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Abstract

Many biological structures exist on a scale smaller than can be resolved by conven-

tional fluorescence microscopy, which has limited the study of cellular processes. For

this reason, there has been a large amount of research over the past decade dedicated

to the development of super resolution microscopy techniques, which allow optical

imaging of structures below the so-called resolution limit. In particular there has

been much interest in developing super resolution microscopy techniques capable of

non-destructive imaging of living samples.

A novel super resolution microscopy technique, lifetime image reconstruction su-

per resolution (LIR-SR), is presented here; this uses continuous wave stimulated

emission depletion (CW STED) to shorten the fluorescence lifetimes of fluorophores

within a labelled sample. Differential lifetime shortening across the area of a scan-

ning laser beam pair in the microscope results in spatial variation in the distribution

of detected fluorescence on a nanosecond timescale, which can be subsequently used

to reconstruct a super resolution image. Detailed theory of LIR-SR is explained, as

well as the microscope hardware and computational methods used for its implemen-

tation. The technique is then tested on structures of known size and shape to gauge

performance, and future directions for the technique are discussed.

Spectroscopic studies of CW STED are also undertaken to better understand

the underlying photophysics of the process. The effects of solvent viscosity on CW

STED are investigated and analysed, and a mathematical model of CW STED is

presented. Further investigations are then undertaken which address a wide range

of factors which could affect CW STED, including out-of-focus fluorescence and

involvement of the triplet state, and possible refinements to the model of CW STED

are suggested in light of the experimental results.
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Chapter 1

Introduction

Fluorescence is an important tool which can be used for studying a vast range of

physical, chemical and biological phenomena with examples of applications ranging

from pH sensing to DNA sequencing [1, 2]. However, the principal application of

fluorescence discussed in this thesis is its use in the labelling and imaging of biological

samples to reveal structures within cells at sub-micron resolution. This chapter

introduces the basic physics of fluorescence, information which can be gained through

examining the time-dependence and polarisation of the detected fluorescence, and

the practical translation of this into biological imaging techniques.

1.1 Fundamental principles of fluorescence

Fluorescence generally refers to the spontaneous emission of a photon resulting from

a transition from a higher to a lower energy electronic configuration. Spontaneous

emission is observed from the excited states of atoms, molecules and semiconduc-

tors. This thesis concerns the applications of visible (ultraviolet to near infrared)

fluorescence techniques involving absorption, spontaneous emission and stimulated

emission from polyatomic molecules. Molecules in which fluorescence can be excited

are commonly referred to as fluorophores; in large molecules such as fluorescent pro-

teins, fluorescence often originates from transitions localised within a specific part

of the fluorophore termed the chromophore.

1.1.1 Molecular orbitals

In polyatomic molecules, the atomic valence electrons involved in the formation of

chemical bonds combine to form molecular orbitals, which are occupied by pairs of

electrons in accordance with the Pauli Exclusion Principle [3]. Specific electronic

states of molecules are determined by the configuration, or population, of these

molecular orbitals. The lowest energy configuration has all electron spins paired,

with a resultant spin angular momentum of zero and is termed the singlet ground

state, or S0 [1], and this is the state in which molecules are most likely to be found

16
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Figure 1.1: Diagram illustrating electron spins for ground, singlet excited and

triplet excited states. HOMO and LUMO are indicated for the ground state,

small arrows indicate electron spins. Adapted from Valeur (2001) [1].

in the absence of an external field. The next highest singlet state corresponds to the

promotion of an electron from the highest occupied molecular orbital (HOMO) to

the lowest unoccupied molecular orbital (LUMO). This is termed the first excited

state (S1) of the molecule, with higher energy singlet states denoted S2, S3...Sn.

Electronic absorption given the appropriate photon energy E = hν, where h is

Planck’s constant and ν is the frequency of the absorbed photon, can in principle be

induced from S0 to any of the higher singlet states. The strength of the transition is

however determined by the magnitude of the transition dipole moment, which is the

nearly instantaneous change in electronic charge distribution within the fluorophore

created by the change in the electronic configuration [1].

In addition to the manifold of singlet states in a molecule, electronic configura-

tions in which the electron spins are not paired are possible. In many fluorophores

there is a finite probability that, once promoted to S1, the electron spin in the now

occupied LUMO can flip, leading to an electronic state with a spin angular momen-

tum of 1 (Fig. 1.1). Such configurations are termed triplet states, denoted T1...Tn.

Figure 1.2 shows a Jablonski diagram, which is a simplified depiction of energy

states in a fluorophore and the photophysical processes which can occur between

these states, to be discussed later in this chapter.

1.1.2 Structure of visible fluorophores

The wavelengths of absorption and spontaneous emission in a fluorophore are gov-

erned by the HOMO-LUMO energy separation. Many fluorophores are built up from

a sequence of alternating single (C-C) and double (C=C) carbon bonds over which

the carbon π electrons can be delocalised. For example, the C=C bond alone absorbs

ultraviolet light at 180nm, which excites an electron in the bonding π orbital into

the anti-bonding π∗ orbital. Fluorophore structures containing many conjugated

C=C bonds have large clouds of delocalised electrons and a decreased energy gap

between the bonding and anti-bonding orbitals, leading to absorption in the visible

wavelength range [5]. The structures of four common fluorophores are shown in Fig.
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Figure 1.2: Jablonski diagram representing energy states of a fluorophore, pho-

tophysical processes and attendant timescales. Straight arrows indicate radia-

tive transitions, wavy arrows indicate non-radiative transitions (adapted from

Lichtman and Conchello (2005) [4]).

1.3a along with the wavelength ranges over which they absorb and emit (fluoresce)

(Fig. 1.3b,c). Many fluorophores can be derived from common ‘core’ structures. For

example, fluorescein and rhodamine B (Fig. 1.3a) are both based on xanthene, the

three-ringed structure present in the structures of both of these fluorophores.

The absorption and emission spectra of fluorophores do not depend solely on

electronic rearrangement within the molecule, but also upon the vibrational and

rotational degrees of freedom of the constituent atoms and the environment of the

fluorophore. This thesis is concerned with fluorophores in the condensed phase,

namely in solution, and here mechanisms through which the absorption and emission

spectra can be modified include solvation effects such as the formation of a solvation

shell around a fluorescent molecule [1].

1.1.3 The Born-Oppenheimer approximation and the Franck-

Condon principle

Two important concepts in understanding the absorption and spontaneous emission

(fluorescence) spectra of molecules are the Born-Oppenheimer approximation and

the Franck-Condon principle [3]. The Born-Oppenheimer approximation recognises

that electronic and nuclear motions in molecules occur on very different timescales

and so the kinetic energy of the much slower nuclei play little part in determining

the electronic energy of (bound) states. As such, the total wavefunction for the

molecule can be split into electronic and nuclear components as:

Ψ(r,R) = ψe(r;R)χn(R) (1.1)
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Figure 1.3: Structure of four fluorophores and the wavelengths over which they

absorb and fluoresce. a) Structures of four common fluorophores. b) Absorption

and emission ranges of the four fluorophores in a). c) Detailed absorption

and emission spectra of rhodamine B. Abbreviations: Trp - tryptophan, Fl -

fluorescein, RhB - rhodamine B, Cy5 - cyanine 5. Spectral data for tryptophan,

fluorescein and rhodamine B taken from PhotoChemCAD online resource [6],

spectral data for cyanine 5 taken from Jackson ImmunoResearch website [7].

where ψe(r;R) represents the electronic wavefunction and χn(R) represents the nu-

clear wavefunction, with r denoting the electronic coordinates and R the nuclear

coordinates [3]. This formulation allows for solution of the Schrödinger equation for

the electronic wavefunction ψe(r;R) for nuclei at fixed coordinates R. Solving the

Schrödinger equation for many different combinations of nuclear coordinates can be

used to generate a molecular potential energy curve, which describes the variation

of the energy of the molecule Ee(R) at different nuclear configurations [5]. The form

of Ee(R) for the ground and first excited states of a diatomic molecule are shown in

Fig. 1.4 together with the corresponding vibrational energy levels.

The Franck-Condon principle explains the intensity of induced and spontaneous

transitions between the vibrational levels of two electronic states. The timescale
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Figure 1.4: Absorption from the vi = 0 vibrational level of S0 to the vf = 4

vibrational level of S1 in a diatomic molecule upon absorption of a photon

shown as a potential energy diagram (adapted from Atkins and de Paula (2006)

[5]).

for electronic reorganisation resulting from the absorption or emission of a photon

in molecules is on the order of 10−15 seconds, which is significantly shorter than

vibrational periods (∼ 10−12 − 10−10 seconds) [1], and as such corresponds to an

instantaneous change in the potential energy surface Ee(R) (Fig. 1.4). Such instan-

taneous transitions are referred to as vertical transitions [3]. Within each electronic

state there exist many vibrational levels, as shown in Fig. 1.4, and prior to absorp-

tion the vibrational levels of the ground electronic state are populated according to

the Boltzmann distribution. During absorption the molecule must be excited to an

energy level in the first excited state corresponding to the same nuclear framework

as in the ground state, which for a diatomic molecule as in Fig. 1.4 is equal to

the internuclear separation. The case in Fig. 1.4 describes a diatomic molecule;

for molecular fluorescence there exist many vibrational and rotational energy lev-

els which are more conveniently represented in the form of a Jablonski diagram, as

shown in Fig. 1.2.

The transition dipole moment is a measure of how electronic charge is displaced

between initial and final states, and is described by [5]

µfi = 〈Ψf | µ̂ |Ψi〉 , (1.2)

where f and i denote the final and initial states respectively of the wavefunction of



1.1. FUNDAMENTAL PRINCIPLES OF FLUORESCENCE 21

the molecule as given in Eq. 1.1. The operator µ̂ is the sum over all electrons and

nuclei in the molecule as defined by [5]

µ̂ = −e
∑
n

rn + e
∑
N

ZNRN , (1.3)

where the first term is the electronic contribution and the second term is the nuclear

contribution, with e and ZN denoting electronic and nuclear charges respectively,

and rn, RN the electronic and nuclear coordinates as in Eq. 1.1. The overall

vibronic (vibrational and electronic) state of the molecule can be described as |εv〉
according to the Born-Oppenheimer principle, where ε corresponds to the electronic

wavefunction ψe(r;R) and v corresponds to the nuclear wavefunction χn(R), which

describes the vibrational state of the molecule [3]. Combining Eqs. 1.2 and 1.3 thus

yields [5]

µfi = µεf ,εiS(vf , vi) (1.4)

where µεf ,εi = −e
∑

i 〈εf | ri |εi〉 and S(vf , vi) = 〈vf |vi〉, with subscripts f and i

denoting final and initial states as before. The intensity of an electronic transition

can be calculated from its Franck-Condon factor, the squared modulus of the overlap

integral of the two vibrational wavefunctions |S(vf , vi)|2 [5]. Transitions are possible

if the Franck-Condon factor is greater than zero and as a result, for polyatomic

molecules in solution transitions can occur between the many different vibrational

states of S0 and S1. This is shown in Fig. 1.4 for the absorption of a photon by

the ground electronic state of a diatomic molecule. The vertical line indicates that

there is no time for a change in internuclear separation to occur; in this schematic,

the v = 4 vibrational wavefunction in the excited state most closely matches that of

the v = 0 wavefunction in the ground state, and hence the Franck-Condon factor is

largest for this transition [5]. Transitions to higher and lower vibrational levels of S1

are allowed, but their transition probabilities are governed by smaller Franck-Condon

factors.

1.1.4 Absorption and emission spectra

For each vibronic transition, rotational transitions also occur which are governed by

angular momentum selection rules [3]. In polyatomic molecules there are numerous

vibrational and rotational states at a given energy, and so the absorption (and emis-

sion) spectra are both complex and congested at room temperature. Furthermore,

in liquids there are continuous interactions between a fluorescent molecule and the

solvent molecules surrounding it, which can take place in a multitude of different

configurations and consequently ‘blur’ vibrational and rotational transitions leading

to a broadening of the spectrum [1] (e.g. spectrum of rhodamine B, Fig. 1.3c).

A notable feature of polyatomic fluorophores is a marked red shift between their

absorption and emission spectra, known as the Stokes shift. The Franck-Condon
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factors for absorption favour transitions from the thermally populated low vibra-

tional levels of the ground state to higher vibrational levels of the excited state;

as a result, excited state molecules are vibrationally ‘hot’ compared to their local

environment. These molecules lose energy rapidly due to sub-picosecond collisions

with solvent molecules, returning the molecules back to lower vibrational levels of

the excited state. This process is commonly referred to as vibrational relaxation,

and is a non-radiative process (no emission of photons).

As vibrational relaxation within the excited state occurs on a significantly rapid

timescale compared to spontaneous emission (Fig. 1.2), the majority of spontaneous

emission consequently occurs from the lower vibrational levels of the excited state,

and these downwards vertical transitions are again governed by Franck-Condon fac-

tors. The energy lost to the environment due to vibrational relaxation results in the

majority of spontaneous emission transitions having lower energies than the absorp-

tion transitions. However, it can be seen in the absorption and emission spectra of

rhodamine B that there is also a degree of overlap between the two spectra which

arises from high energy (short wavelength) emission from higher vibrational levels

of S1 to lower vibrational levels of S0 and conversely low energy (long wavelength)

absorption from higher vibrational levels of S0 to lower vibrational levels of S1.

The approximate mirror symmetry often observed in the S0 → S1 absorption and

S1 → S0 emission spectra reflects the fact that the magnitudes of Franck-Condon

factors are independent of the direction of the transition. Examples of asymmetric

spectra can arise when, for example, there is excitation to the second excited state

S2. When this occurs there is rapid non-radiative relaxation (internal conversion)

to S1 and so whilst the absorption spectrum describes absorption from S0 to both

S1 and S2, the emission spectrum still only reflects emission from S1 to S0 [2].

1.1.5 The single photon absorption cross-section

Laser sources provide narrow bandwidth, polarised light which is suitable for exciting

fluorophores, and are used throughout the experimental chapters of this thesis for

this purpose. The probability that a molecule absorbs a photon of wavelength λ is

given by its absorption cross-section

σλ =
2.303

NA
ελ = 3.83× 10−21mol · ελ, (1.5)

where NA is Avogadro’s number (mol−1) and ελ is the molar absorption coefficient

(L mol−1 cm−1). The formulation of the absorption cross-section is derived from the

Beer-Lambert Law, which describes the efficiency of light absorption as a function

of fluorophore concentration and sample thickness [1].

Values of ε range from 104 − 105 L mol−1cm−1 for commonly used fluorophores,

yielding absorption cross-sections of 10−17 − 10−16cm2. For example, rhodamine

B has a molar absorption coefficient of ε ≈ 105, 000 L mol−1cm−1 and thus an
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absorption cross-section of σ ≈ 4× 10−16cm2 [1].

1.1.6 Radiative and non-radiative decay of the excited state

The Jablonski diagram in Fig. 1.2 shows that there are many possible transitions

that fluorophores in the excited state can undergo. The principal mechanism by

which a fluorophore returns from S1 to S0 is spontaneous emission (fluorescence).

Following short pulsed laser excitation (< 10−9s pulses) the population of the excited

state decays according to

N(t) = N0 exp

(
− t

τr

)
, (1.6)

where N0 is the initial population of the excited state and τr is the radiative lifetime

of the excited state [1]. The radiative lifetime is the reciprocal of the Einstein A

coefficient for the S1 → S0 transition, and the Einstein A and B coefficients are

related through [8]

A21 = B21
8πhν3

21

c3
. (1.7)

A21 is the Einstein coefficient for the rate of spontaneous emission from level 2 (here

state S1) to level 1 (here state S0), and B21 = (g1/g2)B12 where g1 and g2 are

the degeneracies of levels 1 and 2 respectively and B12 is the Einstein coefficient

for absorption. B21 is proportional to the overlap of levels 1 and 2, |µ21|2, and is

the Einstein coefficient for stimulated emission, a mechanism by which an incident

photon can stimulate radiative de-excitation from the excited state to the ground

state. Stimulated emission is discussed in further detail in later chapters.

In most fluorophores, however, the lifetime of the S1 excited state is shorter

than τr. This is due to additional, non-radiative pathways which remove population

from S1. The excited state lifetime, or fluorescence lifetime as it will be referred to

throughout this thesis, is given by

τf =
1

kr + knr
(1.8)

where kr is the radiative decay rate (= 1/τr = A21) and knr is the non-radiative decay

rate, which is the sum of processes such as vibrational relaxation (as described in

Section 1.1.4), intersystem crossing, internal conversion and quenching. Commonly

used fluorophores typically have fluorescence lifetimes on the order of 10−10 − 10−8

seconds, and the population of the excited state still decays exponentially according

to Eq. 1.6 but with a characteristic lifetime of τf rather than τr.

Intersystem crossing describes the crossing of fluorophores from S1 into triplet

states Tn (usually T1). Whilst such transitions are typically forbidden by the spin

selection rule (no change in overall spin), in reality spin-orbit coupling allows for

these transitions to occur, albeit weakly [5]. The rate at which intersystem crossing

occurs can vary depending on the fluorophore structure; for example, spin-orbit

coupling scales with nuclear mass as Z4 and hence is more probable in fluorophores
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containing heavy atoms [1]. Once in a triplet state, vibrational relaxation occurs

as in singlet states, with the consequence that fluorophores can become trapped in

lower vibrational levels of T1 which are at lower energies than the lowest vibrational

levels of S1. Once in the lower vibrational levels of T1, fluorophores can return to

S0 through spin-orbit coupling (again a very weak transition) and emit a photon in

a radiative process termed phosphorescence. The low probability of the T1 → S0

transition means that phosphorescence is typically emitted following triplet state

lifetimes of microseconds and longer.

Internal conversion is non-radiative conversion between electronic states of the

same spin multiplicity, and typically occurs when there is an intersection between

two molecular potential energy curves [5]. This process is more common between the

higher excited singlet states, for example S2 → S1, as the higher excited states are

more closely spaced and thus more likely to have some degree of overlap. S1 → S0

intersystem crossing is less efficient as there is a larger energy gap between these two

states [1].

The final main method through which de-excitation of excited fluorophores can

occur is quenching. The term quenching covers several processes by which fluo-

rophores can become de-excited, including collisions with molecules in the local

environment, such as solvent molecules and oxygen, and energy transfer processes

such as Förster Resonance Energy Transfer (FRET). During collisional quenching

the fluorophore is either returned to the ground state or rendered incapable of flu-

orescence through chemical modifications such as proton and electron transfer, or

formation of complexes [1]. Collisions between singlet and triplet fluorophores can

also quench fluorescence, and the interaction of oxygen with triplet state fluorophores

in particular can lead to destruction of the fluorophore (a process often referred to

as photobleaching). These latter quenching processes are discussed in further detail

in Chapter 5.

FRET is the process by which electronic energy is transferred from an excited

electronic state of a ‘donor’ fluorophore to a nearby ‘acceptor’ fluorophore. FRET

occurs through dipole-dipole transfer with simultaneous de-excitation of the donor

and excitation of the acceptor. The rate at which FRET occurs from a donor to an

acceptor is given by [1]

kFRET = kr

(
RF
r

)6

, (1.9)

where kr is the radiative decay rate of the donor in the absence of acceptor, r is the

distance between donor and acceptor, and RF is the Förster critical radius (com-

monly referred to as R0 in FRET literature). RF is the donor-acceptor separation

where the efficiency of FRET is 50%, and is determined by factors such as the spec-

tral overlap of donor and acceptor and the relative orientations of their transition

dipole moments [2]. The fluorescence lifetime of the donor in the presence of an
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acceptor is thus reduced according to

τf =
1

kr + kFRET
=

τr

1 +
(
RF
r

)6 . (1.10)

Typical values of RF are ∼ 10−9m [1], meaning that significant FRET is only likely

to occur in a highly concentrated solution or in cases where donor and acceptor

fluorophores are immobilised close to each other. The latter case has applications in

measuring molecular interactions in cell biology, discussed in Section 1.5.2.

1.1.7 The quantum yield of fluorescence

The quantum yield of fluorescence Φf represents the probability that, once excited,

a fluorophore will emit a photon. It is given by the ratio of the radiative decay rate

from S1 to the total decay rate from S1 as [1]

Φf =
kr

kr + knr
. (1.11)

The non-radiative decay rate represents the sum of the rates at which the non-

radiative processes described above occur. The quantum yield is commonly used to

assess efficiency of fluorophores, especially for biological fluorescence imaging where

high fluorescence intensities are desirable.

1.2 Fluorescence anisotropy

As discussed above, the absorption and emission transition rates depend on the

magnitude of the transition dipole moment for the S0 → S1 and S1 → S0 transitions.

However, the orientations of a fluorophore’s transition dipole moments can also

impact upon transition probabilities and the polarisation of emitted fluorescence.

1.2.1 Orientational photoselection in single photon excitation

The absorption dipole moment is referred to here as µabs, which is equivalent to

µfi given in Eq. 1.4 for final state S1 and initial state S0, and is a measure of the

electronic charge redistribution caused by absorption. For linearly polarised light

with electric vector E, the probability of excitation is proportional to |E ·µabs|2 and

hence is proportional to cos2 θ, where θ is the angle in the laboratory frame between

E and µabs [1]. Therefore the probability of absorption is highest when E is parallel

to µabs, and zero when it is perpendicular. Assuming that the excitation source is

a short pulsed laser, such that there is no reorientation of dipole moments during

excitation with the laser having well-defined linear polarisation, a cos2 θ anisotropic

laboratory frame distribution of excited state fluorophores is created. This is known

as orientational photoselection and is shown in Fig. 1.5.
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Figure 1.5: Photoselection in a randomly oriented solution of fluorophores

(dipole moments along arrows) following excitation with plane polarised light.

In an isotropic solution the number of molecules with µabs oriented within the

angles θ → θ + dθ and φ → φ + dφ is proportional to sin θdθdφ (Fig. 1.6, where

the polarisation of the excitation is parallel to the z axis). Therefore the number of

molecules in which absorption has occurred according to the orientational conditions

described above is proportional to [1]

p(θ, φ) ∝ cos2 θ sin θdθdφ. (1.12)

1.2.2 Polarised emission and anisotropy

Emission of fluorescence is also anisotropic and reflects the degree of order in the

excited state population, as the photoselected excited state fluorophores emit fluo-

rescence parallel to their emission dipole moments µem (µfi where the final state is

S0 and the initial state is S1). To quantify fluorescence anisotropy, the intensities of

fluorescence polarised parallel to (I‖) and perpendicular to (I⊥) the excitation po-

larisation E are measured; practical methods of achieving this are discussed further

in Section 1.4.1.

The time-resolved anisotropy for linearly polarised excitation of an isotropic sam-

ple is given by

R(t) =
I‖(t)− I⊥(t)

I(t)
(1.13)

where I(t) is the total time-resolved fluorescence intensity given by

I(t) = I‖(t) + 2I⊥(t). (1.14)

The z axis of the coordinate system used in the laboratory frame is the polarisation

vector of the excitation field, and there is cylindrical symmetry about this axis such
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Figure 1.6: Coordinate system for the dipole moment of a fluorophore, with

the assumption that the emission dipole moment and absorption dipole moment

are parallel. The z axis is taken to be parallel to the polarisation vector of the

excitation field. Adapted from Valeur (2001) [1]

that I‖ = Iz and I⊥ = Ix = Iy. In this case anisotropy only depends on the angle θ

made between the emission dipole moment and the z axis of the coordinate system

described in Fig. 1.6. The angular distribution of the emission dipole moments (in

the absence of any reorientation of the molecules) is given by [1]

R0 =
3
〈
cos2 θ

〉
− 1

2
(1.15)

where
〈
cos2 θ

〉
is the population averaged value of cos2 θ, with θ denoting the angle

between µem and the z axis (as opposed to Eq. 1.12 where θ refers to the angle

between µabs and the z axis). However, for many common fluorophores µabs and

µem are parallel to each other and the two definitions of θ are equivalent. In this

case, the fraction of molecules in the excited state population is given by

W (θ, φ)dθdφ =
p(θ, φ)∫ 2π

0

∫ π
0 p(θ, φ)

, (1.16)

and when evaluated for p(θ, φ) as defined for Eq. 1.12 with its associated assumptions

is equal to (3/4π)p(θ, φ). The average value of cos2 θ across the excited state can

then be calculated as

〈
cos2 θ

〉
=

∫ 2π

0

∫ π

0
cos2 θW (θ, φ)dθdφ =

3

4π

∫ 2π

0

∫ π

0
cos2 θp(θ, φ) (1.17)

which evaluates to 3/5. Substituting
〈
cos2 θ

〉
= 3/5 into Eq. 1.15 yields an
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anisotropy of R0 = 0.4 [1].

1.2.3 Rotational diffusion

As emission of fluorescence following excitation is not instantaneous due to the

finite excited state lifetime, processes can occur during this time which cause de-

polarisation of the emitted fluorescence. For photoselected fluorescent molecules in

solution, the principle cause of fluorescence depolarisation is rotational diffusion of

the molecules and hence their emission dipoles. The collisional timescale in a liq-

uid is 10−14 − 10−13 seconds, which is short enough that many collisions between

solvent molecules and fluorescent molecules can occur before either the fluorescent

molecule can freely rotate (timescale 10−12 − 10−9s) or emit fluorescence (timescale

10−10 − 10−8s) [9]. Under such circumstances, molecular reorientation can be con-

sidered as due to a very large number of small random steps in (θ, φ) caused by

solvent collisions. This diffusive angular motion is analogous to Brownian motion

for translation. The standard treatment of rotational diffusion of fluorophores in

solution is with the Stokes-Einstein-Debye relation [10]

τrot =
fκVhη

kBT
+ τ0. (1.18)

τrot is the rotational correlation time of the fluorescence molecule, Vh is the van der

Waals volume of the molecule, η is the solvent viscosity, T is temperature and τ0 is

the free rotational correlation time of the fluorescent molecule. f is the ‘form factor’,

a property describing the shape of a molecule, where f = 1 for a spherical molecule,

f < 1 for a prolate molecule and f > 1 for an oblate molecule. κ describes the limits

of motion between the fluorophore and the solvent which ranges from zero, where

the fluorophore ‘slips’ and rotates independently of neighbouring solvent molecules,

to one, where the fluorophore ‘sticks’ and neighbouring solvent molecules rotate with

the fluorophore [11]. The rotational correlation times of fluorophores in solvents used

in this thesis range from hundreds of picoseconds to several nanoseconds (Chapter

4).

The anisotropy of fluorescence emitted from a population of fluorophores in so-

lution thus decays away from the initial anisotropy R0 according to

R(t) = R0 exp

(
− t

τrot

)
(1.19)

with shorter rotational correlation times producing a more rapid depolarisation of

fluorescence. The above expression assumes equal diffusivity in each direction (i.e.

there is cylindrical symmetry) and that µem is along the symmetry axis; if not, R(t)

is much more complex. More complex anisotropy decays are also obtained for flu-

orescent probes which are embedded in or attached to larger molecules, such as in

labelling of biological structures (Section 1.6.1) [12]. However, a good approxima-
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tion for common fluorophores is that they have single exponential anisotropies as

described by Eq. 1.19. Validation of this approximation, as well as studies into sys-

tems where these assumptions cannot be made, can be found in references [11, 9, 13].

1.2.4 Spherical harmonics

The orientational distribution function P (θ, φ) describes the probability of finding a

molecule, or transition dipole moment, oriented between θ → θ+dθ and φ→ φ+dφ

in spherical polar coordinates in the laboratory frame of reference. This is formalised

as [14]

P (θ, φ) =
∑
KQ

〈CKQ〉YKQ(θ, φ) (1.20)

where 〈CKQ〉 are normalisation coefficients and YKQ(θ, φ) are spherical harmonics

of rank K and projection Q according to

YKQ(θ, φ) =

(
2K + 1

4π

) 1
2

LKQ(θ, φ), (1.21)

where LKQ(θ, φ) are the Legendre polynomials. From a quantum mechanical per-

spective, spherical harmonics are the solutions of the Schrödinger equation for a

particle on a sphere where rank K is analogous to the angular momentum quantum

number l and projection Q is analogous to the magnetic quantum number ml (where

ml = −l...0...l, similarly Q = −K...0...K) [3]. Spherical harmonics are a useful basis

set of functions for describing molecular orientations as they are orthogonal, and as

a result the orientational distribution function normalises such that the probability

of finding a molecule in any orientation projected onto the unit sphere is unity as

shown below ∑
KQ

〈CKQ〉
∫ 2π

0

∫ π

0
YKQ(θ, φ) sin θdθdφ = 1. (1.22)

The total population of molecules is described as

P (θ, φ) = 〈C00〉Y00(θ, φ) (1.23a)

= 〈C00〉
(

1

4π

) 1
2

(1.23b)

and to satisfy Eq. 1.22 it can be seen that 〈C00〉 =
√

1/4π. As this population is

present in all orientational distributions of molecules, the orientational distribution

function can be rewritten as

P (θ, φ) = 〈C00〉
∑
KQ

〈αKQ〉YKQ(θ, φ), (1.24)

where 〈αKQ〉 = 〈CKQ〉 / 〈C00〉. For cylindrically symmetrical excitation of an

isotropic sample, transition probabilities can be decomposed into the Y00(θ, φ) and
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Y20(θ, φ) components (Fig. 1.7), where

Y00(θ, φ) =

(
1

4π

) 1
2

(1.25a)

Y20(θ, φ) =

(
5

4π

) 1
2 1

2

(
3 cos2 θ − 1

)
. (1.25b)

For example, the cos2 θ excitation probability can be expanded in spherical harmon-

ics as

cos2 θ =

√
4π

3

(
Y00(θ, φ) +

2√
5
Y20(θ, φ)

)
(1.26)

and so P (θ, φ) (Eq. 1.24) can be written as

P (θ, φ) =

(
1

4π

) 1
2
(
Y00(θ, φ) +

2√
5
Y20(θ, φ)

)
. (1.27)

This distribution is plotted in Fig. 1.7 (right). Thus 〈α20〉 = 2/
√

5 and 〈C20〉 =

〈C00〉 〈α20〉. Components such as Y2±2(θ, φ) are only non-zero in cases where there

is not cylindrical symmetry [9].

Figure 1.7: Spherical harmonics plotted in the Cartesian coordinate system.

Time-dependent orientational distribution functions P (θ, φ, t) for parallel and

perpendicular emitted fluorescence can be used to formulate the time-resolved fluo-

rescence anisotropy as

R(t) =
〈α20(t)〉√

5
, (1.28)

which evaluates to R0 = 0.4 at t = 0, where 〈α20(0)〉 = 〈α20〉 as stated above. A full

derivation of this relation can be found in Bailey (2013) [15].
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1.3 Two photon absorption

Excitation of a molecule in S0 to a higher excited state can be achieved by the

simultaneous absorption of multiple photons, as opposed to one single photon, in a

process known as multiphoton absorption. Here only the case of the simultaneous

absorption of two photons (two photon absorption) will be discussed, as this is widely

used in biological fluorescence microscopy (Section 1.6.2) as well as for manipulating

the orientational distribution function of fluorophores in solution (Section 5.1).

Two photon absorption can be thought of as two consecutive single photon ab-

sorptions promoting the fluorophore from S0 to Sn via a ‘virtual’ state. Virtual

states do not necessarily correspond to a stationary state of the molecule and as a

result are very short-lived, with lifetimes which can be calculated according to the

uncertainty principle (∆E∆t ≥ h̄/2) as follows [16]

∆t ≥ λ

4πc
. (1.29)

Evaluating Eq. 1.29 for an excitation wavelength of 800nm (as is typically used

in two photon absorption of visible fluorophores) gives a virtual state lifetime of

∼ 2 × 10−16s. For two photon absorption to occur, two photons must be absorbed

by the fluorophore within the virtual state lifetime; as a consequence, two photon

absorption generally requires the use of ultrashort laser pulses (typically femtosecond

pulses such as those provided by Ti:Sapphire lasers). Two photon absorption is

shown on a Jablonski diagram in Fig. 1.8a.

Although the two photons absorbed during two photon absorption can possess

different energies, for the discussion below they are assumed to originate from the

same pulsed laser source and thus possess equal energies. The probability that two

photon absorption will occur within a single pulse is given by [17]

P2PA =
gp
tp

(
Ep
Ahν

)2

σ2P , (1.30)

where gp is a dimensionless quantity representing the temporal shape of the pulse, tp

is the pulse duration, Ep is the total energy delivered by a single pulse, A is the area

covered by the laser beam, hν is the energy of a single photon in the pulse and σ2P

is the two photon absorption cross-section of the molecule. The two photon cross-

section is given in units of GM (1 GM = 10−50cm4s/photon, with typical values of

σ2P = 101 − 102 GM [18]).

Two photon absorption can be used to access excited states of fluorophores which

cannot be accessed using single photon excitation as different selection rules apply

[16]. Figure 1.8b and c show the two photon absorption spectra of two fluorophores

plotted at half the two photon wavelength for comparison with their single photon

absorption spectra. The two photon absorption spectrum of Lucifer yellow is a

similar shape to that of its single photon absorption spectrum (Fig. 1.8b) with the
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Figure 1.8: Two photon absorption Jablonski diagram and spectra. a) Jablon-

ski diagram showing two photon absorption from S0 to a higher singlet state

Sn, vibrational relaxation (dark red) and spontaneous emission. Two photon

and single photon absorption spectra of b) Lucifer yellow and c) Rhodamine

B, two photon absorption spectra plotted at half the measured absorbed wave-

length. Single photon absorption data from PhotoChemCAD resource [6], two

photon absorption spectra from [19], data available at DRBIO online resource

[20].

two photon peak appearing at approximately double the wavelength of the single

photon peak, suggesting that both methods of excitation are accessing the same

excited states. However, the two photon absorption spectrum of rhodamine B is

significantly blue-shifted relative to double the single photon absorption spectrum

(Fig. 1.8c). This suggests here that two photon absorption allows for access of

higher energy excited states than with single photon absorption. The difference in

accessible energy states for single and two photon absorption depends on features

of the fluorophore such as structural symmetry and vibronic coupling [19]. The

emission spectra of fluorophores are usually independent of absorption wavelength

due to the rapid internal conversion and vibrational relaxation of any higher excited

states back to lower vibrational levels of S1 (Fig. 1.8a) [16].
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1.3.1 Orientational photoselection with two photon absorption

Whereas single photon absorption depends on the projection of a single photon elec-

tric field onto a transition dipole moment, the amplitude of two photon absorption

depends on the double projection of two electric field vectors onto a molecular tensor

[21]. The general form of this tensor is given as a 3× 3 matrix S and the transition

rate can accordingly be written as [22]

transition rate ∝ |E1 · S · E2| =

∣∣∣∣∣∣∣
 e1x

e1y

e1z


 Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz

 (e2x e2y e2z)
∣∣∣∣∣∣∣

(1.31)

where E1 and E2 are the electric field vectors of the two incident photons. For ab-

sorption of two identical photons E1 = E2, and for the assumption that fluorophores

are planar, S reduces to a 2 × 2 matrix with no z-components. Fluorophores such

as fluorescein and rhodamine, which have strong transitions, typically have only one

non-zero element (Sxx) and in such cases S can be approximated as a single element

parallel to the single photon absorption dipole µabs [23].

Using the approximation that the molecular tensor is a single element, and as-

suming that the excitation beam is linearly polarised and that the two absorbed

photons are identical, each individual photon has a cos2 θ probability of being ab-

sorbed and hence the number of excited molecules becomes

p2PA(θ, φ) ∝ cos4 θ sin θdθdφ. (1.32)

This is the two photon equivalent of Eq. 1.12 and the maximum anisotropy following

two photon absorption can be calculated as in Section 1.2.2 as R0 = 0.57. Even

though emission is still occurring from S1 to S0 following two photon absorption, the

increased angular dependence of two photon absorption compared to single photon

absorption generates a narrower angular range of excited dipoles and hence a higher

emission anisotropy.

Two photon absorption introduces a Y40(θ, φ) spherical harmonic component

Y40(θ, φ) =

(
1

4π

) 1
2 3

8

(
35 cos4 θ − 30 cos2 θ + 3

)
, (1.33)

and cos4 θ can accordingly be expressed in spherical harmonics as

cos4 θ =

(√
4π

5

)(
Y00(θ, φ) +

20

7
√

5
Y20(θ, φ) +

8

21
Y40(θ, φ)

)
. (1.34)

Using Eq. 1.24, P (θ, φ) can be written as

P (θ, φ) =

(
1√
4π

)(
Y00(θ, φ) +

20

7
√

5
Y20(θ, φ) +

8

21
Y40(θ, φ)

)
. (1.35)
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Figure 1.9: Spherical harmonic plots showing components in two photon ab-

sorption.

1.4 Time correlated single photon counting

In order to obtain information about fluorescence behaviour over time, time-resolved

detection is necessary. Throughout this thesis the method of time correlated sin-

gle photon counting (TCSPC) will be used for observing fluorescence emission on

a nanosecond timescale. TCSPC is essentially a highly accurate stopwatch which

makes repeated measurements of the time between excitation (absorption) and emis-

sion and as such can build up a histogram of excitation-emission intervals represent-

ing the decay of the excited state.

1.4.1 TCSPC instrumentation

The basic requirements for TCSPC are a fast pulsed laser source, which provides a

train of excitation pulses typically at kHz-MHz repetition rates, a detector sensitive

to single photons, such as a photomultiplier tube or single photon avalanche diode,

and electronics for sensitive measurement of times between excitation and emission

events. The basic electronics for TCSPC are shown in Fig. 1.10. The two input

signals for TCSPC are a synchronisation (sync) signal from the excitation laser and

a photoelectron generated by the detector. There are two modes which can be used

to generate timing information: forward start-stop mode, where the laser sync signal

starts the ‘stopwatch’ and the detector signal stops it, and reverse stop-start mode

where the detector signal starts the stopwatch and the next laser sync pulse stops

it [24]. Most TCSPC systems operate in reverse stop-start mode as this allows

for counting at a slower rate (i.e. one limited by the detection frequency, which

is typically < 1% of the excitation frequency); this is usually necessary to avoid

missing detections occurring during the time taken for the system electronics to
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reset (in the range 0.3 − 2µs [24]). However, the TCSPC system used throughout

this thesis contains an inbuilt ‘divider’ which is capable of reducing the effective

input rate in forward start-stop mode to a maximum of 10MHz without missing

detections. Therefore in the description of TCSPC provided below, only the forward

start-stop mode will be considered. Figure 1.10 shows a general overview of TCSPC

instrumentation; the specific TCSPC apparatus used for experiments in this thesis

is described in the Methods sections of later chapters.

Figure 1.10: Schematic of TCSPC electronics. Inset: schematic of constant

fraction discriminator operation. Abbreviations used: CFD - constant fraction

discriminator, TAC - time to amplitude converter, Amp - amplifier, ADC -

analog to digital converter. Adapted from [25].

The time between the ‘start’ sync signal and the ‘stop’ detector signal represents

the time between absorption and spontaneous emission (plus a small amount of

electronic delay). Only the first photon detected per excitation pulse is measured;

TCSPC electronics are typically not fast enough to measure more than one photon

from a single excitation pulse, and count rates in TCSPC are adjusted such that the

majority of laser pulses do not result in an emission [2].

To combat timing discrepancies which could arise from determining signal times

from threshold voltages (as there is non-preventable variation of the signal amplitude

for each pulse), both signals pass through constant fraction discriminators (CFDs).

A CFD manipulates the waveform of a signal pulse to produce a waveform whose

zero crossing value is independent of its original amplitude (Fig. 1.10, inset). The

sync and detector CFDs then send timing signals to a time to amplitude converter

(TAC), which starts linearly increasing its voltage upon receiving the sync signal and
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stops increasing its voltage upon receiving the detector signal. The voltage from the

TAC is then amplified and passed through an analog to digital converter (ADC)

which converts the voltage into a numeric time value which is fed into computer

memory. The individual times registered using TCSPC are binned and summed to

form a fluorescence lifetime histogram, from which the fluorescence lifetime can be

calculated through exponential fitting.

There are several practical considerations for collecting reliable data using TC-

SPC. The detector count rate should typically be ∼ 1% of the laser repetition rate,

as counting at a higher rate (i.e. > 1 photon per excitation pulse) could bias the

lifetime histogram to shorter times: if multiple photons are produced per excitation

pulse, the TCSPC system will detect the first photon but not the later ones [2]. As

a result of this limitation measurement duration (rather than laser intensity) should

be adjusted to ensure that enough photons are collected to satisfy exponential fit-

ting statistics for lifetime calculations [26]. Appropriate choice of detector is also

important, as the detector needs a fast response time and sufficient gain.

It is important to note that the measured fluorescence lifetime histogram is a

convolution of the true excited state decay of the fluorophore with the instrument

response function (IRF) of the TCSPC system. The IRF limits the timing precision

of TCSPC and arises from a combination of factors such as the uncertainty in the

detector timing, the finite width of the excitation pulses and timing jitter in the elec-

tronics [27]. Therefore fluorescence lifetime histograms are frequently deconvolved

with the measured IRF of the TCSPC system before fitting to gain a more accurate

measurement of the excited state decay. In TCSPC systems where the detector

is unlikely to be damaged if exposed to low-intensity laser light, the IRF can be

measured by examining the histogram obtained from back-reflecting the excitation

laser off a glass coverslip. Otherwise, to avoid damage to more sensitive detectors,

the IRF can be measured from the histogram obtained from illuminating a non-

fluorescent sample such as a scatterer (e.g. dilute milk [15]) or a sample displaying

second harmonic generation (e.g. KDP crystals [10]) with the excitation laser.

1.4.2 Polarisation-resolved fluorescence measurements

The measurement of total (anisotropy-free) fluorescence intensity decays and time-

resolved anisotropy decays requires polarisation-resolved measurements of fluores-

cence such that the intensity components parallel to and perpendicular to the exci-

tation polarisation (I‖ and I⊥, Section 1.2.2) can be separated.

When a single detector is used, a polariser placed at the ‘magic angle’ of 54.7◦

allows for detection of a signal proportional to the total fluorescence intensity I =

I‖+ 2I⊥ [1]. However, if an anisotropy decay is to be obtained then I‖ and I⊥ must

be measured separately. This can be achieved using either one or two detectors;

with one detector, a linear polariser in the detection path can be alternately rotated

between parallel and perpendicular polarisations with sequential collection of I‖
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and I⊥ (e.g. [28, 15]). With two detectors, the fluorescence can be split into its

I‖ and I⊥ components using a cube polariser, with each component directed to a

different detector. The polarisation-resolved measurements presented in this thesis

exclusively use the latter two detector approach.

To account for any detector polarisation sensitivity, or different detector efficien-

cies, in polarisation-resolved measurements a correction known as the G-factor must

be made. This can be achieved by comparing measurements taken with vertically

and horizontally polarised excitation beams, by ‘tail-matching’ the intensities of the

two detected polarisations in later parts of the decay, or by ‘head-matching’ the

anisotropy decay such that R0 equals its predicted value [25].

1.5 Use of fluorescence in biological imaging

Microscopy has been a valuable tool throughout the history of biological research

for studying the structure and function of cells. Simple compound microscopes

developed in the 15th and 16th centuries by scientists such as Robert Hooke and

Antonie van Leeuwenhoek were capable of magnifying specimens but not of gener-

ating contrast. The need for greater contrast formation for identification of different

biological features was satisfied with the advent of sample staining techniques in the

19th century. Examples of stains used in this period include carmine, which stains

the nucleus but not the cytoplasm, and silver nitrate, which selectively stains nerve

cells [29].

The first uses of fluorescence in biological microscopy were in observing autoflu-

orescence, which arises from endogenous fluorescent molecules within cells, such as

NADH and tryptophan, which fluoresce when excited by UV wavelengths. Fluo-

rescent dyes were first used in the early 20th century when fluorophores such as

fluorescein were injected into organs to generate contrast [29]. However, it was not

until the 1960s and the development of dichroic mirrors that fluorescence microscopy

became a major tool in cell biology. Dichroic mirrors have different transmission

and reflection properties depending on the wavelength of incident light; for example,

short wavelength light can be reflected by a dichroic mirror to excite a fluores-

cently labelled sample, and the longer wavelength Stokes-shifted fluorescence can be

transmitted to an ocular or detector. Sample labelling methods also became more

advanced and fluorescent dyes could be conjugated to antibodies for highly specific

labelling of biological molecules to generate high contrast. From this point onwards

fluorescence microscopy became an incredibly important tool, leading to instrument

development and advances in fluorescence labelling techniques.

1.5.1 Confocal microscopy

One of the most important advances in modern fluorescence microscopy has been the

development of the confocal microscope. In epifluorescence (widefield) microscopy a
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source of excitation light, such as a xenon or mercury arc lamp, is focused through

an objective onto a large area of a labelled sample and fluorescence emitted from

the sample is collected back through the objective and used to create an image.

However the images produced by this method suffer from contamination from out-

of-focus fluorescence - that is, fluorescence arising from fluorophores in the light path

outside the focal plane. A solution to this problem was first suggested by Marvin

Minsky [30] and is known as the confocal principle.

Figure 1.11: Illustration of the confocal principle. Excitation light (blue) passes

through an excitation pinhole, is reflected off a dichroic mirror and is focused

into the sample through an objective lens. Fluorescence from the focal plane

(solid green line) is collected through the objective, passes through the dichroic

mirror and through the detection pinhole into the detector. Fluorescence arising

from outside the focal plane (dashed green line) is rejected by the detection

pinhole.

In confocal microscopy, instead of illuminating a large area of the sample with a

widefield source, a point source of illumination is used. This can be achieved either

by placing a pinhole after a widefield source of illumination, or by illuminating

the sample with a laser. The fluorescence is then collected in the same way as

for epifluorescence microscopy, except that a second pinhole is placed before the

detector. The pinhole is positioned such that only light emitted from the focal

plane will correctly focus down and pass through the pinhole, whereas out of focus

fluorescence will be rejected by the pinhole (Fig. 1.11). An image can then be

generated by sequentially (raster) scanning the point source of illumination over the

sample and collecting fluorescence emitted from each point.



1.5. USE OF FLUORESCENCE IN BIOLOGICAL IMAGING 39

Whilst confocal microscopy on its own can produce detailed images of subcellular

structure, this information is more qualitative than quantitative. Many techniques

have grown from confocal microscopy which can provide more quantitative informa-

tion, such as fluorescence lifetime imaging and FRET among many others.

1.5.2 Fluorescence lifetime imaging

Fluorescence lifetime imaging (FLIM) is a method by which fluorescence lifetimes

of fluorophores are measured in a biological sample and represented in an image.

Fluorescence lifetime measurements can provide important information about the

immediate environment of a fluorophore, such as local protein binding.

There are various implementations of FLIM including widefield FLIM and fre-

quency domain FLIM, however the focus here will be on laser-scanning time domain

FLIM. Time domain measurements are taken using TCSPC, with fluorescence life-

time histograms generated for each pixel within the image. To collect sufficient

photons for reliable fitting of these histograms for determination of fluorescence

lifetimes, image acquisition times in FLIM are often substantially longer than in

confocal microscopy as is subsequent image analysis, where exponential fitting is

performed at each pixel in the image.

One use of FLIM is to assess the lifetime properties of autofluorescence for

imaging cell metabolism. The coenzymes NAD and NADP are involved in cell

metabolism, and are required for ATP production and biosynthesis respectively.

The reduced forms of these two coenzymes, NADH and NADPH, display autofluo-

rescence upon excitation with UV light (or two photon excitation), and fluorescence

lifetime measurements can reveal whether these molecules are bound to proteins or

not. From these measurements the metabolic state of a cell can be determined and

so the metabolic requirements of different cell lines and diseased cell states can be

investigated without exogenous fluorophores or biochemical intervention [17].

The other main way in which FLIM is commonly used is in FRET microscopy,

which assesses close-range (nanometre scale) interactions between biomolecules. The

biomolecules of interest are labelled with donor and acceptor fluorophores and the

characteristics of the donor and/or acceptor fluorescence are monitored (see Section

1.1.6). By using time-resolved fluorescence measurements, quantitative information

can be gained on the nature of the donor-acceptor interaction (e.g. intermolecular

distances, orientations). FRET microscopy is often used to study protein oligomeri-

sation, for example in determining the conformation in which the protein PDK1

undergoes homodimerisation [31]. A more complete review of the applications of

FLIM microscopy for FRET of biological molecules is provided by Wallrabe and

Periasamy (2005) [32].
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1.6 Biological requirements for imaging

Fluorescence imaging of biological tissue presents three basic requirements: 1) devel-

opment and selection of appropriate fluorophores for biological imaging and strate-

gies for introducing them into samples; 2) the use of appropriate illumination sources

for obtaining sufficient signal with minimisation of sample degradation; 3) specific

considerations for the imaging of living samples.

1.6.1 Fluorophore requirements and labelling techniques

While endogenous fluorescence and non-specific fluorescent stains were used in the

early years of fluorescence microscopy, the majority of modern microscopy techniques

are performed on samples which have been specifically labelled. Fluorophores used

in biological imaging can be broadly classed into two categories: those which can

be genetically encoded into the sample and those which cannot. Both classes of

fluorophore must be specifically targeted to label the biological molecule of interest,

and must have means by which to access these molecules. They also need to have

high enough quantum yields to generate sufficient contrast in images and appropriate

spectra for excitation with commonly available laser lines. Figure 1.12 shows the

structures and sizes of components used in fluorescence labelling.

Figure 1.12: Structures and sizes of molecules used in fluorescent labelling

of biological structures. EGFP dimensions obtained from Hink et al (2000)

[33], structure rendered from PDB entry 2Y0G, chromophore represented in

spacefill. IgG dimensions obtained from Reth (2013) [34], structure rendered

from PDB entry 1IGT. Alexa 488 spacefill structure and dimensions obtained

from Weber et al (2004) [35]. All three structures drawn to scale.
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Non-genetically encodable fluorophores

An important breakthrough in sample labelling came with the development of im-

munofluorescence. Immunofluorescence is a technique by which antibodies against a

specific molecule are raised and chemically labelled with a fluorophore, a technique

first developed in 1942 [36]. The general structure of an antibody (IgG) is shown

in Fig. 1.12 for comparison with the size of fluorophores. There are now antibodies

against many different proteins, which can be conjugated to fluorophores spanning

the visible spectrum. Common fluorophores used in immunofluorescence include the

Alexa dyes [37] (e.g. Fig. 1.12, Alexa 488), and the Cy dyes [38].

Immunofluorescence can be used to directly label molecules, i.e. where a single,

fluorescently labelled antibody species is applied to the sample, however indirect

immunofluorescence is more commonly used (Fig. 1.13). Indirect immunofluores-

cence is a two-step process whereby unlabelled primary antibodies raised against

the protein of interest are applied to the sample first, and then fluorescently-labelled

secondary antibodies are applied which bind to the primary antibodies. In indirect

labelling methods, many secondary antibodies bind to a single primary antibody

which leads to amplification of the fluorescence signal [39].

Figure 1.13: Demonstration of two different labelling strategies for immunoflu-

orescence.

Cells are not permeable to macromolecules such as antibodies and fluorophores,

and so the sample needs to be prepared, or ‘fixed’, such that the antibodies can access

intracellular proteins. However fixation kills the sample and so immunofluorescence

cannot be used for live-cell imaging (except for cases where the molecules of interest

are found on the external surface of cells and can be readily accessed by antibodies

without the need for fixation). Examples of non genetically encodable fluorophores

used in cellular imaging which do not require antibody labelling techniques include

fluorophores which sense ions such as Ca2+ (e.g. the OGB family of dyes, Fura-2

[40]) and fluorophores which preferentially stain DNA (e.g. DAPI).
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Genetically encodable fluorophores

A major drawback of immunofluorescence is the requirement for the fixation of

samples for studying intracellular components. An alternative class of fluorophores,

known as fluorescent proteins (FPs), can be expressed in living cells with specificity

for the protein of interest. FPs occur naturally in animals such as jellyfish and

corals, but have been exploited by biologists for labelling purposes. This was first

demonstrated with green fluorescent protein (GFP), which was purified from the

jellyfish Aequorea victoria and the gene encoding the protein sequenced. This genetic

code has since been introduced into other organisms, where GFP forms a photostable

fluorescent protein without the need for any other A. victoria gene products, and

does not cause toxicity [41].

The chromophore of wild type GFP is formed from three amino acids - serine,

tyrosine and glycine - attached to an α-helix running through the centre of an 11-

stranded β-barrel (Fig. 1.12, EGFP) [42]. This tertiary protein structure essentially

shields the chromophore from the local environment, which helps prevent collisional

de-excitation and photobleaching. Genetic mutations have been made to GFP to

enhance its photostability [43], with variants such as EGFP, and also to modify the

GFP chromophore such that both emission and excitation spectra are shifted (the

absorption maximum of EGFP is ∼ 488nm and maximum emission is at ∼ 509nm),

leading to a variety of different coloured FPs such as cyan fluorescent protein (CFP)

and yellow fluorescent protein (YFP) [44]. All of the GFP-derived fluorescent pro-

teins have tertiary structures similar to that shown in Fig. 1.12, with the differences

between variants arising from amino acid substitutions in the chromophore itself or

in the local environment of the chromophore [43].

FP genes are introduced into the genomes of cell lines and model organisms

to create fusion proteins, whereby the protein of interest is expressed with the FP

intrinsically attached to it. Indeed, GFP has been successfully targeted to virtually

all known subcellular compartments and organelles [42]. As all cells expressing a FP

fusion protein do not require further labelling, they can be studied without further

fixation, enabling live cell imaging both in vitro and in vivo.

1.6.2 Interaction of light with biological tissue

Light travelling through labelled biological specimens can interact not just with the

fluorophores, but also with the biological structures themselves. This can lead to

degradation of image contrast and in extreme cases damage to the sample.

Scattering

Scattering is an inevitable phenomenon for light travelling through an inhomoge-

neous medium, especially in an environment such as a cell where there are structures

on scales smaller than, comparable to and larger than the wavelength of the illumi-
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nating light. There are three regimes by which light can be scattered in a biological

sample: Rayleigh, where objects ∼ 10% of the wavelength λ cause wavelength-

dependent scattering proportional to λ−4 [45], Mie, caused by objects of all sizes,

and Raman, where energy is transferred between photons and vibrational modes of

molecules [46].

Scattering can be problematic as it impedes both excitation light travelling to the

focal plane of the sample, but also fluorescence emitted from fluorophores within the

sample. As a result, scattering leads to poor signal from samples and decreases the

contrast of images. This also impacts upon the penetration depth of excitation light

into a sample, with Rayleigh scattering occurring more frequently at shorter wave-

lengths and limiting the use of visible wavelengths to shallow (< 100µm) imaging

[45].

To negotiate the problem of penetration depth, two photon excitation (TPE)

is used for deep tissue imaging. TPE microscopy works similarly to confocal mi-

croscopy, with a laser beam raster scanning across a region of interest in the sample,

but with an illumination source suitable for inducing two photon absorption (i.e. a

pulsed laser capable of generating wavelengths at approximately double the single

photon absorption peak, Section 1.3). Wavelengths used in TPE microscopy are

typically in the near-infrared region of the spectrum, and these longer wavelengths

are scattered less by the sample than those used in (single photon excitation) confo-

cal microscopy. A further benefit of TPE microscopy is that fluorescence is typically

confined to the focus of the excitation beam, as this is the only region where there

is sufficient spatio-temporal photon density for excitation of fluorophores to occur,

and as such there is inherent confocality in TPE microscopy. However, exponentially

increasing laser powers are required for deeper penetration [45], and this combined

with the quadratic dependence on pulse intensity for TPE means that laser power in

TPE microscopy is substantially higher than in single photon excitation microscopy

(Eq. 1.30).

Sample heating

Sample heating in laser scanning microscopy occurs predominantly through absorp-

tion of photons by water molecules, which is a wavelength-dependent process. Water

is effectively transparent to UV and visible wavelengths, and so little heating occurs

during single photon excitation. However the absorption coefficient of water becomes

non-negligible as wavelength increases into the infrared, leading to the occurrence of

sample heating in TPE microscopy. The temperature increase depends on the laser

power and size of the beam waist, and as such sample heating is mainly confined to

the focal volume in TPE microscopy rather than the whole beam path [47].



1.6. BIOLOGICAL REQUIREMENTS FOR IMAGING 44

Phototoxicity

Whilst many fluorophores used in fluorescence microscopy are not directly toxic to

cells, they can undergo photochemical reactions which can produce toxic entities.

The most common example of this is the production of singlet oxygen, also referred

to as reactive oxygen species (ROS), which can be formed through the reaction of

fluorophores which have crossed into the triplet manifold with molecular oxygen.

Although cells produce ROS as a by-product of normal metabolism, an imbalance of

ROS can lead to oxidative stress and subsequent triggering of apoptotic (cell death)

pathways [48].

A limited number of studies have made attempts to quantify phototoxicity in

living cells. Dixit and Cyr (2003) [49] used mitotic (dividing) cells expressing FPs

as an assay for cellular function. As single photon excitation intensity was increased,

cells arrested mitosis in progressively earlier phases, with cells imaged at the highest

laser intensities tested completely unable to undergo mitosis. Furthermore, shorter

wavelengths (<500nm) exacerbated photodamage compared to longer wavelengths.

The high powers required for TPE microscopy are also capable of triggering ROS

production, despite the longer wavelengths, but can also cause non-ROS phototoxic-

ity through direct breakage of DNA strands and optical breakdown of other cellular

structures [50].

1.6.3 Specific requirements for live cell imaging

Fluorescence microscopy of living samples requires an additional set of considera-

tions; not only must the intensity of the detected fluorescence signal be high enough

to generate sufficient contrast within the image, but measures must be also be taken

to prevent death of the sample, as a result of phototoxic processes (Section 1.6.2) or

otherwise. Living samples must be surrounded by medium of physiological pH and

metabolite and ion concentrations to maintain cell homeostasis, and this medium

should be free from fluorescent compounds to minimise background fluorescence

[51]. Furthermore, the sample itself must be labelled using a minimally invasive

technique such as with fluorescent proteins (Section 1.6.1). Living samples may also

require temperature-controlled microscope stages, chambers where the level of CO2

can be regulated and regular perfusion of fresh medium, all of which complicate

experimental set-ups.

Live cell imaging is frequently preformed to observe dynamic processes in cells

which can occur over several minutes (such as membrane recycling [52]) to fractions

of seconds (such as calcium signalling [53]). Therefore it is clear that microscope

hardware must be capable of acquiring images at an appropriate rate to characterise

such processes. For confocal laser scanning microscopy, the highest rates of image

acquisition are obtained using resonant scanning mirrors, which can scan regions of

interest at rates up to ∼ 30 frames per second [54] or acousto-optic deflectors which
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can rapidly move the laser focus between regions of interest in the sample [53].



Chapter 2

Development of a novel super

resolution microscopy technique.

Part I: Theory and Methods

Elements of this chapter have been published in: R.J. Marsh, S. Culley and A. J.

Bain, “Low power super resolution fluorescence microscopy by lifetime modification

and image reconstruction,” Optics Express vol. 22, pg. 12327-38, 2014. This

manuscript is provided in Appendix C.

Chapters 2 and 3 document the theory, development and application of a novel

super resolution microscopy technique: lifetime image reconstruction super resolu-

tion (LIR-SR). Aside from the fundamental photophysical processes discussed in

Chapter 1, LIR-SR uses stimulated emission as a tool to generate fluorescence life-

time variations in confocal microscopy images, which in turn can be reconstructed to

produce super resolution images. This chapter introduces the physics of stimulated

emission and the concept of the resolution limit in fluorescence microscopy, along

with a brief description of commonly used super resolution microscopy techniques.

The theory behind LIR-SR is then developed along with simulated data, and the

experimental and computational procedures used to implement the technique are

described.

2.1 Stimulated emission depletion

Stimulated emission is the process whereby a quantum system in an excited state

can be de-excited to a lower energy level via resonant interaction with a photon.

The lost energy is released as a photon with the same frequency, phase and propa-

gation direction as the stimulating photon [55]. Stimulated emission was introduced

phenomenologically by Einstein [8] and is the basis for optical amplification and

laser action. The technique of stimulated emission depletion (STED) was initially

46
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Figure 2.1: Stimulated emission schematic. a) Jablonski diagram showing stim-

ulated emission transition. b) Absorption and emission spectra of fluorescein

showing typical excitation and dump wavelengths.

developed in spectroscopy to study high vibrational energy levels in the electronic

ground states [56], using a laser pulse resonant with S1 → S0 transitions (the ‘dump’

beam) to remove population from the excited state. The amount of STED can then

be quantified as a reduction in fluorescence from S1 to S0. Stimulated emission is

shown on a Jablonski diagram in Fig. 2.1a.

STED is governed by the same electric dipole selection rules as spontaneous

emission and absorption. The changes to the excited state population and its align-

ment depend on the energy and polarisation of the dump field, in addition to the

dynamics of population flow between S1 and other states in the molecule [28]. Qual-

itatively the STED probability is maximised for molecules whose emission transition

dipole moments are oriented parallel to the dump polarisation and minimised for

molecules whose emission transition dipole moments are oriented perpendicular to

the dump polarisation, with the angular dependence again following a cos2 θ depen-

dence (where θ is the angle between the emission dipole moment of the molecule and

the dump electric field vector) [28]. As a result, as well as altering the population of

the excited state by providing an additional route back to the ground state, STED

also alters the orientational distribution of the excited state.

The efficiency of STED depends on several other factors such as the temporal

profiles of the excitation (here referred to as the pump) and dump beams, the shape

of the dump pulse, the wavelength of the dump beam and the intensity of the dump

beam. The lifetime of the higher vibrational levels of S0 is on the order of 200-800fs

[9, 57, 15], and a consequence of this finite lifetime is that the dump beam can cause

repumping from these energy levels to S1. This can be minimised by using a pulsed

dump beam with a pulse length of > 1ps, or a continuous wave (CW) dump beam.

The effect of dump pulse length on STED efficiency is discussed in more detail

in Chapter 4; in this chapter only CW dump beams are considered. Conversely,

shorter pump pulses provide higher STED efficiencies as these minimise subsequent
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absorption in molecules which have been rapidly returned to S0 through stimulated

emission. The shape of the dump pulse can also impact upon the efficiency of

STED. For example, for short, high energy dump pulses, rectangular pulses are less

efficient than Gaussian pulses of equivalent pulse energy. This is due to rectangular

pulses causing an abrupt transition into a saturating regime where the rate of STED

exceeds that of ground state vibrational relaxation, leading to re-excitation from S0

to S1; for Gaussian pulses this regime is only reached at the peak of the pulse and

thus the majority of a Gaussian dump pulse is non-saturating [15]. As dump pulses

become longer, with the pulse energy spread over a longer time, neither Gaussian or

rectangular pulses are expected to reach this saturating regime and thus for longer

pulses the efficiency of the two different pulse shapes is expected to be comparable.

The dependence of STED on dump wavelength follows the spontaneous emission

spectrum of the fluorophore: stimulated emission is more efficient when the dump is

tuned to regions of the spectrum where non-negligible emission is observed from the

fluorophore (e.g. [9, 57]). However, the dump wavelength must also remain at a value

where the fluorophore displays negligible absorption to avoid further population of

the excited state (Fig. 2.1b). Finally, the rate at which STED occurs is linearly

dependent on the dump beam intensity, and so when the intensity of the dump

beam is sufficiently high the excited state will be increasingly likely to de-excite

through stimulated emission as opposed to fluorescence.

The temporal and spatial evolution of fluorescence in a sample imaged with a

pulsed pump beam and CW dump beam is the basis of LIR-SR, and is discussed

further in Sections 2.4 and 2.5.

2.2 The resolution limit in microscopy

Whilst the fluorescence microscopy techniques described in Chapter 1 are common-

place tools used in cell biology, they also have limitations. One major limitation

of conventional fluorescence microscopy is resolving power, which is limited to 200-

300nm for single photon excitation, and imaging biological specimens at higher res-

olutions than this has historically required the use of electron microscopy. Although

electron microscopy can yield single nanometre scale resolution, samples must un-

dergo intensive preparation (e.g. fixation, dehydration, embedding in resin and

sectioning) prior to imaging, precluding the possibility of live cell imaging [58]. In

the last decade the necessity for optical techniques capable of imaging at higher

resolutions than conventional fluorescence microscopy can provide has led to the

development of several so-called super resolution microscopy techniques.

Resolution in fluorescence microscopy is limited by diffraction, and as such the

highest resolution achievable in conventional fluorescence microscopy is often termed

the ‘diffraction limit’. Point sources of light diffracting through a circular aperture

produce a broadened diffraction pattern known as an Airy disk, and overlapping
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Figure 2.2: Airy disk created by diffraction of a single point source of fluores-

cence, and two point sources of fluorescence separated by distances smaller than

and greater than the resolution limit of the simulated system (resolution limit

of simulated system ∼ 205nm, NA = 1.2 and λ = 490nm). Line plot shows 1D

profile across the centre of a single point with Gaussian approximation plotted

as a red dashed line. Scale bars = 500nm.

of these Airy disks fundamentally limits the resolution of a microscope (Fig. 2.2)

[59]. The smallest resolvable separation between two light sources, or fluorescent

objects, was first described by Ernst Abbe in 1873, and depends on the illumination

wavelength and focusing power (numerical aperture) of the objective lens. This

resolution limit is mathematically formalised as [59]

∆d =
0.5λ

n sinα
, (2.1)

where ∆d is the resolvable distance between two objects in the xy plane, n is the

refractive index and α is the half-angle of the cone of focused light. The quantity

n sinα equals the numerical aperture, NA, of the objective. There are other methods

of determining the resolution limit, such as the Rayleigh criterion which is identical to

the Abbe limit except that it contains a coefficient of 0.61 as opposed to 0.5 [60], and

defines diffraction-limited resolution as the distance where the central maximum of

one diffraction pattern overlaps with the first minimum of a neighbouring diffraction

pattern. However, regardless of the exact definition of resolution, the common factors

limiting the resolution of an optical microscope are the wavelength of the illuminating

light and the numerical aperture of the objective.

The three-dimensional volume occupied by the laser light focused in a microscope

is referred to as the point spread function (PSF), and an image can be described as
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the convolution of the fluorescently-labelled structure with the PSF as

I(x, y, z) = S(x, y, z)⊗ P (x, y, z) (2.2)

where I, S and P are the image, structure and PSF respectively. The intensity profile

of the PSF in the xy plane is typically approximated to a Gaussian distribution of

full width at half maximum (FWHM) approximately equal to ∆d (Eq. 2.1, Fig. 2.2).

The mathematical form of the PSF in the z direction has been calculated to be a

sinc2(z) function for a microscope with an ideal point source of illumination and an

ideal point detector [61]. However in many practical applications such as fluorescence

correlation spectroscopy, the form of the axial PSF is frequently approximated to a

Gaussian or Lorentzian distribution, although for an overfilled, high-NA objective

(such as that used for imaging in this thesis) the true analytical form has not been

determined [62]. Inspection of the axial intensity distributions measured with the

confocal microscope used in this thesis (Section 3.3) showed none of the side-lobes

expected from a sinc2(z) function or seen by Hess and Webb (2002) [62]; these were

likely blurred out due to the low signal-to-noise ratio above and below the focal

plane. As these distributions were adequately fitted by Lorentzian distributions,

here the axial component of the PSF is approximated to a Lorentzian function.

2.3 Established super resolution techniques

Several super resolution techniques have been developed and are now available com-

mercially. The most popular super resolution techniques currently used are PALM,

STORM, SIM and STED, which are capable of providing sub-diffraction limited res-

olution. The relative merits of these techniques and their limitations are described

below.

2.3.1 PALM and STORM

PALM (photoactivated light microscopy) [63] and STORM (stochastic optical re-

construction microscopy) [64] are similar techniques which are often referred to as

pointillistic, localisation or stochastic microscopies, and are both widefield tech-

niques. The basic mechanisms underlying PALM and STORM are the same; sam-

ples are labelled with photoswitchable or photoactivatable fluorophores and these

are turned on and off, with the precise locations of each individual fluorophore even-

tually determined and used to reconstruct a super resolution image (Fig. 2.3).

Photoswitchable fluorophores have a dark (‘off’) state and an excitable (‘on’)

state, and methods must be available to facilitate switching between these two states.

During a PALM or STORM imaging cycle, all fluorophores in the sample are first

forced into their non-fluorescent off state, typically via bleaching with an intense

flash of laser light. A small subset of fluorophores are then activated into their on
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Figure 2.3: Imaging cycles for PALM and STORM microscopy. Top row: a

labelled sample undergoes pre-bleaching to force all fluorophores into the dark

state (grey circles). A small subset of these fluorophores are then activated

(small green circles) and then excited and imaged to produce a diffraction-

limited image of the activated fluorophores (large green circles). The centres

of these points are then localised using appropriate software. Second and third

rows: the cycle is repeated, except that the previously imaged fluorophores can

no longer be excited due to bleaching (white circles). Bottom row: summing the

images acquired will build a diffraction limited image (left), whereas summing

the localised centres of each fluorophore will produce a super resolution image

(right).

state capable of fluorescence, often via irradiation with a UV laser, and this acti-

vated subset of fluorophores is then imaged using a (longer wavelength) excitation

laser until these fluorophores have undergone photobleaching. A different subset of

fluorophores is then activated and imaged until bleaching, and this process is re-

peated until the majority of fluorophores in the sample have undergone this process

[63]. Control of the density of activated fluorophores (i.e. the number of ‘on’ fluo-

rophores per micron in each camera frame) is determined largely by modulating the

intensities of the activation and excitation lasers, as these determine on-switching

and bleaching rates respectively. Specialist imaging buffers are also frequently used

in PALM and STORM to modulate switching rates and improve photostability of

fluorophores [65].

For each set of images taken between activation pulses the location of each fluo-

rescent point is accurately determined, for example by fitting with the known PSF
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of the microscope. The error in this fitted location is

σx,y ≈
s√
N

(2.3)

where s is the standard deviation of the Gaussian PSF being fitted and N is the

number of photons collected [63]. Performing this localisation process for each set of

collected images and overlaying all localised points yields a super resolution image,

with resolutions obtained using PALM and STORM typically on the order of tens

of nanometres.

There are a number of factors which limit the performance of PALM and

STORM. The photophysical properties of the fluorophores are crucial, as the level

of background intensity in images is dictated by the ratio of fluorescence obtained

from activated molecules to fluorescence obtained from dark fluorophores, which are

still weakly fluorescent [63, 66]. The activated state must also have a sufficiently

high quantum yield and be robust enough against photobleaching to generate a high

enough number of photons to satisfy Eq. 2.3. In order to get a high enough num-

ber of photons to yield high resolution, as well as cumulatively activating a large

enough number of fluorophores to obtain sufficient information about the labelled

structures, image acquisition times in PALM and STORM are are often several min-

utes. As such there must be very little motion of fluorophores within the sample and

of the sample itself, plus any microscope drift must be corrected to avoid blurring

[67]. Longer acquisition times also make the sample susceptible to photodamage,

especially as UV wavelengths are often necessary for activation, and so the majority

of PALM and STORM imaging is performed on fixed samples.

Despite the challenges, there is considerable interest in developing live cell PALM

and STORM. The strategies for implementing this include non-antibody methods

of labelling cells with synthetic fluorophores, finding non-toxic buffers to sufficiently

maintain the photoswitching behaviour of fluorophores, use of lower laser intensi-

ties and development of localisation algorithms to enable concurrent reconstruction

during image acquisition [66].

2.3.2 SIM

SIM (structured illumination microscopy) is also a widefield super resolution tech-

nique, but does not rely on the photophysical properties of fluorophores, and was

first described by Gustafsson (2000) [68]. Here the sample is illuminated with an

excitation field with spatially varying intensity, typically a sinusoidal pattern of in-

tense and dim stripes. When two patterns are superimposed upon each other a

‘beat’ frequency or moiré fringes are observed, which depend on the structures of

the two patterns (Fig. 2.4a). In the case of SIM there is one known pattern, the

excitation field, and one unknown pattern, the fluorophore distribution within the

sample, and these lead to the generation of observable moiré fringes. By repeating
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Figure 2.4: Concept of SIM. a) Generation of moiré fringes by overlapping two

patterns. b) Left: patterned illumination represented as a sinusoidal waveform

of high and low intensities with diffraction-limited spacing. Right: transforma-

tion of this pattern in the Fourier domain gives three non-zero components (rep-

resented by green dots). The illumination pattern will produce moiré fringes

in the areas represented by the green circles, and these are the areas where

information has ‘moved’. The observable region (radius k0) now contains infor-

mation originating from the outer regions. c) Different orientations of illumi-

nation pattern allow for information to be gathered from a large region outside

of the observable region. Adapted from Gustafsson (2000) [68] and Gustafsson

(2005) [69].

the imaging process with different orientations and phases of the excitation pattern,

the distribution of fluorophores can be subsequently extracted at higher resolution

than when imaging with conventional diffraction-limited widefield methods.

In Fourier space, the number of different spatial frequencies observable in con-

ventional microscopy lie within a circle of radius k0 = 1/∆d (∆d as described by

Eq. 2.1), where structural components with higher spatial frequencies (i.e. smaller

structures) lie further towards the edge of the circle. This same circle also governs

the pattern spacing that can be used in SIM - patterns cannot be used where the

spacing is smaller than the diffraction limit. If the illumination pattern in SIM con-

tains a spatial frequency k1 and the fluorophore distribution in the sample has a

frequency k, then moiré fringes will be created at the difference frequency k − k1,

which will be observable if |k−k1| < k0 [69]. Therefore the image created in Fourier

space is offset by an amount depending on k1, and as a result information normally

lying outside the circle of radius k0 becomes accessible as this now lies within the

circle (Fig. 2.4b). To isolate the contribution of the fluorophore distribution from
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the contribution of the structured illumination pattern, imaging is repeated with

the pattern shifted to different orientations and phases (Fig. 2.4c). This series of

images can then be used to reconstruct the super resolution image [68].

As the highest observable spatial frequency is increased from k0 to k0 + k1 us-

ing SIM, and the maximum frequency of k1 equals k0, the maximum obtainable

resolution is a two-fold increase (2k0). For a high numerical aperture objective,

this translates to a maximum image resolution of ∼ 100nm, which is a relatively

minor improvement compared to PALM and STORM where <50nm resolution is

readily obtainable. However, SIM is compatible with standard fluorophores used in

conventional fluorescence microscopy, laser intensities used are compatible with live

cell imaging [70], and image acquisition times are also substantially shorter than in

PALM and STORM.

One method which has been developed for increasing the resolution of SIM uses

non-linear illumination effects, where saturating emission leads to the generation of

harmonics with higher spatial frequencies. The achievable resolution in this case

is limited by the number of harmonics that can be distinguished against the back-

ground noise, and resolutions down to 50nm have been observed with this method

[69]. However the light intensities required for producing a non-linear emission rate

increase both photobleaching of the fluorophores and phototoxicity in the sample.

2.3.3 STED microscopy

STED (stimulated emission depletion, as above) microscopy is a laser scanning tech-

nique, in contrast to the widefield techniques described above, and was first proposed

by Hell and Wichmann (1994) [71]. The sample is scanned with two overlapping laser

beams, one of which is an excitation beam as used in laser scanning microscopy with

the other being a annular (‘donut’) shaped beam referred to as the STED beam.

The STED beam causes stimulated emission, which strongly suppresses fluorescence

from regions where this beam is intense, with fluorescence only emitted from the

small hole within the centre of the beam pair (Fig. 2.5).

Figure 2.5: Intensity distributions of beams used in STED microscopy and the

comparative size of the effective point spread function (fluorescent spot). Scale

bar = 500nm.

The excitation wavelength typically coincides with a region of the absorption

spectrum where the absorption cross-section is high, as is required for conventional



2.3. ESTABLISHED SUPER RESOLUTION TECHNIQUES 55

laser scanning microscopy, whereas the STED wavelength is tuned to coincide with

the emission spectrum but not the longer wavelengths of the absorption spectrum,

as described in Section 2.1. A high degree of STED removes fluorescence from areas

around the ‘hole’ in the annular intensity distribution leaving an fluorescent region

significantly smaller than the diffraction-limited focus of the excitation beam (Fig.

2.5); in order to attain close to 100% depletion at the peak of the annular STED

beam, on-sample laser intensities on the order of ∼ 102MW/cm2 are required [72].

The size of the dark hole in the centre of the STED beam also affects the performance

of a STED microscope with smaller, darker holes yielding higher resolutions. For

example, most STED microscopes use a vortex phase plate to shape the STED beam,

with the quality of the resultant donut sensitive to input polarisation [73, 74] and

the spectral width of the laser source [75].

The effect of STED beam intensity on resolution scaling in STED microscopy is

given by [76]

∆d ≈ 0.45
λ

n sinα
√

1 + Imax
Isat

, (2.4)

where n sinα is the numerical aperture as described previously, λ = λexc ≈ λSTED

where λexc and λSTED are the wavelengths of the excitation and STED beams re-

spectively. Imax is the maximum intensity of the STED beam and Isat is the intensity

required to suppress fluorescence intensity to 1/e (or 1/2 as stated in some papers

e.g. [77]) of its undepleted value. Equation 2.4 also implies that there is no theoret-

ical limit on the resolution gain in STED microscopy, provided that Imax/Isat can

be sufficiently maximised. There are evidently two main strategies for maximising

Imax/Isat: increasing Imax and decreasing Isat. Increasing Imax simply involves in-

creasing the intensity of the STED beam to yield greater fluorescence suppression

and higher resolution; however, this cannot be increased infinitely due to the finite

powers of the lasers used and also as fluorophores experience photobleaching at high

STED intensities [78]. Isat is a fundamental property of the fluorophore, and as

such fluorophores with high quantum yields, high photostability, long fluorescence

lifetimes and small cross-sections for multiphoton absorption have lower Isat values

[78]. Indeed, fluorophores with such characteristics have been specifically developed

for used in STED microscopy [79, 80].

Initial implementations of STED microscopy used pulsed lasers for both excita-

tion and STED beams [72, 81], as the required intensities for the STED beam are

more readily obtained in this mode compared to continuous wave (CW) laser sources.

However, this pulsed-pulsed regime is complex to achieve experimentally, as the two

laser sources must be synchronised to operate at the same repetition rate, the STED

beam must be temporally stretched to avoid unwanted two photon excitation [82]

and the beams must be precisely overlapped not just spatially but also temporally.

The high power pulsed laser sources required are also expensive and as such success-

ful pulsed STED microscopy has been mainly limited to spectroscopy laboratories
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already possessing appropriate lasers. A commercial pulsed-pulsed STED micro-

scope was produced by Leica in 2007, but cost in the region of $1,000,000 [83] and

was subsequently discontinued.1

STED microscopy has been attempted with CW laser sources for both excita-

tion and STED beams, as such set-ups avoid the temporal alignment aspects of

pulsed-pulsed STED microscopy. However the downside of this approach is that

the STED beam is constantly working against re-excitation, which is not an issue

when excitation is pulsed due to the time delay between pulses. Additionally the

prolonged exposure of the sample to two continuous beams increases the probability

of photobleaching [85].

Currently the most popular implementation of STED microscopy is ‘gated

STED’, also referred to as gSTED [86]. gSTED uses a pulsed excitation beam

and a CW STED beam, with the key feature of this method being that only fluores-

cence detected after a certain time gate is used to create the super resolution image.

Fluorescence detected at very early times after excitation (within ∼2-3ns, depending

on the fluorophore) may have arisen from the central minimum of the donut-shaped

STED beam; however it is also possible that it originated from the area beneath

the intense region of the STED beam, as the probability of stimulated emission oc-

curring in CW STED increases over time and so unwanted peripheral fluorescence

is more likely to occur soon after excitation. Therefore by using only fluorescence

detected from later times after excitation (> 2− 3ns) in the image, there is a higher

probability that stimulated emission has depleted fluorophores beneath the intense

region of the STED beam and hence there is less contaminating fluorescence from

this region [86]. This implementation avoids the problems of STED pulse stretching

and temporal alignment, and cheaper solid state lasers can be used to provide the

excitation and STED beams.

Aside from the complex experimental set-up required for STED microscopy

(which is still non-trivial even for CW STED applications as it involves precise

spatial alignment of the beams), the major disadvantage is the on-sample laser pow-

ers required to achieve 100% depletion. Even in gSTED the STED beam intensity

is similar to that required in pulsed STED, which is on the same order of magnitude

where sample damage has been documented in two photon microscopy [50]. How-

ever, STED microscopy does benefit from rapid sample acquisition as a consequence

of laser scanning, it can be used with conventional fluorophores and the image is ob-

tained instantly without need for subsequent computational processing. The highest

resolutions reported for STED microscopy of biological samples are on the order of

∼ 30nm for fixed specimens [72] and ∼ 50nm for living specimens [87].

1Although the Leica TCS SP5 STED microscope had been discontinued for at least a year,
during the course of writing this thesis an improved pulsed-pulsed microscope, the Leica TCS SP8
STED, was announced [84]. The website for the discontinued microscope has been replaced with
that of the new microscope.
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2.4 Basic principles of LIR-SR

LIR-SR is a laser-scanning super resolution technique drawing principles from flu-

orescence lifetime imaging and stimulated emission. In LIR-SR two spatially over-

lapped beams scan the sample, one of which is a pulsed excitation (pump) and the

other is a CW depletion (dump) beam. The theoretical basis of LIR-SR was ini-

tially formulated by Bain and Marsh (2012) [88] and preliminary results have been

published in Marsh et al. (2014) [89], with the work presented here and in Chap-

ter 3 showing further simulated data, computational methods and a wider range of

results.

Of the super resolution techniques discussed thus far LIR-SR is most closely

comparable with gSTED as both techniques combine pulsed excitation, continuous

wave stimulated emission depletion and time-resolved detection of fluorescence, al-

though there are several key differences. The dump beam used in LIR-SR is simply

the fundamental Gaussian output of the CW laser, as opposed to the annular STED

beam used in gSTED. The intensity of the dump beam is also much lower than that

of the STED beam used in gSTED, as the purpose here is not to completely sup-

press fluorescence from excited fluorophores, but rather to modify their fluorescence

lifetimes using weak CW stimulated emission. As the rate of stimulated emission

is linearly dependent on dump intensity, the fluorescence lifetimes of the excited

fluorophores will vary depending on whether they are beneath a more intense part

of the Gaussian dump beam (i.e. towards the centre) or a less intense part of the

dump beam (i.e. towards the edges). As a consequence of these lifetime variations,

the PSF in LIR-SR has different intensity distributions at different points in time

(over several nanoseconds) and the time-evolving image obtained can be split up in

time post-acquisition to extract this additional spatial information. Again, this is

in contrast to gSTED where only one temporal portion of the time-resolved image

is utilised, with the rest of the information (i.e. fluorescence detected immediately

after excitation) discarded. The resolution gain in LIR-SR subsequently arises from

recombining spatially distinct images obtained from different points in time in the

correct proportions.

The invention of LIR-SR initially arose from modelling of CW STED to optimise

the performance of a proposed conventional STED microscope to be built in the

group [88], and motivating factors in the development of LIR-SR have been the

need for a super resolution technique that is simple to implement and is compatible

with live cell imaging. The microscope set-up used here is a simple modification to a

commercial fluorescence lifetime imaging microscope, and in theory LIR-SR should

not require specialised fluorophores to succeed. Furthermore, the low on-sample

laser powers (compared to STED microscopy) and relatively short image acquisition

times (compared to PALM and STORM) should mean that LIR-SR can be used on

live biological samples.



2.5. THEORY OF LIR-SR 58

2.5 Theory of LIR-SR

As LIR-SR is based on the dynamics of stimulated emission, rate equations are

first presented which describe the two state model used here to analyse stimulated

emission. The translation of these dynamics into three-dimensional imaging space is

then presented, along with simulated images demonstrating the principles of LIR-SR

operation.

2.5.1 Rate equation analysis

The basic theory of LIR-SR requires the analysis of a two state system consisting of

the lower vibrational levels of S1 and the upper vibrational levels of S0. Throughout

the following formulations these will be described as having fractional populations

Nex (excited state) and Ngs (ground state) respectively, with a schematic of the

simplified system used for this analysis shown in Fig. 2.6. The effect of orientation

is not considered in the analytical description of CW STED required for LIR-SR

provided here, but is explored in detail in Chapters 4 and 5.

Figure 2.6: Two level system used for analysis of emission dynamics.

In the presence of a CW dump beam, the rate of stimulated emission is linearly

dependent on the intensity of this beam Id as follows:

kd = BId, (2.5)

where B is a constant dependent on factors such as the stimulated emission cross

section (σSTED) of the fluorophore. Thus, immediately following an excitation pulse

and in the presence of a CW dump field, the populations Nex and Ngs can be
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described as

dNex

dt
= −BId (Nex −Ngs)− kfNex (2.6a)

dNgs

dt
= BId (Nex −Ngs)− kvibNgs (2.6b)

where kf is the sum of radiative and non-radiative decay rates, equal to 1/τf

(Section 1.1.6), and kvib is the rate of vibrational relaxation from upper vibrational

levels of S0. As kvib � kf , there is negligible population build-up in Ngs and it can

be assumed that Ngs ≈ 0. Therefore Eq. 2.6a becomes

dNex

dt
= − (BId + kf )Nex (2.7)

which has the solution

Nex(t) = Nex(t = 0) exp (−(BId + kf )t) . (2.8)

The total excited state population can then be obtained by integrating over time

and, using the identity
∫∞

0 exp(−at)dt = 1/a, evaluates to

Nex =
Nex(t = 0)

BId + kf
. (2.9)

The fraction of the excited state population in the presence of CW STED relative

to the excited state population in the absence of CW STED (i.e. Id = 0) is termed

the fractional depletion Fd, and is given by

Fd =
Nex (Id = 0)−Nex(Id)

Nex (Id = 0)
(2.10a)

=

Nex(t = 0)

kf
−
Nex(t = 0)

BId + kf

Nex(t = 0)

kf

(2.10b)

=
BId

BId + kf
. (2.10c)

2.5.2 Spatial effects of CW STED

As the pump and dump beams used in LIR-SR are both the fundamental Gaussian

modes of the respective lasers used, both beams have Gaussian intensity profiles

when focused through the objective [90]. For algebraic simplicity it is assumed that

the intensity profiles of both beams have the same FWHM in the plane of the sample.
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Figure 2.7: Id plotted in the xy plane. Calculated using λ = 550nm and

NA=1.2. Scale bar = 500nm.

The spatially varying intensity of the dump beam is thus described by

Id(x, y) = Id0 exp

(
−
(

(x− x0)2

2ω2
x

+
(y − y0)2

2ω2
y

))
, (2.11)

where Id0 is the intensity at the beam centre (x0, y0) and ωx and ωy represent

the standard deviations of the beam in x and y. Figure 2.7 shows a simulation

of Id for a dump beam where ωx = ωy = ω, and the FWHM of the intensity

distribution is assumed to approximate to Abbe’s diffraction limit such that FWHM

= 2ω
√

2 ln 2 = λ/2NA. The pump beam is assumed to have an identical intensity

distribution to Id. The effective decay rate of the excited state in the presence of the

dump beam is given by the combined rates of stimulated emission and fluorescence.

Thus the effective fluorescence lifetime in the presence of the dump beam at position

(x, y) is given by

td(x, y) =
1

BId0I
′
d(x, y) + kf

, (2.12)

where BId0 is the rate at which stimulated emission occurs at the beam centre and

I ′d(x, y) = Id0/Id(x, y). Rearranging Eq. 2.10c with Id = Id0 gives

BId0 =
kfFd0

1− Fd0
, (2.13)

where Fd0 refers to the fractional depletion at the beam centre. Substitution into

Eq. 2.12 and rearranging gives

td(x, y) =
(1− Fd0)tf

1 + Fd0(I ′d(x, y)− 1)
. (2.14)
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Figure 2.8: Lifetime variations in the xy plane. Calculated using λ = 550nm,

NA=1.2, Fd0=0.5, tf=3.0. Scale bar = 500nm.

Equation 2.14 thus describes the shortened fluorescence lifetime of a fluorophore

located at position (x, y) when subject to pulsed pump and CW dump. This implies

that fluorophores located beneath high intensity regions of the dump beam (i.e.

towards the centre) have the shortest fluorescence lifetimes, and experience fractional

depletions close to Fd0 , whereas fluorophores located beneath low intensity regions of

the dump beam (i.e. towards the periphery) have lifetimes closer to the undepleted

lifetime tf and experience fractional depletions much lower than Fd0 (Fig. 2.8).

When imaging samples in the microscope the beam pair is scanned across a two

dimensional region of the sample in a pixel-wise fashion, where the pixel sizes are

typically much smaller than the FWHM of the beam pair. As a result, fluorescence

will not only originate from fluorophores within the pixel beneath the centre of the

beam pair, but also from fluorophores within adjacent pixels. The contribution of

fluorescence from the pixels follows the distribution of the PSF, here approximated

to Id (Fig. 2.7), meaning that fluorophores in pixels directly neighbouring the pixel

being imaged will have a greater contribution to the total fluorescence intensity

detected than fluorophores in pixels further away. The total number of fluorescence

events in pixel (nx, ny) at time t can be calculated according to:

Itotal
f (nx, ny, t) =
y=ymax∑
y=ymin

x=xmax∑
x=xmin

N(x,y) exp

(
−(x− nx)2 + (y − ny)2

2ω2

)
exp

(
− t

td(x, y)

)
.

(2.15)

This considers a scanning region extending from (xmin, ymin) to (xmax, ymax) where

N(x,y) is the number of fluorescence sources in pixel (x, y).
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Figure 2.9: Evolution of the fluorescence distribution in the xy plane over

several fluorescence lifetimes following excitation at 0ns. At later times, fluo-

rescence will increasingly arise from the periphery of the PSF relative to the

centre, resulting in an annular fluorescence distribution. Parameters used to

generate plots are as in Figs. 2.7 and 2.8. The intensity in each image is

normalised to 1. Fluorescence evolution was simulated using FluoEvolution

program, code provided in the Appendix B.1.

2.5.3 Image division and reconstruction

Image acquisition using TCSPC assigns an arrival time to every detected photon

and so an acquired image can be split up into ‘time windows’ according to photon

detection times. The arrival times assigned to photons in TCSPC are binned into

discrete channels tch and so a time window can be defined as the period of time

from a ‘start’ channel to an ‘end’ channel, tchstart → tchend
. Hence the number of

fluorescence events in pixel (nx, ny) in one such time window is given by

ITW
f (nx, ny) =

tch=tchend∑
tch=tchstart

Itotal
f (nx, ny, tch), (2.16)

and these temporally-summed pixels then comprise a time window image ImTW
f .

Several of these time window images can be created spanning the course of the

fluorescence decay, and from these it can be seen that the spatial distribution of

fluorescence varies on a nanosecond timescale (Fig. 2.9).

The key stage in attaining sub-diffraction limit resolution in LIR-SR is the recon-

struction of the final image from a linear superposition of the time window images.

The reconstructed image Imrec
f is created from n time window images combined as

follows:

Imrec
f =

n∑
i=1

ciIm
TW
f (i). (2.17)
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Each time window image ImTW
f (i) is created from a unique set of time channels

tchstart → tchend
, and ci are coefficients, one for each time window, which can take

any real positive or negative value. The time window images are henceforth referred

to in the simulations and experimental results as TW1, TW2..., which correspond

to ImTW
f (1), ImTW

f (2)... .

There is no theoretical limit on the resolution attainable using this method.

Higher resolutions can be achieved by using numerous single time channel images

(i.e. tchstart = tchend
), as opposed to the summed time window images which contain

contributions from many different spatial distributions. As such the narrower the

time window is, the fewer different spatial distributions of fluorescence exist within

it. However, this would not be an appropriate approach for experimental data as

the number of photons detected per individual time channel will be low, and so

summation over broader time windows is necessary to maintain a sufficiently high

signal to noise ratio, especially at later times when fluorescence intensity is inherently

lower. Therefore to demonstrate the resolution enhancement of this technique, only

five time windows have been used covering increasingly long periods of time to mimic

the realistic application.

An example of five time windows used in model image reconstruction and the

resultant reconstructed image are shown in Fig. 2.10. The reconstructed image

was produced with coefficients: c1 = 1.0000, c2 = −2.2903, c3 = 4.0935, c4 =

−6.1337, c5 = 6.7128. Strategies for calculating appropriate reconstruction coeffi-

cients are discussed in Section 2.6.5; the coefficients generated for the simulated

data discussed here were obtained using the ‘simultaneous equations’ approach. As

a common method for quantifying the resolution of a fluorescence microscopy im-

age is through measurement of the FWHM of the PSF [59], here the FWHM is

determined from fitting Gaussian functions to intensity distributions within the im-

age. The graph in Fig. 2.10 shows intensity profiles across the centre of the TW1

image, which is a good approximation for a confocal image, and the centre of the

reconstructed image along with fitted Gaussian functions. The confocal profile has

a FWHM of 238.1 ± 0.3nm, whereas the reconstructed profile has a FWHM of

75.6± 0.8nm, corresponding to a 3.1-fold increase in resolution.

If two different images are obtained where the same fluorophores and degree of

fractional depletion Fd are present in both images, the reconstruction coefficients will

be the same in both images if identical time windows are selected. This is shown in

Fig. 2.11, which shows the temporal evolution of two dimensional structures and the

reconstructed image which is produced using the same time windows and coefficients

as calculated for the reconstruction in Fig. 2.10. Substantial detail is recovered from

reconstruction, which was originally blurred by the diffraction limited PSF in TW1,

although faint ring-like artefacts are visible surrounding structures which are likely

to arise from the finite widths of the time windows used. Pixel size does not affect

the reconstruction coefficients, as the pixels in Fig. 2.11 are 40× 40nm compared to



2.5. THEORY OF LIR-SR 64

Figure 2.10: Reconstruction of a single point in the xy plane. Top row: Time

window images used in the reconstruction with their associated time periods

(excitation at 0ns). Bottom row: Reconstructed image from combining the time

window images in the proportions as described in the text, and profiles taken

across the centre of the reconstructed and TW1 images to illustrate increase in

resolution. Intensities in the graph are normalised, with solid lines indicating

Gaussian fits to data. Model parameters were as for Figs. 2.7 and 2.8. Re-

construction was performed using SimEqRecon MATLAB program (Appendix

B.2).

Figure 2.11: Time windows and reconstruction for a two dimensional struc-

ture (‘Original’). Model parameters were as for Figs. 2.7 and 2.8, except for

pixel size, which here is 40nm as opposed to 20nm previously, FluoEvolution

program used to produce images.
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20× 20nm in Fig. 2.10.

2.5.4 Axial resolution

As features in biological samples are usually three-dimensional structures, obtaining

information in the z (axial) direction is often desirable. In confocal microscopy this

is commonly achieved by obtaining a stack of xy scanned images at different z-planes

within the sample such that fluorescence distributions in all three dimensions can

be examined. The resolution in the axial direction (i.e. along the direction of beam

propagation) of the focused laser spot is given by [91]

zmin =
2λn

NA2 (2.18)

where n is the refractive index and NA is the numerical aperture of the objective.

As a result, the axial resolution of a microscope is poorer than its lateral resolution

by a factor of 4n/NA.

Whilst PALM and STORM are capable of obtaining high resolutions (50-60nm)

in the axial direction through the integration of optics such as cylindrical lenses [92],

conventional STED microscopy techniques are typically limited to ∼ 500 − 700nm

maximum axial resolution [93]. The poorer axial performance of STED microscopy

results from the confinement of the annular STED beam to the focal plane, and

whilst a z-stack of images could be obtained in STED microscopy as for confocal

microscopy, the increased exposure to the intense STED beam causes photobleaching

[94]. Methods for increasing the z-resolution in STED microscopy have thus far been

limited to STED-4Pi microscopy, a complex experimental set-up where opposing

objective lenses are required for increasing the axial resolution to < 50nm [95],

physical sectioning of a fixed sample with subsequent imaging of each section [94],

and use of an additional ‘z STED’ beam, which requires custom-made optics to

increase the axial resolution to < 200nm [77, 96]. Due to the apparent lack of an

experimentally simple technique for obtaining super resolution of living samples, the

axial performance of LIR-SR was modelled.

As the shape of the laser spot in the axial direction can be approximated by

a Lorentzian function [90] with FWHM Γ approximately equal to zmin, the three

dimensional form of the focused depletion beam can be formulated as

Id(x, y, z) = Id0 exp

(
−
(

(x− x0)2

2ω2
x

+
(y − y0)2

2ω2
y

))
1

4

Γ2

(z − z0)2 + (1
2Γ)2

(2.19)

where Id0 is the intensity at Id(x0, y0, z0). The axial intensity and Fd distributions

are plotted in Fig. 2.12.

The spatial distribution of fluorescence in the axial direction evolves over time

as governed by Eq. 2.14, and super resolution can be achieved in the axial direction

using the same principles of splitting the image into time windows and recombining
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Figure 2.12: Intensity and lifetime distributions in the xz plane. Model param-

eters are as for Figs. 2.7 and 2.8. Scale bar = 500nm.

Figure 2.13: Reconstruction of a single point in the xz plane. Top row: Time

window images used in the reconstruction. Bottom row: Reconstructed image

from combining the time window images (proportions as described in the text)

and profiles taken down the centre of the reconstructed and TW1 images to

illustrate increase in axial resolution. Intensities in the graph are normalised,

with solid lines indicating Lorentzian (confocal) and Gaussian (reconstructed)

fits to data. Model parameters were as for Figs. 2.7 and 2.8. Time windows

produced using AxialEvolution (Appendix B.3).
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them as for the lateral direction as described in Eqs. 2.16 and 2.17. This is shown

in Fig. 2.13, which again uses the same lifetime, Fd0 , time window positions and

coefficients as for the lateral reconstructions. The resolution improvement in the

axial direction is slightly greater than in the lateral direction; the confocal resolution

in z is 1089.6 ± 0.1nm and the reconstructed resolution is 293 ± 2nm, indicating a

3.7-fold increase.

2.6 Methods

For the practical realisation of LIR-SR, a basic modification was made to a com-

mercial fluorescence lifetime imaging microscope to perform the imaging itself, and

computer programs were written for the temporal division and subsequent recon-

struction of images.

2.6.1 Microscope set-up

All imaging was performed on an inverted microscope (IX71, Olympus) with fluo-

rescence lifetime imaging system (MicroTime 200, PicoQuant GmbH). A schematic

of the system is shown in Fig. 2.14.

The pump beam was provided by a 490nm pulsed diode laser (PicoTA 490,

Toptica) with variable repetition rate (imaging performed at 20MHz and 5MHz).

The PicoTA output, after passing through a neutral density wheel for controlling

intensity, was then reflected off a beam combiner (560 DCXR, Chroma) into a 3

metre single mode polarisation maintaining fibre. The dump beam was provided

by a 100mW CW 594nm diode pumped solid state (DPSS) laser (Mambo, Cobolt)

which was transmitted through the beam combiner into the same optical fibre as the

pump. The combined beams were reflected off the major dichroic (BS5100, Chroma)

through an adjustable prism (for fine adjustment of beam angle) into the objective

(UPLSAPO 60×/1.2 NA WI, Olympus). The serial port of the dump laser was

connected via USB interface to a computer whereby power could be controlled via

custom-written software (written by Dr Richard Marsh). All powers quoted in the

text are the powers set through this software as it was not practical to repeatedly

measure the on-sample power between acquisitions; however there were considerable

power losses arising from fibre coupling (∼ 40% transmission) and between the major

dichroic and sample (∼ 34% transmission). For example, a ‘set’ power of 50mW (as

is used most commonly in Chapter 3) corresponded to ∼ 17mW after the back

apertures and ∼ 6mW on-sample.

Fluorescence collected by the objective was transmitted through the major

dichroic and passed through two filters (HQ510LP, Chroma and NF03-594W-25,

Semrock) to remove residual pump and dump respectively, and was then focused by

the tube lens into a 50µm pinhole for confocal detection. There was further filtering

to ensure minimal dump beam remained (FES0550, Thorlabs) and the fluorescence
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Figure 2.14: Microscope set-up for LIR-SR. Pump path shown as a blue line,

dump path shown as an orange line, combined beams shown by blue/orange

striped line. Fluorescence path shown by green line. Dashed lines indicate

path taken when hybrid detector is used. Abbreviations used: NDW - neutral

density wheel, BC - beam combiner, BS - beam splitter, MD - major dichroic,

F1 - filter, SPAD - single photon avalanche diode, HyD - hybrid detector. Box

1 and Box 2 contain exchangeable optics; when the SPAD detectors are used,

Box 1 contains a filter and Box 2 contains a cube polariser. When the HyD

is used, Box 1 contains a mirror and filter. Not shown: piezo controller, delay

line, laser drivers.
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was then split into its parallel- (I‖) and perpendicular- (I⊥) polarised components

using a cube polariser. The parallel- and perpendicular- polarised components were

focused into separate single photon avalanche diode (SPAD) detectors (PDM series,

Micro Photon Devices). The intensity in all images presented here was the sum of

these two detector signals (I‖+I⊥). The system was also equipped with a CCD cam-

era (ZC-F10C2, Ganz) for beam diagnostics. A small fraction of pump and dump

light reflected back off the major dichroic were reflected into the CCD camera by an

achromatic beamsplitter (no further details provided in microscope documentation).

Signals from the detectors were sent to a router (PHR 403E, PicoQuant GmbH)

which then passed ‘stop’ signals to the TCSPC system (PicoHarp 300, PicoQuant

GmbH). Sync signals from the pump laser passed through a delay box (425A, Ortec)

and provided the ‘start’ signals to the TCSPC. The TCSPC channel width was

16ps. The objective was mounted on a z piezo scanner (PIFOC P-721.CLQ, Physik

Instrumente GmbH) and an x, y piezo stage (P-733.2CL, Physik Instrumente GmbH)

such that it could scan the sample in three dimensions. These two devices were

controlled by a digital piezo controller (E-710, Physik Instrumente GmbH) which

also provided an input to the router.

Some experiments were performed using a hybrid detector2 (HPM-100-40, Becker

& Hickl GmbH) which detected un-separated parallel- and perpendicular- polarised

fluorescence. Fluorescence was filtered as for the SPAD detectors up until ‘Box 1’

(Fig. 2.14) and was then filtered further to remove dump beam (FES0550, Thorlabs)

and reflected into the detector. The output of this detector was sent directly to the

TCSPC system to act as the ‘stop’ signal.

Images ware acquired using commercial software (SymPhoTime 5.3.2.2, Pico-

Quant GmbH) and subsequent analysis was performed in MATLAB (R2011a, Math-

Works), ImageJ (1.43u, National Institutes of Health) and Origin (Origin Pro 8.6,

OriginLab). Statistical tests were performed using GraphPad Prism (Version 6,

GraphPad Software).

2.6.2 Samples

Beads on coverslips

Fluorescent beads of various diameters (20nm, 40nm, 100nm and 200nm Fluo-

Spheres, Invitrogen) were evaporated using the following protocol [97]. Stock so-

lutions of the beads were sonicated, diluted 1:1000 in dH2O and then diluted 1:1000

in 100% ethanol. 6µl of this solution was then pipetted onto a thickness No. 1 glass

coverslip and allowed to evaporate.

2Hybrid detector on loan courtesy of Dr Simon Ameer-Beg, King’s College London



2.6. METHODS 70

Beads within HEK-293 cells

Uptake of 20nm fluorescent beads into living HEK cells was achieved using a method

adapted from Zauner et al. [98]. HEK-293 cells were cultured in advanced DMEM

(Invitrogen) supplemented with FBS (10%), penicillin (100 units/ml), streptomycin

(100µg/ml) and l-glutamine (2mM), and plated onto glass coverslips at a density

of 100,000 cells per coverslip. The following day cells were incubated with a 1:1000

dilution of 2% bead solution in DMEM for 4 hours at 37° C before re-immersion

in phenol red-free HEPES-buffered DMEM (Sigma), in which the cells remained

immersed during imaging.3 A trypan blue exclusion test was used to assess cell

viability after imaging following the protocol described by Strober [99].

2.6.3 Time window selection

Time windows were selected from the fluorescence decay of the image using a custom-

written MATLAB program (Fig. 2.15, TWSelect code provided in Appendix B.4).

Time windows were selected by the user on a visual basis where images were judged

to have sufficient spatial variation from other time window images whilst maintain-

ing acceptable signal to noise ratios; thus far no suitable automated or quantitative

method for selecting time windows has been developed. For all images five time win-

dows were used and were contiguous between the time at which excitation occurred

and the time at which the signal to noise ratio was visually assessed to be unac-

ceptable (typically 12-15ns after excitation). Once a successful set of time windows

had been found, only minor modifications to the window widths were necessary be-

tween different samples, as the lifetimes of the fluorescent beads imaged were broadly

similar (Fig. 3.11b).

2.6.4 Imaging parameters

In all experiments presented the pixel dwell time was set to 0.6ms, which cor-

responded to a maximum image acquisition time of 2.5 minutes for the largest

(512 × 512 pixels) images. The pixel size in each image was chosen such that the

Nyquist sampling criterion would be satisfied following pixel binning [100].

2.6.5 Image reconstruction strategy

Model data: simultaneous equations

In the simulations in Section 2.5 image reconstruction was performed by setting

up a system of simultaneous equations (SimEqRecon code). This approach involved

finding a suitable combination of the time window images which resulted in the

intensities of the pixels away from the central maxima in the image becoming zero

in the reconstructed image. A practical way to do this was to measure the intensity

3Cell culture and handling performed by Dr Thomas Blacker
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Figure 2.15: Screenshot of TWSelect program used for time window selection.

The line plot indicates the total measured fluorescence intensity decay over

TCSPC channels for the entire image, and the five time window images are

plotted for the channel range indicated below each image. TCSPC channel

widths in this screenshot are 32ps.

profile across a diffraction-limited region of fluorescence (i.e. an object whose size

appeared equal to the confocal PSF) for the five time windows and use pixel values

in these profiles to build the simultaneous equations. Figure 2.16 shows an example

of pixel selection using the method. A system of simultaneous equations can be

created for n time windows (5, in Fig. 2.16) using pixels p → q (29 to 33 in Fig.

2.16) as shown below:
N1,p N2,p . . . Nn,p

N1,p+1 N2,p+1 . . . Nn,p+1

...
...

. . .
...

N1,q N2,q . . . Nn,q



c1

c2

...

cn

 = 0 (2.20)

where Ni,j is the intensity of pixel j in time window i.

Whilst this approach was successful for reconstructing simulated data with no

noise (3.1 fold increase in resolution as demonstrated in Section 2.5.3), it did not

perform as well for simulated data where Poisson-distributed noise was present

(noise was added to each pixel as a random number from a normal distribution

of mean = 0 and standard deviation =
√
N , where N was the intensity of the

pixel). This is shown in Fig. 2.17, generated using NoisyEvolution code (Ap-

pendix B.5). The coefficients generated for the reconstruction of the noisy data

were c1 = 1.000, c2 = −0.3213, c3 = −2.4987, c4 = 2.5841, c5 = 7.4317 and the reso-
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Figure 2.16: Line profiles across the centre of five simulated time windows

(coloured) and a reconstructed profile produced from these (black). Pixels

used in setting up the system of simultaneous equations are marked by solid

coloured circles, with the values of the corresponding ‘solution’ reconstructed

pixels shown as black solid circles.

lution enhancement compared to the TW1 image was now just 2.1 fold (112± 5nm

reconstructed compared to 237.3± 0.7nm confocal).

There are other issues with this approach to reconstructing images. For example,

the background in an acquired image may have local, non-zero variations which

would mean that solving Eq. 2.20 would not be valid. Also, a fundamental principle

in super resolution imaging is that the size of an object in an image is essentially

unknown if it appears to be the same size as the PSF. Without prior knowledge of

the size of the object it is conceivable that artefacts could arise from attempting

to make regions which actually contain fluorescent structures equal zero. Ideally

there should also be the same number of pixels used to set to zero as there are time

window images to prevent multiple solutions to the simultaneous equations. For a

better reconstruction with higher resolution and fewer artefacts (e.g. sidebands, as

in reconstructed image in Fig. 2.17) a larger number of pixels should be set to zero,

implying that a larger number of time windows should be used which, as discussed

previously in Section 2.5.3, may not be practical.

Genetic algorithm reconstruction strategy

There are several factors which are important to consider when attempting to create

a practical reconstruction strategy. Firstly, the underlying structure of the image

is unknown, and may contain different sized objects below the diffraction limit.
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Figure 2.17: Reconstructing images using noisy data. Top row: Five time

window images simulated using tf = 3ns and Fd0
= 0.5 with Poisson noise

added. Bottom row: Graphs showing profiles across centres of above time

windows with pixels used in setting up simultaneous equations marked (as in

Fig. 2.16). Black line indicates profile across centre of reconstructed image

(right). Pixel size in all images is 20nm.

Secondly, each coefficient to be calculated can theoretically take any positive or neg-

ative value leading to a large parameter space. Thirdly, there is no prior information

on the values that the coefficients can take, as even the addition of Poisson noise

to model data dramatically changes the reconstruction coefficients compared with

coefficients obtained with no noise. Finally, the reconstruction process should pro-

duce super resolution images quickly such that appropriate alterations to imaging

parameters or perturbations to samples can be applied in real time.

The reconstruction strategy described here and used for reconstruction of all

images in Chapter 3 was based on the genetic algorithm optimisation technique [101].

This was chosen as genetic algorithms are capable of operating successfully from a

starting point of a set of randomly generated coefficients, rather than a pre-informed

initial point. The mechanism by which genetic algorithms work is based on natural

selection. Initially, a ‘founder’ population is generated consisting of several different

potential solutions (here several sets of randomly generated coefficient values). The

success of each of these founders is assessed using a fitness function, which determines

how well they perform at finding a good solution to the problem, and the fittest

founders proceed unmodified to the next ‘generation’ (iteration) of the algorithm.
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Figure 2.18: Screenshot of the GARecon program used for image reconstruction

via the genetic algorithm approach.

The next generation is also populated by ‘children’ generated from the ‘reproduction’

of two ‘parent’ founders. This reproduction process is subject to crossover, as in

biological reproduction, and so the child has some features (here, coefficients) from

one parent and some from the other. By passing the fittest founders and children

of sufficiently fit parents to the next generation, the algorithm is led to search in

areas of parameter space more likely to produce good results. Children can also

be produced from the random mutation of parents, which forces the algorithm to

maintain a degree of searching in other areas of parameter space to prevent becoming

stuck in a small area which may represent a local minimum. This process is repeated

for many generations until a solution is found which has an acceptably high fitness.

Alternatively the algorithm stops once the highest fitness in a population does not

change for a large number of generations [101]. A screenshot of the program created

to perform this image reconstruction is shown in Fig. 2.18, and accompanying code

GARecon is provided in Appendix B.6. The specific features of the genetic algorithm

reconstruction technique are detailed below.

Central algorithm

The image reconstruction algorithm used the MATLAB function ga, part of

the Global Optimisation Toolbox.

Setting up the problem

The central minimisation problem which the genetic algorithm tackled was

finding the proportions in which to combine five time window images to yield

a super resolution image. The proportions are represented by c1−5 as before;

for simplicity c1 was set to 1 in all cases and coefficients c2−5 were found by the



2.6. METHODS 75

Figure 2.19: Target function generation for two-, three- and four-fold target

resolution enhancements respectively. Blue lines indicate intensity along profile

‘1’ in Fig. 2.18, green lines indicate target intensity profiles for respective

resolution enhancements.

algorithm along with an additional normalisation coefficient cnorm to maintain

similar intensity levels in the reconstructed image.

To represent the confocal image, three line profiles were selected across features

in the first time window image (TW1) and fluorescence intensity distributions

along these lines stored. A target enhancement in resolution was then selected

(e.g. 3, for a target 3-fold increase in resolution) and target profiles were

generated for each intensity distribution by fitting these TW1 profiles with

Gaussian functions, reducing the FWHM of these Gaussian functions by the

target resolution enhancement and then recalculating target intensity values

at each pixel (Fig. 2.19). These three target profiles were then concatenated

to generate a ‘target function’ (Fig. 2.18, ‘Profiles’ panel). The purpose of

using multiple profiles was to prevent over-optimisation to one specific feature

in the image and also to reduce bias if the structures beneath the profiles were

markedly different in size.

Fitness function

To assess the performance of generated coefficient sets a fitness function must

be defined. Here the fitness function was the sum of squares difference be-

tween the concatenated target profile and the equivalent profile from an image

produced using the generated coefficients. The smaller the value generated by

the fitness function, the fitter the set of coefficients.

Parameters

Parameters used in genetic algorithm are shown in Table 2.1.

Examples of model reconstructions obtained using the genetic algorithm strategy

compared to the simultaneous equations approach are shown in Fig. 2.20. For the

simulated data without noise (Fig. 2.20a), the simultaneous equations approach sig-

nificantly outperformed the genetic algorithm approach (75.6±0.8nm reconstructed
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Parameter Value

Initial coefficients Array of 5 randomly generated
numbers from standard normal
distribution (MATLAB randn

function), [c2, c3, c4, c5, cnorm] for
each founder.

Population size in each generation 20

Maximum number of generations 1000

Number of individuals passed to next genera-
tion without alteration

2

Proportion of next generation populated by re-
production (crossover)

0.8

Target fitness 0

Tolerance 1e-6

Number of generations without a change in fit-
ness value greater than ‘Tolerance’ after which
algorithm stops

50

Table 2.1: Selected parameters used in the genetic algorithm.

resolution with simultaneous equations compared to 108 ± 4nm with the genetic

algorithm). However, both methods performed similarly when reconstructing the

simulated data with noise (Fig. 2.20b, 112 ± 5nm compared to 114 ± 4nm). To

evaluate the consistency of the two reconstruction approaches, 10 noisy data sets

of a single point source of fluorescence were simulated and reconstructed with both

simultaneous equations and the genetic algorithm. Whilst sometimes capable of gen-

erating images representative of the known structure (e.g. Fig. 2.20b, Sim. Eqs.),

the simultaneous equations approach also produced garbled, structureless images.

This is shown in Fig. 2.20c where the profiles across the repeated noisy reconstruc-

tions are shown: the red and blue plots are striking examples of reconstructions

bearing little resemblance to the known structure. The genetic algorithm approach

however produced images which were consistently representative of the known struc-

ture (reconstructed profiles shown in Fig. 2.20d). Gaussian fits were performed on

the plotted profiles in Fig. 2.20c and d to further quantify the reliability of the two

reconstruction approaches: the average R2 goodness-of-fit statistic for the simulta-

neous equations reconstructions was 0.8 ± 0.2 compared with 0.95 ± 0.02 for the

genetic algorithm reconstructions, further indicating better representation from the

latter approach.

Therefore, as the genetic algorithm matched the reconstructed resolution ob-

tained with simultaneous equations for noisy simulated data, with the added advan-

tage of producing consistently similar results for the same known structure, this was

deemed a suitable reconstruction strategy for use with experimental data.
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Figure 2.20: Comparison of reconstruction strategies for simulated data with

and without noise. ‘Sim. Eqs.’ denotes reconstruction using simultaneous

equations and ‘Gen. Alg.’ using the genetic algorithm. TW1 and recon-

structed images are shown for a) noise-free simulated data and b) simulated

data containing Poisson noise. Profiles across the centre of 10 reconstructions

performed on noisy simulated data are shown for c) simultaneous equations and

d) genetic algorithm. Bold black line indicates average of all 10 reconstructions

for each strategy. Coloured lines in c) are particularly poor reconstructions.

Parameters used for creating simulated data are as in Fig. 2.17, except without

Poisson noise for the top row of images.

2.6.6 Image processing

To reduce noise, time window images were 2×2 binned using the imresize function

in MATLAB, whereby the noise was averaged out over the four binned pixels [102].

The cost of doing this was that the pixel size became larger and the maximum

obtainable resolution decreased. Images were also smoothed after reconstruction

(imfilter in MATLAB) using a Gaussian kernel of width equal to the maximum

measured resolution in the reconstructed image.

One common artefact in the reconstructed images was the presence of negative

valued pixels, and the reasons for their presence will be discussed in more detail

in Chapter 3. To maintain suitable contrast in images, a modified version of the

MATLAB ‘hot’ colourmap was applied to the images presented in Chapter 3. The

level of the colourmap closest to zero was set to be black, with positive valued pixels

following the black-red-yellow-white hot map as is standard. The most negative

level of the colourmap was set to be dark blue, with more negative values becoming
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increasingly bluer. An overview of the stages in the image processing are shown in

Fig. 2.21.

To quantify resolution, ImageJ was used to plot intensity profiles across regions of

interest in images which were then fitted with Gaussian functions using Origin. All

fitting was performed on data from binned but unsmoothed images. Where the sizes

of structures have been compared between TW1 (confocal) images and reconstructed

images, the profiles were selected from the TW1 image and the same coordinates

then applied to the reconstructed image for fair and accurate comparison. Errors

quoted on average FWHM values are a combination of errors [103] generated during

the fitting process and the standard deviation of average FWHM values, calculated

as:

∆Z =

√√√√s2 +
1

n2

n∑
i

(∆wi)
2. (2.21)

The mean FWHM is given by Z = 1
n

∑n
i wi for n measured FWHMs of widths wi.

The standard deviation of the n measured FWHMs is given by s, and the individual

fitting error associated with each FWHM (as generated by Origin) is given by ∆wi.

2.6.7 Statistical testing

For each experimental data set presented in Chapter 3, statistical testing was per-

formed to establish whether changes in resolution following image reconstruction

in LIR-SR were statistically significant. The results of these statistical tests are

presented alongside the results to which they refer in Chapter 3.

All data sets were tested for normality using the D’Agostino-Pearson test, and

all were found to require non-parametric statistical tests. This was not unexpected,

as the distribution of bead sizes within an image should have an absolute minimum

value, corresponding to either the diffraction limit in confocal images or maximum

resolution afforded by time window selection and reconstruction coefficients, and a

larger range of maximum values potentially corresponding to variability in bead size

and out of focus beads. This would result in a positive skew in the distribution of

measured FWHMs in an image, rather than a normal distribution.

For assessment of the increase in resolution, the FWHM of each imaged bead

was measured in the confocal (TW1) image and again in the reconstructed image,

with the Wilcoxon matched-pairs test used to test whether there was a significant

difference between confocal and reconstructed resolutions of individual beads of the

same size imaged under the same conditions. For comparisons of average FWHM

values obtained under two different imaging conditions (for example, with different

detectors), the Mann-Whitney U test was used to test for statistical significance.
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2.7 Summary

Although there are several different super resolution techniques in common use,

these all have associated shortcomings and there is currently no technique which is

experimentally simple and can more than double the resolution in living cells. The

modelling provided in this chapter has shown that a theoretical > 2 fold increase in

resolution is achievable in LIR-SR using parameters similar to those expected in ex-

perimental realisation of the technique, such as the fluorescence lifetime, maximum

fractional depletion and time window widths. The effect of Poisson noise on image

evolution and reconstruction has also been demonstrated for the first time. Further-

more, a novel image reconstruction strategy has been presented which consistently

yields an increase in resolution for noisy simulated image data. Experimental vali-

dation of the discussed theoretical aspects of LIR-SR will be presented in Chapter

3.



Chapter 3

Development of a novel super

resolution microscopy technique.

Part II: Results and Discussion

Elements of this chapter have been published in: R.J. Marsh, S. Culley and A. J.

Bain, “Low power super resolution fluorescence microscopy by lifetime modification

and image reconstruction,” Optics Express vol. 22, pg. 12327-38, 2014. This

manuscript is provided in Appendix C.

This chapter contains LIR-SR images obtained using the theory and experimental

and computational methods detailed in Chapter 2. Various sub-diffraction limit

sized beads have been imaged and subsequently reconstructed in both the lateral

and axial planes, and beads have also been imaged within living cells in vitro, with

the microscope set-up and computational techniques as presented in Chapter 2. The

effect of CW STED on the photophysics of the beads has also been investigated and

detector performance for LIR-SR has been assessed. These results are then discussed

with future improvements and investigations suggested.

3.1 Spatial lifetime variations in fluorescent beads

Individual 100nm fluorescent beads were imaged with a range of dump powers to

ascertain a suitable power to use for imaging. Figure 3.1 shows the average fluo-

rescence lifetime of beads imaged at four different dump powers, where increasing

powers produced shorter fluorescence lifetimes. The pump power was measured

prior to injection into the optical fibre as < 1µW (subsequently undergoing similar

losses to those observed for the dump beam, Section 2.6.1) and was not altered be-

tween different dump powers, with all other imaging parameters (pixel size, number

of pixels per image, pixel dwell time) also kept constant. When beads were imaged

with the pump beam alone, the fluorescence lifetime was largely homogeneous across

81
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Figure 3.1: Relationship between dump power and measured fluorescence life-

time of 100nm fluorescent beads. Left: Average fluorescence lifetimes calcu-

lated for 100nm beads imaged with different dump powers. N=3 single bead

images were analysed for each point, and error bars indicate combined fitting

errors and standard deviations of data. Laser powers are the uncorrected val-

ues set via the computer interface (on-sample powers are typically 10− 15% of

these values). Right: fluorescence lifetime images showing spatial distributions

of lifetimes for 100nm beads imaged without (top) and with (bottom) 50mW

dump. Grey bars indicate fluorescence intensity in each image, coloured bar

indicates fluorescence lifetime (same scale for both beads). Scale bar = 500nm.

each bead (Fig. 3.1, top right), whereas imaging with both beams together produced

spatial variations in lifetime across each bead (Fig. 3.1, bottom right) as predicted

by the modelling in Chapter 2. Imaging with higher dump powers also reduced the

measured intensity of each bead, as can be seen in the images in Fig. 3.1.

To successfully perform LIR-SR, the lifetime shortening (fractional depletion)

must be large enough that the spatial variations appear early enough in the flu-

orescence decay to be distinguishable, but dump power must not be so high as

to suppress so much intensity that there is insufficient signal in late time window

images. The dump power yielding the most appropriate balance between fluores-

cence intensity and lifetime shortening was judged to be 50mW (set power at laser

output, on-sample power is ∼ 6mW), producing an average fractional depletion of

Fd = 0.44 ± 0.03. Figure 3.2 shows time windows for a population of 100nm beads

imaged with 50mW dump. It can be seen that despite the increasingly broad time

windows, peak image intensities decreased dramatically in later time windows. Also

shown are line profiles taken horizontally across individual beads demonstrating the

broadening of the fluorescence distributions over time. The fourth and fifth time

windows did not display the neat ‘donut’ shape that was predicted by the modelling

and fluorescence depletion appeared to occur asymmetrically, with the left side of

each bead depleting more than the right.
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Figure 3.2: Time window images obtained using 50mW dump to image 100nm

beads. Time windows are located along the fluorescence decay as indicated by

the time ranges next to images (where excitation occurs at 0ns). Scale bar =

1µm. Images are 2× 2 binned but not smoothed. Line plots show normalised

intensity distributions taken horizontally across five beads in the time window

images (grey lines) and the average of these profiles (black line). The beads

used for profiles are marked by asterisks in the TW1 image.
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The asymmetry seen in the later time windows is thought to be due to a slight

misalignment of the pump and dump beams as they are reflected off the major

dichroic; an investigation of this is presented in Section 3.7. However, the asym-

metry in the time window images did not prevent image reconstruction due to the

optimisation (genetic algorithm) approach used throughout this chapter. If coeffi-

cients were being calculated using simultaneous equations then this could have been

problematic as it would prevent simplification of the system of equations which is

possible with a symmetrically evolving point spread function (e.g. Fig. 2.16).

3.2 Reconstructions on various sized fluorescent beads

To rigorously test the performance of LIR-SR, beads measuring 20nm, 40nm, 100nm

and 200nm were evaporated onto coverslips and imaged. For all bead sizes the first

time window (TW1) was taken as the ‘confocal’ image for comparison. The validity

of this approach was verified by comparing bead sizes measured in pump only im-

ages with those measured in the TW1 image after subsequent imaging of the same

area with both pump and dump beams. For the 20nm, 40nm and 100nm beads the

measured sizes from the pump only and TW1 images agreed within the calculated

error values. Some measured bead sizes for 200nm beads taken from the TW1 im-

ages were slightly smaller than for the pump only images but still corresponded to

a reasonable confocal approximation. Using the TW1 image as a confocal approxi-

mation is advantageous for comparing resolution as it is inherently aligned with the

final reconstructed image (and as such there is no need for drift correction between

the two images) and minimises laser exposure to the sample by removing the need

to acquire a reference pump only image.

All reconstructed images contained negative-valued pixels, and negative values

were also observed when reconstructing noisy simulated data. There are two pre-

dominant reasons why negative pixels appear: the finite widths of each time window

and noise contributions. Having time windows of finite width means that each time

window does not contain a unique spatial distribution associated with an infinitesi-

mal time point but a continuum of spatial distributions, which in an ideal situation

would all be present in different proportions but are here forced to contribute equally.

Different time windows will also possess different noise profiles, with later time win-

dows containing higher background intensity (relative to the fluorescence intensity)

from scattering and dump-induced fluorescence, for example. It has been seen by

manually optimising coefficient values that images can be forced to have higher res-

olutions at the expense of increasingly negative valued pixels; however the target

function in the genetic algorithm reconstruction strategy used through this chapter

attempts to maintain a background intensity comparable to that in the confocal

image. This provides a compromise between obtaining a high image resolution and

limiting the quantity and magnitude of negative pixels. The impact of negative
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valued pixels on image quality are discussed further in Section 3.9.

3.2.1 200nm beads

Figure 3.3: Examples of confocal and reconstructed images of 200nm fluores-

cent beads. Scale bar = 1µm. Right: Bar chart showing average measured

bead sizes across all confocal and reconstructed images of 200nm beads. ****

indicates statistical significance of P<0.0001, error bars correspond to standard

deviation.

The 200nm beads were imaged and reconstructed as a control to see whether

the reconstruction algorithm created images with resolutions higher than the known

object size (Fig. 3.3). Reconstruction significantly increased the resolution of indi-

vidual beads (P<0.0001, N=63 beads in 12 images, Wilcoxon matched pairs test)

with average measured values shown in Table 3.1, and measured bead sizes in the

reconstructed images agreed well with the actual size of the beads. A small number

of beads (N=6) reconstructed to sizes <190nm, which was likely due to noise and

fitting errors.

Bead size (nm) Confocal (nm) Reconstructed (nm) Relative increase

207± 13.8 350± 40 210± 30 1.6± 0.2
100± 7.2 270± 20 170± 20 1.6± 0.3
48± 6 250± 20 170± 30 1.5± 0.4
24± 3 270± 30 180± 40 1.5± 0.4

Table 3.1: Comparison of lateral resolutions for measured bead sizes. Actual

bead size and errors are from manufacturer’s specification for bead batches

used. Relative increase is an average of the increases in resolution for individ-

ual beads. Errors are generated from the fitting process combined with the

standard deviations of the averaged data as formulated in Section 2.6.6.
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3.2.2 20nm, 40nm and 100nm beads

Significant increases in resolution were also seen for the other three bead sizes (Table

3.1, Fig. 3.4). For all three sizes the difference between average confocal and recon-

structed bead sizes was statistically significant with P<0.0001 (Wilcoxon matched

pairs test). The bead populations analysed were as follows: N=99 100nm beads in

13 images, N=114 40nm beads in 13 images and N=69 20nm beads in 13 images.

Figure 3.5 illustrates the spreads of confocal and reconstructed bead sizes obtained,

as well as the range of resolution increases observed. For these smaller beads, there

were no cases where the reconstructed size was smaller than the actual bead size. It

can be seen in Fig. 3.5 that some of the beads underwent relatively large 2-3 fold

increases in resolution, but also that there were instances for the 20nm beads where

the bead size was larger in the reconstructed image than in the confocal image. This

was observed for two beads, and closer examination of the fits revealed that Gaussian

function fitting to the reconstructed profiles was poor with large errors associated

with the calculated FWHM values.

The three different sub-diffraction limit bead sizes all reconstructed, on average,

to similar sizes of 170-180nm (Table 3.1). The reasons for this similarity could be

attributed to the similar experimental conditions and time windows chosen for the

different bead sizes: the lifetimes of the beads were comparable across the differ-

ent bead sizes (particularly the 20nm and 40nm beads, discussed further in Section

3.6), the dump intensity was not altered between different samples and similar time

windows appeared to perform well for the different bead sizes. More rigorous se-

lection of the time windows for individual acquired images may help in uncovering

more accurate resolutions for these smaller beads; strategies for this are addressed

in Section 3.8.

Some coverslips were prepared with a mixture of the different bead sizes evapo-

rated onto the surface and imaged; however, due to the similar reconstructed sizes of

the smaller beads, the different sized beads could not be distinguished in this poly-

disperse sample. If time window selection could be optimised for the individual bead

sizes, this could then present an interesting problem for a sample containing beads

with very slightly different fluorescence lifetimes and depletion efficiencies. That is,

one set of time windows would perform optimally for one bead size, but not neces-

sarily for the other bead sizes in the image. One solution to this problem could be to

partition the image pixels according to fluorescence lifetime or fractional depletion

and optimise reconstruction for each part of the image independently with its own set

of time windows and reconstruction coefficients. This would be an approach appli-

cable to biological imaging applications where different microenvironments within a

cell could result in different fluorescent lifetimes for the same fluorophore dependent

on its subcellular localisation.
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Figure 3.4: Examples of confocal and reconstructed images of 100nm, 40nm and

20nm beads. Scale bars = 1µm. Right: bar charts showing average measured

bead sizes across all confocal and reconstructed images for each set of bead

sizes. **** indicates statistical significance of P<0.0001, error bars correspond

to standard deviations.
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Figure 3.5: Box and whisker summary of lateral resolution for all analysed

beads. Top: Measured bead sizes for all beads tested, both confocal and re-

constructed. Bottom: Relative increases in resolution (confocal bead size ÷
reconstructed bead size) for all beads tested. In both plots boxes represent the

mean and upper/lower quartiles of data, and whiskers extend to the minimum

and maximum values.



3.2. RECONSTRUCTIONS ON VARIOUS SIZED FLUORESCENT BEADS 89

3.2.3 Control images taken with pump only

Control experiments were also performed where images acquired with the pump

beam only were split into time windows with reconstruction attempted as for the

images taken with both pump and dump. A summary of the average bead sizes

obtained when measured from the confocal (TW1) images, images reconstructed fol-

lowing imaging with pump only, and images reconstructed from subsequent imaging

of the same region with pump and dump (pump + dump) is shown in Fig. 3.6. The

40nm and 20nm bead sizes measured from the pump only reconstructions were not

significantly different from their confocal counterparts (P=0.69, N=26 40nm beads

in 3 images and P=0.05, N=22 20nm beads in 5 images, Wilcoxon matched pairs

test), but were both significantly larger than the sizes measured in the reconstructed

pump + dump images. The larger bead sizes showed some significant resolution in-

crease from the pump only reconstruction. In the case of the 100nm beads, modest

resolution improvement was obtained from the pump only reconstructed images, but

this improvement was still less than in the reconstructed images obtained using both

beams. For the 200nm beads there was a large increase in resolution obtained from

the pump only images, which was not significantly different to the increase obtained

through reconstructing the pump + dump images (P=0.60, N=26 beads in 4 images,

Wilcoxon matched pairs test).

Figure 3.6: Comparison of measured bead sizes with and without the dump

beam. Error bars indicate standard deviations of data sets. *** = P<0.001,

**** = P<0.0001.



3.2. RECONSTRUCTIONS ON VARIOUS SIZED FLUORESCENT BEADS 90

These results can be explained by the fluorescence lifetime images of the beads

obtained using pump only (Fig. 3.7). Rather than displaying spatially homogeneous

lifetimes, the 200nm beads had shorter lifetimes at the centre and longer lifetimes

towards their edges, the same effect as was expected when imaging with both beams

together (e.g. Fig. 3.1, bottom right). Fluorescence intensity from the 200nm beads

also began to saturate in the centre of the beads even when the excitation intensity

was reduced as much as possible without altering any other imaging conditions

(e.g. laser repetition rate, pixel dwell time). This effect could be seen to a lesser

extent for the 100nm beads, where some beads displayed the expected homogeneous

lifetimes but others did have some degree of spatial lifetime variation; the 40nm

beads displayed the expected homogeneity of lifetimes. The 20nm beads displayed

lifetime variation in the pump only images, but this variation appeared to occur as

a gradient along the y-axis of each bead as opposed to radially from the centre of

the bead. This may suggest some bleaching effect by the pump beam, as each row of

pixels is scanned by the pump beam from left to right, starting from the top of the

image and working downwards. Therefore any potential bleaching or local heating

effects could be caused by the pump beam scanning the top of the bead and result in

different lifetimes when the lower parts of the bead are imaged. However, this effect

disappeared when the 20nm beads were imaged with both pump and dump beams,

with the lifetimes varying spatially as for the other bead sizes and predictions of

modelling.

The lifetime distribution observed in the 200nm beads could be a result of

concentration-dependent quenching, whereby more concentrated solutions display

shorter fluorescence lifetimes as a result of dipole-dipole interactions between neigh-

bouring fluorophores [104]. Here, fluorophores within the centres of the spherical

200nm beads have more neighbours (i.e. are more highly concentrated) than fluo-

rophores located at the edge of the sphere, which could explain the spatial lifetime

differences. However, it is not known why this effect is not as pronounced (or indeed

is absent) in the smaller sized beads.
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Figure 3.7: Fluorescence lifetime images of beads measured with pump only

followed by pump + dump to compare lifetime distributions in the two imaging

conditions. Coloured bars indicate lifetime range in each image, grey bars

indicate fluorescence intensity in each image. Scale bars = 1µm.

3.3 Axial resolution

The modelling in Section 2.5.4 indicates a theoretical improvement in the axial

resolution in LIR-SR, and so to test this, the different sized beads were imaged

in the xz-plane as opposed to the xy-plane. For all bead sizes improvements in

resolution were observed in the z-direction, as shown in Table 3.2 and Fig. 3.8. The

reconstructed 200nm, 100nm and 40nm beads displayed higher axial resolutions

compared to their confocal counterparts with significance of P≤0.0005 (Wilcoxon

matched pairs test: N=13 200nm beads in 5 images, N=12 100nm beads in 6 images,

N=24 40nm beads in 8 images), however the axial resolutions of the reconstructed

20nm beads were not significantly different to the confocal resolutions (P=0.13,

Wilcoxon matched pairs test, N=4 20nm beads in 4 images). Reasons for this

relatively poor axial resolution compared to results seen in modelling is discussed in

Section 3.7.2.

One prediction from the modelling was that axial resolution improvement should

be greater than lateral resolution improvement and so the x and z resolution increases

were compared for the beads imaged in the xz-plane. The increase in axial resolution

was significantly higher than the increase in lateral resolution for the 200nm beads
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Bead size (nm) Confocal (nm) Reconstructed (nm) Relative increase

207± 13.8 1400± 400 700± 200 1.8± 0.5
100± 7.2 1000± 200 700± 100 1.6± 0.3
48± 6 900± 200 600± 200 1.5± 0.3
24± 3 1000± 100 800± 100 1.21± 0.05

Table 3.2: Comparison of reconstructed and confocal axial resolutions. Relative

increase is an average of the increases in axial resolution for individual beads.

Figure 3.8: Increase in axial resolution of fluorescent beads. Left: Confocal

and reconstructed images of 100nm beads in the xz-plane. Scale bar = 1µm.

Right: Bar chart summarising measured axial resolutions for various bead sizes

in confocal and reconstructed images. Error bars indicate standard deviations

of data sets. *** = P< 0.001, **** = P<0.0001

(1.8 ± 0.5 vs 1.48 ± 0.08, P<0.01, Wilcoxon matched pairs test, N=12 beads in 5

images) but there was no significant difference for any of the other bead sizes tested.

3.4 Beads imaged within living cells

To test the compatibility of LIR-SR with live cell imaging, 20nm fluorescent beads

within living HEK-293 cells were imaged. Care was taken to minimise laser exposure

to the sample by reducing scan times as much as possible whilst maintaining a suf-

ficiently high photon count to attempt to prevent photodamage. This was achieved

by using the same pixel dwell time as for imaging beads on coverslips, but with

larger pixel sizes and fewer pixels per image. Figure 3.9 shows an example of a

cluster of beads within a living HEK-293 cell which displayed a significant increase

in resolution upon image reconstruction. Resolution was consistently higher in the

reconstructed images than in the confocal images (Fig. 3.9, right); average confocal
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bead size was measured to be 290± 40nm and average reconstructed bead size was

measured to be 160 ± 50nm (P<0.0001, Wilcoxon matched pairs test, N=23 20nm

beads in 9 images of 6 cells). The average increase in bead resolution was calcu-

lated as 1.9 ± 0.6, significantly higher than the resolution increase per bead seen

in the images of 20nm beads on coverslips (1.54 ± 0.05, P<0.05, Mann-Whitney U

test). Causes of this improved resolution in the live cells compared to the bead on

coverslips are discussed in Section 3.7.2.

Figure 3.9: Imaging fluorescent beads within a biological sample. Confocal

(left) and reconstructed (centre) images of a cluster of 20nm fluorescent beads

within a living HEK-293 cell. Scale bar = 1µm. Right: Bar chart showing

average measured bead sizes before and after reconstruction across all acquired

images. Error bars indicate standard deviations of data sets.

The trypan blue exclusion test was used as an assay for cell viability following

imaging. The intact plasma membranes of healthy cells act as a barrier to molecules

such as trypan blue, whereas dead cells tend to have compromised membrane in-

tegrity and as such become permeable to larger molecules, including trypan blue.

As a result, dead cells appear bright blue during this test. Imaging was performed

as for all other imaging experiments, including multiple pump only scans to locate

suitable regions for imaging, followed by imaging with both beams together. Trypan

blue was then applied to the sample medium and the imaged cells were observed

with transmitted white light through the microscope eyepiece. Figure 3.10 shows

photographs of a cell prior to imaging and then for approximately 9 minutes af-

ter application of trypan blue (which was applied as soon as was practical following

imaging). This example shows that the cell remained impermeable to trypan blue for

a substantial time period following imaging with no major morphological changes

compared to the morphology prior to imaging. These initial results suggest that

LIR-SR is compatible with live-cell super resolution imaging.
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Figure 3.10: Trypan blue test for cell viability following imaging. t indicates

time in minutes, where imaging was performed at t=0 mins. a) Cell prior to

any laser-scanning imaging, no trypan blue in bath. b) Same cell following

imaging, no trypan blue. c) Following bath addition of trypan blue at t=5

mins. d) Following second bath application of trypan blue (at t=7 mins) to

ensure sufficient trypan blue concentration. e) Example of a dead cell on the

same coverslip that had not been imaged demonstrating uptake of trypan blue

and membrane blebbing associated with cell death. The background colour

was normalised between images.

3.5 Detector effects

A known issue with the SPAD detectors used here (Section 2.6.1) is that they expe-

rience afterpulsing [105]. SPAD detectors operate using a p-n junction biased above

the breakdown voltage such that a single photon is capable of imparting sufficient

charge to the depletion layer of the junction to trigger an avalanche of charge car-

riers. This avalanche creates an increase in current, the leading edge of which is

used to provide timing information on photon arrival at the detector. This current

is then quenched by the electronics within the detector and the voltage bias subse-

quently restored [106]. However, during the avalanche charge carriers can become

trapped within deep layers of the depletion layer which can then be emitted and

thus trigger a new avalanche in the absence of a photon, with this ‘false’ signal

known as an afterpulse. There is no way of distinguishing afterpulse signal from real

fluorescence signal as afterpulse avalanches are temporally correlated with photon-

generated avalanches [107]. In images this manifests as noise, and is particularly

evident in late time windows as true signal is lower in this region of the decay.

Therefore it was a concern that afterpulsing in the SPAD detectors may have been

contaminating the spatial information contained in late time windows and impairing
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reconstructed resolution.

To address the issue of afterpulsing, imaging was repeated at a high pump repeti-

tion rate (20MHz) and a lower repetition rate (5MHz). Characterisation of the brand

of SPAD detectors used here has shown that there is an order of magnitude decrease

in the afterpulsing probability density from 50ns following an initial avalanche pulse

(i.e. 20MHz repetition rate) to 200ns following the initial pulse (i.e. 5MHz repetition

rate) [105]. Therefore a carrier trapped during detection from an excitation pulse is

more likely to contaminate the fluorescence decay detected from one of the next few

pulses at the 20MHz repetition rate than it is at the 5MHz repetition rate. In the

latter case, afterpulse signals are likely to arrive in the longer interval between the

tail of one fluorescence decay and the peak of the next fluorescence decay; the time

channels in this interval are not used in image formation anyway, due to their low

fluorescence intensity.

As the relative lateral resolution increase for each bead did not significantly vary

with bead size (e.g. Table 3.1), all bead sizes tested were grouped together for

analysis. The average resolution increase per bead for imaging at 20MHz (1.5± 0.4,

N=135 beads) was not significantly different to the average resolution increase for

imaging at 5MHz (1.5 ± 0.3, N=134 beads, P=0.97, Mann-Whitney U test), and

there were no significant differences between the ratios of increase within each set

of bead sizes. This implies that either afterpulsing was not impacting upon image

quality to the extent that the reconstructed resolution was reduced, or that the

the 5MHz repetition rate was still sufficient to induce non-negligible afterpulsing.

Reducing the repetition rate further below 5MHz would need to be compensated for

by increasing the pixel dwell time to gain sufficient photon counts and would hence

increase the overall imaging time, a solution which is not desirable for a system with

the goal of live-cell imaging.

To further verify whether the SPAD detectors were creating any artefacts that

could diminish image resolution a hybrid PMT detector (HyD) was also used for

imaging (Section 2.6.1). Hybrid PMTs are detectors which combine the electron

acceleration component of PMTs with the avalanche generation in photodiodes.

Photons incident on the photocathode of the HyD produce photoelectrons, which

are accelerated in an electric field before reaching an avalanche diode. These vastly

accelerated electrons are capable of producing a large number of electron-hole pairs

within the diode and thus an avalanche is generated, amplifying the signal. This

controlled avalanche formation, as opposed to the avalanche breakdown which occurs

in SPAD detectors, is devoid of afterpulsing without compromising timing resolution

or single-photon detection [108, 109].

The 100nm, 40nm and 20nm beads were all imaged with the HyD, and the con-

focal and reconstructed resolutions of beads compared to those obtained with the

SPADs (20MHz repetition rate for both detectors); these are shown in Table 3.3.

Whilst the confocal and reconstructed resolutions of the 100nm beads were insen-
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sitive to the detector type - the 100nm beads displayed no significant difference

between SPAD imaging or HyD imaging for measured confocal bead sizes, recon-

structed bead sizes or relative resolution increase - there were differences between

the two detectors for the 40nm and 20nm beads. The confocal sizes of the 40nm

beads were measured to be significantly smaller in the SPADs than in the HyD

(P<0.005, Mann-Whitney U test, N=37 beads with SPADs vs N=33 beads with

HyD), whereas there was no significant difference between the reconstructed 40nm

bead sizes. Conversely, the confocal sizes of the 20nm beads were measured to be

significantly smaller in the HyD than in the SPADs (P<0.005, Mann-Whitney U

test, N=31 beads with SPADs vs N=24 beads with HyD), and the reconstructed

bead sizes were also smaller in the HyD compared to the SPADs (P<0.0005, Mann-

Whitney U test).

Bead size (nm) Detector Confocal (nm) Reconstructed (nm) Relative increase

100± 7.2
SPADs 270± 30 170± 30 1.6± 0.4
HyD 270± 40 180± 30 1.5± 0.2

48± 6
SPADs 280± 20 170± 30 1.5± 0.2
HyD 260± 30 150± 30 1.8± 0.4

24± 3
SPADs 250± 20 210± 40 1.4± 0.2
HyD 270± 30 150± 40 1.7± 0.4

Table 3.3: Comparison of reconstructed and confocal lateral resolutions for the

two detectors tested at 20MHz repetition rate. Relative increase is an average

of the increases in lateral resolution for individual beads.

For both the 40nm and 20nm beads, the average relative resolution increase per

bead was significantly larger for the HyD than for the SPADs (P<0.01 for 40nm

beads, P<0.05 for 20nm beads, Mann-Whitney U test). These results indicate that

hybrid PMT detectors are a more suitable choice of detector for LIR-SR imaging, al-

though whether the improved performance with the HyD was related to afterpulsing

characteristics or other properties of the detector cannot be deduced. The apparent

discrepancies between the confocal bead sizes measured between the two detectors

may have arisen from differences in imaging planes between different experiments.

3.6 Lifetime recovery

As one predicted benefit of LIR-SR is that the lower on-sample laser powers used

(compared with PALM/STORM and STED) should result in less photobleaching of

fluorophores within samples, the photophysical properties of the beads were mea-

sured before and after imaging. Images were taken with the pump beam only (‘pump

1’), then with both pump and dump (‘pump + dump’) as usual for LIR-SR, and fi-

nally with the pump beam only again (‘pump 2’). Biexponential decays (discussed in

more detail in Section 4.6.3) were fitted to the fluorescence intensity decays (in these

experiments signals from the two SPAD detectors were combined as I = I‖ + 2I⊥,
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Figure 3.11: Quantification of intensity and lifetime changes of various sized flu-

orescence beads following LIR-SR. Left: relative intensities of images contain-

ing 200nm, 100nm, 40nm or 20nm beads before and following LIR-SR imaging.

The total bead intensity within in each image is normalised by division by the

intensity of the corresponding Pump 1 image. Right: average fluorescence life-

time of images containing 200nm, 100nm, 40nm or 20nm beads. Dashed lines

indicate the Pump 1 average lifetime for each bead size. Error bars combine

standard deviations of several images with the exponential fitting errors used

to obtain intensities and lifetimes. Data obtained from: N=3 200nm images,

N=5 100nm images, N=6 40nm images, N=5 20nm images.

Section 1.4.2) obtained from imaging different bead sizes with this beam sequence

and the parameters of these fits were used to calculate the intensities and average

fluorescence lifetimes of each imaged region (Fig. 3.11).

It was expected that all bead sizes would follow the same qualitative pattern

across the three images; the pump + dump images were expected to display lower

intensities and shorter fluorescence lifetimes compared to the pump 1 images as a

result of CW STED, whilst the pump 2 images were expected to display similar

intensities and lifetimes to the pump 1 images. The 200nm and 100nm beads gen-

erally obeyed these relations, although the average intensity of the 200nm pump

+ dump images was slightly higher than in the pump 1 images (potentially due to

dump-induced fluorescence). The 40nm and 20nm beads, however, deviated from

the expected behaviour. The intensities of both bead sizes steadily decreased across

the imaging sequence, with a ∼ 30% decrease in intensity between the pump 1 and

pump 2 images for the 40nm beads, and a ∼ 75% decrease in intensity for the 20nm

beads. Furthermore, the lifetimes of the 40nm and 20nm beads also behaved anoma-

lously, as the average lifetimes of both bead sizes were longer in the pump 2 image

than in the pump 1 image (∼ 50% longer for the 40nm beads and ∼ 150% longer

for the 20nm beads).

Providing a definitive explanation for these results is challenging as many proper-

ties of the beads used here, such as their expected fluorescence lifetimes, fluorophore
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identity and diffusivity of the fluorophores within the beads, could not be obtained

from the manufacturers. The lifetimes and intensities of individual beads of the

same size also displayed considerable heterogeneity. The most obvious explanation

for the consecutive losses in intensity for the 40nm and 20nm beads is that fluo-

rophores within the beads are being photobleached; further experiments would be

required to ascertain whether this is due to the pump beam or the dump beam, and

hence whether LIR-SR is exacerbating any photobleaching which would be present

in pump only confocal imaging. Photobleaching could also explain the lengthening of

fluorescence lifetimes, a phenomenon which has also been seen in gSTED microscopy

where repeated imaging of microtubules labelled with the fluorophore ATTO647N

resulted in an increase in its fluorescence lifetime from 1.9ns to 3.3ns [110]. The

explanation offered in this study was that repeated imaging was causing cumula-

tive photobleaching of fluorophores, which reduced the amount of concentration-

dependent fluorescence quenching by neighbouring molecules (Section 1.1.6). This

is a plausible explanation for the lifetime lengthening observed here, and indicates

that this is not necessarily an abnormal feature of imaging with a CW dump beam.

3.7 Comparison of results with theory

The results presented here show that the presence of a CW dump beam is effective

in inducing spatially varying fluorescence lifetimes. These were seen across all bead

sizes imaged, with significant spatial evolution through the five time windows used

to create super resolution images. Resolution improvements were seen for all bead

sizes following imaging and reconstruction in both lateral and axial dimensions, and

this was also demonstrated in a living sample which survived the imaging process.

Theoretically generated data showed that each point source of fluorescence should

broaden symmetrically as time progresses before exhibiting ‘donut’ intensity distri-

butions at late times following excitation, even when noise was added into the model

(e.g. Fig. 2.17). The imaged fluorescent beads were also seen to broaden throughout

their fluorescence decays with a donut distribution of fluorescence appearing approx-

imately 2-3 fluorescence lifetimes after excitation (Fig. 3.2), albeit asymmetrically,

which is a similar timescale as predicted by the model.

3.7.1 Asymmetric depletion and beam alignment

In contrast to the images produced from simulated data, the fluorescence broadening

and donut fluorescence distribution in the experimentally obtained images appeared

asymmetric, a phenomenon which was observed for all bead sizes tested and with

both detectors. During imaging it had been assumed that the pump and dump

beams were well aligned as they were both collimated into an optical fibre (Fig.

2.14), which should act as a pinhole for the beams with the beams exiting the

fibre coaxially. Furthermore, the objective used here is super-apochromatic and is
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designed to ‘completely eliminate’ (manufacturer’s wording) chromatic aberration

from 400-900nm. To confirm the extent to which the beams were aligned, a 200nm

bead was repeatedly imaged with pump only then dump only (as the 200nm beads

were the only size beads yielding a measurable fluorescence signal when imaged with

the dump only) and the central coordinates of the bead calculated for each image

in ImageJ using the centre-of-mass calculation following background subtraction.

Figure 3.12a shows successive pump only (blue) and dump only (orange) images

of the bead overlaid following drift correction between the two images. The repeated

imaging allowed for an estimation of the drift in the xy plane, which can be seen

in Fig. 3.12b. If there were no drift, the centre of the bead should be at the same

(x,y) coordinate in each image, and so the gradients of the fitted lines in Fig. 3.12b

should be zero. However, there appeared to be significant drift in both x and y as

can be seen from the gradients of the lines fitted to the data in Fig. 3.12b, with

an x drift of 17.5± 0.2nm/image towards the left side of the image and a y drift of

25.5± 0.4nm/image towards the bottom of the image taken with pump only (image

acquisition time = 29s, errors generated from straight line fitting). If the beams were

perfectly aligned, then the blue and orange lines for both x and y would lie on top

of each other. However, this was not the case, and the difference in the intercepts

of the fitted lines suggested that the misalignment between the two beams in x was

42±6nm and in y was 60±10nm. The misalignment was not so great that the any of

the area of the pump beam lay outside of the boundaries of the dump beam though,

so all excited molecules beneath the beam pair should have experienced some degree

of CW STED.

Prior to collecting the sequence of images used to assess beam misalignment and

drift, the focus was adjusted such that the imaging plane was in the centre of the

xz point spread function imaged using pump only. The FWHMs of the 200nm bead

repeatedly imaged with each beam (same data set as in Fig. 3.12) were calculated

to estimate whether there was any measurable drift in the z direction. There were

no significant increases or decreases in the measured FWHMs for either beam with

repeated imaging, suggesting that there was little axial drift over the 20 images

taken. The ratio of the two average FWHM values was 1.26 ± 0.05 (average dump

only FWHM÷average pump only FWHM), which is in agreement with the ratio of

the two wavelengths, 1.216±0.003 (λdump÷λpump), indicating that the beams seem

well-aligned in z.

The lateral beam misalignment may be due to wavelength-dependent refraction

through optics between the fibre output and the microscope objective, such as the

beamsplitter to the CCD camera, the prism and unknown optics in the body of the

inverted microscope which cannot be accessed. In earlier work to implement con-

ventional pulsed-pulsed STED microscopy using the same microscope [111], where

the dump and (two photon) pump beams were combined in free space rather than

through the optical fibre, the dump beam was ‘walked’ onto the pump beam until
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Figure 3.12: Beam alignment and lateral drift. a) Images of the same 200nm

bead imaged with dump only (orange) and pump only (blue) overlaid after

applying a small correction for drift. Scale bar = 500nm. b) x and y positions

of the centre of the 200nm bead calculated for 20 alternating pump only and

dump only images. Straight lines are fitted to the determined values. The image

was 2760× 2760nm in total, with all positions relative to the top left corner of

the image. Total acquisition time per image was 29s, including switchover of

beams.

maximum STED was observed (as measured by fluorescence intensity suppression

from a small volume of fluorophores in solution). Following this optimisation it

was often observed that the back-reflections of the two beams in the CCD camera

appeared slightly misaligned, despite this alignment yielding maximum depletion.

Another possible explanation could be bending or warping of the major dichroic

caused by clamping it into its holder. Therefore the beam misalignment seen both

here and previously may be the result of a fundamental misalignment within the

microscope beam path.

Misalignment of the pump and dump beams is likely to be the cause of the

asymmetric depletion of the fluorescent beads seen in Fig. 3.2. It is likely that

this misalignment varies on a day-to-day basis as a result of adjustments to optical

components between the fibre output and the objective. Such adjustments include

removing and replacing the major dichroic for various other experiments performed

using the microscope and altering the correction collar on the objective. This could

explain why the asymmetrical depletion in Fig. 3.2 is more prominent in the x

direction than the y direction despite the misalignment measured in Fig. 3.12 being

similar in both x and y directions.

3.7.2 Comparison of obtained resolution with theory

Another divergence from theoretical predictions was that the increase in resolution

was not as high as predicted. The model data consistently produced a 3-fold in-
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crease in lateral resolution without noise, and a 2-fold increase with noise and using

the same image reconstruction algorithm as the experimental data. In contrast,

whilst some of the experimental images showed these large increases in lateral reso-

lution, many only showed a modest improvement, with an average 1.5-fold increase

in resolution. This increase in lateral resolution was consistent across all bead sizes

tested, although the 20nm beads appeared to perform better inside the HEK cells

(Fig. 3.9). Possible explanations for this could be that the environment of the cell

acted as a heat sink for the beads, which was not provided when they were adsorbed

onto coverslips, and a smaller refractive index mismatch between the sample and

the objective immersion medium (here water), although the correction collar on the

objective was adjusted in an attempt to minimise this. The image acquisition times

were shorter when imaging the cells than the beads on the coverslips; this could

have caused less photobleaching than in the images obtained with longer scan times,

where both the intensity and lifetime recovery of the beads were affected.

Further investigations into imaging parameters such as pixel dwell time and pixel

size are required to verify whether these impact upon fluorophore photophysics. For

example, in conventional STED and gSTED microscopy, when samples such as ni-

trogen vacancies which are known to experience very little photobleaching (discussed

further in Section 5.8.3) are imaged, pixel dwell times are similar to those used for

the imaging experiments here (600µs) [86, 112]. However, when both fixed and living

biological samples are imaged, pixel dwell times are dramatically reduced to < 1µs

[86, 113]. The use of such short pixel dwell times on fixed samples implies that there

is additional benefit to this rapid scanning other than preservation of live speci-

mens, perhaps regarding bleaching of fluorophores, and as such future development

of LIR-SR should include optimisation of image acquisition times.

The model data predicted that a larger increase in resolution should be obtained

in the axial direction, and whilst this was seen for the 200nm beads, the increase

in axial resolution for the other bead sizes was comparable to or poorer than the

increase in lateral resolution (Table 3.2). The improvement in axial resolution was

greater for larger bead sizes, with the smallest bead size tested (20nm) showing no

significant improvement in resolution. One possible explanation for the poor axial

resolution could again be due to the refractive index mismatch; it has been shown

that when the refractive index of the objective immersion medium (here water,

n=1.33) is greater than that of the sample immersion medium (here air, n=1.00)

creates distortion in objects such that they become elongated along the optical axis

[114]. It was also observed when using the microscope that axial drift could often

be severe: a more rigorous testing of this axial drift could reveal whether this was

also contributing to the poor axial resolution.
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3.8 Assessment of computational methods

Part of the development of LIR-SR described here has been computational work

on dividing the acquired image into time windows and calculating coefficients for

reconstruction. The program written for time window selection requires the subjec-

tive selection and assessment of time windows by the user. Whilst this process has

been sufficient to generate time window images for super resolution reconstruction,

sub-optimal choice of time windows may be a contributing factor in the lower than

expected resolutions, including the lower resolutions seen in the noisy simulated data

in Chapter 2.

One method for automating the time window selection process could involve the

design of an objective metric for assessing whether the generated time windows were

sufficiently structurally distinct from one another, along with measures to ensure

that the signal to noise ratio in each time window image was large enough. Whilst

assessment of the signal to noise ratio is computationally straightforward, assess-

ment of evolution in the fluorescence distribution between different images may be

more complex due to noise fluctuations on the same scale as the expected varia-

tion in the fluorescence distribution. Another approach could be to combine time

window selection with the reconstruction process using an area of machine learning

known as reinforcement learning [115]. Reinforcement learning is the computational

equivalent of ‘trial-and-error’; for this application time windows would be generated

and run through the reconstruction algorithm, and the obtained resolution used as

a measure of time window quality. By assessing the final product (i.e. reconstructed

image resolution), the time window selection algorithm would ‘learn’ good and bad

properties of time windows and use this gained experience to generate better time

windows.

The major benefit of the genetic algorithm image reconstruction process used in

LIR-SR is its speed, as following the selection of profiles in the image by the user,

the algorithm takes < 2 seconds to run. However, this algorithm is based on the

estimation of resolution through Gaussian curve fitting, which may not accurately

describe the shape of the object in the sample. Again, this method also has an

element of subjectivity as the user must manually choose the profiles for fitting.

Whilst resolution in super resolution literature is usually quantified by the FWHM

of either a Gaussian or Lorentzian fitted function (e.g. [80]), here it may be beneficial

to use a parameter such as edge steepness of objects within the image, as this should

not be affected by the unknown internal structure of each fluorescent object. A

potential method to do this would be to detect feature edges within an image [116]

and then attempt to maximise the gradients of these edges.
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3.9 Image quality

One by-product present in both noisy model and experimental reconstructed images

is negative-valued pixels. These do not correspond to any real physical quantities,

and arise from the noise in images and the finite widths of the time windows. A more

rigorous process for time window selection, as discussed above, may help alleviate

this problem.

Minimal processing of images was performed following reconstruction. This is

in contrast to STED microscopy where deconvolution is frequently performed on

images following acquisition. Deconvolution is a procedure which attempts to re-

move the blurring effect of the point spread function from acquired images, but is

computationally intensive and requires accurate knowledge of the structure of the

PSF. However, deconvolution of noisy images typically produced using STED mi-

croscopy can produce artefacts such as negative-valued pixels, yet when presented

in the literature these negative values are frequently ‘clipped’ (i.e. set to zero) [72].

STED microscopy also generates negative values through methods other than

deconvolution. For example, Vicidomini et al. (2012) [117] used STED wavelengths

closer to the emission maximum in a gated STED apparatus, and then performed a

subtraction of a late time gate to remove fluorescence induced by the STED beam.

However, in the figures in this paper these negative values are not displayed. Re-

analysis of the data in this paper shows that the negative values generated in this

process are distributed at the edges of bright objects (Fig. 3.13), which is similar to

the locations of negative values observed in LIR-SR.

3.10 Future directions

Preliminary results on imaging culture cells indicate that LIR-SR is a suitable

technique for live cell imaging. The on-sample intensity was calculated to be

< 10MW/cm2 (for 50mW output from the dump laser), which is at least an order

of magnitude lower than that used in STED microscopy, and the image acquisition

times are far shorter than required in PALM and STORM. However, as enough pho-

tons need to be collected per pixel to generate sufficient intensity in the late time

windows (a requirement similar to that of conventional fluorescence lifetime imag-

ing) the image acquisition speed in LIR-SR is currently too slow to image dynamic

processes occurring in cells, such as the transport of cargo, which moves at tens of

microns per second [118], and calcium transients which last hundreds of millisec-

onds [119]. One solution for speeding up image acqusition could be to scan multiple

beamlet pairs through the sample simultaneously with fluorescence collected by an

array of detectors [120]. The results shown here also indicate that use of a hybrid

PMT detector could enhance the performance of LIR-SR. Faster image acquisition

could also alleviate any potential photobleaching as discussed in Section 3.7.

The next step in testing LIR-SR will be to image a biological sample with bi-
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Figure 3.13: Re-analysis of published STED data showing negative values.

The top row of images are taken from a figure in Vicidomini et al. (2012)

[117] and show images of fluorescently labelled microtubules. In this paper,

the second image was subtracted from the first image to yield the final image,

where the asterisk in the colourbar indicates that negative values have been

clipped to zero. The bottom row shows extracted regions (blue rectangle in

top row) from the first two images in the paper, which were appropriately

scaled according to the colourbars presented in the paper using Matlab, and

the result of performing the same subtraction process but displaying the image

using the colourmap defined in Chapter 2 for LIR-SR images. The white dashed

region in the re-analysed subtracted image is enlarged.

ological structures labelled, as opposed to containing fluorescent beads. This will

test how LIR-SR performs in more challenging imaging environments where fluo-

rophores are distributed more sparsely, autofluorescent molecules may be present

and fluorophores may experience more photobleaching. In addition to the computa-

tional improvements suggested above, integration of a drift correction system (e.g.

[121]) into the microscope would also be beneficial in ensuring sample stability, as

small sample displacements during imaging could be eroding the nanoscale changes

in spatial fluorescence that are core to LIR-SR.

Whilst the results presented in this chapter do not provide resolutions compara-

ble to that of PALM, STORM or STED microscopy, great care has been taken to

rigorously test LIR-SR on a range of different-sized test samples and to present an

honest representation of the resolutions obtained in these images. The quoted reso-

lutions are averages of the measured resolutions of every bead imaged, as opposed

to selecting only the beads which displayed large increases in resolution. Further-
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more, the resolution quantification method (FWHM of fitted Gaussian function) has

been consistent across all imaged beads, rather than selecting different quantification

methods (e.g. Lorentzian fitting [80] or direct measurement across the bead profile

[113]) to yield the highest resolutions from individual beads.



Chapter 4

Quantitative investigations of

continuous wave STED

dynamics

Chapters 4 and 5 describe investigations into factors affecting the efficiency of CW

STED of fluorophores in solution. This chapter firstly summarises previous work by

the group on the dynamics of pulsed STED, as well as STED dynamics as described

in super resolution microscopy. A description of the time- and polarisation- resolved

fluorescence measurements is provided for the CW STED experiments performed

here, and mathematical modelling of CW STED behaviour is presented. In this

chapter, the effects of rotational diffusion on CW STED dynamics are explored for

the fluorophores coumarin 6 and 2’,7’-dichlorofluorescein when dissolved in solvents

of varying viscosities. The implications of these results are then discussed in relation

to modelling and observations from pulsed STED experiments.

4.1 Understanding photophysics in LIR-SR

As CW STED is the fundamental physical process underpinning LIR-SR microscopy,

it is important to have a quantitative understanding of its dynamics. The images

obtained using LIR-SR were of lower resolution than predicted from theory, and

although possible explanations for this have been presented, these are primarily

concerned with the image acquisition process and computational methods as opposed

to the photophysics of CW STED. Indeed, quantitative descriptions of the underlying

photophysics of CW STED are largely absent from published literature. Hence a

thorough investigation of CW STED dynamics could provide useful insight for the

future development of LIR-SR.

Here, CW STED dynamics were investigated for fluorophores in solution as op-

posed to the fluorophores contained within polystyrene beads which were imaged

in Chapter 3. Such an approach was chosen to ascertain the photophysics of CW

106
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STED as it allowed for experimental control of parameters such as fluorophore con-

centration and environment, whereas the fluorescent beads used previously were

limited in these respects and may have presented confounding factors such as local

concentration gradients within the beads and local heating effects. This allows for a

fundamental analysis of CW STED photophysics which can be used as a basis for un-

derstanding CW STED of more complex confined fluorophore systems such as those

which would be present in samples imaged with LIR-SR. Furthermore, by studying

CW STED on fluorophores in solution comparisons can be drawn between the work

presented here and pulsed STED photophysics in solution presented previously in

the literature.

4.2 Deviations from model behaviour in pulsed STED

experiments

The group has a strong history of characterising STED dynamics following two

photon excitation [28], notably in specially-designed two photon chromophores

[122], chromophores with non-planar geometries [123] and biologically relevant fluo-

rophores such as enhanced green fluorescent protein (EGFP) [57]. These experiments

have been performed predominantly using pulsed two photon pump and pulsed dump

with time-resolved detection, with subsequent modelling and quantification of the

behaviour of the fluorophore population and anisotropy. Although different permu-

tations of pump and dump polarisations have been used in these studies, only the

results obtained using parallel polarised pump and dump will be discussed in detail

here, as these are the beam polarisations used throughout this thesis.

Parameters such as dump wavelength, pump-dump delay (the time difference

between the arrival of the pump and dump pulses at the sample) and dump pulse

width (duration of each dump pulse) have been extensively investigated. It has been

shown that the stimulated emission cross-section σSTED as a function of wavelength

mirrors the emission spectrum for two photon chromophores, conventional organic

fluorophores [9], and EGFP [57]. Investigations of the pump-dump delay have pro-

vided insight into the orientational dependence of STED, as this delay dictates the

amount of time available for rotational diffusion away from the highly ordered ex-

cited state population created by two photon excitation (Section 1.3.1) before the

dump pulse can take effect.

Investigations of STED dynamics as a function of dump pulse width have pro-

duced results deviating from those predicted by modelling based on a simple two

state system (similar to that described in Section 2.5.1). For pulsed STED, again

only the fractional populations of the lower vibrational levels of S1 (Nex) and the up-

per vibrational levels of S0 (Ngs) are considered, with the population of the excited
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state described by

dNex(θ, φ, t)

dt
= − S

τp
Wd(θ, φ)Nex(θ, φ, t), (4.1)

where Wd(θ, φ) is the angle-dependent STED transition probability and τp is the

dump pulse width (typically 10−13 − 10−11s). S is a dimensionless quantity termed

the saturation parameter, given by

S =
σSTEDEd
hνA

(4.2)

where σSTED is the STED cross section, Ed is the dump pulse energy and A is

the dump pulse area [28]. As for the CW case described in Section 2.5.1, rapid

vibrational relaxation decouples Nex from Ngs; however in pulsed STED, S/τp � kf

and so there is no dependence of Nex on the decay rate kf in contrast to the CW

case. Equation 4.1 can thus be solve to yield

Nex(θ, φ, t) = Nex(θ, φ, 0) exp

(
− S
τp
Wd(θ, φ)t

)
(4.3)

which can be evaluated over the duration of the pulse (t = 0→ τp). STED efficiency

in pulsed STED is again quantified as fractional depletion Fd, as in CW STED, but

for the pulsed case is measured in terms of fluorescence intensity suppression in the

presence of the dump beam as opposed to lifetime shortening (as was used for the

CW case in Section 2.5.1).

In the model system, increasing dump pulse width τp should increase STED effi-

ciency as the probability of re-excitation from high vibrational levels of S0 decreases

with increasing τp, as does the probability of dump-induced two photon excitation.

However, experimental results for increasing τp have not increased STED efficiency

as expected [9, 57, 15]. Modelling of the two state system has been performed

with the orientational distribution of the excited state accounted for with various

pulse widths and rotational correlation times τrot (Section 1.2.3). Whilst the model

described the relationships between dump power and fractional depletion Fd and

change in anisotropy ∆R well for short pulses (τp < ∼ 10ps), fractional depletion,

and hence STED efficiency, was seen to decrease as τp was increased [9, 15]. For

pulse widths where τp > 10−3τrot, the model also suggested that the ground state

relaxation time τR - which should be independent of STED - was increasing with τp

[9, 57]. Thus, previous work on quantifying STED by the group has been successful

for short dump pulses, but unexpected results and disparities with model predictions

have been seen for longer dump pulses.

One proposed explanation for this unexpected behaviour was that the process

used to temporally stretch the dump pulse introduced positive chirp such that the

early part of the dump pulse contained longer wavelengths than the later part.

If so, the later part of the pulse could be re-pumping molecules dumped by the
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early part of the pulse, manifesting as a reduction in the observed Fd which would

be interpreted as an increased τR in the fitting of the model [28, 9]. However,

more recent experiments on EGFP and other chromophores using a grating-based

pulse stretching system where the stretched pulse was negatively chirped (shorter

wavelengths arrive before longer wavelengths) produced the same result of lower

than expected STED efficiency (Fd) for longer pulses. These experiments produced

maximum Fd values for short pulses of 0.95 − 0.99, but only 0.92 − 0.95 for long

pulses; the expected Fd for the long pulses at the dump energies used (∼50nJ) was

0.99− 1.0.

Having ruled out pulse chirping, the proposed explanations for these effects were

excited state absorption of the dump beam and the effects of modelling the dump

pulse with a square temporal profile rather than a Gaussian [57], though it was later

argued that a Gaussian pulse profile should be more efficient than a square one, as in

a Gaussian pulse there are regions that are not saturating [15]. However, since the

study on EGFP an excited state absorption spectrum for EGFP has been published

which shows that there would have been negligible excited state absorption at the

dump wavelengths used [124].

Recent experiments investigating dump pulse width have been performed using

fluorescein - a simple, well-characterised fluorophore in contrast to some of the more

complex fluorophores studied previously - however the same result of poor STED

efficiency and deviation from model behaviour was still observed. Furthermore, an

apparent relationship between the dump pulse width where the model failed and the

solvent viscosity (and hence τrot) was observed [15].

The experiments producing the non-model behaviour described above were per-

formed using either a streak camera or TCSPC system with low numerical aperture

focusing into the sample, with the repetition rates of both beams at 250kHz and

the dump pulses provided by an optical parametric amplifier (OPA) pumped by a

regenerative amplifier. However, two photon pulsed STED has also been used in the

group to attempt to perform conventional STED microscopy in the microscope used

for LIR-SR; here the beams were focused into the sample using a high numerical

aperture objective at repetition rates of 76MHz, with the dump pulses instead pro-

vided by an optical parametric oscillator (OPO). Dump pulses stretched to > 20ps

were again incapable of ‘turning off’ all of the excited state population, with max-

imum values of Fd measured as 0.87 for fluorescein and 0.79 for EGFP in solution

[111]. No modelling was performed for this data, but the results indicated that poor

STED efficiency was not unique to the apparatus used.
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4.3 Deviations from model behaviour in CW STED ex-

periments

CW STED essentially refers to pulsed STED in the limit of an infinitely long dump

pulse and so has been studied in the group as a natural progression from pulsed

STED experiments with long dump pulses [15]. In particular the commonly used

fluorescent proteins EGFP and mCherry have been studied, with single photon ex-

citation as opposed to two photon excitation previously used in pulsed STED ex-

periments.

In the absence of CW dump, both EGFP and mCherry displayed biexponen-

tial fluorescence decays and hence two lifetime components, and so the behaviour

of these two lifetime components were analysed for each fluorescent protein when

measured in the presence of a CW dump beam. For example, the individual STED

rates (kSTED) of the two components were measured. As in Chapters 2 and 3 the

STED efficiency was quantified as the fractional depletion, which was obtained from

measuring the shortening of the fluorescence lifetime. In both fluorescent proteins,

one fluorescence lifetime component showed significantly more lifetime shortening

than the other component, indicating that one fluorescence lifetime component was

being depleted more strongly than the other within the same fluorescent protein.

The relative contributions (amplitudes) of the two lifetime components to the over-

all fluorescence lifetime were also seen to vary with dump power for EGFP, with the

lifetime component exhibiting stronger depletion increasing in amplitude at higher

dump powers. This behaviour was not observed in mCherry. These results suggest

complex behaviour for CW STED of fluorescent proteins.

Both proteins have long rotational correlation times compared to their fluores-

cence lifetimes (EGFP: τrot = 18ns, average τf = 2.7− 2.8ns; mCherry: τrot = 30ns,

average τf = 1.6−1.7ns) and so as a first approximation, rotational diffusion of both

proteins was assumed to be negligible during their fluorescence lifetimes. As a start-

ing point the orientational distribution of fluorophores in both cases was initially

assumed to be cos2 θ (Section 1.2.1) with the STED rate assumed to be independent

of the molecular orientation (again, both pump and dump beam were V-polarised).

The total detected intensity over time, I(t) = I‖(t) + 2I⊥(t), was modelled as

I(t) =
2

3
CNex(0) exp(−kf t) exp

(
−

3BIdump

7
t

)
(4.4)

where B and C are constants of proportionality, Nex(0) is the excited state popula-

tion immediately following excitation, kf is the undumped rate of fluorescence and

Idump is the intensity of the dump beam. A detailed derivation of this relationship

can be found in [15]. For simplicity the angular average of the dump field intensity

was applied to all orientations; however this model did not describe the experimental

observations well.
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To rectify this, Eq. 4.4 was reformulated for a fluorophore with two excited state

populations as

I(t) =
2∑
i=1

Ni(0) exp(−kfit)
3

4π

∫ π

0
cos2 θ exp

(
−(S′i cos2 θ)t

)
sin θdθ (4.5)

where the two lifetime components are i = 1 and i = 2, where S′i is the depletion

rate of state i and is the CW equivalent of S in Section 4.2, given by

S′i =
σSTEDPd
hνA

(4.6)

where Pd is dump beam power. The orientational dependence of STED is now

described by the cos2 θ term in the exponent within the integral (the other cos2 θ term

describing the orientational dependence of the initial excited state population). This

equation was numerically solved for different ratios of S′i (i.e. relative STED rates of

the two lifetime components) for both EGFP and mCherry and theoretical intensity

decays I(t) were produced and fitted to obtain theoretical values of parameters such

as fluorescence lifetimes, STED rates and relative component contributions which

were then compared with the experimental data.

For mCherry, the parameter values derived from the experimental data agreed

well with theoretical values. However, for EGFP if theoretical parameters were gen-

erated which agreed well with experimental values obtained for the shorter lifetime

component, these theoretical values did not agree with the longer lifetime component

and vice versa. Thus, for EGFP the model was unable to fit both lifetime compo-

nents simultaneously. These results suggest that while the group’s current model of

CW STED may sufficiently describe some fluorophores, it cannot accurately account

for the behaviour of EGFP in the presence of CW dump.

4.4 Quantification of STED efficiency in super resolu-

tion literature

Whilst many technical refinements have been made to conventional STED mi-

croscopy since its inception, there has been little quantitative analysis of the under-

lying photophysics of STED microscopy. Correspondingly there is little discussion

of STED efficiency in super resolution literature, and quantification of the neces-

sary STED power to successfully perform super resolution imaging appears to be

decided by spatial resolution measurements as opposed to measurements of lifetime

shortening or intensity suppression [125].

A commonly used parameter for quasi-quantification of STED microscopy is the

‘saturation factor’ ζ, which is given by ISTED/IS , where ISTED is the on-sample

STED beam intensity and IS is the STED beam intensity required to reduce the

probability of spontaneous emission by 1/e [126]. However, ζ itself does not account
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for any orientational ‘holeburning’ (the process by which the dump beam preferen-

tially removes excited state molecules with µem oriented parallel to its polarisation),

time-dependent orientational effects or re-pumping effects. Simulations have been

performed which describe the effect of polarisation and molecular orientation in

pulsed STED microscopy, and these indicate that there is a range of molecular ori-

entations which will experience no increase in resolution even when using circularly

polarised pump and dump beams (polarisations most commonly used in STED mi-

croscopy) [127]. However, such polarisation effects are often neglected in analytical

treatments of STED microscopy.

Leutenegger et al. [128] made an effort to model the effect of dump pulse length

(which is inversely proportional to ζ) on STED efficiency in STED microscopy,

parametrised as the probability of spontaneous decay (fluorescence) occurring. This

modelling showed that for very long dump pulses (small ζ) STED was inefficient as

the rate of spontaneous emission was faster than the rate of STED; STED was also

predicted to be inefficient for very short pulses (large ζ) as there was insufficient

time for vibrational relaxation of S0 to occur and hence there was a high level of

re-pumping back into S1. The optimal dump pulse length was calculated to be 20-

30ps, as this caused a steep decrease in the probability of spontaneous emission with

increasing ζ. However, it was also stated that in practical applications of STED

microscopy, dump pulses of 100-150ps were found to be most efficient, a significant

departure from the theoretical estimation. Reasons provided for this discrepancy

were that longer pulses allowed for reorientation of the excited state, caused less

photobleaching than shorter pulses and minimised multiphoton excitation. This

was not further investigated experimentally and no corrections were made to the

model to account for this, so as yet the contributions of these effects have not been

quantified. It can also be inferred that, if longer pulses are required than predicted

by this simple model, ζ is also smaller than expected as it does not account for these

effects.

As the resolution obtained in conventional STED microscopy is given by [76]

dSTED = 0.45
λSTED

NA
√

1 + ζ
, (4.7)

the effect of ζ being smaller than expected will be an increase in dSTED and hence

a poorer obtained resolution. Therefore ISTED must be increased to raise the value

of ζ and subsequently counteract the effects of orientation, photobleaching and mul-

tiphoton excitation. This may explain why the dump powers used in conventional

STED microscopy seem much higher than predictions from the pulsed STED model

for shorter pulses used in previous work by this group. Although the modelled in-

crease in STED efficiency with pulse length by Leutenegger et al. is in agreement

with the modelling performed by this group, the experimental need for longer pulses

for STED microscopy to perform more efficiently is clearly at odds with the pulse
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length experiments described in Section 4.2, where longer pulses resulted in lower

STED efficiency. Quantification of thus far neglected photophysical properties of

STED may therefore benefit understanding of the behaviour of conventional STED

microscopy.

Whilst it is acknowledged that CW STED microscopy is less efficient than pulsed

STED microscopy due to the lower instantaneous intensity of the dump beam [110],

again there is little description of the underlying photophysics. For example, whilst

Vicidomini et al. [110] have presented a theoretical framework for g-STED, the

population of the excited state is described using the same simple two state model

as is used in LIR-SR theory (Eq. 2.7) again neglecting orientational effects, with

the majority of the theory concerning the spatial distribution of fluorescence.

4.5 Overview of experiments

To investigate the photophysics of CW STED, time- and polarisation-resolved flu-

orescence measurements were made for the fluorophores coumarin 6 and 2’,7’-

dichlorofluorescein in solution for a range of CW dump powers. These measurements

were made using the microscope TCSPC system as used for LIR-SR imaging and

previous CW STED work in the group.

Coumarin 6 and 2’,7’-dichlorofluorescein were chosen for investigation of CW

STED in solution as they have monoexponential undumped fluorescence lifetime

decays, in contrast to the biexponential decays displayed by mCherry and EGFP in

previous work. As simulations of CW STED on molecules with monoexponential

decays experiencing little rotation produced theoretical decays which were better de-

scribed by biexponential functions (described in detail in Section 4.7.1), fluorophores

which are known to possess monoexponential decays should be easier to interpret

using this model than the fluorescent proteins.

Furthermore, the use of these small organic fluorophores allowed for the investi-

gation of the effects of rotation on STED efficiency, which was not possible for the

fluorescent proteins due to their innately slow rotational correlation times. Here, the

rotational correlation time τrot was varied by dissolving the fluorophores in three dif-

ferent solvents of varying viscosities, as τrot is proportional to viscosity η (Section

1.2.3).

4.6 Methods

4.6.1 Samples

Coumarin 6 (Exciton Inc.) and 2’,7’-dichlorofluorescein (Sigma-Aldrich, referred

to throughout as fluorescein) were used for all experiments. The structures and

spectra of these two fluorophores are provided in Appendix A. A summary of the

combinations of fluorophores and solvents is shown in Table 4.1. Coumarin 6 was
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measured when dissolved in glycerol (2.5×10−3M) and ethylene glycol (1×10−5M),

and fluorescein was measured when dissolved in water (1 × 10−5M) and ethylene

glycol (1 × 10−5M). Coumarin 6 was insoluble in water and fluorescein exhibited a

biexponential undumped fluorescence decay when dissolved in glycerol, and as such

these experiments were not performed on these combinations. In all experiments

50µl of solution was pipetted onto a thickness 1 coverslip. For fluorescein in water

this volume was topped up midway through the experiment to compensate for any

sample evaporation.

Water Ethylene glycol Glycerol

Coumarin 6
Insoluble:

no decay obtainable
Soluble:

monoexponential
Soluble:

monoexponential

2’7’-
dichlorofluorescein

Soluble:
monoexponential

Soluble:
monoexponential

Soluble:
biexponential

Table 4.1: Solubility and pump-only decay characteristics of coumarin 6 and

2’,7’-dichlorofluorescein in water, ethylene glycol and glycerol. Only fluo-

rophore/solvent combinations yielding a monoexponential pump-only fluores-

cence decay were examined with CW STED: greyed-out combinations were not

used.

4.6.2 Experimental set-up

The experimental set-up was the same as used in LIR-SR (Fig. 2.14), including

490nm pulsed diode pump laser and 594nm CW DPSS dump laser, filters and 50µm

pinhole. The hybrid detector was not used in any of the experiments here. For

all measurements the two SPAD detectors were used in conjunction with the cube

polariser such that the V- (parallel) and H- (perpendicular) polarised fluorescence

signals were separately detected. The polarisations of both pump and dump beams

were both V-polarised when focused through the objective. The repetition rate of

the 490nm pump beam was ≤ 20MHz in all experiments and the power was adjusted

such that detection rate satisfied the 1% sampling rate criterion (over both detectors,

Section 1.4.1); this typically corresponded to a pump power of ∼ 1µW (∼ 2µW

per unit bandwidth for 0.5nm spectral bandwidth of pump laser) before entry into

the optical fibre. Measurements of the pump power after the major dichroic were

seen to be indistinguishable from background light measurements taken with the

same powermeter elsewhere within the box containing the intermediate optics of the

microscope (∼ 300nW).

Each experiment commenced with a measurement of the undumped (i.e. pump

beam only) lifetime of the sample, and then dumped (i.e. pump beam and dump

beam together) measurements were taken starting with the highest dump power

and incrementally decreasing it. Undumped measurements were repeated every four

dump powers tested to monitor whether the undumped lifetime of the sample was
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altered over time by the dump beam. A second measurement at the highest dump

power tested was repeated at the end of each experiment. Each measurement com-

prised the detected fluorescence from a fixed point for 30 seconds (i.e. the objective

was not scanned through the sample, in contrast to the imaging experiments de-

scribed previously).

For the measurements of coumarin 6 in ethylene glycol a vertical-external-cavity

surface-emitting laser (VECSEL) was used as the dump source.1 Here the VECSEL

was pumped by a 200W 808nm diode source and tuned to operate in continuous

wave mode at 595nm [129]. The 595nm VECSEL output followed the same light

path as the 594nm DPSS dump laser and was hence coupled into the same fibre as

the 490nm pump laser. VECSELs have the advantages of being both tunable and

high-power; here the latter property was exploited, with maximum power after the

major dichroic measured as 82mW.

4.6.3 Polarised fluorescence detection and fitting

As V- and H-polarised fluorescence components were detected in two separate detec-

tors, a G-factor correction was made to account for differences in detector efficiency,

and the V-polarised measurements were normalised by division by the G-factor (Sec-

tion 1.4.2). For fluorescein in water, the G-factor was adjusted such that calculated

anisotropy decayed to zero for the first undumped measurement taken. For the sam-

ples in ethylene glycol, the G-factor was calculated from a measurement of fluorescein

in water as described above and then applied to the measurements in ethylene glycol

(no adjustments to any optics or the pinhole were made between the measurement

in water and the measurements in ethylene glycol). For coumarin 6 in glycerol, the

G-factor was adjusted such that the calculated anisotropy had an initial value of 0.4

(as expected from Section 1.2.2) at t=0 (set as halfway up the fluorescence rise).

Values of the G-factor measured for the various experiments were consistently in the

range G = 1.1− 1.2.

The intensity decays displayed and fitted here are not deconvolved and hence

contain a contribution from the instrument response function (IRF). However, the

FWHM of the IRF of the microscope was measured to be ∼ 140ps, which is sub-

stantially faster than the fluorescence lifetimes of the fluorophores used here and so

should not have a significant impact on lifetime measurements. IRF deconvolution

is also a time-consuming process and can introduce additional errors and noise [130].

Total intensity decays were thus calculated as

I(t) =
1

G
IV (t) + 2IH(t) (4.8)

1VECSEL construction and operation performed by Ms. Emmi Kantola, Optoelectronics Re-
search Group, Tampere University of Technology
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and anisotropy decays were calculated as

R(t) =
1
GIV (t)− IH(t)
1
GIV (t) + 2IH(t)

(4.9)

where IV (t) and IH(t) are the vertically and horizontally polarised fluorescence in-

tensities respectively, and G is the G-factor.

The total undumped intensity decays were fitted to a monoexponential function,

and the total dumped intensity decays were fitted to either a monoexponential func-

tion or a biexponential function. The form of the monoexponential function fitted

for both undumped decays and, when appropriate, dumped decays was

I(t) = N exp

(
− t
τ

)
+ I0 (4.10)

where N = absolute amplitude, τ = lifetime (= τf in undumped decays) and I0 =

background signal, and the form of the biexponential function fitted (dumped decays

only) was

I(t) = N1 exp

(
− t

τ1

)
+N2 exp

(
− t

τ2

)
+ I0 (4.11)

where N1 and N2 are the absolute amplitudes of lifetime components τ1 and τ2

respectively. The background signal I0 arises from residual dump beam reaching the

detectors, detector afterpulsing and any stray light detected.

The zero time point t0 was fixed to be the time at which the rise of the fluores-

cence intensity reached approximately half its maximum intensity. The fitting range

was from after the early period following excitation known to be contaminated by

the IRF of the microscope to after the end of the fluorescence decay. Statistical

weighting was used during the fitting process with weights

wi =
1

Ii
(4.12)

where wi is the weight for data point i having intensity Ii. All fitting was performed

using a non-linear least squares fitting algorithm (Levenberg-Marquadt) built into

the Origin software (as used in Chapters 2 and 3).

In all cases the undumped intensity decays were monoexponential. Dumped

intensity decays were usually fitted to the biexponential function, with the exception

of some low dump power decays which fitted adequately to the monoexponential

function. Fit quality was assessed using the χ2 fitting statistic and visual inspection

of the residual plot (residual = actual value - fitted value for each data point), with

good fits expected to have low χ2 values and a residual plot symmetric about zero

[131].
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4.6.4 Definitions of measured and derived parameters

For biexponential fits, τ1 was defined as the faster lifetime component and τ2 as the

slower lifetime component. Where dumped decays fitted adequately to a monoex-

ponential function the lifetime was designated as τ1 and τ2 was assumed to be zero.

For consistency the same parameters were extracted as for the previous work on

CW STED of fluorescent proteins in the group [15]. As such testing of the model

on the fluorophores possessing monoexponential lifetimes used here could be used to

ascertain whether orientational effects and different radiative rates were a sufficient

explanation for the results seen for the biexponentially decaying fluorescent protein

mCherry [15].

Fractional amplitudes were defined as

A1 =
N1

N1 +N2
; A2 =

N2

N1 +N2
(4.13)

indicating the relative contributions of each lifetime component to the total intensity

decay.

The STED rates were defined as the difference between the dumped decay rates and

undumped decay rates as

kSTED1 =
1

τ1
− 1

τf
; kSTED2 =

1

τ2
− 1

τf
(4.14)

where τf was the mean undumped fluorescence lifetime calculated from the un-

dumped measurements made throughout the course of each experiment. It should

be noted that kSTED1 and kSTED2 have a slightly different meaning to the kSTED

parameters defined for the fluorescent proteins EGFP and mCherry [15]. For these

fluorescent proteins, kSTED1 and kSTED2 corresponded to the two lifetimes present

in the undumped decays, which were then further modified by CW STED. Here

the two lifetimes are solely a product of the different rates of STED experienced by

differently-oriented fluorophores which display monoexponential undumped decays.

The fraction of the excited state population removed by STED is termed the frac-

tional depletion (as in Section 2.5.1) and was defined as

Fd =
τf − τd
τf

(4.15)

where τd is the average dumped fluorescence lifetime as given by

τd = A1τ1 +A2τ2, (4.16)

where for monoexponential dumped decays τd = τ1.

Errors in the values of τ1, τ2, N1 and N2 were taken as the errors produced by the

fitting algorithm. Errors in the derived parameters A, kSTED, τd and Fd were prop-
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agated using the formula [103]

(∆Z)2 =

n∑
i

(
∂Z

∂xi

)2

(∆xi)
2 (4.17)

where Z = f(x1, x2...xn), for example kSTED1 = f(τ1, τf ) and ∆xi is the error

associated with variable xi (e.g. τ1, τf for the case of kSTED1).

No individual parameters are extracted from the anisotropy decays. A useful

presentation of the qualitative degree of the dump induced depolarisation of the

excited state was instead obtained by measuring the change in anisotropy as

∆R(t) = R(t)undumped −R(t)dumped. (4.18)

4.6.5 Calibration of on-sample powers

Prior to the acquisition of each decay, the dump power was measured after reflection

off of the major dichroic, and all powers stated in the results refer to this measure-

ment. All power measurements were made using a digital powermeter (PM100D

with S130C sensor, Thorlabs, USA) set to the appropriate wavelength. Powers were

taken as the average of a 10 second measurement (sampling rate = 3.5Hz), with the

error taken to be the standard deviation of this measurement as calculated by the

powermeter.

Figure 4.1 shows how these powers relate to the approximate on-sample power.

On-sample power was estimated by affixing the sensor of the powermeter to the

microscope stage and raising the objective to its maximum height to mimic the small

distance between objective and sample in experiments. The on-sample power was

approximately linear with power measured after the major dichroic, with 35.1±0.3%

transmission at 594nm through the objective as calculated by a linear fit to the data.

4.6.6 Mathematical modelling

Modelling of the behaviour of a fluorophore assumed to undergo no rotation (i.e.

coumarin 6 in glycerol) was performed using a program written by Dr Richard

Marsh in Mathematica 4.1 (Wolfram Research Inc.). The model also assumes that

the pump and dump are both V-polarised and that the fluorophores are isotropically

distributed, and is described below for single photon pump and a fluorophore with

a monoexponential undumped intensity decay.

The model was based on temporal dynamics of CW STED as discussed in Sec-

tion 2.5.1, with the equation describing the population of the excited state Nex in

the presence of the CW dump the same as Eq. 2.7 except here with orientational

dependence included:
dNex

dt
= −kfNex − S′ cos2 θNex (4.19)
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Figure 4.1: Calibration curve for on-sample dump powers. Power measured

after the major dichroic is plotted against corresponding power measured after

the objective. Error bars on individual measurements are too small to plot;

instead measurements were repeated on two different days and combined into

one dataset to account for variations in measurement precision and optical

system alignment. Black line is fit through data of y = (0.351 ± 0.003)x,

R2 = 0.995. Laser source is 594nm DPSS laser with same major dichroic as

used throughout.
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where kf = 1/τf . Here, θ is the angle between the emission transition dipole mo-

ment (assumed to be parallel to the absorption transition dipole moment) and the

electric field vector of the dump field (parallel to that of the pump field for these

experiments), and so cos2 θ describes the angular dependence of depletion. S′ is the

CW depletion rate as given by

S′ =
σSTEDPd
hνA

(4.20)

where σSTED is the STED cross-section, Pd is the dump power, and A is the area of

the focal spot. Following single photon excitation the orientational distribution of

the undumped excited state population is assumed to be

Pu(θ, φ) =
1

4π

(
1 +

2√
5

Y20(θ, φ)

Y00(θ, φ)

)
(4.21)

as in Section 1.2.4. The dumped excited state population is therefore described as

the product of the undumped excited state distribution (Eq. 4.21) and the angle-

dependent solution to the temporal evolution of the excited state population due to

dumping (solution of Eq. 4.19),

Pd(θ, φ, t) = Pu(θ, φ) exp
(
−
(
kf + S′ cos2 θ

)
t
)
. (4.22)

The value of kf is the reciprocal of the experimentally obtained value of the un-

dumped fluorescence lifetime τf , and S′ cos2 θ is the rate of STED weighted by its

angular dependence. The intensity decay is then given by

I(t) ∝
∫ π

0

∫ 2π

0
Pd(θ, φ, t) sin θdθdφ (4.23)

and the anisotropy decay is given by [28]

R(t) =

∫ π
0

∫ 2π
0 Pd(θ, φ, t)

(
4π
5

) 1
2 Y20(θ, φ) sin θdθdφ∫ π

0

∫ 2π
0 Pd(θ, φ, t) sin θdθdφ

. (4.24)

Simulated intensity and anisotropy decays were produced by numerical integration of

Eqs. 4.23 and 4.24 over a time range of 0-20ns for various values of S′ (i.e. different

dump powers) for accurate comparison with experimentally obtained data. Simu-

lated data was then fitted using Origin as described in Section 4.6.3 and expected

values for the parameters in Section 4.6.4 were obtained from these fits.

4.7 Results

Results were obtained for fluorescence detected from the fluorophores in three dif-

ferent rotational regimes. The first regime is for fluorophores in glycerol, where

there is minimal rotational diffusion. Here, orientational holeburning should be ob-
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served, where the dump beam removes molecules oriented at θ ∼ 0◦ to the dump

field (molecules whose dipole moments are parallel to the polarisation of the dump

field) from the excited state more efficiently than it removes molecules oriented at

θ ∼ 90◦ (molecules whose dipole moments are perpendicular to the polarisation of

the dump field). Secondly, in water, where rotational diffusion should be fast enough

to constantly refill the orientational hole burnt in by the dump beam. Thirdly, an

intermediate regime is shown for fluorophores in ethylene glycol which should behave

as a transition between the first two extreme cases.

4.7.1 Limit of no rotation

Following on from previous work in the group measuring and modelling CW STED

in fluorescent proteins [15], whose rotational correlation times τrot are substantially

longer than their fluorescence lifetimes, a similar situation where τrot is slower than τf

was investigated here using coumarin 6 dissolved in the viscous solvent glycerol (η =

1.29Ns/m2 at 21◦C, compared to 0.001Ns/m2 for water [132]). Very few solvents

are more viscous than glycerol, and so this system is as immobile as coumarin 6

can be without entering the solid phase. In contrast to EGFP and mCherry, which

exhibited biexponential undumped decays, coumarin 6 was selected as it displayed

a monoexponential undumped lifetime in glycerol (τf = 2.483± 0.002ns, average of

N=5 decays taken throughout the course of a single experiment on the same batch

of sample). The rotational correlation time for coumarin 6 in glycerol was estimated

from monoexponential fitting to undumped anisotropy decays to be τrot = 100±10ns

(N=5 decays), where the initial anisotropy R0 was fixed as 0.4 and the steady state

anisotropy R∞ was fixed as 0. As τrot is approximately 40 times slower than τf ,

coumarin 6 experiences minimal rotation during the lifetime of the excited state.

To test agreement between experimental behaviour and the model described

in Section 4.6.6, experimental parameters measured at a variety of dump powers

(examples of measured intensity decays shown in Fig. 4.2) were plotted on the same

axes as simulated theoretical parameters generated at different values of S′ (examples

of simulated intensity decays shown in Fig. 4.3) . S′ is proportional to dump power,

and so scaling of S′ was performed such that the model-generated curves agreed as

closely as possible with as many experimental data points as possible simultaneously

for the seven plotted parameters (τ1,2, kSTED1,2, A1,2 and Fd). A range of scaling

factors was tested and no factors were found which could force the theoretical and

experimental datasets agree at experimental dump powers > 10mW; any agreement

was consistently confined to the low dump power regime.

The ‘dump powers’ at which simulated data are plotted are the values of S′

used in the model scaled by a factor of 13 (i.e. theoretical dump power after major

dichroic = 13×S′). Plots showing the values of the intensity decay parameters from

both measured and simulated data are shown in Fig. 4.4.
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Figure 4.2: Examples of measured fluorescence intensity decays for coumarin

6 in glycerol. Intensity data (photon counts) are plotted in the top panels

and residuals are plotted in the bottom panels, red lines are fits to data. a)

Undumped decay with monoexponential fit. b) Decay with 26mW dump (mea-

sured after major dichroic) and monoexponential fit: asymmetric residual plot

indicates poor fit. c) Decay with 26mW dump and biexponential fit, which has

lower χ2 and a more symmetric residual plot than the monoexponential fit.
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Figure 4.3: Examples of normalised simulated fluorescence intensity decays for

coumarin 6 in glycerol. Data are plotted as open circles, red lines are fits to

data. a) Undumped decay with monoexponential fit. b) Decay correspond-

ing to 26mW dump with monoexponential fit: fit to data is visibly poor. c)

Decay corresponding to 26mW dump with biexponential fit. The fit is visibly

improved, with residual values much smaller than for the monoexponential fit

in b) (although still asymmetric) and smaller χ2.
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Figure 4.4: Parameters derived from intensity decays of coumarin 6 in glycerol.

Scatter points are experimentally obtained values, lines are model predictions

scaled to experimental data. a) Fluorescence lifetime components of the biex-

ponential decay. b) Corresponding STED rates for each lifetime component. c)

Fractional amplitudes for each lifetime component. d) Fractional depletion. Fit

errors in model data generation were so small that error bars were not plotted.

Measured intensity decays at 0.394mW and 0.686mW dump fitted sufficiently

well to monoexponential decays and so lack values for τ2, kSTED2 and A2.
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Intensity decay parameters

The values of the dumped fluorescence lifetime components for coumarin 6 in glycerol

at various dump powers are shown in Fig. 4.4a. In the presence of CW dump, both

the measured and simulated data approximated well to having two fluorescence life-

time components compared to the single fluorescence lifetime seen in the undumped

decays. In reality this ‘biexponential’ decay is a complicated function containing a

broad range of lifetime components; indeed, it can be seen in Fig. 4.3c that this

simulated dumped decay does not follow a true biexponential decay. However, the

residual values associated with this decay are small (< 1%) compared to the data

values, and as such a biexponential decay was taken to be a sufficient approximation

to the theoretical data. Furthermore, while it may have been possible to fit the

simulated intensity decays to an exponential function with more than two terms,

generated parameters would not have been comparable with those generated from

experimental intensity decays as these were too noisy to fit to a function containing

more than two exponential terms.

Exceptions to the biexponential fitting were the two lowest experimental dump

powers (first two black points in Fig. 4.4a): whilst the intensity decay was still

likely to be biexponential, at low dump powers the difference between τ1 and τ2

was smaller than could be differentiated through the curve fitting method used here.

Therefore for these points monoexponential decays were instead fitted.

Whilst the behaviour of the experimental and simulated lifetimes appeared to

agree qualitatively - there was one ‘short’ lifetime and one ‘long’ lifetime, both

of which became shorter with increasing dump power - they did not agree well

quantitatively. Whilst the simulated τ1 values matched the experimental τ1 values

for dump powers ≤ 10mW, at higher powers the two data sets deviated substantially,

with the simulated τ1 values continuing to shorten to a greater extent than the

measured τ1 values. The simulated values of τ2 did not agree with the experimental

values at any of the measured dump powers, nor could any scaling factor for S′ force

the values to agree. The experimental τ2 values also did not shorten to the degree

predicted by the model; from 4mW to 20mW the simulated τ2 values shortened by

0.49ns (23%) whereas over the same dump power range the experimental τ2 values

only shortened by 0.14± 0.03ns (6%).

The STED rates of the two lifetime components for the experimental and simu-

lated data are shown in Fig. 4.4b. The simulated STED rates both increased almost

linearly with increasing dump power; this was again seen in the experimental values

for the STED rate of τ1 (kSTED1) at low dump powers (≤ 10mW), but at higher

dump powers this rate appeared to plateau. The experimental kSTED2 values were

very low at all dump powers (maximum rate kSTED2 = 0.045±0.002ns−1) compared

to the simulated data (maximum rate kSTED2 = 0.25ns−1 at 26mW).

Whilst there was at least qualitative agreement between experimental and sim-

ulated data for lifetimes and STED rates, this was not the case for the fractional
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amplitudes (Fig. 4.4c). In the experimental data the fractional amplitudes under-

went large changes for dump powers up to ∼ 5mW and then remained at a constant

0.45:0.55 (A1:A2) ratio for all other dump powers. Notably the longer lifetime com-

ponent τ2, with fractional amplitude A2, became more dominant than the shorter

lifetime component τ1, with fractional amplitude A1. In contrast, although the rela-

tionship between the two fractional amplitudes for both experimental and simulated

data was similar at low dump powers, in the simulated data the shorter lifetime com-

ponent was always dominant over the longer lifetime component (A1 > A2) with a

larger difference between the contributions of the two components.

The discrepancies between the experimental and simulated data further manifest

in the fractional depletion, shown in Fig. 4.4d. The fractional depletion indicates

that the excited state was depleted much less efficiently in the experiment compared

to the simulated data. Both data sets showed an initial rapid increase of Fd with

dump power (<4mW), but then the experimentally measured values of Fd plateaued

(as seen for the lifetime components and STED rates) whilst the simulated values

continued to rise with dump power, although at a progressively slower rate. The

maximum value of Fd reached in the experimental data set was 0.357± 0.005, com-

pared to 0.703 in the simulated data set.

Anisotropy decays

The anisotropy decays of coumarin 6 in glycerol were measured and simulated to

examine the orientational distribution of the excited state in the presence of CW

dump. Figure 4.5a shows the experimentally measured undumped anisotropy decay

and anisotropy decays at various dump powers over the first 10ns following exci-

tation. The undumped decay (black line) decayed monoexponentially with time

constant = τrot; over the course of the plotted decay (∼ 4τf ) the anisotropy only

decreased from R0 ≈ 0.4 to R = 0.37±0.02 (average anisotropy from 8-10ns) due to

minimal rotation away from the initial excited state distribution. In the presence of

CW dump there was greater decay away from R0, which increased for higher dump

powers; this was indicative of more efficient removal of molecules oriented at θ ∼ 0◦

by the dump beam leading to a greater contribution of fluorescence from molecules

oriented at θ ∼ 90◦. This qualitatively agreed with the simulated data (Fig. 4.5b),

but quantitatively did not agree, with much lower anisotropies generated in the sim-

ulated decays than the measured decays. As with the intensity-derived parameters,

the quantitative discrepancy between the experimental and simulated anisotropy

decays became greater at higher dump powers.

One key difference between the simulated and experimental anisotropy decays

was that the simulated decays show high dump powers driving the anisotropy to neg-

ative values (i.e. greater contribution of θ ∼ 90◦ molecules than θ ∼ 0◦ molecules).

This was not seen in the experimental decays and was a similar result as was pre-

viously observed in pulsed STED experiments by the group, where large changes in



4.7. RESULTS 127

Figure 4.5: Measured and simulated anisotropy data for coumarin 6 in glycerol.

a) Experimentally measured undumped and dumped anisotropy decays. b)

Simulated undumped and dumped anisotropy decays. c) Measured change in

anisotropy for the four dump powers as plotted in a). d) Simulated changes in

anisotropy for dumped decays as shown in b). Experimental data are truncated

at 10ns as decays became noisy beyond this point with contamination from the

polarised background. Faint lines in experimental plots are raw data, bold lines

are smoothed data (5 point adjacent averaging). Simulated data are shown for

the various values of S′ in the model with corresponding powers after scaling.

anisotropy were generated by the model but not replicated in the experimental data.

Figure 4.5c shows the change in anisotropy ∆R for the dump powers shown in

Fig. 4.5a, and Fig. 4.5d shows this anisotropy change for the model data in Fig.

4.5b. Again, there was no quantitative agreement between the experimental and

simulated changes in anisotropy, with the simulated ∆R plots reaching ∼ 8 times

higher increases than the measured data.

Addition of noise to simulated decays

One concern was that the simulated data was not accurately comparable with exper-

imental data, as simulated intensity decays were generated with relative intensities

(i.e. maximum intensities of 1) and no noise contributions (Fig. 4.3); this was in con-

trast to the measured decays which had peak intensities on the order of 104 photons

and contained both noise arising from the stochastic nature of spontaneous emission

and detector noise such as afterpulsing and dark count (Fig. 4.2). However, both
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data sets were analysed using the same fitting process. A consequence of this could

have been differences in exponential fitting statistics, which would have affected the

fitted lifetimes and amplitudes, and hence the other derived parameters.

Therefore, to verify whether the discrepancies between simulated and experi-

mental data described above were due to these differences in the decays, noise was

added to simulated intensity decays and exponential fitting was repeated on these

decays (Fig. 4.6). The noisy decays were generated by multiplying the simulated

decays in Fig. 4.3 by 25,000 (typical peak intensity seen in measured experimental

decays) and adding noise to each generated point in the decay as a random number

from a normal distribution of mean = 0 and standard deviation =
√
N where N is

the intensity at each time point. This is a good approximation for Poisson noise at

high N [133] and serves as a suitable initial approximation for the effect of noise on

fitting.

The monoexponential fits to the simulated ‘noisy’ decays (Fig. 4.6a,b) produced

lifetimes which agreed with the lifetimes from monoexponential fits of the simulated

decays without noise (Fig. 4.3a,b) to within fitting error. The individual lifetime

components obtained from the biexponential fitting (Figs. 4.3c, 4.6c) did not agree

for the two simulated data sets; however their average fluorescence lifetimes did

agree to within fitting error (noisy decay τd = 0.734±0.005ns, no noise τd = 0.735±
0.003ns).

Parameters calculated from fits of simulated noisy decays are shown in Fig. 4.7,

plotted alongside the same experimental data as in Fig. 4.4. The fluorescence life-

time, kSTED and Fd plots all behaved identically to the noise-free simulation with

similar deviations from the experimental data. For the noisy simulations, the frac-

tional amplitude data were more erratic at lower dump powers than in the initial

simulations and as such may be a more accurate reflection of the experimental data.

At higher dump powers however the deviation of the simulated noisy fractional

amplitudes from experimental data was similar to that seen in the noise-free simu-

lations. As a whole, the parameters generated from fitting simulated noisy decays

appeared to behave substantively in a similar way to the noise-free simulations to

rule out the possibility that differences between the experimental and model data

arose from fitting statistics.

Reasons for the repeated deviation of CW STED dynamics in the limit of no

rotation from expected model behaviour are explored further in Chapter 5, and

proposed alterations to this model are subsequently suggested in Section 5.8.

4.7.2 Limit of fast rotation

Whereas the initial excited state orientational distribution Pu(θ, φ) for coumarin 6

molecules in glycerol greatly affects STED dynamics due to the lack of rotation,

fluorescein molecules in water should rotate away from Pu(θ, φ) sufficiently quickly

that CW STED dynamics are independent of Pu(θ, φ). The rotational correlation
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Figure 4.6: Examples of simulated fluorescence intensity decays with noise for

coumarin 6 in glycerol. Data are plotted in top panels, residuals are plotted in

bottom panels, red lines are fits to data. a) Undumped decay with monoexpo-

nential fit. b) Decay with approximately 28mW dump and monoexponential

fit; asymmetric residual plot indicates poor fit to data. c) Decay with approx-

imately 28mW dump and biexponential fit.
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Figure 4.7: Comparison of parameters derived from noisy simulated data with

experimental data for coumarin 6 in glycerol. Experimental data are as for Fig.

4.4, empty points joined by lines are predictions for model with noise added

scaled to experimental data. a) Fluorescence lifetime components of the biex-

ponential decay. b) Corresponding STED rates for each lifetime component.

c) Fractional amplitudes for each lifetime component. d) Fractional depletion.
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time for fluorescein in water was measured as τrot = 0.25±0.02ns (N=4 decays) which

is an order of magnitude shorter than its (monoexponential) undumped fluorescence

lifetime (3.568± 0.004ns, N=5 decays). As a result the orientational effects seen for

coumarin 6 in glycerol - i.e. the orientational holeburning - should not be present for

fluorescein in water, where all molecules should have the same STED rate and same

effective lifetime at a given dump power. As a consequence, the dumped lifetimes

of fluorescein are expected to remain monoexponential and simply become shorter

as dump power increases. However, whilst the undumped decays (Fig. 4.8a) and

decays at very low dump powers (< 2mW) were well fitted by monoexponential

functions, the decays measured at higher dump powers were again better described

by biexponential functions (Fig. 4.8b,c).

Intensity decay parameters

Similar analysis was performed for intensity decay parameters for fluorescein in water

as for coumarin 6 in glycerol, as shown in Fig. 4.9. Figure 4.9a shows the appearance

of a second lifetime component as dump power was increased. As seen for coumarin

6 in glycerol the shorter lifetime component τ1 experienced greater shortening than

the longer lifetime component τ2, with τ1 becoming 2.50±0.05ns (70%) shorter than

the undumped lifetime τf at the highest dump power tested (35mW) and τ2 only

becoming 0.57± 0.03ns (16%) shorter.

This is reflected in the calculated values of kSTED (Fig. 4.9b). For fast rotation

there should be a linear dependence on kSTED with dump power, as all molecules

should be dumped equivalently independent of their initial orientation and thus

should depend only on dump power. Experimental results were shown to deviate

from this prediction firstly by the appearance of the second lifetime discussed above,

but also by the deviation of kSTED1 from a linear relationship. Linear fits of the

form kSTED1 = mPdump (m = constant, intercept = 0 as Pdump = 0 should yield no

depletion i.e. kSTED = 0) were performed on the data; the best fit (judged by the

highest value of the R2 fitting statistic) was obtained when fitting through the first

six dump powers only (black line in Fig. 4.9b, R2 = 0.96). At higher dump powers

kSTED1 then fell below this straight line, indicating that the rate of the depletion for

this lifetime component was lower than expected at higher dump powers. Again, as

for coumarin 6 in glycerol kSTED2 was comparatively small across all dump powers

(maximum value = 0.053± 0.003ns−1).

The fractional contributions of the two lifetime components are shown in Fig.

4.9c. The first two decays (dump powers, < 2mW) fitted well to monoexponential

decays and so it was assumed here that A1 = 1 and A2 = 0. The intensity decays

for the next two dump powers (2.8mW, 4.3mW) were clearly not monoexponential

as indicated by their χ2 values and residual plots, but there were substantial fitting

errors to a biexponential decay, leading to the large errors associated with these

points. These fitting errors were greater for the amplitudes than for the correspond-
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Figure 4.8: Examples of measured fluorescence intensity decays for fluorescein

in water. Data are plotted in the top panels and residuals are plotted in the

bottom panels. Red lines are fits to data. a) Undumped decay with monoex-

ponential fit. b) Decay with 35mW dump (measured after major dichroic) and

monoexponential fit. Asymmetric residual plot indicates poor fit. c) Decay

with 35mW dump and biexponential fit.
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Figure 4.9: Parameters derived from experimentally measured intensity decays

of fluorescein in water. a) Fluorescence lifetime components of the biexponen-

tial decay. b) Corresponding STED rates for each lifetime component. Black

line is a straight line fit (y = mx) through first six data points. c) Fractional

amplitudes for each lifetime component. d) Fractional depletion. The inten-

sity decays at 0.499mW and 1.338mW fitted sufficiently to monoexponential

functions.
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ing lifetimes. At dump powers < 11mW the dominance of A1 and A2 alternated

somewhat, before A1 became stably dominant at higher dump powers with an ap-

proximate ratio of 60 : 40 (A1 : A2). This was in contrast to the results obtained

for coumarin 6 in glycerol where the longer lifetime component (amplitude A2) was

dominant at high dump powers.

The fractional depletion of fluorescein in water is shown in Fig. 4.9d. Fd in-

creased rapidly with lower dump powers but more slowly with higher dump powers.

However, Fd did not display the dramatic plateau as seen for coumarin 6 in glycerol

and reached a maximum Fd = 0.486±0.001, indicating that the faster rotation does

overall increase STED efficiency.

Anisotropy decays

The undumped and dumped anisotropy decays for fluorescein in water are shown

in Fig. 4.10a. In contrast to coumarin 6 in glycerol, the undumped R0 was not the

predicted value of 0.4. This was presumably due to rotation within the instrument

response function that consequently could not be measured. None of the dump

powers altered either R0 or the decay constant τrot, confirming that molecules rotate

quickly enough to negate the orientational dependence of depletion. The dumped

∆R plots are shown in Fig. 4.10b, where ∆R = 0 for all dump powers (average from

2-10ns, within experimental error at all powers), and were consistent with the notion

that fast rotation was averaging out the orientational dependence of the depletion

rate.

4.7.3 Intermediate rotation regime

Coumarin 6 and fluorescein were also examined in the solvent ethylene glycol, which

is more viscous than water but less viscous than glycerol (dynamic viscosity of ethy-

lene glycol = 0.020Ns/m2 at 21◦C [134]). Both the rotational correlation times

and fluorescence lifetimes were on the same order of magnitude for the two fluo-

rophores in ethylene glycol; for fluorescein, τrot = 1.77± 0.07ns (N = 4 decays) and

τf = 3.916±0.002ns (N = 5 decays), and for coumarin 6 τrot = 1.78±0.09ns (N = 4

decays) and τf = 2.28±0.01ns (N = 5 decays). The undumped lifetime of fluorescein

was slightly longer than it was in water, whereas for coumarin 6 the undumped life-

time was slightly shorter than it was in glycerol. In both cases these differences were

attributed to solvation effects. As the rotational correlation times and fluorescence

lifetimes are similar, STED and rotation will be competing to respectively remove

and refill θ ∼ 0◦ fluorophores on a similar timescale.

Whilst the DPSS laser used in the previous experiments was again used for

CW STED of fluorescein in ethylene glycol (maximum on-sample power ∼ 12mW),

a higher power tunable VECSEL laser was used to dump coumarin 6 in ethylene

glycol (maximum on-sample power ∼ 28mW). This had the advantage of providing

higher dump powers but also a slightly different spectral profile (DPSS wavelength =
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Figure 4.10: Measured anisotropy data for fluorescein in water. a) Undumped

and dumped anisotropy decays. b) Change in anisotropy for four dump powers

as plotted in a). Data are truncated at 10ns as decays become noisy beyond

this point with contamination from the polarised background. Faint lines are

raw data, bold lines are smoothed data (5 point adjacent averaging).
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593.6±0.3nm with linewidth < 1×10−6nm (manufacturer’s specification), VECSEL

wavelength = 595±1nm with linewidth ∼ 0.2nm [129]), with the spectral bandwidth

more similar to that of the OPA dump source previously used in pulsed STED

experiments.

Intensity decay parameters

As observed for coumarin 6 in glycerol and fluorescein in water, the dump beam

produced a biexponential intensity decay from undumped monoexponential intensity

decays for both fluorophores in ethylene glycol (Fig. 4.11a). Again, the decays of

both fluorophores contained a fast lifetime component τ1 which showed substantial

variation with dump power and a slow lifetime component τ2 which showed little

variation with dump power. The corresponding kSTED values (Fig. 4.11b) behaved

similarly to the results seen in the other two solvents; kSTED1 for both fluorophores

increased and then began to plateau at higher dump powers whilst kSTED2 was small

and virtually unchanging. Coumarin 6 in ethylene glycol had higher STED rates for

both components compared to fluorescein.

The fractional contributions of the two lifetimes within coumarin 6 and fluores-

cein followed a similar pattern to that seen for fluorescein in water (Fig. 4.11c).

There was rapid variation of the fractional contributions with dump powers < 7mW

for fluorescein and < 11mW for coumarin 6, with A1 becoming consistently domi-

nant over A2 at higher dump powers; for both fluorophores the components remained

at a 65 : 35 (A1 : A2) ratio for high dump powers.

The fractional depletion curves for coumarin 6 and fluorescein in ethylene glycol

are shown in Fig. 4.11d. Both curves showed a similar relationship between dump

power and Fd to that seen for fluorescein in water; a rapid increase in Fd at low

dump powers which became a slower increase at high dump powers. Whilst it can

be seen from the higher powers tested for coumarin 6 that the Fd curve again reached

a plateau, this occurred at a higher power than the plateau seen for coumarin 6 in

glycerol. The highest Fd for fluorescein was measured as 0.454±0.005 at 33mW and

for coumarin 6 was measured as 0.507± 0.003 at 82mW.

Anisotropy decays

Figures 4.12a and b show the anisotropy decays for coumarin 6 and fluorescein re-

spectively in ethylene glycol. The initial anisotropy R0 was again lower than the

predicted value of 0.4; this is likely due to a combination of rotation during the

instrument response function (as seen in water) but could also be due to additional

polarisation effects arising as a result of high numerical aperture focusing. For ex-

ample, it has been shown that the polarisation component parallel to the beam

propagation direction becomes enhanced when linear polarised light is focused with

a high numerical aperture [135]. For both fluorophores the undumped anisotropy
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Figure 4.11: Parameters derived from experimentally measured intensity de-

cays of coumarin 6 (solid circles) and fluorescein (empty circles) in ethylene

glycol. a) Fluorescence lifetime components of the biexponential decays. b)

Corresponding STED rates for each lifetime component. c) Fractional ampli-

tudes for each lifetime component. d) Fractional depletion. For coumarin 6,

decays at 0.18mW, 0.36mW and 0.68mW fitted sufficiently to monoexponential

decays. All fluorescein decays fitted well to biexponential decays.
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Figure 4.12: Measured anisotropy data for coumarin 6 and fluorescein in ethy-

lene glycol. a) Undumped and dumped anisotropy decays for coumarin 6.

b) Undumped and dumped anisotropy decays for fluorescein. c) Changes in

anisotropy (undumped data - dumped data) for coumarin 6 for five dump pow-

ers as plotted in a). d) Changes in anisotropy (undumped data - dumped data)

for fluorescein for four dump powers as plotted in b). Data are truncated at

10ns as decays become noisy beyond this point. Faint lines are raw data, bold

lines are smoothed data (5 point adjacent averaging).

decayed to zero over approximately 10ns. These decays became more rapid with in-

creasing dump power, with the highest dump powers producing negative anisotropy

values for both fluorophores. Negative anisotropy indicates that IH(t) > IV (t), with

the number of molecules oriented at θ ∼ 0◦ having decreased to below the number

of molecules oriented at θ ∼ 90◦. For the three highest dump powers tested for

coumarin 6 (Fig. 4.12a), the anisotropy began to increase again from ∼ 6ns on-

wards: this was as a result of the polarised background signal becoming dominant

over the fluorescence signal.

The corresponding ∆R plots are shown in Figs. 4.12c and d. At dump powers

of 5-6mW upwards, the change in anisotropy ceased to increase and then began to

‘turn over’, with the highest dump powers then producing a small decrease in ∆R.

Again, only the data from 0-6ns has sufficient fluorescence signal compared to the

polarised background and as such the further decreases in ∆R beyond this time can

not be reliably attributed to any orientational behaviour of the sample.
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4.8 Discussion

The experiments presented above demonstrate the effect of solvent viscosity on the

CW STED dynamics of fluorophores, although not necessarily in the manner pre-

dicted by modelling of orientational dependence. The results of these experiments

and the performance of the model are discussed in detail here, with a comparative

pulsed STED experiment included for comparison with previous work of the group.

4.8.1 CW STED dynamics of fluorophores in different rotation

regimes

Fluorescein and coumarin 6 have monoexponential undumped lifetime decays; this

was in contrast to the previous work modelling CW STED of fluorescent proteins,

which displayed biexponential undumped fluorescence decays and possess more than

one emitting state, which meant that there could be multiple contributing factors

to CW STED dynamics other than orientational dependence [15].

Coumarin 6 in glycerol was used as a model sample for a case where molecular

rotation is slow in comparison with the rate of fluorescence/STED and can there-

fore be ignored; fluorescein in water was used as a model sample for a case where

molecular rotation is rapid enough compared with the rate of fluorescence/STED

for rotational diffusion to homogenise the excited state distribution, thus negating

the initial excited state orientational distribution Pu(θ, φ). The anisotropy decays

measured in these two systems indicated that they were both adequate approxima-

tions of these regimes. For coumarin 6 in glycerol, orientational ‘holeburning’ was

seen, where the dump beam removed a significant proportion of θ ∼ 0◦ excited state

molecules which rotational diffusion was too slow to replenish. This was in contrast

to the case of coumarin 6 (or fluorescein) in ethylene glycol where rotational diffu-

sion was sufficiently fast to limit the hole created by depletion, which was seen as a

‘turning over’ of the ∆R curves (Fig. 4.12c,d). The anisotropy decays of fluorescein

in water were identical from the undumped case through to maximum dump power,

indicating that STED was having no net effect on the orientational distribution of

excited molecules. This is due to rotation recreating an isotropic excited state dis-

tribution on a shorter timescale than the rate of STED, and any orientational hole

created by STED was immediately being refilled. However, although the anisotropy

decays indicated that our qualitative understanding of the effect of orientation on

CW STED is correct, the orientational model used here did not agree quantitatively

with the experimental data. For example, ∆R was measured to be substantially

lower than was predicted for coumarin 6 in glycerol (Fig. 4.5).

The general shape of the ∆R curves in glycerol can be explained using the

dumped fluorescence intensity decay (Fig. 4.13). The early part of the intensity

decay is dominated by emission from θ ∼ 0◦ molecules which, at high dump pow-

ers, are removed efficiently with this population decaying rapidly compared to the
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Figure 4.13: Simulated undumped and high dump power decays for coumarin

6 in glycerol with annotations showing different orientational regimes. High S′

curve is simulated with S′ = 2, which is scaled to an approximate dump power

of 26mW.

undumped case. Thus, here ∆R is also varying rapidly as can be seen in the steep

gradients for high dump powers within the first 2ns in Fig. 4.5c,d. However, later

in the fluorescence decay, emission from θ ∼ 90◦ molecules dominates as few θ ∼ 0◦

molecules remain in the excited state. As STED is least efficient for these molecules

oriented perpendicular to the dump beam polarisation, they display decay rates

similar to a population of fluorophores not undergoing any STED, making the un-

dumped and dumped intensity decays near-parallel in this region (∼ 14ns onwards

in Fig. 4.13). This manifests in the ∆R curves as a plateau in ∆R at late times for

high powers. The region of the decay curve between these two extreme cases is a

transitional phase where the proportion of θ ∼ 0◦ emitters is decreasing whilst the

proportion of θ ∼ 90◦ emitters is increasing. The anisotropy decay thus mirrors this

changing contribution of θ ∼ 0◦ and θ ∼ 90◦ emitters to the intensity decay.

The lower ∆R seen in the experimental data therefore reflects a larger than

expected contribution to total fluorescence from θ ∼ 0◦ molecules, implying a lower

than expected rate of depletion for these molecules (or a diffusional refilling of the

orientational hole burnt in by STED, which is negligible given the value of τrot in

glycerol). This could also be seen in the plots of kSTED, which showed substantial

deviation from the near-linear behaviour observed in the model. The gradients of

the kSTED plots are proportional to the STED cross section σSTED, and so the

increasingly smaller gradients at higher dump powers imply that coumarin 6 in

glycerol is experiencing an apparent reduction in σSTED as the dump power increases,
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which is much greater than that expected from the modelling.

For coumarin 6 in glycerol the dump beam creates a range of different lifetimes

which vary with the orientation of the fluorophores relative to the dump polarisa-

tion, and so in reality there is a distribution of lifetime components contributing

to the total decay. However, a biexponential decay was used to approximate the

intensity decays (also used in [15]), as it is difficult to reliably distinguish more than

two exponential components through curve fitting. Indeed, even biexponential decay

fitting was not possible at some very low dump powers (e.g. the two lowest experi-

mental dump powers used for coumarin 6 in glycerol), as here the difference between

a monoexponential decay and a biexponential decay containing two similar lifetimes

was small in comparison to the contribution from noise. This was also seen in the

noisy model where the first two values of S′ created decays which were sufficiently

fitted by monoexponential decays. In future work, a more sophisticated approach

to fitting the model and experimental data may be required. For example, the bi-

exponential fitting function could be replaced by a stretched exponential function

[136], or Bayesian fitting procedures [137, 138] could be used as an alternative to the

Levenberg-Marquardt fitting algorithm used here. However, additional care would

need to be taken in the interpretation of the larger number of fitted parameters

generated through these alternative methods.

As fluorescein rotates quickly in water, there should not be a varying distribution

of lifetimes as each molecule samples all possible orientations within the timescale

of depletion and therefore all molecules should experience the same average rate

of depletion for a given dump power. However, the dumped decays for fluorescein

in water fitted better to biexponential decays again, which here should not be a

consequence of orientational effects. Indeed, the fractional contribution of the τ2

lifetime component was comparable to the contribution of τ1, which should have

been the only lifetime present. One possible explanation for this observation is that

there was a population of fluorophores which were largely insensitive to STED. If this

population were completely ‘unSTEDable’ then the value of τ2 would have remained

at the undumped lifetime τf and kSTED2 would not have altered with dump power.

This was not the case, and kSTED2 increased with dump power albeit to a much lesser

extent than seen for kSTED1; these two rates are replotted in Fig. 4.14, where each

component has been normalised by division with its maximum value. Furthermore

the fractional contribution of an unSTEDable component would not change with

dump power, which is again contrary to the result seen in Fig. 4.9c.

Therefore for fluorescein in water, the intensity decay suggests that there is life-

time variation within the population, but the anisotropy strongly indicates that

there is no angular variation of the fluorophore lifetime. This is qualitatively in-

consistent with the orientational model. This discrepancy between the observed

STED behaviour and the model predictions does not appear to be an anomalous

characteristic of fluorescein, as fluorescein and coumarin 6 behave very similarly in
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Figure 4.14: STED rates for fluorescein in water normalised by division by

maximum kSTED1 and kSTED2 accordingly. Same data as plotted in Fig. 4.9b.

ethylene glycol, and so the same underlying mechanism may also be the reason for

the departure from the model for coumarin 6 in glycerol.

4.8.2 Phenomenological comparison with pulsed STED experi-

ments

The results presented here broadly represented an extrapolation of the previous re-

sults of the group investigating the effect of dump pulse length on STED efficiency

[9, 57, 15]. In these cases, there was less gain in Fd for longer pulses than modelling

suggested, and furthermore values of ∆R were lower than expected and deviated

increasingly from the predicted model values with longer pulses. Despite the fun-

damental differences in the STED rates of the two processes - in pulsed STED the

rate of fluorescence is negligible compared to that of STED, even with long pulses,

whereas in CW STED the two rates are comparable - there may be other photo-

physical mechanisms common to both regimes contributing to STED inefficiency.

Therefore, there is value in undertaking a quantitative comparison between the

experiments and modelling of pulsed STED and that of CW STED. However, there

are several differences between the experimental set-ups used in the previous pulsed

STED experiments and the microscope set-up of CW STED. These include excita-

tion wavelength (two photon excitation in the streak camera versus single photon

excitation in the microscope) and numerical aperture (NA ≈ 0.1 in the streak cam-

era compared to NA=1.2 in the microscope). Hence a brief study was undertaken

into pulsed STED in the microscope to verify whether pulsed STED behaved sim-
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ilarly between the experimental set-up here and that used previously. Ideally CW

STED experiments also would be performed using the low numerical aperture streak

camera system, however this would have required several watts of CW dump power

which was not available at an appropriate wavelength.

The pump source was again the 490nm pulsed diode laser coupled into the micro-

scope through an optical fibre, this time at a repetition rate of 3.8MHz. The dump

source was a synchronously pumped optical parametric oscillator (Mira-OPO, Co-

herent) tuned to 598nm with a repetition rate of 76MHz, with the ∼ 400fs pulses

produced by the OPO coupled into the same 3 metre fibre as the pump beam,

stretching the pulses to ∼ 7ps (exact measurement of pulse width was not possible

due to the geometry of the microscope and so was estimated from previous mea-

surements showing that OPO pulse length was 21ps when stretched through a 10

metre fibre [111]). Again, this set-up contains further important differences from

previous pulsed STED experiments: namely in the laser source used for providing

dump pulses (previous work used a regenerative amplifier and OPA) and method for

pulse stretching (previous work stretched pulses through water cells or diffraction

gratings). An electronic delay line was used for temporal alignment of the pump

and dump pulses, and the pump-dump delay (time between the pump pulse and the

next dump pulse arriving) was set to 1.02±0.01ns. The sample used was 1×10−5M

fluorescein in water as described in Section 4.6.1 and filtering was unchanged from

CW STED experiments, except here a 30µm pinhole was used rather than the 50µm

pinhole. This was in an effort to closer replicate the performance of the streak cam-

era, where out-of-focus fluorescence can be identified and excluded due to its ability

to image in the z-direction (discussed further in Section 5.2).

At each dump power tested, three intensity decays were measured: pump-only,

pump + dump, and dump-only (Fig. 4.15, top row). For each measurement, total

intensity was calculated from the detected IV and IH components as in Eq. 4.8. Here

Fd was calculated from fluorescence intensities, rather than lifetimes, as follows:

Fd =
IP − IPD′

IP
(4.25)

where IP is the pump-only fluorescence intensity decay and IPD′ is the dump-

subtracted pump + dump fluorescence intensity decay, given by IPD′ = IPD − ID
where IPD is the pump + dump fluorescence decay and ID is the dump-only flu-

orescence decay. Figure 4.15, second row, shows Fd plotted for the first 12ns of

measurements at three dump powers. Fd for each dump power was calculated as an

average of the Fd values between the dashed lines shown on the plots (2.27-8.51ns

after excitation) with the error given by the standard deviation of these values. Us-

ing the subscripts V and H to denote the V- and H-polarised components of the
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fluorescence intensities, change in anisotropy was calculated as

∆R =
IP (V ) − IP (H)

IP (V ) + 2IP (H)
−

IPD′(V ) − IPD′(H)

IPD′(V ) + 2IPD′(H)
. (4.26)

Examples of anisotropy decays are plotted in Fig. 4.15, third row, and the corre-

sponding ∆R plots are shown beneath. ∆R for each dump power was calculated

as the average value of points between the dashed lines in Fig. 4.15, bottom row

(1.14-1.22ns after excitation) with the standard deviation providing the error.

The same model was used as for previous work [28, 9, 57, 15] as described in

Section 4.3 to model the behaviour of fluorescein in water subject to pulsed STED

for various values of τP /τR (pulse length/ground state vibrational relaxation time).

Briefly, the populations of the excited and ground states were modelled as

dNex

dt
=
S cos2 θ

τP
(Ngr −Nex) (4.27a)

dNgr

dt
=
S cos2 θ

τP
(Nex −Ngr)−

Ngr

τR
(4.27b)

where S is the pulsed saturation parameter as given by

S =
σSTEDED
hνA

(4.28)

with ED the energy of the dump pulse (all other parameters are the same as for

the CW saturation parameter, Eq. 4.20). Following single photon excitation the

undumped excited state population is given by

Pu(θ, φ, t) =
1

4π

(
1 +

2√
5

exp(−t)Y20(θ, φ)

Y00(θ, φ)

)
(4.29)

following excitation at t = 0. The dumped population is thus described as the

product of the undumped excited state population and the probability of depletion

occurring, equivalent to the excited state population Nex (Eqs. 4.27a,b):

Pd(θ, φ, t) = Pu(θ, φ, t)Nex(t). (4.30)

Fractional depletion can then be calculated as

Fd(t) = 1−
∫ π

0

∫ 2π

0
Pd(θ, φ, t) sin θdθdφ, (4.31)

and change in anisotropy is calculated as

∆R(t) =
2

5
exp(−t∆pd)−

∫ π
0

∫ 2π
0 Pd(θ, φ, t)Y20(θ, φ)

√
4π
5 sin θdθdφ∫ π

0

∫ 2π
0 Pd(θ, φ, t) sin θdθdφ

(4.32)

where t∆pd is the delay between the pump and dump pulses with the first term de-
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Figure 4.15: Examples of pulsed STED measurements at three different dump

powers (0.8mW, 9.8mW and 31.1mW as measured after the major dichroic).

Top row: Fluorescence intensity decays measured with pump only, dump only

or both beams together, as per the legends. Red dashed lines show the ‘cor-

rected’ pump + dump decays where the dump-only signal has been subtracted.

Second row: Fractional depletion plots for the first 12ns of the above decays.

Black lines show Fd calculated without subtraction of dump-only signal, red

lines show Fd where this correction has been made. Dashed lines indicate

time period used for calculation of average Fd. Third row: Anisotropy decays

(first 12ns) for pump-only measurements and corrected pump + dump mea-

surements. Bottom row: ∆R plots for the first 3ns of the (dump-subtracted)

anisotropy decays above. Vertical solid line indicates arrival time of dump

pulse, dashed lines indicate time period for calculation of average ∆R.
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Figure 4.16: Comparison of model and experimental Fd and ∆R for pulsed

STED. a) Experimental values of Fd (black circles) with simulated data for

different ratios of τP /τR overlaid. b) Experimental values of ∆R (black circles)

with simulated data for different ratios of τP /τR overlaid. c) Expanded plot of

experimental ∆R data.

scribing rotational diffusion away from the expected R0 during this time. Equations

4.31 and 4.32 can then be evaluated at t = τP (i.e. the end of the dump pulse) as a

function of S for different values of τP /τR.

The results of this modelling are shown in Fig. 4.16. Figure 4.16a shows the

Fd curves generated by the model for different values of τP /τR scaled onto the

experimentally obtained values of Fd. At low dump powers the experimental Fd

data closest matched the τP /τR = 6 and τP /τR = 7 curves, and at higher dump

powers better matched the τP /τR = 8 curve. It should be noted from previous work

that experimental data rarely fits to τP /τR > 8 [15]. However, the experimentally

obtained values of ∆R were all much smaller than any of the simulated ∆R curves

(Fig. 4.16b), although the data did appear to follow a similar shape to the τP /τR =

0.2 curve (experimental data expanded in Fig. 4.16c). For the data to fully agree

with the model, the Fd and ∆R data must both match onto curves generated with

the same simulated value of τP /τR, but it is clear that in the data presented here

there is no value of τP /τR which will satisfy this.

These deviations from model behaviour, notably for ∆R, fit in well with the

group’s previous pulsed STED experiments, where the pulse length at which the
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model breaks down appears to be dependent on the ratio of the pulse length to

rotational time. For ratios of the order τrot/τP ∼ 100 (as used here) the measured

Fd curves were observed to adequately fit to the model, but to an unrealistically

long vibrational relaxation time τR, whereas the observed ∆R values were much

smaller than predicted by modelling, even for the low values of τP /τR implied by

the Fd fits [15]. In the short pulse length STED experiments where both Fd and

∆R fitted well to the same values of τP /τR, the relaxation times τR obtained were

592fs (fluorescein in ethylene glycol) [9], 204fs (EGFP) [57] and 380fs (fluorescein in

glycerol) [15]. If the value of τP /τR is taken from the Fd curve in Fig. 4.16a to be

approximately 8, then this gives a relaxation time of ∼ 875fs, which is at the least

on the correct order of magnitude. This longer value also agrees with the previously

observed relationship where τR appears to lengthen with longer pulses. It is clear

here that the ∆R curve will not yield any physically accurate measurement of τR.

It can be argued that the method of quantifying depletion in CW STED, i.e. the

relative reduction in fluorescence lifetime, is a more reliable measure of the actual

depletion than the changes in fluorescence intensity measured in pulsed STED. In

pulsed STED intensity can be lost through a variety of non-STED, non-fluorescent

processes such as bleaching and excited state absorption, which cannot be distin-

guished from depletion using intensity measurements. It is also necessary to subtract

the sometimes significant fluorescence background caused by direct excitation by the

dump beam (Fig. 4.15, top row), and small variations in this background level be-

tween taking the pump + dump measurement and dump only measurement could

lead to significant errors when the fractional depletion is close to 1. The pulsed

STED experiment performed in the microscope has an advantage over the pulsed

STED experiments performed using other equipment as the fibre coupling used in

the microscope produces high-quality stable beams for focusing into the objective,

although the beam alignment is not perfect (Section 3.7). Stable beams are more

difficult to achieve in the other experimental set-ups which are based on free-space

beam alignment, and the degree of alignment of the two beams may change from day

to day or indeed as measurements are being taken. However, measurements using

the streak camera do have the advantage that the focal plane can be clearly isolated

and depletion examined in this region only, removing any effects of out-of-focus flu-

orescence that may be present in the microscope set-up. This is why it has been

important to repeat a pulsed STED experiment in a very different experimental set-

up to the previous pulsed STED experiments and see a similar effect, as this reduces

the probability that either set of results are due to the measurement method.

4.9 Summary

In this chapter, CW STED experiments on fluorophores in solution have shown

significant departures from expected depletion dynamics. This departure has been
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quantified by comparisons with mathematical modelling of CW STED dynamics in

the absence of molecular rotational diffusion. Strikingly, the marked deviation from

linearity and the appearance of a second lifetime component for the fast-rotating

case of fluorescein in water suggests the presence of a fluorophore population largely

unaffected by CW STED. A pulsed STED experiment was also performed which

replicated deviations from model behaviour for long dump pulses that have been

previously observed by the group. The similarities between the results of this exper-

iment and those of previous experiments performed with different equipment indi-

cate that there is no apparent anomalous microscope-specific STED behaviour. The

pulsed STED experiment, when taken along with previous pulsed STED studies, fur-

ther implies that there are additional factors or processes occurring for fluorophores

in solution when subject to increasing dump exposure times which are currently

unaccounted for in mathematical modelling; it is plausible that these are related to

the STED-insensitive population seen in CW STED experiments.

The results of this chapter also have interesting implications for LIR-SR. For all

of the imaging performed in Chapter 3, the dump power was approximately 17mW

after the major dichroic; the results presented in this chapter suggest that using

dump powers higher than this will not necessarily be beneficial as there is limited

shortening of fluorescence lifetime components above ∼ 10mW. Therefore the dump

power used for LIR-SR imaging in Chapter 3 appears to be an appropriate choice,

and the use of higher dump powers would come at the cost of increased photodamage

to the sample without any significant further lifetime shortening. Further work

investigating the CW STED dynamics of immobilised fluorophores, such as those

present in fluorescently-labelled biological samples, would be useful to fully confirm

this.



Chapter 5

Experimental and theoretical

exploration of CW STED

anomalies

To investigate the CW STED inefficiencies seen in the previous chapter and their

potential origin, a number of experiments were performed controlling alternative

experimental parameters. These include pump beam parameters such as wavelength,

power and repetition rate, the wavelength of the dump beam, the volume from

which fluorescence is detected, triplet production and an alternative method for

quantifying CW STED efficiency. These investigations are presented separately, with

their individual methods and results grouped together; all results are then discussed

collectively in the context of potential model modifications to better describe the

photophysics of CW STED.

5.1 CW STED following two photon excitation

Firstly, CW STED experiments in water and glycerol were repeated with two photon

excitation as opposed to single photon excitation. Previous pulsed STED experi-

ments by the group have been performed using two photon excitation; in these cases

use of two photon excitation was necessary as no appropriate single photon source

was available. Here, two photon excitation will result in a more highly ordered ex-

cited state, as the orientational distribution function for two photon excitation has

a cos4 θ dependence compared to the cos2 θ dependence seen for single photon exci-

tation (Section 1.3), thus better approximating a delta function of θ ∼ 0◦ molecules

only. Furthermore, the spatiotemporal dependence of two photon excitation con-

fines the excitation volume to a small region at the focus of the pump with little

excitation above and below the focal plane, in contrast to single photon excitation

where there is considerable excitation along the whole beam path. As a result, there

will be less fluorescence arising from regions of the sample where there is low dump

149
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intensity (i.e. away from the dump focal plane).

The combined effect of increased excited state ordering and axially limited ex-

citation should thus increase the efficiency of CW STED, and so experiments with

single photon and two photon pump were compared for fluorophores in water and

glycerol.

5.1.1 Methods

The two photon pump beam was provided by a Ti:Sapphire laser (Mira 900, Coher-

ent) pumped by a Verdi laser (V-10, Coherent), with the optical path and simplified

triggering electronics shown in Fig. 5.1, and the dump source was the 594nm DPSS

CW laser. The (V-polarised) pump was tuned to 797nm for all two photon experi-

ments, and was emitted from the laser at a repetition rate of 76MHz. This output

then passed through a pulse picker (Pulse Select, APE) which uses acousto-optic

modulation to diffract individual pulses from the beam at a desired frequency, here

1 in 20 pulses to obtain an effective repetition rate of 3.8MHz at the sample. Sync

signals from the pulse picker were sent to the external triggering port of the 490nm

PicoTA laser driver to slave the PicoTA to a 3.8MHz repetition rate and thus gener-

ate appropriate sync signals for the TCSPC (PicoTA laser and driver omitted from

Fig. 5.1 for simplicity). The output of the 490nm laser was blocked for the duration

of the two photon experiments.

The 3.8MHz two photon pump beam exited the pulse picker and was passed

through a filter wheel containing various neutral density filters for power control.

The beam was then resized using a two-lens telescope; beam size was finely ad-

justed until a peak in fluorescence intensity was detected from a solution of test

sample. The pump beam was directed into the free-space port of the microscope

optical unit and then combined with the dump beam exiting the optical fibre using

a beam combiner (PCXR725, Chroma); the combined beams were reflected into the

objective using the same major dichroic as for previous single photon experiments.

Fluorescence transmitted through the major dichroic was filtered to remove residual

pump (e700sp, Chroma) and then passed through the tube lens, a 50µm pinhole

and another filter (FES550 within Box 1 as before) to remove residual dump beam

before being split into the two SPAD detectors using a cube polariser (Box 2).

The samples used were 1 × 10−5M 2’7’-dichlorofluorescein in water and 2.5 ×
10−3M coumarin 6 in glycerol, with the single photon pump results taken from

Chapter 4 for comparison. The pump power measured after the major dichroic was

836± 4µW for fluorescein in water and 758± 2µW for coumarin 6 in glycerol.

5.1.2 Results

CW dump series with two photon excitation were measured for both fluorescein in

water and coumarin 6 in glycerol. The undumped lifetimes with two photon pump

were measured as 3.55± 0.01ns (fluorescein in water, average of N = 5 decays) and
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Figure 5.1: Microscope set-up with two photon pump. Two photon pump

(free space) path shown as a red line, dump path shown as an orange line,

combined beams shown by a red/orange striped line. Fluorescence path shown

by green line. Abbreviations used: FW - neutral density filter wheel, BC - beam

combiner, BS - beamsplitter, MD - major dichroic, F2 - filter. Not shown: piezo

controllers, delay line, laser drivers.
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2.48 ± 0.01ns (coumarin 6 in glycerol, average of N = 5 decays), which were in

agreement with the undumped lifetimes measured with single photon pump. Figure

5.2 shows the intensity parameters for fluorescein in water as defined in Section 4.6.4

plotted for both two photon and single photon excitation. As with single photon

excitation, fluorescein in water displayed a monoexponential undumped decay with

two photon excitation, which again became biexponential in the presence of CW

dump; the exception to this was at the two lowest dump powers, which were better

fitted by a monoexponential function. Figure 5.2a shows the variation of these

two lifetime components with dump power, and it can be seen that both the short

(τ1) and long (τ2) lifetime components were shorter for two photon excitation than

for their single photon counterparts. This was also reflected in the higher STED

rates measured with two photon excitation as plotted in Fig. 5.2b. However, the

two photon STED rates also displayed similar deviations from the expected linear

relationship with dump power as was seen with single photon excitation.

The fractional contributions of the two lifetime components are shown in Fig.

5.2c, where the fractional amplitude A1 (short lifetime component) dominated the

lifetime decay at powers > 12mW for both pump wavelengths. However, the dom-

ination of the short lifetime component τ1 over the long lifetime component τ2 was

much greater for two photon excitation (75 : 25 ratio of A1 : A2) than for single

photon excitation (60 : 40). A comparison of the STED efficiencies with single and

two photon excitation can be seen in the fractional depletion plots (Fig. 5.2d). With

the exception of the points at ∼ 2.8mW, where poor biexponential fitting resulted in

large uncertainty for both data sets, there was no agreement between the Fd values

obtained using single photon and two photon excitation. At all dump powers, two

photon excitation yielded higher Fd values, with greater divergence between the two

excitation regimes at higher dump powers. The maximum Fd obtained with two

photon excitation was 0.634± 0.005 compared to 0.49± 0.01 for single photon exci-

tation, although Fd again plateaued at the highest dump powers tested as observed

with the single photon pump. There was no change in anisotropy introduced by any

of the dump powers with two photon excitation (Fig. 5.3), indicating that rotation

in water is fast enough even to negate the two photon excited state orientational

distribution.

Figure 5.4 shows the intensity parameters for coumarin 6 in glycerol when mea-

sured with two photon and single photon excitation. The data set obtained with the

two photon pump was much noisier than with the single photon pump, namely be-

cause the peak fluorescence intensity measured with two photon excitation was ten

times lower than measured with single photon excitation. As a result exponential fit-

ting was poorer, as is evident in the erratic distribution of two photon data points in

Fig. 5.4a,b,c compared to the single photon data points which display smooth trends.

Therefore a quantitative comparison will not be drawn for the lifetime components,

STED rates or fractional amplitudes between single and two photon excitation of
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Figure 5.2: Parameters derived from intensity decays of fluorescein in water

with two photon pump. Solid circles are data obtained using two photon pump,

empty circles are data obtained using single photon pump. a) Fluorescence life-

time components of the biexponential decay. b) Corresponding STED rates for

each lifetime component. c) Fractional amplitudes for each lifetime component.

d) Fractional depletion.

Figure 5.3: Change in anisotropy measured for fluorescein in water with two

photon pump at four different dump powers. Data are truncated at 10ns as

decays become noisy beyond this point. Faint lines are raw data, bold lines are

smoothed data (5 point adjacent averaging).

.



5.1. CW STED FOLLOWING TWO PHOTON EXCITATION 154

coumarin 6 in glycerol. However, the recurring theme that CW dump produces two

lifetime components, one short and one long, from a monoexponentially decaying

fluorophore was again observed.

The fractional depletion of coumarin 6 in glycerol with two photon excitation

increased with dump power (Fig. 5.4d). The Fd values obtained with two photon

excitation largely agreed with the values obtained using single photon excitation

up to 10mW, with a further increase in Fd seen for two photon excitation at higher

dump powers compared to the single photon series. The maximum Fd obtained with

two photon pump was 0.48±0.02 compared with 0.357±0.005 when measured with

single photon pump. Simulated Fd curves are also shown for two photon and single

photon excitation; the single photon curve is the same as in Section 4.7.2, and the

two photon curve was calculated as in Section 4.6.4 except with

Pu(θ, φ) =
1

4π

(
1 +

4
√

5

7

Y20(θ, φ)

Y00(θ, φ)
+

8

21

Y40(θ, φ)

Y00(θ, φ)

)
(5.1)

to describe the two photon excited state orientational distribution function. The

simulated Fd curves also indicated that higher STED efficiencies should be obtained

with two photon excitation as opposed to single photon excitation; however, as for

single photon excitation discussed previously, the STED efficiency with two photon

excitation obtained experimentally was again significantly lower than predicted by

the model.

Changes in anisotropy for two photon excitation were also calculated and plotted

in Fig. 5.5a-d. Again, the two photon data were noisier than the single photon data,

but it can be seen that larger values of ∆R were obtained with higher dump powers

indicating orientational holeburning as seen previously which cannot be counteracted

due to lack of rotation. Modelled ∆R plots for CW STED with single photon and

two photon excitation are shown in Fig. 5.5e, calculated as in Section 4.6.4 with the

undumped orientational distribution function as in Eq. 5.1. At the lowest displayed

dump power (< 1mW, Fig. 5.5a) a greater change in anisotropy was observed for

single photon excitation than two photon excitation, which matched the prediction of

the model at the lowest dump power simulated (black lines, Fig. 5.5e). The model

predicted that ∆R should also be greater for single photon excitation than two

photon excitation for ∼ 3.9mW dump; however, this behaviour cannot be verified

using the experimental data in Fig. 5.5b as there is a considerable discrepancy

between the dump powers chosen for display of the single and two photon cases

(there was not a ∆R plot of sufficiently high quality obtained for a more comparable

dump power with two photon excitation).

At higher dump powers (Fig. 5.5c,d) the ∆R obtained with single photon ex-

citation initially increased more rapidly than for two photon excitation, but ∆R

continued to increase in a near linear fashion for two photon excitation whereas ∆R

increased little after 5ns for single photon excitation. Consequently, at times > 5ns,
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two photon ∆R became larger than ∆R measured with single photon excitation.

Thus, the shape of the ∆R plots for two photon excitation agreed with the model

predictions, although the values of ∆R observed in the two photon excitation data

were significantly lower than those predicted by the model, as was the case previously

discussed for single photon excitation.

5.1.3 Discussion

For both fluorescein in water and coumarin 6 in glycerol, two photon excitation

increased the efficiency of CW STED as quantified by the fractional depletion. The

anisotropy data for water again confirmed that the rotation of fluorescein in water

is sufficiently fast to negate the initial orientation of the excited state population,

even in the highly ordered case following two photon excitation. Therefore the

increased ordering of the excited state is unlikely to have contributed greatly to the

substantially increased Fd values for two photon excitation of fluorescein in water,

as rotational diffusion was again homogenising the excited state distribution as for

single photon excitation. The predominant cause of increased CW STED efficiency

following two photon excitation must thus be a non-angle dependent factor; this

could be the increased axial confinement of excitation. A consequence of this is

that STED is also confined to a smaller volume than for single photon excitation,

where there is out-of-focus excitation along the beam path which is not depleted as

efficiently as that at the focus which could be contaminating the detected signal.

The anisotropy data for coumarin 6 in glycerol also suggest that our understand-

ing of the effect of orientation in CW STED is correct: the ∆R plots obtained with

two photon excitation qualitatively agreed with model predictions, as did the dif-

ferences between ∆R for single and two photon excitation. The differences in the

anisotropy change between the two excitation regimes are a result of the increased

excited state alignment following two photon excitation; the more highly aligned the

excited state, the smaller the variation in STED rates will be and thus the longer the

exposure to CW dump will need to be before an orientational hole is burnt in. The

extreme limit of this would be the case where all molecules were aligned at exactly

θ = 0◦ where, with no rotational diffusion, the excited state population following

depletion would still only consist of θ = 0◦ molecules and so there would be no

depolarisation of fluorescence and accordingly no change in anisotropy.

5.2 The effect of out-of-focus fluorescence

In previous pulsed STED experiments, a streak camera has been used for measur-

ing fluorescence intensity decays; one advantage of this system is that fluorescence

intensity is recorded both in time and in one spatial dimension along the emitted

fluorescence path [15], as shown in Fig. 5.6a. As a result out-of-focus fluorescence

can be identified and excluded from analysis, and only the fluorescence arising from
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Figure 5.4: Parameters derived from intensity decays of coumarin 6 in glycerol

with two photon pump. Solid circles are data obtained using two photon pump,

empty circles are data obtained using single photon pump. a) Fluorescence life-

time components of the biexponential decay. b) Corresponding STED rates for

each lifetime component. c) Fractional amplitudes for each lifetime component.

d) Fractional depletion with simulated curves for two photon (solid line) and

single photon (dashed line) excitation.
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Figure 5.5: Change in anisotropy measured for coumarin 6 in glycerol with

two photon pump compared with single photon pump at four different dump

powers. a) - d) Smoothed (5 point adjacent averaging) one photon (faint) and

two photon (bold) data for the dump powers indicated in graph legends. e)

Modelled plots of ∆R for single photon (dashed) and two photon (solid) pump

for approximate dump powers to match experimental data as indicated in the

legend.
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Figure 5.6: Comparison of detection regimes for streak camera and confocal

microscope. a) Schematic showing fluorescence (green) detection from a cuvette

of fluorophore using a streak camera and an example of data obtained using the

streak camera (courtesy of Dr Daven Armoogum). b) Focusing of single photon

pump (blue) and dump (orange) beams into a volume of sample on a coverslip

using a microscope objective. The focal plane is marked in red, and the depths

over which fluorescence is detected are marked with black lines. Dashed dark

red line shows two photon excitation volume. Diagrams are not to scale.

the focus of the beam pair (i.e. the most efficiently depleted volume) used for quan-

tification. Furthermore the OPA dump source used in previously described streak

camera experiments was not tightly focused and as such the focal volume of the

dump beam was much larger than that of the two photon pump, meaning that all

excited molecules experienced a similarly intense dump field. However, in the micro-

scope the only method for rejecting out-of-focus fluorescence is by using a pinhole

for confocal detection of fluorescence (Fig. 5.6b), and the use of the optical fibre

to inject the combined pump and dump beams into the microscope optics prevents

resizing of the dump beam.

One explanation for the low fractional depletion seen in the microscope could be

contamination with out-of-focus fluorescence, as discussed briefly for two photon ex-

citation in Section 5.1.3. With single photon pump, molecules are excited along the

whole beam path and, whilst the probability of excitation occurring is lower above
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and below the focal plane due to the lower pump intensity, the undumped fluores-

cence lifetime does not alter (with the low pump intensities used here). However,

when the CW dump beam is also present, depletion also occurs all the way along

the beam path, again not just at the focal plane. Out-of-focus excited molecules

will experience lower dump intensity than molecules within the focal plane, and so

will experience less lifetime shortening (and hence have lower Fd) than the in-focus

molecules. As a result, detection of out-of-focus fluorescence in CW dump experi-

ments will contain a significant proportion of molecules with lower Fd values than

expected.

To investigate the effect of out-of-focus fluorescence on measured STED effi-

ciency, fluorescence lifetime decays were measured at different dump powers for a

range of different fixed pinhole sizes. Larger pinholes allow more fluorescence from

above and below the focal plane to reach the detectors, whereas smaller pinholes

allow only fluorescence originating from a narrower depth around the focal plane to

reach the detectors.

5.2.1 Methods

Single photon (490nm) pulsed pump and 594nm CW dump were used for all exper-

iments, with the beam paths and filtering as in Fig. 2.14. Fixed diameter pinholes

provided with the microscope (150µm, 100µm, 75µm, 50µm and 30µm) were ex-

changed into the detection pathway, and measurements were also taken with no

pinhole in place. Pinhole position was finely adjusted to centre the pinhole on the

beam axis, judged to be the position yielding the highest undumped fluorescence

intensity. Following pinhole installation the lenses in front of the detectors were also

adjusted to ensure that the fluorescent spot remained centred on the active area of

each detector.

The samples used were 1 × 10−5M 2’7’-dichlorofluorescein in water and 2.5 ×
10−3M coumarin 6 in glycerol, with the two photon pump results measured with

50µm pinhole taken from Section 5.1. Pump powers were again < 1µW prior to

fibre coupling.

5.2.2 Results

Fluorescence intensity decays were measured over a range of dump powers with the

various pinhole sizes for both samples. The fractional depletion curves obtained

from these decays are shown in Fig. 5.7.

For both samples, when excited with single photon pump, decreasing the pinhole

size increased the maximum obtained Fd up to a pinhole size of 50µm, with the 30µm

pinhole producing no further improvement in Fd. For coumarin 6 in glycerol, the

average Fd at the three highest powers measured was 0.38±0.02 for the 50µm pinhole

and 0.38±0.03 for the 30µm pinhole; for fluorescein in water average highest Fd was

0.47± 0.02 for the 50µm pinhole and 0.43± 0.07 for the 30µm pinhole. Decreasing
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Figure 5.7: Fractional depletion curves measured with different sized pinholes

for a) fluorescein in water and b) coumarin 6 in glycerol. All solid circles are

measured with single photon pump whereas empty circles are measured with

two photon pump.

pinhole size also increased the gradient of the Fd curves in the low dump power

regime (generally < 10mW) where the relationship between dump power and Fd is

approximately linear. The undumped fluorescence lifetimes agreed for all pinhole

sizes for each sample to within 9ps for fluorescein in water and 30ps for coumarin

6 in glycerol, and there was no correlation between pinhole size and undumped

fluorescence lifetime (P=0.50 for fluorescein in water and P=0.33 for coumarin 6 in

glycerol, two-tailed Pearson’s correlation test).

The two photon measurements are also superimposed upon the plots in Fig. 5.7

for comparison. It can be seen that for fluorescein in water, fractional depletion

measured with two photon pump (Fig. 5.7a, empty red circles) was higher at the

majority of dump powers than for single photon pump, even with the smallest pin-

holes. The noisier two photon Fd values obtained for coumarin 6 in glycerol were

only larger than the single photon measurements for the highest dump powers tested.

5.2.3 Discussion

The results presented above indicate that our understanding of the effect of out-of-

focus fluorescence on measured STED efficiency is correct, as larger pinholes yielded

lower values of Fd. The results also confirmed that selection of the 50µm pinhole for

CW STED experiments was appropriate, as decreasing the pinhole size to 30µm did

not appear to increase Fd further. This could be because the diameters of the smaller

pinholes become comparable to the diameter of the fluorescence spot travelling back

out of the objective, and so further decreases in pinhole size will begin to reject

signal in the lateral direction rather than just the axial direction. The diameter of



5.3. CW STED EFFICIENCY WITH DIFFERENT DUMP WAVELENGTHS161

one Airy unit reaching the pinhole is given by [139]

1A.U. = magobj ×
1.22λex

NA
, (5.2)

where magobj is the magnification of the objective. For the system here, if it is

perfectly aligned, this corresponds to 1A.U. = 29.89µm reaching the pinhole.

The data obtained using two photon excitation were also shown alongside the

pinhole data to compare the two methods of detecting fluorescence from a smaller

focal volume: the focal volume using two photon excitation is calculated to be 0.053fl

[140], compared to the measured focal volume of this microscope of 0.6 ± 0.2fl for

single photon excitation (Section 5.6). It should be noted that it is not possible

to separate the relative contributions of improved optical sectioning and increased

photoselection (Section 5.1) underlying the improved Fd obtained with two photon

excitation. One way to examine this could be to calculate the detection volume

for different pinhole sizes and plot the single photon excitation Fd as a function

of detection volume: the Fd obtained at the two photon detection volume could

then be compared with this relationship. Qualitatively, a large deviation from this

relationship would imply that the effect of photoselection on CW STED efficiency

is much greater than that of optical sectioning in two photon excitation.

5.3 CW STED efficiency with different dump wave-

lengths

Within the samples there could be a subpopulation of solvation environments pro-

ducing changes in the spectral properties of the fluorophores (a phenomenon known

as solvatochromism [1]), and therefore a possibility that there is a subpopulation of

molecules not accessible by the 594/595nm dump wavelengths used in the experi-

ments presented thus far. As the dump wavelength is required to be at the very

red edge of the fluorophore emission spectrum a subpopulation undergoing, for ex-

ample, a small blue shift in emission spectrum could render the 594/595nm dump

wavelengths ineffective. STED cross-sections have previously been measured for a

range of dump wavelengths in pulsed STED [9, 57], and previous work has also in-

vestigated whether the measured efficiency of CW STED depends on the spectral

observation window (detected wavelengths) for fluorescent proteins. In this case it

was seen that STED efficiency was similar across two distinct observation windows

[15]; however, this was only investigated at a dump wavelength of 594nm.

To investigate whether there is any wavelength dependence underlying the low

STED efficiencies repeatedly seen in Chapter 4, CW STED was performed at differ-

ent dump wavelengths for both coumarin 6 and pyridine 2, a dye with a large Stokes

shift which has been used in STED microscopy [141, 142].
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5.3.1 Methods

The effect of dump wavelength was investigated for 1×10−5M coumarin 6 in ethylene

glycol and 1× 10−5M pyridine 2 (Exciton Inc.) in ethylene glycol. For both experi-

ments single photon pump was used at a repetition rate of 20MHz. For coumarin 6

the VECSEL laser was used as the dump source as described in Section 4.6.2, but

here tuned to 603nm.

The dump source for pyridine 2 was CW output of the Ti:Sapphire laser (which

was used in pulsed mode for two photon excitation in Section 5.1). The Ti:Sapphire

laser was adjusted to produce a stable high power CW beam and the pulse picker was

also set to operate in CW mode (here the pulse picker was not used for any triggering

purposes and the 490nm laser was triggered internally as for previous experiments).

The dump path followed the same path as the two photon pump shown in Fig. 5.1,

with the same beam combiner and major dichroic as used for the two photon pump

experiments. Fluorescence transmitted through the major dichroic was filtered to

remove residual pump (HQ510LP), passed through the tube lens and 50µm pinhole

before being further filtered at Box 2 to remove residual dump (730/10 notch filter,

Newport, for 797nm dump or S40-700 bandpass filter, Newport, for 760nm dump)

and split into the two SPAD detectors using a cube polariser.

5.3.2 Results

Figure 5.8 shows intensity parameter plots obtained for coumarin 6 in ethylene glycol

with single photon pump for both 595nm and 603nm CW dump. The individual

fluorescence lifetime components for the two dump wavelengths were within close

quantitative agreement for dump powers < 20mW with a slightly greater degree

of shortening seen for the 595nm dump at higher powers (Fig. 5.8a); a similar

relationship was seen for the kSTED rates (Fig. 5.8b). The fractional amplitudes

(Fig. 5.8c) were in close quantitative agreement between the two dump wavelengths.

The fractional depletion curves for the two wavelengths (Fig. 5.8d) were also

quantitatively similar for dump powers up to ∼ 20mW, with the shorter dump

wavelength producing slightly larger values of Fd for higher dump powers (Fd with

68mW 595nm dump = 0.496 ± 0.003 compared to Fd with 73mW 603nm dump =

0.476±0.005). However, the Fd curves appeared to saturate similarly for both dump

wavelengths suggesting that this saturation is not a peculiarity of the 594/595nm

dump wavelength used previously. It is not possible to estimate the expected differ-

ence in STED efficiency based on wavelength alone; however STED cross sections

(σSTED, as in Eqs. 4.2 and 4.6) for other fluorophores have been seen to mimic the

shape of the emission spectrum [9, 57]. Whilst there are no measurements of σSTED

for coumarin 6 in the literature, the difference between relative emission values for

the two wavelengths is small (relative emission at 595nm = 0.11, relative emission

at 603nm = 0.08, Appendix Fig. A.3) and hence in the absence of any spectral sub-
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Figure 5.8: Parameters derived from intensity decays of coumarin 6 in ethylene

glycol with two different dump wavelengths. Solid circles are data obtained us-

ing 603nm CW dump, empty circles are data obtained using 595nm CW dump.

a) Fluorescence lifetime components of the biexponential decay. b) Correspond-

ing STED rates for each lifetime component. c) Fractional amplitudes for each

lifetime component. d) Fractional depletion.

populations the difference in STED efficiency for 595nm and 603nm is also expected

to be small.

A fluorophore possessing a large Stokes shift, pyridine 2 (Appendix Fig. A.4),

was also examined with the same single photon pump, but with the dump beam

provided by the high power tunable CW output of the Ti:Sapphire laser. Figure 5.9

shows Fd curves for pyridine 2 obtained using two different CW dump wavelengths.

A full series of results were obtained for a dump wavelength of 797nm where the

CW output of the laser was most stable and powerful. A few data points were

also obtained at a dump wavelength of 760nm where the emission of pyridine 2 was

substantially larger. However, there was much higher background signal at 760nm

compared to 797nm which made fitting and analysis difficult.

The Fd curve measured with 797nm CW dump was still seen to plateau at high

dump powers, despite the dump powers measured after the major dichroic being

an order of magnitude larger than those produced by the 594nm DPSS dump laser.
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Figure 5.9: Fractional depletion curves for pyridine 2 for single photon pump

and near-IR CW dump (black circles 797nm, red circles 760nm).

The Fd values measured with the 760nm dump were larger than those measured with

the 797nm dump, although even the small number of data points obtained indicated

that the Fd curve was also reaching a plateau at high powers. As seen for coumarin 6

above, a higher STED efficiency reflects the probable larger σSTED for pyridine 2 at

760nm compared to 797nm. The difference between the Fd curves for the two dump

wavelengths applied to pyridine 2 (with the exception of the data point obtained

at the highest power for 760nm dump) appeared to be greater than the difference

between the Fd curves for the two dump wavelengths applied to coumarin 6. Again,

this is expected as there is a larger difference between the relative emission values

of pyridine 2 (relative emission at 760nm ∼ 0.5, relative emission at 797nm ∼ 0.2,

Appendix Fig. A.4) than there was for coumarin 6.

The other parameters obtained from the intensity decays are not displayed as the

short lifetime of pyridine 2 (0.64 ± 0.04ns monoexponential decay, N=8 undumped

measurements) led to large errors in the exponential fitting, with a second lifetime

component obvious in the measurements taken with high dump powers (> 40mW)

but difficult to resolve at the lower dump powers. Similarly this short fluorescence

lifetime made the anisotropy decays noisy and difficult to interpret.

5.3.3 Discussion

The results obtained from using a longer dump wavelength for CW STED of

coumarin 6 and near-IR dump of pyridine 2 both indicated low, saturating STED

efficiencies at high dump powers, as seen in the experiments in Chapter 4. This

suggests that the saturation of STED efficiency at high dump powers is not due
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to a wavelength-dependent phenomenon. For both samples higher Fd values were

obtained for the shorter dump wavelengths; this was not unexpected, as there is

stronger emission at the shorter dump wavelengths for both fluorophores and hence

they will have higher STED cross-sections at these wavelengths [9, 57]. Using the

CW output of the Ti:Sapphire laser also allowed for much higher dump powers to

be achieved than with the DPSS laser or the VECSEL, although the saturation of

Fd with increasing dump power was still evident.

5.4 The effect of pump repetition rate on CW STED

efficiency

One cause of the low STED efficiency could be that there is an accumulation of pho-

tophysical states over time that cannot be depleted efficiently. Throughout Chapters

4 and 5 of this thesis all experiments have been performed with decreasing dump

power - starting at the highest dump power and then measuring at incrementally

lower dump powers - with a repeat of the highest dump power measurement once

the full range of powers have been measured. It has been consistently seen that the

second measurement with the highest dump power produced identical results to the

first measurement, with no changes seen across the regularly-measured undumped

decays. Whilst this indicates that there is no permanent accumulation of states over

the course of a whole experiment, there could still be changes occurring within the

sample during individual measurements.

To investigate this, CW STED experiments for fluorescein in water were repeated

at a variety of pump repetition rates. The greater the time between successive pump

pulses, the more time there is available for fluorophores to re-equilibriate to the

state that they were in before pumping (and subsequent STED) occurred. This re-

equilibriation could simply consist of diffusion of fresh solution into the focal volume

before the arrival of the next pulse or reversing of a conformational change (such as

twisting) of the fluorophore which may have occurred in its excited state. Decreasing

the repetition rate has similarly been employed as a strategy in STED microscopy

to attempt to limit photobleaching [72].

5.4.1 Methods

The single photon pump was set to different repetition rates either by internal trig-

gering (20MHz, 10MHz and 5MHz measurements) or external triggering from the

pulse picker as described in Section 5.1 (3.8MHz and 250kHz measurements, two

photon beam blocked from entering microscope). For all measurements pump power

was adjusted such that count rate was ∼1% of the repetition rate (< 1µW mea-

sured before the optical fibre at all repetition rates) and the dump source was the

594nm DPSS laser. Filtering was identical to that used throughout for experiments

with 490nm pump and 594nm dump. To ensure collection of a sufficient number of
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Figure 5.10: Fractional depletion of fluorescein in water measured at different

pump repetition rates.

photons for fitting, longer recording times were used for the lower repetition rates as

follows: 30s recordings for 20MHz and 10MHz, 45s recordings for 5MHz, 60s record-

ings for 3.8MHz and 300s recordings for 250kHz. The sample for all measurements

was 1× 10−5M 2’7’-dichlorofluorescein in water.

5.4.2 Results

Figure 5.10 shows fractional depletion curves obtained at a range of pump repetition

rates. The Fd values obtained for the different repetition rates were largely all

in agreement up to ∼ 13mW dump, and all data sets became noisier for higher

dump powers. Whilst the 250kHz repetition rate did yield the largest measured Fd

(0.49±0.01), the difference between this and the Fd measured at 20MHz (0.44±0.01)

was small considering the 100-fold difference in the repetition rates. Furthermore,

there was no clear trend observed between maximum Fd and repetition rate; indeed,

the ‘average’ maximum Fd values (average of the three highest Fd values at each

repetition rate) agreed within error for all repetition rates except 5MHz, which

yielded a lower average maximum Fd.

5.4.3 Discussion

The results shown in Fig. 5.10 suggest that there is no appreciable effect of pump

repetition rate on CW STED efficiency. This implies either that there is no build up

of STED-insensitive states arising from the repetition rate being too high, or that any

photophysical products produced require longer than 4µs (the time between pulses
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at 250kHz) to be removed from the population. Further investigation of repetition

rates lower than 250kHz would be beneficial to confirm the results shown here.

5.5 Investigating CW dump exposure time

Whilst the pump repetition rate was varied in Section 5.4 to allow the system to

reach an equilibrium before the next cycle of excitation, the CW dump beam was

still present on the sample throughout. The continuous presence of the CW dump

beam, rather than the frequent arrival of pump pulses discussed in Section 5.4, could

be creating a population of states resistant to depletion, even at the low repetition

rates where the pump beam is effectively ‘off’ for the majority of the acquisition.

To investigate this the dump beam was rapidly blocked and unblocked during the

course of each measurement such that the sample was exposed alternately to pump

only and pump + dump beams to allow for periods of ‘recovery’ time when the

sample was not exposed to the dump beam.

5.5.1 Methods

The basic experimental set-up was as used previously for experiments with 490nm

pump and 594nm CW dump. To vary the CW dump beam exposure time, the

594nm dump beam was ‘chopped’ such that it was alternately intense and blocked.

To achieve this a mechanical chopper and electronic controller (SR540, Stanford)

were set up in the path of the dump beam before the optical diode and fibre coupling

unit. A signal from the chopper controller was sent to the ‘count enable’ port of the

TCSPC router such that detected photons would only be recorded in the lifetime

histograms when the CW dump was on the sample in addition to the pulsed pump,

and not when the chopper was blocking the dump (where pump, which was not

chopped, was still on). The chopper controller was then used to drive the chopper

at different frequencies and hence different dump exposure times.

To calibrate the chopper, a photodiode was placed in the path of the chopped

laser output and its signal monitored using an oscilloscope. The signal from the

chopper controller which indicated whether the beam was blocked or not (which was

sent to the count enable port of the TCSPC router during measurements) was also

monitored using the oscilloscope. The angle of the chopper as it cut across the dump

beam was then finely adjusted until the photodiode signal and chopper signal were

exactly in phase.

The pump repetition rate was set to 20MHz for all chopper experiments and

pump power was ∼ 1µW before entry into the optical fibre. Samples used were

1 × 10−5M 2’7’-dichlorofluorescein in water and 1 × 10−5M 2’7’-dichlorofluorescein

in ethylene glycol.
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Figure 5.11: The effect of chopping the CW dump beam on depletion of flu-

orescein in water. 0Hz indicates measurements taken where dump beam was

not chopped. Solid circles are data obtained from biexponential fitting, empty

circles are data obtained from monoexponential fitting. a) Fractional depletion.

b) Short lifetime component τ1. c) Long lifetime component τ2. Error bars are

fitting errors for each measured intensity decay.

5.5.2 Results

To ascertain whether prolonged exposure of the sample to the CW dump beam was

creating photophysical products insensitive to STED, the dump beam was chopped

at two different frequencies: 40Hz, where the sample was exposed to the dump beam

in 25ms bursts, and 400Hz, where the sample was exposed to the dump beam in

2.5ms bursts.

Figure 5.11 shows the fractional depletion curves and individual lifetime compo-

nents of fluorescein in water measured at five different dump powers and chopped at

40Hz, 400Hz, and with no chopping. There did not appear to be any difference in the

fractional depletion measured at different chopping frequencies (Fig. 5.11a), nor was

there any noticeable difference in the measured biexponential lifetime components

(Fig. 5.11b,c).

The experiment was repeated using a more viscous solvent, ethylene glycol, to

ascertain whether chopping the dump beam affected depletion in a system where

translational diffusion was slower. Figure 5.12 shows measurements of fractional

depletion and lifetime components for different chopping frequencies. Although the
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Figure 5.12: The effect of chopping the CW dump beam on depletion of fluores-

cein in ethylene glycol. 0Hz indicates measurements taken where dump beam

was not chopped. a) Fractional depletion. b) Short lifetime component τ1. c)

Long lifetime component τ2. Error bars are fitting errors for each measured

intensity decay.

lifetime data displayed higher variation than the results for fluorescein in water,

again there was no difference in the fractional depletion curves measured at differ-

ent chopper frequencies, and the lifetime components for the different frequencies

generally agreed with each other despite a small number of outliers.

5.5.3 Discussion

Whilst the results of varying dump exposure time suggest that the continual exposure

of the sample to the dump beam is not the cause of low STED efficiency, more control

over the duty cycle of the system is necessary to confirm this. In these experiments,

the dump beam is still present for a large number of pump pulses: ∼ 50, 000 pump

pulses at 400Hz chopping and ∼ 500, 000 pump pulses at 40Hz chopping. Even

reducing the repetition rate to 250kHz would result in the dump chopped at 400Hz

coinciding with ∼ 750 pump pulses. An ideal experiment would have control over

the exact number of pump pulses coinciding with the dump beam (Fig. 5.13),

however we do not currently have the capability to modulate the dump intensity

at the appropriate frequency for this. One potential method for performing this
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Figure 5.13: Schematic illustrating dump intensity modulation. Normal pump

+ dump shows pulsed pump (blue triangles) and unmodulated CW dump (or-

ange rectangles) as used for all other CW STED experiments. Ideal dump

modulation shows a case where the dump is modulated such that six pulses

are dumped, then six are not dumped. Actual dump modulation illustrates the

experiment as performed above, with each blue triangle now representing 5,000

pulses.

experiment would be to use a pulsed dump laser with very long (tens to hundreds

of nanoseconds) pulses that would coincide with a small number of pump pulses at

a time.

An alternative experiment which could be performed in the future would be to

set up a pulsed STED experiment where the dump pulse is split such that half of

the pulse arrives at the sample at the same time as the pump pulse as is usual, with

the other half of the pulse arriving at the sample in the low pump intensity period

between two pump pulses. This could yield information on the effect of the dump

beam on the sample when it is not being pumped.

5.6 Investigations using fluorescence correlation spec-

troscopy

Fluorescence correlation spectroscopy (FCS) is a technique used for investigating

molecular fluctuations, and information is obtained by fitting models to the auto-

correlation of detected fluorescence from low concentration (typically nanomolar)

solutions of fluorophores such that approximately one fluorophore is within the focal

volume at any given time [143]. Autocorrelated fluorescence provides information

on any process with a characteristic timescale in the microseconds to milliseconds

range such as diffusion in and out of the focal volume (∼ 10−5s for fluorescein in

water, this thesis) and molecules entering and leaving the triplet state (∼ 10−6s for

fluorescein in water, this thesis). The autocorrelated fluorescence is calculated as
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a function of ‘lag time’ (time between two observations), and is then fitted to an

appropriate model for the phenomenon being investigated.

Here FCS is used to investigate two phenomena: firstly whether the CW dump

beam alters the volume from which fluorescence is detected, as measurement of this

will help to quantify the results of the pinhole experiments in Section 5.2. Secondly

the effect of the powers of the pump and dump beams on the triplet population of

the sample, as the triplet state is a long-lived photophysical state which cannot itself

fluoresce or undergo STED (Section 1.1.6).

5.6.1 Methods

Fluorescence correlation spectroscopy was performed with single photon pulsed

pump and CW dump (where stated). The pump repetition rate in all experiments

was 80MHz. For all experiments the same major dichroic was used as for previous

single photon experiments, residual pump was filtered from the detection pathway,

and a 30µm pinhole was used. For pump only measurements there was no further

filtering, whereas when the dump beam was present an additional filter was present

(FES550). Detection was not polarisation-resolved here, and instead of the cube

polariser used in previous experiments a 50/50 beam splitter was used to split flu-

orescence into the two SPAD detectors. Measurement times were varied from 2-20

minutes to obtain sufficient photon counts for FCS fitting, depending on the beams

present and their powers. A short section of a typical measurement is shown in Fig.

5.14a.

FCS model fitting was performed on a cross correlation of the signal from the two

detectors, rather than an autocorrelation, to avoid the dead time of the detectors

[144] and to remove the effect of detector afterpulsing. The cross correlation function

for signal detected in two detectors is given by [145]

Gij(τ) =
〈δFi(t)δFj(t+ τ)〉
〈Fi(t)〉 〈Fj(t)〉

(5.3)

where Fi and Fj are the fluorescence intensities detected in detectors i and j respec-

tively, τ is the lag time and δFi(t) = Fi(t)−〈Fi(t)〉. The cross correlated fluorescence

intensity was then fitted to a model describing free diffusion of a single fluorescent

species as provided in the SymPhoTime analysis software:

Gdiff(τ) =
1

〈N〉

(
1 +

τ

τD

)−1(
1 +

τ

τDκ2

)− 1
2

(5.4)

where 〈N〉 is the average number of molecules in the focal volume, τD is the diffusion

time and κ = z0/ω0 where z0 is the axial FWHM of the focal spot and ω0 is the

lateral FWHM. For fitting of pump only measurements ω0 was set to be 0.25µm,

as this was the typical FWHM measured for sub-diffraction limit sized fluorescent

beads (Chapter 3). A typical free diffusion model fit is shown in Fig. 5.14b. From
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Figure 5.14: Typical data collected and analysed in FCS measurements. a)

Portion of raw data used for FCS of fluorescein in water with two detectors. b)

Cross correlated fluorescence (black) and fitted free diffusion model (red) for a

measurement with negligible triplet formation. c) Cross correlated fluorescence

(black) and fitted triplet state model (red) for a measurement with significant

triplet formation. An attempt to fit the free diffusion model to the data is also

shown (dashed red line).
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this model the following parameters can be derived:

• Effective focal volume: Veff = π
3
2ω2

0z0

• Average concentration: 〈C〉 = 〈N〉 /Veff

• Diffusion coefficient: D = ω2
0/4τD

When this free diffusion model did not fit the data (Fig. 5.14c, dashed red line), a

model with a correction for the presence of a triplet state was fitted:

Gtrip(τ) =

[
1− T + T exp

(
− τ

τT

)]
Gdiff(τ)

1− T
(5.5)

where T is the fraction of molecules in the triplet state, referred to as the triplet

fraction, and τT is the triplet state lifetime. An example of this model fitting is

shown in Fig. 5.14c.

Errors in fitting the models were generated using bootstrap error analysis pro-

vided in the software. Bootstrap analysis is a re-sampling technique where the data

set of N values is re-fitted to a data set of N values consisting of a proportion of

the original data set with some values duplicated. Many of these re-sampled data

sets were generated (here 10,000) and populations of fitted parameters were then ob-

tained from which errors could be determined. Here the errors were taken from the

68% confidence interval. Errors quoted on average values are combined errors from

bootstrap analysis of each individual value and standard deviation of the population

of values, as in Section 2.6.6.

The sample used for FCS was 1×10−9M 2’7’-dichlorofluorescein in water. Quoted

pump powers were measured prior to entry into the fibre coupling unit.

5.6.2 Results

To evaluate the effect of CW STED on the size of the focal volume, FCS was per-

formed with several different dump powers. The pump power was 50.64 ± 0.01µW

for all dump powers tested, and the average values of FCS parameters for six un-

dumped measurements are shown in Table 5.1 (all fitting using triplet state model

Gtrip(τ)). The measured value of the concentration was in good agreement with the

concentration of the fluorescein solution used and the triplet lifetime was also in

agreement with the value of 10−6s quoted in the literature [146]. The diffusion coef-

ficient measured here was larger than the published value of 2’7’-dichlorofluorescein

in water, 425± 7µm2/s [147].

For FCS fitting of undumped data, ω0 was fixed at 0.25µm. However, as FCS was

being used to assess the impact of CW STED on focal volume, this parameter could

not be fixed in measurements taken with the dump beam. Therefore the diffusion

coefficient D was instead fixed in FCS fitting of the dumped measurements to match
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Fitted parameter Value

Axial FWHM z0 1.8± 0.3 µm
Focal volume Veff 0.6± 0.2 fl
Diffusion time τD 20± 10 µs
Diffusion coefficient D 700± 200 µm2/s
Concentration 〈C〉 1.9± 0.8 nM
Length ratio of focus κ 7± 1
Triplet fraction T 0.20± 0.07
Triplet lifetime τT 1.1± 0.7 µs

Table 5.1: FCS parameters from fits to undumped measurements at 50µW

pump power for comparison with dumped measurements.

that obtained in the undumped measurements, as STED should not alter the value

of the diffusion coefficient.

The relationship between dump power and effective focal volume Veff is shown in

Fig. 5.15. Despite the large fitting errors (faint error bars, Fig. 5.15), values obtained

for Veff were consistent for similar dump powers, as indicated by their standard

deviation (bold error bars, Fig. 5.15). An increase in Veff was seen with increasing

dump power (Spearman correlation = 0.85, P< 0.0001) with the maximum focal

volumes measured at ∼24.5mW dump ranging from 3 − 4fl, representative of a

∼ 5− 7-fold increase in volume compared with the undumped measurements.

FCS was also used to quantify the effect of pump and dump powers on the triplet

state population. Firstly, the effect of pump power was investigated, and undumped

measurements were made at a range of pump powers up to the maximum power

output of the pump laser. The relationship between pump power and the proportion

of fluorophores in triplet state (the triplet fraction T ) is shown in Fig. 5.16a. Below

21µW the data fitted well to the free diffusion model (ω0 fixed at 0.25µm) indicating

that the triplet fraction at these powers was negligible, and for powers ≥ 21µW T

increased approximately linearly with power up to 102µW. The rate at which T

increased with pump power then began to slow, with little change in T at the four

highest pump powers tested, where the average triplet fraction was 0.72±0.02. There

was little variation in the values of the other fitted parameters with pump power,

and the average values of these are shown in Table 5.2.

The parameters in Table 5.2 were all in agreement with those measured at a

single pump power (50µW) in Table 5.1, with the average value of the diffusion

coefficient agreeing within experimental error to the published value for this second

data set.

The effect of dump power on the triplet fraction was also investigated: values

for the triplet fraction were obtained from the fitting to the dumped data (same

data set as used in Fig. 5.15, pump power = 50µW), and these are shown in Fig.

5.16b. The measured triplet fractions varied for individual dump powers, and here

the standard deviations of repeated measurements reflected the fitting errors. There
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Figure 5.15: Effect of CW dump power on focal volume. Empty circles are

individual measurements, solid points are average values for each cluster of

powers tested. Bold error bars show the standard deviations of the average

values for each cluster of dump powers, faint error bars show the combination

of the standard deviation with the fitting error on each point. Fitting errors

are not shown for individual points.

Fitted parameter Value

Axial FWHM z0 1.6± 0.4 µm
Focal volume Veff 0.6± 0.1 fl
Diffusion time τD 28± 9 µs
Diffusion coefficient D 600± 200 µm2/s
Concentration 〈C〉 1.2± 0.6 nM
Length ratio of focus κ 7± 2
Triplet lifetime τT 1.2± 0.7 µs

Table 5.2: FCS parameters from fits to undumped measurements of fluorescein

in water at a range of pump powers.

was no significant correlation between dump power and triplet fraction (P=0.10,

Spearman’s correlation test), and the average triplet fraction for all dump powers

other than 24mW agreed with the undumped measurements within both descriptions

of error.

5.6.3 Discussion

The increase of the effective focal volume Veff with dump power provides further

evidence that CW STED is not just confined to the focal plane of the pump and

dump beams. At dump powers of 20-25mW, where the Fd curve of fluorescein in

water has been seen to plateau (Section 4.7.2), FCS measurements have confirmed
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Figure 5.16: Effect of laser power on triplet fraction. a) Triplet fraction mea-

sured at a variety of pump powers with no dump. Error bars are fitting errors

associated with each individual point. b) Triplet fraction measured at several

dump powers with 50µW pump. Bold error bars show the standard deviations

of the average values for each cluster of dump powers, faint error bars show

the combination of the standard deviation with the fitting error on each point.

Fitting errors are not shown for individual points.
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that fluorescence detected is from a volume approximately 5 times larger than that of

undumped measurements. As discussed in Section 5.2, this larger focal volume will

contain a large proportion of molecules which have been depleted less efficiently than

molecules at the focus itself. These results, taken together with the results obtained

using different sized pinholes, indicate that including contributions of fluorescence

from above and below the focal plane in the mathematical modelling of CW STED

is necessary. This is undertaken later in this chapter (Section 5.8.1).

That the triplet fraction only became measurable at pump powers above 21µW

confirmed that the pump powers used in all other experiments in this thesis thus

far are not high enough to be producing a substantial proportion of triplets. The

dump beam did not significantly alter the triplet fraction produced with 50µW

pump, indicating that the pump power has a greater effect on triplet production

than dump power. However, the data obtained for the various dump powers were

also very noisy.

A flaw in FCS fitting is the large number of parameters used in the models, and

this was particularly problematic for the data obtained using the dump beam, where

additional noise was contributed to the already sensitive measurements. Fixing the

value of the diffusion coefficient when fitting models to the data with the dump beam

was performed as this parameter was assumed to be the least sensitive to STED;

however if the presence of the dump beam was changing the diffusion coefficient, for

example through sample heating, then this may have introduced some systematic

error. The models used here also assume a Gaussian point spread function in all

directions, and this is not the case for the effective point spread function when both

beams are present which may also be creating systematic errors in the calculation

of parameters [62].

5.7 Comparing methods of quantifying STED efficiency

One major difference between the CW STED data presented in this thesis and the

pulsed STED and super resolution STED microscopy data presented elsewhere is

the method of quantifying STED efficiency (fractional depletion). Whilst elsewhere,

including previous pulsed STED work, the STED efficiency is quantified by mea-

surement of fluorescence suppression as deduced from intensity measurements (e.g.

pulsed STED measurements in Section 4.8.2), for all CW STED experiments here it

has been calculated from lifetime measurements. Therefore to see whether there is

an inherent difference between intensity- and lifetime-based measurements of STED

efficiency, CW STED experiments were performed where both methods of calculat-

ing fractional depletion could be performed and compared. This was performed not

just at a range of dump powers, but also at a range of pump powers to investigate

the effect of an increased triplet fraction on STED efficiency.
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5.7.1 Methods

The experimental set-up for these experiments was as for previous experiments with

single photon pump (20MHz repetition rate) and 594nm CW dump. Both pump

and dump beams were filtered in the detection pathway following the major dichroic,

and the 50µm pinhole was used in all cases. The filtered fluorescence was split into

the two SPAD detectors using a cube polariser for polarisation-resolved detection.

In the experiments where pump power was investigated, a neutral density wheel was

included in the detection pathway after the pinhole, and this was adjusted such that

the count rate remained between 100,000 and 200,000 counts per second at each

pump power. The G-factor was re-measured after each adjustment of the neutral

density wheel to account for any small displacement of the detected fluorescence.

Pump powers were measured before the fibre coupling unit.

The following experimental sequence was used to obtain data from which lifetime

and intensity measurements could be extracted whose measurement conditions were

as faithful to one another as possible. For each dump power, a 30 second recording

was taken with both beams together (as for previous experiments), followed immedi-

ately by a 30 second recording with sequential blocking and unblocking of the beams

such that the sample was exposed to a cycle of: pump only, dump only and then

pump + dump together several times (Fig. 5.17). 30 second pump only recordings

were taken every four dump powers to monitor undumped lifetime.

Exponential functions were fitted to the intensity decays (I(t) = IV (t) + 2IH(t))

obtained for the 30 second pump + dump recordings to extract lifetimes as before

for calculation of ‘lifetime’ Fd (here referred to as F life
d ). For the recordings with se-

quential beam blocking the MCS traces produced by the microscope control software

(SymPhoTime), which show absolute detected intensity over the recording period,

were used to extract fluorescence intensities for the sample subject to pump only,

dump only and pump + dump in each detector (Fig. 5.17). These MCS traces were

analysed in MATLAB as follows: time periods corresponding to a specific beam

condition (e.g. pump only) were selected, and the mean and standard deviation of

fluorescence intensity over these time periods were calculated for each detector. The

total average intensity for each beam condition was thus calculated as I = 1
GIV +2IH

where the same G-factor was used as for lifetime measurements, and error on I was

calculated by appropriately combining the standard deviations. This process was

repeated for each beam condition, and hence ‘intensity’ Fd was calculated for each

MCS trace (corresponding to a given dump power) as

F int
d =

IP − (IPD − ID)

IP
(5.6)

where IP is the total average intensity for pump only, IPD is the pump + dump

intensity and ID is the dump only intensity. Error on F int
d was then propagated

accordingly.
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Figure 5.17: Example of an MCS trace used for calculation of intensity Fd.

Grey lines are V-polarised intensity (corrected for G-factor) and blue lines are

H-polarised intensity. Solid black lines indicate mean values of IV for this

trace and dashed black lines indicate the standard deviation ∆IV . Mean and

standard deviation not shown for IH , but were calculated similarly.

The samples used were 1 × 10−5M 2’7’-dichlorofluorescein in water, 1 × 10−5M

2’7’-dichlorofluorescein in ethylene glycol and 1 × 10−5M coumarin 6 in ethylene

glycol.

5.7.2 Results

Firstly, the quantification of Fd using the lifetime and intensity based measurements

was compared over a range of dump powers (Fig. 5.18). CW STED of fluorescein

was assessed in both water (Fig. 5.18a) and ethylene glycol (Fig. 5.18b) at a range

of different dump powers, but also at two different pump powers, < 1µW (too small

to accurately measure) and ∼ 12µW (11.98± 0.01µW in water and 12.05± 0.05µW

in ethylene glycol). The results from the FCS experiments in Section 5.6.2 indicate

that the triplet fraction at 12µW pump should still be negligible.

For fluorescein in water (Fig. 5.18a), the F int
d series did not vary between the

two pump powers tested, whereas the F life
d series measured with 12µW pump had

slightly lower values than the F life
d series measured with 1µW pump power (maximum

F life
d at < 1µW = 0.44 ± 0.01 compared to 0.389 ± 0.006 at 12µW). As has been

repeatedly observed, the F life
d curves began to plateau at dump powers > 15mW.

The F int
d curves were in agreement with the F life

d curves for dump powers < 11mW,

whereafter the F int
d and F life

d curves diverged. Notably, although the rate of increase

of F int
d with dump power still slowed for higher dump powers, the curves did not

plateau as dramatically as the F life
d curves. The highest F int

d was measured to be
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Figure 5.18: Comparison of Fd values calculated from intensity and lifetime

data for a range of dump powers. In all plots black points are calculated

from fluorescence lifetime histograms (F life
d ) and red points are calculated from

absolute intensity values (F int
d ). Solid points indicate pump power = 1µW,

empty circles indicate pump power = 12µW. a) Fluorescein in water at two

different pump powers. b) Fluorescein in ethylene glycol at two different pump

powers. c) Coumarin 6 in ethylene glycol, pump power = 6.7µW. d) kSTED

calculated for fluorescein in water.

0.56± 0.03 (at 38mW) compared to the highest F life
d of 0.44± 0.01 (at 31mW with

< 1µW pump).

For fluorescein in ethylene glycol (Fig. 5.18b), fractional depletion varied with

pump power for both the F int
d and F life

d curves; for both quantification methods Fd

values were larger with < 1µW pump than with 12µW pump. As seen for fluorescein

in water, the F int
d curves had larger values that the F life

d curves, and again displayed

less dramatic plateauing. Here F int
d and F life

d agreed within experimental error up to

∼ 7mW for both pump powers before F int
d reached a maximum value of 0.62± 0.08

(dump power ∼ 39mW), with F life
d only reaching 0.40±0.03 at the same dump power

(both < 1µW pump power).

To ascertain whether this discrepancy between F int
d and F life

d was a unique at-

tribute of fluorescein, the experiment was repeated for coumarin 6 in ethylene glycol

at a single pump power of 6.694 ± 0.004µW (Fig. 5.18c). Coumarin 6 behaved
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similarly to fluorescein, where F int
d continued to increase after F life

d had reached a

plateau.

As seen in all previous experiments, fluorescein in water exhibited a biexponential

decay in the presence of CW dump which, as discussed in Chapter 4, was unexpected

due to fast rotational diffusion. kSTED was calculated for the lifetime and intensity

data, where for the lifetime data an ‘average’ kSTED was calculated for the average

dumped fluorescence lifetime at each dump power:

kSTED =
1

τd
− 1

τf
, (5.7)

where τd = average dumped fluorescence lifetime (Eq. 4.16). A different approach

was used for calculating kSTED from the lifetime data: as fractional depletion can

be described in terms of the ratio between the rate of fluorescence with and without

CW STED by

1− Fd =
kf

kf + kSTED
, (5.8)

where kf = 1/τf , kSTED can be calculated as

kSTED =
1

τf

(
1

1− Fd
− 1

)
(5.9)

from the F int
d values and undumped lifetime τf as determined from the regularly

acquired undumped measurements. For the intensity data it should be noted that the

nomenclature kSTED will not be entirely accurate as this rate will include fluorescence

loss mechanisms such as photobleaching which cannot be separated from STED in

the intensity data.

The calculated values of ‘average’ kSTED for the intensity and lifetime data for

fluorescein in water are shown in Fig. 5.18d (same data set as used in Fig. 5.18a). As

seen previously, the lifetime kSTED plot becomes highly sublinear at high dump pow-

ers. The kSTED values from the intensity data agree with the lifetime kSTED values

at dump powers < 13mW, where the relationship between kSTED and dump power

is approximately linear for both quantification methods, and then this relationship

also becomes sublinear (albeit to a lesser extent than the lifetime data).

As pump power had an appreciable effect on the amount of depletion obtained

for fluorescein in ethylene glycol, F int
d and F life

d were measured for fluorescein in both

water and ethylene glycol for a large range of pump powers (Fig. 5.18). For both

samples pump powers ranging from 1 - 350µW were applied in conjunction with

the highest dump power available (average values over experiments: 35.2± 0.3mW

in water, 35.2 ± 0.2mW in ethylene glycol) and the highest dump power at which

the F int
d and F life

d values agreed well as judged from the dump series data (average

values over experiments: 9.79± 0.07mW in water, 6.2± 0.2mW in ethylene glycol).

The results of pump power variation on STED efficiency for fluorescein in water
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Figure 5.19: Comparison of Fd calculated from intensity and lifetime data

for a range of pump powers. In all plots black points are calculated from

fluorescence lifetime histograms and red points are calculated from absolute

intensity values. Solid points were measured with high dump power and empty

points were measured at a lower dump power. a) Fluorescein in water. b)

Fluorescein in ethylene glycol.
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are shown in Fig. 5.19a. The F life
d values (black points) remained constant at both

dump powers for pump powers up to 30µW (average F life
d values: 0.277 ± 0.007 at

10mW, 0.42 ± 0.01 at 35mW) before decreasing at higher pump powers, with the

smallest F life
d values measured to be 0.19 ± 0.01 with 10mW dump and 0.33 ± 0.02

at 35mW dump at the highest pump power. This translated into a percentage

decrease in F life
d of 31± 4% for 10mW dump compared to 21± 5% for 35mW dump.

The F int
d values (red points) behaved similarly, although for both dump powers F int

d

only remained constant up to 10µW before decreasing at higher pump powers. The

average values of F int
d for pump powers up to 10µW were 0.29± 0.01 (10mW dump)

and 0.53±0.01 (35mW dump), and these decreased to minimum values of 0.12±0.03

and 0.33 ± 0.05 respectively; the corresponding percentage decreases in F int
d were

60 ± 10% at 10mW dump and 40 ± 10% at 35mW dump. These results indicate

that for fluorescein in water, increasing pump power has a greater impact on STED

efficiency as measured by F int
d than it does for F life

d , and for both measures this effect

was greater at the lower of the two dump powers tested.

Figure 5.19b shows the effect of pump power on Fd for fluorescein in ethylene

glycol. The F life
d values measured in ethylene glycol behaved similarly to the values

measured in water over the range of pump powers, with little change in F life
d for pump

powers up to 30µW for both dump powers, followed by a decrease in F life
d at higher

pump powers. Here the F life
d averaged over powers up to 30µW was measured as

0.13±0.01 for 6mW dump and 0.30±0.01 for 35mW dump, and the lowest measured

values of F life
d were 0.08 ± 0.04 and 0.18 ± 0.01 respectively at 300µW pump. The

percentage changes in F life
d for the two dump powers this time agreed within error

(6mW: 40 ± 30%, 35mW: 40 ± 4%). The F int
d values, however, did not show the

previously observed decrease as seen for F int
d in water and F life

d in both solvents. In

ethylene glycol, the measured F int
d values remained constant (within error) across

all pump powers for each dump power tested, with a mean value of 0.14 ± 0.01 at

6mW dump and 0.46± 0.01 at 35mW dump.

5.7.3 Discussion

The results presented in this section show that there is a clear difference between

STED efficiency quantified using lifetime measurements and STED efficiency quan-

tified using intensity measurements. At low dump power (typically < 10mW), the

lifetime and intensity measurements generated similar values of Fd. This, com-

bined with the linearity of the Fd plots and kSTED plots for fluorescein in water at

low dump powers, suggests that our understanding of CW STED is correct in this

regime. However at high dump powers, where F life
d values begin to plateau, F int

d

values continue to rise, although recalculation of the rate of removal of excited state

population (kSTED) using intensity data showed that this was still not linear with

dump power. It has been stated many times (e.g. Section 4.7.2, Section 5.1) that the

non-linearity of kSTED in a fast rotation regime should not arise from orientational
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Low dump power High dump power

Low pump
power

F int
d = F life

d in both water and
ethylene glycol

F int
d � F life

d in both water and
ethylene glycol

High pump
power

F int
d < F life

d in water, F int
d ≈

F life
d in ethylene glycol

F int
d ≈ F life

d in water, F int
d �

F life
d in ethylene glycol

Table 5.3: Summary of CW STED efficiency in four different pump and dump

power regimes for fluorescein in water and ethylene glycol. ‘Low’ pump power

corresponds to < 30µW, high and low dump powers are defined as in the text

of Section 5.7.2.

effects. The data presented here also indicates that this non-linearity is unlikely

to result from photobleaching, which depends strongly on pump power, as identical

kSTED series were obtained from the ‘intensity’ data at two different pump powers

(Fig. 5.18d). Thus, these results suggest that there is a dump-dependent mechanism

which prevents further lifetime shortening at high dump powers but does not impact

upon intensity suppression to the same extent. Furthermore, this mechanism is also

non-linear with dump power.

The interplay between pump power and dump power was also examined, and the

results obtained are briefly summarised in Table 5.3 for four different regimes. The

relationship between pump power and dump power appears to be both complex and

solvent dependent. For the results for fluorescein in water, the sensitivity of F int
d

(and to a lesser extent F life
d ) to increasing pump powers could indicate involvement

of the triplet state. This is in contrast to the F life
d values which to be appear largely

independent of the pump power (and thus assumed triplet fraction) apart from at

the highest pump powers investigated. The F int
d values obtained for fluorescein in

ethylene glycol were completely insensitive to pump power, implying that fluorophore

environment is important in determining the joint effect of the pump and dump

beams.

5.8 Proposals for a mechanism underlying reduced

STED efficiency

The combined results of this chapter and Chapter 4 show that our current modelling

of CW STED dynamics does not correctly describe the experimentally observed data.

In this section, modifications to the model described in Chapter 4 are suggested and

potential physical processes previously unaccounted for are discussed.

5.8.1 Spatial averaging

As the FCS experiments in Section 5.6.2 showed that the effective focal volume

increases with CW dump power, combined with the pinhole size experiments in Sec-
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tion 5.2.2 where out-of-focus fluorescence decreased the measured STED efficiency,

a modification was made to the model to account for the spatial variations in de-

pletion. The model used in Chapter 4 assumed that both excitation and depletion

occurred at the focal plane of the sample, with all molecules experiencing the same

pump field and dump field regardless of location (but not orientation). The updated

model presented below, which was formulated by Dr Richard Marsh and executed in

Mathematica, takes into account both the spatial variations within the focal plane

(as exploited in Chapters 2 and 3 for LIR-SR) and contributions from out-of-focus

fluorescence.

In this model, the simulated fluorescence intensity decay depends on orientation

as before, but here also depends on the radial distance r from the centre of the focal

plane, where the centre of the beam is at r = 0, and the axial distance z from the

focal plane, where the focal plane is at z = 0. As in Section 2.5 the shape of the

focus is assumed to be Gaussian in the lateral direction and Lorentzian in the axial

direction. The fixed parameters in the model are wavelength λ and the diameter at

the beam waist ω0; the units of r and z are expressed in terms of the dimensionless

quantity ω0/λ. The probability of exciting a molecule at a given orientation is still

given by

Pu(θ, φ) =
1

4π

(
1 +

2√
5

Y20(θ, φ)

Y00(θ, φ)

)
, (5.10)

and again it is assumed that the system is cylindrically symmetric and that the

absorption and emission dipole moments of the fluorophore are parallel. The spatial

profile of detected fluorescence in the absence of depletion is given by

Nu(r, z) =
1

1 + kz2
exp

(
− r2

2ω2
0

)
(5.11)

where the parameter k describes the ratio of the Rayleigh range (z resolution) to

the beam waist ω0 as

k =

(
λ

πω2
0

)2

. (5.12)

The diameter of the beam at a given axial position z is given by

ω(z) = ω0

√
1 + kz2, (5.13)

which can then be used to describe the spatial profile of the dump field as

Nd(r, z) =

√
2πω2

0

π2ω4
0 + π2λ2

exp

(
− r2

2ω(z)2

)
. (5.14)

It should be noted that in Eq. 5.14 the intensity distribution within each focal ‘slice’

(i.e. for each value of z) is normalised.

The resulting probability of depletion is thus given by the product of the com-

bined angular and spatial probability of excitation Pu(θ, φ)Nu(r, z) with the expo-
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Figure 5.20: Revised model of CW STED with no rotation and spatial averaging

based on results for coumarin 6 in glycerol. Experimental data points are those

obtained in Chapter 4 with the model simulations used previously depicted as

dashed lines. Solid lines represent results of model including spatial averaging

effects. a) Lifetime components. b) STED rates. c) Fractional amplitudes. d)

Fractional depletion.

nential decay of the excited state population in the presence of the dump beam,

which also has angular and spatial dependence, as

Pd(θ, φ, r, z, t) = Pu(θ, φ)Nu(r, z) exp
(
−(kf + S′ cos2 θNd(r, z))t

)
. (5.15)

The fluorescence intensity decay of the population can then calculated by numerically

solving

Id(t) ∝
∫ z=25

z=−25

∫ ψ=2π

ψ=0

∫ r=5

r=0

∫ φ=2π

φ=0

∫ θ=π

θ=0
Pd(θ, φ, r, z, t) sin θdθrdrdψdφdz (5.16)

over an appropriate time range for several values of S′ as discussed previously. The

limits of integration for r and z were determined by incrementally reducing the range

over which integration was performed from larger limits until further reductions in

these limits significantly altered the results. This was done to reduce computation

time.
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Parameters extracted from fitting the intensity decays generated by the spa-

tial averaging model are plotted in Fig. 5.20 alongside the experimental data for

coumarin 6 in glycerol and parameters derived using the previous model where spa-

tial variations were neglected. The spatial averaging model does indeed appear to

be an improvement on the orientation-only model, with τ1, kSTED1 and Fd agreeing

with the experimental data for a slightly larger range of dump powers than seen

previously. However, the longer lifetime component and corresponding STED rate

(τ2 and kSTED2) still do not quantitatively agree with the spatial averaging model,

and whilst the magnitudes of the fractional amplitudes generated with the spatial

averaging model were similar to the values obtained experimentally, the two ampli-

tudes appeared again to be the ‘wrong way round’, with the spatial model A1 values

similar to the experimental A2 values and vice versa.

The inclusion of spatial averaging in the model of CW STED dynamics in the

limit of no rotation had the expected effect of agreeing with the previous model at

low dump powers (where our understanding of CW STED already appears to be

correct) and deviating from the previous model at higher dump powers, where we

now know there to be a progressive error arising from the increasing focal volume.

However the spatial averaging model still predicted much higher STED efficiencies

than were seen in the experimental results. This suggests that neither orientation

nor spatial variations in depletion efficiency are sufficient to explain the measured

behaviour.

Therefore the part of the model which is not describing the behaviour of STED

correctly could be the time-dependent term describing the dynamics of the two state

model of CW depletion. Two assumptions have been made in the formulation of

the model: firstly, that the rate of ground state vibrational relaxation is sufficiently

fast to prevent the dump beam exciting molecules in the higher vibrational levels

of S0 back up to S1, and secondly that there are no other photophysical states that

impact upon STED efficiency other than the higher vibrational levels of S0 and the

lower vibrational levels of S1. If either of these assumptions are insufficient, then this

could result in the model over-estimating the efficiency of CW STED. The validity

of these two assumptions is discussed further below.

5.8.2 Re-pumping with the dump beam

One simple mechanism which could be reducing STED efficiency could be re-

pumping by the dump beam, which is accounted for in pulsed STED modelling

but not in CW STED modelling. A schematic showing re-pumping of a fluorophore

modelled as a four level system is shown in Fig. 5.21a. In the four level system,

absorption excites molecules from low vibrational levels of the ground state S0 to

high vibrational levels of the excited state, S∗1 . Rapid vibrational relaxation at rate

kvib1 then populates the lowest vibrational levels of the excited state, S1; this is

the group of energy levels from which fluorescence and stimulated emission occur
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at rates kf and kSTED respectively to higher vibrational levels of the ground state

S∗0 . The assumption in the two state system is that the sole route away from S∗0 is

relaxation to S0 at rate kvib0, but here a re-pumping pathway has been added which

returns molecules from S∗0 to S1 at a rate krepump = kSTED. The rate equations for

the populations of S∗0 (N∗0 ) and S1 (N1) are thus:

dN1

dt
= −(kf + kSTED)N1 + kSTEDN

∗
0 (5.17a)

dN∗0
dt

= (kf + kSTED)N1 − (kvib0 + kSTED)N∗0 . (5.17b)

The consequence of re-pumping would be that molecules spend longer in S1 on

average than predicted when there is no re-pumping, and that higher fluorescence

intensities would be detected than without re-pumping due to increased cycling

between S1 and S∗0 .

However, re-pumping is unlikely to be the cause of reduced STED efficiency for

two main reasons. Firstly, re-pumping would affect measured lifetimes and intensities

in similar ways (lengthening τd and increasing intensity), and so this does not agree

with the observed difference between F int
d and F life

d seen for the experiments in

Section 5.7.2. Secondly, and more importantly, the values of the rates involved do

not allow for S∗0 to be non-negligibly populated. From CW STED experiments,

kSTED values are measured on the order of 108 − 109s−1 (i.e. similar to kf ) whereas

the measurement of τR (= 1/kvib0) from the pulsed STED experiment in Section

4.8.2 estimates kvib0 on the order of 1012−1013s−1. As kvib0 � (kSTED, kf ) the kvib0

term in Eq. 5.17b dominates over all others, and so Eq. 5.17b can be solved as

N∗0 (t) ≈ exp(−kvib0t). (5.18)

Hence it can be seen that the population of S∗0 at any given time is negligible due

to the rapid rate of ground state vibrational relaxation and so the probability of

re-pumping occurring is also negligible.

5.8.3 Triplet state involvement

As the two state model assumed throughout appears to be insufficient for describ-

ing CW STED dynamics, a model which includes other energy states of the fluo-

rophore and transitions involving these may be necessary. Therefore an alternative

mechanism is proposed where reduced STED efficiency could arise from substantial

involvement of the triplet state. Whilst it was seen in the FCS measurements that

presence of the dump beam did not appear to increase the fraction of excited state

molecules entering the triplet state (Fig. 5.16b), the dump beam may instead be

inducing molecular transitions for molecules which have already entered the triplet

manifold. A summary of potential transitions which could occur if this were the

case is summarised in Fig. 5.21b, and Table 5.4 details relevant rates.
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Figure 5.21: Alternative models of CW STED. a) Modification of the two state

model to include a repumping rate krepump. kvib1 and kvib0 are vibrational

relaxation rates for S1 and S0 respectively. b) Modification of the model to

include pathways through the triplet state. Wavy arrowed lines indicate pro-

cesses involving the absorption/emission of a photon. Rates are given for the

following processes: kISC = intersystem crossing, kphos = phosphorescence,

kT−T = triplet-triplet absorption, kfT = spontaneous emission from T2, krISC

= reverse intersystem crossing, kIC = internal conversion. Unlabelled dark red

arrows represent rapid vibrational relaxation.
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Rate Value Notes

kf (2.803± 0.003)× 108 s−1 Calculated from undumped
fluorescence lifetime of fluo-
rescein in water measured in
this thesis

kSTED (2.06± 0.07)× 108 s−1 Maximum STED rate mea-
sured using lifetime data in
this thesis

kISC 6.6× 106 s−1 Measured for free acid form of
fluorescein in water [148]

kphos 100 − 101 s−1 Range of rates for halogenated
fluorescein derivatives in solu-
tion [149] and polymer films
[150]

kT−T ∼ kSTED Triplet-triplet excitation tran-
sition assumed to be reso-
nant with the dump wave-
length and hence occur at rate
proportional to STED rate

kfT ∼ kf Triplet-triplet fluorescence as-
sumed to occur at similar rate
to singlet-singlet fluorescence

krISC 0.2× kISC Calculated for rhodamine A
(another xanthene dye) in
aqueous solution [151]

kIC ∼ 1012 s−1 Taken from [2] as a general or-
der of magnitude

T + T → T + S0 5× 108 M−1s−1 Triplet quenching through
triplet-triplet collisions, pro-
ducing triplet and ground
state singlet [148]

T + S0 → S0 + S0 5× 107 M−1s−1 Triplet quenching through
triplet-singlet collisions, pro-
ducing ground state singlet
[148]

T + O2 → S0 + O2 1.56× 109 M−1s−1 Physical quenching of the
triplet state by molecular oxy-
gen, producing singlet state
and oxygen [148]

T + O2 → X + O−2 1.4× 108 M−1s−1 Chemical quenching of the
triplet state by molecular oxy-
gen, producing an oxidised
product X and superoxide
radical [148]

Table 5.4: Rates relevant to Fig. 5.21b for fluorescein derivatives in aqueous

solution.
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Molecules can cross into the first triplet state T1 from S1 (intersystem crossing)

at rate kISC, the value of which should not be affected by either the pump intensity

or dump intensity, but is however sensitive to solvation environment and is larger

for polar solvents [152]. This is notable as all three solvents (water, ethylene glycol

and glycerol) used in this thesis are polar molecules. As kISC is slow compared to

kf and kSTED, the majority of molecules in S1 are still more likely to return to S0

via spontaneous or stimulated emission rather than cross into T1, but the latter is

not a negligible process. The triplet state, like the singlet state, has many different

electronic energy levels and so it is conceivable that excitation and spontaneous

emission can occur between triplet states, here assumed to be T1 and T2 for the

purpose of demonstration.

Therefore one possibility is that molecules which have crossed into T1 are ex-

cited into T2 by the dump beam at rate kT−T , which would be dependent on the

dump power and thus proportional to kSTED. The feasibility of this is confirmed by

measurements of the triplet-triplet absorbance of fluorescein which show absorption

at wavelengths above 540nm which extends to wavelengths > 594nm (the dump

wavelength used here) [148]. Once in T2 the molecule can radiatively de-excite back

to T1 at rate kfT assumed to be similar to the radiative rate for S1 → S0 (kf ), or

alternatively it can undergo reverse intersystem crossing at rate krISC to a higher

singlet state (denoted S2 for this example). Again, krISC is slow compared to (the

assumed) kfT and so it is possible that there are several cycles of excitation and

emission in the triplet manifold before the molecule returns to the singlet manifold.

If reverse intersystem crossing did occur then this would be followed by rapid in-

ternal conversion back to S1 at rate kIC, and from there the molecule could then

fluoresce or undergo stimulated emission. This proposed cycle would arise from the

combined effects of the long triplet state lifetime and continuous presence of the

dump beam, and would thus be negligible for STED with short dump pulses. This

could contribute to an explanation of why STED efficiency appears to decrease with

lengthening dump pulses.

The net effect of a cycle such as this would be that there is refilling of S1 which

overall reduces the rate at which S1 decays in the presence of CW dump. The two

state model of CW STED used throughout this thesis is based on the treatment of

the population of S1 as
dN1

dt
= −(kf + kSTED)N1. (5.19)

However refilling of S1 would modify Eq. 5.19 such that

dN1

dt
= −(kf + kSTED − krefill)N1 (5.20)

where the rate krefill may have a complicated dependence on dump power and hence

kSTED. As such the measured dumped lifetime with refilling of S1 will be longer

than one where there is no refilling of S1, and so this will reduce the value of F life
d .
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The proposed modifications to the model should not affect F int
d as it will not

necessarily alter the total number of photons spontaneously emitted from S1, just

the length of time before a molecule returns to S0. However, there are several

pathways through which molecules can leave the triplet manifold which are distinct

from the transitions shown in Fig. 5.21b (which are listed at the bottom of Table

5.4). For example, collisions with other fluorophores or oxygen molecules can non-

radiatively return triplet state molecules to S0, and in the case of oxygen collisions

irreversible photochemical destruction of the fluorescent molecule itself can occur.

This loss of excited state population, and hence loss of fluorescence, will appear to be

induced by the dump beam when measured by intensity alone (thus contributing to

F int
d ), especially if any of these collisional reactions are more probable for molecules

in higher triplet states (T>1).

The addition of spatial averaging to the model of CW STED dynamics was

computationally intensive, and so the integration of other factors such as triplet

state dynamics into this framework may not be possible. Therefore, a different

modelling strategy such as Monte Carlo simulations could be used to gauge whether

inclusion of the triplet state in modelling of CW STED results in the plateau in

STED efficiency repeatedly observed throughout this thesis. Alternatively, in lieu

of formulating a new model experiments could be performed to either to minimise

kISC, which would hypothetically increase agreement with the current model, or to

maximise kISC, which would conversely decrease agreement with the current model

if passage through the triplet state does indeed affect STED efficiency. The former

could be achieved by using non-polar solvents such as cyclohexane and benzene,

whilst the latter could be achieved by introducing heavy atoms into the solvent as

these increase spin-orbit coupling and hence the rate of intersystem crossing [1],

or performing experiments on fluorophores containing heavy atoms (such as 4’5’-

diiodofluorescein [153]).

However, whilst future incorporation of triplet state involvement and spatial av-

eraging into CW STED dynamics may reduce the difference between expected and

observed STED efficiency, these are unlikely to be the only mechanisms reducing ef-

ficiency. For example fluorescence, stimulated emission and intersystem crossing are

not the only possible fates for molecules in S1. This can be seen in the fluorescence

and triplet quantum yields which have values Φf = 0.92 [154] and ΦT = 0.02− 0.05

[148] for the free acid form of fluorescein; as Φf + ΦT < 1 there must be alternative

de-excitation pathways such as excited state absorption which have not been consid-

ered here. Furthermore the low values of F life
d were observed not just for high pump

powers, where there is a substantial triplet fraction, but also at low pump powers

where the triplet fraction was measured to be negligible (for fluorescein in water).
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5.8.4 CW STED dynamics of individual molecules

One feature common to all of the experiments performed in this thesis (with the

exception of the FCS experiments) is that the dynamics of fluorophore populations

are examined as opposed to the behaviour of individual molecules. The only current

method available here to quantify the properties of single molecules undergoing CW

STED is FCS, and to perform this successfully a more appropriate FCS model would

need to be formulated, as models used here do not account for any STED effects.

Therefore the studies in this thesis have been restricted to studying the average

behaviour of many molecules, which differs from single molecule behaviour as a

result of factors such as orientational dependence and spatial averaging of out-of-

focus fluorescence.

However there is one example in the literature where the effects of CW STED on

the fluorescence lifetimes of isolated fluorophores have been quantified. Vicidomini

et al. (2011) [86] performed STED on individual nitrogen vacancy centres using

pulsed pump at 532nm and CW dump at 740nm in an early description of gSTED

microscopy, with both beams possessing Gaussian intensity profiles (as used in this

thesis). Nitrogen vacancies are an attractive test sample for STED microscopy as

they are small (∼ 4nm), have well-characterised energy levels and display a high

level of photostability with no bleaching or blinking [155]. Vicidomini et al. appear

to have used the nitrogen vacancy for this very purpose in gSTED as there was no

discussion regarding the photophysics of CW STED of nitrogen vacancies in this

paper.

Figure 5.22a shows the lifetimes of individual nitrogen vacancies measured using

TCSPC with different dump powers, taken directly from the Vicidomini et al. paper.

Plotted with the experimental data is a predicted relationship between lifetime and

dump power (Pdump) as given by [86]

τD =
1

kf + σSTEDλSTED
Ahc Pdump

(5.21)

where all parameters are as previously discussed. This formula is evidently based on

the same two state model as is used here, which can be seen by taking the reciprocal

of the dumped fluorescence rate kf + αS′ seen in the time-dependent terms of the

modelling, where α takes into account orientational effects and/or spatial averaging

(e.g. Eqs. 4.23, 5.15). Comparing Eq. 5.21 with those used in this thesis indicates

again that any orientational effects were not taken into account (i.e. the α term is

absent). Whilst this relationship appears to fit the data well at low dump powers

(≤ 5mW, measured at back aperture of the objective), the data deviates from the

predicted relationship at higher dump powers. If this data is converted into F life
d

values (Fig. 5.22b), it can be seen that whilst the fractional depletion is higher

than for any experiment described in this thesis, it still falls below the predicted

values. This is more obvious when the data is replotted in terms of the STED rate
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Figure 5.22: CW STED of nitrogen vacancies as measured by Vicidomini et

al. [86]. a) Dumped fluorescence lifetime from TCSPC measurements on single

nitrogen vacancies, where each point is the average of five measurements for

five different nitrogen vacancies. b) Fractional depletion values (red points)

calculated from published lifetime data (black dots) with respective model re-

lationships as calculated using Eq. 5.21 and combined with lifetime fractional

depletion calculation (Eq. 4.15). c) STED rates (red points) calculated from

published lifetime data (black dots) with respective model relationships as cal-

culated using Eq. 5.21 and combined with STED rate calculation in Eq. 5.7.
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(Fig. 5.22c). As only single molecules were examined in the case of the nitrogen

vacancies, a single exponential lifetime decay would be expected. However, the

denominator of the model used by Vicidomini et al. (Eq. 5.21) implies that the

STED rate should increase linearly with dump power, yet the data is sublinear and

even appears to plateau as seen in the results of this thesis. The STED rate at which

the modelling of the nitrogen vacancies appeared to ‘break down’ was approximately

0.3 − 0.4ns−1; this is the same kSTED range as where fluorescein, coumarin 6 and

pyridine 2 departed from model behaviour in all solvents tested with CW STED

in this thesis. The higher Fd values obtained in the nitrogen vacancies could have

resulted from the vacancy having a very long fluorescence lifetime (> 12ns) to begin

with.

This data is important as nitrogen vacancies do not experience orientational

dependence or concentration dependent effects, or suffer from contamination with

out-of-focus fluorescence, but still appear to experience lower than expected STED

efficiencies. This suggests that CW STED inefficiency is due to intrinsic photophysics

rather than a byproduct of population effects.

5.9 Future experimental exploration of CW STED dy-

namics

Further investigations are necessary to confirm whether involvement of the triplet

state is a contributing factor to STED efficiency. One experiment could be to mea-

sure triplet-triplet spontaneous emission and its relationship with both pump power

and dump power. This radiation is assumed to be longer than the dump beam

wavelength, and so is currently filtered from the detection pathway by the 550nm

shortpass filter.

Another strategy would be to alter the population of the triplet state. For

instance, adding an oxidising agent such as hydrogen peroxide to the fluorophore so-

lution would increase the concentration of molecular oxygen in the sample and drive

triplet state molecules to either S0 or photochemical destruction, thus preventing

the triplet state molecule returning to S1. An alternative way to achieve this could

be by increasing fluorophore concentration, as triplet-triplet and triplet-singlet col-

lisional quenching are both concentration-dependent processes (Table 5.4). However

this may have the unwanted complication of introducing more collisional quenching

of S1 which would artificially reduce the measured fluorescence lifetime. The STED

dynamics of molecules with varying triplet state yields could also be examined; an

interesting molecule to investigate would be eosin, a bromonated fluorescein deriva-

tive with ΦT = 0.64 [148] which should have a substantially lower F life
d than expected

due to increased cycling through the triplet state.

Mechanical quenching could also be used to physically remove recently formed

triplets from the sample, which is a strategy used to minimise absorption losses in
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CW dye lasers [156]. An example of such a technique being used to increase the

photostability of rhodamine 6G, another xanthene dye, uses a 100µm thick nozzle

to flow fluorophore solution through a beam focus of diameter 15µm at a rate of

15ms−1, ensuring that solution only remained at the focus for 1µs [157]. In the

experimental set-up used here, a microfluidic device could be used to flow fluorophore

solution across the focus of the microscope objective; ideally the rate of flow would

be such that the volume at the focus (∼ 0.6fl) was replaced more rapidly than the

rate of return of triplets to the singlet manifold (microsecond timescale). Such an

experiment could also be adapted to remove the effects of out-of-focus fluorescence:

for example, if a lower NA objective was used (thus increasing the size of the focus)

in conjunction with tubing/jet nozzle of low internal diameter, a situation could be

achieved where the pump and dump fields were largely constant across the entire

volume of sample flowing across the sample at a given time.

If involvement of the triplet state in CW STED can be confirmed by performing

the above experiments on fluorophores in bulk solution, then this knowledge could

be used to enhance the performance of CW STED-based microscopy techniques.

Whilst in a labelled biological sample fluorophores could not be readily nor rapidly

exchanged to remove triplet states (as would be the case in the mechanical quenching

experiment suggested), imaging buffers could be used to optimise the fluorophore

environment to minimise the rate of intersystem crossing or to chemically remove

triplets from the fluorophore population. A more detailed understanding of the

involvement of the triplet state in CW STED could also be used to better inform

the selection and development of fluorophores for CW STED techniques.

5.10 Summary

In this chapter, potential mechanisms underlying reduced STED efficiency have been

experimentally investigated and used to propose altered models of CW STED dy-

namics. Results obtained from measurements of CW STED following two photon

excitation and CW STED with differing focal volumes, along with FCS measure-

ments of the volume of the focus itself with various dump powers, have indicated

that out-of-focus fluorescence is contributing to a low observed STED efficiency.

This effect has been incorporated into the model of CW STED dynamics; however,

whilst this correction reduces the quantitative disagreement between experimental

observations and simulated STED efficiencies, this discrepancy is still far larger than

can be accounted for by experimental error.

Published results of CW STED on nitrogen vacancies indicate that there may be

intrinsic photophysical pathways which prevent high CW STED efficiencies (though

not alluded to in the study itself), and results in this chapter also indicate that

this may be the case. Increasing the (single photon) pump power resulted in lower

STED efficiencies, which here is assumed to be the effect of an increased triplet state
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population, and discrepancies between quantifying STED efficiency via suppression

of fluorescence intensity and lifetime shortening may result from molecules spending

extended periods of time in the triplet manifold. An alternative model involving the

molecule spending extended durations of time in the triplet manifold has been thus

proposed along with potential experiments to verify it.



Chapter 6

Conclusions

The field of super resolution microscopy had been steadily growing over the past

decade, with the importance of developing optical microscopy techniques capable

of resolving biological structures on the nanometre scale earning three founders of

super resolution microscopy the Nobel Prize in Chemistry in 2014.

This thesis has presented the theoretical and experimental basis for a novel su-

per resolution microscopy technique, LIR-SR. The results obtained using LIR-SR

are promising, and although the resolution increases were modest compared to es-

tablished super resolution techniques, the microscope had a simple set-up compared

to STED microscopy and the reconstruction of super resolution images was rapid in

comparison to PALM and STORM. Furthermore, on-sample laser powers over the

course of image acquisition were low compared to established super resolution tech-

niques, making LIR-SR a promising method for live-cell super resolution imaging.

Aspects of LIR-SR where there is scope for improvement have been identified and

it will be exciting to see how the technique performs in the future with these tech-

nical refinements, especially for imaging samples with labelled biological structures

as opposed to fluorescent beads.

Detailed investigations into the underlying photophysics of CW STED were un-

dertaken, motivated jointly by the requirement for a more complete understanding

of the fundamental physical processes occurring in LIR-SR and previous work in the

group which suggested that CW STED may not behave as predicted by modelling

of a two state system. The experiments in Chapters 4 and 5 repeatedly showed that

CW STED efficiency was much lower than expected for several different fluorophores

and solvents, especially at high dump powers, and broadly represented an extrapola-

tion of observations in long pulse STED. Contamination of the detected signal with

out-of-focus fluorescence was seen to have a significant effect on the measured STED

efficiency, and although incorporation of this contamination into modelling of CW

STED dynamics was a significant improvement on the previous model used, which

only accounted for the initial excited state orientational distribution function of the

fluorophore population, there was still a large discrepancy between the predictions of
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the model and the measured data. A discrepancy was also observed between quan-

tification of STED efficiency through lifetime and intensity measurements, which was

unexpected and implied that there may be some complex mechanism causing longer

than expected lifetimes in fluorophore populations subject to CW STED. Indeed,

the suggested involvement of the triplet state could also be the root of the deviations

from model behaviour for pulsed STED where the dump pulse becomes increasingly

long compared to the duration of the excitation pulse, fluorescence lifetime of the

fluorophore and the rotational correlation time of the fluorophore. The modelling

used in this thesis is more detailed than any published modelling of CW STED,

and yet this is still not sufficient to explain why CW STED efficiency is lower than

expected.

The recurring theme in the experiments presented in Chapters 4 and 5 is that

CW STED behaves as predicated when low pump powers and low dump powers

are used, but not when either or both laser powers are high. This is an important

finding with regard to LIR-SR, as this low power regime is compatible with LIR-SR

given that the fluorophores used to label the sample are sufficiently bright, and super

resolution images can be obtained with dump powers corresponding to less than 50%

lifetime shortening. The photophysical studies also suggest that this aspect of LIR-

SR is behaving as suggested by the modelling belying the technique, and that there

are not inefficiencies associated with low power CW STED that are restricting the

resolution obtainable with LIR-SR. Rather, future development of LIR-SR should be

focused on optimising the computational methods required for time window selection

and subsequent image reconstruction.

However, in STED microscopy the dump beam power is required to be at least an

order of magnitude larger than is used for LIR-SR, and pump power is also frequently

higher than is used here, presumably to maintain an appropriate signal-to-noise ratio

in images. For example, if the pump beam used here is assumed to undergo the same

relative losses in the optical path as the dump beam, then typical on-sample powers

for LIR-SR are in the range of 0.1 − 1µW, compared to pump powers in gSTED

which are an order of magnitude higher [86]. There is also considerable interest in

the development of novel fluorophores for STED microscopy (e.g. [79, 80, 158]) and

an incomplete understanding of the photophysical pathways taken by fluorophores

in the presence of a CW (or long pulsed) dump field may hinder this progress.

Therefore the findings of the experiments into CW STED efficiency presented here

are relevant not only for verification that LIR-SR operates in a regime where the

two state system assumption appears sufficient, but also for the progression of other

CW STED-based microscopy techniques.
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[78] M. Fernández-Suárez and A. Y. Ting, “Fluorescent probes for super-resolution
imaging in living cells,” Nature Reviews Molecular Cell Biology, vol. 9, pp. 929–
943, 2008.
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[80] G. Lukinavičius, K. Umezawa, N. Olivier, A. Honigmann, G. Yang, T. Plass,
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Appendix A

Spectra of fluorophores

The figures below show the absorption and emission structure of the fluorophores
used in this thesis along with the chemical structures provided on the material
data sheets (where available). The light blue lines show the single photon pump
wavelength used from excitation (490nm, two photon pump not shown), and the
orange and red lines show the dump wavelength(s) used.

Figure A.1: Absorption and emission spectra of yellow-green fluospheres pro-

vided by the manufacturer (Invitrogen Inc.)
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Figure A.2: Absorption and emission spectra of 2’,7’-dichlorofluorescein in wa-

ter. Taken from X. Zhang et al. “Fluorescence properties of twenty fluorescein

derivatives: lifetime, quantum yield, absorption and emission spectra,” Journal

of Fluorescence, vol. 24, pg. 816-26, 2014.

Figure A.3: Absorption and emission spectra of coumarin

6 in ethanol. Taken from S. Prahl “Coumarin 6,” URL:

http://omlc.org/spectra/PhotochemCAD/html/013.html, March 2012.
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Figure A.4: Absorption and emission spectra of pyridine 2 (LDS 722) in water.

Taken from V. Mart́ınez-Mart́ınez et al. “Distribution and orientation study of

dyes intercalated into single sepiolite fibers. A confocal fluorescence microscopy

approach,” Journal of Materials Chemistry, vol. 21, pg. 269, 2011.



Appendix B

Custom-written MATLAB code

B.1 FluoEvolution

1 %% FluoEvolution: code to generate temporally evolving

fluorescence images

2
3 % Read in structure to 'image '
4 pic = imread('image.png');
5 pic = im2double(pic);

6
7 % Set imaging parameters

8 lambda = 550;

9 NA = 1.2;

10
11 FWHM = lambda /(2*NA);

12 PXsize = 40;

13 FWHM_PX = FWHM/PXsize;

14
15 % Calculate omega

16 wD = FWHM_PX /(2* sqrt (2* log (2)));

17
18 % Create two -dimensional depletion intensity distribution

kernel (Eq. 2.17)

19 Id = zeros (21 ,21);

20
21 for y = 1:21,

22 for x = 1:21,

23 Id(y,x) = exp (-((((y-11) ^2) /(2*wD^2))+(((x-11) ^2)

/(2*wD^2))));

24 end

25 end

26
27 % Convolve depletion intensity kernel Id with imported

image to generate

28 % confocal image for reference (Eq. 2.2)

29 confocal = zeros (95 ,95);

30 blank = zeros (95 ,95);
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31
32 for y = 1:75,

33 for x = 1:75,

34 blank = zeros (95 ,95);

35 blank(y:y+20,x:x+20) = 500* pic(y,x)*Id;

36 confocal = confocal+blank;

37 end

38 end

39
40 % Set lifetime parameters

41 Fd = 0.5;

42 tf = 3;

43
44 % Generate two -dimensional lifetime kernel td (Eq. 2.20)

45 td = zeros (21 ,21);

46
47 for i = 1:(21*21) ,

48 td(i) = ((1-Fd)*tf)/(1+( Id(i) -1)*Fd);

49 end

50
51 % Create time stack of 200 images Intot(x,y,t) simulated

at 0.1ns intervals

52 Intot = zeros (75 ,75 ,201);

53
54 for t = 1:201 ,

55
56 expfun = zeros (21 ,21);

57 for i=1:(21*21) ,

58 expfun(i)=expfun(i)+exp ( -(0.1*(t-1))/td(i));

59 end

60
61 product = zeros (21 ,21);

62 for i = 1:(21*21) ,

63 product(i) = Id(i).* expfun(i);

64 end

65
66 Tpic = zeros (95 ,95);

67 for y = 1:75,

68 for x = 1:75,

69 Tint = zeros (95 ,95);

70 Tint(y:y+20,x:x+20) = 500* pic(y,x)*product;

71 Tpic = Tpic+Tint;

72 end

73 end

74
75 Intot(:,:,t) = Tpic (11:85 ,11:85);

76
77 end
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79 % Example of 5 time windows produced by adding narrow

time points

80 TW1im = Intot (: ,: ,1:10);

81 TW1im = sum(TW1im ,3);

82
83 TW2im = Intot (: ,: ,11:30);

84 TW2im = sum(TW2im ,3);

85
86 TW3im = Intot (: ,: ,31:60);

87 TW3im = sum(TW3im ,3);

88
89 TW4im = Intot (: ,: ,61:100);

90 TW4im = sum(TW4im ,3);

91
92 TW5im = Intot (: ,: ,101:140);

93 TW5im = sum(TW5im ,3);

B.2 SimEqRecon

1 %% SimEqRecon: code to reconstruction super resolution

images from

2 %% simulated data using simultaneous equations

3
4 function SimEqRecon

5
6 %% Same code as in FluoEvolution to generate Intot(x,y,t)

and 5 time

7 %% window images (TW1im , TW2im ... TW5im), omitted to avoid

repetition

8
9 % Selection of line profiles from time window images

10 TW1 = TW1im (:,38);

11 TW2 = TW2im (:,38);

12 TW3 = TW3im (:,38);

13 TW4 = TW4im (:,38);

14 TW5 = TW5im (:,38);

15
16 % Generate random starting point for coefficients

17 c0 = [randi ([-5 5]) randi ([-10 10]) randi ([-25 25]) randi

([-50 50])]

18
19 % Choose fitting algorithm

20 options = optimset('Algorithm ', 'levenberg -marquardt ');
21
22 % Call matlab simultaneous equation solving function

23 [c,fval] = fsolve (@sumfun ,c0,options);

24
25 % Generate reconstructed line profile using generated

coefficients



B.2. SIMEQRECON 218

26 Y = TW1 + c(1)*TW2 + c(2)*TW3 + c(3)*TW4 + c(4)*TW5;

27 Y = Y';
28 X = 0:74;

29 X = X';
30
31 % Define Gaussian fitting function

32 f = fittype('a*exp(-((x-b)/c)^2)+d');
33
34 % Fit reconstructed line profile to Gaussian distribution

35 [Yfit Ygof] = fit(X, Y', f, 'Start ', [max(Y) 11 3 mean(Y

(1:3))]);

36 Ycoeffs = coeffvalues(Yfit);

37
38 % Calculate FWHM of fitted Gaussian (in terms of pixel

number) as a

39 % measure of resolution

40 YFWHM = Ycoeffs (3)*sqrt (2*log(2))

41
42 % R-squared goodness of fit to Gaussian distribution

43 r2 = Ygof.rsquare

44
45 % Generate reconstructed image from time window images

46 FinIm = TW1im + c(1)*TW2im + c(2)*TW3im + c(3)*TW4im + c

(4)*TW5im;

47
48 % Equations to solve

49 function F = sumfun(c)

50
51 % 5 simultaneous equations for the 5 time windows

attempting to

52 % set 5 pixels equal to zero adjacent to point

source (Eq. 2.26)

53 F = [TW1 (29)+c(1)*TW2 (29)+c(2)*TW3 (29)+c(3)*TW4

(29)+c(4)*TW5 (29);

54 TW1 (30)+c(1)*TW2 (30)+c(2)*TW3 (30)+c(3)*TW4

(30)+c(4)*TW5 (30);

55 TW1 (31)+c(1)*TW2 (31)+c(2)*TW3 (31)+c(3)*TW4

(31)+c(4)*TW5 (31);

56 TW1 (32)+c(1)*TW2 (32)+c(2)*TW3 (32)+c(3)*TW4

(32)+c(4)*TW5 (32);

57 TW1 (33)+c(1)*TW2 (33)+c(2)*TW3 (33)+c(3)*TW4

(33)+c(4)*TW5 (33)];

58
59 end

60 end
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B.3 AxialEvolution

1 %% AxialEvolution: code to generate temporally evolving

fluorescence images

2 %% in the xz plane

3
4 % Read in structure to 'image '
5 pic = imread('image.png');
6 pic = im2double(pic);

7
8 % Set imaging parameters

9 lambda = 550;

10 NA = 1.2;

11
12 FWHM_x = lambda /(2*NA);

13 PXsize = 20;

14 FWHM_PX_x = FWHM_x/PXsize;

15
16 FWHM_z =(2* lambda *1.33) /(NA^2);

17 FWHM_PX_z=FWHM_z/PXsize;

18
19 % Calculate omega

20 wD = FWHM_PX_x /(2* sqrt (2* log (2)));

21
22 % Calculate two -dimensional depletion intensity

distribution in xz

23 Id = zeros (115 ,115);

24
25 for z = 1:115 ,

26 for x = 1:115 ,

27 Id(z,x) = exp (-((((x-58) ^2) /(2*wD^2))))*...

28 (0.25* FWHM_PX_z ^2) /((z-58) ^2+(0.5* FWHM_PX_z)

^2);

29 end

30 end

31
32 % Set lifetime parameters

33 Fd = 0.5;

34 tf = 3;

35
36 % Generate two -dimensional lifetime kernel td (Eq. 2.20)

37 td = zeros (115 ,115);

38
39 for i = 1:(115*115) ,

40 td(i) = ((1-Fd)*tf)/(1+( Id(i) -1)*Fd);

41 end

42
43 % Create time stack of 200 images Intot(z,x,t) simulated

at 0.1ns intervals

44 Intot = zeros (115, 115, 201);
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45
46 for i = 1:115 ,

47 for j = 1:115 ,

48 for T = 1:201 ,

49 t = 0.1*(T-1);

50 Intot(i,j,T) = 1000* Id(i,j)*exp(-t/td(i,j));

51 end

52 end

53 end

54
55 % Example of 5 time windows produced by adding narrow

time points

56 TW1im = Intot (: ,: ,1:10);

57 TW1im = sum(TW1im ,3);

58
59 TW2im = Intot (: ,: ,11:30);

60 TW2im = sum(TW2im ,3);

61
62 TW3im = Intot (: ,: ,31:60);

63 TW3im = sum(TW3im ,3);

64
65 TW4im = Intot (: ,: ,61:100);

66 TW4im = sum(TW4im ,3);

67
68 TW5im = Intot (: ,: ,101:140);

69 TW5im = sum(TW5im ,3);

B.4 GetImages and TWSelect

1 %% GetImages: code to read data from .bin files produced

by microscope

2
3 % Select data file

4 [filename pathname ]= uigetfile('*.bin', 'Pre -histogrammed
data:');

5 fid=fopen([ pathname filename ]);

6
7 % Read header information

8 fseek(fid ,0,'bof');
9 PixX = fread(fid , 1, 'int32 ');

10
11 fseek(fid ,4,'bof');
12 PixY = fread(fid , 1, 'int32 ');
13
14 fseek(fid ,8,'bof');
15 PixResol = fread(fid , 1, 'float32 ');
16
17 fseek(fid ,12,'bof');
18 TCSPCChannels = fread(fid , 1, 'int32 ');
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19
20 fseek(fid ,16,'bof');
21 TimeResol = fread(fid , 1, 'float32 ');
22
23 % Read data from file and convert into lifetime histogram

24 fseek(fid ,20,'bof');
25 Data = fread(fid ,inf ,'int32 ');
26
27 Hist = zeros(TCSPCChannels ,1);

28
29 for i=1:( PixX*PixY)

30 Hist=Hist+Data ((( TCSPCChannels *(i-1)))+1:(

TCSPCChannels*i));

31 end

32
33 % Free up memory

34 clear Data

35 TWclose = 0;

36
37 % Pass relevant information into time window selection

program

38 h=TWSelect(Hist , TimeResol , fid , TCSPCChannels , PixX ,

PixY , PixResol);

39
40 waitfor(h)

1 %% TWSelect: a GUI for interactively choosing time window

images from a

2 %% fluorescence decay and plotting intensity profiles for

obtained images

3
4 function h = TWSelect(Hist , TimeResol , fid , TCSPCChannels

, PixX , PixY , ...

5 PixResol)

6
7 %% Initialization tasks

8
9 scrsz = get(0,'ScreenSize ');

10 scrwidth = scrsz (3);

11 scrheight = scrsz (4);

12
13 lh = [];

14 S.TW = zeros(PixY , PixX , 5);

15 S.Tf = [];

16
17 TWclose = 0;

18
19 %% Components of the GUI - omitted here as just setting

up graphics

20
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21 %% Plot lifetime histogram

22 semilogy(S.Hist , Hist)

23 axis tight

24 axes(S.Hist)

25 xlabel('Channel number ')
26 ylabel('Intensity (counts)')
27
28 %% Callback functions for GUI components

29
30 % Trim lifetime histogram

31 function ExpTrim (~,~)

32
33 uiwait(msgbox('Select end of decay to trim '));
34
35 set(S.fh , 'CurrentAxes ', S.Hist);

36
37 Trim = floor(ginput (1));

38 Trim = Trim (1);

39
40 HistT = Hist (1: Trim);

41
42 semilogy(HistT)

43 axis tight

44 xlabel('Channel number ')
45 ylabel('Intensity (counts)')
46
47 end

48
49 % Fit biexponential decay to lifetime histogram

50 function ExpFitting (~,~)

51
52 uiwait(msgbox('Select start point for exponential

fitting '));
53
54 ExpStart = floor(ginput (1));

55
56 YFitData = Hist(ExpStart:length(Hist));

57 XFitData = (ExpStart:length(Hist))*TimeResol;

58
59 ExpFit = fit(XFitData ',YFitData ,'exp2 ');
60
61 ExpCoeffs = coeffvalues(ExpFit);

62
63 Tf = (( ExpCoeffs (1)*(-1/ ExpCoeffs (2)))+ ...

64 (ExpCoeffs (3)*(-1/ ExpCoeffs (4))))/( ExpCoeffs

(1)+ExpCoeffs (3));

65
66 TfChan = round(Tf/TimeResol);

67



B.4. GETIMAGES AND TWSELECT 223

68 line([ ExpStart (1) ExpStart (1)], [min(Hist) max(

Hist)], ...

69 'Color ', 'b', 'LineWidth ', 0.5)

70 line([ TfChan+ExpStart (1) TfChan+ExpStart (1)], ...

71 [min(Hist) max(Hist)], 'Color ', 'r', '
LineWidth ' ,1.5)

72
73 sth = uicontrol(S.Fitted , 'Style ', 'text ', 'Units

', ...

74 'normalized ', 'Position ', [0.05, 0.7, 0.9,

0.2], 'String ', ...

75 ['Fitting start point at channel ' num2str(

ExpStart (1))]);

76
77 sth = uicontrol(S.Fitted , 'Style ', 'text ', 'Units

', ...

78 'normalized ', 'Position ', [0.05, 0.3, 0.9,

0.4], 'String ', ...

79 ['I = ' num2str(ExpCoeffs (1) ,3)...

80 'exp(-t/' num2str(abs (1/ ExpCoeffs (2)) ,3) ...

81 ') + ' num2str(ExpCoeffs (3) ,3)...

82 'exp(-t/' num2str(abs (1/ ExpCoeffs (4)) ,3) ...

83 ')']);
84
85 sth1 = uicontrol(S.Fitted , 'Style ', 'text ', '

Units ', ...

86 'normalized ','Position ', [0.05, 0.05, 0.9,

0.15] , 'String ', ...

87 ['Fluorescence lifetime = ' num2str(Tf ,3)...

88 'ns (channel no. ' num2str(TfChan+ExpStart (1)

,3) ')']);
89
90 S.Tf = Tf;

91 assignin('base ', 'TfDumped ', S.Tf);

92
93 end

94
95 % Reset histogram

96 function Reset (~,~)

97
98 set(S.fh , 'CurrentAxes ', S.Hist);

99 plot(Hist)

100 axis tight

101 xlabel('Channel number ')
102
103 sth = uicontrol(S.Fitted , 'Style ', 'text ', 'Units

', ...

104 'normalized ', 'Position ', [0.05, 0.5, 0.9,

0.4], 'String ', '');
105
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106 sth1 = uicontrol(S.Fitted , 'Style ', 'text ', '
Units ', ...

107 'normalized ','Position ', [0.05, 0.05, 0.9,

0.4], 'String ', '');
108 end

109
110 % Plot time window image

111 function [] = TWPlot(varargin)

112
113 X = ginput (2);

114
115 if X(1)<X(2),

116 WinStart = floor(X(1));

117 WinStop = floor(X(2));

118 else WinStart = floor(X(2));

119 WinStop = floor(X(1));

120 end

121
122 TWOut = zeros(PixX*PixY ,1);

123
124 hWait = waitbar(0, ['Plotting from channel '

num2str(WinStart) ...

125 ' to channel ' num2str(WinStop) '...']);
126 steps = WinStop -WinStart;

127
128 for i = WinStart:WinStop ,

129
130 fseek(fid ,20+(i-1)*4,'bof');
131 im = fread(fid ,inf ,'int32 ',(TCSPCChannels -1)

*4);

132 TWOut = TWOut+im;

133
134 step = i-(WinStart -1);

135 waitbar(step/steps)

136
137 end

138
139 close(hWait)

140
141 TWOut = reshape(TWOut ,PixY ,PixX) ';
142
143 clear im

144
145 h = varargin {1};

146
147 N = find(S.pbh==h);

148
149 set(S.fh ,'CurrentAxes ',S.ax(N));
150 imagesc(TWOut)
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151 colormap hot; colorbar('Location ','SouthOutside ')
;...

152 axis image; axis off

153 set(S.edStart(N),'String ',num2str(WinStart));
154 set(S.edStop(N),'String ',num2str(WinStop));
155
156 S.TW(:,:,N) = TWOut;

157
158 end

159
160 % Plot updated time window image

161 function [] = TWUpdate(varargin)

162
163 TWOut = zeros(PixY*PixX ,1);

164
165 h = varargin {1};

166
167 N = find(S.pbhR==h);

168
169 WinStart = str2double(get(S.edStart(N), 'String ')

);

170 WinStop = str2double(get(S.edStop(N), 'String '));
171
172 hWait = waitbar(0, 'Updating image ...');
173 steps = WinStop - WinStart;

174
175 for i = WinStart:WinStop ,

176
177 fseek(fid ,20+(i-1)*4,'bof');
178 im = fread(fid ,inf ,'int32 ',(TCSPCChannels -1)

*4);

179 TWOut = TWOut+im;

180
181 step = i-(WinStart -1);

182 waitbar(step/steps)

183
184 end

185
186 close(hWait)

187
188 TWOut = reshape(TWOut ,PixY ,PixX) ';
189
190 clear im

191
192 set(S.fh ,'CurrentAxes ',S.ax(N))
193 imagesc(TWOut)

194 colormap hot; colorbar('Location ','SouthOutside ')
;...

195 axis image; axis off

196 S.TW(:,:,N) = TWOut;
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197
198 end

199
200 % Close program and assign variables into base

workspace

201 function [] = TWClose(varargin)

202
203 assignin('base ', 'TW1', S.TW(:,:,1));

204 assignin('base ', 'TW2', S.TW(:,:,2));

205 assignin('base ', 'TW3', S.TW(:,:,3));

206 assignin('base ', 'TW4', S.TW(:,:,4));

207 assignin('base ', 'TW5', S.TW(:,:,5));

208
209 assignin('base ', 'TWclose ', 1);

210
211 close(S.fh)

212
213 end

214
215 end

B.5 NoisyEvolution

1 %% NoisyEvolution: code for noisy evolution of simulated

data

2
3 %% Same code as FluoEvolution up to line 49.

4
5 % Generate noiseless image Intot(x,y,t) and noisy image

noiseImage(x,y,t)

6 Intot = zeros (75 ,75 ,201);

7 noiseImage = zeros (75 ,75 ,201);

8
9 for t = 1:201 ,

10
11 expfun = zeros (21 ,21);

12 for i = 1:(21*21) ,

13 expfun(i)=expfun(i)+exp ( -(0.1*t)/td(i));

14 end

15
16 product = zeros (21 ,21);

17 for i = 1:(21*21) ,

18 product(i) = Id(i).* expfun(i);

19 end

20
21 Tpic = zeros (95 ,95);

22 for y = 1:75,

23 for x = 1:75,

24 Tint = zeros (95 ,95);
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25 Tint(y:y+20,x:x+20) = 500* pic(y,x)*product;

26 Tpic = Tpic+Tint;

27 end

28 end

29
30 Intot(:,:,t) = Tpic (11:85 ,11:85);

31 Tpic = Tpic (11:85 ,11:85);

32
33 noisePic = zeros (75 ,75);

34
35 % Poisson noise generation: noise is added to each

pixel as a random

36 % number from normal distribution with mean = 0 and

37 % stdev = sqrt(intensity). If a negative pixel value

is produced ,

38 % noise generation is repeated until a non -negative

value is produced.

39 for y = 1:75,

40 for x = 1:75,

41 noisePic(y,x) = Tpic(y,x) + normrnd(0,sqrt(

Tpic(y,x)));

42 while noisePic(y,x) <0,

43 noisePic(y,x) = Tpic(y,x) + normrnd(0,

sqrt(Tpic(y,x)));

44 end

45 end

46 end

47
48 noiseImage (:,:,t) = noisePic;

49
50 end

B.6 GARecon

1 %% GARecon: code to reconstruct super resolution images

using genetic

2 %% algorithm from five time window images

3 function h = GA_recon(im1 , im2 , im3 , im4 , im5)

4
5 %% Initialization tasks

6 global S im1Rsq xRange yRange X im1Prof f base

7 global FWHMguess

8 global idealProf

9 global gamma

10 global coeffSet xOpt

11
12 scrsz = get(0,'ScreenSize ');
13 scrwidth = scrsz (3);

14 scrheight = scrsz (4);
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15
16 PixX = size(im1 ,1);

17
18 S.xRanges = zeros(PixX ,3);

19 S.yRanges = zeros(PixX ,3);

20 S.idealProfs = zeros(PixX ,3);

21 S.residualVectors = zeros(PixX ,3);

22
23 coeffSet = zeros (1,6);

24
25 %% Components of the GUI - omitted here as just setting

up graphics

26
27 %% Display TW1 image

28 set(S.fh , 'CurrentAxes ', S.imView);

29 imagesc(im1);

30 colormap hot;

31
32 %% Callback functions

33
34 % Get value for target resolution

35 function getGamma(varargin)

36 items = get(S.gamMenu ,'String ');
37 index_selected = get(S.gamMenu ,'Value ');
38 item_selected = items{index_selected };

39 gamma = str2double(item_selected);

40 end

41
42 % Clip negative values in reconstructed image to zero

43 function cmapEdit(varargin)

44 set(S.fh , 'CurrentAxes ',S.imFinal)
45 CLim = get(S.imFinal ,'CLim ');
46 CMax = CLim (2);

47 set(S.imFinal , 'CLim ', [0 CMax]);

48 end

49
50 % Select profiles from TW1 image

51 function selectProf(hObject ,eventdata)

52
53 clear xRange yRange im1Prof idealProf

residualVector idealProfNorm

54
55 h=hObject;

56 eventdata

57
58 if find(S.profRedraw ==h)>0,

59 N = find(S.profRedraw ==h);

60 else

61 N = find(S.profSel ==h);

62 end
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63
64 N = find(S.profSel ==h);

65
66 S.xRanges(:,N) = zeros(PixX ,1);

67 S.yRanges(:,N) = zeros(PixX ,1);

68 S.idealProfs (:,N) = zeros(PixX ,1);

69 S.residualVectors (:,N) = zeros(PixX ,1);

70
71 str = (['S.tb(' num2str(N) ')'])
72
73 if exist(str)==1,

74 delete(S.tb(N));

75 end

76
77 figure(S.fh)

78 set(S.fh , 'CurrentAxes ', S.imView);

79 [xVals yVals]= ginput (2);

80
81 A = [xVals (1) 1; xVals (2) 1];

82 B = [yVals (1); yVals (2)];

83
84 linCoeffs = A\B;

85
86 % Mark profile on TW1 image

87 S.lh(N) = line([ xVals (1) xVals (2)], [yVals (1)

yVals (2)], ...

88 'Color ', 'w', 'LineWidth ' ,1.5);
89 S.tb(N) = text(xVals (2), yVals (2), num2str(N), '

Color ', 'w',...
90 'FontSize ' ,16);
91
92 im1Prof = [];

93
94 % Extract TW1 values from profile

95 if round(max(yVals))== round(min(yVals)),

96 xRange = round(min(xVals)):round(max(xVals));

97 yRange = zeros(1,length(xRange));

98 yRange = yRange + round(max(yVals));

99 im1Prof = im1(round(max(yVals)), xRange);

100 elseif round(max(xVals))== round(min(xVals)),

101 yRange = round(min(yVals)):round(max(yVals));

102 xRange = zeros(length(yRange) ,1);

103 xRange = xRange + round(max(xVals));

104 im1Prof = im1(yRange , round(max(xVals)));

105 else ,

106 if (max(yVals) - min(yVals)) > (max(xVals) -

min(xVals)),

107 yRange = round(min(yVals)):round(max(

yVals));
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108 xRange = (yRange - linCoeffs (2))./

linCoeffs (1);

109 xRange = round(xRange);

110 else ,

111 xRange = round(min(xVals)):round(max(

xVals));

112 yRange = linCoeffs (1).* xRange + linCoeffs

(2);

113 yRange = round(yRange);

114 end

115 for pos = 1: length(xRange),

116 im1Prof(pos) = im1(yRange(pos),xRange(pos

));

117 end

118 end

119
120
121 X = 0: length(xRange) -1;

122
123 f = fittype('a*exp(-((x-b)^2/(2*(c^2))))+d');
124 [val , ind] = max(im1Prof);

125 FWHMguess = 5;

126 base = round(length(im1Prof)/4);

127
128 % Fit profile to Gaussian

129 [im1Fit im1Gof] = fit(X', im1Prof ', f, ...

130 'Start ', [val ind FWHMguess mean(im1Prof (1:

base))]);

131 coeffs = coeffvalues(im1Fit);

132
133 clear idealProf

134
135 getGamma

136
137 % Generate target profile

138 for i = 0: length(xRange)-1,

139 idealProf(i+1) = coeffs (1)*...

140 exp(-((i-coeffs (2))^2/(2*(( coeffs (3)/

gamma)^2))))+...

141 coeffs (4);

142 end

143
144 % Plot original and target profiles , choice to

accept or redraw

145 S.profh(N) = figure('Name ', ['Profile ' num2str(N

)], ...

146 'NumberTitle ', 'off', 'Position ', ...

147 [0.13* scrwidth 0.2* scrheight 0.35* scrwidth

0.6* scrheight], ...

148 'MenuBar ', 'none ');
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149
150 S.imProf = axes('Parent ', S.profh(N), 'Units ', '

normalized ', ...

151 'Position ', [0.1 0.25 0.85 0.7]);

152
153 set(S.profh(N),'CurrentAxes ',S.imProf);
154 plot(X,im1Prof ,X,idealProf)

155 title (['Profile ' num2str(N)])

156 axis tight

157 xlabel('Size(nm)')
158 ylabel('Intensity(a.u.)')
159
160 S.profAccept = uicontrol(S.profh(N), 'Style ', '

pushbutton ', ...

161 'String ', 'Accept profile ', 'FontSize ', 12,

...

162 'Units ', 'normalized ', 'Position ', [0.08 0.05

0.4 0.1]);

163
164 set(S.profAccept ,'callback ',@acceptProf);
165
166 function acceptProf(varargin)

167 close

168 end

169
170 S.profRedraw(N) = uicontrol(S.profh(N), 'Style ',

'pushbutton ', ...

171 'String ', 'Redraw profile ', 'FontSize ', 12,

...

172 'Units ', 'normalized ', 'Position ', [0.53 0.05

0.4 0.1]);

173
174 set(S.profRedraw(N),'callback ',@selectProf);
175
176
177 % Creation of weights for residual calculation ,

here all weights

178 % are equal to 1 for all points

179 residualVector = zeros(length(idealProf) ,1);

180 residualVector = residualVector + 1;

181 idealProfNorm = idealProf/max(idealProf);

182 residualVector(idealProfNorm <0.25) = 1;

183
184 S.xRanges (1: length(xRange),N) = xRange;

185 S.yRanges (1: length(yRange),N) = yRange;

186 S.idealProfs (1: length(idealProf),N) = idealProf;

187 S.residualVectors (1: length(residualVector),N) =

residualVector;

188
189 end
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190
191 % Define objective function for genetic algorithm

192 function G = objectiveFunction(c, TW1 , TW2 , TW3 , TW4 ,

TW5 , ideal ,...

193 xVals , yVals , resVect)

194
195 image = c(5)*(TW1 + c(1)*TW2 + c(2)*TW3 + c(3)*

TW4 + c(4)*TW5);

196
197 for i = 1: length(xVals)

198 imageProfile(i) = image(yVals(i),xVals(i));

199 end

200
201 % Calculating sum of squares difference between

reconstructed and

202 % target concatenated profile

203 residual = imageProfile (:).^ resVect (:) - ideal (:)

;

204 G = residual '* residual;
205
206 end

207
208 % Run genetic algorithm

209 function doMinimization(varargin)

210
211 clear TW1aProfile totalidealProf finalProfile

totalResidualVector

212
213 % Concatenated x coordinates

214 xRange1 = S.xRanges (:,1);

215 xRange1(xRange1 ==0) = [];

216
217 xRange2 = S.xRanges (:,2);

218 xRange2(xRange2 ==0) = [];

219
220 xRange3 = S.xRanges (:,3);

221 xRange3(xRange3 ==0) = [];

222
223 xRangecat = vertcat(xRange1 ,xRange2 ,xRange3);

224
225 % Concatenated y coordinates

226 yRange1 = S.yRanges (:,1);

227 yRange1(yRange1 ==0) = [];

228
229 yRange2 = S.yRanges (:,2);

230 yRange2(yRange2 ==0) = [];

231
232 yRange3 = S.yRanges (:,3);

233 yRange3(yRange3 ==0) = [];

234
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235 yRangecat = vertcat(yRange1 ,yRange2 ,yRange3);

236
237 % Concatenated ideal profile

238 idealProf1 = S.idealProfs (:,1);

239 idealProf1 = idealProf1 (1: length(xRange1));

240
241 idealProf2 = S.idealProfs (:,2);

242 idealProf2 = idealProf2 (1: length(xRange2));

243
244 idealProf3 = S.idealProfs (:,3);

245 idealProf3 = idealProf3 (1: length(xRange3));

246
247 totalidealProf = vertcat(idealProf1 ,idealProf2 ,

idealProf3);

248
249 % Concatenated residual weighting (all weighting

equal here)

250 residualVector1 = S.residualVectors (:,1);

251 residualVector1 = residualVector1 (1: length(

xRange1));

252
253 residualVector2 = S.residualVectors (:,2);

254 residualVector2 = residualVector2 (1: length(

xRange2));

255
256 residualVector3 = S.residualVectors (:,3);

257 residualVector3 = residualVector3 (1: length(

xRange3));

258
259 totalResidualVector= vertcat(residualVector1 ,...

260 residualVector2 ,residualVector3);

261
262 figure(S.fh)

263 set(S.fh ,'CurrentAxes ',S.profGraph)
264 plot(totalidealProf)

265
266 % Set options for genetic algorithm

267 options = gaoptimset('Generations ', 1000, ...

268 'InitialPopulation ', randn (1,5),'FitnessLimit
',0,...

269 'CrossoverFraction ' ,0.8);
270
271 tic

272
273 % Call genetic algorithm

274 [xOpt , fVal] = ga(@(c)objectiveFunction(c,im1 ,im2

,im3 ,im4 ,im5 ,...

275 totalidealProf , xRangecat , yRangecat ,

totalResidualVector),...

276 5, [], [], [], [], [], [], [], options)
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277
278 toc

279
280 % Generate reconstructed image

281 answer = xOpt (5)*...

282 (im1 + xOpt (1)*im2 + xOpt (2)*im3 + xOpt (3)*

im4 + xOpt (4)*im5);

283
284 % Plot reconstructed image

285 figure(S.fh)

286 set(S.fh ,'CurrentAxes ',S.imFinal)
287 imagesc(answer)

288 axis image

289 colormap hot

290 colorbar

291
292 % Get concatenated reconstructed profile

293 for i = 1: length(xRangecat)

294 finalProfile(i) = answer(yRangecat(i),

xRangecat(i));

295 end

296
297 % Get concatenated TW1 profile

298 for i = 1: length(xRangecat)

299 TW1aProfile(i) = im1(yRangecat(i),xRangecat(i

));

300 end

301
302 % Plot various profiles

303 figure(S.fh)

304 set(S.fh ,'CurrentAxes ',S.profGraph)
305 plot (1: length(xRangecat), TW1aProfile/max(

TW1aProfile), '.-', ...

306 1: length(xRangecat),totalidealProf/max(

totalidealProf),'.-',...
307 1: length(xRangecat), finalProfile/max(

finalProfile), '.-')
308 legend('Confocal ', 'Target ', 'Minimised ',...
309 'Location ', 'NorthEastOutside ')
310 axis tight

311
312 assignin('base ','xOpt ',xOpt)
313 assignin('base ','fVal ',fVal)
314
315 end

316
317 % Assign coefficients into workspace

318 function assignCoeffs(varargin)

319 if coeffSet == [0 0 0 0 0 0],

320 coeffSet = [xOpt gamma ];
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321 else

322 coeffSet = [coeffSet; xOpt gamma ];

323 end

324 end

325
326 end
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