vitro or 

production of a mouse model of the disease were used to demonstrate the likeliness 

of a candidate gene as disease locus.  
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5.1.1 Discovering new genes with the use of whole exome sequencing  

The recent shift from traditional Sanger sequencing and linkage analysis to high-

throughput next-generation sequencing methods has revolutionised gene discovery 

and diagnostics for Mendelian and complex diseases, and exome sequencing has 

already been proven to be a useful tool in the discovery of new Mendelian disease 

genes. In more than 85% of the cases, mutations associated with known Mendelian 

diseases are located in protein-coding exons (Bamshad et al., 2011). Therefore, 

exome sequencing may be an efficient tool for the identification of novel 

mutations/genes in patients with diseases such as CMT2. While there are still some 

challenges to overcome, using this technique is on the whole advantageous. In the 

first two results sections, focus will be on two examples where interesting candidate 

genes were found and pursued with functional experiments. However, in the 

majority of cases, identifying one specific candidate gene has been proven to be 

difficult. Most of the remaining undiagnosed CMT families are small and only few 

ways to narrow down the list of candidate genes are possible. Even in larger families 

this raises a problem. The remaining result sections will go through the challenges of 

finding a new gene with the help of exome sequencing and some of the open 

questions that it results in.     

5.1.2 The usage of linkage analysis in combination with whole exome 

sequencing  

Although exome sequencing is an extremely useful technique, one of the 

disadvantages when performed on two distant relatives such as cousins is that it can 

give up to thousands of shared nonsynonymous variants. Different filters can be used 

to narrow down these lists of variants, but one highly useful technique is linkage 

analysis (Fig. 5.1). Several generations with multiple affected and unaffected 

individuals are necessary to give power to this technique. These affected and 

unaffected family members are used to map the fragments of the genome that are 

shared only by the affected patients and not by the unaffected members of the 

family. Only variants that are present in linkage areas could be causing the disease. 

This could narrow down the list of possible variants significantly, but for diseases 

where there is a high risk of incomplete penetrance, this is not the optimal technique 

to use. In CMT2, there are only few cases that have shown reduced penetrance in 

families with MFN2 or TRPV4 mutations (Nicholson et al., 2008; Berciano et al., 
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2011), meaning we can safely assume no pathogenic variants will be excluded when 

using a model with 90% penetrance.  

5.1.3 Prioritizing variants to find a favourable candidate gene  

Even though linkage analysis can significantly reduce the candidate gene list, 

additional methods are necessary to decide on a specific candidate gene (Fig. 5.1). 

First of all, synonymous variants and variants with a segmental duplication 

coefficient higher than 0.96 will be excluded. Of the remaining variants, those that 

have a minor allele frequency higher than 0.5% in the public databases will also be 

omitted. As few genes in CMT2 show incomplete penetrance, variants that are novel 

and have not been found in any of the publicly available databases will be 

prioritised. Providing there are no mutations in the known CMT2 genes, variants in 

genes that have been implicated in other neurological diseases can be excellent 

candidates. Recent research has shown the expansion of phenotypes associated with 

genes is becoming increasingly more common. In the event that none of the variants 

are located in pathogenic genes, a selection can be made of genes specifically 

expressed in the PNS, or with functions related to known pathogenic mechanisms in 

CMT2. Evidence of genetic or functional interactions with known CMT2 genes can 

also shortlist candidates. This usually results in a reduced list of potential candidates. 

5.1.4 The ubiquitous variants of unknown significance  

For many, if not all, novel missense mutations, there can be little data on which 

pathogenicity can be based. A range of bioinformatics tools are available to predict 

or estimate the influence of a variant by looking at the evolutionary conservation, the 

consequences on structural conformation, and many others.  

 

Whilst these tools can be useful to prioritise the most likely candidate gene, their 

predictive power is highly variable and does not lead to definitive conclusions. Due 

to the genotypically heterogeneous character of CMT, the functions of known 

pathogenic genes are extremely divergent; meaning functional testing of candidate 

genes will rarely have a precursor amongst the known genes. This results in the 

development of individual functional tests to prove the pathogenicity of novel 

variants, a time-consuming and often difficult task.  
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Figure 5-1 Exome sequencing workflow, starting 

from the return of the data to the choice of a 

candidate gene.  

 

Similarly, it can be as challenging to prove a variant is benign as it is to prove it is 

pathogenic. This will result in the presence of variants of unknown significance that 

can only be ruled out over time. As more next-generation sequencing data will 

become available, fewer variants will be considered novel and clinical and molecular 

research will categorise variants as convincingly benign or pathogenic. However, 

caution has to be taken with publicly available data.  The increase in NGS data will 

identify rare variants previously considered as rare to be polymorphisms, but at the 

same time  will  return more novel variants that result from the normal mutation rate. 

It should be anticipated that the existence of novel mutations will persist and will 

remain challenging.   
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5.2 Results  

5.2.1 Success rate of exome sequencing in rare diseases  

In our centre, exome sequencing was performed in 31 probands and 22 relatives with 

CMT. Out of these, 24 cases were familial and 7 were sporadic. In three of the 

probands, mutations were located in known genes. One probable pathogenic genetic 

variant was identified in a novel gene in one pedigree, and two definite pathogenic 

variants were found in two unrelated pedigrees in novel genes. Whilst analysis is still 

in progress, preliminary results suggest a success rate of 6/31 (19%) of exome 

sequencing for the detection of known or novel variants in inherited neuropathies 

(unpublished data). Published data by several groups can range from a success rate 

of 10-71% (Gilissen et al., 2012; Need et al., 2012; Gahl et al., 2012; de Ligt et al., 

2012; Choi et al., 2012). This immense range results from differences in the exome 

sequencing approach. Studies with a high success rate have a higher turnover of 

mutations in known pathogenic CMT genes, resulting from a more diagnostic 

approach. Depending on the phenotype of the family and the centre of research, 

exome sequencing can be a more cost-efficient way to find the genetic diagnosis, 

especially when families are less well-characterised.  

5.2.2 Family D 

The index case (Patient IV-1, Fig. 5.2) was a 24 year-old patient who had normal 

birth and normal milestones. From the age of 2 he had frequent falls, lower limb 

wasting and a tendency to turn over his ankles and high arches. Slowly progressive 

distal wasting and weakness of the lower limbs and sensory loss in the feet followed. 

During examination, he was unable to stand unaided from sitting and had a positive 

Gower’s manoeuvre. He was unable to stand on heels or toes and walked with a 

slightly stiff gait. Tone was increased in the lower limbs, with no clonus. Distal 

wasting was present in both the upper and lower limbs. He was areflexic. Sensory 

examination showed pin prick reduction in the fingers and to the proximal half of the 

calf bilaterally; vibration sense was present at the knees and proprioception was 

normal.  
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Figure 5-2 Pedigree of CMT2 family D. The index 

case is indicated with an arrow. Black symbols 

represent individuals with CMT2.  

NCS revealed an axonal sensorimotor neuropathy affecting the lower limbs only. 

EMG showed a neurogenic pattern with proximal and distal lower limb muscles 

affected equally. Central motor conduction times to the lower limbs were mildly 

prolonged. Lateral vastus muscle biopsy showed angular atrophic fibres, grouping of 

type I and III fibres consistent with denervation and reinnervation. Respiratory chain 

enzyme analysis showed reduction of complex I  0.077 (ratio 0.104 – 0.268), II 

0.032 (ratio 0.040 – 0.204), IV 0.008 (ration 0.014 -0.034). 

 

The father of the index case (Patient III.1; Fig. 5.2) was 56 and has worn shoes with 

ankle support since the age of 15. He complained of occasional cramps and could 

run until the age of 48.  Neurological examination showed minimal wasting of 

intrinsic muscle of the hands and tibialis anterior. He had mild distal weakness in the 

upper and lower limbs. Reflexes were normal except ankle reflexes which were 

absent. Plantars were extensor. Sensory examination showed reduced pinprick to mid 

foot and mid palm bilaterally, reduced vibration sense to ankles, normal 

proprioception. NCS was consistent with an axonal sensory and motor neuropathy. 

EMG showed denervation changes in upper and lower limb muscles again equally 

involving proximal and distal muscles. 

The grandmother (Patient II.1; Fig. 5.2) was an 88 year old woman who had been 

diagnosed with Charcot-Marie-Tooth disease at the age of 49. She recalled being 

unable to stand on her toes in her 20s and walking “flat footed”. She began to use a 

stick at the age of 50 and her walking slowly deteriorated over the years and she 
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became wheelchair-bound in her 70s. In her 50s she developed symptoms in her 

upper limbs with hand fine movements difficulties. She developed hearing loss at the 

age of 78. Neurological examination showed intrinsic hand muscles and proximal 

and distal wasting in the lower limbs. She had moderate distal weakness in the upper 

limbs, mild proximal weakness in the lower limbs and severe distal lower limb 

weakness. She was areflexic. Sensory examination showed reduction of pin prick to 

the knees; vibration sense was absent in the lower limbs. Proprioception was normal. 

NCS showed a severe axonal motor and sensory peripheral neuropathy. EMG 

showed denervation in upper and lower limb muscles again with proximal and distal 

muscles being equally affected. The neurophysiological findings were similar to 

those demonstrated in her son and grandson.  

 

Overall, the phenotype in this family was consistent with an axonal sensor and motor 

neuropathy, however, the index case was much more severe in comparison to the 

father and grandmother.  

The discovery of a candidate gene  

Sequencing of the index patient at a diagnostic level returned negative results for 

PMP22, MPZ, GJB1, MFN2, TRPV4, HSPB1, HSPB8, GDAP and BSCL2.  He was 

also negative for common point mutations and large scale rearrangements of 

mitochondrial DNA in the muscle, and for common mutations in the nuclear 

encoded DNA polymerase gamma (POLG) and PEO1 genes. Full mitochondrial 

genome sequencing of muscle from the index patient identified a homoplasmic 

m.12241delC deletion in tRNA serine 2 (Fig. 5.3). This single base pair deletion was 

heteroplasmic (63%) in the mother’s blood. This variant has not been previously 

described and is located at a highly conserved nucleotide suggesting it may be 

pathogenic. Mitomap shows the presence of this variant in six samples out of 26,851; 

all located within different haplotypes, but no phenotypic data was available. 

Considering the difference in severity between the index case and the father and 

grandmother, the presence of this deletion in both index case and mother questions 

whether this might be an influencing factor on the phenotype of the index patient. 

This deletion is located in the T-stem of the tRNA Ser (AGY), in a short c-stretch, 

containing five G-C base pairs (Fig. 5.3). The m.12241 position is highly conserved 

amongst species, but depending on the nomenclature, this variant can also be 
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referred to as m.12239delC, a location that is much less conserved and is deleted in 

many species (Sprinzl et al., 1998). However, whilst other tRNA genes have shown 

to be more affected by mutations, only six mutations in the MT-TS2 are known to 

cause disease. These were associated with chronic intestinal pseudo-obstruction with 

myopathy and ophtalmoplegia, diabetes mellitus with deafness and retinitis 

pigmentosa with progressive sensorineural hearing loss, MELAS-like phenotype, 

and non-syndromic hearing impairment (Cardaioli et al., 2011).  

 

To find the causative variant, exome sequencing in the index patient, father and 

grandmother revealed novel variants in several genes which could explain the 

phenotype. In collaboration with Professor Zuchner’s lab in Miami, the candidate list 

was narrowed down to 34 possible candidates by a strict filtering approach for 

segregation of nonsynonymous heterozygous variants using the Genomes 

Management Application (GEM.app) software (See appendix II), one of them being 

the trafficking protein, kinesin binding 2 (TRAK2) gene.  

Trafficking protein, kinesin binding 2 

TRAK2, also known as Grif1 or Milton in drosophila, is a member of the molecular 

complex that links mitochondria to kinesin motors and is known to associate with 

MFN2 (Glater et al., 2006; Misko et al., 2010),  making it a suitable candidate to 

explain the phenotype, considering the lower activities of the complexes in the 

electron transport chain. TRAK2 is a 913-amino acid protein that was originally 

identified as a GABAA receptor-trafficking protein called GABAA receptor 

interacting factor-1 (GRIF-1) (Beck et al., 2002). It was renamed TRAK2 in 2006 

after studies showed it is a kinesin adaptor protein, part of the TRAK family of 

kinesin adaptors (Brickley et al., 2005; Smith et al., 2006). This family consists of 

two members, TRAK1 and TRAK2. Both bind to the cargo binding domain of 

kinesin-1 heavy chains to connect the motor protein and the cargo. One well-

established cargo in this context is the mitochondria.  
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Figure 5-3 (A) Electropherograms of the m.12441delC variant in the blood and muscle of the index 

patient and blood of the mother (III.2) in comparison with a control. b = blood; m = muscle (B) 

Localisation of the m.12241delC frameshift variant in tRNA serine 2 (C) Conservation of the basepare 

amongst different species.  
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Both TRAK1 and TRAK2 associate with the outer mitochondrial membrane GTPase 

protein Miro, facilitating mitochondrial transport (MacAskill et al., 2009; Brickley et 

al., 2011). Recent studies show that TRAK2 preferably binds to Dyenin/dynactin and 

is more abundantly expressed in dendrites. These differences in preference follow 

from their distinct conformations; TRAK2 adopts a folded conformation through an 

association between its NH2 and COOH termini, which inhibits the binding to 

kinesin-1 in low concentrations (Van Spronsen et al., 2013).  

The implications of mutations in TRAK2  

The transport of mitochondria is particularly vital in neurons because of their 

extended processes, and the disruption of mitochondrial transport is correlated with 

neurodegenerative diseases (Hollenbeck et al., 2005). So far, neither TRAK1 nor 

TRAK2 have been implicated in disease. Knockdown studies in hippocampal 

neurons show a decreased mitochondrial mobility in the TRAK1 shRNAi transfected 

cells, but no difference was found in TRAK2 shRNAi transfected cells (Brickley at 

al., 2011).  

 

In reference to CMT2, interaction between MFN2 and TRAK1/2 has been shown to 

mediate mitochondrial transport. CMT2A mutants result in an increased pause time 

and slower movement velocities in both anterograde and retrograde directions, 

similar as to what has been seen in the TRAK1 shRNAi transfected cells. Results 

suggest this occurs by affecting the functionality of the molecular adaptor complex 

that links mitochondria to kinesins and not by disrupting the formation, since the 

interaction is still present (Misko et al., 2010). With MFN2 being the most common 

gene in CMT2, TRAK2 presents as an interesting candidate gene to explain the 

phenotype in this family. Exome sequencing in our index patient revealed a novel 

variant in the TRAK2 gene, c.682C>T (p.Arg228Ter), which introduces a stop 

codon. This variant is located at a conserved location, part of a 297 amino acid 

stretch encoding a coiled-coil domain that shows high similarity to the Huntingtin-

associated protein-1 (HAP1). This protein is also a GABAA receptor β subunit 

interacting protein, similarly to TRAK2 (Kittler et al., 2004). HAP1 also functions as 

a kinesin adaptor protein, suggesting that this variant might affect the binding with 

kinesin (Twelvetrees et al., 2010).  
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Genetic screening of patients with CMT2 revealed two unrelated probands with 

variants in TRAK2  

Genomic DNA sequence analysis in a specifically selected cohort of 48 patients with 

CMT2 identified two different novel missense variants in two separate patients that 

were screened for variants in TRAK2: c.416G>A (p.Arg139Gln) in exon 5 and 

c.2099G>T (p.Ser700Ile) in exon 13 (Fig. 5.4). Neither was detected in 5250 

controls. Polyphen2 predicted c.416G>A to be damaging, contrasting the benign 

prediction of SIFT. The latter variant was predicted to be possibly damaging by both 

programs. Whilst the conservation of the c.416G>A variant is conserved over 

species and it is also located in the HAP1 homologous region, this is not the case for 

the c.2099G>T variant. Familial segregation analysis in the first patient revealed that 

the p.Arg139Gln variant was not present in the unaffected mother of the patient. 

DNA for the father was not available. The p.Ser700Ile variant in the second patient 

was found in the father of the patient, who was unaffected. This indicates that this 

variant is a polymorphism and not the cause of disease. Collaborators in Miami later 

on discovered an additional patient that presented with a CMT2 phenotype and a 

nonsense variant in the TRAK2 gene. However, this variant was also present in the 

non-affected father. The presence of a nonsense variant in this gene in a non-affected 

individual strongly suggests the variant found in our index case is not pathogenic and 

a hypothesis of haploinsufficiency would not be valid. Preliminary functional studies 

were already performed before this variant was found and will be discussed below.  

Clinical details of the patient with the c.416G>A missense variant in the TRAK2 

gene  

A 51 year-old male developed lower back pain at the age of 39. Two years later he 

developed numbness in his left leg. At the age of 43 he underwent L5/S1 discectomy 

and at that time he noticed wasting of the left calf. Over the years he had progressive 

wasting, weakness and sensory loss in the left leg and he noticed involvement of the 

right leg. His parents were not consanguineous; the mother was clinically examined 

and was unaffected and the father and one sibling were reportedly unaffected, 

although they were unavailable for examination. On neurological examination he 

walked with a bilateral foot drop and could not stand on toes or heels. He had distal 

wasting of the lower limbs, more pronounced on the left side. He had normal 

strength in the upper limbs and distal weakness in the lower limb.  
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Figure 5-4 Electropherograms and conservation of the novel missense variants found in the CMT2 patient cohort. 
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Triceps and knee reflexes were brisk, ankle jerks were absent and all other reflexes 

were present. Plantars were downgoing. Sensory examination showed decreased pin 

prick up to the distal half of the calf bilaterally. Vibration sense was reduced at the 

knees and proprioception was normal. Nerve conduction studies demonstrated 

length-dependent axonal peripheral neuropathy with predominant sensory 

involvement.  

Nonsense-mediated decay is present in fibroblasts of patients with variants in 

TRAK2  

PCR analysis of the extracted mRNA indicated degradation of the mutated mRNA 

by the nonsense-mediated decay (NMD) pathway rather than the production of 

truncated proteins. Figure 5.5 shows that the mRNA level of the mutated codon was 

found to be significantly lower than the WT codon, indicating NMD. This occurs by 

selectively degrading mRNA transcripts that contain premature termination codons 

(PTCs) from nonsense and frameshift mutations. Two different analysing programs 

were used to analyse the sequence, with different calling thresholds. The seqscape 

program did call the variant, whilst sequencher did not pick up the signal.  

 

Figure 5-5 cDNA analysis of the nonsense variation in TRAK2. The 

variant is not present, indicating NMD. 
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Subcellular localisation of TRAK2 in patient fibroblasts is normal 

In collaboration with the lab in Miami, localisation experiments were performed. 

COS7 cells were transfected with wild type and mutant c.682C>T TRAK2. This 

resulted in aggregation in puncta of the truncated TRAK2 in the nucleus (Fig. 5.6).  

 

Figure 5-6 Localisation experiments of TRAK2 in transfected COS7 cells, experiments performed in 

Miami.  
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To investigate whether the nonsense variant also affected the localisation of the 

endogenous protein, experiments were performed in patient fibroblasts. However, 

immunocytochemistry showed no morphological differences between the cultured 

fibroblasts from patient and controls (Fig. 5.7). The subcellular localisation of the 

TRAK2 protein remained the same in all the different cell lines and no puncta were 

present in the patient cell lines.  

 

 

Figure 5-7 Localisation of TRAK2 in patient fibroblasts in comparison with a MFN2 patient and two 

controls. Scale = 49 μm. Green: TRAK2; Blue: 4',6-diamidino-2-phenylindole (DAPI) staining for the 

nucleus. No difference in clustering of the truncated protein is found between the controls and both 

the TRAK2 and MFN2 mutated cell lines. TRAK2 patient = p.Arg228Ter; MFN2 patient = 

p.Ser249Thr. 
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Basal mitochondrial membrane potential in TRAK2 fibroblasts results in too 

variable results  

The mitochondrial membrane potential (ΔΨm) is an important indicator of 

mitochondrial health. An essential player in the maintenance of this potential is the 

electron transport chain. Since the activities of complex I, II and IV were below 

average in the index patient, abnormalities in the ΔΨm could elucidate the 

pathomechanism of this variant by examining whether it is involved in this pathway. 

Using TMRM as an indicator of ΔΨm, we investigated patient fibroblasts for 

abnormalities in comparison with other CMT2 patients and controls, but no 

significant differences between the cell lines were found (Fig. 5.8-5.9). Due to the 

high variance within the different fibroblasts and between the different controls, even 

after repeated experiments, it was difficult to draw any conclusions out of these 

results.   

 

 

Figure 5-8 Percentage of mitochondrial membrane potential of 

patient fibroblasts and MFN2 positive control in comparison with 

normal control fibroblasts. Results are standardised against control 

1. Statistical significance across groups was analysed using one-

way analysis of variance and Bonferroni's post hoc test to compare 

all data groups, but no significance was found.  
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The mitochondrial membrane potential is maintained by the mitochondrial 

respiratory chain  

In order to examine the mechanism of maintenance of ΔΨm, a series of 

mitochondrial toxins were applied to observe their effects on ΔΨm. Application of 

oligomycin, an inhibitor of the F1F0-ATPase, induced no response or a slight 

hyperpolarisation in all the cell lines as proton entry through the ATP synthase was 

constrained. This implies that the ΔΨm is still maintained by the mitochondrial 

respiratory chain. Application of rotenone, which inhibits complex I, occasionally 

showed depolarisation after addition, but this was observed with the same frequency 

in controls and patients. Complete depolarisation was estimated by addition of the 

mitochondrial uncoupler FCCP. No significant differences between the cell lines 

were observed. These results are in contrast with the initial screening that showed a 

decreased activity of complex I. However, activity levels were only slightly below 

average and repeated experiments showed borderline-low complex I and IV 

activities, within normal limits.  

 

 

Figure 5-9 Confocal images of the mitochondrial membrane potential of patient fibroblasts in 

comparison with a MFN2 positive control and normal control fibroblasts. No significant difference 

was found. Scale = 36 μm. TRAK2 patient = p.Arg228Ter; MFN2 patient = p.Ser249Thr.  
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TRAK2 discussion  

The index patient presented with a nonsense p.Arg228Ter variant in the TRAK2 

gene, which segregated in the family. Since the presence of a nonsense mutation 

could lead to NMD, this was investigated. mRNA analysis showed NMD was 

present, leaning towards a pathogenic mechanism of haploinsufficiency. Functional 

analyses were performed to look at the cellular localisation and the mitochondrial 

membrane potential, but these were too variable to draw any conclusions. It is 

important to remark that a patient with a mutation in MFN2 was used as control in 

these experiments. However, no remarkable changes were observed in this patient, 

which might indicate that using fibroblasts is not optimal for these experiments. 

Whilst this cell type has been used before for the purpose of mitochondrial 

membrane experiments (Bartolome et al., 2013), our results were too variable 

amongst the cell lines, so in future experiments, a different type of cell line might 

have to be used for estimation of the mitochondrial membrane potential in peripheral 

neuropathies. No optimisation to this process was made, due to the discovery of an 

additional patient with a nonsense variant that was also present in the non-affected 

father, clearly undermining the hypothesis of haploinsufficiency. Together with the 

lack of functional data pointing to an effect of the variant in the TRAK2 gene, 

evidence to prove the pathogenicity of this variant is weak.  

The discovery of a new candidate gene  

Several possible pathogenic variants still remained that could be causing this disease. 

In collaboration with Prof. Zuchner’s lab in Miami, experiments were later 

performed to investigate a frameshift in the neurofilament, heavy polypeptide 

(NEFH) gene: c.3010_3011delCA, resulting in a stop loss and the addition of 40 

extra aminoacids at the C-terminal end of the protein: p.Asp1004fs*56. After 

screening exome data of 322 families, one extra family with another heterozygous 

frameshift in NEFH was found. Segregation analysis identified the presence of the 

variant in all four affected siblings whilst the unaffected sibling and the father did 

not have the variant. Further functional experiments are still ongoing in the lab of 

Professor Zuchner regarding the pathogenicity of this gene.  

 

The phenotype of the index patient is more severe than his relatives. In cases like 

this, the presence of a genetic modifier can partially explain the variability observed. 
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The m.12241delC variant, located in the mitochondrial tRNA Serine 2 gene and only 

present in the index patient and not in the father or grandmother, highlights the 

possibility of mitochondrial mutations acting as genetic modifiers for disease, 

especially within families. However, this variant is located in a variable domain, and 

pathogenicity has not been proven.  

5.2.3 Family E   

Despite most of the research being focused on patients with an isolated neuropathy, 

in some cases the axonal neuropathy can be part of a more generalised disorder. 

Knowing the cause of disease in these cases could help us clarify the presence of the 

neuropathy and the mechanism underlying the molecular basis of pathology.  

Clinical details of family E 

For this part of the study, exome sequencing was performed by one of our 

collaborators on a consanguineous family with four affected individuals (Fig. 5.10). 

The patients presented with a spastic diplegic/quadriplegic cerebral palsy, 

intellectual disabilities and axonal neuropathy. The parents of the affected children 

were asymptomatic, with normal intellectual and adaptive functioning, without 

neuromotor findings. One sibling was unaffected (Fig. 5.10, II-4) 

 

 

Figure 5-10 Pedigree of family F 

The discovery of a candidate gene  

Filtering was performed by Michael Kruer’s lab in Sanford. Five interesting 

homozygous candidates were identified within the chromosome 10 autozygous 

regions that were found. Only two of these segregated in the family: Adducin 3 

(ADD3) and ATP-binding cassette, subfamily C, member 2 (ABCC2). 
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Mutations in ABCC2 cause a metabolic disease called Dubin-Johnson syndrome. 

This is a well-characterised autosomal recessive disorder that leads to episodic 

jaundice and conjugated hyperbilirubinemia in times of metabolic stress (Wada et 

al., 1998). Considering this protein is mainly expressed in the canalicular part of the 

hepatocyte and functions in biliary transport and mutations have never been 

associated with a neurological phenotype, the novel variant (p.Ser1342Tyr) 

identified in this gene was not investigated any further. Episodic jaundice was 

observed in affected family members and could be accounted for by the homozygous 

variant in this gene. Most likely, this variant co-segregates with the gene responsible 

for the neurologic phenotype, residing within the same haplotype block.  

The other variant found was in the ADD3 gene c.1100G>A; p.Gly367Asp, and this 

was the variant focused on during research on this family.   

y-adducin  

Adducin is a ubiquitously expressed protein that was first identified as an erythrocyte 

membrane-associated protein with calmodulin binding activity (Gardner at al., 

1986). Further experiments indicated that it is located at the spectrin-actin junctions 

and binds to spectrin-F-actin complexes, promoting binding of spectrin to F-actin. It 

exists as a tetramer, formed out of either α/β or α/γ heterodimers, with ADD3 

encoding for the γ-subunit. The p.Gly367Asp mutation in the γ-subunit is localised 

in the oligomerisation domain, between subunits 335-436, responsible for the 

binding with the α–subunit (Dong et al., 1995; Hughes et al., 1995; Y Matsuoka et 

al., 1999). ADD3 functions as an in vivo substrate for protein kinase A and C 

(PKA/PKC) and phosphorylation by PKA, but not PKC, reducing the affinity of 

spectrin-F-actin binding. Rho-kinase also phosphorylates α-adducin, resulting in an 

enhanced interaction of α-adducin with actin filaments in vitro (Kimura et al., 1998).  

The implications of mutations in y-adducin  

Thus far, inherited forms of spastic quadriplegic cerebral palsy have been known to 

be caused by the Kn motif-and ankyrin repeat domain-containing protein 1 

(KANK1) protein, which contributes to the regulation of actin polymerisation. This 

results from a deletion of approximately 225 kb, encompassing the KANK1 gene. 

Deletions were transmitted from unaffected fathers to affected children in an 

apparently maternally imprinted inheritance pattern. This means that KANK1 is 

expressed in healthy individuals who carry the deletion on the maternal allele and a 
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normal paternal allele, whereas in the affected individuals who are carriers of the 

paternal deletion and a normal maternal allele, expression is repressed (Lerer et al., 

2005). Due to the role of ADD3 in the binding of Spectrin-F-actin and the 

importance of KANK1 in the dynamics of the cytoskeleton, impaired adducin 

function may lead to abnormalities of the dynamic cytoskeleton as a pathogenic 

mechanism contributing to cerebral palsy and therefore makes an interesting 

candidate gene.  

 

Although the p.Gly367Asp variant was predicted to be benign by Polyphen 2, SIFT 

categorised it as pathogenic and conservation of this residue was conserved over all 

species (Fig. 5.11). Considering its location in the oligomerisation domain, it could 

be hypothesised that this variant will affect the function by impairing the binding 

with the α-subunit.  

 

Figure 5-11 Conservation of Glycine 367 in γ-adducin. 

Genetic analysis of the ADD3 gene revealed no mutations in ADD3 in a cohort of 

CMT2 patients   

A cohort of 172 patients with CMT2 was screened for mutations in only exon 9 of 

ADD3, while 96 patients were screened for mutations in the whole of the 16 exon 

gene. No mutations were found in any of the exons of the ADD3 gene in the cohort 

of CMT2 patients. Since the index patient presented with cerebral palsy as the main 

symptom, this is not surprising and indicates mutations in the ADD3 gene are 

unlikely to result in an isolated axonal neuropathy.  

Studies in patient fibroblasts indicate a loss of function mechanism  

As most of this work was done in collaboration with the Kruer lab in Sanford, the 

majority of experiments were performed there. Results showed that fibroblast lysates 

have an impaired actin capping activity in the mutant, comparable to a siRNA 
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knockdown of the ADD3 transcript, suggesting the p.Gly367Asp variant serves as a 

loss-of-function mutation. Co-localisation of the γ-subunit with the α-subunit of 

adducin showed a small decrease in the affected fibroblasts, suggesting an effect on 

the heteromer formation despite adequate protein levels of each isoform. Both 

proliferation and migration of cells were significantly increased in patient cell lines 

compared to controls. Morphologically, mutant fibroblasts demonstrated a lack of 

neurite-like processes as compared to wild type fibroblasts, consistent with the role 

of γ-adducin in controlling process outgrowth (Kruer et al., 2013).  

Endocytosis investigation showed no significant difference between control and 

patient cell lines    

Previous experiments by Torielli et al in 2008 showed that mutations in α-adducin 

result in a reduced overall endocytotic activity in cells transfected with the mutant 

form, associated with a lower internalisation rate of transferrin. Since mutations in 

genes causing CMT2 (e.g. DNM2) also impair clathrin-mediated receptor 

endocytosis (Bitoun et al., 2009), additional experiments were performed by me to 

investigate the effects of this mutation on the endocytotic pathway. 

 

Transferrin labelled with Alexa-Fluor 488 was used to estimate the uptake of 

transferrin in fibroblast cell lines, indicating the overall endocytotic activity. The 

expression of mutated human γ-adducin reduced the average slope of uptake (2.187 

± 0.6063 mean intensity/volume) compared with wild type adducin cells (2.862 ± 

0.5509 mean intensity/volume). However, this was not significant (Fig. 5.12). 

 

High variability in repeated experiments was present amongst the different cell lines, 

especially in patient cell lines (Fig. 5.13). Punctate structures were present in both 

the patient and control cells after 30 minutes, as can be seen in representative images 

for an incubation time of 20 and 30 minutes, shown in Figure 5.14. 
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Figure 5-12 Time course of transferrin internalisation in controls (•) and patients (▪) fibroblast cell 

lines. • = Control fibroblasts (n = 2; 2.862 ± 0.5509 mean intensity/volume)     ▪ = Patient fibroblasts 

(n =3; 2.187 ± 0.6063 mean intensity/volume). Statistical significance across groups was analysed 

using GraphPad Prism version 6.00 but no significance was found.  

 

 

Figure 5-13 Transferrin intensity in the different fibroblast cell 

lines. Results are standardised against control 1. Statistical 

significance across groups was analysed using one-way analysis of 

variance and Bonferroni's post hoc test to compare all data groups, 

but no significance was found.  
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Figure 5-14 Representative confocal images for the uptake of transferrin in human fibroblasts after an 

incubation period of 30 minutes. Scale bar = 49 μm. Green = Transferrin; Blue = DAPI staining for 

the nucleus.  

Basal mitochondrial membrane potential and response to mitochondrial toxins in 

ADD3 patient fibroblasts  

PKC has been suggested to associate with mitochondria and alter the mitochondrial 

membrane potential, especially in the oxidative stress response (Li et al., 1999; 

Majumder et al., 2001).  Considering the presence of a mitochondrial cluster of 

genes mutated in CMT, it was questioned whether this part of the pathway could be 

causing the axonal neuropathy in the patients and mitochondrial membrane potential 

experiments were performed accordingly.  

 

With the use of TMRM dye, the mitochondrial network was investigated in 

fibroblast cell lines of controls and patients. Figure 5.15 shows representative images 

of all the different cell lines, to compare the physiology of the mitochondrial 

network. The network was less outstretched in the diseased cell lines, especially II.1, 

but this was not consistent in all the patient cell lines.  
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Figure 5-15 Physiology of the mitochondrial network in patient and control fibroblasts. No significant 

differences were found. Scale = 36 μm.  

 

Figure 5-16 Mitochondrial membrane potential in the different 

fibroblast cell lines. Results are standardised against control 1. 

Statistical significance across groups was analysed using one-way 

analysis of variance and Bonferroni's post hoc test to compare all 

data groups, but was only found with control 3 in comparison with 

control 2 and E.II.2.  
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As was the case in patients with the TRAK2 variants in subchapter 5.2.1, no 

significant difference was observed between patient and control cell lines with the 

use of the TMRM dye in patients with ADD3 mutations (Fig. 5.16). High variability 

was found between the different cell lines and no conclusions could be drawn.  

 

By adding toxins, depolarisation after addition of oligomycin or complete 

depolarisation after addition of rotenone could occasionally be observed in both 

patient and control cell lines, but these results were not consistent. We could 

hypothesise that the mitochondrial membrane potential is still maintained by the 

mitochondrial respiratory chain, since the depolarisation occurred in both controls 

and patients and there were no significant consistent differences between the 

different cell lines.  

Discussion 

Previous experiments have already shown that abnormalities in the dynamic 

cytoskeleton, process outgrowth or protein trafficking can be linked to hereditary 

forms of cerebral palsy. In this study, a homozygous p.Gly367Asn mutation in 

ADD3 was found in a family with four children with spastic diplegic/quadriplegic 

cerebral palsy and intellectual disability. Experiments performed by the Kruer lab in 

Sanford indicated that this mutation impaired the heterodimer/heterotetramer 

formation, disrupting cellular actin polymer growth. Changes have been observed in 

process extension, cell migration, and proliferation.  

 

As part of this study, statistical analysis were performed to investigate whether there 

was a significant difference in the uptake of transferrin by endocytosis, but no 

differences were found between control and patient cell lines. This indicates that the 

pathomechanism is in all probability not originating from this pathway. However, 

the use of fibroblasts as a cell model has to be questioned, since this is not the main 

tissue of disease. The original study investigating endocytosis made use of 

transfected HEK293 cells, resulting in an overexpression model.  It can be asked 

whether the significance of these results would also be seen at normal physiological 

levels of mutated α-adducin. To answer this, endocytosis experiments would have to 

be repeated in patient related tissues from α-adducin patients.  By clarifying the role 

of adducin in cerebral palsy further, an explanation for the axonal neuropathy in 
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these patients might be uncovered; however, this is not the major focus of this thesis 

and further experiments were not implemented. 

 

Whilst investigation of the mitochondrial membrane potential was also performed in 

these cell lines, as with the use of fibroblasts in the TRAK2 fibroblasts, the results 

were too variable to draw any conclusions, adding to the observation that fibroblasts 

might not be the optimal cell type to use.  

 

In one of the patients, a more condensed network could be observed, but whether this 

is because of a fault in the network or whether the cell size was significantly smaller, 

we cannot conclude from this data. This was not consistently detected in all patients 

and repeated measurements or further experiments to compare the size of the 

mitochondrial network with the cell size were not performed.  

5.2.4 Family F  

Exome sequencing was performed in a family with AD inheritance consisting of 

three generations with eleven affected and one suspected affected family member out 

of 26. DNA was available for six affected, four unaffected and the one suspected 

affected member (Fig. 5.17; Individuals with DNA in bold). Exome sequencing was 

performed on two distant cousins (Fig. 5.17; Patients III-1, III-11) while linkage 

analysis was performed on four affected and three unaffected members (Fig. 5.17; 

Individuals II.2, III.1, III.2, III.4, III.5, III.8, III.11). Exome sequencing alone 

resulted in 7427 nonsynonymous variants shared between the two patients. With a 

cut-off MAF ≤ 0.5% in the public databases, this was reduced to a list of 80 variants.   

 

Linkage analysis was performed twice with a different subset of SNPs and resulted 

in five linkage regions (Fig. 5.18). All of these regions resulted in a maximum lod 

score of 2 and cut-offs were chosen at the zero intersection. Of the remaining 17 

chromosomes, eight had a lod score below -2 over the whole chromosome and could 

be excluded based on the linkage analysis (See appendix III). Using these linkage 

areas, the candidate gene list was reduced to 16 variants. By comparing these 

variants to internal databases, three could be excluded as artefacts from the exome 

sequencing process, whilst two other variants were located in highly polymorphic 

genes. The remaining eleven variants were all investigated by Sanger sequencing for 
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which eight did not segregate in the family, one could not be confirmed with Sanger 

sequencing and the remaining two were present in the EVS database (Table 5.1). The 

MAF ≤ 0.5% cut-off is mainly used to assure no pathogenic variants might be 

missed, and the presence of 22 control individuals with the same variant highly 

suggests the eukaryotic translation initiation factor 2D (EIF2D) gene will not be 

responsible for the phenotype. Similarly, since incomplete penetrance is not expected 

in patients with dHMN, having nine control individuals with the same variant highly 

questions the pathogenicity of the missense variant in the acyl-coa synthetase, 

bubblegum family, member 1 (ACSBG1) gene. During the write-up of this project, 

the ExAc Browser, consisting of exome data of 60,706 unrelated individuals 

sequenced as part of various disease-specific and population genetic studies, was 

also made publicly available and both variants were present in respectively 218 and 

68 individuals, suggesting non-pathogenicity.  

 

However, segregation analysis had already been performed and the latter variant 

segregated in the family, but was not present in the member with suspected disease 

status. This individual was last seen at age 16 and has not been officially diagnosed 

with dHMN. Unless found in other patients with a similar phenotype, follow-up of 

this gene will not be performed. As the implementation of linkage analysis returned 

no pathogenic variants in the linkage areas and lod scores were not higher than 3, the 

list of all nonsynonymous shared heterozygous variants was re-analysed to confirm 

no pathogenic variants were missed. However, none of the variants outside the 

linkage areas that were not present in any of the public databases or in our internal 

database segregated in the family (Table 5.2).  
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Figure 5-17 Pedigree of Family F. Black symbols represent patients with CMT2, grey symbols represent individuals with unknown clinical status.   
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Figure 5-18 Linkage areas of family F located on chromosomes 1,5,7,15 and 19. 
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Gene Exonic Function X1000g -

2012 

SIFT PolyPhen2 Mutation 

Taster 

GERP 

score 

OMIM Signature Status 

PRDM16 nonsynonymous NA D NA D 3.5 605557 1_3342158_G_A Doesn't segregate  

CLSTN1 nonsynonymous NA B B B 4.39 611321 1_9809615_C_T Doesn't segregate  

LCE1F nonframeshift 

substitution 

NA NA NA NA NA 612608;6

12605 

1_152749038_GTGGTGG_GCTGC

TGCAGCTCTGGGGGTGGTGG 

Doesn't segregate  

KIF14 nonsynonymous 0.0023 B D D 2.7 611279 1_200574499_T_C Doesn't segregate  

EIF2D nonsynonymous 5.00E-04 B B B 5.37 151625 1_206772388_T_C Present in 218 genotypes 

in ExAC Browser  

NUP205 nonsynonymous NA NA B B 3.04 NA 7_135290962_C_T Doesn't segregate  

PDIA4 nonsynonymous NA D D D 4.18 NA 7_148718180_C_G Doesn't segregate  

RYR3 nonsynonymous NA NA NA NA NA 180903 15_34030702_G_A Doesn't segregate  

SPTBN5 nonsynonymous NA NA NA NA NA 605916 15_42169056_G_A Doesn't segregate  

ACSBG1 nonsynonymous 0.0014 B D D 5.02 NA 15_78475108_T_A Present in 68 genotypes 

in  ExAC Browser 

ADAMTS7 frameshift 

insertion 

NA NA NA NA NA 605009 15_79058195_-_CCTGGGT Not present in sanger 

sequencing  

Table 5-1 List of eleven candidate genes for Family F within the linkage areas. NA = Not applicable; B = Benign; D = Damaging 
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Gene Exonic 

Function 

X1000g 

2012 

SIFT PolyPhen2 Mutation 

Taster 

GERP 

score 

OMIM signature Status  

ACOT12 Nonsynonymous NA B B B -5.32 NA 5_80626728_T_C Doesn't segregate 

SNRPC nonframeshift 

insertion 

NA NA NA NA NA 603522 6_34725662_-_CTT Doesn't segregate 

TBP nonframeshift 

deletion 

NA NA NA NA NA 608964; 

600075 

6_170871097_GCAGCAGCA

_- 

CAG-stretch 

ASCL1 nonframeshift 

insertion 

NA NA NA NA NA 100790 12_103352208_-_CAG CAG short stretch 

RFX4 Nonsynonymous NA B D D 5.55 603958 12_107109277_A_G Doesn't segregate 

CCDC63 Nonsynonymous NA B B B -7.23 NA 12_111336781_C_A Doesn't segregate 

GPC5 NA NA NA NA NA NA 602446 13_92050913_AGGCGGCG

GCGGCGGCGGCAGTGG_- 

Intronic 

YY1 nonframeshift 

deletion 

NA NA NA NA NA 600013 14_100705803_CCA_- Present in 57 genotypes in 

ExAC Browser 

SPATA22 NA NA NA NA NA NA NA 17_3374975_CA_- Spermatogenesis gene  

MX1 Nonsynonymous NA B B B -1.4 147150 21_42830594_G_A Doesn't segregate 

HLA-H frameshift 

deletion 

NA NA NA NA NA NA 6_29857237_G_- Known pseudogene 

Table 5-2 List of novel variants outside the linkage areas in family F. NA = Not applicable; B = Benign; D = Damaging
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5.2.5 Family G  

Family G was originally seen in Brighton Hospital 13 years ago and was referred to 

our clinic after a couple of years. There were seven affected patients in four 

generations with an AD inheritance pattern. DNA was available for four affected and 

six unaffected family members (Fig. 5.19; Individuals in bold). Exome sequencing 

was performed on four family members at different time points along the project, 

resulting in only three exomes with high quality results (Fig. 5.19; Patients I.2, II.2, 

III.2). As patient II.2 did not add any value to the analysis of shared exomes, only 

data of patients I.2 and III.2 were used. This resulted in 13472 shared variants 

amongst those two individuals, out of which 71 were nonsynonymous heterozygous 

variants with a MAF ≤ 0.5%. Interestingly, when comparing the data of all three 

patients, only 68 shared variants were found. This indicates that even though 

coverage was sufficient, not all variants might have been called with this technique 

and caution is necessary.  

 

 

Figure 5-19 Pedigree of Family G. Black symbols represent patients with CMT2. 

Repeated linkage analysis in all affected and unaffected members resulted in six 

small linkage areas on four different chromosomes that only reached a lod score of 1 

(Fig. 5.20). Out of the 71 variants, only one was present in the linkage area, a 

missense variant in exon 8 of the tryptophanyl-tRNA synthetase (WARS) gene: 

c.818A>T (p.Asp273Val). Considering the involvement of tRNA-synthetases in the 

pathomechanism of CMT, WARS would be an excellent candidate gene. However, 

segregation analysis indicated the presence of this variant in individual II-5, who is 

unaffected, suggesting this is not the causative variant.  
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Figure 5-20 Linkage areas of Family G located on chromosomes 1,13,14 and 17. 

Of 71 original nonsynonymous heterozygous variants with a MAF ≤ 0.5%, there are 

still 34 shared novel variants between the two patients outside the linkage areas that 

could qualify as a candidate gene (Table 5.3). Of these, only one segregated. This 

variant in the WD repeat domain 48 (WDR48) gene is located on one of the 

chromosomes that was originally excluded due to the LOD score being below -2 

(See appendix IV) and results in a c.797C>G variant in exon 9. This will change the 

polar, uncharged proline 266 to a positively charged arginine. In a recent report by 

Novarino et al., a homozygous 3 bp-deletion was identified in this gene in a patient 

with spastic paraplegia (Novarino et al., 2014). This variant (c.1879_1881delAAG) 

resulted in the deletion of a glutamic acid at position 628 (p.Glu628del). 
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Gene Exonic Function X1000g 

2012 

SIFT PolyPhen2 Mutation 

Taster 

GERP 

score 

OMIM signature Status 

KCNA10 nonsynonymous  NA D B B 1.91 602420 1_111061292_G_A Not present in Sanger sequencing  

WDR77 nonsynonymous NA NA P B 2.99 603270; 

611734 

1_111991772_G_A Not present in Sanger: C-stretch  

CTTNBP2NL nonsynonymous NA B P B 5.72 NA 1_112998758_G_A Doesn't segregate 

ITGA10 nonsynonymous  NA B D B 4.5 604042 1_145538779_C_T Doesn't segregate 

CNST nonsynonymous NA B B B 1.8 NA 1_246829025_A_G Doesn't segregate 

DHX57 nonsynonymous NA B D D 5.24 NA 2_39042757_G_A Doesn't segregate 

MTERFD2 nonsynonymous NA D P B -3.35 NA 2_242039227_G_A Doesn't segregate 

WDR48 nonsynonymous NA B B D 5.56 612167 3_39119698_C_G Segregates  

ZNF167 nonsynonymous  NA B B B 3.63 NA 3_44612019_G_A Doesn't segregate 

RPL29 nonframeshift 

insertion 

NA NA NA NA NA 601832 3_52027880_-

_GGGCCT 

Doesn't segregate 

ITIH3 nonsynonymous NA NA NA NA NA 146650 3_52836502_G_T Doesn't segregate 

FLNB nonsynonymous  NA D D D 4.28 603381 3_58083678_C_T Doesn't segregate 

RP1 nonsynonymous  NA D B B -1.78 180100; 

603937 

8_55539000_A_G Doesn't segregate 

SLC10A5 nonsynonymous  NA B D B 5.57 NA 8_82606490_A_C Doesn't segregate 

COL14A1 nonsynonymous  NA B D B 4.17 120324 8_121243810_A_G Doesn't segregate 

NSMCE2 frameshift 

deletion 

NA NA NA NA NA NA 8_126194426_T_- Doesn't segregate 

CSNK2A1 nonsynonymous  NA B B B 4.89 115440 20_467035_C_T Doesn't segregate 

DYRK4 frameshift NA NA NA NA NA 609181 12_4719356_A_- Doesn't segregate 
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deletion 

MLL2 nonsynonymous  NA NA NA NA NA 602113 12_49447305_G_A Doesn't segregate 

LMBR1L nonsynonymous  NA D D D 5.38 610007 12_49491774_A_C Doesn't segregate 

KRT85 nonsynonymous  NA B B B 4.58 602767 12_52761167_A_T Keratin gene  

SRGAP1 nonsynonymous  NA B D B 4.21 606523 12_64472790_G_A Doesn't segregate 

PPTC7 nonframeshift 

deletion 

NA NA NA NA NA 609668 12_111020757_CCG_- Doesn't segregate 

PABPC3 nonsynonymous  NA D B B 0.935 604680 13_25671466_A_G Doesn't segregate 

PABPC3 nonframeshift 

deletion 

NA NA NA NA NA 604680 13_25670424_AAG_- Doesn't segregate 

WARS nonsynonymous  NA D P D 4.5 191050 14_100808907_T_A Doesn't segregate 

PIF1 nonsynonymous  NA D D D 4.99 610953 15_65110540_T_A Doesn't segregate 

C15orf37 nonframeshift 

deletion 

NA NA NA NA NA NA 15_80215177_CAG_- Intronic + present in EVS server  

KRTAP9-1 nonsynonymous  NA NA NA NA NA NA 17_39346629_A_G Keratin gene  

KRT33B stopgain  NA NA NA A 4.18 602762 17_39522769_C_A Keratin gene  

KRT17 frameshift 

insertion 

NA NA NA NA NA 148069 17_39780702_-_C Keratin gene  

RRBP1 nonsynonymous  NA NA NA NA NA 601418 20_17639816_T_G Not present in Sanger sequencing 

- Repetitive stretch  

RRBP1 nonsynonymous  NA NA NA NA NA 601418 20_17639786_T_G Not present in Sanger sequencing 

- Repetitive stretch  

XKRX nonsynonymous  NA B NA B 2.99 300684 X_100183238_A_G Doesn't segregate 

Table 5-3 Shared, novel, nonsynonymous variants in family G. NA = Not applicable; B = Benign; D = Damaging; P = Probably damaging.
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c.1879_1881delAAG was found in one patient who presented with hypertonia, 

nystagmus, increased patellar but absent achilles tendon reflexes, mild learning 

disabilities and peripheral neuropathy, labelled by the authors as spastic paraplegia-

60 (SPG60). Whilst this has been characterised as recessive inheritance, the presence 

of peripheral neuropathy in this patient suggests this might be the causative variant 

in the family. This is supported by the presence of the missense variant in only one 

person out of 60,706 available in the ExAc Browse. The most recent update of 

Polyphen-2 predicts this variant to be possibly damaging, whilst the SIFT prediction 

categorises it as benign. Conservation of this amino acid is preserved over all 

representative species (Fig. 5.21).  

 

Figure 5-21 Conservation of Proline 266 in 

the WDR48 gene.  

WDR48 forms stable complexes with deubiquitinating enzymes in the endosomal 

sorting complexes, is required for enzymatic activity and is linked to lysosomal 

trafficking (Park et al., 2002). Defects in the endosomal-lysosomal pathways have 

been recurrently linked to inherited neuropathies such as CMT, suggesting a possible 

pathogenic role for variants in WDR48. Mice models of the gene resulted in 

embryonic lethality in homozygous mouse; heterozygous mice were smaller and 

showed defects in skeletal development (Park et al., 2013). No functional studies 

were performed due to lack of a second family with potential pathogenic variants in 

this gene, but WDR48 will be treated as a candidate gene in the future.  

5.2.6 Family H  

The following family had a history of AD dHMN in four generations and contained 

nineteen affected family members out of 42. DNA was available for six affected and 

one unaffected members (Fig. 5.22; Individuals in bold).  
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Figure 5-22 Pedigree of Family H. . Black symbols represent patients with CMT2, grey symbols represent individuals with unknown clinical status.
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Exome sequencing was performed on two cousins and all the available DNA 

samples were used for linkage analysis (Fig. 5.22; Patients IV.8, IV.11). After 

analysis of the data, 5792 shared, nonsynonymous, heterozygous variants remained. 

Filtering these variants by examining their presence in the public databases and the 

segment duplication coefficient reduced the list to 196 possible pathogenic variants. 

As this family was already screened for the relevant genes for dHMN, no mutations 

in known pathogenic genes were expected to be found. However, a mutation in the 

HSPB1 gene was discovered (c.544C>G). This is the third mutation affecting the 

same amino acid, with both c.544C>T and c.545C>T having been reported before 

(Kijima et al., 2005, Evgrafov et al., 2004). This gene was originally sequenced in 

these patients and no mutation was present, so sample confusion was suspected. 

Linkage analysis resulted in a linkage area on chromosome 7 that overlapped with 

the HSPB1 gene hence Sanger sequencing was repeated twice, which resulted in the 

presence of the mutation in only one of the runs. This was traced back to a 4-bp 

insertion in intron 2 on the same allele as the missense mutation in exon 3. This was 

captured as part of the exon 3 PCR and occurs in an extremely G/C rich region as an 

insertion of a GGTG within a short repeat sequence. The addition of the extra 4 bp 

into this repeat might cause preferential amplification of the wild type allele and 

provide an explanation for missing the missense mutation in diagnostic sequencing. 

These results were repeated on diagnostic levels to provide the family with a genetic 

diagnosis. 

5.2.7 Family I   

A small family presented with seven individuals characterised with AD CMT2 over 

four generations. DNA was available for four affected and one unaffected member 

(Fig. 5.23; Individuals in bold). Exome sequencing was performed on two cousins 

and the daughter of one of the cousins (Fig. 5.23; Patients III.2, III.4 and IV.1), 

which resulted in 11197 shared variants. After analysis, 30 shared nonsynonymous 

heterozygous variants with a MAF ≤ 0.5% were present. Of those, 19 were novel 

variants. After comparison with the in-house database, a candidate list of 12 genes 

was created (Table 5.4). Of these, three genes segregated in the family, with only the 

nonsense variant present in 15 individuals in the ExAc Browser database. One of the 

missense variants was located in the Repulsive guidance molecule, domain B 

(RGMb) gene – also known as DRAGON (Samad et al., 2004).  
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Figure 5-23 Pedigree of family I. . Black symbols represent patients with CMT2. 

The c.979G>A variant (p.Gly327Ser) is located in a conserved domain (Fig. 5.24), 

with the glycine aminoacid being conserved over multiple species. Both SIFT and 

Polyphen predicted this variant to be pathogenic and no presence in controls was 

found. RGMb is a glycosylphosphatidylinositol-anchored member of the repulsive 

guidance molecule family, which is expressed early in the developing nervous 

system, and has been identified as a factor important for neuronal adhesion in DRG 

neurons by homophilic interactions (Samad et al., 2004). All repulsive guidance 

molecules were characterised as bone morphogenetic protein (BMP) co-receptors 

that enhance BMP signalling (Samad et al., 2005) and it has been suggested RGMb 

is directly involved in the suppression of IL-6 expression through the p38 MAPK 

and Erk1/2 pathways (Xia et al., 2011). This variant segregated in all DNA samples 

of the family but no second family was found when we screened a cohort of 250 

CMT2 patients for mutations. Another missense variant was located in the MORC2 

gene. MORC2 has an ATPase-dependent chromatin remodelling function and has 

been speculated to be involved in DNA transcription (Li et al., 2013). Recent studies 

have implied the involvement of MORC2 in human cancers (Wang et al., 2010; 

Tuupanen et al., 2014) by efficiently integrating growth factor signalling with DNA 

repair processes (Li et al., 2013). The variant found in the family results in the 

change of a highly conserved negative aspartic acid to a neutral aspargine (Fig. 

5.24). Whilst this is located in a conserved area, it is not part of a functional domain. 

Both PolyPhen and SIFT predict this variant to be pathogenic and no presence in 

controls was found. This variant segregated in the family but no further 
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investigations were made and both RGMb and MORC2 will be regarded as a 

candidate gene in future.  Lastly, the deletion of a G in the IDE gene will result in a 

frameshift in the first exon of the gene, leading to a stopcodon instead of Leucine. 

However, this variant is present in 12 alleles in the EVS server and 15 in the ExAc 

Browser, resulting in prioritisation of the two other variants.   

 

 

Figure 5-24 Conservation of the variants in the RGMb 

(upper frame) and MORC2 (lower frame) genes. 

During the write-up of this thesis, one of the family members (III.2) was seen in 

clinic again and mentioned the possible affected status of family member III.6. This 

patient will be brought into clinic to establish the correct clinical status, which might 

result in different candidate genes.  
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Gene Exonic Function X1000g 

2012 

SIFT PolyPhen2 Mutation 

Taster 

GERP 

score 

OMIM signature Status 

NADK nonframeshift 

insertion 

NA NA NA NA NA 611616 1_1684375_-_CTC Not present in sanger sequencing  

RGMB nonsynonymous NA B NA NA NA 612687 5_98128999_G_A Segregates 

DIP2C nonsynonymous NA B D D 5.5 611380 10_428681_C_G Doesn't segregate 

IDE stopgain NA NA NA NA NA 146680 10_94333764_G_- Segregates 

PRSS23 nonsynonymous NA B B B 4.75 NA 11_86519328_G_A Doesn't segregate 

MGA nonsynonymous NA B NA NA NA NA 15_41991118_G_T Doesn't segregate 

EPB42 nonsynonymous NA NA NA NA NA 177070 15_43494077_C_T Doesn't segregate 

PSMD8 nonsynonymous NA B NA NA NA NA 19_38865459_C_T Doesn't segregate 

FAM71E1 nonsynonymous NA D B B -2.67 NA 19_50971037_A_G Doesn't segregate 

ADRA1D nonsynonymous  NA B B D 3.81 104219 20_4228848_C_T Doesn't segregate 

TGM2 nonsynonymous  NA B D B 2.3 190196 20_36789956_C_T Doesn't segregate 

MORC2 nonsynonymous NA B D D 5.37 NA 22_31333672_C_T Segregates 

Table 5-4 Shared, novel, nonsynonymous variants in family I. NA = Not applicable; B = Benign; D = Damaging.
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5.2.8 Family J  

A small family presented with AD HSAN in three generations (Fig. 5.25). DNA was 

available for five family members and exome sequencing was performed on patients 

II.1 and III.3. This resulted in 14313 variants shared between the two patients. After 

exclusion of synonymous variants or those with a frequency over 0.5%, a list of 55 

shared variants was produced. Of these, 30 were novel variants of which six 

segregated in the DNA samples available for the family (Table 5.5).  

 

 

Figure 5-25 Pedigree of Family J. 

 

The variants were located in the following six genes: FAM126A, CNTRL, GOLGA2, 

SSTR5, TBC1D24 and PKMYT1. The missense variant in SSTR5 could be found in 

144 individuals in the ExAc Browser, indicating its polymorphic nature. Whilst the 

missense variant in PKMYT1 was found in six individuals, suggesting non-

pathogenicity, all the other variants were found in three or fewer individuals. 

 

The most interesting variation in the context of HSAN is in the family with sequence 

similarity 126, member a (FAM126A) gene. Recessive mutations in this gene have 

been found in patients with congenital cataract, progressive neurological impairment 

and diffuse myelin deficiency, characterised as HCC (Zara et al., 2006; Ugur et al., 

2008). All patients showed slowly progressive pyramidal and cerebellar dysfunction, 

muscle weakness and wasting predominantly in the lower limbs and most of them 

became wheelchair bound. Clinical features suggested FAM126A as essential for 

proper myelination in both the central and peripheral nervous system.  
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Gene Exonic 

Function 

1000g 

2012 

SIFT PolyPhen2 Mutation 

Taster 

GERP 

score 

OMIM Signature Status 

CDK11A nonframeshift 

insertion 

NA NA NA NA NA 176873; 

116951 

1_1647900_-_TTCTTT Not present in sanger sequencing  

NADK nonframeshift 

insertion 

NA NA NA NA NA 611616 1_1684375_-_CTC Not present in sanger sequencing  

DENND4B nonframeshift 

substitution 

NA NA NA NA NA NA 1_153907278_CCTGC

TGCT… 

Long Q stretch 

RIF1 nonsynonymous  NA B B NA -3.33 608952 2_152322348_T_C Doesn't segregate 

FANCD2 nonsynonymous NA D D D 5.11 227646; 

227650 

3_10107554_C_G Doesn't segregate 

MAGI1 nonframeshift 

substitution 

NA NA NA NA NA 602625 3_65425560_TCTGCT

GCTGCT… 

Long Q stretch 

FAM126A nonsynonymous NA D B B 3.71 610531 7_22985650_G_A Segregates + Present in 1 genoptye 

in the ExAc browser  

AC118759.1 nonsynonymous NA NA NA NA NA NA 7_100549592_T_A Mucin gene 

AC118759.1 nonsynonymous NA NA NA NA NA NA 7_100549787_C_T Mucin gene  

MUC3A nonsynonymous  NA NA NA NA NA NA 7_100552535_G_A Mucus gene  

TRBV5-6 nonsynonymous NA NA NA NA NA NA 7_142131832_C_T Not present in sanger sequencing  

PCSK5 nonsynonymous NA NA NA NA NA 600488 9_78790136_T_C Not present in sanger sequencing  

CNTRL nonsynonymous NA D P B 5.11 605496 9_123912532_T_C Segregates  

GOLGA2 nonsynonymous  NA B B D -3.08 602580 9_131022937_C_T Segregates + Present in 3 genoptyes 

in the ExAc browser 
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MUC6 nonsynonymous NA NA NA NA NA 158374 11_1016890_G_A Mucin gene 

MUC2 nonframeshift 

insertion 

NA NA NA NA NA 158370 11_1092623_-_AAC Mucin gene  

C14orf23 nonframeshift 

insertion 

NA NA NA NA NA NA 14_29261307_-_CAA Doesn't segregate  

DICER1 nonframeshift 

deletion 

NA NA NA NA NA 606241 14_95563003_CTC_- Doesn't segregate  

SSTR5 nonsynonymous NA D P B 4.52 182455 16_1129218_C_T Segregates + Present in 144 

genotypes in the ExAc browser 

TBC1D24 nonsynonymous  NA NA NA B 0.0379 NA 16_2550330_C_T Segregates 

PKMYT1 nonsynonymous  NA B B B 2.37 602474 16_3024281_C_T Segregates + Present in 6 genotypes 

in the ExAc browser 

AC009113.1 nonsynonymous NA NA NA NA NA NA 16_89299807_A_G No gene there  

RRBP1 nonsynonymous  NA NA NA NA NA 601418 20_17639786_T_G Not present in Sanger sequencing - 

Highly repetitive stretch 

OGFR nonsynonymous  NA B NA B -3.64 606459 20_61444633_G_A Doesn't segregate 

IGLV5-45 nonsynonymous NA NA NA NA NA NA 22_22730696_C_T Doesn't segregate 

IGLV5-45 nonsynonymous  NA NA NA NA NA NA 22_22730702_A_G Doesn't segregate 

IGLV5-45 nonsynonymous  NA NA NA NA NA NA 22_22730788_G_A Doesn't segregate 

IGLV5-45 nonsynonymous NA NA NA NA NA NA 22_22730800_A_C Not present in Sanger sequencing 

FAM155B nonframeshift 

deletion 

NA NA NA NA NA NA X_68725197_CTG_- Deletion in CTG stretch, present in 

EVS server on different location  

Table 5-5 Shared, novel, nonsynonymous variants in Family J. NA = Not applicable; B = Benign; D = Damaging; P = Probably damaging.
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To date, six families have been found with mutations in this gene, five of which were 

splice site defects and one was a missense mutation, resulting in lower levels of the 

protein (Zara et al., 2006). The c.C1124T (p.Pro375Leu) missense variant in family J 

resulted in a substitution of proline to a leucine, both nonpolar amino acids. This 

variant has only been found in one allele in the ExAc browser, which does not 

exclude it from being pathogenic. In multiple species, a threonine can be found on 

position 375 instead of a proline, indicating that the amino acid is not conserved 

(Fig. 5.26). Whilst SIFT predicts the substitution to be benign, Polyphen2 is 

contradicting. Considering the prevalence of multiple segregating genes, this has not 

been taken forward.  

 

Figure 5-26 Conservation of the variant in the FAM126A gene. 

5.2.9 Family K 

Once again in collaboration with Professor Zuchner’s lab in Miami, exome 

sequencing was performed on one patient of a complex family to identify mutations 

in known CMT genes (Fig. 5.27). A list of 93 candidates was established by the lab 

in Miami, incorporating several interesting candidate genes (See Appendix V). After 

careful clinical evaluation the phenotype resembled a lower SMA phenotype, which 

is characteristic for mutations in DYNC1H1. This brought up a c.1502G>C 

(p.Arg501Pro) variant in the Bicaudal D homolog 2 (Drosophila) (BICD2) gene as a 

potential cause for the disease. BICD2 is an adaptor protein interacting with the 

dynein-dynactin motor complex, facilitating trafficking of cellular cargos that are 

critical to motor neuron development and maintenance. After confirming the 

segregation of this variant in the family, 39 more cases with a similar phenotype 

were screened for mutations in this gene by me.  
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Figure 5-27 Pedigree of Family K. 

One more patient was found with a mutation in this gene: c.565A>T (p.Ile189Phe) 

(Fig. 5.28). This was a de novo case where the unaffected parents did not carry the 

mutation. Both of the patients presented with autosomal-dominant congenital SMA 

(DCSMA) and upper moto neuron signs (UMN). In collaboration with other centres, 

four more DCSMA (+UMN) or HSP families were found with mutations in this 

gene. Functional studies performed by Dr. Alex Rossor showed a higher affinity of 

the mutated proteins to the dynein-dynactin complex, resulting in altered cellular 

trafficking processes. Simultaneously, two more groups published their studies on 

mutations in BICD2 in patients with DCSMA, adding five separate families to the 

original six (Neveling et al., 2013; Peeters et al., 2013).  

 

Figure 5-28 Electropherograms of mutations in 

BICD2. 

As stated before, BICD2 is an adaptor protein interacting with the dynein-dynactin 

motor complex and the small ATPase RAB6, thereby facilitating the trafficking of 

key cellular cargos such as mRNA, Golgi, and secretory vesicles. Transfected cells 

showed a higher binding affinity between BICD2 and the Dyenin-Dynactin complex 
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when mutated. One study showed accumulation of BICD2 in the perinuclear region 

for one mutation, colocalised with RAB6, potentially decreasing anterograde 

trafficking of secretory vesicles to the plasma membrane (Oates et al., 2013). 

However, opposite results were obtained in the study by Peeters et al., showing 

decreased colocalisation with RAB6A for two other mutations. It is not clear 

whether the alterations in BICD2 lead to gain-of-function or dominant-negative loss-

of function effects, nonetheless it can be concluded BICD2 mutations are linked to 

SMA with dominant inheritance. 

5.2.10 Family L  

In collaboration with Dr. Wilson Marques from Brazil, exome sequencing was 

performed on one index patient from a large family with CMT2 and HMN. This was 

initially performed to examine known pathogenic mutations. When no such 

mutations were found, two additional family members were sequenced. Surprisingly, 

a known pathogenic mutation in the MFN2 gene was found in these two patients: 

c.494A>G. Re-examination of the  raw data files of the index patient revealed this 

area was covered but the mutation was only present in 1 out of 60 reads (Fig. 5.29). 

Sanger sequencing indicated this mutation in all patients, resulting in an explanation 

for the observed phenotype.  

 

Figure 5-29 Coverage of the MFN2 variant in the original exome sequencing. The mutation was only 

present in 1 out of 60 reads.  
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5.3. Discussion  

Exome sequencing was performed in several families resulting in a pathogenic gene 

in five families. Previously pathogenic genes were discovered after performing 

exome sequencing in two undiagnosed families.  

 

In family H, diagnostic guidelines had already indicated the possibility of mutations 

in the HSPB1 gene but Sanger sequencing of the gene showed negative results. 

However, during analysis of the exome data, a c.544C>G variant in this gene was 

found, resulting in a novel mutation of Proline 181 to Alanine. Previous reports have 

stated mutations changing the same exact Proline to both Serine or Leucine in 

patients, indicating the pathogenicity of mutations in this amino acid. Initial Sanger 

sequencing of HSPB1 in the index cases did not call this variant due to a 4-bp 

insertion in intron 2 on the same allele, leading to a preferred amplification of the 

wild type allele and masking the pathogenic variant. This requires caution whilst 

screening for mutations in HSPB1 in undiagnosed families with CMT. Previous 

families screened for mutations in HSPB1 were repeated with new primers to 

investigate whether pathogenic mutations were missed, but no further mutations 

were found.  

 

In family L, a known pathogenic mutation in MFN2 was found. Exome sequencing 

to look for pathogenic mutations in the index case resulted in no positive hits, 

leading to additional exome sequencing in two more family members. This showed a 

c.494A>G variant that has been found in two previous families with axonal 

neuropathy, one of them sporadic and one familial case. This variant was only called 

in 1 out of 60 reads of the exome sequencing of the original index case and 

subsequently was not listed in the variant file. Segregation analysis confirmed the 

presence of the variant in the four generation family, reaffirming the pathogenic 

status of the variant in the family.  

 

In addition to the known pathogenic genes, three novel genes were suggested as 

pathogenic cause for the disease in three separate families. In family D, a nonsense 

variant in the TRAK2 gene was initially pursued and haploinsufficiency was 

suspected to result in an axonal neuropathy. However, the presence of an additional 
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patient with a nonsense variant which also occurred in the unaffected father quickly 

undermined this hypothesis and together with the lack of functional data, evidence 

was low to establish TRAK2 as the causative gene. The focus of investigation was 

shifted to a frameshift variant in the NEFH gene that resulted in a stop-loss and the 

addition of 40 extra aminoacids. Functional experiments are ongoing by our 

collaborators in Miami in cell lines and zebrafish models to investigate the 

pathogenicity of the variant. 

 

In Family E, a homozygous missense mutation in the ADD3 gene was the primary 

candidate to explain the phenotype of spastic diplegic/quadriplegic cerebral palsy, 

intellectual disabilities and axonal neuropathy. Functional investigation of fibroblasts 

performed by the Kruer lab indicated a loss of function mechanism of the mutation 

by impairing heterodimer/heterotetramer formation and disrupting the regulation of 

cellular actin polymer growth. Genetic forms of cerebral palsy are rare and the lack 

of an additional family indicates the rarity of mutations in ADD3. Since no further 

mutations were found in patients with an isolated peripheral neuropathy, chances are 

low that variants in this gene will be causative for isolated inherited neuropathies.  

 

The last novel pathogenic gene was originally found in one family with three 

generations of DCSMA (Family K). Due to the well-characterised phenotype, highly 

resembling patients with mutations in DYNC1H1, an interactor protein, BICD2, was 

pursued as a candidate gene. Five more families were found and functional 

investigations showed altered cellular trafficking processes. Five further  families 

were found at the same time by two other groups, indicating the importance of 

mutations in BICD2 in patients with DCSMA and upper motor signs.  

 

Within the remaining four families, the candidate gene list could not be narrowed 

down to one likely pathogenic gene with the information available. This ensued in a 

shorter list of probable pathogenic genes that will require the presence of an 

additional family or other indications towards pathogenicity before further 

investigations will be performed. Several mutations will only be found in one or two 

families and pathogenicity can still be questioned. This has to be addressed by 

performing functional experiments and extensive studies of the influence of the 

variant. However, functional work cannot be performed on all possible variants due 
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to time limitations, so genetic proof regarding pathogenicity is desirable before 

further steps are undertaken. 

 

Whilst exome sequencing has provided a huge step forward in the discovery of 

pathogenic variants in genes, the enrichment steps involved lead to non-uniform 

coverage, generating both ‘hot spots’ with too much coverage and regions with too little 

coverage and low reading depth. One way to counteract this is the use of whole genome 

sequencing, which does not require an enrichment step, resulting in a more uniform 

coverage of the genome. This will also cover intronic regions and possible deletions that 

might have been missed with the use of whole exome sequencing since the longer reads 

available for whole genome sequencing allow for better determination of copy number 

variations, rearrangements and other structural variations. While previously, exome 

sequencing provided a significantly lower-cost and less time consuming option, whole 

genome sequencing has begun to close in on the price advantage, slowly moving the 

field from exome to genome. It could still be advocated that whole exome sequencing 

requires lower data storage costs and quicker, cheaper and easier data analysis, since the 

reads only focus on ~2% of the genome in comparison to 5% to 98% of the genome. 

There is also a better chance of interpreting variants in a meaningful way due to a better 

characterisation of the coding region of the genome, which promotes whole exome 

sequencing as a first approach. The work in this chapter demonstrates the benefit of 

the use of the whole-exome sequencing in genetic diagnosis; however, the 

limitations of the methodology have also been highlighted. 
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Chapter 6  

Genetic and functional 

analysis of IGHMBP2  

6.1 Introduction  

6.1.1 Spinal Muscular Atrophy with Respiratory distress 1  

In 1974, Mellins et al reported two unrelated cases of spinal muscular atrophy 1 with 

respiratory distress as first manifestation. In cases with SMA1, patients typically 

present with proximal weakness before they suffer from respiratory failure; patients 

with SMARD1 present with diaphragmatic paralysis very early on in disease and 

develop predominantly distal limb involvement (Bertini et al., 1989; Grohmann et 

al., 2001; Grohmann et al., 2003; Kaindl et al., 2008). In 2001, a study by Grohmann 

et al. linked patients with SMARD1 to mutations in IGHMBP2.  

 

Disease onset is normally within the first few weeks after birth and patients rarely 

survive the first decade (Rudnik-Schöneborn et al., 2004; Messina et al., 2012). The 

oldest patient reported to date is a 20 year old man with infantile-onset SMARD1, 

compound heterozygous with the following mutations: c.1082T>C (p.Leu361Pro) 

and c.1144G>A (p.Glu382Lys). He presented with distal weakness and respiratory 
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failure associated with diaphragmatic elevation at 4 months of age and has been 

ventilator-dependent since. Later on, he developed a length-dependent progressive 

sensory-motor neuropathy associated with loss of sensation, muscular denervation 

and atrophy. Cognitive testing was limited but revealed intellectual disability and 

some tongue fasciculations were present; otherwise, his cranial nerves were normal 

(Pierson et al., 2011).  

 

SMARD1 patients with mutations in IGHMBP2 can present with varying clinical 

outcomes. The most dramatic disease progression happens within the first year of 

life, resulting in loss of independent breathing and muscle strength. Whilst prognosis 

is poor, a heterogeneous clinical course with marked differences in the disease 

outcome can be observed in the later years, ranging from not being able to 

communicate to breathing independently in the first decade of life. Clinical scores at 

the age of three months showed a positive correlation with the clinical outcome in 

the later years. When expressed in an in vitro recombinant system, patients with 

more favourable outcomes tend to have mutations that retain residual enzymatic 

activity (Eckart et al., 2012). However, severity does not only depend on the 

mutations and can vary within families. For example, in a family with two siblings 

with an identical compound heterozygous combination of a stop mutation and a 

missense mutation in exon 10 of the IGHMBP2 gene, one presented with a 

phenotype of typical infantile onset with respiratory insufficiency whilst the other 

sibling had motor regression from the age of 19 months with respiratory impairment 

only starting from the age of 7 years (Joseph et al., 2009).  

Nerve conduction studies and electromyography  

NCS are used for the determination of the peripheral nerve function, resulting in 

markedly reduced motor conduction velocities, particularly in the legs, and a very 

marked reduction or loss of the compound muscle action potential. Studies of the 

sensory fibres showed similar results, but much milder. EMG revealed a denervation 

pattern only in distal muscles initially. Abnormal EMG results of the diaphragm, 

showing denervation often with little abnormality in the intercostal muscles, are 

typical in SMARD1. The severity of the initial presentation can be easily obtained by 

the compound muscle action potential of the m. abductor hallucis longus, presenting 
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an easily obtained parameter against which prognosis and progress might be judged 

(Pitt et al., 2003).  

Pathological findings  

Small anterior roots are typically observed in the spinal cord of SMARD1 patients, 

with the remaining motor neurons showing dissolution of the Nissl bodies in the cell 

body. Due to the presence of both atrophy of the anterior roots and primary 

degeneration of the cell bodies, dying-back and dying-forward mechanisms are both 

suggested to be involved. Accumulation of neurofilaments, ubiquitination and 

apoptosis are also frequently observed (Grohmann et al., 1999). Sural and tibial 

nerves of patients showed typical signs of axonal degeneration, the presence of 

tomacula and myelin loops and endoneural fibrosis, but a normal structure 

of unmyelinated axons. A considerable variation of myelin thickness and areas with 

a reduced number of axons is observed, especially the thick myelinated fibres, 

resulting in small myelinated fibres and fascicular areas. Wallerian degeneration and 

marked axonal atrophy with hypo-and hypermyelination were prominent in motor 

and sensory neurons, but no signs of demyelination were present. Signs of active 

axonal degeneration are present but no evidence of regeneration (Pitt et al., 2003; 

Diers et al., 2005). Together these features are suggestive of abnormalities in 

myelination, caused by mutations in IGHMBP2. This could be caused through 

primary Schwann cell dysfunction or as a secondary outcome due to impaired 

interactions between the axons and Schwann cells. In the neuromuscular junctions of 

SMARD1 patients, terminal axons were absent, subsynaptic clefts were reduced and 

no motor end plates could be found in the diaphragm. Skeletal muscle sections 

showed neurogenic atrophy and inactivity without fibre grouping (Diers et al., 2005). 

Ultrastructural analysis of the muscle nuclei showed aberrant heterochromatin 

reorganisation and distorted nuclear-envelope continuity with the formation of 

granular chromatin blebs, abnormalities that were also found in the nuclei of 

Schwann cells and are often seen in laminopathies (Jedrzejowska et al., 2014). These 

suggest an initial anterior horn cell degradation accompanied by myelination 

abnormalities, followed by degeneration of axons and their endings at the endplate.  
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6.1.2 Immunoglobulin mu binding protein 2 protein  

Structure  

Human IGHMBP2 consists of 993 amino acids and contains an RNA/DNA helicase 

domain, an R3H, single-stranded nucleic acid-binding domain and a zinc finger 

domain (Fig. 6.1). The gene encodes a helicase superfamily member that binds a 

specific DNA sequence from the immunoglobulin mu chain switch region and has 

been classified as a member of the Upf1-like group within helicase superfamily 1 

(SF1) (Fukita et al., 1993; Jankowsky, 2011). Also in this group of Upf1-like 

proteins are Upf1 and Senataxin (Bhattacharya et al., 2000; Chen et al., 2006; 

Fairman-Williams et al., 2010). Senataxin encodes a 302.8-kD protein implicated in 

a type of motor neuronopathy called ALS4 and ataxia with neuropathy called ataxia-

oculomotor apraxia type 2 (Chen et al., 2004; Suraweera et al., 2009). The overlap in 

homology suggests that DNA/RNA helicase dysfunction may play an important role 

in the development of different types of neuropathy. The signature of this group of 

proteins is a DEAD box-like helicase/ATPase domain consisting of seven to nine 

canonical motifs, including the Walker A and B motifs, involved in ATP binding and 

hydrolysis (Cordin et al., 2006; Lim et al., 2012).  

 

Residues 638–786, including the R3H domain of IGHMBP2 at the C-terminal end, 

were identified as a segment that specifically binds 5′-phosphorylated, guanine-rich, 

single-stranded DNA (ssDNA) sequences (Fukita et al., 1993). Not only is the R3H 

domain involved in nucleic acid-binding, it also provides a surface area that could be 

involved in yet unknown protein-protein interactions (Liepinsh et al., 2003).  

Function  

The structure of the protein together with the observation that immunoprecipitates of 

IGHMBP2 showed an affinity to single-stranded DNA and an unwinding activity on 

partially double-stranded DNA (Molnar et al., 1997), suggests a potential role of 

IGHMBP2 in replication or transcription of DNA. Research by Guenther et al. in 

2009 identified IGHMBP2 as a 5’-3’ helicase, unwinding DNA and RNA duplices 

with 5’ overhangs in an ATP-dependent manner. IGHMBP2 has an almost exclusive 

localisation within the cytoplasm of the cell, where it co-localises with components 

of the translation machinery as part of ribonucleoprotein complexes by interacting 

with the large and the small ribosomal subunits (Guenther et al., 2009).  



190 

 

 

Figure 6-1 Location of all missense, nonsense and frameshift mutations in the structure of IGHMBP2. 
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Effect of mutations in IGHMBP2  

Mutational analysis of mutations in IGHMBP2 that lead to SMARD1 showed that 

either the unwinding capacity or the ATPase activity of the protein was affected or 

severely reduced steady-state protein levels were detected in vivo. None of the 

mutations affect ribosomal association. Several mutations residing in the helicase 

domain were studied, most of them affecting both the ATPase and the unwinding 

activity of the protein. Three exceptions were found so far: p.His213Arg, 

p.Thr491Ile and p.Asp565Asn. For the latter, only the unwinding activity was 

affected, whilst the other two mutations retained both unwinding and ATPase 

activity. One of these, p.Thr491Ile, was studied in patient lymphoblastoid cell lines 

and showed a lower steady-state protein level.  

 

It has been suggested that a retained residual enzymatic activity correlates with a 

more positive disease outcome and might delay disease progression or manifestation 

age, but this was done in a very small sample size. Since most of these patients are 

compound heterozygotes, the exact contribution of each mutation to the phenotype 

cannot be assessed (Guenther et al., 2009; Eckart et al., 2012). Quantification of the 

steady-state protein levels in five patients with either juvenile or infantile onset and 

different combinations of mutations revealed significantly lower levels in all five 

patients in comparison with controls or heterozygous carriers. Significantly lower 

steady-state protein levels were observed in the infantile patients in comparison with 

the juvenile onset patients. Heterozygous carriers of mutations all showed lower 

steady-state protein levels, ranging between 50-80% of the controls, depending on 

the mutation.  

 

Whilst most mutations in IGHMBP2 are located within the helicase domain, few 

mutations have been found outside of this domain. In most cases, the disease-causing 

mutations outside the helicase domain result in the generation of mRNA with a 

premature stop codon. Only one missense mutation outside the helicase domain has 

been reported so far: c.2922T>G (p.Asp974Glu), in combination with an in-frame 

deletion in exon 12 (Grohmann et al., 2003). So far, 76 mutations have been reported 

to cause SMARD1, 53 of which are missense/nonsense mutations and 15 

deletions/insertions causing a frameshift (Fig. 6.1). Other causes of disease consist of 
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splicing mutations, gross deletions or genomic rearrangements (not depicted in 

figure).   

6.1.3 nmd mouse  

The nmd
2J

 mouse is a spontaneous autosomal recessive mouse mutant caused by loss 

of function of the IGHMBP2 gene due to a splice donor mutation (Cox et al., 1998). 

Nmd mice showed greatly reduced levels of the IGHMBP2 protein and a severe loss 

of spinal cord motor neurons before onset of clinical symptoms. This was followed 

by axonal degeneration in corresponding nerves and loss of axon terminals at motor 

endplates at the final stages of disease. Signs of respiratory distress are only 

developed clinically at the later stages and no significant reduction in axon numbers 

of phrenic nerves was observed in mice of 14 weeks old. Myopathic alterations such 

as large numbers of regenerating muscle fibres and occasional muscle fibre 

necrosis were found in 8-week old mice (Grohmann et al., 2004). Transgenic 

expression of IGHMBP2 cDNA prevented primary motor neuron degeneration, 

while restoring the normal axonal morphology and density in nmd mice. However, 

these mice developed a previously unobserved cardiac and skeletal myopathy, with 

the cardiomyocyte degeneration being much more severe than the myopathy 

observed in the skeletal muscle fibres, suggesting these might have a higher 

requirement for IGHMBP2. Whilst there have been no reports of cardiomyopathy in 

SMARD1 patients, cardiac arrhythmia has been described in several infants (Pitt et 

al., 2003; Grohmann et al., 2003). 

Modifiers of disease  

When first described, it was observed that 25% of the (B6-nmd
2J

 X CAST/EiJ)F2  

nmd
2J

/ nmd
2J

 mice were very mildly affected concerning the neurogenic atrophy and 

paralysis (Cox et al., 1998) This was attributed to a single locus on chromosome 13 

containing the Mnm
C
 gene. Further analysis narrowed the effect down to one single 

BAC rescue clone of 166 kb within the mnm modifier, encompassing the ABT1 and 

Zfp322a genes, six tRNA genes and one noncoding EST. This genetic modifier did 

not restore the splicing defect in nmd mouse, nor did it have an influence on the 

protein levels (de Planell-Saguer et al., 2009). Whether it affects either the 

IGHMBP2 protein directly, or rather contributes to the survival of motor neurons 

independently, remains to be determined. Interestingly, Co-IP experiments have 

shown an interaction between IGHMBP2 and ABT1, a factor in pre-ribosomal RNA 
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processing and maturation of ribosomes (de Planell-Saguer et al., 2009). As 

mentioned before, there is a high intra- and interfamilial heterogeneity in age of 

onset or severity of symptoms in SMARD1 patients, which implies the existence of a 

modifier gene, but none have been identified so far. ES-derived motor neuron 

cultures have been developed from both wild type and mutant mice with or without 

this modifier region, aiming to elucidate the molecular pathway responsible for the 

difference in severity (Van der Pol et al., 2013).  

6.1.4 Treatment and management  

SMARD1 is a severely disabling disorder with a very poor prognosis. All patients 

require ventilation early on in life and few reach the stage of being able to sit 

unsupported. No treatment options are available and focus lies on management of the 

disease. A long-term observational study of patients who survived on permanent 

ventilator support showed that most patients are well-integrated into their 

environments and two thirds are able to attend kindergarten or school (Eckart et al., 

2011). Considering the rarity of these patients, most centres only have few SMARD1 

patients under their care and international collaboration is necessary to establish a 

uniform standard for genotype/phenotype relations and provide updates on relevant 

clinical and research information (Van der Pol et al., 2013).  

6.1.5 Future directions  

Stem cells  

Neuronal stem cell (NSC) and neuronal precursor transplantation in nmd mice have 

shown to result in a longer survival and improvement of the phenotype (Corti et al., 

2006, 2009). Transplantation of human derived iPSC-derived NSCs significantly 

improved the neurological phenotype and the survival of the nmd mice, although not 

sufficiently enough to rescue to nmd phenotype. Molecularly, upregulation of genes 

involved in chromatin organisation, cytoskeletal function, and neurogenesis was 

observed in transplanted mice in comparison to untreated mice as well as 

downregulation of genes involved in excitatory amino acid toxicity and oxidative 

stress (Simone et al., 2014). Co-cultures of NSCs with murine and human motor 

neurons exhibited a neuroprotective effect by producing neurothropic factors that 

inhibit both GSK-3 and HGK kinases. Motor neuron survival improved and an 

increased neurite length and growth cone size was observed in SMARD1 iPSC-
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derived motor neurons (Simone et al., 2014). Not only could iPSC derived from 

affected patients be a more valuable model for testing therapeutic strategies next to 

results from the animal model, the combination of cell transplantation with an 

effective drug therapy might ultimately lead to clinically significant results in 

patients.   

Gene therapy  

Gene therapy in mouse models of SMA has shown positive results, increasing life 

expectancy from 27 to 340 days, preventing motor neuron death, complete correction 

of motor function and rescue of the weight loss phenotype close to normal 

(Dominguez et al., 2011). Recent findings have shown systemic administration of 

AONs to restore SMN2 splicing rescues the phenotype more efficiently than 

intraventricular administration, leading to the targeting of motor neurons by 

intravenous administration with a self-complimentary adeno-associated virus 9 

(scAAV9) vector (Duque et al., 2009; Hua et al., 2011; Van Meerbeke et al., 2011). 

Research for SMA is advancing to the stage of AAV9 vector-based gene therapy 

trials in human patients. This appeals for similar studies in the nmd mouse model 

with scAAV9 vector supported IGHMBP2 gene therapy. 

Insulin-like growth factor 1 (IGF-1)  

IGF1, also known as somatomedin C, plays an important role in the developmental 

process of neurons, promoting peripheral neuron survival and inducing regeneration 

(Gao et al., 1999). Recent studies in the Nmd
2J

 mice identified a systemic IGF1 

deficit in blood serum, which could be compensated by treating mice with 

subcutaneous injections of Polyethylene glycol-coupled IGF1. This resulted in 

improvement of the motor deficits, an 84% reduction of spontaneous activity in the 

gastrocnemius muscle and a slight gain of CMAP amplitude. PEG-IGF1 treatment 

markedly ameliorated or even prevented the myopathic pattern of pathology seen in 

the gastrocnemius and diaphragm muscles but did not rescue motor neuron and 

motor axon loss (Krieger et al., 2014). Studies in the pmn mouse showed positive 

effects on spinal motor neuron survival when a 3-fold higher dose of PEG-IGF1 was 

applied but these could not be replicated in the Nmd
2J 

mice due to fatality of the 

higher dose (Jablonka et al., 2011). Molecular studies suggest that the beneficial 

effect of PEG-IGF1 in striated muscle is mediated through the Akt/p70
S6K

 signalling 

pathway, adjusting muscle differentiation and protein biosynthesis via the PI3 
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kinase/p70
S6K

/mTOR pathway. Recombinant human insulin-like growth factor 1 

(rhIGF1) (Mecasermin) is already a Food and Drug Administration-approved drug 

for the long-term treatment of growth failure in children with severe primary IGF-I 

deficiency (Backeljauw et al., 2012) and was recently used in a phase 1 trial for rett 

syndrome (RTT), a severe X-linked neurodevelopmental disorder associated with 

mutations in MECP2, to evaluate the safety, tolerability and pharmacokinetic 

profiles of IGF-1 in 12 patients (Khwaja et al., 2014). This ameliorated certain 

breathing and behavioural abnormalities and was well tolerated; suggesting PEG-

IGF1 could be a reasonable candidate as a therapeutic compound in SMARD1 

patients. 

 

6.2 Results  

6.2.1 Clinical details of two siblings with CMT2  

In line with the previous chapter, exome sequencing was performed in a recessive 

family with two siblings in their 40’s, affected with axonal neuropathy (Family M). 

Clinical and neurophysiological examination of both parents was normal and family 

history was otherwise unremarkable. Both sisters presented at age 3 and 6 years with 

toe walking and slowly progressive distal lower limb wasting and weakness. Hand 

involvement subsequently developed. There were no sensory symptoms. Disease 

course was similar in both siblings until early in the third decade of life. At that time, 

the oldest sibling developed right shoulder pain radiating down her right arm 

followed by anisocoria and cranial neuropathies of the right XI and XII nerves, but 

no significant abnormalities were observed on brain MRI, PET scan and ENT 

examinations. Neurological examination at the age of 25 disclosed asymmetrical 

pupils reacting normally to light and accommodation with no ptosis, right-sided 

atrophy and weakness of the tongue, and mild weakness of the right trapezius and 

sternocleidomastoid muscles. Electromyography of the right tongue, trapezius, and 

sternocleidomastoid muscles showed chronic neurogenic changes. There was no 

suggestion of myopathy. Sensory examination was normal, but NCS showed absent 

sensory responses in upper and lower limbs, and absent motor responses from the 

median, common peroneal and posterior tibial nerves. Overall, the 

neurophysiological pattern was consistent with a motor and sensory axonal 

polyneuropathy and XI and XII right cranial neuropathies.  
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During the last examination of the siblings at 42 and 38 years of age, both of them 

worked for the government, were still active, able to drive, and used a stick to walk 

with silicon ankle foot orthosis. Examination of the index case at age 42 revealed 

bilateral foot drop, distal weakness and wasting in the upper and lower limbs, with 

mild proximal lower limb weakness. Reflexes were absent and there was sensory 

loss in the feet and hands. Cranial nerves were normal apart from a wasted tongue. 

There were no respiratory problems. Chest X-ray and sleep study was normal, nerve 

conduction studies indicated an axonal neuropathy and a nerve biopsy showed an 

axonal neuropathy. Her sister had almost identical but milder clinical features, and 

examination findings at the age of 38 years revealed bilateral foot drop, severe distal 

weakness and wasting in the upper and lower limbs, with mild proximal lower limb 

weakness, areflexia and minor sensory deficits. There were no respiratory problems 

and an axonal neuropathy was seen on nerve conduction studies.  

6.2.2 Exome sequencing revealed a mutation in the IGHMBP2 gene  

17p11.2 chromosome region rearrangements were not detected and sequence 

analysis of MPZ, PMP22, GJB1, MFN2 and GDAP1 showed no pathogenic variants. 

Exome sequencing was performed and analysis of the results detected two 

compound heterozygous mutations in the immunoglobulin helicase μ-binding protein 

2 (IGHMBP2) gene. Mutations in this gene have been previously described to cause 

Spinal Muscular Atrophy with Respiratory Distress 1 (SMARD1) (Grohmann et al., 

2001). Exome sequencing revealed a nonsense 5’ mutation (c.138T>A, p.Cys46Ter) 

and a 3’ frameshift mutation in the last exon of the gene (c.2911_2912delAG, 

p.Arg971Glufs*4). The mother and father were heterozygous for the c.138T>A and 

c.2911_2912delAG mutations, respectively. The nonsense mutation has been found 

before in a patient with SMARD1, in combination with a frameshift insertion in 

exon 12: c.1649insC (Grohmann et al., 2003). At the time of discovery, the deletion 

was regarded as a novel mutation, not present in the 1000 genomes database, the 

exome variant server (EVS) of 6500 individuals, or our in-house exome database of 

480 clinically and neuropathologically normal controls. More recent updates show 

the presence of this variation in the online servers. Considering the recessive nature 

of the disorder, the presence of carriers in the population has to be taken into 

account. Verifying the pathogenicity of the deletion is a vital step to take this gene 

forward in the context of CMT2. Seeing there is a substantial difference in the 
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severity of the diseases, an explanation as to why this occurs in CMT2 would lead to 

a better understanding of the pathways in which IGHMBP2 is involved and how 

difference in genotype can establish a difference in phenotype.    

6.2.3 Genetic screening  

As an initial approach, Sanger sequencing was performed in 260 CMT2 patients with 

suggestive or possible recessive inheritance. Five extra patients from four families 

were found with compound heterozygous mutations in the IGHMBP2 gene (Table 

6.1, Families N-Q). Segregation analysis in families N-P revealed the consistent 

presence of one variant in each parent (Fig. 6.2). Further analysis of collaborator data 

revealed three families with compound heterozygous mutations and one with a 

homozygous mutation (Table 6.1, Families R-U). In two extra families, only one 

heterozygous mutation could be identified (Table 6.1, Families V, W). For these two 

families, MLPA for IGHMBP2 did not show any deletions. This brings the total to 

fifteen CMT2 patients with mutations in IGHMBP2 (Table 6.1). Both of the 

mutations initially seen in the index patients were independently found in other 

patients (Table 6.1, Families O and S).   

6.2.4 Clinical details  

All families with CMT2 and IGHMBP2 mutations showed an autosomal recessive 

pattern of inheritance (Table 6.2). All fifteen patients presented in their first decade 

with difficulty walking and distal weakness of predominantly the lower limbs. Upper 

limb involvement developed soon after. The phenotype consists of slow progression 

involving lower limbs more than upper limbs and predominantly motor involvement. 

Sensory involvement was mild glove and stocking and electrophysiology indicated a 

sensory and motor axonal neuropathy in all cases. At the latest examination, all had 

moderate to severe weakness in both upper and lower limbs, pinprick and vibration 

sense was normal for most patients or reduced below wrist/ankle and reflexes were 

absent. Neurological examination showed proximal weakness in the older cases but 

after 40 years of disease. None of the cases had respiratory compromise, recurrent 

chest infections or previous ventilator assistance or sleep apnea. Results of the forced 

vital capacity test in four patients ranged from 25-95% of normal. Out of fifteen 

patients, six are currently wheelchair-bound and one further case had wasting of the 

tongue, comparable to the index patients. Extensive clinical details were available 

for two patients, who were seen locally.  
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Family Ethnicity Sex Diagnosis Age at onset Current age Protein change Nucleotide change 

M English Female CMT2 7 years 42 years p.Cys46Ter + p.Arg971Glufs*4 c.138T>A + c.2911_2912delAG 

M English Female CMT2 6 years 38 years p.Cys46Ter + p.Arg971Glufs*4 c.138T>A + c.2911_2912delAG 

N English Male CMT2 5 years 23 years p.Cys46Ter + p.Arg971Glufs*4 c.138T>A + c.2911_2912delAG 

O Serbian Male CMT2 2 years 14 years p.Cys46Ter + p.Phe202Val c.138T>A + c.604T>G 

O Serbian Female CMT2 2 years 15 years p.Cys46Ter + p.Phe202Val c.138T>A + c.604T>G 

P Pakistani Female CMT2 + 

Trisomy 21 

7 years 20 years p.Pro531Thr + p.Val580Ile c.1591C>A + c.1738G>A 

Q English Male CMT2 4 years 15 years p.Ser80Gly + p.Cys496Ter c.238A>G + c.1488C>A 

R Vietnamese Female CMT2 3 years 39 years p.Arg605Ter + p.His924YTyr c.1813C>T + c.2770C>T 

S USA Female CMT2 6 years 10 years p.Trp386Arg + p.Arg971Glufs*4 c.1156T>C + c.2911_2912delAG 

T Polish Female CMT2 4 years 28 years p.990_994del (Hom) c.2968_2980del (Hom) 

U Italian Female CMT2 1 years 12 years p.Val373Gly + p.Ala528Thr c.1118T>G + c.1582G>A 

U Italian Male CMT2 1 years 6 years p.Val373Gly + p.Ala528Thr c.1118T>G + c. 1582G>A 

V Korean Male CMT2 5 years 41 years p.Asn245Ser (Het) c.734A>G (Het) 

W English Male CMT2 7 years 20 years p.Arg605Ter (Het) c.1813C>T (Het) 

W English Female CMT2 10 years 18 years p.Arg605Ter (Het) c.1813C>T (Het) 

Table 6-1 List of all patients with CMT2 and mutations in IGHMBP2. 
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Figure 6-2 Electropherograms of the segregation analysis in families A-D. 



200 

 

Individual 1 2 3 4 5 6 7 8 9 10 12 13 11 14 15 

Family no. M M N O O P Q R S T U U V W W 

Sex/age (y) F/43 F/40 M/23 M/14 F/15 F/19 M/15 F/39 F/10 F/28 F/12 M/6 M/41 M/20 F/18 

Ethnicity English English English Serbian Serbian Pakistani English Vietname

se 

USA Polish Italian Italian Korean English English 

Mutation p.Cys46T

er + 

p.Arg971

Glufs*4 

p.Cys46T

er + 

p.Arg971

Glufs*4 

p.Cys46T

er + 

p.Arg971

Glufs*4 

p.Cys46Te

r + 

p.Phe202

Val 

p.Cys46T

er + 

p.Phe202

Val 

p.Pro531T

hr + 

p.Val580Il

e 

p.Ser80G

ly + 

p.Cys496

Ter 

p.Arg605

Ter + 

p.His924

Tyr 

p.Trp386A

rg + 

p.Arg971

Glufs*4 

p.990_99

4Fs 

(Hom) 

p.Val373

Gly + 

p.Ala528

Thr 

p.Val373

Gly + 

p.Ala528

Thr 

p.Asn245

Ser (Het) 

p.Arg605

Ter (Het) 

p.Arg605

Ter (Het) 

Age at first 

symptoms 

7 y 6 y <5 y <2 y <2 y <10 y 4 y < 3y 6 y 4 y 1y 1y 5 y 7y 10y 

First 

symptom/s 

Toe 

walking, 

high 

stepping 

gait 

Toe 

walking, 

hand and 

leg 

weakness 

Difficulty 

walking, 

foot drop 

Delayed 

milestone, 

hypotonia 

Delayed 

walking 

Hypotonia, 

foot drop 

Foot 

drop 

Delayed 

motor 

milestone

s 

Foot drop, 

high 

stepping 

gait 

Hand 

weakness 

difficulty 

walking 

hand 

fingers 

flexion 

foot 

weakness  

bilateral 

equino-

varus foot 

Gait 

difficulty 

Foot drop, 

clumsiness 

Feet 

deformity 

Weaknessa                               

    UL +++ +++ ++ +++ +++ +++ ++ +++ N ++ +++ + + ++ + 

    LL +++ +++ ++ +++ +++ +++ ++ +++ ++ +++ +++ ++ ++ ++ + 

Pinprickb                               

    UL N N + N N n/a n/a N N + + n/a + N N 

    LL + N + N N n/a n/a N N n/a + n/a + N N 

Vibrationc                               

    UL N N N N N n/a n/a N N n/a n/a n/a ++ N N 

    LL + N + N N n/a n/a N N n/a n/a n/a ++ N N 

Reflexes                               

    UL Abs Abs Abs Abs Abs Abs n/a Abs + +/- Abs abs abs N N 

    LL Abs Abs Abs Abs Abs Abs n/a Abs Abs (AJ) Abs Abs abs abs AJ +/- 

Bulbar 

involvemen

t 

No 

(rhomboi

d-shaped 

tongue) 

Wasted 

tongue 

No No No                                                                                     Wasted 

tongue 

n/a No No No No No No No No 
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Individual 1 2 3 4 5 6 7 8 9 10 12 13 11 14 15 

Family no. M M N O O P Q R S T U U V W W 

Respiratory 

problems/ 

Respiratory 

support 

No No No No No No No No No No No No No No No 

Musculo-

skeletal 

deformities 

Equinus 

foot 

deformity 

Equinus 

foot 

deformity 

Feet 

deformity 

(surgery) 

Lumbar 

hyper-

lordosis, 

scoliosis 

Lumbar 

hyper-

lordosis 

Lumbar 

hyper-

lordosis,  

No Varus 

feet hip 

problems 

Achilles 

tendon 

contractur

e 

Scoliosis Achilles 

tendon 

contractur

es, 

scoliosis  

Achilles 

tendon 

contractur

es 

Thenar 

muscle 

atrophy 

(right>lef

t), Pes 

cavus  

Equinus 

foot 

deformity 

(surgery) 

Equinus 

foot 

deformity 

(surgery) 

Overall 

maximal 

function 

Independ

ent 

ambulatio

n 

Independ

ent 

ambulatio

n 

Independ

ent 

ambulatio

n 

n/a n/a Independe

nt 

ambulation 

n/a n/a n/a n/a Independe

nt 

ambulatio

n  

Walking 

with 

support 

FDS(3), 

CMTNS(

19), 9 

hole peg 

test (23.3 

sec) 

Independe

nt 

ambulatio

n 

Independ

ent 

ambulatio

n 

Walking 

aids 

AFO AFO 

(past) 

n/a WC WC WC AFO WC since 

16 

AFO WC WC since 

age 5 

years 

Bilateral 

support 

AFO AFO+Crut

ches 

No 

Other 

features 

n/a Wasted 

right 

shoulder 

and lower 

cranial 

nerves  

n/a n/a Without 

other 

features 

Trisomy 

21 

mosaicism 

Small 

focus of 

increased 

signal in 

right 

cerebella

r 

hemisphe

re (brain 

MRI) 

n/a McCune 

Albright 

syndrome 

(unconfir

med) 

Obese Marked 

worsening 

during 

febrile 

illness 

No Sensory 

ataxia 

Without 

other 

features 

Without 

other 

features 

Table 6-2 Clinical features of all patients with CMT2 and IGHMBP2 mutations. AFO = ankle foot orthosis; n/a = not available; LL= lower limbs; UL = upper limbs; WC = 

wheelchair. a Weakness: N normal; +4> distal muscles; ++ proximal weakness (knee flexion and extension, elbow flexion and extension or above). b Pinprick and vibration 

sensation: N normal; + reduced below wrist/ankle;  ++ reduced below knee/elbow; +++ reduced at or above elbow/knee. c Reflexes: N normal/present; ++ brisk; +++ brisk 

with extensor plantars; +/- = present with reinforcement; abs = absent; abs (AJ) = absent ankle jerks only 
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Family N  

A 16-year-old male presented with a longstanding history of upper and lower limbs 

weakness. Early during development he was noted to drag his feet when walking and 

underwent several operations to his feet since the age of 5 years. He then gradually 

developed slowly progressive weakness of his lower legs and subsequently of his 

hands. Examination at the age of 17 years showed significant distal upper and lower 

limb muscle wasting, weakness of first dorsal interosseus and abductor pollicis 

brevis muscles, no movement below the ankles, absent reflexes and abnormal 

sensation in his fingers and lower legs. Nerve conduction studies at age 16 years 

revealed absent sensory responses in upper and lower limbs, and absent motor 

responses from the median, common peroneal and posterior tibial nerves. Right ulnar 

nerve distal CMAP amplitude was 5.7 mV with conduction velocity of 45 m/s. 

Electromyography of proximal limb muscles showed no significant abnormalities. 

The neurophysiological pattern was consistent with a motor and sensory axonal 

polyneuropathy.  

Family P 

An 18-year-old female was born to non-consanguineous parents in Pakistan. She 

presented with seizures secondary to hypocalcaemia at the age of 3. She was noted to 

be hypotonic and dysmorphic and diagnosed with trisomy 21 mosaicism. During 

childhood, she exhibited developmental delay, bilateral foot drop and limb 

contractures. On examination at the age of 11 years, she had lumbar hyperlordosis, 

severe walking difficulty and was able to stand only for one minute without support. 

There was distal muscle wasting and weakness in her lower limbs and to a lesser 

degree in her hands. Reflexes were absent and the remainder of the examination was 

unremarkable. Forced vital capacity was 1.35 L (57% of predicted) but she had 

difficulty in performing the test. At the age of 18 years, she used a manual 

wheelchair for outdoor mobility. Sensation was difficult to assess. Neurophysiology 

at the age of 14 years was consistent with an axonal neuropathy with no recordable 

motor units from tibialis anterior and extensor digitorum brevis muscles. There were 

denervation changes in extensor digitorum communis and tongue. Neurophysiology 

at the age of 20 years confirmed both motor and sensory involvement. 
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6.2.5 Mutation spectrum 

Three families (five patients) carried the c.138T>A nonsense mutation in 

combination with either a c.2911_2912delAG deletion, causing a p.Arg971Glufs*4 

frameshift in the last exon (Family M and N), or a novel c.604T>G (p.Phe202Val) 

variant (Family O).  The remaining eight families either had two missense mutations 

(Families P,U), a missense mutation in combination with a truncating mutation 

(Families Q-S) – one of which had the same c.2911_2912delAG deletion as the 

index family (Family S) – a homozygous truncating mutation (Family T) or one 

heterozygous missense mutation (Families V,W). Most of these mutations were 

located in the helicase domain of the protein, apart from the c.2911_2912delAG and 

c.2968_2980delGAGAGGGGGACGT truncating mutations in the last exon of the 

gene and the c.2770C>T missense mutation in the zinc finger domain (Fig. 6.3). This 

is consistent with the observation that in SMARD1, the majority of disease-causing 

mutations are found within the helicase domain and those that are found outside this 

domain often result in the generation of mRNAs with premature stop codons. Of all 

mutations in this cohort, five have been found before in SMARD1 patients. Nine are 

novel variants, seven of which are missense mutations. Looking at a selected subset 

of 9 species, representing the 100 species available at the UCSC browser, 

conservation of these variants is highly preserved. The only exception is the 

p.Pro531Thr variant, found in family P (Fig. 6.4). This variant is only preserved in 

the rhesus monkey and the dog. In the other species, proline has changed to 

Glutamine or Lysine. This results in a respectively polar or positively charged amino 

acid instead of a non-polar one. When looking into more detail, the proline is 

preserved over most primates, with gorilla and bushbaby being the exception (Fig. 

6.5). Both of these result from a mutation in the second aminocacid of the codon, 

whilst the variant found in the patient results from changing the first aminoacid of 

the codon. The conservation score of this particular aminoacid has been determined 

at 2.61818 by using the PhyloP program, an incorporated function of the genome 

browser, indicating the conservation and acceleration of this amino acid is more 

preserved than the average.  
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Figure 6-3 Localisation of the newly found mutations in IGHMBP2 in CMT2 patients in comparison with the already known pathogenic mutations in SMARD1 patients. 
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Figure 6-4 Conservation of the novel variants found in IGHMBP2. All variants are well conserved over species apart from the p.Pro531Thr variant. 
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Figure 6-5 Conservation of Proline 531 of 

IGHMBP2 in primates. 

6.2.6 Localisation of the missense mutations within the structural domains 

of IGHMBP2  

Whilst nonsense and frameshift mutations will likely result in the loss of functional 

protein due to nonsense-mediated decay or truncated proteins, the mechanism of 

disease for missense mutations in IGHMBP2 is less clear. Depending on the 

localisation in the structure, missense mutations could interfere with the function of 

the protein or result in accumulation of aberrant proteins. Misfolded or mislocalised 

proteins can interact inappropriately with other cellular factors to cause toxicity. In 

Family O, the novel p.Phe202Val variant is part of an α-helix in domain 1A, but not 

central to the protein structure (Fig 6.6 E). In family P, the known severe pathogenic 

variant p. Val580Ile lies near a β-strand in the core of domain 2A and interacts with 

Ser539 on a neighbouring strand to stabilise the RecA-like fold. Mutating a valine to 

a isoleucine, which has a longer side chain, likely disrupts the formation of the β-

sheet and hence destabilises domain 2A. The other variant in this family, the novel 

p.Pro531Thr, lies in a loop region and is exposed to the solvent region on the protein 

surface. The side chain of the residue does not interact with neighbouring residues 

and will likely have a milder phenotype (Fig. 6.6 A). Similarly, the novel p.Ser80Gly 

variant in family Q lies in a loop region of domain 1B but its side chain does not 

interacts with any neighbouring residues (Fig. 6.6 E).  
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Figure 6-6 Mapping of the missense mutations of families O, P, Q, U, V and W on to the IGHMBP2 

structure. All the missense mutations are mapped onto the structure of hIghmbp2-RNA (PDB code: 

4B3G) with the Cα atoms of the mutated residues shown as red spheres. AMPPNP (in grey) is 

modelled by superposition of the structure of hIghmbp2-RNA with that of human Upf1ΔCH-

AMPPNP (PDB code:2GJK). The bound ssRNA is shown as yellow tube. (A)  Missense mutations in 

Family P (B and C) Missense mutation in Family U. (D) Missense mutations in Families V and W.(E) 

Mutations in family O,P and Q.  
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In family S, a known pathogenic missense variant (p.Trp386Arg) replaces a 

hydrophobic residue to a positively charged residue, resulting in protein instability 

due to the loss of some favourable van der Waals contacts with neighbouring 

hydrophobic residues. The other missense mutations p.Val373Gly and p.Ala528Thr 

in family U are also predicted to cause protein instability, resulting in loss of 

functional protein (Fig. 6.6 B and C). Lastly, the only heterozygous mutation in 

families V, p.Asn245Ser, targets a conserved residue in motif Ia that forms important 

interactions with the phosphate backbone of RNA. Mutating it to a serine residue 

could affect the interaction with RNA since the serine side chain is shorter and lacks 

the amide group (Fig. 6.6 D).  

6.2.7 Haplotyping  

To investigate the relationship of the three CMT2 families with the p.Cys46Ter 

mutation (Families M, N and O), five highly polymorphic microsatellite markers 

closest with respect to the IGHMBP2 gene were genotyped, the distance between the 

outer markers measuring 5.5 cM (Table 6.3). Haplotype analysis was performed on 

the five affected patients and their respective unaffected family members to 

investigate a common founder.  A shared haplotype, spanning 1.2cM (only 2/5 

markers) and containing the p.Cys46Ter nonsense mutation, was found in all three 

families, suggesting families are not closely related.  In families M and N, only one 

marker was shared on the allele with the AG deletion in the last exon. This is the 

closest marker, located 0.1 cM from the gene.  

 

Microsatellite marker name  Chromosome location Distance from IGHMBP2  

D11S1889 11:67313143-67313325 1.51 cM (1,357,985 bp) 

D11S4178 11:68189108-68189359 1.12 cM (481,951 bp) 

IGHMBP2  11: 68671310-68708067 0 cM  

D11S4113 11:68765634-68765859 0.1 cM (57,567 bp) 

D11S4095 11:69268159-69268361 1.09 cM (560,092 bp) 

D11S4139 11:70504269-70504461 3.97 cM (1,796,202 bp) 

Table 6-3 Polymorphic microsatellite markers used for the haplotyping of the nonsense and 

frameshift mutations in IGHMBP2 in families M, N and O. cM = centimorgan  
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Figure 6-7 Haplotyping results for families M, N and O. (A) Pedigree of family M (B) Pedigree of Family N (C) Pedigree of family O (D) 

Markers that were shared between the three families for the c.138T>A mutations or the two families for the c.2911_2912delAG.  
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6.2.8 mRNA analysis of IGHMBP2 nonsense mutations  

The presence of a nonsense-mutation is highly suggestive of nonsense-mediated 

decay. This was investigated by isolation of the mRNA of patient fibroblast and 

lymphoblastoid cell lines. Patient and carrier cell lines of families M and N were 

used to determine whether the p.Cys46Ter nonsense mutation, caused by the 

transversion of a thymine to an adenine at position 138 of the coding DNA, was still 

present. Both in fibroblasts and lymphoblastoid cell lines of carriers and patients, the 

nonsense mutation was still present at the mRNA level, suggesting NMD had not 

been activated. Since the p.Arg971Glufs*4 frameshift is located in the last exon of 

the gene, we would not expect nonsense-mediated decay to occur.  

To determine whether this lack of NMD is specific for the p.Cys46Ter nonsense 

mutation, two fibroblasts lines from SMARD1 patients with heterozygous or 

homozygous frameshift mutations were also investigated. Both the homozygous 

deletion at position 292 and the heterozygous deletion at position 1632 were still 

present in the mRNA, suggesting that IGHMBP2 is somehow protected from NMD, 

leading to truncated proteins. In collaboration with Professor Horvath at the 

University of Newcastle, cDNA analysis was also performed to investigate the 

presence of the nonsense mutation in family W. This showed the stop mutation as 

hemizygous, suggesting a deletion on the other allele (Fig. 6.8).   

 

 

Figure 6-8 Sequence electropherograms of the c.138T>A mutation in the mRNA of lymphoblasts 

and fibroblasts of CMT2 individuals and carriers, the c.1813C>T mutation in fibroblasts of CMT2 

individuals, and frameshift mutations in fibroblasts of SMARD1 individuals. The nonsense 

mutations are still present in the mRNA of both affected individuals and carriers in comparison 

with mRNA from a non-mutation control, indicating NMD is not present. The same is observed 

for the frameshift mutations in the SMARD1 fibroblasts in comparison with mRNA from a non-

mutation control, indicating there is no NMD.  
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6.2.9 Subcellular localisation of IGHMBP2 in patient fibroblasts  

Considering nonsense-mediated decay is not activated, nonsense mutations such as 

p.Cys46Ter will result in shorter, truncated proteins. It was hypothesised these might 

lead to mislocalisation of the protein or the formation of aggregates. However, 

immunocytochemistry experiments in selected fibroblasts of a CMT2 patient, carrier 

and SMARD1 patient showed no significant difference with those from controls (Fig 

6.9). In all cell lines the protein is mainly present in the cytoplasm and spread 

throughout. Actin staining was also performed to look at the overall structure of the 

cell. The intensity of the fluorescence was not measured, since levels of the protein 

were established via western blot in the next section (6.2.10).  

6.2.10 Protein levels of IGHMBP2 in patient fibroblasts  

A previous paper by Guenther et al. in 2008 investigated the levels of the steady-

state IGHMBP2 protein in the lymphoblastoid cell lines of three patients with an 

infantile onset and two patients with juvenile onset at 3.5 or 4.3 years. These were 

compared with three of their parents, carriers for one heterozygous mutation, and 3 

controls. It was observed that infantile onset patients had lower residual levels of the 

protein than juvenile onset patients and all were significantly lower than controls. 

Whilst lymphoblastoid cell lines have been shown to reflect the changes of the 

protein levels in the spinal cord of mice, making it a valuable cell model to study the 

effects on the protein level in patients, immortalisation can be quite costly and time 

consuming. As an alternative, patient-derived fibroblast cell lines were initially used 

to investigate the protein levels in CMT2 and SMARD1 patients in comparison with 

carriers and controls, to evaluate whether this would be a valid cell type to use.  

Fibroblasts were available for families M, N and patients of families O and P. These 

were compared with three controls, one SMA control with a mutation in SMN and 

three SMARD1 patients (Table 6.4). Due to the generosity of Professor Utz Fisher, 

the original 481 antibody used in the paper was obtained. However, using different 

buffers and different running conditions, a working protocol could not be established 

in the fibroblast cell lines and only resulted in background bands without the 

observation of a band at the right weight (Fig. 6.10 A). Different cell lines such as 

lymphosblastoid cell lines were used, since the original experiments were performed 

in that specific cell type, but no usable results could be acquired (Fig. 6.10 B).  
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Figure 6-9 Localisation of the IGHMBP2 protein in fibroblasts. Scale bar = 58.00 μm. Green: 

IGHMBP2; Blue: 4',6-diamidino-2-phenylindole (DAPI) staining for the nucleus. Green last column: 

Actin;  No difference in clustering of the truncated protein is found between the control and both the 

affected individuals and the carrier. A negligible background can be observed with the staining with 

the secondary antibody only. The overall structure of the cells is similar, as indicated by actin. 

SMARD1= p.Gly98Fs; CMT2 = p.Cys46Ter + p.Arg971Glufs*4; Carrier = p.Arg971Glufs*4.  
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This urged the use of a commercial available antibody, IGHMBP2, clone mAb11-24 

(Millipore), which was tested in different cell lines. This resulted in a much higher 

quality blot and was used throughout all further western blot experiments (Fig. 6.10 

C). Initially only HEK and SY5Y cell lysates showed a clearly distinguishable band, 

indicating the overall protein content loaded for fibroblast cell lines needed to be 

heightened, due to low expression in this tissue. Initial experiments were performed 

in triplicate with nine different fibroblast cell lines and showed a consistent lower 

steady-state protein level in the SMARD1 patients (0-12%) in comparison with the 

Patient Family 

no. 

Sex/Age Fibroblasts LCL  Phenotype Mutation 

1 M F/41 M. II.1  CMT2 p.Cys46Ter + 

p.Arg971Glufs*4 

2 M F/38 M. II.2 M. II.2 CMT2 p.Cys46Ter + 

p.Arg971Glufs*4 

3 N M/23 N. II.1 N. II.1 CMT2 p.Cys46Ter + 

p.Arg971Glufs*4 

4 O M/14 O. II.1  Severe 

CMT2 

p.Cys46Ter + 

p.Phe202Val 

5 O F/15 O. II.2  Severe 

CMT2 

p.Cys46Ter + 

p.Phe202Val 

6 P F/19 P. II.1  CMT2 p.Pro531Thr + 

p.Val580Ile 

Carrier 1 M M/72 M. I.1 M. I.1 Unaffected 

carrier 

p.Arg971Glufs*4 

Carrier 2 N M/57 N. I.1 N. I.1 Unaffected 

carrier 

p.Cys46Ter 

Carrier 3 N M/21 N. II.2 N. II.2 Unaffected 

carrier 

p.Cys46Ter 

Unaffected  

Sibling 

N M/19 N. II.3 N. II.3 Unaffected   

Carrier 4   N F/54 N. I.2 N. I.2 Unaffected 

carrier 

p.Arg971Glufs*4 

SMARD1 

1  

 <1y S1  SMARD1 p.Gly98Fs 

SMARD1 

2  

 <1y S2  SMARD1 p.Gln544Fs +  

p. Arg637Cys 

SMARD1 

3 

  S3 S3 SMARD1 p.His213Arg 

SMARD1 

4 

   S4 SMARD1 c.2611+1G>T 

Control 1  F/54 C1  Unaffected  

Control 2  M/9 C2  Unaffected  

Control 3  F/39 C3  Unaffected   

Control 4  Unknown C4  SMN1  

Table 6-4 List of all the available fibroblast and lymphoblast cell lines in the IGHMBP2 project. 



214 

 

CMT2 patients (15-20%) when standardised against 2 controls. This hypothesis was 

not followed by the SMARD1 fibroblast cell line S3, which was obtained from Dr. 

Katja Von Au in Germany. However, lymphoblasts of S3 were also available and are 

studied in a further section, showing negligible amounts of protein. One carrier cell 

line was available and showed 42% of steady-state protein levels in comparison with 

controls (Fig. 6.10 D and E). Multiple more fibroblast cell lines were obtained from 

patients, carriers and controls, leading to a total of 17 fibroblast cell lines. Multiple 

rounds of optimisation were required before establishing a protocol returning 

qualitative results.  

 

Figure 6-10 Comparison of the different antibodies for IGHMBP2 in different cell types. (A) 481 

antibody in fibroblasts (B) 481 antibody in different cell lines (C) mAb11-24 antibody in different cell 

lines (D) Representative western blot for the triplicate staining of mAb11-24 in fibroblasts (E) 

Percentages of steady-state protein level in fibroblast cell lines standardised against two controls.  
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Whilst performing these experiments, a major bacterial infection issue arose in the 

tissue culture facilities being used. This instigated a severe delay of experiments and 

untrustworthy results. Cell lysates from infected cell lines were still being used and 

exhibited similar behaviour as healthy cell lines, with results indicating the same 

trend as previous experiments. However, results were not used before cell lines were 

completely eradicated from bacterial infections. Interestingly, when performing 

western blot on infected cell lines, a different protein pattern could be observed with 

the Ponceau staining, suggesting this might influence the protein levels of multiple 

proteins (Fig. 6.11). 

 

Figure 6-11 Ponceau staining of different 

fibroblast cell lines during a period of bacterial 

infections in the tissue culture labs. 

Bacterial analysis showed a contamination with the Achromobacter bacteria, which 

had been identified before as a cell culture contaminant (Gray et al., 2010). Even 

though blast searches excluded the presence of an identical protein sequence that 

would be recognised by the IGHMBP2 antibody, shorter sequences with an 82% 

identity can be found in Achromobacter bacteria. Together with the uncertainty of 

the influence of the infection on different pathways in fibroblast cultures, results 

from potentially affected cell lines were not used for analysis. After taking the 

appropriate measures against future infections, experiments were repeated in 

triplicate in cell lines clear from infections. High variability could be observed 

within the different carriers, and it is noteworthy that those were the main cell lines 

affected by the bacterial infection (N. I.1; N.I.2; N.II.2; N.II.3). However, a trend 
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could be observed for lower steady-state protein levels in carriers than controls, but 

higher than in patients (Fig. 6.12). An example of the variability between different 

blots can be seen in figure 6.13, where two blots with the same samples, harvested 

and processed on different days, are depicted. Especially samples C3, C4 and P.II.1 

vary on these blots, even though the same amount of whole cell protein content was 

loaded.  

 

In the three individuals with the combination of the p.Cys4Ter and p.Arg971Glufs*4 

variants, an extra band was detected between 70–80 kDa. This band was not detected 

in any other affected individuals, carriers or controls (Fig. 6.14). With the help of 

online tools, the molecular weight of the truncated protein resulting from the 

p.Cys46Ter variant was estimated at 52 kDa, whereas the p.Arg971-Glufs*4 

frameshift results in a protein of 109 kDa. In previous experiments by Guenther et al, 

physicochemical properties of the wild type protein were investigated in comparison 

with the p.Thr493Ile variant, known to cause SMARD1. Western blot showed a 

degradation band at 75 kDa that was primarily present in the p.Thr493Ile transfected 

cells and comprises the N-terminal amino acid residues 1–674. Similar to this 

variant, the p.Cys46Ter variant or the p.Arg971Glufs*4 frameshift in these 

individuals could alter the physicochemical properties of the protein and results in a 

degradation product at 75 kDa. Because neither of the carriers with either the 

p.Cys46Ter and p.Arg971Glufs*4 variant show a band at this molecular weight, it 

could be hypothesised that the lower levels of functioning protein in the compound 

heterozygous individuals activate a feedback mechanism that preserved any residual 

truncated protein. 

 

During optimisation of the protocol, an incident occurred where two cell lines, kept 

in a different incubator, were stressed for a period of 48h due to a failure of the 

incubator that resulted in low CO2 pressure. Only one of the cell lines survived and 

protein lysate was run with the same protocol. Results showed a band ~20 kDa 

higher than the original protein, indicating the stress-response might have had an 

influence on IGHMBP2 (Fig. 6.15). This was not comparable to the phosphorylation 

or ubiquitination pattern normally observed in cell lines, where a smear of multiple 

bands are visible. Unfortunately, further inquiries could not be made due to lack of 

time after bacterial infections.   
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Figure 6-12 Steady-state protein levels of IGHMBP2 in fibroblast cell lines. (A) IGHMBP2 levels in 

all 17 cell lines. (B) IGHMBP2 levels grouped according to disease status. (C) IGHMBP2 levels 

compared for the two patient groups against the controls. Statistical significance across groups was 

analysed using one-way analysis of variance and Bonferroni's post hoc test to compare all data groups. 
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Figure 6-13 Western blot results for 2 sets of identical samples, harvested and 

processed on different days. Variability in protein levels can be observed in various 

samples, such as Controls 3 and 4.  

 

Figure 6-14 Existence of a degradation band around 

70–80 kDa in individuals with CMT2 and a 

combination of the p.Cys46Ter and p.Arg971Glufs*4 

mutations. 

 

 

 

 

 

 

 

 

Figure 6-15 Western blot showed 

the presence of an extra band at 

~130 kDa in fibroblasts under 

stressful conditions. 
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6.2.11 Protein levels of IGHMBP2 in lymphoblastoid cell lines  

Matching experiments were replicated in nine available lymphoblastoid cell lines, 

encompassing two CMT2 patients, four carriers, one control and two SMARD1 

patients (Table 6.4). Whilst the levels in the carriers were variable, the difference 

between CMT2 and SMARD1 patients was highly significant, with levels of the 

SMARD1 patients not being detectable with the technique used, even when higher 

protein content was loaded (Fig. 6.16). Levels were standardised against one control, 

resulting in a percentage between 25-50% for CMT2 patients.  

6.2.12 IGHMBP2 expression studies   

Expression of IGHMBP2 was estimated by reverse transcriptase polymerase chain 

reaction using gene-specific primers against cDNA generated from tissue-specific 

RNA as compared to the housekeeping gene GAPDH in eighteen different body 

tissues, with moderate expression in fibroblasts and lymphoblastoid cell lines in 

comparison with the brain and other high-expression level tissues (Fig. 6.17). Within 

the brain, IGHMBP2 expression was assessed in 10 regions of the normal human 

brain, using data from human post-mortem brain tissue from the UK Human Brain 

Expression Consortium (Trabzuni et al., 2011). The highest expression levels were 

detected in the cerebellum, followed by the cortex. According to data from the 

Human Brain Transcriptome (HBT) project, mRNA expression of the IGHMBP2 

gene shows an increase in the cerebellar cortex after birth, whilst other brain regions 

show a small decrease (Fig. 6.18). However, IGHMBP2 gene expression levels seem 

to be constant throughout life in the six brain regions that were assessed in humans 

during development. 

6.2.13 mRNA levels of IGHMBP2 in fibroblasts  

Initial experiments in the paper by Guenther et al. showed slightly elevated levels of 

IGHMBP2 mRNA in both infantile and juvenile patients. To investigate whether 

there were any significant differences between CMT2 patients and carriers/controls, 

mRNA levels were estimated with the SYBR green method in the original 9 

fibroblast cell lines. Both GAPDH and HPRT1 were used as reference genes.   
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Figure 6-16 Steady-state protein levels in lymphoblastoid cell lines. (A) IGHMBP2 levels in all 9 cell 

lines. (B) IGHMBP2 levels grouped according to disease status. (C) IGHMBP2 levels compared for 

the two patient groups against the controls. Statistical significance across groups was analysed using 

one-way analysis of variance and Bonferroni's post hoc test to compare all data groups. * = Affected 

individuals with CMT2.  
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Figure 6-17 Expression of IGHMBP2 (top row) in various human tissues as compared to the 

housekeeping gene GAPDH (bottom row). Expression of IGHMBP2 is ubiquitous, with a moderate 

expression in fibroblasts (18) and lymphoblastoid cell lines (19), used in experiments, 1 = ladder;  2  

= Thrachea; 3 = Thyroid; 4 = Prostate; 5 = Skeletal muscle; 6 = Spleen; 7 = Small intestine; 8 = 

Thymus; 9 = Lung; 10 = Placenta; 11 = Kidney; 12 = Adipose tissue; 13 = Brain; 14 = Oesophagus; 

15 = Colon; 16 = Heart; 17 = Liver; 18 = Fibroblasts; 19 = Lymphoblastoid cell lines; 20 = no cDNA 

control. Expression was determined using gene-specific primers against cDNA generated from tissue-

specific RNA in the FirstChoice Human Total RNA Survey Panel (Life Technologies, Carlsbad, 

USA). 

 

Figure 6-18 mRNA expression levels in different tissues at different stages of life.  Left: Data from 

the Human Brain Transcriptome (HBT) project (http://hbatlas.org/), CBC: the cerebellar cortex, MD: 

mediodorsal nucleus of the thalamus, STR: striatum, AMY: amygdala, HIP: hippocampus, NCX: 11 

areas of the neocortex. Right: Data from the UK Brain Expression Consortium 

(http://caprica.genetics.kcl.ac.uk:51519/BRAINEAC/). Regional brain distribution of IGHMBP2 

mRNA expression in the normal human brain was determined using microarray analysis of human 

post-mortem brain tissue from the UK Human Brain Expression Consortium (Trabzuni et al, 2011).  

CRBL: cerebellum,  FCTX: frontal cortex, HIPP: hippocampus, MEDU: medulla, OCTX: occipital 

cortex, PUTM: putamen, SNIG: substantia nigra, TCTX: temporal cortex, THAL: thalamus, WHMT: 

white matter. 

Since the expression levels of IGHMBP2 are constant throughout life, results from 

all fibroblast cell lines were compared regardless of age. The ΔΔCt method was used 



222 

 

to normalise the target amount in the sample against either HPRT1 or GAPDH to 

make a relative quantification, using the average of the unaffected sibling control 

fibroblasts as a calibrator in the following formula: 

 

ΔΔCt = (Cttarget – Ctreference)calibrator – (Cttarget – Ctreference)sample 

 

One pilot study with a limited amount of cell lines was originally performed, to 

investigate whether viable results could be obtained for larger scale experiments. 

Unfortunately, bacterial infection delayed the cultivation of the required fibroblasts 

so significantly that the experiments could not be performed again in triplicate. 

Results were variable when comparing the two reference genes but a trend could be 

seen towards a higher level of mRNA expression in the SMARD1 in comparison 

with the CMT2 patient fibroblasts. Apart from patient M.II.1, all patients had 

elevated levels of mRNA in comparison with controls, as previously indicated in the 

paper by Guenther et al (Fig. 6.19).  

 

 

Figure 6-19 mRNA expression levels of IGHMBP2 in fibroblast cell lines. The ΔΔCt method was 

used to normalise the target amount in the sample against either HPRT1 or GAPDH. Apart from 

patient M.II.1, all patients had elevated levels of mRNA in comparison with controls. 
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6.2.14 mRNA levels of IGHMBP2 in lymphoblasts  

Matching experiments were performed in all available lymphoblastoid cell lines and 

repeated three times for both HPRT1 and GAPDH. Experiments were originally 

performed on a Corbett Rotor-gene machine, but had to be completed on the 

Stratagene/Agilent MX3000P due to problems with the sealing function of the 

machine. High variation was found in between the repeated runs, as shown by the 

error bars, and no significant difference was found between controls, carriers, CMT2 

or SMARD1 patients (Fig. 6.20). No further investigations were made, due to lack of 

time.  

 

 

Figure 6-20 mRNA expression levels of IGHMBP2 in lymphoblastoid cell lines. The ΔΔCt method 

was used to normalise the target amount in the sample against either HPRT1 or GAPDH. No 

significant difference was found between controls, carriers, CMT2 or SMARD1 patients 
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6.2.15 Co-immunoprecipitation of IGHMBP2 with proteins implicated in 

Amyotrophic lateral sclerosis 

Since SMARD1 and SMA1 have similar phenotypes, research had already been 

performed to investigate whether IGHMBP2 interacts with SMN or other 

components of the SMN complex (de Planell-Saquer et al., 2009). However, none of 

these proteins co-immunoprecipitated with IGHMBP2, suggesting it does not 

associate with the SMN complex. Given the clinical relevance between patients with 

motor neuron diseases such as SMARD1 and Amyotrophic Lateral Sclerosis (ALS), 

co-immunoprecipitation was performed to investigate interactions between 

IGHMBP2 and proteins mutated in ALS, such as Tar DNA-Binding protein, 43-KDa 

(TDP-43), Superoxide dismutase 1 (SOD1) or Fused in Sarcoma (FUS). No 

interaction was found for either SOD1 or FUS (Fig. 6.21), but co-

immunoprecipitation results showed an interaction between IGHMBP2 and TDP-43, 

repeated in triplicate (Fig. 6.22). This is a novel, RNA-independent interaction. To 

examine whether the interaction of TDP-43 with IGHMBP2 might be involved in the 

pathomechanism of disease, constructs were made for the following missense 

mutations: p.Ser80Gly, p.Phe202Val, p.Pro531Thr and p.Val580Ile. All of these are 

novel, except for p.Val580Ile, which has been found as a pathogenic mutation in 

SMARD1 patients.  

 

Figure 6-21 Co-immunoprecipitation experiments carried out 

in HEK293-T cells transfected with wild type construct of 

IGHMBP2 show no interaction between IGHMBP2 and FUS 

or SOD1. IP = Immunoprecipitation.  
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Figure 6-22 Co-immunoprecipitation experiments carried out in HEK293-T cells transfected with 

wild type or mutated construct of IGHMBP2 show that TDP43 interacts with IGHMBP2. (A) Wild 

type and empty vector Co-IP shows an RNA-independent interaction with TDP43, (B-C) A 

significant stronger interaction can be observed in HEK293T cells transfected with the S80G mutant. 

Other mutants show a trend towards higher interaction, which was not significant. n = 3, ** p < 0.01, 

IP = Immunoprecipitation. Statistical analysis was performed with the unpaired t-test.  
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Whilst the results for the latter were variable, potentially due to the sensitivity of the 

technique, a trend was shown towards a greater interaction in all mutant constructs as 

compared to wild type. This reached significance level for the S80G mutation, with a 

p-value below 0.01 with the unpaired t-test. This implicates TDP-43 in the 

pathogenesis of IGHMBP2 mutations, but a larger number of mutations are required 

to be investigated. This could not be explored in further depth due to lack of time 

resulting from the ongoing bacterial infections.  

6.2.16 Subcellular localisation of TDP43  

It is well known that cytoplasmic inclusions containing hyperphosphorylated and 

ubiquitinated TDP-43 are a pathological hallmark of ALS. This has both been shown 

in spinal cord and motor neurons of patients, the primary tissues of disease in 

SMARD1. Spinal cord tissue was available for one SMARD1 patient and TDP43 

staining was performed, but no abnormalities could be seen on the anterior horn cells 

of the spinal cord (Fig. 6.23). Further investigation regarding the localisation of 

TDP-43 in fibroblasts of patients with CMT2 and SMARD1 was implemented, 

however, no differences could be observed between CMT2 or SMARD1 patients in 

comparison with carriers or controls (Fig. 6.24).  

 

Figure 6-23 Immunostaining of TDP43 in the anterior horn cells of the 

spinal cord of a SMARD1 patient with mutations in IGHMBP2. No 

abnormalities could be seen. Scale = 10 µm. 
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Figure 6-24 Localisation of TDP43 and colocalisation of IGHMBP2 and TDP43 in human fibroblasts. 

No significant difference in localisation or clustering is found between the control and both the 

affected individuals and the carrier for TDP43. Green: IGHMBP2; Red: TDP43; Blue: 4',6-

diamidino-2-phenylindole (DAPI) staining for the nucleus. SMARD1= p.Gly98Fs; CMT2 = 

p.Cys46Ter + p.Arg971Glufs*4; Carrier = p.Arg971Glufs*4. 

6.2.17 Colocalisation of IGHMBP2 with TDP43  

To estimate the colocalisation of IGHMBP2 and TDP43, the global Pearson’s 

correlation coefficient was calculated with the Volocity program for the different 

fibroblast cell lines. Whilst the difference is significant between SMARD1 and the 

controls, no significant difference could be found between the CMT2 and SMARD1 

fibroblasts (Fig. 6.24-25).  
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Figure 6-25 Pierson’s correlation coefficient for the colocalisation 

of IGHMBP2 and TDP43 in different human fibroblast cell lines. 

Difference is significant between SMARD1 and controls, but not 

significant between the CMT2 and SMARD1 fibroblasts  

6.2.18 Co-immunoprecipitation of IGHMBP2 with proteins implicated in 

CMT   

Considering the novelty of IGHMBP2 in the pathogenesis of CMT, co-

immunoprecipitation experiments were performed to investigate whether a link 

could be established with one of the already known genes in CMT. The genetic 

background plays an important role in the classification of the disease and is crucial 

to find common pathways to explain the characteristic features seen in most patients.  

Recently, a new gene called LAS1-like (LAS1L) was discovered to cause a 

phenotype of congenital motor neuron disease with early demise due to respiratory 

insufficiency, showing clinical overlap with SMARD1 (Butterfield et al., 2014). 

LAS1L has been implied in ribosome biogenesis, similar to IGHMBP2. Equally, due 

to the predominantly distal involvement in the CMT2 and SMARD1 patients, 

interaction with HSP27 was considered.  

 

Lastly, since HINT1 has been shown to interact with the helicases reptin and pontin, 

which form a complex with IGHMBP2, it was investigated whether a direct 

interaction was also present. However, none of these proteins co-immunoprecipitated 

with the IGHMBP2 protein and so far, no direct interactions between IGHMBP2 and 

any other CMT2 proteins have been reported (Fig. 6.26).  
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Figure 6-26 Co-immunoprecipitation experiments carried out 

in HEK293-T cells transfected with wild type construct of 

IGHMBP2 show no interaction between IGHMBP2 and 

selected proteins involved in CMT2. IP = 

Immunoprecipitation.  

6.2.19 Visualisation of IGHMBP2 in the CMT2 protein network  

With the use of the GeneMANIA prediction server 21 (Warde-Farley et al., 2010), 

the presence of a network of interacting proteins known in CMT2 with IGHMBP2 

can be observed (Fig. 6.27). No direct interactions or other sorts of associations are 

known with any CMT2 proteins so far, but further research might elucidate 

additional pathways linking IGHMBP2 to one of the already known CMT2 proteins.  

6.2.20 ATPase activity of the IGHMBP2 protein in transfected HEK cells  

Not only has it been shown that mutations in IGHMBP2 can result in severely 

reduced steady-state protein levels in SMARD1 patients, pathogenic mutants of 

IGHMBP2 have also been tested for their enzymatic activities, such as ATPase 

activity and the unwinding activity. All mutations residing in or close to conserved 

motifs within the helicase domain resulted in an impaired enzymatic activity  

(Guenther et al., 2009). 
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Figure 6-27 Protein network of CMT2 proteins and IGHMBP2. Different colours of lines indicate the 

nature of the interaction. Purple: Co-expression; Orange: Predicted; Red: Physical interactions; Green: 

Genetic interaction; Grey: Shared protein domains. Abbreviations for proteins can be found in 

Chapter 1.  

One mutation, p.Thr493Ile, was not located within these domains and showed 

unaltered enzymatic activity. This mutation was studied previously and showed 

lower steady-state levels in both infantile and juvenile onset patients (Guenther et al., 

2008). It was concluded that loss of enzymatic activity contributes to the 

pathological basis of SMARD1 and patients with a more favourable outcome 

retained residual catalytic activity (Eckart et al., 2011). This observation could be an 

explanation for the less severe phenotype of CMT2 patients with IGHMBP2 

mutations. Multiple constructs were available, but a pilot study was implemented 

with the wild type construct and the construct with a p.Val580Ile mutation, which 

has been shown to affect the activity of the protein and acted as a positive control. 



231 

 

Purification of the protein was accomplished by immunoprecipitation with Anti-

FLAG beads. A negative untransfected control was used and coomassie blue staining 

and western blot were performed on IP samples to confirm purification. Different 

elution protocols were used to optimise the protocol. On the first attempt, only one 

15 cm
2
 dish was used and IPs were washed with a combination of 5 different 

washing buffers (20 mM Tris, 500-150 mM NaCl, 1-0.02% Triton X-100), 

decreasing in NaCl and Triton X-100 concentration. 3x Flag peptide (Sigma-

Aldrich) was used to elute bound protein. However, this resulted in a complete loss 

of protein, most likely due to the amount of washes. Further experiments were 

performed with different combinations of NP40
+
 Lysis buffer without EDTA and 

washing buffers (Table 6.5). 3x Flag peptide (Sigma-Aldrich) was used to elute 

bound protein. Samples of both the eluate and the used beads were separated on a gel 

and stained with Coomassie blue, using different exposure settings to scan the results 

(Fig. 6.28). Due to the presence of background bands in condition 3 + 4, it was 

decided to use condition 2 for further experiments and to scale up to 3x 15 cm
2
 

dishes. These showed an enhanced purification of IGHMBP2 for the wild type 

construct (Fig. 6.29). 

 

Condition Lysis buffer Washing buffer 

1 NP40
+
 w/o EDTA 5 washing buffers (20 mM Tris, 500-150 mM NaCl, 1-

0.02% Triton X-100) 

2 NP40
+
 w/o EDTA 6 washes with 25 mM Tris pH 7.5, 400 mM NaCl, 1% 

Triton X-100  

3 NP40
+
 w/o EDTA 6 washes with NP40

+
 w/o EDTA 

4 NP40
+
 6 washes with NP40

+
 w/o EDTA 

Table 6-5 Different buffers used for the optimisation of IGHMBP2 purification. 
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Figure 6-28 Coomassie blue staining of the different conditions for the optimisation of IGHMBP2 

purification. Due to the presence of background bands in condition 3 + 4, it was decided to use 

condition 2 for further experiments and to scale up to 3x 15 cm
2
 dishes. 

 

 

Figure 6-29 Purification of wild type-

IGHMBP2 with condition 2 and 3x 15 cm
2
 

dishes. E = Eluate; B = Beads. 

 

The same protocol was used for both the wild type, empty vector and the construct 

with the p.Val580Ile mutation for the ATPase assay. However, no difference could 

be observed between the wild type and the mutant transfected cells. The coomassie 

blue staining showed one extra band in all cell lines (even the empty vector), 

suggesting the protein was not optimally purified and other proteins are still present 

in the eluate. A new combination of 3 different washing buffers (20 mM Tris, 1000-

200 mM NaCl, 1% triton X-100) was tried to improve the purification of the eluate 

in different orders, showing optimal results for condition 7 (Table 6.6 – Fig 6.30).   
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Figure 6-30 Coomassie Blue staining for the different conditions used for further IGHMBP2 

purification with conditions 5,6 and 7. Condition 7 was used for further experiments. WT = Wild 

type; UTF = Untransfected; MT = Mutant  

Coomassie blue staining showed a protein band at the expected 110 kDa in both wild 

type and positive control. However, when performing the ATPase assay, no 

hydrolysis could be observed in none of the three samples (Fig. 6.31). An extra band 

was still observed in all three lysates, but as this band is not present on the western 

blot staining for IGHMBP2, it is unlikely to be the targeted protein and is probable 

background. Elimination of this band with the use of various eluting conditions was 

not successful. Whilst purification is necessary to isolate the ATPase activity of 

IGHMBP2, background can be tolerated if no enzymes with ATPase activity are 

present. Additional to these three lysates, calf intestine alkaline phosphatase (CIP) 

enzyme was used as a positive control for buffer conditions of the assay. CIP was 

used in duplicate, once in the buffer accompanying the enzyme, once in the buffer 

used for the IGHMBP2 lysates. In both conditions, CIP hydrolyses ATP to ADP. 

Condition  Buffer order  

5 1-3-1-3-1-3 

6 2-3-2-3-2-3 

7 1-1-2-2-3-3 

Buffer 1 1000 mM Nacl 

Buffer 2 400 mM NaCl 

Buffer 3 200 mM  NaCl 

Table 6-6 Order of different 

buffers used for further 

optimisation of IGHMBP2 

purification. 
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However, with the same conditions, no ATPase activity could be seen in the 

IGHMBP2 lysates (Fig 6.32).  

 

 

Figure 6-31 ATPase assay for different construct of IGHMBP2. No hydrolysis could be observed in 

any of the samples. WT= Wild type; UTF = Untransfected; MT = Mutant. 
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Figure 6-32 ATPase assay for different construct of IGHMBP2 with a positive CIP control. 

Hydrolysis could be observed in the samples incubated with the CIP positive control, but not in the 

samples incubated with the different IGHMBP2 constructs. WT= Wild type; UTF = Untransfected; 

MT = Mutant  

  

6.3 Discussion  

Autosomal recessive mutations in IGHMBP2 were already implied in the 

pathogenesis of SMARD1. Results discussed in this chapter indicate that mutations 

in this gene can also be causative for CMT2. In total, eleven families were found 

with slowly progressive weakness, wasting and sensory loss, and an axonal 

neuropathy typical of CMT2, but no significant respiratory compromise. Nine 

families had compound heterozygous or homozygous mutations in IGHMBP2 and 

two families presented with only one heterozygous variant. The 5’ promoter region 

and the exome BAM files for sequencing coverage did not show any additional 

variants in these two families but IGHMBP2 cDNA sequencing in the two affected 

individuals from family W disclosed the stop mutation as hemizygous, suggesting a 

deletion on the other allele. MLPA was performed, but no large deletions were found 

in the family. mRNA analysis of frameshift and nonsense mutations in SMARD1 
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and CMT2 patients revealed that IGHMBP2 is not subjected to NMD, resulting in 

the presence of truncated proteins.   

Functional investigation in 17 fibroblast and 9 lymphoblastoid cell lines failed to 

show any changes in the subcellular localisation or clustering of the protein; 

however, protein levels in CMT2 patients were significantly lower in comparison 

with controls and carriers, but higher than SMARD1 patient levels. This suggests 

that defective or truncated proteins undergo posttranslational degradation. Clinical 

phenotype differences are related to the IGHMBP2 protein levels, but the small 

numbers require caution about whether this always correlates with the onset of 

disease and phenotype. Higher mRNA levels were observed in individuals with 

SMARD1 in previous reports but despite our best efforts only a trend towards higher 

mRNA levels in patients could be detected. This suggests the presence of a feedback 

mechanism to maintain protein homeostasis.  

 

To elucidate the pathomechanism leading to the difference in severity between the 

two phenotypes, co-immunoprecipitation experiments were performed, showing 

interaction with TDP-43. A trend towards higher interaction with TDP-43 was 

observed in the mutant constructs, and the Pearson’s correlation coefficient was 

significantly higher in SMARD1 fibroblasts in comparison with controls. Whilst no 

significant difference could be observed between CMT2 and SMARD1 patients, 

these results point towards involvement of TDP-43 in the pathogenesis of mutations 

in IGHMBP2. It should be noted that cell lines were only transfected with one 

missense mutation as compared to the compound heterozygous mutations present in 

patients. The effects of the numerous nonsense and frameshift mutations in the CMT 

cohort have not been established yet in transfected cell lines. 

 

In addition to that, experiments were performed in fibroblasts and lymphoblastoid 

cell lines, which are not tissues primarily affected in CMT2, thus caution has to be 

applied when interpreting the results. Considering IGHMBP2 mRNA is widely 

expressed throughout the body, it is likely that these tissues will reflect the 

consequences of mutations.   

 

Unfortunately, results from the helicase assay could not be obtained, but it is highly 

likely that most mutations in IGHMBP2 may lead to the dysfunction of the helicase 
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activity of this protein. The reduced protein levels or the abnormal IGHMBP2 

protein in SMARD1 and CMT2 may impair the capacity of neurons to produce 

error-free mature mRNA, thus leading to neuronal degeneration. Further 

investigation in both CMT2 and SMARD1 patients will reveal the process 

responsible for the differences in severity and the lack of respiratory involvement in 

CMT2 patients. 



238 

 

 

 

 

 

 

 

 

 

Chapter 7  

General conclusions 

Diverse genetic and functional techniques were used in this thesis to investigate 

different types of inherited neuropathies. The main focus was applied to Charcot-

Marie-Tooth disease, a genetically and phenotypically variable disease. After the 

discovery of the first CMT locus in 1982, the next 30 years of research have led to 

the unearthing of more than 80 disease-causing genes. Initially, these genes were 

identified by using genetic linkage studies, positional cloning, or candidate gene 

approaches. This was accelerated by the development of high-throughput techniques 

such as whole genome/exome sequencing and the publication of the human genome 

in 2001. To complicate things, mutations in the same gene can cause different CMT 

phenotypes at the same time as mutations in different genes may result in the same 

phenotype. Several genes can be grouped into pathogenic pathways involved in 

CMT, such as myelin biogenesis, axonal transport, mitochondrial dynamics and 

others discussed in the introduction. The availability of the human genome has led to 

the identification of mutations in genes that were not the primary functional 

candidates for CMT neuropathies and the discovery of novel pathways involved in 

CMT that did not have such evident involvement. My research has focused on the 

detection and subsequent investigation of new genes implicated in CMT and the 

expansion of the phenotypes associated with known pathogenic genes.  
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Mendelian inheritance patterns occurring in CMT include dominant, recessive, and 

X-linked and mutations in isolated patients can arise as de novo. In chapter 3, we 

discuss four CMT families with a mitochondrial inheritance pattern, caused by 

mutations in the ATPase6 gene. This is the first gene in the mitochondrial genome 

implicated in CMT. Previously, mutations in this gene have been shown to cause 

Leigh Syndrome or NARP, both progressive neurodegenerative disorders. Two 

known pathogenic mutations were found in our cohort, leading to an overall 

presence of 1.1% in patients with CMT2 or dHMN. This is a moderately high 

percentage, considering only 25% of patients with CMT2 receive a genetic 

diagnosis.  

 

So far, this is the only gene in the mitochondrial genome responsible for a CMT 

phenotype. In the future, ATPase 6 sequencing should be performed in patients with 

an appropriate phenotype. Next-generation sequencing does not include the 

mitochondrial genome, meaning mutations in ATPase 6 will be missed when 

performing exome sequencing in CMT families. This necessitates a highly specific 

characterisation of the family phenotype to prompt the screening for mutations in 

ATPase 6, discussed in chapter 3.    

 

To elucidate the mechanism responsible for the differences in phenotype due to 

mutations in ATPase 6, additional functional experiments were undertaken. Since the 

mutations are identical, patient material was used to investigate the differences 

observed in patients. Available muscle biopsies of patients showed reduced activity 

and assembly of complex V, similar to previously performed experiments in patients 

with the NARP m.8993T>G mutation. This suggests the presence of a poorly 

assembled and unstable complex V holoenzyme. Some variability could be observed 

in both activity and assembly on BN-PAGE for patients with identical mutation 

loads which may be attributable to holoenzyme disassembly occurring during sample 

preparation. Whilst this proves the pathogenicity of the mutation in patients with an 

isolated neuropathy, it does not provide an explanation for why some patients 

harbouring homoplasmic levels of m.9185T>C develop a tissue-specific peripheral 

neuropathic phenotype, whereas others with similar mutant loads develop a 

multisystem neurologic syndrome such as Leigh syndrome. Additional factors might 
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increase the susceptibility of certain patients to neuropathy or protect them from a 

more generalised disorder, but this will require further functional studies.  

In chapter 4, the focus was the nuclear genome and traditional methods were used to 

find causative genes for CMT. Compound heterozygous FIG4 mutations were found 

in a suspected case of inflammatory demyelinating neuropathy, with a two year 

history of rapidly progressive weakness in a single limb. FIG4 mutations are 

normally associated with progressive proximal and distal weakness but some 

patients may show asymmetrical rapid deterioration of strength in a single limb, 

mimicking inflammatory demyelinating neuropathy. This expands the already 

known phenotype and should alert clinicians to the possibility of FIG4 mutations 

especially if there is an early onset, chronic progressive course followed by a more 

rapid deterioration in one limb. 

 

Chapter 4 also reports the screening of appropriate cohorts of CMT patients for 

mutations in C9orf72, HINT1, SCN9A, ARL1 and ARL6ip1, but found no definite 

pathogenic mutations. Cohorts consisted of a relatively small number of patients, 

therefore not excluding the potential presence of pathogenic variants. The frequency 

of mutations may be so low as to be missed in a preliminary screen. In future, 

traditional Sanger sequencing will gradually be replaced by next-generation 

sequencing which may reveal variants in the genes mentioned. Interestingly, the 

frequency of mutations in HINT1 was estimated at 11% in the original paper by 

Zimon et al, which could not be replicated. This high frequency is likely due to a 

founder effect in central Europe patients with neuropathy and neuromyotonia.  

 

In the following chapter, next-generation sequencing techniques (whole exome 

sequencing) were used instead of the more traditional methods to find new causative 

genes. Nine families were investigated and resulted in the detection of a pathogenic 

variant in five families out of nine. As well as two previously known pathogenic 

variants in HSPB1 and MFN2, three probably new pathogenic genes were 

discovered: NEFH (still being investigated), ADD3 and BICD2.  

 

A frameshift variant near the 3’ end of the NEFH gene was found in a family with 

axonal neuropathy. This led to the loss of the stopcodon and an extension of 40 

additional amino acids. This potentially adds NF-H to the list of proteins interfering 



241 

 

with the cytoskeleton and further research is required to elucidate the exact 

pathomechanism.  

 

In one family with four children with spastic diplegic/quadriplegic cerebral palsy and 

intellectual disability, a homozygous p.Gly367Asn mutation in ADD3 was found. 

Studies in fibroblast cell lines showed an impaired actin capping activity in the 

mutant cell lines, implicating the involvement of the cytoskeleton in the 

pathomechanism of disease. Mutations in αII spectrin, a cytoskeletal protein that 

lines the intracellular side of the plasma membrane in eukaryotic cells, have 

previously been identified as a cause of epilepsy, intellectual disability and spastic 

quadriparesis. So have mutations in KANK1, which have also been implicated in 

hereditary cerebral palsy and play an important role in the cytoskeleton. This links 

hereditary forms of cerebral palsy to abnormalities of components of the dynamic 

cytoskeleton, as seen before in isolated inherited neuropathies.  

 

Mutations in BICD2 were found by three groups simultaneously in a total of eleven 

families with DCSMA with a pattern of muscle involvement highly similar to that 

seen in patients with DYNC1H1 mutations. BICD2 mutations resulted in an 

increased binding affinity between BICD2 and the dynein-dynactin complex, 

therefore altering BICD2-mediated cellular trafficking processes. As mentioned in 

the introduction, several proteins involved in transporting cargo from the periphery 

to the cell body, such as DCTN1 and DYNH1C1, have been implicated in CMT. The 

addition of BICD2 to the list of pathogenic genes confirms the importance of this 

pathway and the impairment of BICD2-mediated trafficking likely leads to 

compromised development and maintenance of a key subset of anterior horn cells 

and UMNs. 

 

For the remaining four families, shorter lists of probable pathogenic genes have been 

established. Whilst in most cases, candidate genes could be prioritised due to their 

function and segregation analysis in the family, these still require additional families 

or other indications towards pathogenicity before investing in functional experiments 

to prove pathogenicity.  
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Chapter 6 provides an example of functional experiments taken forward to elucidate 

the pathomechanism of a variant. In total, eleven CMT2 families were found with 

recessive compound heterozygous mutations in IGHMBP2, normally causing 

SMARD1. Western blots in fibroblast and lymphoblastoid cell lines showed lower 

protein levels in SMARD1 patients in comparison with CMT2 patients, suggesting 

the severity of the phenotype may depend on the residual levels of the protein. Co-

immunoprecipitation experiments showed interaction with TDP-43, and a trend 

towards higher interaction in the mutant constructs was observed. The mutation 

spectrum in CMT2 patients showed segregating mutations as a combination of a 

nonsense or frameshift and fewer missense mutations, where one or both were in the 

last exon, escaping nonsense mediated decay and leading to a truncated and likely 

still active protein. Several families also presented with a combination of missense 

mutations. Whilst there were no CMT2 patients presenting with the same 

combination of mutations as SMARD1 patients, five mutations found in the CMT2 

cohort were known to be pathogenic in SMARD1 cases. This suggests an extra 

factor influencing the severity of the phenotype. In the nmd mouse model, this factor 

is contained within the BAC-27k3 transgene, with the syntenic genomic area in 

humans comprising four tRNATyr genes and the activator of basal transcription 1 

(ABT1) gene, but no variations were found in these genes in the exomes of the index 

patients. For future experiments, international collaboration will be essential, since 

most clinical centres only have few SMARD/DSMA1 patients under their care and 

tissue is very hard to obtain from these patients. To investigate potential biomarkers 

for disease severity and outcomes such as clinical scales, CMAP amplitudes and 

IGHMBP2 enzymatic activity; large studies with both SMARD1 and CMT2 patients 

will have to be performed. Clarifying the difference in severity will be helpful to 

target potential therapeutic strategies.  

 

This thesis demonstrates the progress of genetic to functional techniques involved in 

the discovery of new pathogenic genes. In the first chapters, more traditional 

methods such as Sanger sequencing were used to identify genetic variants causing 

CMT and genes were chosen due to their function, involvement in similar 

phenotypes or the presence in mouse models. In the later chapters, more advanced 

next generation sequencing techniques were used to explore the whole exome of one 

or multiple patients. In the event of novel variant discovery, further functional tests 
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to prove pathogenicity of the variant were required. In situ methods such as 

Polyphen and SIFT were used to estimate the influence of variants on traits such as 

the folding and functionality of the protein. Whilst being indicative, these are not 

decisive for the pathogenic status of a variant. Known pathogenic variants have 

previously been categorised as non-pathogenic and vice versa. This highlights the 

necessity of in vitro studies.  

 

For the purpose of this thesis, two different types of in vitro models were used. Due 

to excellent transfectability, HEK293 cell lines were used as a model system for 

transfection experiments and DNA was condensed into positively charged particles, 

binding to anionic cell surface residues and brought into the cell via endocytosis. 

This resulted in an overexpression system with the presence of either wild type or 

mutated protein, helping the purification process. However, there are a few 

disadvantages in using overexpression models. Overexpression may influence 

balanced gene dosage, affecting protein folding, localisation, complex assembly and 

downstream regulation.  

 

Additionally, patient-derived cell lines were used as cellular models in multiple 

projects to study disease-related cellular phenotypes. Due to the ease of isolation, 

fibroblasts are a popular cellular model to use. Fibroblast cultures can be derived 

from a 4-mm human skin biopsy and have a very high success rate which is 

important when dealing with patient-derived tissue samples. They are easy to 

cultivate and use, but have relatively low protein content. Whilst these are 

characteristic for the individual patient, the primary affected tissue consists of 

nerves, and results might not always be representative. As shown in chapter 4, 

variability in the mitochondrial membrane potential is too high in fibroblasts to draw 

any results. Depending on the experiment, fibroblasts can prove to be a valuable 

model. This also applies to the lymphoblast cell lines that were used. Human 

peripheral blood mononuclear cells (PBMC's) can be easily isolated from whole 

blood and subsequently immortalised by transformation with the Epstein Barr Virus, 

although the latter can be rather costly and time consuming. However, in comparison 

with fibroblasts, higher protein content is present and as the cells are in suspension it 

makes it easier to cultivate. Since the primarily affected tissue (nerve) could not be 

obtained, these are good alternatives for in vitro experiments. The nature of 
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experiments will depend on the gene of interest and, as mentioned before, the 

heterogeneity in genes with mutations associated with CMT results in a variety of 

functional tests being developed to prove pathogenicity of a variant.  

 

Whilst chapter 4 used a more traditional approach of gene discovery, chapter 5 

incorporated next-generation sequencing techniques that were less commonly used at 

the start of this thesis but during the three years of research became increasingly 

high-throughput. Initially, quality was variable and coverage was not homogeneous 

throughout the genome or showed very low depth. Variants could be missed and 

individual patients required very detailed analysis to avoid missing pathogenic 

variants, preventing it from being used for routine testing. Further optimisation is 

gradually leading to a revolution in gene discovery and diagnostics for Mendelian 

and complex diseases and it is predicted that exome sequencing will become a 

commonly used diagnostic screening tool within the next few years. Smaller families 

and isolated individuals previously omitted from searches based on the traditional 

methods will be able to be investigated, whilst only needing a minimal amount of 

DNA. As a highly heterogeneous phenotypic and genetic disease, CMT is an 

example where NGS is particularly time and cost-efficient. In a diagnostic setting, 

patients with a well characterised phenotype can be screened for the 17p duplication 

-found in two-third of patients with CMT1- and then PMP22, GJB1, MPZ, or MFN2 

when appropriate. However, conventional Sanger sequencing for the remaining 

CMT genes can be time consuming, cumbersome, expensive and unrewarding. 

Instead of consecutive sequencing of multiple genes, NGS can uncover mutations in 

all known genes simultaneously, even rare genes for which until now testing was not 

often available.  

 

Even though NGS is an optimal technique for the discovery of novel genes, the 

heterogeneous functions and ubiquitous expression of several CMT genes and small 

families can make it challenging to identify the one pathogenic variant amongst a 

long list of variants leading to a peripheral nerve phenotype. From the ~20,000 

variants typically found in a European American sample, more than 95% are already 

known as polymorphisms. Additionally, various filtering techniques can be used to 

hone in to the possible culprit gene, such as the mode of inheritance or the pedigree. 

Although increasingly more gene discovery research is focused on exome 
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sequencing, many families for which exome sequencing is performed remain without 

a genetic diagnosis. Only success stories will be published and whilst exome 

sequencing benefits from traits such as low cost, rapidity, low DNA requirements 

and screening of close to all coding-regions, exome sequencing in singletons and 

very small families still remains extremely challenging, as evidenced in Chapter 5. 

 

Exome sequencing is more cost-efficient and less data-intensive than whole-genome 

sequencing and requires only 2% of the sequencing needed for an entire human 

genome; however, variants outside the coding region will not be covered and large 

indels, duplications and translocations will not be discovered. As the cost of 

sequencing continues to fall, a gradual movement from exome to whole-genome 

sequencing is occurring. Nevertheless, many pitfalls still remain. Finding the one 

pathogenic variant in whole-exome data can be cumbersome and this will prove to 

be even more difficult for whole-genome data, trying to incorporate the effect of 

non-coding variants. Even though challenging, the aim is a future where the genetic 

basis of all Mendelian traits is known, and this knowledge can be used to understand 

the underlying molecular basis of pathology, shifting the emphasis towards 

understanding disease mechanisms and genotype–phenotype relationships, providing 

diagnostic insight and information to patients and their families and developing 

improved therapeutics and improvement of human health.  

 

In addressing to the aims of this thesis, the following conclusions can be made:  

 

 Chapter 3: Detection of mutations in ATPase6 in five families with CMT2 

leads to an overall presence of the mutation in 1.1% in undiagnosed patients 

with a CMT2 or dHMN phenotype. ATPase6 is the first mitochondrial gene 

responsible for an isolated peripheral neuropathy phenotype.  

 Chapter 4: The CMT4J phenotype of FIG4 mutations includes asymmetrical 

rapid deterioration of strength in a single limb, mimicking inflammatory 

demyelinating neuropathy.  

 Chapter 4: There is a likely founder effect for mutations in HINT1 in central 

Europe, due to the absence of mutations in UK/Spanish cohorts.  
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 Chapter 4: C9orf72, ARL1 and ARL6ip1 have been excluded as common 

causes for CMT.  

 Chapter 5: We have identified three novel pathogenic genes (NEFH (to be 

confirmed), ADD3 and BICD2), involved in the pathogenesis of CMT, 

spastic diplegic/quadriplegic cerebral palsy or DCSMA respectively, together 

with several further potential pathogenic genes involved in the pathogenesis 

of CMT, including: ACSBG1, WDR48, RGMb, MORC2, FAM126A, CNTRL, 

GOLGA2, SSTR5, TBC1D24 and PKMYT1. 

 Chapter 6: We have shown mutations in IGHMBP2 to be a cause of axonal 

neuropathy, with significantly lower protein levels in fibroblast and 

lymphoblastoid cell lines of SMARD1 patients in comparison to CMT2 

patients.   

 Chapter 6: We have discovered a novel RNase-independent interaction 

between IGHMBP2 and TDP-43, with a trend of a higher interaction for 

selected mutations implicated in CMT2.  
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Appendix I 

 

Synonymous changes Nonsynonymous changes non-coding region 

8248A>G: M-M: Hom (2) 8381A>G: T-A: Hom (1) 8291G>A: Hom (1) 

8347A>G: L-L: Hom (1) 8388T>C: V-A: Hom (2) 8302A>G: Hom (1) 

8485G>A: L-L: Het (1) 8396A>G: T-A: Het (1) 8311T>C: Hom (2) 

8503T>C: N-N: Hom (4) 8461C>A: N-K: Hom (1) 8349C>T: Hom (2) 

8533G>A: T-T: Hom (1) 8471C>T: P-S: Hom (1)  

8538T>C: N-N: Hom (A6) (1) 8477T>G: S-A: Hom (2)  

8545G>A: S-S: Hom (A8) (1) 8489A>C: M-L: Hom (2)  

8566A>G: Q-Q: Hom (1) 8490T>C: M-T: Hom (2)  

8572G>A: X-X: Hom (A8) (4) 8502A>G: N-S: Hom (1)  

8598T>C: I-I: Hom (2) 8516T>C: W-R: Hom (1)  

8679A>G: L-L : Hom (1) 8519G>A: E-L: Hom (4)  

8740C>T: L-L: Hom (1) 8531A>G: T-A: Hom (1)  

8754C>T: I-I: Hom (1) 8538T>C: I-T: Hom (A8) (1)  

8769A>G: T-T: Hom (2) 8545G>A: A-T: Hom (A6) (1)  

8772T>C: T-T: Hom (1) 8572G>A: G-S: Hom (A6) (4)  

8805A>G: T-T: Hom (1) 8578C>T: P-S: Hom (2)  

8820A>G: L-L: Hom (4) 8605C>T: P-S: Hom (2)  

8889T>C: I-I: Hom (1) 8619C>A: I-M: Hom (1)  

8925A>G:T-T: Hom (2) 8620C>T: P-S: Hom (1)  

8940C>T: I-I: Hom (2) 8633A>G: Y-C: Hom (1)  

8955T>C: I-I: Hom (2) 8698A>G: M-V: Het (1)  

8958C>T: I-I: Hom (1) 8699T>C: M-T: Hom (2)  

9006A>G: L-L: Hom (6) 8704A>G: M-V: Hom (4)  

9015C>T: N-N: Hom (1) 8725A>G: T-A: Hom (1)  

9042C>T: H-H: Hom (3) 8765C>T: A-V: Hom  (2)  

9048T>C: I-I: Hom (1) 8794C>T: H-Y: Hom (1)  

9060C>A: T-T: Het (2) 8828A>G: N-S: Hom (1)  

9060C>T: T-T: Hom (1) 8836A>G: M-V: Hom (4)  

9061C>T: L-L: Hom  (1) 8839G>A: A-T: Hom (3)  
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9075C>T: T-T: Het (1) 8864T>C: V-A: Hom (1)  

9078T>C: I-I: Hom (1) 8875T>C: F-L: Hom (2)  

9117T>C: I-I: Hom (4) 8887A>G: I-V: Hom (2)  

9120A>G: L-L: Hom (2) 8932C>T: P-S: Hom (1)  

9126T>C: T-T: Hom (1) 8950G>A: V-M: Hom (2)  

9168C>T: F-F: Het (1) 8974C>T: L-F: Hom (1)  

9224T>C: H-H: Hom  (1) 8993T>C: L-P: Hom (1)  

9254A>G: W-W: Hom (7) 9025G>A: G-S: Hom (2)  

9266G>A: G-G: Hom (4) 9055G>A: A-T: Hom (5)  

9269C>T: A-A: Hom (1) 9067A>G: M-V: Hom (1)  

9350A>G: L-L: Hom (1) 9070T>G: S-A: Hom (2)  

9374A>G: Q-Q: Hom (1) 9101T>C: I-T: Hom (2)  

9530T>C: P-P: Hom (1) 9139G>A: A-T: Hom (1)  

9653T>C: H-H: Hom (2) 9185T>C: L-P: Hom (4)  

9664A>G: G-G: Hom (3) 9210A>G: T-A: Hom (1)  

9707T>C: I-I: Hom (1) 9243C>A: P-T: Hom (1)  

 9288A>G: T-A: Hom (2)  

 9300G>A: A-T: Hom (6)  

 9325T>C: M-T: Hom (6)  

 9366A>T: M-L: Hom (2)  

 9438G>A: G-S: Hom (3)  

 9580A>G: N-S: Hom (2)  

 9664A>G: G-E: Hom (3)  

 9682T>C: M-T: Hom (1)  

Appendix I: List of all variants found in the ATPase 6/8 genes in our cohort. Hom = homoplasmic; 

Het = Heteroplasmic; A8 = ATPase8 reading frame; A6 = ATPase6 reading frame; Number between 

brackets = number of individuals with this variant. 
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Appendix II 

gene OMIM Exonic 

Function 

Var 

count 

Gene 

count 

Poly 

Phen2 

Grantham 

Score 

PhastCons 

score 

GERP 

Score 

Rs No. MAF Signature 

ARHGAP11A  missense 1 4 D 81 1 5.04 rs140472511 0.004409 15_32921855_G_S 

ATP10B  missense 3 8 D 94 0.949 -0.718 rs61734665 0.012739 5_160042903_G_K 

TTC18  missense 1 2 D 68 1 5.29   10_75051751_T_K 

MFF   missense 1 5 D 29 1 4.83     2_228197228_G_R 

CEP110  missense 1 14 D 101 0.797 3.38 rs34344401 0.001297 9_123931891_C_Y 

DENND5B  missense 1 5  10 0.988 -4.63 rs34129725 0.003106 12_31600503_T_Y 

DNAH10  missense 1 16 D 81 1 5.47 rs147774367 0.002417 12_124270348_T_Y 

DNAH17  missense 1 40  145 0.975 4.77   17_76440872_G_R 

KIAA0232  missense 1 3 D 110 1 5.58 rs111811307 0.5 4_6826228_C_S 

LIPG  missense 2 4 P 46 1 4.31 rs77960347 0.008597 18_47109955_A_R 

MACF1  missense 1 20 D 99 1 5.68 rs144760259 0.002208 1_39853641_G_K 

CAB39L  missense 1 2 D 180 1 4.62   13_49906202_G_R 

OAS3,LOC100287897  nonsense 2 5  NA 0.854 1.88 rs61942233 0.010317 12_113403675_C_Y 
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gene OMIM Exonic 

Function 

Var 

count 

Gene 

count 

Poly 

Phen2 

Grantham 

Score 

PhastCons 

score 

GERP 

Score 

Rs No. MAF Signature 

ZFYVE9  missense 1 4 D 15 1 4.45   1_52759319_C_M 

QRICH2  missense 2 24 P 56 1 4.59 rs61759535 0.005275 17_74276788_T_Y 

SKIV2L2  missense 1 1 D 112 1 5.48 rs142958762 0.004468 5_54645455_C_S 

SPAG5  missense 1 2 D 56 0.995 4.24   17_26905701_C_Y 

SVEP1  missense 4 30  45 0.911 -2.4 rs41296069 0.055389 9_113244732_G_K 

SYNE1 642 missense 1 38 D 101 0.989 3.53 rs34028822 0.004839 6_152757224_G_R 

PLK1S1  missense 1 5  76 0.344 4.22   20_21143521_A_M 

TNS4  missense 1 5 D 43 1 5.05 rs143122913 0.00022 17_38641181_C_Y 

TEK 811 missense 1 7 P 180 1 4.07   9_27158131_C_Y 

TRAK2   nonsense 1 7 NA NA 1 3.25     2_202262876_G_R 

TTN 250 missense 3 142  43 1 4.92 rs72648998 0.036691 2_179575511_C_Y 

USP41  missense 2 4  21 0.425 99 rs75178771 0.018254 22_20723832_T_Y 

C6orf186  missense 1 3 D 22 1 2.84   6_110644001_G_K 

ZNF642  missense 1 2 D 121 0.999 0.975 rs144613252 0.001763 1_40961133_A_W 

Appendix II: List of 34 possible pathogenic variants found in family D.
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Appendix III: Linkage analysis results for Pedigree F. 
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256 

 

 

 

 

 

 

 

 

 

 

 

 

 



257 

 

 

 

 

 

 

 

 

 

 

 

 

 



258 

 

 

 

 

 

Appendix IV: Linkage analysis results for pedigree G.  
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Appendix V 

 

Gene Exonic  

Function 

Transcript ID 

(NCBI) 

AD AR 

Hom 

XLD XLR # SNVs 

in gene 

# INDEL 

in gene 

Signature 

B3GALT6 missense NM_080605.3 y n n n 46  1_1168046_G_R 

SLC45A1 missense NM_001080397.1 y n n n 27  1_8403940_C_Y 

MYOM3 missense NM_152372.3 y n n n 89  1_24433663_C_Y 

SPTA1 missense NM_003126.2 y n n n 87  1_158612230_C_Y 

SLAMF8 missense NM_020125.2 y n n n 1  1_159805006_G_R 

RCSD1 missense NM_052862.3 y n n n 13  1_167666340_G_R 

CRB1 missense NM_001193640.1 y n n n 15  1_197326120_G_R 

NID1 missense NM_002508.2 y n n n 67  1_236144975_G_R 

C2orf42 missense NM_017880.1 y n n n 13  2_70408453_A_M 

MERTK missense NM_006343.2 y n n n 31 1 2_112705097_G_R 

NEB missense NM_001164507.1 y n n n 224 4 2_152541401_T_K 

DOCK10 missense NM_014689.2 y n n n 60  2_225729789_C_Y 

TOP2B missense NM_001068.2 y n n n 44  3_25665208_A_R 

RNF123 missense NM_022064.2 y n n n 47  3_49753586_C_Y 
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CACNA2D3,LRTM1 missense NM_020678.2 y n n n 7 1 3_54958871_G_R 

SLMAP missense NM_007159.2 y n n n 11 1 3_57835521_T_W 

BBX missense NM_001142568.1 y n n n 13 2 3_107435587_G_R 

STIM2 missense NM_001169118.1 y n n n 21  4_27024391_A_R 

ANKRD37 missense NM_181726.2 y n n n 2  4_186318347_A_R 

SLC38A9 missense NM_173514.2 y n n n 14  5_54948489_T_Y 

KIF2A missense NM_001098511.2 y n n n 11  5_61602334_G_R 

RGNEF missense NM_001080479.2 y n n n 94  5_73190296_T_K 

SLC22A7 missense NM_006672.3 y n n n 17  6_43267379_G_R 

DOPEY1 missense NM_001199942.1 y n n n 29 2 6_83863904_G_R 

NOD1 missense NM_006092.2 y n n n 30  7_30491667_C_Y 

C7orf69,PKD1L1 missense NM_138295.3 y n n n 30  7_47851554_G_S 

RELN missense NM_005045.3 y n n n 65 6 7_103234193_T_W 

KIAA1549 missense NM_001164665.1 y n n n 91  7_138537006_C_Y 

KIAA1549 missense NM_001164665.1 y n n n 91  7_138556013_G_R 

LRRC61,C7orf29 missense NM_138434.2 y n n n 13 1 7_150028187_C_M 

DNAJC5B missense NM_033105.4 y n n n 5  8_66963813_C_Y 

SNTB1 missense NM_021021.3 y n n n 29  8_121561121_C_S 

ACO1 missense NM_002197.2 y n n n 19  9_32449055_A_W 

UNC13B missense NM_006377.3 y n n n 36  9_35398953_C_Y 
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BICD2 missense NM_001003800.1 y n n n 51 1 9_95481425_C_S 

C9orf152 missense NM_001012993.2 y n n n 12 1 9_112969840_G_R 

CRAT missense NM_000755.3 y n n n 30 1 9_131862217_C_Y 

NOTCH1 missense NM_017617.3 y n n n 303 1 9_139391968_C_Y 

CALML3 missense NM_005185.2 y n n n 8  10_5567319_C_Y 

WAC missense NM_016628.4 y n n n 8  10_28872390_C_Y 

NRG3 missense NM_001010848.3 y n n n 41 1 10_83635671_C_Y 

C11orf46 missense NM_152316.1 y n n n 3  11_30354488_G_K 

C11orf46 missense NM_152316.1 y n n n 3  11_30354491_A_R 

RIN1 missense NM_004292.2 y n n n 115 1 11_66103561_G_R 

P2RY2 missense NM_002564.2 y n n n 24  11_72946144_G_S 

C11orf70 missense-

near-

splice 

NM_032930.2 y n n n 2  11_101951947_G_K 

NUAK1 missense NM_014840.2 y n n n 77  12_106480516_T_Y 

FGF9 missense NM_002010.2 y n n n 4  13_22255252_G_R 

MIPEP stop-

gained 

NM_005932.3 y n n n 18 1 13_24413808_G_R 

GSX1 missense NM_145657.1 y n n n 42 1 13_28367973_G_R 

AP1G2 missense- NM_003917.2 y n n n 14 1 14_24032794_G_R 
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near-

splice 

ATG2B missense NM_018036.5 y n n n 42 2 14_96792216_G_R 

MGA missense NM_001080541.2 y n n n 62  15_41991063_A_W 

NOXO1 missense NM_144603.2 y n n n 58 1 16_2029312_A_M 

NOXO1 missense NM_144603.2 y n n n 58 1 16_2029313_G_S 

DNAJA3 missense NM_001135110.2 y n n n 28  16_4491530_C_S 

PHKG2,C16orf93 stop-

gained 

NM_001014979.2 y n n n 7 1 16_30770393_G_R 

ATMIN missense NM_015251.2 y n n n 38  16_81069612_G_K 

ZBTB4 missense NM_001128833.1 y n n n 70 3 17_7366934_G_R 

HAP1 missense NM_001079870.1 y n n n 50 2 17_39888972_T_Y 

SPAG9 missense NM_001130528.2 y n n n 20  17_49072561_A_M 

BAHCC1 missense NM_001080519.2 y n n n 338 1 17_79425291_G_K 

GREB1L missense NM_001142966.1 y n n n 35 1 18_19075668_G_R 

KLHL14 missense NM_020805.1 y n n n 21  18_30349890_C_Y 

MYO5B missense NM_001080467.2 y n n n 75 2 18_47390707_A_M 

TCF3 splice-5 NM_001136139.2 y n n n 101 1 19_1621835_A_W 

PLIN4 missense NM_001080400.1 y n n n 485 2 19_4512974_G_R 

PLIN4 missense NM_001080400.1 y n n n 485 2 19_4513172_G_R 
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NCAN missense NM_004386.2 y n n n 35  19_19359535_G_R 

GGN missense NM_152657.3 y n n n 68 2 19_38876865_C_Y 

GGN missense NM_152657.3 y n n n 68 2 19_38877423_G_K 

ATP1A3 missense NM_152296.3 y n n n 22  19_42492254_C_Y 

ZNF160 missense NM_001102603.1 y n n n 24 1 19_53578346_C_Y 

SIRPA missense NM_001040022.1 y n n n 61 4 20_1876113_C_Y 

PYGB missense NM_002862.3 y n n n 32  20_25261702_G_S 

SDC4 missense NM_002999.3 y n n n 7 1 20_43961667_G_R 

ZNF335 missense NM_022095.3 y n n n 47 2 20_44592228_G_R 

TRAPPC10 missense NM_003274.4 y n n n 28  21_45502843_T_Y 

MRPL40 missense NM_003776.2 y n n n 12  22_19423268_C_S 

SOX10 missense NM_006941.3 y n n n 31  22_38369872_G_R 

SBF1 missense NM_002972.2 y n n n 137  22_50904250_T_K 

PHC2 coding NM_198040.2 y n n n 46 1 1_33820748_GGCTGCTGCT

GTTGTGGCTGT_CGGCTGC

TGCTGTTGTGGCTGT/C 

MAPKAPK2 coding NM_004759.4 y n n n 37 1 1_206858675_A-G_A/AGCC 

PCDHGB4,PCDHGA8

,PCDHGB7,PCDHGB

6,PCDHGB5, 

coding NM_018914.2 y n n n 52 3 5_140802723_GTG_CGTG/C 
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SLC16A10 coding NM_018593.4 y n n n 18 2 6_111494006_TGG_TTGG/T 

CCDC114 coding NM_144577.3 y n n n 51 1 19_48814908_C-A_C/CACG 

LAMA5 coding NM_005560.3 y n n n 481 1 20_60942086_CCGCGCGCC_

GCCGCGCGCC/G 

C1orf141 frameshift NM_001013674.1 y n n n 16 1 1_67558869_TCATT_CTCAT

T/C 

TDRD5 frameshift NM_001199085.1 y n n n 26 1 1_179660076_T-G_T/TGAGG 

CYBRD1 frameshift NM_024843.3 y n n n 8 1 2_172411298_TT_CTT/C 

CACNA2D3,LRTM1 frameshift NM_020678.2 y n n n 7 1 3_54952509_CT_GCT/G 

SLC16A10 frameshift NM_018593.4 y n n n 18 2 6_111494010_TTTGTTGGGC

TCATGT_ATTTGTTGGGCT

CATGT/A 

MED23 frameshift NM_004830.2 y n n n 18 1 6_131939578_A-

A_A/AAACG 

Appendix V: List of 93 candidate variants found in family K. y = yes; n = no.
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