UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

In vivo imaging of tau pathology using multi-parametric quantitative MRI

Wells, JA; O'Callaghan, JM; Holmes, HE; Powell, NM; Johnson, RA; Siow, B; Torrealdea, F; ... Lythgoe, MF; + view all (2015) In vivo imaging of tau pathology using multi-parametric quantitative MRI. Neuroimage , 111 pp. 369-378. 10.1016/j.neuroimage.2015.02.023. Green open access

[thumbnail of Article]
Preview
Text (Article)
1-s2.0-S105381191500124X-main.pdf - Published Version

Download (1MB) | Preview
[thumbnail of Supplementary material]
Preview
Text (Supplementary material)
mmc1(1).pdf

Download (75kB) | Preview

Abstract

As the number of people diagnosed with Alzheimer's disease (AD) reaches epidemic proportions, there is an urgent need to develop effective treatment strategies to tackle the social and economic costs of this fatal condition. Dozens of candidate therapeutics are currently being tested in clinical trials, and compounds targeting the aberrant accumulation of tau proteins into neurofibrillary tangles (NFTs) are the focus of substantial current interest. Reliable, translatable biomarkers sensitive to both tau pathology and its modulation by treatment along with animal models that faithfully reflect aspects of the human disease are urgently required. Magnetic resonance imaging (MRI) is well established as a valuable tool for monitoring the structural brain changes that accompany AD progression. However the descent into dementia is not defined by macroscopic brain matter loss alone: non-invasive imaging measurements sensitive to protein accumulation, white matter integrity and cerebral haemodynamics probe distinct aspects of AD pathophysiology and may serve as superior biomarkers for assessing drug efficacy. Here we employ a multi-parametric array of five translatable MRI techniques to characterise the in vivo pathophysiological phenotype of the rTg4510 mouse model of tauopathy (structural imaging, diffusion tensor imaging (DTI), arterial spin labelling (ASL), chemical exchange saturation transfer (CEST) and glucose CEST). Tau-induced pathological changes included grey matter atrophy, increased radial diffusivity in the white matter, decreased amide proton transfer and hyperperfusion. We demonstrate that the above markers unambiguously discriminate between the transgenic group and age-matched controls and provide a comprehensive profile of the multifaceted neuropathological processes underlying the rTg4510 model. Furthermore, we show that ASL and DTI techniques offer heightened sensitivity to processes believed to precede detectable structural changes and, as such, provides a platform for the study of disease mechanisms and therapeutic intervention.

Type: Article
Title: In vivo imaging of tau pathology using multi-parametric quantitative MRI
Location: United States
Open access status: An open access version is available from UCL Discovery
DOI: 10.1016/j.neuroimage.2015.02.023
Publisher version: http://dx.doi.org/10.1016/j.neuroimage.2015.02.023
Language: English
Additional information: © 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Brain Repair and Rehabilitation
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Medicine
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Medicine > Department of Imaging
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Medicine > Experimental and Translational Medicine
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL EGA Institute for Womens Health
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL EGA Institute for Womens Health > Neonatology
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Computer Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Med Phys and Biomedical Eng
URI: https://discovery.ucl.ac.uk/id/eprint/1463869
Downloads since deposit
254Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item