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ABSTRACT 

Activation of the NF-κB pathway is linked to cancer development and progression. 

Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV8) encodes vFLIP which binds to 

the NEMO/IKKγ subunit of IKK and constitutively activates NF-κB, leading to 

tumourigenesis. Cellular FLIPs, which share sequence homology with KSHV vFLIP and 

induce NF-κB activation, are upregulated in a variety of malignancies and are therefore 

promising targets for anti-cancer therapies. The cFLIP family consists of three splice 

variant isoforms (cFLIPL, cFLIPS and cFLIPR) and two proteolytic fragments (p43-FLIP 

and p22-FLIP). Much is known about how cFLIPs regulate apoptosis but the 

mechanisms by which they activate NF-κB are not well understood. Potential similarities 

to vFLIP-induced activation have been suggested but not investigated.  

Here we show that, unlike KSHV vFLIP, cFLIP variants are not found in stable 

complexes with NEMO and all require upstream events to mediate signalling to IKK. By 

mutational analysis on NEMO and protein expression knockdowns, we demonstrate that 

all cFLIP isoforms require the ubiquitin binding domain (UBD) of NEMO while it is 

redundant for vFLIP’s function. Similarly, our data reveals that TAK1 is essential for 

induction of IKK by cFLIP isoforms but not vFLIP.  We further show that different 

cFLIP isoforms have different requirements for IKK activation. While cFLIPL needs 

LUBAC to activate NF-κB, cFLIPS and p22-FLIP require FADD and RIP1. Contrary to 

existing reports, our results suggest that processing of cFLIPL to p22-FLIP or p43-FLIP 

fragments by caspase-8 is not necessary for its IKK activation. Finally, we propose that 

vFLIP-mediated activation of IKK is most likely to occur through induction of 

multimerisation and re-orientation of the IKK complexes within higher order IKK 

assemblies that lead to autophosphorylation of the enzymatic subunits, IKKα and β. 

In conclusion, the work in this thesis provides evidence that vFLIP, cFLIPL, cFLIPS 

and p22-FLIP have specific and different mechanisms of inducing IKK activation. This 

has implications for the design of therapeutics to block pathological NF-κB activation in 

viral and non-viral tumours. 
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1.1 NF-κB signalling pathway: an overview 

Nuclear Factor-κB (NF-κB) is one of the crucial signalling pathways which regulates 

a wide variety of physiological processes such as innate and adaptive immunity, 

proliferation, differentiation and cell death. In 1986, NF-κB was identified in David 

Baltimore’s laboratory as an inducible nuclear protein which binds to specific DNA 

sequences within κ light chain enhancer in B cells, referred to as κB sites (Sen and 

Baltimore, 1986a, 1986b). Extensive research over the past 27 years has revealed an 

enormous number of biological roles for this pathway in almost all cell types. The 

activation of NF-κB is strictly controlled at multiple levels by positive and negative 

regulatory elements whose malfunction can give rise to various pathologies, notably 

inflammatory diseases and cancers (Oeckinghaus et al., 2011).  

In the following sections, I provide a brief description of NF-κB signalling 

components and their mechanisms of action. 

1.1.1 NF-κB related proteins 

In resting conditions, NF-κB is sequestered in cell cytoplasm by inhibitor of κB 

(IκB). Upon activation by various stimuli such as IL-1 or TNFα, the IκB is 

phosphorylated by IκB kinase (IKK) complex leading to its ubiquitination and subsequent 

proteasomal degradation. The released NF-κB is further regulated by post-translational 

modifications and migrates to nucleus where it promotes the transcription of target genes. 

In principle, three major families of protein form the backbone of NF-κB signalling 

network: NF-κB transcription factors, IκB family and IKK complex (Hayden and Ghosh, 

2008). 

1.1.1.1 NF-κB transcription factors 

In mammals, NF-κB family consists of five transcription factors: RelA (p65), RelB, 

c-Rel, NF-κB1 (p105/p50) and NF-κB2 (p100/p52) encoded by RELA, RELB, REL, 

NFKB1 and NFKB2 genes, respectively (Gilmore, 2006) (Figure 1.1A). Except for RelA, 

transcription of the other subunits is upregulated by NF-κB, producing a positive 

feedback loop on stimulated cells (Huxford et al., 2011). Synthesised as large precursor 

proteins, p105 and p100 undergo proteolytic processing to generate the transcriptionally 

active mature polypeptides, p50 and p52, respectively (Ghosh et al., 1998). Processing of 
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p105 occurs constitutively (Karin and Ben-Neriah, 2000; Lin et al., 1998), whereas p100 

processing is mediated through regulated signals (Liou et al., 1994).  

All members of the NF-κB family share a conserved N-terminal region of roughly 

300 amino acids, known as the rel homology domain (RHD) which is responsible for 

hetero- and homo-dimerisation, nuclear localisation, DNA binding  and association with 

IκBs (Hayden and Ghosh, 2004). In RelA, RelB and c-Rel, the RHD is followed by a 

transcription activation domain (TAD) which mediates their association with trans-acting 

factors leading to positive regulation of gene expression (Hayden and Ghosh, 2008). On 

the contrary, p50 and p52 which lack a TAD fail to mediate transcription as homo-dimers 

and may act as repressors unless hetero-dimerised with one of the TAD containing NF-

κB subunits or other cofactor-recruiting proteins (Hayden and Ghosh, 2008; Zhong et al., 

2002). Some studies, however, suggest that these homo-dimers are able to mediate 

activation through interaction with nuclear IκB proteins which can act as coactivators 

(Smale, 2012).  Unlike the Rel proteins, p100 and p105 precursors contain an ankyrin 

repeat domain (ARD) in their carboxy terminal halves, similar to that found in the IκB 

family (Hoffmann et al., 2006). RelB is unique in that it contains a further N-terminal 

lucine zipper-like (LZ) motif  which - in addition to the TAD - is necessary for its full 

activation (Hayden and Ghosh, 2008).  

 Through combinatorial interactions, NF-κB subunits can form up to 15 distinct 

homo- and hetero-dimers (Gilmore, 2006). Although 12 out of the 15 possible dimers 

have been identified in various tissues,  other yet undetected dimers may exit in some 

specific cellular conditions (Huxford et al., 2011). RelA: p50 is the most abundant of NF-

κB dimers, identified in almost all cell types (Oeckinghaus and Ghosh, 2009). The 

composition of NF-κB dimers can vary depending on cell type, stimulus and duration of 

signalling (Sen and Smale, 2009). In addition to the combinatorial specificity, various post-

translational modifications of NF-κB polypeptides as well as diverse interactions with 

other coactivators contribute further to remarkable complexity of cell- and stimuli-specific 

NF-κB responses (Sen and Smale, 2009).  

1.1.1.2 IκB family 

IκBs consist of structurally related proteins, characterised by the presence of a 

conserved ARD that mediates their interaction with NF-κB subunits (Li et al., 2006a; 

Zheng et al., 2011). Based on their subcellular localisation as well as functional and 
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structural characteristics, the IκB family can be subdivided into two groups of typical and 

atypical IκBs (Figure 1.1B).  

IκBα, Iκβ and IκBε represent the typical cytoplasmic IκBs that function in part by 

masking the nuclear localisation sequence (NLS) of NF-κB polypeptides - contained 

within the RHD - and therefore, inhibit their nuclear translocation (Vallabhapurapu and 

Karin, 2009). In case of IκBα, the NLS masking is incomplete but a nuclear export 

sequence (NES) within IκBα mediates quick export of NF-κB:IκBα complexes from the 

nucleus. This leads to continuous shuttling of the complexes between cytoplasm and 

nucleus. Upon stimulation-induced degradation of IκBα, this balance shifts in favour of 

nuclear localisation and leads to transactivation (Hayden and Ghosh, 2008). Selective 

binding of the typical IκBs to specific homo- or hetero-dimers ties them to their distinct 

functions(Malek et al., 2001; Tran et al., 1997). Discrete degradation dynamics as well as 

different stimuli-dependant expression modes contribute further to specificity of their 

transcriptional activities (Hinz et al., 2012).  

The atypical IκBs consist of IκBζ, IκBη, IκBNS and B cell lymphoma-3 (Bcl-3) that 

all predominantly reside in the cell nucleus. Nuclear IκBs can bind to DNA-bound NF-

κB, inhibit their degradation and mediate their interaction with various cofactors resulting 

in positive or negative regulation of transcription (Ghosh and Hayden, 2008). Expression 

of atypical IκBs, except for IκBη, is limited in resting cells but can be greatly induced 

upon NF-κB stimulation (Hinz et al., 2012). 

Through their C-terminal ankyrin repeat motifs, NF-κB precursors p100 and p105 

can also function as IκB-like proteins, sequestering their dimeric partners in the cytoplasm 

(Naumann et al., 1993a, 1993b) (Figure 1.1B). In contrast to typical IκBs which 

demonstrate subunit-specific inhibitory function, p105 binds to and inhibits all NF-κB 

subunits including its own processed form, p50. Recent studies have shown that multiple 

units of p100 and p105 can form large complexes (referred to as IκBsomes) that contain 

various NF-κB subunits. Different structural organisation and subunit binding preferences 

of atypical IκBs suggests that they might have distinct kinetic properties in activation and 

post-induction termination of NF-κB signalling as compared with typical IκBs (Huxford 

et al., 2011).  
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Figure 1.1. Molecular architecture of the NF-κB, IκB and IKK family members. 

The number of amino acids in each human protein is indicated on the right. A) All 

members of the NF-κB share a rel homology domain (RHD) that is required for their 

dimerisation, nuclear localisation, DNA binding and sequestration of IκBs. In RelA, RelB 

and c-Rel, this domain is followed by a transactivation domain (TAD) that mediates 

transcription initiation at κB sites-containing promoters. RelB additionally harbours a 
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leucine zipper domain in its N-terminus that is required for its maximal activity. The 

RHD in the p100 and p105 precursors is followed by a glycine-rich region (GRR), ankryin 

repeat motifs (ANK) and a C-terminal death domain (DD). The p52 and p50 subunits are 

shown below the p100 and p105 structures, generated after their proteolysis. B) IκB 

family members are characterised by the presence of multiple ANK motifs which mediate 

interactions with NF-κB dimers. IκBα and IκBβ contain an additional C-terminal PEST 

domain (sequences rich in proline (P), glutamate (E), serine (S), and threonine (T) 

residues) that is important for normal protein turnover. C) The core IKK complex 

consists of the enzymatic subunits, IKKα and IKKβ, and the regulatory subunit, NEMO. 

Serine residues within the activation loop of the IKKα/β kinase domain (KD) that 

undergo phosphorylation have been indicated. The previously designated leucine zipper 

(LZ) and helix-loop-helix (HLH) regions are shown in parentheses. ULD: ubiquitin-like 

domain, SDD: scaffold/dimerisation domain, NBD: NEMO-binding domain, HLX: 

helical domain, CC: coiled coli. 

 

1.1.1.3 IκB kinase complex 

The IκB Kinase complex is the master regulator of the NF-κB signalling and 

consists of two enzymatic subunits: IKKα (IKK1) and IKKβ (IKK2) as well as a 

regulatory subunit known as NF-κB essential modulator (NEMO) or IKKγ (Scheidereit, 

2006) (Figure 1.1C). Several biochemical studies on purified IKK complex have proposed 

a 2:1:1 ratio of the subunits where a dimer of NEMO associates with 1 IKKα hetero-

dimerised with 1 IKKβ. However, other combinations of IKK core complex have also 

been suggested to exist, including the homodimers of IKKα and IKKβ either associated 

with or distinct from NEMO or separate (Liu et al., 2012). In vitro experiments provide 

evidence that IKK complexes can further assemble to form high-order structures through 

multimerisation (Drew et al., 2007). This can explain the high molecular weight of the 

endogenous IKK complexes (700-900 kDa) when separated by gel filtration 

chromatography. However, it is thought that the elongated shape of NEMO may also be 

the reason for the apparent molecular weight of IKK (Hayden and Ghosh, 2008). 

1.1.1.3.1 The catalytic subunits 

IKKα and IKKβ are structurally very similar and share 51% amino acid sequence 

homology (Mercurio et al., 1997). Both kinases contain an N-terminal kinase domain 
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(KD) -with two serine residues within the activation loop (S176 and S180 for IKKα, S177 

and S181 for IKKβ) that require phosphorylation for the kinase activity, followed by a 

dimerisation domain and a C-terminal NEMO binding domain (NBD)(Israël, 2010; Liu et 

al., 2012; Scheidereit, 2006) (Figure 1.1C). IKKα, but not IKKβ, has a putative nuclear 

localisation signal (NLS) that has been linked to its NF-κB-independent nuclear activities 

(Sil et al., 2004).  

Crystal structures of IKKβ (from human and Xenopus laevis) were recently resolved, 

leading to a significant progress in understanding the domain organisation and function of 

this enzyme (Liu et al., 2013; Polley et al., 2013; Xu et al., 2011). Based on these studies, 

IKKβ has a trimodular architecture comprising the N-terminal KD, a central ubiquitin-

like domain (ULD) and C-terminal elongated α-helical scaffold/dimerisation domain 

(SDD) (Figure 1.1C). Interestingly, neither of the previously predicted helix-loop-helix 

(HLH) and leucine zipper (LZ) motifs form these structures but they are part of the SDD 

(Xu et al., 2011). The ULD is required for catalytic activity of IKKβ and, together with 

SDD, is involved in determining the substrates specificity towards IκBα. The SDD 

mediates dimersiation of IKKβ which is required for kinase activation, but not important 

for maintaining the kinase activity once the activation loop is phosphorylated (Xu et al., 

2011).   

In both IKKα and IKKβ, the NBD contains a shared six amino acid sequence 

(LDWSWL) that is necessary for their interaction with NEMO (May et al., 2002). Cell 

permeable peptides containing this sequence have been utilised to specifically disrupt 

IKK-NEMO interaction and prevent cytokine-induced NF-κB activation. Interestingly, 

competition assays using the peptide mimic of the NBD indicate a considerably weaker 

interaction of NEMO with IKKα compared to IKKβ (May, 2000). The higher affinity of 

IKKβ might be due to a unique 12 amino acid region that is not found in IKKα. This 

extension occurs immediately after the NBD and contains five negatively charged 

glutamic acid residues (Delhase, 1999). Remarkably, swapping the C-termini of IKKα and 

IKKβ generates an IKKα with IKKβ-like behaviour. These results suggest that 

differences in the NEMO binding affinity of IKKα and IKKβ might be responsible for 

their distinct functions (Kwak, 2000). 
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1.1.1.3.2 NEMO/IKKγ 

The regulatory subunit of IKK complex, NEMO, is a 49 kDa polypeptide predicted 

to have two helical (HLX) domains interleaved with two coiled-coil (CC) domains, 

followed by a leucine zipper motif and a C-terminal zinc finger (ZF) (Zheng et al., 

2011)(Figure 1.1C). Unlike IKKα and IKKβ, NEMO lacks any intrinsic enzymatic 

activity. The N-terminal region of NEMO (amino acids 40-120 contained within HLX1 

region) mediates its binding to the C-termini of the catalytic subunits (May, 2000). The 

CC2 domain together with the adjacent LZ form the ubiquitin binding domain of 

NEMO, generally referred to as the NUB (NEMO ubiquitin binding), CoZi (coil-zipper 

domain) or UBAN (ubiquitin-binding in ABIN and NEMO)(Bloor et al., 2008; Ea et al., 

2006; Wu et al., 2006a). The ZF motif was suggested by a recent study to be required for 

directing the substrate-specificity of IKKβ towards IκBα (Schröfelbauer et al., 2012). This 

domain has also been implicated in enhancing affinity of NEMO for binding to ubiquitin 

chains (Laplantine et al., 2009). 

Except for the C-terminus, the α-helical sequence of NEMO is capable of forming 

coiled-coil structure either alone or in association with a partner protein. The CC regions 

of NEMO are disrupted in multiple points by amino acids out of coiled-coil register. 

These breaks can serve as docking sites for interaction with various regulatory proteins 

and the flexible nature of CC region enhances the efficiency of these interactions (Ghosh 

et al., 2012). 

NEMO is encoded by the IKKBG gene located on the chromosome X. In humans, 

amorphic mutations of NEMO that lead to a lack of NEMO-dependant NF-κB activation 

are lethal in males but in females cause the disease incontinentia pigmenti (IP). IP is 

characterised by abnormalities of skin, hair, teeth, nails, and in some cases, neurological 

complications (Berlin et al., 2002). Hypomorphic mutations of NEMO that result in a 

weakened, but not obliterated, NF-κB induction have been associated with the X-linked 

recessive disease of anhidrotic ectodermal dysplasia associated with immunodeficiency 

(EDA-ID) in males. Symptoms of EDA-ID include severe defects in immunological 

functions, sparse hair, dental defects and hypohydrosis (Döffinger et al., 2001). Mutations 

in NEMO have been also identified in patients with Mendelian susceptibility to 

mycobacterial disease (MSMD) who have recurrent infections with bacteria of the 

tuberculosis family (Al-Muhsen and Casanova, 2008). 



23 
 

1.1.1.3.3 Other IKK-associated components 

Apart from IKKα, IKKβ, and IKKγ which form the core of IKK complex, other 

proteins have been also reported to participate in the architecture and function of the 

complex. The chaperones heat shock protein 90 (HSP90) and HSP70 are two such 

components detected in association with the IKK complex. HSP90 constitutively 

associates with IKK through its co-chaperone Cdc-37 and has been suggested to stabilise 

the complex through facilitating its folding. Inhibition of HSP90 by Geldanamycin (an 

ATPase inhibitor of HSP90) suppresses NF-κB signalling in response to various stimuli 

such as IL-1, TNFα and PMA (Broemer et al., 2004; Chen et al., 2002). Unlike HSP90, 

HSP-70 appears to function as a NEMO interacting inhibitor of the IKK through 

preventing the formation of the complex (Ran et al., 2004). Another component that 

associates with IKK and regulates its function is a 105-kDa protein, ELKS (a protein rich 

in glutamate (E), leucine (L), lysine (K) and serine (S)).  Immunodepletion analyses 

suggested that ELKS is a stoichiometric component of IKK (Häcker and Karin, 2006). 

siRNA-mediated knockdown of ELKS results in reduced levels of IKK activation in 

response to TNFα and IL-1. Recent studies support a role for ELKS in ATM- and 

NEMO-dependent NF-κB activation in response to genotoxic stress induced by DNA 

double stranded breaks (Hadian and Krappmann, 2011; Yang et al., 2011). Although the 

association of ELKS, HSP90 and HSP70 with IKK have been well-established, the 

detailed mechanisms by which they regulate IKK have yet to be identified. 

1.1.2 Two pathways to NF-κB 

Numerous receptor-mediated cascades that lead to activation of NF-κB are 

classified into two major pathways, the canonical (or classical) and the non-canonical (or 

alternative) NF-κB pathway. These pathways are distinct in respect to the triggering 

stimuli, the IKK components involved and the targeted NF-κB subunits. 

1.1.2.1 Canonical NF-κB pathway 

The canonical pathway is triggered by a broad range of stimuli including 

inflammatory cytokines (such as IL-1, TNFα, etc), pathogen-associated molecular patterns 

(PAMPs) and antigen receptors (Bonizzi and Karin, 2004).  This pathway is mainly 

activated through phosphorylation of IκBs at serine residues (equivalent to Ser32 and 

Ser36 of IκBα) by IKKβ in a NEMO-dependant manner. The phospho-IκBs are then 

recognised and polyubiquitinated (at residues equivalent to Lys21 and Lys22 of IκBα) by 
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the E3 ubiquitin ligase complex SCFβTRCP (Skp1, Cdc53/Cullin1 and F-box protein β 

transducin repeat-containing protein). Subsequently, the K48-linked polyubiquitin chains 

mark IκB for degradation by 26S proteasome resulting in the release and nuclear 

translocation of RelA-containing NF-κB heterodimers, most commonly RelA:50 dimers 

(Vallabhapurapu and Karin, 2009) (Figure 1.2, left). 

 

Although IKKβ appears to be the predominant kinase of the canonical NF-κB 

pathway, several lines of evidence support a role for IKKα in this pathway. For example, 

receptor activator of NF-κB (RANK)-induced classical NF-κB activation in mammary 

cells depends on IKKα as the key kinase (Cao et al., 2001). Furthermore, IL-1 (but not 

TNFα)-induced canonical NF-κB induction has been shown to be intact in IKKβ 

deficient MEF cells (Solt et al., 2007).  A recent study showed that IKKα is also involved 

in negative regulation of classical pathway through phosphorylating Tax1-binding protein 

1 (TAX1BP1) and recruitment of the A20 deubiquitinase complex to IKK (Shembade et 

al., 2011). These findings indicate that IKKα may be involved in both activation and 

deactivation of canonical NF-κB signalling in response to at least a subset of stimuli.  

The ultimate outcome of the canonical pathway is transcriptional activation of the 

genes that are mainly involved in innate immunity such as pro-inflammatory cytokines 

(e.g., IL-1, IL-2, IL-6, TNF), chemokines (e.g.,CCL2, CCL3, CXCL8), leukocyte adhesion 

molecules (e.g., E-selectin, ICAM-1, and VCAM-1), and multiple pro-survival and anti-

apoptotic genes (e.g., Bcl-2, Bcl-XL, XIAP) (Bonizzi and Karin, 2004). Substantial 

increase in susceptibility to infections in conditional IKKβ or RelA KO mice reveals the 

importance of canonical pathway in immune functions (Pasparakis et al., 2006). 

1.1.2.2 Alternative NF-κB pathway 

Unlike the canonical NF-κB pathway, the non-canonical NF-κB pathway is 

activated by a limited number of receptors that belong to the TNF receptor superfamily. 

These include CD40, lymphotoxin β receptor (LTβR), B-cell activating factor receptor 

(BAFFR), CD27, RANK, and Fn14 (Razani et al., 2011). Although most signals that 

activate canonical NF-κB pathway do not activate the non-canonical pathway, the non-

canonical signals are able to activate both pathways (Bonizzi and Karin, 2004). 

The alternative NF-κB pathway strictly relies on IKKα and appears to be 

independent of IKKβ and NEMO (Senftleben et al., 2001) (Figure 1.2, right). Activation 
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of IKKα by NF-κB-inducing kinase (NIK), a member of the mitogen-associated protein 3 

kinase (MAP3K) family, is an absolute requirement for switching on the non-canonical 

pathway (Xiao et al., 2001a, 2004). In resting cells, NIK is constitutively synthesised but 

cannot be detected due to a rapid degradation mediated by an E3 ubiquitin ligase complex 

composed of TNFα receptor associated factor-2 (TRAF2), TRAF3, cellular inhibitor of 

apoptosis-1 (cIAP1) and cIAP2 (Qing et al., 2005; Zarnegar et al., 2008).  Evidences 

suggest that cIAP1/2 are responsible for the K48-linked ubiquitination of NIK while 

TRAF2 and TRAF3 cooperate to recruit NIK to cIAPs. Upon receptor ligation, the 

TRAF/cIAP complex is recruited to the receptor whereupon cIAP1/2 synthesises K48- 

linked Ub chains on TRAF3 instead of NIK. The subsequent degradation of TRAF3 

results in the accumulation of NIK that in turn phosphorylates and activates IKKα 

(Vallabhapurapu et al., 2008; Zarnegar et al., 2008). The activated IKKα then 

phosphorylates p100 (at ser866 and ser870) and marks it for proteasomal degradation, 

resulting in the release of the p52: RelB heterodimers that translocate to the nucleus and 

bind to the relevant DNA sequences (Senftleben et al., 2001; Xiao et al., 2004). The 

activated IKKα also phosphorylates NIK that leads to its destabilisation and 

downregulation of downstream signalling events (Razani et al., 2010). 

Biological roles of the alternative pathway that are mainly in regulating adoptive 

immunity include development of secondary lymphoid organs, B-cell maturation and 

survival, thymic epithelial cell differentiation, dendritic cells (DC) maturation and the 

osteoclastogenesis. Moreover, recent studies suggest a role or this pathway in regulating 

T-cell differentiation (Sun, 2012). 



26 
 

 

Figure 1.2. A simplified scheme of the canonical and alternative NF-κB activation 

pathways. Canonical pathway (right) is induced by a diverse range of surface receptors 
(e.g, TNFR or TLR) which converge on the tripartite IKK complex, comprising IKKα, 
IKKβ and NEMO. IKK activity results in phosphorylation of the IκB, followed by its 
K48-ubiquitination and proteasomal degradation. This leads to liberation of the Rel:p50 
dimers which can then translocate to nucleus and induce plethora of  target genes. Unlike 
the canonical cascade, the alternative pathway (right) is induced by a small subset of 
receptors and depends on the NIK-mediated phosphorylation and activation of IKKα 
homo-dimers. Activated IKKα phosphorylates p100 to induce its partial proteolysis to 
p52 subunit. Transcriptionally active p52 preferentially hetero-dimerises with RelB to 
migrate into the nucleus and initiate transcription of target genes. 
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1.2 Mechanisms behind positive and negative regulation of IKK 

To become active, the IKK complex requires phosphorylation of the T loop serines 

of at least one of the kinases. Similar to other kinases, this phosphorylation is more likely 

to confer activation through inducing conformational changes in the activation loop 

(Hayden and Ghosh, 2008).  Mutation of these serines (S176 and S180 on IKKα, and 

S177 and S181 on IKKβ) to alanine prevents kinase activity of the IKK while replacement 

with phosphomimetic glutamates renders them constitutively active (Mercurio et al., 

1997).  The exact mechanisms by which the kinase subunits are phosphorylated remain 

controversial to date. However, three major activation mechanisms have been proposed:  

(i) Direct phosphorylation of the kinase subunits by upstream IKK-activating 
kinases (IKK-K)  

 
(ii) Trans-autophosphorylation of IKK induced by oligomerisation 

 
 

(iii) Trans-autophosphorylation of IKK induced by conformational changes 
through protein-protein interaction or posttranslational modifications  

 
These mechanisms are not mutually exclusive and might integrate in various cell- 

and pathway-specific manners (Häcker and Karin, 2006). Regulation of these mechanisms 

and the relevant responsible components including various kinases, phosphatases, adaptor 

proteins and polyubiquitin chains are the subject of the following discussions. 

1.2.1 IKK-activating kinases 

The role of NIK for the phosphorylation and activation of IKKα in the alternative 

NF-κB pathway provided compelling evidence for the existence and function of IKK-Ks 

(Senftleben et al., 2001). Other studies have suggested a role for several other members of 

the MAP3K family as IKK-Ks in the canonical pathway. The most notable IKK-K is 

transforming growth factor-β kinase-1 (TAK1, aka MAP3K7) that was initially proposed 

to activate NF-κB through phosphorylating NIK (Ninomiya-Tsuji et al., 1999). Later on,  

in vitro experiments showed that TAK1, alongside its regulatory cofactors TAK1-binding 

protein1 (TAB1) and TAB2, can directly phosphorylate IKKβ on the activation loop in a 

ubiquitin-dependent manner (Wang et al., 2001). In cells, TAB2 or its homologues TAB3, 

but not TAB1, link TAK1 to upstream components by binding to K63-linked 

polyubiquitin chains on TRAF6 (in IL-1 signalling) or TRAF2 and RIP1 (in TNFα 

signalling) (Ea et al., 2006; Ishitani et al., 2003; Takaesu et al., 2000). This bridging is 
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mediated by a highly conserved C-terminal zinc finger domain on TAB2/3 (Kanayama et 

al., 2004). The mechanisms by which K63 ubiquitin chains induce TAK1 activation are 

not well-understood. However, it has been postulated that TAB2/3 binding to ubiquitin 

chains facilitates oligomerisation of TAK1 complexes leading to autophosphorylation and 

activation of TAK1 (Chen et al., 2006). In support of this hypothesis, TAK1 becomes 

phosphorylated at threonine187 within its activation loop and a mutation of this residue 

blocks its kinase activity (Singhirunnusorn et al., 2005).  

siRNA-mediated silencing of TAK1 as well as studies with deletion mutants of 

functional domains indicated that TAK1 is required for NF-κB activation (Besse et al., 

2007; Takaesu et al., 2003). Furthermore, analysis of MEFs derived from TAK1-deficient 

mice supported a role for this enzyme in IKK activation by stimuli such as IL-1 and 

TNFα. Nevertheless, animal studies suggest that TAK1 might be dispensable in vivo, at 

least in some cell types. For instance, absence of TAK1 does not impair BCR-induced 

NF-κB activation (Sato et al., 2005). In addition, deletion of TAK1 blocks TCR induced 

NF-κB signalling in thymocytes, but not in effector T cells (Liu et al., 2006; Wan et al., 

2006). Based on these results, it seems plausible that the requirement for TAK1 to 

activate IKK may be cell type-specific. 

Other studies have provided a role for mitogen-activated protein/ERK kinase 

kinase 3 (MEKK3, aka MAP3K3) as an IKK-K. Initial studies with MEKK3-/-  fibroblasts 

suggested its importance in TNFα-induced NF-κB activation downstream of TRAF2 and 

RIP1. These cells showed reduced levels of IκBα degradation and the p65/p50 DNA 

binding in gel shift assays was severely impaired in response to TNFα. Since MEKK3 

physically interacted with RIP1, it was proposed to mediate RIP1 signalling to IKK (Yang 

et al., 2001a). Later, Blonksa et al., were able to restore NF-κB activation in RIP1-

defiecient cells using a fusion protein composed of full length MEKK3 and RIP1 death 

domain (Blonska et al., 2005). This protein could directly associate with TRADD, 

indicating that RIP1 is likely responsible for recruiting MEKK3 to the TNFα receptor 

complex.  

MEKK3 is also implicated in IKK activation by IL-1R/TLR pathways and 

lysophosphatidic acid (LPA) (Huang et al., 2004b; Sun et al., 2009a). Similar to TAK1, 

MEKK3 interacts with TRAF6 upon induction of IL-1R/TLR pathways (Huang et al., 

2004b). Yao et al., described independent pathways for IL-1 induced NF-κB activation by 

TAK1 and MEKK3. The TAK1-mediated pathway was shown to result in activation of 



29 
 

IKKβ, followed by IκBα phosphorylation and degradation; whereas the MEKK3-

dependent pathway led to NF-κB activation by NEMO phosphorylation and IKKα 

activation resulting in IκBα phosphorylation and dissociation from NF-κB subunits 

without its degradation (Yao et al., 2007). LPA-induced IKK activation, on the other 

hand, appears to be dependent on MEKK3, but not TAK1 (Sun et al., 2009a). Despite 

these findings, the physiologic importance of MEKK3 in NF-κB pathways has yet to be 

determined in vivo. Animal studies are partially hindered by the fact that MEKK3 

knockout mice die at embryonic day 11 due to defects in angiogenesis and cardiovascular 

development (Yang et al., 2000). 

Two other MAP3Ks, MEKK1 and MEKK2, also exhibit ability to activate the IKK 

complex. Overexpression of MEKK1 and MEKK2 results in phosphorylation of 

IKKα/β in cells (Lee et al., 1997, 1998; Zhao, 1999). Although recombinant MEKK1 is 

shown to activate IKKs in vitro, there is no evidence for direct phosphorylation of IKKs 

by MEKK2. An analysis of biphasic cytokine-induced NF-κB activation demonstrated a 

mechanism in which MEKK2 regulates delayed NF-κB responses by assembling into 

IκBβ:NF-κB/IKK complexes; while MEKK3 inducibly associates with IκBα:NF-κB/IKK 

complexes and mediates rapid activation of NF-κB (Schmidt et al., 2003).  

Taken together, results from different studies suggest that IKK-Ks might have 

either redundant roles, cooperate to signal to IKK or function in distinct NF-κB 

pathways. Depending on the cell- and pathway-specific conditions, all three possibilities 

may exist. That being said, the exact role of IKK-Ks in IKK activation is still a matter for 

debate. Considering that IKK complexes can be activated by artificially enforced 

oligomerisation in vitro (Tang et al., 2003), IKK-Ks may contribute to amplification of 

IKK activity where it has been already initiated by trans-autophosphorylation. These 

functions, nevertheless, might be interchangeable in cells. 

Attempts to identify additional IKK-phosphorylating kinases have been hampered 

in part by the limitations of siRNA screenings. This is due to the fact that achieving 

complete protein knockdown in the whole cell population is almost impossible and the 

residual expression of a kinase is often sufficient to activate a signalling pathway normally 

(Liu et al., 2012).  
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1.2.2 IKK-regulating phosphatases 

Negative regulation of the MAPK signalling pathways by numerous MAPK 

phosphatases (MKPs) is well-established (Liu et al., 2007). By contrast, only a few 

phosphatases have been implicated in the modulation and termination of NF-κB pathway. 

The most prominent of all is a ubiquitously expressed serine/threonine phosphatase 

known as protein phosphatase type2A (PP2A). PP2A exists as heterotrimeric 

holoenzymes composed of one catalytic C subunit (PP2Acα or β isoforms) and a 

scaffolding A subunit (PR65α or β) which together form the core dimer, as well as a 

regulatory B subunit (Janssens and Goris, 2001). There are at least 18 regulatory B 

subunits whose binding to the ‘AC’ core is speculated to control PP2A substrate 

selectivity, catalytic activity and subcellular localisations (Cho and Xu, 2007). 

Several early studies associated PP2A activity with down-regulation of NF-κB on 

the observation that treatment with PP2A inhibitors enhanced IKK activation and 

blocked RelA phosphorylation in response to cytokines (DiDonato et al., 1997; 

Maggirwar, 1995; Yang et al., 2001b). In addition, recombinant PP2A could inhibit IKK 

activity and dephosphorylate RelA in vitro (DiDonato et al., 1997; Li et al., 2006b). In 

agreement with these findings, a more recent study demonstrated that siRNA-mediated 

silencing of various catalytic and regulatory PP2A subunits results in prolonged TNFα-

induced NF-κB activation. Using co-immunoprecipitation and in vitro phosphatase assays, 

distinct PP2A complexes including PP2Acβ/PP2R1A , PP2Acα/PP2R1B  and  

PP2Acα/PP2R1A/PP2R5C were detected to associate with and dephosphorylate IKKβ 

(on S181), RelA (on S536) and TRAF2 (on T117), respectively (Li et al., 2006b).  In T-

cells, through the regulatory subunit PP2R1A, PP2A interacts with Carma1 and removes 

the PKCθ-dependent phosphorylation of this protein on serine 645, thereby inhibiting the 

TCR-induced IKK activation (Eitelhuber et al., 2011). These results suggest that different 

combinations of PP2A holoenzymes may operate at different levels of the NF-κB 

pathway.  

Although dephosphorylation of IKKβ by PP2A has been reported by multiple 

research groups (Hong et al., 2007; Prajapati et al., 2004; Witt et al., 2009), some 

contradictory reports also exist. In a study by Sun et al., PP2A did not target IKKβ but 

rather dephosphorylated the upstream IKK-K, MEKK3. PP2A was shown to physically 

bind to phosphorylated MEKK3 and specifically dephosphorylate it on threonine516 and 

serine520 (Sun et al., 2010). Another study from the same group described the 
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magnesium-dependant phosphatases PPM1A and PPM1B, but not PP2A, as IKKβ 

phosphatases in the TNFα-induced NF-κB pathway (Sun et al., 2009b).  

Interestingly, PP2A is also implicated in positive regulation of the IKK activity 

(Kray et al., 2005). This is presumably mediated by reversing the inhibitory 

phosphorylation of NEMO and IKKβ following stimulus-dependant NF-κB activation 

(See 3.1.1.2). PP2A was detected in stable complexes with NEMO in resting conditions 

and the deletion of the putative PP2A-binding region on CC1 region of NEMO (amino 

acids 121-179) resulted in reduced IKKβ phosphorylation and activation in response to 

TNF-α (Kray et al., 2005). The discrepancies in the reported functions of PP2A and other 

IKK-regulating phosphatases may be explained by the distinct patterns of the 

phosphatase expression and/or substrate-specificity within different NF-κB pathways and 

cell types.   

PP1 is another phosphatase demonstrated to associate with and dephosphorylate 

IKKβ. The adaptor protein CUE domain-containing 2 (CUEDC2) mediates this 

interaction by recruiting GADD34, a regulatory subunit of PP1, to the IKK complex (Li 

et al., 2008a). Formation of the ternary complex of IKK/PP1/CUEDC2 was shown to 

retain IKK in an inactive, non-phosphorylated state but following TNFα stimulation, 

IKK was transiently dissociated from complex and bound to TRAF2, indicating that PP1 

is likely responsible for controlling basal levels of IKK activity..  

A recent siRNA screen conducted to identify NF-κB modulating phosphatases in 

T-cells pulled out PP4R1A as another negative regulator of IKK. PP4R1 which stably and 

specifically binds to the catalytic subunit PP4c was shown to associate with IKK complex 

subsequent to TCR-induced NF-κB activation and direct PP4c to dephosphorylate and 

deactivate IKK complex (Brechmann et al., 2012). Interestingly, PP4c has been linked to 

positive regulation of NF-κB based on the evidence that it can remove inhibitory 

phosphate groups from threonine435 of RelA (Yeh et al., 2004). Since PP4c subunit 

participates in a wide collection of PP4 holoenzymes, the associated regulatory subunits 

most likely determine the functional outcome of the phosphatase in NF-κB pathways 

(Chowdhury et al., 2008; Gingras et al., 2005; Lee et al., 2010). 

Wild-type p53-induced phosphatase1 (WIP1), which belongs to the magnesium 

dependent PP2C family of phosphatases, was found to directly interact with RelA and 

dephosphorylate it on serine536 in response to TNFα stimulation. WIP1 can also 
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dephosphorylate p38, which appears to be important for induction of a subset of NF-κB 

target genes such as IL-6, ICAM, and IRF1. Mice lacking WIP1 were reported to have 

hyperactivated immune responses based on the evidence that following LPS challenge, 

splenocytes of WIP1−/−  mice produced higher levels of κB-dependent inflammatory 

cytokines, compared with WIP1+/− animals (Chew et al., 2009). However, in contrast to 

these results, Choi et al., showed that both T- and B-cells exhibit compromised functions 

in WIP1-deficient mice (Choi et al., 2002).  

A few other phosphatases such as Shp-2, PP6c and PTPN21, have been associated 

with negative regulation of the NF-κB pathway (Li et al., 2006b; Stefansson and 

Brautigan, 2006; You et al., 2001). However, more work is needed to elucidate distinct 

roles of these and other NF-κB-regulating phosphatases, in tissue- and pathway-specific 

conditions. 

1.2.3 Ubiquitin-mediated control of IKK 

The ability to bind to ubiquitin chains, in free form or conjugated to other proteins, 

serves as a major mechanism in activating IKK. Ubiquitin-mediated control of IKK that 

in large depends on NEMO has been suggested to be involved in all possible IKK 

activation processes of oligomerisation, conformational change induction and recruiting 

IKK-Ks.  

1.2.3.1 The ubiquitin system 

Ubiquitin (Ub) is a highly conserved 76 amino acid protein that is expressed in all 

eukaryotic cells (Hershko and Ciechanover, 1998). The term ‘Ubiquitination’ or 

‘Ubiquitiylation’ refers to the covalent attachment of ubiquitin molecules to target 

proteins that is executed by a concerted action of three enzymes (Hoeller et al., 2006). 

First, the E1 ubiquitin-activating enzyme is loaded with ubiquitin through formation of a 

thio-ester bond between the C-terminal Glycine of the ubiquitin and the catalytic site 

Cysteine of E1. The activated ubiquitin is then discharged onto the active site of a 

ubiquitin-conjugating enzyme (E2), generating an E2-ubiquitin thiol-ester. Finally, an E3 

ubiquitin ligase transfers the ubiquitin molecule to the target protein by forming an 

isopeptide bond between C-terminal carboxyl group of the ubiquitin and the ε-amino 

group of a lysine residue on a target protein (Ciechanover et al., 1982; Hershko, 1983; 

Hershko et al., 1983). Interestingly, some proteins without lysine residues have been also 
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found to be ubiquitinated. In these cases, serine or threonine residues are likely to 

participate in conjugation to ubiquitin (Cadwell and Coscoy, 2005; Wang et al., 2007b). 

To date, two E1s and approximately 50 E2s have been identified in mammals. E3s 

constitute the largest and the most diverse group of ubiquitin editing enzymes with over 

600 members (Bhoj and Chen, 2009; Malynn and Ma, 2010). The E3 enzymes are 

classified into two families: the really interesting new gene (RING)-type and homologous 

to the E6-associated protein C terminus (HECT)-type E3 ligases (Bernassola et al., 2008; 

Petroski and Deshaies, 2005). The HECT-type ligases contain a conserved cysteine 

residue at the C-terminal part of the HECT motif that forms a thiol-ester bond with 

ubiquitin. HECT-domain bound ubiquitin can be transferred directly onto target protein 

(Pickart, 2001). Unlike HECT-type E3s, members of the RING-type family do not appear 

to form thiol-ester intermediates; instead they serve as scaffolds that bring the E2 and the 

target protein into close proximity. The RING finger domain contains a conserved 

pattern of cysteine and histidine residues whose folding allows coordination of two zinc 

cations (Deshaies and Joazeiro, 2009). 

Substrate proteins can be modified either by a single ubiquitin molecules 

(monoubiquitination) or ubiquitin polymers (polyubiquitination) (Haglund and Dikic, 

2005). Each type of modification leads to a distinct regulatory fate. Monoubiquitination 

has been shown to regulate receptor endocytosis, vesicle sorting, gene silencing and  

DNA repair events [reviewed in (Hicke, 2001)] . It has been also implicated in regulating 

enzymatic activity of IKKβ (Carter et al., 2005) and transcriptional activity of the viral 

oncoprotein HTLV-1 Tax (Gatza and Marriott, 2006; Gatza et al., 2007). Ubiquitin 

harbours seven lysine residues (K6, K11, K27, K29, K33, K48 and K63) all of which can 

serve as ubiquitin acceptor sites, promoting formation of seven distinct polyubiquitin 

chains. In addition, ubiquitin linkages can be formed in a head-to-tail configuration 

through the N-terminal amino group, to produce so called ‘linear’ or ‘M1-linked’ ubiquitin 

chains (Komander, 2009). Depending on the linkage type, ubiquitin chains adopt distinct 

structural and functional characteristics (Pickart and Fushman, 2004). Based on the early 

studies on K48-linked ubiquitin chains, the ubiquitin system was thought to be merely in 

charge of proteasomal degradation, however the identification and study of other linkage 

types has revealed diverse biological roles of ubiquitin. All eight types of ubiquitin linkages 

have been detected in vivo and are suggested to regulate functions such as DNA repair 

(K63), protein interactions (K33), signalling pathway activation (K63, K27, K11, linear), 
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trafficking (K63) and the well-known proteasomal degradation (K48 , K11, K29) 

(Behrends and Harper, 2011). 

To recognise the signals encoded by ubiquitin moieties, cells have developed a 

series of modular motifs known as ubiquitin binding domains (UBD) that non-covalently 

bind to different forms of ubiquitin and transduce their signals into specific cellular 

pathways (Hicke et al., 2005). Using biochemical and bioinformatics approaches more 

than 150 types of UBDs have been identified to date. These domains are quite diverse in 

size (20-150 amino acids), structure and the functions of the UBD-containing proteins 

(Dikic et al., 2009). UBDs exist in E3s, deubiquitinases and binding adaptor proteins and 

contribute to their specificity. Most often, the binding affinity of the UBDs and ubiquitin 

are relatively low (about 10-500 µM) (Hicke et al., 2005). Nevertheless, specific mutations 

of UBDs, which disrupt ubiquitin binding, lead to impairment of protein function in vivo 

indicating the physiologic importance of these weak interactions (Ea et al., 2006; 

Kanayama et al., 2004; Wu et al., 2006a).  

Most UBDs show little discrimination between different linkages; although some 

prefer a certain type of polyubiquitin chains (Haglund and Dikic, 2005). For example, the 

NZF domain of TAB preferentially binds to K63-linked chains; this binding is essential 

for TAK1 activation (Kanayama et al., 2004; Komander et al., 2009). On the other hand, 

UBAN domain which is present in proteins such as NEMO, optineurin and A20-binding 

inhibitor of NF-κB (ABIN), shows high affinities towards linear polyubiquitin chains 

(Nagabhushana et al., 2011; Nanda et al., 2011; Rahighi et al., 2009). 

Ubiquitination processes are employed at multiple stages of both canonical and 

non-canonical NF-κB pathways. Indeed, cooperative functions of numerous ubiquitin 

editing enzymes, ubiquitin-binding proteins and different polyubiquitin chains appear to 

be essential for both negative and positive regulation of NF-κB pathway. 

1.2.3.2 Roles of the linear and K63-linked PolyUb chains in IKK activation 

Much of our understanding of how polyubiquitin chains activate IKK comes from 

studying TNF and IL-1 receptor induced NF-κB signalling. In TNF signalling, following 

the trimerisation of the receptor by TNF, adapter protein (TRADD) (Hsu et al., 1995) 

and RIP1 (Hsu et al., 1996a) are recruited the to the death domain of TNF receptor 

(TNFR). TRADD then mediates recruitment of E3 ubiquitin ligase TRAF2 (and 

TRAF5)(Ermolaeva et al., 2008; Tsao et al., 2000) which in turn provides a platform for 



35 
 

binding of two more E3s, cIAP1 and cIAP2 (Mace et al., 2010; Vince et al., 2009). Next, 

cIAPs synthesise K63-linked ubiquitin chains on RIP1 (and cIAPs themselves)(Bertrand 

et al., 2008; Varfolomeev et al., 2008) that serve as a scaffold to bring IKK and TAK1 to 

close proximity via binding to UBD of their respective subunits, NEMO and TAB2 (or 

TAB3). K63-linked ubiquitin chains are especially important for TAK1-TAB recruitment 

and activation since the regulatory subunit TAB2 binds specifically to this type of linkages 

and not any other (Kulathu et al., 2009). 

Similarly, K63 polyubiquitin chains play an essential role in IL-1 and Toll-like 

receptor (TLR) induced NF-κB activation. Upon IL1R/TLR ligation, adapter protein 

MyD88 is recruited to the receptor complex which further associates with IRAK1 and 

IRAK4 via another adaptor protein TRAF-interacting protein with a forkhead-associated 

domain (TIFA) (Chen, 2012). IRAK1 induces K63-linked autoubiquitination of TRAF6 

which depends on the E2 complex, Ubc13/Uev1A E2s (Deng et al., 2000; Lamothe et al., 

2007).  Activated TRAF6 also catalyses unanchored K63-ubiquitin chains which together 

with TRAF6-bound ubiquitin chains can recruit TAK1 and IKK, thereby facilitating 

phosphorylation of IKK by TAK1 (Wang et al., 2001).  

Initially, it was thought that UBAN domain of NEMO specifically binds to K63- 

ubiquitinated components. However, several groups later showed that UBAN is able to 

discriminate linear and K63-linked Ub chains and remarkably, has 100-fold higher affinity 

for the first of these (Lo et al., 2009; Rahighi et al., 2009). In keeping with these studies, 

later a 600 kDa E3 ubiquitin ligase complex, so called LUBAC (linear ubiquitin binding 

assembly complex) was reported to mediate linear chains synthesis (Kirisako et al., 2006) 

and activate NF-κB independent of K63 ubiquitination (Tokunaga et al., 2009). LUBAC is 

composed of three subunits: HOIL-1L (longer isoform of heme-oxidised IRP2 ubiquitin 

ligase-1), SHARPIN (SHANK-associated RH domain interacting protein) and the 

catalytic subunit HOIP (HOIL-1L interacting protein) (Gerlach et al., 2011; Ikeda et al., 

2011; Kirisako et al., 2006; Tokunaga et al., 2011). Generation of linear linkages is 

determined by LUBAC independent of the E2 involved. To date, LUBAC is the only 

known E3 capable of synthesising linear polyubiquitin chains (Iwai et al., 2014). 

An interesting recent study showed that most of linear ubiquitin chains formed in 

response to IL-1 are covalently conjugated to K63-linked ubiquitin oligomers. 

Furthermore, it was demonstrated that while HOIL-1L preferentially binds to linear 

chains, the catalytic subunit HOIP specifically interacts with K63-linked ubiquitin chains 
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as the preferred substrate (Emmerich et al., 2013). These findings indicate that the K63-

linked ubiquitin chains formed by upstream E3s like TRAFs and cIAPs might serve as a 

platform for recruitment of other regulators such as TAK1 and LUBAC. The linear 

ubiquitin oligomers synthesised by LUBAC can then associate strongly with NEMO and 

put IKK into a context where it can be phosphorylated by upstream kinases like TAK1, 

MEKK2 or MEKK3.  

Alternatively, ubiquitin binding of NEMO may promote IKK activation through 

oligomerisation or inducing conformational changes, leading to trans-

autophosphorylation of the kinase subunits. The latter hypothesis is supported by the 

notion that the recognition of linear di-ubiquitin by UBAN of NEMO induces 

straightening of the coiled-coil region (Rahighi et al., 2009). This conformational alteration 

may then extend towards N-terminus and provide enzymatic subunits with optimal 

positioning for trans-phosphorylation. Interestingly, mutating K270 of murine NEMO 

(equivalent to K277 of human NEMO) can overcome the requirement for ubiquitin 

binding and renders the IKK complex constitutively active in the absence of any 

inflammatory stimuli (Bloor et al., 2008). It is possible that the K270A NEMO mimics the 

conformational changes induced by the ubiquitin binding to WT NEMO. Collectively, 

these findings propose a model in which NEMO keeps the catalytic subunits in an 

inactive conformation and ubiquitin binding induces a conformational change that 

removes this inhibition to promote activation of IKKs by upstream kinases or trans-

autophosphorylation. 

Besides binding to ubiquitin chains, NEMO is also directly ubiquitinated by 

LUBAC at lysine residues K285 and K309 (Tokunaga et al., 2009). Reconstitution of 

NEMO-deficient cells with K285R/K309R double mutant NEMO did not rescue NF-κB 

activation in response or IL-1 or LUBAC overexpression. Since K309 is located within 

UBAN, its ubiquitination prevents binding to linear chains while in case of K285, 

theoretically conjugation and binding to linear polyubiquitin can coexist (Rahighi et al., 

2009). However, because of the parallel nature of binding, the UBAN motif of NEMO is 

unlikely to recognize linear chains in cis and binds to ubiquitin chains of another NEMO 

molecule which may lead to oligomerisation-induced activation of IKK (Iwai and 

Tokunaga, 2009).  

The significance of ubiquitin chain binding and conjugation in canonical NF-κB 

pathways manifests both in human genetics and mouse models. Mutations in the UBAN 
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domain of NEMO (D311N, D311G) with deleterious effects on ubiquitin binding ability 

of NEMO have been associated with EDA-ID (Döffinger et al., 2001; Hubeau et al., 

2011). In addition, cpdm (chronic proliferatory dermatitis in mice)  mice, which have 

mutations in the Sharpin gene (Sharpin cpdm/cpdm), develop inflammatory disorders, severe skin 

lesions and defects in secondary lymphoid organs (Gerlach et al., 2011; Seymour et al., 

2007). Cells derived from SHARPIN deficient as well as HOIL-1 knockout mice are 

sensitive to TNFα-induced apoptosis and have defects in NF-κB activation (Tokunaga et 

al., 2009, 2011).  

1.2.3.3 DUBs and the negative regulation of IKK 

Deubiquitinases (DUBs) are a group of cysteine- or metallo-proteases that reverse 

the activity of E3s by cleaving ubiquitin moieties form target proteins (Harhaj and Dixit, 

2011). Counter-regulation of ubiquitination processes by E3s and DUBs plays a crucial 

role in the regulation of NF-κB pathway and thereby, innate and adoptive immune 

responses (Sun, 2008). Approximately 100 DUBs are encoded in the human genome 

which are classified into five families based on the domain structure: ubiquitin-specific 

proteases (USPs), ubiquitin C-terminal hydrolases (UCHs), ovarian tumour proteases 

(OTUs), Machado–Joseph disease protein domain proteases (MJDs) and the 

JAB1/PAB1/MPN domain-containing metallo-enzymes (JAMMs) (Nijman et al., 2005). 

Similar to E3s, DUBs display intrinsic specificity towards different types of linkages. 

Recognition and recruitment of various linkages is mainly mediated by UBD of the DUBs 

but in some cases depends on the ubiquitin-binding adapter proteins or selectivity of the 

catalytic core (Komander, 2010; Komander and Barford, 2008; Komander et al., 2008). 

Several DUBs have been implicated in the negative regulation of IKK including CYLD, 

A20, cellular zinc finger anti-NF-κB (Cezanne), ubiquitin-specific protease 11(USP11), 

USP15 and USP21. 

CYLD was originally identified as a tumour suppressor since the mutation of the 

encoding cylindromatosis gene predisposes individuals for familial cylindromatosis, a genetic 

disorder characterised by benign tumours of skin (Bignell et al., 2000). DUB activity of 

this enzyme is mediated by its C-terminal USP domain (Komander et al., 2008). siRNA-

mediated knockdown of CYLD enhances NF-κB activation in response to inflammatory 

stimuli while overexpression of CYLD, but not the mutants lacking DUB activity, reduces 

NF-κB activation (Kovalenko et al., 2003; Trompouki et al., 2003). Several studies show 

that CYLD deficient mice are highly susceptible to chemically induced colitis as well as 
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colon and skin tumours (Reiley et al., 2006; Zhang et al., 2006). CYLD also plays an 

important role in T-cell development and activation, by regulating lymphocyte-specific 

protein tyrosin kinase (LCK), an important kinase in T cell receptor signalling (Reiley et 

al., 2006). CYLD has been demonstrated to target multiple components of the NF-κB 

pathway for deubiquitination such as NEMO (Kovalenko et al., 2003; Saito et al., 2004), 

TRAF2 (Brummelkamp et al., 2003), TRAF6 (Jin et al., 2008), RIP1 (Wright et al., 2007), 

TAK1(Reiley et al., 2007), LCK (Reiley et al., 2006) and the NF-κB subunit co-activator 

Bcl-3 (Massoumi et al., 2006). CYLD directly interacts with NEMO and TRAF2; 

however, in certain pathways, it requires ubiquitin-binding adaptor proteins to ensure 

target specificity. Optineurin and p62 have been suggested to link CYLD with RIP1 and 

TRAF6, respectively (Jin et al., 2008; Nagabhushana et al., 2011). 

In vitro experiments indicate that CYLD preferentially removes linear and K63-

linked ubiquitin chains compared to K48-linked oligomers (Komander et al., 2009). 

Results from two other studies show that CYLD cleaves K48-linked ubiquitin chains of 

some targets both in vitro (Stokes et al., 2006) and in vivo (Reiley et al., 2006).  Taken 

together, it is possible that linkage-specificity of CYLD is determined in part by the target 

proteins.  

A20, also known as TNFα-induced protein 3 (TNFAIP3), is an NF-κB inducible 

protein that contains an N-terminal OTU domain and seven C-terminal zinc fingers 

(Krikos et al., 1992). A20-deficient mice die prematurely due to extensive inflammation of 

numerous organs including liver, kidneys, intestines and bone marrow (Lee et al., 2000). 

These mice are also highly susceptible to sublethal doses of LPS and TNF-α, indicating 

the substantial role of A20 in terminating inflammatory stimuli. In humans, 

polymorphisms of the A20 gene have been associated with multiple autoimmune diseases 

such as systemic lupus erythematous, Crohn’s disease, psoriasis and rheumatoid arthritis 

(Arsenescu et al., 2008; Fung et al., 2009; Musone et al., 2008; Nair et al., 2009; Thomson 

et al., 2007). Furthermore, inactivating mutations of A20 are found in a large number of 

human lymphomas (Honma et al., 2009; Kato et al., 2009).  

The unique feature of A20 is that it harbours both DUB and E3 activities which are 

mediated by the OTU and ZF4 domains, respectively (Wertz et al., 2004). In TNFR1 

signalling, A20 first removes the K63-linked ubiquitin chains from RIP1, it then 

synthesises K48-linked ubiquitin polymers on RIP1 which marks it for proteasomal 

degradation (Wertz et al., 2004). An alternative mechanism has been described for A20 
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inhibition of the IL-1R/TLR pathways, whereby it blocks TRAF6 ubiquitination by 

disrupting its association with the E2 enzymes, Ubc13 and UbcH5C (Shembade et al., 

2010). Similarly, A20 can inhibit TRAF2 and cIAPs by promoting disassembly of the 

E2:E3 complexes and triggering ubiquitin-mediated proteasomal degradation of the E2 

enzymes. These functions depend on both ZF4 and OTU catalytic domains (Bosanac et 

al., 2010; Shembade et al., 2010; Wertz et al., 2004). Interestingly, two groups showed that 

overexpression of A20 mutant (C103A) lacking DUB activity blocks NF-κB activation as 

efficiently as WT-A20 (Evans et al., 2004; Li et al., 2008b). Consistent with these findings, 

a recent study demonstrated a non-catalytic mechanism of IKK inhibition by A20 (Skaug 

et al., 2011). Skaug et al., showed that linear and K63-linked ubiquitin chains on NEMO 

recruit A20 (via its ZF4 and ZF7) to the IKK complex which then can inhibit 

phosphorylation of IKK by TAK1, without reducing RIP1 ubiquitination. A20 can also 

bind directly to the N-terminal region of NEMO; this weak interaction is further 

stabilised by the interactions between A20 and polyubiquitin chains (Skaug et al., 2011). It 

is possible that A20 binding to NEMO blocks the IKK oligomersiation or reverses the 

conformational changes required for the activation of IKK. Taken together, these results 

suggest that A20 might utilise distinct mechanisms to terminate IKK activation in 

different NF-κB pathways. 

Although A20 and CYLD have many overlapping targets, no obvious functional 

redundancy exists between these two DUBs. This is presumably due to the distinct 

temporal order of their function during inflammatory responses (Sun, 2008). While 

CYLD blocks spontaneous activation of NF-κB, A20 is induced upon NF-κB activation 

and is crucial to terminate the pathway in a negative feedback loop. Phosphorylation of 

CYLD by IKK has been shown to be required for TRAF2 ubiquitination and activation 

of NF-κB and JNK pathways (Reiley et al., 2005). Therefore, phosphorylation-dependant 

inactivation of CYLD might provide a window for NF-κB activation before signal-

induced termination by A20. Linkage type specificity is another key difference between 

CYLD and A20. In vitro studies suggest that A20 preferentially cleaves K48-linked 

polyubiquitin chains (Komander and Barford, 2008; Lin et al., 2008) while CYLD 

hydrolyses both linear and K63-linked oligomers (Komander et al., 2008, 2009). In cells, 

A20 might depend on ubiquitin-binding protein adaptors such as TAX1BP1 and the 

ABIN-1 to ensure specificity (Mauro et al., 2006; Shembade et al., 2007; De Valck et al., 

1999). 
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In addition to CYLD and A20, other DUBs have been also described to play a role 

in negative regulation of the NF-κB pathway [reviewed in (Sun, 2008)]. For instance, 

Cezanne inhibits TNFα-induced IKK activation by promoting deubiquitination of the 

TNFR- associated RIP1. Similar to A20, Cezanne is rapidly induced in response to TNF-

α, although unlike A20, its DUB activity is essential for mediating the inhibitory functions 

(Enesa et al., 2008; Evans et al., 2003).  Recently, Cezanne was reported to preferentially 

hydrolyse K11-linked ubiquitin oligomers (Bremm et al., 2010); how this function of 

Cezanne might regulate the NF-κB pathway still remains unknown. USP21 is another 

DUB which inhibits TNFα-induced IKK activity by also removing polyubiquitin chains 

from RIP1 (Xu et al., 2010). Clearly, IKK regulating DUBs share many overlapping 

targets; however the linkage type-specificity and the distinct temporal order of activity 

might account for their specific functions. 

 

1.3 FLICE-Like Inhibitory Proteins 

The first members of the FLICE-like inhibitory protein (FLIP) family were 

identified as viral genome products (vFLIPs), following a bioinformatic search conducted 

to recognise death effector domain (DED)-containing proteins that function as apoptosis 

regulators (Thome et al., 1997). Soon after, a consensus sequence from the viral FLIPs 

was used to screen human expressed sequence tags and several human homologues were 

identified, collectively named as cellular FLIPs (cFLIPs)(Irmler et al., 1997). All members 

of the FLIP family harbour two tandem DEDs in their N-terminal region, similar to that 

found in caspase-8 and caspase-10 (Fig 1.3). As suggested by structural properties of 

FLIPs, the initial bioactivity reported was an ability to interact with FADD (Fas-

associated protein with death domain) and inhibit apoptosis induced by multiple death 

receptors (Bertin et al., 1997; Hu et al., 1997a; Irmler et al., 1997; Thome et al., 1997). 

However, since their discovery, many other biological roles have been described for 

different FLIPs. In the following sections, I will review the structure and multi-faceted 

regulatory functions of the cellular and viral FLIPs with a particular emphasis on KSHV 

vFLIP. 

1.3.1 Viral FLIPs 

Viral FLIPs are present in several γ-herpesviruses and the human molluscipoxvirus 

(Figuire 1.3A). The vFLIP-encoding γ-herpesviruses consist of bovine herpesvirus-4 
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(BHV-4), herpesvirus samiri (HSV), equine herpes virus-2 (EHV-2), rhesus monkey 

rhadinovirus (RRV) and the Kaposi’s sarcoma-associated herpesvirus (KSHV). The 

genome of molluscum contagiosum virus (MCV) encodes two distinct vFLIPs: MC159 

and the closely related MC160 (Searles et al., 1999; Thome et al., 1997). Unlike cFLIPs, 

the amino terminal DEDs of different vFLIPs are not identical and contain variable 

amino acid sequences (Figure 1.4). Furthermore, none of the vFLIPs contain a caspase-8-

like domain; instead, the serial DEDs are extended by C-terminal tails of variable lengths. 

During the early stages of a viral infection, death receptor-induced cell death can 

effectively demolish the infected cells. Not surprisingly, viruses have evolved various 

strategies (e.g., expressing vFLIPs) to resist cell death and thereby, facilitate the viral 

propagation and persistence. The ability of vFLIPs to effectively inhibit apoptotic 

pathways not only results in persistent infection, but also transforms the host cells 

(Thome et al., 1997). KSHV vFLIP is a notable example of a viral oncoprotein that plays 

indispensable roles in tumourigensis of the associated virus. 

1.3.1.1 Kaposi’s sarcoma-associated virus 

KSHV (also known as human herpesvirus-8 (HHV-8)) is the causative agent of 

Kaposi’s sarcoma (KS), a neoplasm of lymphatic endothelial cells. KS is the most 

common type of malignancy in HIV patients, although it occurs in other 

immunosuppressive conditions like organ transplant. KSHV is also associated with two B-

cell lymphoproliferative diseases, primary effusion lymphoma (PEL) and multicentric 

Castleman’s disease (MCD) (Mesri et al., 2010). Similar to the life cycle of other 

herpesviruses, KSHV displays both lytic and latent modes of infection. Expression of lytic 

genes (such as vIL-6, vIRFs, vCCLs and vGPCR) have been documented to contribute to 

KSHV oncogenicity by initiating the host signalling cascades involved in secretion of cell 

growth factors. However, KSHV genes pivotal for the viral genomic persistence and 

cellular transformation are mainly found among those expressed during latent infection 

(Wen and Damania, 2010). Indeed, KSHV infection is predominantly latent in the 

associated malignancies. Three KSHV genes are abundantly expressed in the latent mode 

of infection: vCyclin, latency-associated nuclear antigen (LANA) and vFLIP. These genes 

are encoded in one tricistronic transcript driven by a single promoter and collectively 

provide cells with proangiogenic and inflammatory signals, anti-apoptotic abilities as well 

as enhanced proliferative and growth signals [reviewed in (Cesarman, 2014)]. 
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1.3.1.2 KSHV vFLIP 

KSHV vFLIP (also known as K13) is a 188 amino acid protein encoded by ORF71 

and shares 33% sequence homology with the cellular homologues. It is a potent and 

specific activator of the NF-κB pathway (Chaudhary et al., 1999; Matta and Chaudhary, 

2004) but also interferes with several other pathways such as autophagy, MAPK and death 

inducing signalling cascades (See 1.3.3-1.3.6) . Expression of vFLIP induces transcription 

of up to 200 NF-κB target genes, most notably cFLIP which can further enhance evasion 

of death receptor induced apoptosis (Punj et al., 2009). Our group has previously shown 

that NF-κB-mediated secretion of growth factors enables vFLIP to protect cells from 

detachment-induced apoptosis, or anoikis (Efklidou et al., 2008). 

Accumulating evidence support a role for vFLIP in KSHV-associated 

tumourigenesis through constitutive activation of NF-κB (Ballon et al., 2011; Baud and 

Karin, 2009; Chugh et al., 2005; Sun et al., 2003). A recent study on transgenic vFLIP 

knock-in mice indicated that expression of vFLIP in B cells is sufficient to induce B-cell 

malignancies in vivo (Ballon et al., 2011) . Furthermore, vFLIP accelerated the process of 

lymphomagenesis in Myc-transgenic mice which overexpress Myc in lymphoid organs 

(Ahmad et al., 2010). In agreement with these findings, pharmacologic or genetic 

inhibition of vFLIP-induced NF-κB activation leads to apoptosis in PEL cells (Godfrey et 

al., 2005; Guasparri et al., 2004; Keller et al., 2000). Besides anti-apoptotic effects, vFLIP-

mediated NF-κB activation suppresses the lytic reactivation of the KSHV and thereby, 

further contributes to maintenance of latent infection (Ye et al., 2008). 
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Figure 1.3. Viral and cellular FLIP proteins. A) Viral FLIPs are encoded by several γ-
herpesviruses and the human molluscipoxvirus (MCV). Unlike cFLIPs which share a 
common N-terminal sequence of 202aa, tandem DEDs of different vFLIPs are not 
identical and contain variable amino acid sequences. B) From 13 splice variants of the 
cFLAR gene, only three are translated to protein which consist of a long isoform (FLIPL)  

and two short variants (cFLIPS  and cFLIPR). cFLIPL (55kD) is structurally similar to 
procaspase-8 (C) but its C-terminal caspase domain is enzymatically inactive due to lack of  
a crucial catalytic cysteine. The N-terminal DEDs of cFLIPS, but not cFLIPL or vFLIPs, 
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are followed by a unique 19 amino acid sequence which plays an important role in 
ubiquitination of cFLIPS (at the indicated K192 and K195 residues) and its subsequent 
degradation. Upon interaction with caspase-8, cFLIPL can further be cleaved at positions 
D196 or D376 to produce p22- and p43-FLIP fragments, respectively. p22-FLIP is also a 
cleavage product of FLIPS/R. C) Domain organisation of procaspase-8 

 

 

Figure 1.4. Amino acid sequence alignment of the cellular and viral FLIPs. Amino 
acid sequences of the shown FLIP proteins were retrieved from NCBI protein database 
(http://www.ncbi.nlm.nih.gov/protein) and aligned using PRALINE multiple sequence 
alignment software. Residues are colour-coded for the rank of conservation. The 
accession numbers for the protein sequences used for alignment were: cFLIP 
BAB32551.1, KSHV vFLIP AAD46498.1, RRV vFLIP AAF60069.1, HSV vFLIP 
CAC84369.1, EHV vFLIP NP_042671.1, MCV vFLIP 159 NP_044110.1, MCV 
vFLIP160 NP_044111.1. 
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1.3.2 Cellular FLIPs 

In 1997, cellular FLIP proteins were independently identified by several groups and 

therefore, are recognised by other names such as MRIT (Han et al., 1997), Usurpin 

(Rasper et al., 1998), iFLICE (Hu et al., 1997b), FLAME1 (Srinivasula et al., 1997), 

CLARP (Inohara et al., 1997), CASH (Goltsev et al., 1997) and Casper (Shu et al., 1997). 

1.3.2.1 cFLIP isoforms and cleavage products 

Cellular FLIP is encoded by the CFLAR gene (CASP8 and FADD-like apoptosis 

regulator), located on the human chromosome 2q33-34, close to caspase-8 and caspase-10 

genes. Proximity of these genes suggests that cFLIP may have emerged by duplication of 

procaspase-8/10 genes (Han et al., 1997; Inohara et al., 1997; Rasper et al., 1998; 

Srinivasula et al., 1997). To date, up to 13 splice variants of  human cFLIP have been 

identified at mRNA level, three of which are expressed as proteins: Long isoform 

(cFLIPL: 55kDa), short isoform (cFLIPS: 26kDa) and cFLIP Raji (cFLIPR, 24kDa) first 

isolated from human Burkitt’s lymphoma B-cell line, Raji (Golks et al., 2005; Irmler et al., 

1997) (Figure 1.3B). Unlike humans, mice do not express FLIPS and contain only two 

isoforms of FLIPL and FLIPR (Ueffing et al., 2008). 

The CFLAR gene contains 14 exons and the initially transcribed precursor mRNA 

undergoes alternative splicing to generate transcripts for different cFLIP isoforms. 

Inclusion of exon7 which harbours a stop codon, results in translation of cFLIPS, while 

skipping this exon generates FLIPL-encoding mRNA. Translation of a small part of 

intron6 generates the shortest isoform, FLIPR (Djerbi et al., 2001). Recently, a single 

nucleotide polymorphism (SNP) of the 3’ splice consensus of intron6 was identified 

controlling expression of FLIPS or FLIPR. Interestingly, the splice-dead SNP which causes 

the expression of FLIPR is present at higher frequencies in transformed B cell lines and is 

also associated with an increased risk of follicular lymphoma in humans (Ueffing et al., 

2009).  

All cFLIP isoforms share an identical N-terminal sequence of 202 amino acids, 

which includes two DEDs, but have different C-terminal ends. The overall structure of 

cFLIPS is similar to vFLIPs but it contains a unique 19 amino acid C-terminal tail that is 

responsible for its ubiquitination and proteasomal degradation (Poukkula et al., 2005). In 

cFLIPL, the tandem DEDs are followed by a caspase-like domain (CLD; composed of 

p20 and p12) that is similar to the catalytic domain of procaspase-8/10 (Figure 1.3C). 
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However, this domain is catalytically inactive due to substitution of several amino acids 

essential for the caspase activity, including a cysteine in the Gln-Ala-Cys-X-Gly motif and 

a histidine in the His-Gly motif (Budd et al., 2006).  

In addition to the natural isoforms, two N-terminal cleavage products of cellular 

FLIPs have been detected in cells. Caspase-mediated cleavage of the cFLIP at positions 

D376 (on FLIPL) and D196 (on all isoforms), generates the proteolytic fragments p43-

FLIP (43kDa) and p22-FLIP (22kDa), respectively (Figure 1.3B) (Golks et al., 2006; 

Kataoka and Tschopp, 2004; Scaffidi et al., 1999).  

1.3.2.2 Transcriptional and translational control of cFLIPs 

Expression of cFLIP proteins is tightly regulated in normal cells.  This is achieved 

through numerous regulatory mechanisms at the transcriptional, translational and post-

translational levels (Safa et al., 2008). Several transcription factors are known to modulate 

the transcriptional activity of the CFLAR gene. NF-κB, CREB, FoxO, p63, p53, EGR1, 

NFAT, hnRNP K, AR and sp1 are among those which induce cFLIP transcription, while 

c-myc, Foxo3a, c-Fos, IRF5 and sp3 repress it (Shirley and Micheau, 2010). NF-κB 

activation is one the main inducers of cFLIPs; these proteins, in turn, elicit the NF-κB 

pathway, generating a positive feedback loop on stimulated cells (Micheau et al., 2001).  

Little is known about isoform-specific regulation of cFLIP transcription, although 

some scattered reports exist. For instance, the AP-1 complex has been shown to repress 

cFLIPL expression (Li et al., 2007), while E21F, a transcription factor involved in control 

of cell cycle, inhibits the expression of cFLIPS (Salon et al., 2006). Furthermore, an siRNA 

screening aimed at characterising the targets of p63 suggested that this protein upregulates 

cFLIPR transcription, while suppressing that of cFLIPS without altering the transcription 

levels of cFLIPL (Borrelli et al., 2009). 

The short isoform is shown to be regulated at translational level as well. Panner et 

al., demonstrated that in glioblastoma multiforme (GBM) cells, activation of the 

Akt/mTOR/S6K1 pathway results in polyribosomal accumulation of cFLIPS mRNA and 

therefore, increased expression of FLIPS. Inhibition of mTOR or its target S6K1 

supressed translation of cFLIPS, but not cFLIPL, and led to TRAIL-sensitisation of GBM 

cells (Panner et al., 2005). An mTOR-independent pathway has been also described to 

regulate cFLIPS translation. In this pathway, activation of Ral and its effector protein 
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RalBP1, inhibits cdc42-mediated activation of S6K1 and thereby, down-regulates the 

expression of FLIPS (Panner et al., 2006). 

1.3.2.3 Post-translational regulation of cFLIPs 

Cellular FLIPs exhibit a relatively short half-life. This has been indicated by rapid 

depletion of these proteins following treatment of cells with the inhibitor of protein 

synthesis cycloheximide (Kreuz and Siegmund, 2001; Micheau et al., 2001). Vice versa, 

cFLIPs are found to accumulate quickly in response to proteasome inhibitors such as 

MG-132, lactacystin, epoxomicin and bortezomib/Velcade® (Chang et al., 2006; 

Fukazawa et al., 2001; Kim et al., 2002; Perez et al., 2003). Post-translational 

modifications, most notably ubiquitination and phosphorylation, play crucial roles in 

regulating the turnover rate of different cFLIPs. 

cFLIP proteins are predominantly degraded via the ubiquitin-proteasome 

degradation system. cFLIPS is particularly more prone to ubiquitination and displays a 

considerably shorter half-life compared with cFLIPL (Poukkula et al., 2005; Schmitz et al., 

2004). This is largely due to the unique 19 amino acid C-terminal sequence of cFLIPS that 

facilitates its ubiquitination at lysine residues 192 and 195, marking this protein for 

proteasomal degradation (Poukkula et al., 2005); the stability of cFLIPR is similar to 

cFLIPS (Golks et al., 2005; Ueffing et al., 2008). Both proteins have been shown to be 

targeted by the E3 ubiquitin ligase c-Cbl (Kundu et al., 2009; Zhao et al., 2013), although 

the E3 responsible for the ubiquitination of K192/195 residues remains to be identified. 

TNFα-mediated JNK1 (Jun N-terminal Kinase1) activation can enhance cFLIPL 

degradation by inducing the E3 ubiquitin ligase Itch (Chang et al., 2006). The caspase-like 

domain of FLIPL is necessary for interaction with Itch, highlighting once more the 

importance of C-terminal sequences of cFLIP isoforms in determining their stability.  

Phosphorylation events are also central to regulation of cFLIP levels. PKC 

phosphorylates cFLIP proteins at serine193 (Kaunisto et al., 2009). This results in 

decreased ubiquitination of all isoforms, although it only prolongs the half-lives of cFLIPS 

and cFLIPR. Since site-specific mutation of S193 does not affect recruitment of different 

isoforms to the DISC (death inducing signalling complex), PKC-mediated cFLIP 

phosphorylation may regulate apoptotic pathways only via rapid changes in cFLIPS levels 

(Kaunisto et al., 2009). This seems to be different from calcium/calmodulin-dependent 

kinaseII (CaMKII)-mediated phosphorylations of cFLIP proteins (at a residue other than 
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S193) which block DISC recruitment of both short and long isoforms (Yang et al., 2003). 

Recently, serine273 of cFLIPL was shown to be targeted by PI3K/Akt. Phosphorylation 

of cFLIPL-S273 following TNFα-induced macrophage activation resulted in 

ubiquitination and proteasomal degradation of cFLIPL (Shi et al., 2009). This cFLIPL 

ubiquitinaton, however, was not dependent on JNK/Itch. Phosphorylation of cFLIPS is 

found to be crucial for mycobacterium tuberculosis-induced cell death in murine 

macrophages. M.tb-mediated TNF activation induces p38 and Abl, which in turn 

phosphorylate cFLIPS on Ser4 and Tyr211, respectively. This facilitates recognition of 

FLIPS by the E3 ubiquitin ligase c-Cbl, leading to its degradation and initiation of 

apoptosis (Kundu et al., 2009). Taken together, these studies elucidate how the cross-talk 

between phosphorylation and ubiquitination events results in quick isoform-specific 

changes in cFLIP levels. This provides cells with a crucial ability to generate rapid 

responses to cellular distress. 

1.3.3 Regulation of cell death pathways by FLIPs 

Controlling the delicate balance between cell death and survival pathways is 

essential for development and homeostasis of multi-cellular organisms. To achieve this, 

cells have evolved numerous regulatory proteins such as FLIP, which can promote or 

inhibit demolition of cells in a certain set of conditions. Cell death can occur through 

several distinct routes (e.g, apoptosis, necrosis and autophagy-related cell death) and 

remarkably, FLIP proteins have been documented to be involved in regulation of all these 

types of cell demise. 

1.3.3.1 Extrinsic and intrinsic apoptotic pathways 

Apoptosis is a programmed mode of cell death that enables multicellular organisms 

to dispose of unwanted cells with minimum damage to neighbouring cells (Taylor et al., 

2008). Precise regulation of apoptosis is central to the development, differentiation and 

homeostasis of tissues. Apoptotic signalling pathways are classified into two distinct types: 

intrinsic pathways induced by factors such as DNA damage, UV or γ-radiation, 

chemotherapeutic drugs and cytokine deprivation (Figure 1.5, left), and extrinsic pathways 

initiated by death receptors (DR) (Krammer et al., 2007; Lavrik et al., 2005) (Figure 1.5, 

right).  

Proteins of the DR family belong to the TNFR superfamily. To date, eight 

members of this family have been described: TNFR1 (also known as DR1, p55, p60 and 
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CD120a), CD95 (also known as DR2, Fas and APO-1), DR3 (also known as APO-3, 

LARD, TRAMP and WSL1), TNF-related apoptosis inducing ligand receptor1 

(TRAILR1; also known as DR4 and APO-2), TRAILR2 (also known as DR5, KILLER 

and TRICK2), DR6, ectodysplasin A receptor (EDAR) and nerve growth factor receptor 

(NGFR) (Lavrik et al., 2005). DR family are characterised by the presence of a C-terminal 

sequence of 80-100 amino acids, called the death domain (DD) that is responsible for 

transducing the apoptotic signals. Indeed, homotypic DD interactions connect DRs to 

adaptor proteins FADD and TRADD (Guicciardi and Gores, 2009). 

Upon ligation of CD95, TRAILR1 or TRAILR2, a multiprotein complex is formed 

near the plasma membrane known as death-inducing signalling complex (DISC). This 

complex is composed of DR, FADD, cFLIP and precursors of two initiator caspases: 

procaspase-8 and procaspase-10. While FADD and DR interact via DDs, cFLIP or 

procaspase-8/10 are recruited to FADD via the DEDs of each protein. Activation of the 

initiator caspases following DISC formation, results in the induction of effector caspases 

(caspase-3, -6 and -7), which in turn proteolyse a wide array of substrates leading to 

dismantling and packaging of cells into apoptotic bodies (Figure 1.5, right). 

In the intrinsic pathway, also known as the mitochondrial pathway, death signals are 

initiated by mitochondrial membrane permeabilisation (MMP) (Martinou and Green, 

2001). Anti-apoptotic members of the Bcl-2 family (such as Bcl-2, Bcl-XL, BCL-W and 

MCL1), preserve the integrity of outer mitochondrial membrane by inhibiting the 

oligomerisation of proapoptotic Bcl-2 members, BAX and BAK. Upon arrival of a death 

signal, antiapoptotic Bcl-2 proteins are inhibited by Bcl-2 homology3(BH3)-only proteins 

(eg., BID, BAD, BIM and BMF) (Kuwana et al., 2005; Letai et al., 2002). This leads to 

formation of BAX-BAK oligomers within the outer membrane that allows for efflux of 

intermembrane space proteins such as cytochrome C, SMAC/DIABLO and AIF 

(apoptosis-inducing factor). Once released form mitochondria, cytochrome C mediates 

assembly of a caspase activation complex known as the apoptosome. This complex 

consists of about seven molecules of apoptotic protease-activating protein-1 (APAF1) and 

the same number of initiator procapspase-9. Similar to events followed by DISC 

assembly, activation of caspase-9 within the apoptosome induces a cascade of effector 

caspases that culminates in cell death (Taylor et al., 2008) (Figure 1.5, left). In some 

conditions, extrinsic death signals can activate the intrinsic pathway through caspase-8 

mediated cleavage of the BH3-only family member, BID (BH-3 interacting domain death 

agonist). Truncated BID (tBID) can then promote release of intermembrane space 

proteins resulting in apoptosome formation and cellular demolition (Korsmeyer et al., 

2000). 
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Figure 1.5. Extrinsic and intrinsic cell death pathways. Extrinsic apoptotic pathway 
(right) commences by engagement of death receptors (DRs) with their cognate ligands 
which then leads to recruitment of adaptor proteins (e.g, FADD and TRADD) and 
formation of DISC, consisting of DR, FADD, procaspase-8/10 and cFLIP isoforms. 
Autoprocessing and activation of the initiator procaspase-8/10, promotes the activation 
of downstream caspases, such as caspase-3, 6 and 7, for the execution of apoptosis. The 
extrinsic pathway is mainly under the control of cFLIP family which fine-tune the activity 
of initiator caspases at the DISC. In the intrinsic pathway (left) various stimuli such as UV 
or chemotherapeutic agents which provoke cell stress and damage activate one or more 
members of the BH3-only proteins. This in turn induces the assembly of BAK-BAX 
oligomers within mitochondrial outer membranes, leading to release of intermembrane 
proteins such as cytochrome C which promotes the assembly of apoptosome. Activation 
of caspase-9 within this complex then propagates a cascade of caspase activation, similar 
to final steps of the extrinsic pathway. Caspase-8-mediated cleavage of BID to generate 
tBID can link the extrinsic pathway to the mitochondrial cell death cascade; cFLIP can 
also inhibit this step. 

 



51 
 

Deregulation of cell death pathways resulting from insufficient or excessive 

apoptosis form the basis of multiple human disease such as neurodegenerative disorders, 

autoimmunity and cancer (Green and Evan, 2002; Vaux and Flavell, 2000). Therefore, 

apoptotic pathways are tightly controlled at multiple levels. For instance, members of the 

cIAP family, including NIAP, XIAP and cIAP1/2 have been shown to directly inhibit 

caspase-3,-7 and -9 (Liston et al., 1996). As mentioned above, proteins of the Bcl-2 family 

modulate the mitochondrial death programs. At the DISC level, apoptotic signals are 

regulated by FLIP proteins that facilitate or inhibit the activation of casapase-8. 

Nonetheless, DISC formation does not always result in cell death but it can be also 

directed to switch on several survival and proliferative pathways like NF-κB or MAPK. 

Remarkably, a collective body of research shows that FLIPs also play crucial roles in 

regulation of the DR-induced non-apoptotic pathways (Oztürk et al., 2012).  

1.3.3.2 Roles of FLIPs in apoptosis 

Procaspase-8 activation, which is pivotal for DR-induced apoptosis, occurs through 

an “induced proximity” mechanism where DR-mediated homo-dimerisation of 

procaspase-8 leads to its self-cleavage and release of fully active catalytic subunits (p10 

and p18) (Chang et al., 2003). Similar to procaspase-8, FLIPs are recruited to DISC-

associated FADD via homotypic DED interactions. Hence, the anti-apoptotic function of 

FLIP proteins relies on their ability to restrain FADD-mediated homo-dimerisation and 

activation of procaspase-8 molecules (Krueger et al., 2001b).  

Although viral FLIPs, cFLIPR and cFLIPS have been well-established as potent 

inhibitors of procaspase-8 activation (Golks et al., 2005; Krueger et al., 2001a; Thome et 

al., 1997), function of cFLIPL has been inconsistently reported to be either pro-apoptotic 

(Goltsev et al., 1997; Han et al., 1997; Inohara et al., 1997; Shu et al., 1997) or anti-

apoptotic (Irmler et al., 1997; Rasper et al., 1998; Srinivasula et al., 1997). The pro-

apoptotic role of cFLIPL is supported by the phenotype of cFLIP null mice which 

resembles that of mice lacking caspase-8 or FADD. These mice die at embryonic day 10.5 

with impaired heart, vascular and haematopoietic development, suggesting a function for 

cFLIPL that is similar to FADD or caspase-8 (Yeh et al., 2000). Furthermore, expression 

of cFLIPL at physiological levels is suggested to mediate apoptosis by formation of 

catalytically active cFLIPL/caspase-8 heterodimers (Chang et al., 2002; Micheau et al., 

2002). Nevertheless, the pro-apoptotic role of cFLIPL disagrees with the observation that 

cFLIPL-specific knockdown cells or MEFs lacking cFLIP are highly susceptible to DR-



52 
 

induced cell death compared with WT cells (Sharp et al., 2005; Yeh et al., 2000). In 

addition, ectopic expression of cFLIPL at high levels is found to inhibit procaspase-8 

activation via competing for FADD binding (Scaffidi et al., 1999).  

Despite these contradictory reports, several studies have now elucidated that 

depending on its expression levels cFLIPL can either promote or inhibit apoptosis (Chang 

et al., 2002; Fricker et al., 2010; Neumann et al., 2010). A recent study by Fricker et al., 

analysed the relationship between amounts of cFLIPL and the regulation of CD95-

induced cell death, using mathematical modelling combined with quantitative western 

blotting. The authors demonstrated that cFLIPL blocks apoptosis when highly 

overexpressed, whereas its moderate expression can promote cell death when 

accompanied with strong stimulation of CD95 or in the presence of high levels of 

cFLIPS/R (Fricker et al., 2010). Therefore, the cFLIPL role at the DISC is not only dose-

dependent but also may rely on other factors such as signal strength and the levels of 

other cFLIP isoforms.   

Biochemical assays as well as crystal structure studies on vFLIP MC159 propose 

that viral and cellular FLIPs may use different mechanisms to inhibit caspase-8 activation. 

The homotypic interactions between FADD-DED and procaspase-8-DED2 or cFLIP-

DED2 are mediated through a highly conserved hydrophobic patch (Berglund et al., 2000; 

Carrington et al., 2006; Eberstadt et al., 1998). In pull-down experiments, cFLIP competes 

away procaspase-8 in binding to FADD. In contrast, MC159 cannot compete procaspase-

8 away and binds to FADD-DED through an extensive area outside the hydrophobic 

patch interface (Yang et al., 2005). Therefore, MC159 (and perhaps other vFLIPs) may 

disrupt DISC assembly by preventing FADD-DED self-association rather than inhibiting 

procapase-8 binding (Yu and Shi, 2008). Overexpression of isolated FADD-DED or 

tandem DEDs of procaspase-8 results in self-assembly to produce long cytoplasmic 

filaments (also known as death effector filaments) which can induce apoptosis 

independent of death receptors (Siegel et al., 1998). Unlike these proapoptotic DEDs, 

which are found highly aggregated in vitro, isolated tandem DEDs from MC159 or EHV-2 

vFLIP E8 do not form filaments in cell culture and appear as monomers in vitro (Li et al., 

2006a; Yang et al., 2005). Indeed, these viral DEDs can effectively block self-assembly of 

DEDs from FADD or procaspase-8 to form death filaments (Siegel et al., 1998). Whether 

other viral FLIPs use the same DISC-inhibition strategy still remains unanswered. 
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1.3.3.3 Roles of FLIPs in necroptosis 

Regulated necrosis, referred to as necroptosis, is an alternative form of cell death 

that occurs when caspase-8 activity is inhibited and it depends on kinase activity of RIP1 

and RIP3 (Cho et al., 2009; He et al., 2009; Zhang et al., 2009a). The embryonic lethality 

observed in FADD −/− and CASP-8−/− mice can be rescued by additional deletion of the 

kinases RIP1 or RIP3, indicating that FADD and caspase-8 inhibit the RIP1/3-mediated 

cell death during embryonic development (Kaiser et al., 2011; Oberst et al., 2011; Zhang 

et al., 2011). 

Although necroptosis has evolved as an immune defence mechanism against 

intracellular infections, it has been also implicated in causation of several pathologies such 

as ischemia–reperfusion injury, neurological and myocardial disease (Linkermann and 

Green, 2014). Necroptotic signalling cascades can be initiated by stimulation of DRs, 

TLRs, genotoxic drugs and some viral and bacterial pathogens (e.g. human simplex virus-

type1 and vaccinia virus) (Vanlangenakker et al., 2012). Similar to their role in apoptosis, 

cFLIP proteins can regulate necroptosis in an isoform-specific manner. 

Evidence for modulation of necroptosis by FLIP proteins (and a connection 

between apoptosis and necroptosis) comes from the detection of a cytoplasmic complex, 

termed the ripoptosome, induced by treatments of human tumour cells that deplete or 

inhibit cIAP proteins (Feoktistova et al., 2011; Tenev et al., 2011a). This depletion leads to 

the formation of a RIP1/FADD/procaspase-8 complex. cIAPs inhibit formation of this 

complex by ubiquitinating RIP1 that leads to ubiquitin-mediated recruitment of several 

kinases required for  NF-κB activation (Bertrand et al., 2008; Varfolomeev et al., 2008). 

CYLD-mediated deubiquitination of RIP1, on the other hand, enables the kinase activity 

of RIP1 and necrosome assembly (Wang et al., 2008). In the absence of FLIP proteins, 

procaspase-8 molecules homodimerise in ripoptosome, promoting cell death by 

apoptosis. Recruitment of cFLIPL to this complex leads to partial caspase-8 activation, not 

enough to induce apoptosis, but sufficient to cleave RIP kinases and disassemble the 

ripoptosome, resulting in cell survival (Boatright et al., 2004; Oberst et al., 2011; Pop et 

al., 2011). cFLIPS, on the other hand, blocks caspase-8 activation and facilitates cell death 

through necroptosis (Feoktistova et al., 2011) (Figure 1.6). Similarly, vFLIP MC159 shifts 

the outcome of ripoptosome toward necroptosis (Feoktistova et al., 2012). Roles of other 

viral FLIPs, however, have yet to be examined. 
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Figure 1.6. FLIP proteins regulate the activity of the ripoptosome complex. Under 

baseline conditions, a small proportion of RIP1 is persistently modified to active 

conformation. This modified RIP1, also called open conformation, is targeted for Ub-

mediated degradation by cIAPs. Upon depletion of cIAPs by genotoxic stress, 

accumulation of modified RIP1 promotes formation of a ripoptosome signalling complex 

which consists of RIP1, FADD, caspase-8/10 and cFLIP isoforms. Different 

compositions of the caspase-8 and cFLIP isoforms bring about different levels of 

ripoptosome-associated caspase-8 activity and therefore, lead to different cell death 

responses.  Procaspase-8 dimerisation within the complex forms active caspase-8 and 

results in cell death via apoptosis. However, cFLIPL within the ripoptosome decreases the 

caspase-8 activity to levels which are not sufficient for its apoptotic function but still can 

inactivate the modified RIP1 and therefore, cause ripoptosme disassembly. In the 

presence of cFLIPS, procaspase-8 remains non-functional and so, active RIP1 

accumulation which is followed by the recruitment of RIP3 brings about cell death via 

necroptosis [Reproduced from (Feoktistova et al., 2011) with a permission from the 

author].  
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1.3.4 Regulation of autophagy pathways by FLIPs 

Autophagy is a homeostatic process in which cytosolic materials such as proteins, 

organelles and pathogens are engulfed into double-membraned vesicles, termed the 

autophagosome, and then delivered to lysosome for degradation. Depending on the 

cellular conditions, the processed constituents can then be disposed of or recycled if 

needed. The latter provides cells with a mechanism of adaptation to starvation (Ryter et 

al., 2013). Autophagy can be also induced by factors such as hypoxia, and endoplasmic 

reticulum stress as well as exposure to a wide range of chemical and physical agents. 

Although autophagy is primarily a cytoprotective pathway, its uncontrolled upregulation 

can lead to cell death (Shintani and Klionsky, 2004). Too much or too little autophagy has 

been implicated in several human pathologies including neurodegeneration, myopathies, 

cancer, heart and liver disease (Mizushima et al., 2008). 

The core autophagic machinery comprises of the well-conserved family of 

autophagy-related (Atg) proteins. Molecular regulation of autophagy pathway occurs at 

three steps: (i) initiation, (ii) nucleation of an isolation membrane and (iii) elongation and 

completion of autophagosomes. Activation of ULK1 complex (ULK1, Atg13 and 

FIP200), which on resting conditions is inhibited by mTOR complex1, triggers the 

autophagy cascade. Next, the classIII PI3K complex (Beclin 1, hVps34, Atg14) mediates 

nucleation of autophagosomal membranes. The elongation and closure of the 

autophagosomal vesicles is dependent on the Atg5/Atg12/Atg16 complex and the 

ubiquitin-like protein, LC3. Unlike the first complex which dissociates from 

autophagosome once it is fully formed, LC3-phosphatidyl ethanolamine conjugates (aka 

LC-II) remain attached to vesicles.  Attachment of phosphatidyl ethanolamine molecules 

to LC3 is mediated by Atg4 cysteine protease, Atg3 E2-like enzyme and Atg7 E1-like 

enzyme (Pyo et al., 2012).   

A screen conducted to identify KSHV proteins that could inhibit autophagy-

mediated cell death, pulled out vFLIP.  KSHV vFLIP, HVS vFLIP, MC159L, cFLIPL and 

cFLIPS all inhibit autophagy. The FLIP proteins interact with the Atg3, preventing LC3 

conjugation to phosphatidyl ethanolamine  and attachment to membranes for autophagic 

vesicle expansion (Lee et al., 2009) (Figure 1.7). 

During KSHV latency, deregulation of cell proliferation by vCyclin elicits DNA 

damage responses which, if unchecked, can promote autophagy and oncogene-induced 

senescence (OIS) (Koopal et al., 2007; Verschuren et al., 2002). By countering the v-
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cyclin-induced autophagy, vFLIP plays an indispensable role in prevention of OIS, 

permitting the expansion of abnormal cells (Leidal et al., 2012).  

KSHV vFLIP mutants deficient in NEMO- or FADD-binding are capable of 

blocking autophagy (Lee et al., 2009; Leidal et al., 2012). Hence, the anti-autophagic role 

of vFLIP appears to be mediated by a unique motif, independent of its ability to induce 

NF-κB or block apoptosis. Indeed, Atg3-binding region of KSHV vFLIP was mapped to 

DED1 α2 helix (aa 20-29) and DED2 α4 helix (aa 128-139). Introducing peptides derived 

from these motifs can effectively block Atg3-vFLIP interaction without interrupting that 

of Atg3-LC3, leading to growth inhibition and autophagy-mediated cell death (Lee et al., 

2009). 
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Figure 1.7. Cellular and viral FLIPs block autophagy. Autophagy is a homeostatic 

mechanism which is activated in response to various conditions such as absence of the 

amino acids, growth factors or oxygen. During starvation, mTORC1 that represses 

autophagy in normal conditions is inhibited which in turn causes ULK1 complex (ULK1, 

Atg13, FIP200) activation. Autophagy initiation is also dependent on other complex 

(Beclin 1, hVps34, Atg14) crucial for nucleation of autophagosomal membranes. The 

nucleation complex is activated through JNK1-mediated phosphorylation and subsequent 

inactivation of its inhibitory protein Bcl-2. The elongation and closure of the 

autophagosomal vesicles is dependent on the Atg5/Atg12/Atg16 complex and LC3. 

Unlike the first complex which dissociates from autophagosome once it is fully formed, 

LC3-phosphatidyl ethanolamine (PE) conjugates remain attached to vesicles.  Attachment 

of PE molecules to LC3 is mediated by Atg3 E2-like enzyme and Atg7 E1-like enzyme.  

Cellular and viral FLIPs have been shown to supress autophagy by preventing the Atg3-

LC3 interaction. 
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1.3.5 Regulation of NF-κB pathways by FLIPs 

The ability of cFLIP proteins to activate NF-κB was initially demonstrated using 

overexpression experiments (Chaudhary et al., 2000; Hu et al., 2000). Later on, cFLIPL 

was found to mediate NF-κB activation following CD95 stimulation through a 

mechanism involving the recruitment of RIP1, TRAF1 and TRAF2 (Kataoka et al., 2000). 

This pathway is believed to depend on processing of cFLIPL to the p43 fragment as non-

cleavable mutant of cFLIPL does not induce it (Kataoka and Tschopp, 2004; Matsuda et 

al., 2014; Neumann et al., 2010). p43-FLIP has been found associated with NEMO after 

CD95 signalling (Neumann et al., 2010). One study reported that p22-FLIP, another 

cleavage product of cFLIPL/S/R can also directly interact with NEMO and activate IKK. 

p22-FLIP seems to be primarily important in NF-κB induction required for lymphocyte 

activation and DC maturation (Golks et al., 2006).  

Akin to its role in apoptosis, the expression level of cFLIPL is found to be a major 

determinant of its function as inhibitor or activator of DR-induced NF-κB signalling. 

Neumann et al showed that cFLIPL mediates CD95-induced NF-κB activation when 

expressed at moderate levels. On the other hand, high concentrations of cFLIPL can 

occupy the DISC, preventing the procaspase-8 activation, p43-FLIP production and NF-

κB activation (Neumann et al., 2010). This is in accordance with a number of other 

studies that propose cFLIPL downregulates CD95-induced NF-κB activity (Imamura et 

al., 2004; Kavuri et al., 2011; Kreuz et al., 2004). The reported inhibitory function of 

cFLIPS in TCR-induced NF-κB activation might be also explained by its capacity to 

effectively block procaspase-8 activation and the resultant generation of cFLIP cleavage 

products.  

Regulatory roles of cFLIP isoforms have been also controversially discussed in 

regard with TRAIL-induced NF-κB activation (Kavuri et al., 2011; Song et al., 2007; 

Wachter et al., 2004). While both positive and negative roles have been ascribed to cFLIPs 

in this context, a recent study argued against involvement of these proteins in TRAIL-

induced NF-κB signalling. Instead, FADD and caspase-8 were shown to mediate TRAIL-

induced signalling to IKK (Grunert et al., 2012). 

Among FLIP proteins, KSHV vFLIP is the most well-known inducer of NF-κB 

(Chaudhary et al., 1999; Chugh et al., 2005; Liu et al., 2002; Sun et al., 2003, 2006). Our 

group demonstrated direct, stable interaction between KSHV vFLIP and NEMO which 

leads to constitutive IKK complex activation (Field et al., 2003). Initially, it was suggested 



59 
 

that KSHV vFLIP binds to TRAF2 via a putative TRAF-binding motif and that this 

facilitates IKK activation by vFLIP (Guasparri et al., 2006). In contrast, later reports 

demonstrated that vFLIP could directly bind and activate NEMO independent of TRAF2 

or TRAF3 (Matta et al., 2007). In KSHV-infected B cell lines, the IKK subunits alpha, 

beta and gamma, together with HSP90, are the only detectable proteins complexed with 

vFLIP; also NEMO immunoprecipitation depletes all detectable vFLIP from cell lysate 

(Field et al., 2003). KSHV vFLIP can also activate the alternative NF-κB pathway by 

upregulating the expression of p100 and its processing to p52. Non-canonical NF-κB 

induction by vFLIP is unique in that it does not require NIK and occurs through direct 

interaction between p100, vFLIP and IKK (Matta and Chaudhary, 2004). 

Both viral FLIPs from MCV (MC159 and MC160) block TNF-induced NF-κB 

signalling; MC159 has been shown to do this by binding to NEMO (Nichols and Shisler, 

2006; Randall et al., 2012). On the other hand, MC160 is not detectable in association 

with any of IKK subunits. However, expression of MC160 leads to substantial decrease in 

levels of IKKα/β and interactions between these subunits, suggesting that MC160 may 

exert its inhibitory function by dissociating the IKK complex (Nichols and Shisler, 2006). 

The vFLIPs from RRV and HSV do not activate NF-κB, in contrast to vFLIP form EHV 

(Chaudhary et al., 1999; Lee et al., 2009; Ritthipichai et al., 2012). The interaction of these 

viral FLIPs with NEMO has yet to be studied. 

Detailed mechanisms of NF-κB activation by KSHV and cellular FLIPs will be 

discussed in chapters 3-5. 

1.3.6 Regulation of MAPK pathways by FLIPs 

The MAPK signalling network is involved in fundamental cellular processes such as 

growth, proliferation, differentiation and apoptosis. This pathway is built upon a three-tier 

kinase module where a MAPK becomes activated through phosphorylation by a MAPKK 

which, in turn, is induced by an upstream MAPKKK (Dhillon et al., 2007). Six distinct 

groups of MAPKs have been described so far in mammalian cells: extracellular signal-

regulated kinase (ERK)1/2, ERK3/4, ERK5, ERK7/8, c-Jun N-terminal kinase 

(JNK)1/2/3 as well as the p38 isoforms α/β/γ [reviewed in (Arthur and Ley, 2013)]. 

While ERK1/2 are predominantly activated by growth factors, JNK and p38 kinases are 

induced in response to stress stimuli and cytokines (Pearson et al., 2001). 
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cFLIPL, cFLIPS  and p43-FLIP can all activate ERK1/2 via recruitment of the 

upstream MAPK3, Raf-1 which activates MAPK2 MEKK and then ERK (Kataoka et al., 

2000; Koenig et al., 2014). In activated T cells, high levels of cFLIP leads to simultaneous 

activation of NF-κB and ERK, promoting IL-2 secretion and T-cell proliferation 

(Kataoka et al., 2000). Nevertheless, a recent study reported that high expressions of 

cFLIP proteins can inhibit CD95-induced ERK activation, through blocking the 

procaspase-8 processing (Kober et al., 2011). It is possible that, like their role in apoptosis, 

cFLIPs differentially regulate ERK in cell-, pathway- and signal strength-dependent 

manner.  

Unlike ERK signalling, p38 and JNK appear to be preferentially inhibited by cFLIP 

isoforms. Gene silencing of cFLIP isoforms in keratinocytes enhances CD95- and 

TRAIL-induced p38 and JNK activation without affecting NF-κB activation (Kavuri et 

al., 2011). In addition, cFLIP−/− B-cells highly activate p38 and JNK signalling in response 

to LPS, while neither NF-κB nor ERK1/2 signalling is altered in these cells (Zhang et al., 

2009b). Following TNFα activation, cFLIPL, but not cFLIPS, directly binds to MKK7, an 

activator of JNK (Nakajima et al., 2006). This stimulus-dependant binding inhibits the 

activation and interactions of MKK7 with its upstream kinases such as MEKK1, ASK1 

(apoptosis-signal-regulating kinase1), and TAK1. As mentioned previously, cFLIPL is also 

targeted for degradation by JNK-induced E3 ubiquitin ligase Itch (Chang et al., 2006). 

Therefore, cFLIPL appears to operate as a molecular rheostat in TNFα-induced JNK 

signalling. While prolonged induction of JNK, which leads to cell death, is blocked by 

cFLIPL, its degradation by Itch prevents full blockade of the pathway.  

KSHV vFLIP was initially reported to activate JNK/AP-1 pathway in a TRAF2 

dependent fashion, eventually leading to high expressions of cIL-6 (An et al., 2003). 

However, later studies failed to detect vFLIP-mediated  JNK/AP-1 activation in either 

PEL or non-PEL cells (Sun et al., 2006; Ye et al., 2008). In marked contrast, vFLIP was 

demonstrated to suppress AP-1 activity -which is required for lytic KSHV replication- 

through NF-κB activation. This function of vFLIP is speculated to be central  for 

maintaining the latent KSHV infection (Ye et al., 2008). 

1.3.7 FLIPs as promising targets for anti-cancer therapies 

Enhanced cFLIP expression has been observed in a wide variety of cancers 

including melanoma (Yang et al., 2007), glioblastoma (Panner et al., 2009), colorectal 
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(Longley et al., 2006; Wilson et al., 2007), pancreatic (Haag et al., 2011; Kauh et al., 2010), 

ovarian (El-Gazzar et al., 2010; Park et al., 2009), prostate (Zhang et al., 2007) and gastric 

carcinomas (McLornan et al., 2010). Importantly, the higher levels of cFLIP correlate with 

more aggressive tumours (Korkolopoulou et al., 2004; Ullenhag et al., 2007; Valente et al., 

2006; Valnet-Rabier et al., 2005; Wang et al., 2007a). In fact, cFLIP has been considered 

as a prognosis marker which may contribute to characterisation of patients at higher risks 

(Bagnoli et al., 2010). In support of this notion, increased amounts of cFLIPL were 

identified as an independent maker of adverse clinical outcome in several malignancies 

such as ovarian, colon and endometrial carcinomas as well as Burkitt’s lymphoma (Bagnoli 

et al., 2009; Safa et al., 2008).   

Abnormal upregulation of cFLIP proteins renders cancer cells resistant to not only 

CD95 (Mezzanzanica et al., 2004) and TRAIL-induced cell death (Geserick et al., 2008; Li 

et al., 2007) but also to chemotherapeutic drugs (Rogers et al., 2007). Resistance to 

TRAIL-induced apoptosis is particularly important as this type of cell death is found to be 

highly selective for the killing of neoplastic cells rather than normal ones (Walczak et al., 

1999). This is shown to be due to an impaired expression of decoy receptors in cancer 

cells (Pan et al., 1997; Sheridan et al., 1997). Alike cFLIPs, vFLIPs play crucial roles in 

apoptosis evasion and therefore, oncogenicity of the associated viruses. Thus, targeting 

FLIP proteins appears as an attractive anti-cancer therapy, especially if combined with 

conventional approaches such as TRAIL treatment and chemotherapy. Sensitising 

malignant cells to apoptosis by inhibiting FLIPs may also allow for administering lower 

doses of chemotherapeutic agents, decreasing the drug-induced systemic toxicity in cancer 

patients (Safa and Pollok, 2011). 

Several strategic interventions have been utilised to inhibit FLIP variants which include (i) 

usage of compounds inhibiting transcription or translation of these proteins (ii) 

oligonucleotide- or RNAi-mediated silencing of FLIPs and (iii) targeting FLIPs for 

degradation. These therapeutic strategies and advantages and disadvantages of each 

method have been extensively reviewed in (Safa and Pollok, 2011; Shirley and Micheau, 

2010).  
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1.4 HTLV-1 Tax: a functional analogue of the KSHV vFLIP 

1.4.1 HTLV-1 biology 

Human T-cell lymphotropic virus type 1 (HTLV-1) was discovered in Japan where 

it shows a high prevalence, about 10% of the population are infected (Yoshida, 2005). 

The virus was isolated and sequenced by the Gallo lab at the National Cancer Institute in 

the US and was the first human retrovirus to be identified (Poiesz et al., 1980). In Japan it 

is mainly transmitted neonatally by breastfeeding (Matsuoka and Jeang, 2007), and 

although it mainly infects T-cells, it enters cells by binding to a widely expressed glucose 

transporter GLUT-1 (Manel et al., 2003).  

HTLV-1 causes an aggressive T-cell leukaemia, adult T-cell leukaemia (ATL), and is 

also associated with a progressive motor neuron disease known as HTLV-1 associated 

myelopathy/tropical spastic paraparesis (HAM/TSP) (Osame et al., 1987; Yoshida, 2005). 

ATL occurs with a long latency, up to 60 years, after infection with HTLV-1 (Matsuoka, 

2003). Early in the disease infected T-cells are driven to proliferate by upregulation of the 

IL-2 receptor and secretion of IL-2 (Ballard et al., 1988; Wano et al., 1988). Then 

oligoclonal expansion of infected cells occurs. Finally, the aggressive leukemia develops, at 

this stage the cells have ceased to be dependent on autocrine IL-2; the transformed 

phenotype is dependent on secondary mutations, at least some caused by insertional 

mutagenesis induced by the viral genome (Grassmann et al., 2005). HTLV-1 is a complex 

retrovirus than encodes additional proteins along with those required for viral replication 

(Matsuoka and Jeang, 2007). The Rex protein is required for nuclear export of unspliced 

RNA, analogous to the Rev protein of HIV (Rimsky et al., 1988).  

1.4.2 HTLV-1 Tax 

The Tax protein is responsible for the stimulation of T cell proliferation by HTLV-

1.  Tax activates the NF-κB pathway (Ballard et al., 1988) and expression of Tax in T cells 

is sufficient to up-regulate both the IL-2 and its receptor, and drive cells to proliferate 

(Grassmann et al., 1989; Wano et al., 1988). Tax also upregulates HTLV-1 viral gene 

expression via recruitment of CREB to the LTR, enhancing viral replication (Yin and 

Gaynor, 1996; Zhao and Giam, 1992). Indeed Tax is a polyfunctional protein, interactions 

with a variety of host cellular proteins have been reported [reviewed in (Boxus et al., 

2008)]. Later in infection Tax expression is lost and the HTLV-1 HBZ protein, encoded 
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by an antisense transcript, drives transformation; HBZ is also a transcriptional regulator 

with many opposite effects to Tax (Satou et al., 2006). 

Tax is of particular relevance to this study because, like some vFLIP proteins, it 

binds directly to NEMO to activate IKK (Chu et al., 1999; Harhaj and Sun, 1999; Jin et 

al., 1999), explaining its ability to constitutively activate NF-κB pathway leading to 

upregulation of NF-κB-dependent genes. Nevertheless, how the Tax–IKK physical 

association leads to IKK activation is incompletely understood. Two regions of NEMO, 

distinct from that recognised by KSHV vFLIP, have been reported to be necessary for 

Tax activation of IKK (See 3.1.2) (Xiao and Sun, 2000; Xiao et al., 2000). Tax also 

activates the alternative NF-κB pathway in a similar manner to vFLIP, by enhancing p100 

processing, dependent on IKKα and NEMO, but not NIK (Xiao et al., 2001b). 

Therefore, these proteins from unrelated viruses, which share no amino acid homology, 

represent a remarkable example of convergent evolution in the manner in which they 

activate the NF-κB pathway. 

1.5 Aims of the thesis 

Leading on from previous projects in our laboratory that demonstrated the 

necessity and dynamics of the vFLIP-NEMO interaction, I set out to achieve the 

following goals: 

1) To identify the regions of NEMO required for activation of IKK by KSHV 

vFLIP, cellular FLIPs and HTLV-1 Tax 

2) To determine how IKK is activated by KSHV vFLIP, cFLIPs and Tax 
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2.1 Materials 

2.1.1 Molecular buffers and bacterial media 

All buffers and bacterial media were prepared in double distilled H2O (ddH2O). 

Table 2.1. Buffers and bacterial media. 

Buffer/media  pH Composition 

Phosphate-buffered saline (PBS) 7.4 137 mM NaCl 
  2 mM KCl 
  10 mM sodium hydrogen phosphate 

(dibasic) 
  2 mM potassium hydrogen phosphate 

(dibasic) 
Tris-EDTA (TE) 8.0 10 mM Tris-HCl 
  1 mM EDTA 
Tris-acetate EDTA (TAE) 7.8 40 mM Tris-HCl 
  1 mM EDTA 
  20 mM sodium acetate 
Elution buffer (EB) 8.5 10 mM Tris-HCl 
Luria Bertani broth 7.5 1% bacto-tryptone 
  0.5% bacto-yeast extract 
  10% NaCl 
Luria Bertani agar 7.5 LB broth plus bacto-agar 15g/L 
Transformation buffer (TFB)-I 5.5 30 mM potassium acetate 
  100 mM rubidium chloride 
  10 mM calcium chloride 
  50 mM magnesium chloride 
  15% glycerol 
  acetic acid to desired pH 
TFB-II 6.5 10 mM MOPS 
  75 mM calcium chloride 
  10 mM rhubidium chloride 
  15% glycerol 
  KOH to desired pH 
6x gel loading buffer 6.8 0.25% bromophenol blue 
  0.25% xylene cyanol FF 
  30% glycerol in water 
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2.1.2 Antibodies 

Table 2.2. Primary antibodies used for immunoblotting and immunoprecipitation. 

Target Clone Manufacturer Species/Isotype Dilution 

Atg3  CST Rabbit, Polyclonal 1:1000 

Caspase-8 C-20 Santa Cruz Goat, Polyclonal 1:1000 

cFLIP† 
NF6 

Enzo Life 

Sciences 
Mouse, IgG1 1:2000 

CYLD  Sigma Rabbit, Polyclonal 1:1000 

FADD 1/FADD BD Mouse, IgG1 1:1000 

FLAG epitope M2 Sigma Mouse, IgG1 1:2000 

GAPDH 
14C10 CST 

Rabbit, 

Monoclonal 
1:4000 

GST B-14 Santa Cruz Mouse, IgG1 1:1000 

HA epitope 
Y-11 Santa Cruz 

Rabbit, 

Monoclonal 
1:1000 

HOIL-1  Walczack lab Mouse, IgG2a 1:1000 

HOIP  Sigma Rabbit, Polyclonal 1:2000 

IKKαβ H470 Santa Cruz Rabbit, Polyclonal 1:1000 

MEKK3 40/MEKK3 BD Mouse, IgG1 1:1000 

NEMO FL-419 Santa Cruz Rabbit, Polyclonal 1:3000 

pIKKα(S176/180)/ 

β(S177/181)  
16A6 CST 

Rabbit, 

Monoclonal 
1:1000 

pIKKα(S176)/β(S177) 
C84E11 CST 

Rabbit, 

Monoclonal 
1:1000 

pIκBα (S32) 
14D4 CST 

Rabbit, 

Monoclonal 
1:1000 

pIκBα (S32/36) 12C2 CST Mouse, IgG1 1:700 

RIP1 38/RIP1 BD Mouse, IgG2a 1:1000 

SHARPIN  Walczak lab Mouse, IgG1 1:1000 

TAK1 M-579 Santa Cruz Rabbit, Polyclonal 1:1000 

vFLIP 6/14 Collins lab Rat, Monoclonal 1:300 
Manufacturers: BD, Beckton Dickenson Transduction Laboratories, CST, Cell 

Signalling Technology. 

† The anti-cFLIP(NF6) antibody has been raised against amino acids 1-194 of 
human cFLIP and therefore, recognises all of its isoforms and proteolytic fragments. 
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Table 2.3. HRP-conjugated secondary antibodies used for immunoblotting. 

Target Host Manufacturer Dilution 

Goat IgG Rabbit Dako 1:2000 

Mouse IgG Sheep GE Healthcare 1:10000 

Mouse IgG (ligh chain-specific) Mouse Jackson Immunoresearch 1:20000 

Rabbit IgG Pig Dako 1:3000 

Rabbit IgG (Fc-specific) Goat Jackson Immunoresearch 1:20000 

Rabbit IgG (ligh chain-specific) Mouse Jackson Immunoresearch 1:20000 

Rat IgG Rabbit Dako 1:1000 

Fc: Fragment crystallisable region of an antibody. 

2.1.3 Primers 

Table 2.4. Primers used for amplifying cDNAs of genes of interest. 

Amplicon Target 

Vector 

Primer name Primer sequence (5'→3') 

cFLIPL pDual & 

pCDNA3 

BglII-cFLIP-FW agatctgccaccatgtctgctgaagtcatccat 

 cFLIPL-NotI-RS gcggccgcttatgtgtaggagaggataagtttctttc 

cFLIPS pDual & BglII-cFLIP-FW agatctgccaccatgtctgctgaagtcatccat 

 pCDNA3 cFLIPS-NotI-RS gcggccgctcacatggaacaatttccaagaattt 

p22-FLIP pDual & BglII-cFLIP-FW agatctgccaccatgtctgctgaagtcatccat 

 pCDNA3 p22-NotI-RS ggggcggccgctcaatccttgagac 

CYLD pDual BamHI-CYLD-FW ggatccgccaccatgagttcaggcttatggagccaagaa

aaag 

  CYLD-NotI-RS gcggccgcttatttgtacaaactcattgttggactctgg 

FADD pCAN BamHI-FADD-FW ggatccgacccgttcctggtgctgctgc 

  FADD-NotI-RS gcggccgctcaggacgcttcggaggtagatg 

RIP1 pDual AsiSI-RIP1-FW gcgatcgcgccaccatgcaaccagacatgtccttgaatg 

  RIP1-NotI-RS gcggccgcttagttctggctgacgtaaatcaagctgctc 

HA-RIP1 pCDNA3 KpnI-HA RIP1-FW ggtaccgccaccatgtacccatacgacgtcccagactac

gctggtcaaccagacatgtccttgaatgtca 

  RIP1-NotI-RS gcggccgcttagttctggctgacgtaaatcaagctgctc 

IκBα(1-54) pGEX-

2T 

BamHI-IκBα-FW ggatccgccatgttccaggcg 

  IκBα∆54-EcoRI-RS gaattctcagaggcggatctcctg 
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Luciferase pDual BamHI-Luc-FW ggatccaccgccatggaagacgccaaaaacataaagaa

agg 

  Luc-NotI-RS gcgggcgcttacaatttggactttccgcccttcttggcc 

NEMO 

∆254 

pDual AscI-SFFV-FW ggcgcgccagtcctccgacagactg 

  SalI-NEMO∆254-RS gtcgactcaccgctcactgcccaccacgctgctcttg 

NEMO 

∆271 

pDual AscI-SFFV-FW ggcgcgccagtcctccgacagactg 

  SalI-NEMO∆271-RS gtcgactctagtcactcggcctgctggagctgctg 

vFLIP pDual & BamHI-vFLIP-FW ggatccgccaccatggccacttacgag 

 pCDNA3 vFLIP-NotI-RS gcggccgcctatggtgtatggcgatagtg 

 

Table 2.5. Primers used for site-directed mutagenesis 

Mutation Primer Sequence (5'→3') 

cFLIP A56L FW: tcggggacttgttggaactgctctac 

 RS: gtagagcagttccaacaagtccccga 

cFLIP K192/K195RR FW: gaatgttctccaagcagcaatccaaagaagtctcagagatccttcaaataacttcagg 

 RS: cctgaagttatttgaaggatctctgagacttctttggattgctgcttggagaacattc 

cFLIP F114/L115AA FW: tgtgcgagggatattaggtctttgatagctgcaagcaaggacactatagggtctc 

 RS: gagaccctatagtgtccttgcttgcagctatcaaagacctaatatccctcgcaca 

IKKβ S177/S181AA FW: gctggatcagggcgctctttgcacagcattcgtggggac 

 RS: gctggatcagggcgctctttgcacagcattcgtggggac 

IKKβ S177/S181EE FW: aggagctggatcagggcgaactttgcacagaattcgtggggaccctgc 

 RS: gcagggtccccacgaattctgtgcaaagttcgccctgatccagctcct 

RIP1 E620/D622AA FW: gaaattgaccatgactatgcgcgagctggactgaaagaaaaggtt 

 RS: aaccttttctttcagtccagctcgcgcatagtcatggtcaatttc 

RIP1 G595/K596AA FW: cccaatcagggaaaatctggcagcgcactggaaaaactgtgccc 

 RS: gggcacagtttttccagtgcgctgccagattttccctgattggg 

RIP1 K377R FW: cccagcctgcagagtagactccaagacgaag 

 RS: cttcgtcttggagtctactctgcaggctggg 

vFLIP D102/E104RR FW: cactgttctccacgtacgcgggcggctgtgtgcgaggg 

 RS: ccctcgcacacagccgcccgcgtacgtggagaacagtg 

vFLIP E104R FW: ccacgtagacgggcggctgtgtgcgagg 



69 
 

 RS: cctcgcacacagccgcccgtctacgtgg 

vFLIP F115/L116AA FW: tgtgcgagggatattaggtctttgatagctgcaagcaaggacactatagggtctc 

 RS: gagaccctatagtgtccttgcttgcagctatcaaagacctaatatccctcgcaca 

vFLIP R12E BamHI-vFLIP R12E- FW: ggatccgccaccatggccacttacgaggttct 

ctgtgaggtggcggagaaactgggcacgga 

 

Table 2.6. Sequencing primers 

Primer  Sequence  

SFFV FW cgagctctataaaagagctca 

pDual seq RS taaagcagcgtatccacatagcgtaaaagga 

pSIREN shRNAFW atttcttgggtagtttgcag 

pSIREN shRNA RS gggctgctaaagcgcatgc 

 

2.1.4 Plasmids used in this study 

Table 2.7. Mammalian and bacterial expression vectors used in this project. 

Plasmid Origin 

pDual (SFFV) NEMO WT (Ub) mCherry Akira Shimuzu, Collins lab 

pDual (SFFV) NEMO F312A (Ub) mCherry Akira Shimuzu, Collins lab 

pDual (SFFV) NEMO F238/D242RR (Ub) mCherry Akira Shimuzu, Collins lab 

pDual (SFFV) NEMO D242V (Ub) mCherry this study 

pDual (SFFV) NEMO ∆271 (Ub) mCherry this study 

pDual (SFFV) NEMO ∆254 (Ub) mCherry this study 

pDual (SFFV) vFLIP (Ub) GFP Akira Shimuzu, Collins lab 

pDual (SFFV) FLAG-Tax (Ub) GFP Akira Shimuzu, Collins lab 

pDual (SFFV) cFLIPL (Ub) GFP this study 

pDual (SFFV) cFLIPS (Ub) GFP this study 

pDual (SFFV) p22-FLIP (Ub) GFP this study 

pDual (SFFV) CYLD (Ub) GFP this study 

pDual (SFFV) RIP1 WT (PGK) GFP this study 

pDual (SFFV) RIP1 WT (PGK) GFP this study 

pDual (SFFV) RIP1 K377R (PGK) GFP this study 

pDual (SFFV) RIP1 G595/K596AA (PGK) GFP this study 
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pDual (SFFV) RIP1 E620/D622AA (PGK) GFP this study 

pDual (SFFV) empty (Ub) GFP David Escors, UCL 

pSIN (SFFV) GFP David Escors, UCL 

pSIN (CMV) NF-κB luciferase this study 

pSIN (CMV) NF-κB mCherry this study 

pHIV-SIREN GFP David Escors, UCL 

pHIV-SIREN PuroR Greg Towers, UCL 

pHIV-SIREN HygroR this study 

pGL. IgK this study 

pGL. H2DK this study 

pRL.TK David Guiliano, UEL 

pNF-κB-H2DK-luciferase Inna Lavrik, DKFZ, Germany 

pCDNA3 empty Pablo Rodriguez, UCL 

pCDNA3 vFLIP this study 

pCDNA3 His-vFLIP this study 

pCDNA3 FLAG-vFLIP this study 

pCDNA3 vFLIP A57L this study 

pCDNA3 vFLIP F115/L116AA this study 

pCDNA3 vFLIP R12E this study 

pCDNA3 vFLIP R12E/E104R this study 

pCDNA3 vFLIP D102R/E104R this study 

pCDNA3 p22-FLIP WT this study 

pCDNA3 p22-FLIP A56L this study 

pCDNA3 p22-FLIP F114/L115AA this study 

pCDNA3 p22-FLIP K192/195RR this study 

pCDNA3 cFLIPS WT this study 

pCDNA3 cFLIPS A56L this study 

pCDNA3 cFLIPS F114/L115AA this study 

pCDNA3 cFLIPS K192/195RR this study 

pCDNA3 cFLIPL WT this study 

pCDNA3.1 FLAG-cFLIPL WT Pascal Meier, ICR 

pCDNA3 cFLIPL A56L this study 

pCDNA3 cFLIPL F114/L115AA this study 
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pCDNA3 cFLIPS K192/195RR this study 

pCDNA3 cFLIP D196E/D376N Inna Lavrik, DKFZ, Germany 

pCDNA3 FLAG-Tax this study 

pCDNA3 Myc-NEMO WT this study 

pCDNA3 MycNEMO D242V this study 

pCDNA3 Myc NEMO F312A this study 

pCDNA3 Myc-NEMO F238/D242RR this study 

pCDNA3 HA-IKKα WT this study 

pCDNA3 HA-IKKα S176/S180AA this study 

pCDNA3 HA-IKKα S176/S180EE this study 

pCDNA3 HA-IKKβ WT this study 

pCDNA3 HA-IKKβ S177/S181AA this study 

pCDNA3 HA-IKKβ S177/S181EE this study 

pCDNA3.1 His-V5-HOIP  Henning Walczak, UCL 

pCDNA3.1 FADD Henning Walczak, UCL 

pCDNA3 HA-FADD this study 

pCDNA3 HA-RIP1 this study 

pGEX-2T IκBα (1-54) this study 

pGEX IκBα (1-73) S32/S36AA Neil Perkins, Newcastle 

University 

 

2.2 Molecular biology 

2.2.1 Polymerase chain reaction (PCR) 

To amplify DNA fragments for subcloning into an expression vector, PCR 

reactions were performed using the high fidelity Phusion® DNA polymerase (NEB), as 

described in Table 2.8. Phusion DNA Polymerase possesses 3´→5´ proof-reading activity 

and generates blunt end products which, following purification, can be ligated into 

pJET1.2/blunt cloning vector.  

For colony screen PCRs, we used the goTaq® Green Master Mix (Promega, 

Madison, WI). The colony PCR is a convenient method to screen for the absence or 

presence of a plasmid DNA insert directly from the transformed E.coli colonies. This 
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method can also be used to determine the insert orientation following blunt-end DNA 

ligations. Table 2.9 summarises the reagents used for the PCRs with goTaq polymerase.  

Table 2.8. Phusion polymerase reaction mixtures  

Component 
Stock 

Concentration 

Volume 

added 

Final 

concentration 

Nuclease-free water - to 50 µl  

Phusion HF† or GC† 

buffer 
x5 10 µl x1 

dNTPs 10 mM 1µl 200 µM 

Forward Primer 10 µM 2.5 µl 0.5 µM 

Reverse Primer 10 µM 2.5 µl 0.5 µM 

DNA template 100 ng 1 µl 100 ng 

Phusion DNA 

polymerase 
2 units/µl 0.5 µl 1 unit/50 µl PCR 

Total volume  50 µl  

†: As recommended by the manufacturer, HF buffer was used as the default buffer 
for high fidelity amplification, while GC buffer was used in PCRs with GC-rich template 
or those which did not work with HF. 

Table 2.9. goTaq polymerase reaction mixtures 

Component 
Stock 

Concentration 
Volume added 

Final 

concentration 

Nuclease-free water - to 25 µl - 

GoTaq Green Master 

Mix 
x2 12.5 µl x1 

Forward Primer 10 µM 2.5 µl 1 µM 

Revers Primer 10 µM 2.5 µl 1 µM 

DNA template  
A small amount of 

E.coli colony 
 

Total volume  25 µl  
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Reactions were run in a Hybraid thermal cycler using parameters listed in Table 2.10 

and Table 2.11. 

Table 2.10. Cycling parameters for Phusion polymerase reactions 

Cycle step Cycles Temperature Time 

Initial Activation 1 98 oC 30 seconds 

Denaturation 

25-30 

98 oC 5-10 seconds 

Annealing 
~ 5oC below Tm of 

primers 
10-30 seconds 

Extension 72 oC 15-30 seconds/kb 

Final Extension 1 72 oC 5-10 min 

Hold 1 4 oC ∞ 

 

Table 2.11. Cycling parameters for goTaq polymerase reactions 

Cycle step Cycles Temperature Time 

Initial Activation 1 95 oC 2 min 

Denaturation 

25-30 

95 oC 30 seconds 

Annealing 
~ 5 oC below Tm of 

primers 
30 seconds 

Extension 72 oC 1 min/kb 

Final Extension 1 72 oC 5-10 min 

Hold 1 4 oC ∞ 

 

2.2.2 Site-directed mutagenesis 

Mutations were introduced using either QuickChange® XL II Mutagenesis Kit 

(Agilent Technologies) according to the manufacturer’s instructions, or by overlap 

extension PCR method (OE-PCR). Both methods are based on amplification of the 

unmutated template DNA using complementary primer pairs both harbouring the desired 

mutation in their middle part (one forward and one reverse primer, here referred to as 

sense and antisense).  

The QuickChange XL-II mutagenesis relies on a single PCR reaction using 

mutation-containing primers and a plasmid DNA as template. Extension of the 

oligonucleotide primers by Pfu HF DNA polymerase generates a mutated plasmid 
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containing staggered nicks. DNA isolated from most strains of E.coli is dam methylated 

and therefore, susceptible to digestion with the restriction enzyme DpnI. Hence, treatment 

of the PCR mixture with DpnI results in digestion of the parental unmutated DNA; 

however, the mutated plasmid produced by the PCR is unmethylated and so, is preserved. 

The mutated plasmid can then be transformed into competent cells and amplified within 

bacteria. 

In OE-PCRs, three PCR reactions are performed to generate a DNA fragment with 

the desired mutation. For this method, apart from the mutation-harbouring internal 

primers, two primers (FW: forward and RS: reverse) one for each end of the final product 

are required. First, two PCR reactions using FW+antisense and sense+RS oligos were 

performed to generate two overlapping DNA segments containing the mutation of 

interest at their 3'- and 5'-terminal part, respectively. Finally, a third PCR was carried out 

to adjoin the two segments into a full-length product using FW and RS primers and 

products of the initial PCRs as template. These PCR products were then cloned into 

pJET1.2/blunt cloning vector. Presence of the mutation (and also absence of undesired 

sequence alterations) was verified by DNA sequencing, before subcloning the mutated 

genes into expression vectors. 

The primers used for site-direct mutagenesis were designed using the online 

QuickChange® Primer Design program; they are listed in Table 2.5. 

2.2.3 Restriction digestions 

All restriction enzymes and their optimal buffers were purchased from Promega 

(Madison, WI) or New England Biolabs (NEB; Ipswich, MA). Digestion reactions for 

DNA analysis were normally performed at 37 oC for at least two hours, in a total volume 

of 10 µl (1 µl DNA, 0.5 µl of each enzyme, 1 µl of 10x buffer and 7 µl water). For 

isolation of plasmid backbone or inserts for ligation, reactions were carried out in a final 

volume of 30 µl (3 µl DNA, 1 µl of each enzyme, 3 µl of 10x buffer and 23 µl water). The 

incubation time was reduced to 30 min when using High-Fidelity restriction enzymes. 

To generate blunt-end DNA fragments from those with sticky-ends, the DNA was 

incubated with Klenow DNA polymerase at 37 oC for 30 minutes in a 30 µl reaction 

consisting of: 20µl gel-purified sticky end DNA, 1µl dNTP, 1 µl Klenow (NEB), 5µl 

water and 3 µl of x10 reaction buffer (10mM Tris-HCl, pH7.9, 50mM NaCl, 10mM MgCl2 

and 1mM DTT). The Klenow is a proteolytic fragment of E.coli DNA polymerase which 



75 
 

retains polymerisation and 3'→5' exonuclease activity, but has lost 5'→3' exonuclease 

activity. Hence, it fills in 5' overhangs and chews back 3' overhangs, generating a blunt-

end DNA fragment (Jacobsen et al., 1974). 

2.2.4 DNA ligations 

For ligation of DNA fragments, Rapid DNA Ligation Kit® (Thermo Scientific) was 

used. Ligation reactions were carried at room temperature for 5-10 minutes, in a total 

volume of 20 µl using 1 µl T4 DNA ligase (5 U/µl) and 4 µl of 5x Rapid ligation buffer. 

Next, 2µl of the reaction mixture was used for transformation of the competent cells. 

To minimise self-ligation of DNA fragments in reactions where both insert and 

vector were blunt-ended, we treated the backbone vector with calf intestinal alkaline 

phosphatase (CIAP) prior to ligation. This enzyme dephosphorylates 5'-ends of the 

vector, preventing them from binding to hydroxyl groups of the 3'-ends and therefore, 

minimising the re-circulation of the cut vectors. The dephosphorylation reactions were 

performed using 1µl of CIAP (1 U/µl, Promega) at 37 oC for 15 min, followed by further 

15 min incubation at 56 oC to heat-inactivate the enzyme. 

2.2.5 Annealing DNA oligonucleotides for subcloning into a plasmid 

In order to introduce a short stretch of DNA into a plasmid, we designed 

overlapping oligonucleotides that once assembled could be directly cloned into the 

overhangs generated by restriction digest of the destination vector. For annealing the 

oligonucleotides, 2.5 µl of each (reverse and forward) form a 100 µM stock were mixed 

and diluted in 50 µl of annealing buffer (10mM Tris pH 8.0, 50mM NaCl and 1mM 

EDTA). The mixture was incubated at 95 oC for 5 min and then, allowed to cool down to 

room temperature on the bench for approximately 45 min. The annealed oligonucleotides 

were diluted 10 times using nuclease-free water. Finally, the annealed oligonucleotides 

were mixed with cut vector in ratios between 3:1 to 6:1, in a standard ligation reaction as 

described in section 2.2.4. 

2.2.6 Agarose gel electrophoresis and recovery of DNA 

Agarose gel electrophoreses were performed to separate, characterise and purify the 

DNA samples. DNA fragments were electrophoresed in 1% agarose gels (Invitrogen, 

Carlsbad, CA) containing 5 µg/ml ethidium bromide (Dutscher Scientific, Essex, UK), 

using TAE buffer as running buffer. Prior to loading, DNA samples were mixed with x6 
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TriTrack DNA loading dye (Thermo Scientific) and then, were run alongside 1kb Plus 

DNA ladder (Invitrogen, Carlsbad, CA) for the estimation of band sizes. Gels were finally 

visualised under UV illumination and analysed using the GeneSnap image acquisition 

software (SYNGENE, NJ, USA). 

For DNA purification after electrophoresis, the bands of interest were excised form 

the gel and purified using Qiaquick Gel Extraction kit (Qiagen, Hilden, Germany) 

according to the manufacturer’s instructions. 

2.2.7 Preparation, transformation and growth of competent bacteria 

For the generation of competent cells, we used the rhubidium chloride method. 

Briefly, XL10 gold E.coli (Agilent were streaked onto an LB-agar plate containing 

Tetracycline (10 µg/ml) and incubated overnight at 37 oC. A single colony was then 

picked and cultured overnight in 10 ml of LB medium with Tetracycline (10 µg/ml). 

Next, 100 ml of LB medium without antibiotics was inoculated with 1 ml of overnight 

culture and grown at 37 oC for approximately 90-120 min, until an OD600 of 0.5-0.6 was 

achieved. The bacterial suspension was then cooled on ice for 10 min and harvested at 

3000 RPM and 4 °C for 10 min. The pellet was gently suspended in 50 ml of TFB-I 

buffer (See table 2.1) and left on ice for 5 min. Following this incubation, cells were spun 

down again as explained above, re-suspend in 4 ml of ice-cold TBF-II buffer and left on 

ice for additional 15 min. Finally, aliquots of 100 µl were prepared and stored at -80 oC 

until use. 

For transformation, vials of competent bacteria were thawed on ice and inoculated 

with 100-500 ng of plasmid DNA or 2-5 µl of ligation reaction. After incubation on ice 

for 20 minutes, the bacteria were heat-shocked for 15 seconds at 42 oC (or 2 minutes at 37 

ºC) and put back on ice for an additional 2 minutes. The transformed cells were then 

streaked onto LB-agar plates containing selection antibiotics (Ampicillin 50 µg/ml, or 

Kanamycin 30 µg/ml) and grown overnight at 37oC. 

2.2.8 DNA purification and quantification 

Single colonies of transformed bacteria were picked from LB agar plates and grown 

overnight at 37 ºC, in 4 ml (minipreps) or 100 ml (midipreps) of LB broth supplemented 

with appropriate selection antibiotics (usually Ampicillin 50 µg/ml). Plasmid DNA was 

purified using QiaPrep Spin Miniprep or Plasmid Midiprep kits (Qiagen) following the 
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manufacturer’s protocol. The purified DNA was normally eluted in EB buffer or 

nuclease-free water and quantified using NanoDrop® 3300 spectrophotometer (Thermo 

Scientific, Wilmington, DE). 

2.2.9 Extraction of cellular RNA and cDNA synthesis 

The cDNAs encoding human IKKα and IKKβ, were amplified from cDNA 

synthesised from Jurkat T cells. To do this, we first isolated total cellular RNA using 

RNeasy mini kit (Qiagen) according to the manufacturer’s instructions. Next, mRNA was 

reverse transcribed to cDNA using the qScript® II cDNA SuperMix (Quanta 

BioSciences). Reverse transcription-PCR reaction mixtures and parameters are shown 

below in Table 2.12. Finally, 2 µl of the cDNA/RNA sample was used as template to 

amplify IKKα and IKKβ cDNAs by means of a standard PCR reaction. 

Table 2.12. RT-PCR reaction mixtures (top) and thermocycler parameters (bottom). 

Component Volume added 

qScript cDNA SuperMix 4 µl 

RNA template 1 µg (whatever the volume) 

Nuclease-free water to 20 µl 

Total volume 20 µl 

 

Cycle Temperature Time 

Annealing 25oC 5 min 

Elongation 42oC 30 min 

Denaturation 85oC 5 min 

Hold 4oC ∞ 

 

2.2.10  DNA sequencing  

DNA sequences were verified, using standard or customised primers, at the 

University College London or Beckman Coulter sequencing services. The list of 

customised primers is given in Table 2.6. 
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2.3 Tissue culture 

HEK293T cells were used for viral packaging, lentivector titrations and also testing 

of the transgene expression of cloned plasmids. They are highly transfectable cells derived 

from human embryonic kidney cells which stably expresses the large T antigen from 

simian virus 40. The expression of T antigen contributes to episomal maintenance and 

increased replication of vectors containing SV40 origin/promoter (DuBridge et al., 1987; 

Pear et al., 1993). This makes HEK293T ideal target cells for viral preparations, gene 

expression and protein production. 

All adherent growing cell lines including HEK293T, HEK293 and mouse 

embryonic fibroblasts (MEF) were cultured in Dulbecco’s modified Eagle’s medium 

(DMEM)(Sigma), supplemented with 10% foetal bovine serum (FBS)(Gibco, Paisley, 

UK), 2 mM L-glutamine (Gibco), 100 U/ml Penicillin and 100 µg/ml Streptomycin 

(Gibco). These cells were grown at 37 oC in a 10% CO2 incubator and passaged every 2-3 

days, using Trypsin/EDTA (Sigma). The wild-type and MEKK3 KO MEFs were kindly 

provided by Prof. Philip Cohen (University of Dundee, Scotland). 

Jurkat SVT35 cells and the 70Z/3 Pre-B cell line were cultured in Roswell Park 

Memorial Institute (RPMI) medium, supplemented with 10% FBS, 2 mM L-glutamine, 

100 U/ml Penicillin, 100 µg/ml Streptomycin and 50 µM 2-Mercaptoethanol (Gibco). 

These cells were grown in a 5% CO2 incubator and passaged 1:10 (70Z/3) or 1:5 (Jurkat) 

every 3 days. The 70Z/3 and Jurkat SVT35 cells as well as their respective NEMO-

deficient derivatives, 1.3E2 (Yamaoka et al., 1998) and JM4.5.2 cell (Harhaj et al., 2000), 

were kind gifts of Prof. Alain Isräel (Pasteur institute, Paris, France). 

All cell lines were frozen in FBS containing 10% dimethyl sulfoxide (DMSO) at a 

density of 4-8 x106 cells/ml. Cell counting was performed either manually by use of a 

Neubauer chamber slide, or by using the Muse® cell analyser (Millipore).  

2.4  Lentivectors 

2.4.1 Lentiviral transfer plasmids 

In this study, the pDual promoter lentivector backbone which has been previously 

described by our group (Arce et al., 2009; Rowe et al., 2009), was used. This construct 

incorporates two expression cassettes controlled by the spleen focus-forming virus 

(SFFV) and ubiquitin (Ub) promoters (Figure 2.1A). The SFFV promoter drives the 
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expression of a target gene (e.g, vFLIP or NEMO) while the Ub promoter initiates the 

expression of a fluorescent protein (emerald green fluorescent protein (eGFP) or 

mCherry). 

The cDNA template of transgenes were amplified using reverse and forward 

primers with incorporated 5' BamHI and Kozak sequences (forward) and 3' NotI site 

(reverse), and then were subcloned into BamHI-NotI restriction sites under the control of 

the SFFV promoter. If the BamHI site was present within the gene of interest, the BglII 

site was used which gives compatible cohesive ends. If this was not applicable either, a 

pDual vector encoding AsiSI and NotI insertion sites (provided by Dr. Gary Britton), was 

used. Sequences of primers used for amplification of the transgenes have been listed in 

Table 2.4. 

cDNA sources 

cDNA templates were from the following sources: p22-FLIP and non-cleavable 

cFLIPL (Prof. Inna Lavrik, DKFZ, Germany), WT cFLIPL (Prof. Pascal Meier, ICR), 

RIP1 and FADD (Prof. Henning Walczak, UCL), CYLD (Addgene plasmid depositary), 

mCherry and firefly luciferase (Dr. David Escors). E.coli expressing plasmids encoding 

human cFLIPS cDNA (Clone ID: IHS1380-212917810) was obtained from Open 

Bioystems (Thermo Scientific). Human IKKα and IKKβ cDNAs were isolated from a 

cDNA pool synthesised from Jurkat cells. 

2.4.2 Vector production 

Lentivectors (LV) were generated by a 3-plasmid transient co-transfection of 

HEK293T cells using a transfer vector, a 2nd generation HIV-derived packaging plasmid 

(p8.91) and a plasmid expressing vesicular stomatitis virus-glycoprotein (VSV-G) envelope 

(pMD.G). The p8.91 and pMD.G vectors were obtained from Plasmid factory (Bielefeld, 

Germany) and have been described previously (Demaison et al., 2002) (Figure 2.1B and 

C). 

One day prior to transfection, 107 HEK293T cells were seeded in 15 cm2 dishes to 

reach a cell confluency of 70-80% the following day. Cells were then transfected using the 

FuGENE® HD transfection reagent (Promega) with the following mixture of 

components (per plate): 
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Table 2.13. Components of transfection mixture for LV production (amounts for a 15 

cm plate) 

Reagent Quantity 

LV transfer plasmid 3.75 µg 

p8.91 2.5 µg 

pMD.G 2.5 µg 

FugeneHD 45 µl 

Opti-MEM (Gibco) 500 µl 

 

The mix was incubated at room temperature for 20 minutes and then added 

dropwise to cells in fresh DMEM. Twenty-four hours later the medium was changed and 

subsequently, three collections were made at day 2, 3 and 4 post-transfection. 

Supernatants containing lentiviral particles were then passed through 0.45 µm filters and 

concentrated 200-fold by ultra-centrifugation (20,000 RPM, at 4 oC for 2 hours) in a 

Sorvall centrifuge (Beckman Coulter). Viral pellets were then resuspended in ice-cold 

whole medium, incubated on ice for 1-2 hours and finally, aliquoted and stored at -80 oC, 

until use. 

2.4.3 Viral titrations 

Titration of LVs expressing a fluorescent protein (usually GFP or mCherry) was 

performed using flow cytometry technique, while for those lacking a fluorescent protein 

gene, quantitative PCR (qPCR) method was used. 

2.4.3.1 LV titrations by flow cytometry 

2x105 HEK293T cells were seeded in 24-well plates in 0.5 ml of DMEM, three to 

four hours before transduction. Cells were then transduced with serial dilutions (1 in 5, 

25, 125, 625 and 3125) of the prepared lentiviral particles. Twenty-four hours later, plate 

wells were topped up with an additional ml of medium. Three days following 

transduction, cells were harvested, washed in PBS twice, pelleted in FACS tubes (1,500 

RPM, at 4oC for 5 min) and resuspended in 300 µl of PBS. Subsequently, the percentage 

of fluorescent protein-expressing cells was quantified by flow cytometry using LSR-

Fortessa® cell analyser (BD Biosciences) and BD Diva software. Dilutions which resulted 

in 10-30% transduction rate –which fall within the linear range of the titration graph- were 

used to calculate virus titrations using the following formula: 
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2.4.3.2 LV titrations by qPCR 

This titration method calculates the number of integrated vector copies per cell. 

2x105 of HEK3293T cells were plated out in 24-well plates and transduced with 2-5 µl of 

LV. Three days post-infection, genomic DNA was extracted using DNeasy® Blood and 

Tissue kit (Qiagen) and quantified by Nanodrop. Standards containing 101 to105 copies of 

pHV per µl were prepared. We used primers and fluorescent Taqman probe which 

recognise the HIV leader sequence. Reactions were performed in duplicates using 

Realplex Eppendorf mastercycler. The PCR program included an initial step of 90 oC for 

10 min, followed by 40 cycles of 90 oC for 1 min and 60 oC for 10 min. Finally, the 

number of cells was estimated from extracted gDNA concentration and then, based on 

the standard curve values, number of integrant copies per cell was calculated. The 

oligonucleotide sequences and the amount of reagents used for each reaction have been 

summarised in the following table.  

Table 2.14. Components of qPCR reaction for titration of lentivectors. 

Reagent Quantity/rxn Sequence 

FW primer (GT248) 0.5 µl 5’ tgtgtgcccgtctgttgtgt 3’ 

RS primer (GT 249) 0.5 µl 5’ gagtcctgcgtcgagagagc 3’ 

Strong stop probe 0.25 µl FAM 5’cagtggcgcccgaacaggga3’ TAMRA 

Quantitect Master 

Mix 

12.5 µl  

ddH2O 8.25 µl  

Sample (Std or 

unkown) 

2 µl  

Total 25 µl  
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2.4.4 Cell transductions 

Unless otherwise stated in the figures, cells were infected with lentiviral vectors at the 

following multiplicity of infection (MOI): HEK293/293T (10), Jurkat cells (20), MEFs 

(50) and 70Z/3 cells (100). At least 24 hours were allowed for the transgene expression 

before performing the functional assays. 

 

Figure 2.1. Lentiviral constructs. A) pDual vector. B) 2nd generation packaging plasmid. 
C) Envelope-expressing vector. D) pGIPZ. E) pHIV-SIREN. CMV: cytomegalovirus, 
cPPT: central polypurine tract, HygroR: hygromycin resistance gene, IRES: internal 
ribosome entry site, LTR: long terminal repeat, PuroR: puromycin resistance gene, RRE: 
rev response element, SFFV: spleen focus-forming virus, tGFP: turbo GFP, Ub: 
ubiquitin. VSV-G: vesicular stomatitis virus-glycoprotein, WPRE: woodchuck hepatitis 
virus post-transcriptional regulatory element, Ψ: packaging signal. 
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2.5  Generation of stable knock-down cell lines 

Short hairpin RNA (shRNA)-expressing lentivectors were produced using pGIPZ 

lentiviral plasmids (UCL Open Biosystems shRNA library). Alternatively, custom shRNA-

encoding sequences were designed and cloned into pHIV-SIREN lentivector backbone 

(modified from pSIREN RetroQ, Clonetech).  

2.5.1 pGIPZ 

pGIPZ plasmids contain CMV promoter driving the transcription of turboGFP 

marker gene which is followed by an IRES (Internal Ribosome Entry Site), Puromycin 

resistance gene and  an shRNA-encoding sequence within a microRNA30 context (Figure 

2.1D). HEK293T cells were transduced with shRNA lentivectors (normally 5-7 targeting 

viruses for each protein) at an MOI of 50 and 48 hours later, Puromycin was added to 

medium at 1µg/ml concentration to select infected cells. A non-silencing and a GAPDH-

targeting lentivectors were produced and tested alongside gene-specific shRNAs as 

negative and positive controls, respectively. Finally, the knockdown of protein expression 

was analysed by immunoblotting. 

2.5.2 pHIV-SIREN 

If pGIPZ constructs did not result in a successful knockdown or a different 

selection marker was needed, customised shRNA expressing oligonucleotide pairs were 

designed using Clonetech’s online shRNA target finder and shRNA designer softwares 

and then, subcloned into the pHIV-SIREN backbone. Upon hybridisation, 

oligonucleotides designed by this software produce 5' EcoRI and 3' BamHI sticky ends 

which can be then ligated into the compatible sites within the destination vector.  

The pHIV-SIREN is a bicistronic lentiviral construct designed to express a shRNA 

using the human U6 promoter and a selection marker gene (GFP, or Puromycin, or 

Hygromycin) driven by the phosphoglycerate kinase (PGK) promoter (Figure 2.1E). 

Selection of cells with HygromycinB (HygroGold®, Source Biosciences) was performed 

for two weeks at a concentration of 200 µg/ml. Cells transduced with GFP-expressing 

LVs were isolated by fluorescence-activated cell sorter (FACS). 
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2.5.3 shRNA sequences 

Table 2.15. shRNA-targeted sequences. 

Targeted Gene Ref Seq shRNA# Clone number Sequence (5'→3')  

Atg3 (Hs) NM_022488.4 1 V2LHS_201190 cattgaccatattcatcaa ● 

  2 V2LHS_14033 ggacttatatgtttatgca ● 

  3 V2LHS_11836 cagccttacttgtttaata  

  4 V3LHS_319838 aagctgtcattccaacaat  

  5 V3LHS_319835 tggaaaataaggacaatat  

Caspase-8 (Hs) NM_001228.4 1 V2LHS_112731 gtcatcctgggagaaggaa  

  2 V2LHS_112733 cctactttcacactaagaa  

  3 V2LHS_112730 gagctgctcttccgaatta  

  4 V3LHS_320399 gggtggttattgaaagtaa ● 

  5 V3LHS_398368 tgcacagtagagcaaatct ● 

  6 V3LHS_398369 gcaacaaggatgacaagaa  

FADD (Hs) NM_003824.3 1 V2LHS_16975 caggacgaattgagataat ● 

  2 V2LHS_16973 cgggatctcgtatctttaa  

  3 V3LHS_388202 ccgatgtcatggaactcag  

  4 V3LHS_412699 tgcaattctacagtttctt  

  5 V3LHS_388204 aggctggctcgtcagctca  

  6 V3LHS_388203 tgaccgagctcaagttcct  

  7 V3LHS_412698 aagatcttgtctccactaa ● 

HOIL-1 (Hs) NM_006462.4  pHIV-SIREN ccacaacactcatctgtcaaa ● 

HOIP (Hs) NM_017999.4 1 V3LHS-399213 agctgctgtgctatgttcc ● 

  2 V3LHS-399214 agcacggaggtgatgtgtc  

  3 V3LHS-399210 tggcgtggtgtcaagttta  

  4 V3LHS-399212 tgccgagtgatagagcaga  

MEKK3 (Hs) NM_203351.1 1 pHIV-SIREN cctggatatgagaccatga ● 

  2 pHIV-SIREN gagtgacgtcagaatcaag  

  3 V2LHS_1970 gcattgaactcaatcatga  

  4 V2LHS_151699 caaatgtcatgctgcctta  

  5 V2LHS_151695 ctgaccatcttcatggagt ● 

  6 V3LHS_329522 tcggtgaaagaccagttga  

  7 V3LHS_329524 agacacaggtcactcaaat  



85 
 

  8 V3LHS_329521 accaagatgatcttgataa  

  9 V3LHS_329520 agaatcaagttcgagcaca  

RIP1 (Hs) NM_003804.3 1 V2LHS_241668 cagttgataatgtgcataa  

  2 V2LHS_17422 accaacagatgaatctata  

  3 V3LHS_638037 agagtaaactccaagacga ● 

  4 V3LHS_638038 acagagaagtcggatgtgt  

  5 V3LHS_638034 agctgctaagtaccaagct  

  6 V3LHS_638036 tgggcgatatttgcaaata  

  7 V3LHS_645251 tgaagtggacgcctcactt  

  8 V3LHS_638040 accactagtctgacggata ● 

  9 V3LHS_340514 gcgagatggactgaaagaa  

SHARPIN (Hs)  1 pHIV-SIREN gtgttctcagagctcggtttc  

  2 pHIV-SIREN ctgtccttcctgcaccttcat ● 

  3 pHIV-SIREN tggaaacttgacggagaga  

TAK1 (Hs) NM_003188.3 1 V2LHS-153758 cagatgagccattacagta  

  2 V2LHS-201931 cctttggagttgtttgcaa ● 

  3 V2LHS-201612 cgcccttcaatggaggaaa  

  4 V2LHS-202210 cgtgtgaaccatcctaata ● 

  5 V3LHS-370925 agagtgaatctggacgttt  

  6 V3LHS-370924 agcttttagatgaaaacaa  

  7 V3LHS-370923 aggtagtaattacagtgaa ● 

TAK1 (Mm) NM_172688.3 1 pHIV-SIREN cctgaacttcgaagagatc  

  2 pHIV-SIREN cgaagagatcgactacaag  

  3 pHIV-SIREN ctgagaggaaggctttcat  

  4 pHIV-SIREN gcctgaatccagtatgtct ● 

GAPDH (Hs) NM_0012897

45.1 

  ccctcatttcctggtatgacaa ● 

non-silencing    atctcgcttgggcgagagtaa ● 

Hs: Homo sapiens, Mm: Mus musculus, RefSeq#: Reference sequence number  

● indicates the shRNAs resulting in the highest knockdown efficiency.  

 



86 
 

2.6  Western blotting 

Cells were washed twice with ice-cold PBS and then lysed by adding PBS-T lysis 

buffer (PBS containing 1% Triton X100 and 5% Glycerol, supplemented with complete 

protease inhibitor cocktail (Roche Diagnostics)) and incubating on ice for 10-15 min. 

After this, whole cell lysates were clarified by centrifugation at 13,000 RPM, 4 oC for 20 

minutes. The supernatants were transferred to new tubes and quantified for total protein 

concentration using bicinchoninic acid (BCA) colorimetric assay (Pierce® BCA protein 

assay kit, Thermo Scientific, Rockford, IL). After adjusting samples for equal protein 

concentrations, they were mixed with 4x Laemmli sample buffer and boiled at 95 oC for 5 

minutes.  

30-50 µg of the prepared samples were subjected to electrophoresis in a 4% SDS-

polyacrylamide stacking gel, followed by an 8-12% SDS-polyacrylamide separating gel at 

120 Volts for 2 hours. The separated proteins were transferred to polyvinylidene 

difluoride (PVDF) membrane using semi-dry transfer system and subsequently blocked 

with 5% skimmed milk in PBS-T (PBS with 0.1% Tween20) for an hour. Next, it was 

incubated overnight at 4 oC with appropriate dilution of a primary antibody in PBS-T 

containing 5% BSA and 0.1% Na3N. The membrane was washed in PBS-T five times for 

5 minutes and incubated with horseradish peroxidase (HRP)-conjugated secondary 

antibody in PBS-T with 5% non-fat milk for an hour at room temperature. After 

thoroughly washing the membrane as stated above, it was incubated with LumiGLO® 

ECL (Cell Signalling Technology) for a minute and then, drained and exposed to 

Hyperfilm ECL (Amersham). 

For reprobing with another antibody, membrane was incubated with stripping 

buffer for up to 45 minutes at 55 oC to denature both primary and secondary antibodies. 

This was followed by multiple washing steps with dH2O and PBS-T. Membrane was then 

blocked for one hour and the immunoblotting procedure was continued as explained 

above. The buffers and antibodies used for immunoblotting have been summarised in 

Table 2.14 and Table 2.2, respectively. 
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Table 2.16. Western blot buffers and gel reagents 

Buffer/gel Composition 

Laemmli sample buffer 50 mM Tris, pH6.8 

 10% Glycerol 

 2% SDS 

 5% 2-Mercapthoethanol 

 0.2 mg/ml Brumophenol blue 

 0.1 M DTT 

Running buffer 25 mM Tris, pH8.5 

 200 mM Glycine 

 0.1% SDS 

Transfer buffer 100 mM Tris, pH6.8 

 200 mM Glycine 

 20% Methanol 

Stripping buffer 62.5 mM Tris-HCl, pH6.8 

 2% SDS 

 100 mM 2-Mercaptoethanol 

4% stacking polyacrylamide gel 125 mM Tris-HCl, pH6.8 

 4% Acrylamide/bis 

 10% SDS 

 0.1% TEMED 

 1% Ammonium persulphate (APS) 

10% separating polyacrylamide gel 125 mM Tris-HCl, pH8.8 

 10% Acrylamide/bis 

 10% SDS 

 0.1% TEMED 

 1% APS 

 

2.7  Immunoprecipitation 

After washing twice with ice-cold PBS, cells were lysed with PBS-E lysis buffer 

(PBS containing 1% TritonX100, 2 µM EDTA and complete Protease inhibitor cocktail) 

and incubated on ice for 15 minutes. The cell lysate were clarified as mentioned above and 

pre-cleared by incubating with beads for an hour at 4 oC. The pre-cleared lysate was 
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incubated with 1:100 dilutions of the desired antibody (test or isotype-matched control) 

plus 20 µl of ProteinA or G slurry beads at 4 oC for 2 hours while rotating. Next, beads 

were pelleted by centrifugation at 2,000 RPM for 2 min and washed twice with the high 

salt wash buffer (recipe in Table 2.17) followed by two additional washes with the PBS-E 

solution. Immune complexes were dissociated by adding 20 µl of 2x Laemmli buffer and 

boiling at 95 oC for 5 minutes. Finally, co-immunoprecipitation results were analysed by 

western blotting. 

2.8  In vitro IKK kinase assay 

Cytoplasmic extracts were prepared using kinase lysis buffer (see Table 2.17) and 

quantified for protein concentration using BCA method. 500-1000 µg of lysates were 

incubated with 20 µl Protein A sepharose beads and 1 µg anti-NEMO (sc-8330, Santa 

Cruz) for at least 2 hours at 4 oC. Beads were then washed in 0.5 ml of high salt wash 

buffer three times, 5 minutes each, followed by two more washes with kinase wash buffer. 

After removing all the residual wash buffer, 40 µl kinase reaction buffer plus 2 µg GST-

IκBα (1-54) and 0.5 µl p32γ-ATP was added to each sample and tubes were immediately 

incubated at 30 oC for 30 min. Reactions were stopped by adding 15µl 4x Lammeli buffer 

and incubating the tubes at 95 oC for 5 min. The samples were separated by 10% SDS-

PAGE which was then dried out on a filter paper and exposed to a storage phosphor 

screen (GE Healthcare) for 15-30 minutes. To visualise the radiolabelled bands, the 

storage phosphor screen was scanned using Typhoon PhosphorImager (GE Healthcare) 

and the intensity of bands were quantified by ImageQuant TL 7.0 software (GE 

Healthcare).  

Table 2.17. Composition of kinase assay buffers. 

Buffer Composition 

Kinase lysis buffer 20 mM Tris-HCl, pH7.5 

 150 mM NaCl 

 1% Triton X-100 

 5% Glycerol 

 1 mM PMSF 

 Protease inhibitor cocktail 

High salt wash buffer 25 mM Tris-HCl, pH7.6  

 500 mM NaCl  
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 1 mM EGTA 

 1 mM DTT  

 1% Triton X-100 

 5% Glycerol 

 1 mM Na3VO4 

 10 mM β-glycerophosphate 

 5 mM NaF 

 1 mM PMSF 

Kinase wash buffer 20 mM HEPES, pH7.6 

 50 mM NaCl 

 20 mM β-glycerophosphate 

 0.5 mM DTT 

 1 mM PMSF 

Kinase reaction buffer 20 mM HEPES, pH7.6 

 50 mM NaCl 

 10 mM MgCl2 

 2 mM DTT 

 20 µM ATP 

 0.1 mM Na3VO4 

 

2.8.1 Expression and purification of GST-IκBα(1-54) 

First, IκBα(1-54) was PCR-amplified using the primers FW: 

5'ggatccgccatgttccaggcg3' and RS: 5'gaattctcagaggcggatctcctg3', containing BamHI and 

EcoRI restriction sites (underlined), respectively. The PCR product was cloned into 

pJET1.2, sequence-verified and then digested and subcloned into the pGEX-2T vector 

(kindly provided by Dr. Pablo Rodriguez, UCL Cancer Institute).  

Next, BL21 bacteria (NEB) were transformed with pGEX-2T-IκBα, streaked onto 

ampicillin LB-agar plates and grown overnight. A single colony was picked and grown at 

37 °C in 100mL LB-broth containing 50 µg/ml ampicillin and 2% glucose until an 

absorbance of 0.4 to 0.5 at 600nm was reached. The bacterial culture was then induced by 

addition of 2mM isopropyl-β-thiogalactopyranoside (IPTG) for 3 hours at 37 °C. To act 

as a negative control, 5 ml of culture was be removed before induction and grown along 

with the induced culture. After incubation time, cultures were harvested by centrifugation 



90 
 

at 4,000 RPM for 10 minutes. The pelleted bacteria were then resuspended in B-PER 

Bacterial Protein Extraction Reagent (Pierce, ThermoSceintific), at 4 ml per gram of 

bacterial pellet, to lyse and release the GST fusion protein. Subsequently, the lysates were 

ultra-centrifuged at 20,000 RMP for 20 min at 4 oC to remove the bacterial debris. The 

supernatant was removed for purification with the pellet being resuspended in PBS for 

SDS-PAGE analysis after protein purification. 

The supernatant was transferred to a 1 ml Glutathione Spin Column (Pierce) and 

the GST-IκBα was purified following the manufacturer’s instructions (the protocol states 

that 3 fractions of eluted protein are produced with a possible 10 mg of protein being 

purified). Following the elution of the GST-IκBα from the spin column, the elution 

fractions, lysate, lysate supernatant and flow-through samples were subjected to SDS-

PAGE and coomassie stained to determine the presence of the protein (Figure 2.2) After 

confirming the presence of GST-fusion proteins,  the samples were dialysed to remove 

glutathione and other sample contaminants, using the 10 kDa molecular weight cut-off 

Vivaspin® columns (Millipore) and a dialysis buffer (20mM Tris-HCl, pH8.0, 100mM 

NaCl, 0.2mM EDTA, 10mM β-glycero-3-phosphate and 10% glycerol). Finally, the 

protein samples were adjusted to a concentration of 1 µg/µl and stored at -80 oC until use. 

 

Figure 2.2. Expression and purification of the GST-IκBα. 
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2.9  In vitro IκBα phosphorylation assay 

Resting HEK293T cells were lysed in HTX lysis buffer (10mM HEPES pH7.4, 

10mM MgCl2, 1mM MnCl2, 0.1mM EGTA, 0.5% Triton X100) supplemented with 

complete protease inhibitor cocktail (Roche) and the S100 fractions were prepared by 

sequential centrifugation at 1,000 and 100,000g for 5 and 45 minutes, respectively. The 

cleared lysates were then incubated with recombinant FLIP and ATP generating system 

(10x stock: 10mM ATP, 20mM HEPES pH7.2, 10mM MgCl2, 350mM creatinine 

phosphate and 500 µg/ml creatinine kinase ) for 10 min at 37 oC. The reactions were 

terminated by adding 5x Laemmli buffer and boiling at 95 oC. Eventually, rec-FLIP-

induced IKK activation rate was detected by immunoblotting for downstream indicators 

such as pIkBα and pIKKα/β. Levels of total IKKα/β served as control for equal protein 

loading. 

2.9.1 Purification and expression of recombinant vFLIP, p22-FLIP and GB1-

p22FLIP 

Recombinant vFLIP was overexpressed and purified as described in Bagnéris et al 

(Bagnéris et al., 2008). For the production of recombinant p22-FLIP (and GB1-p22-

FLIP), cFLIPS was first PCR amplified from a human thymus cDNA library (Clontech) 

using the primers 5'ttgctagcatgtctgctgaagtc3' and 5'ttctcgagtcacatggaacaatttc3' containing 

NheI and XhoI restriction sites respectively (underlined). Following digestion, the product 

was then ligated into the pETM442 vector (described in (Bagnéris et al., 2008)) to provide 

an N-terminal 6His-NusA tobacco etch virus (TEV) protease cleavable solubility tag to 

aid expression and purification. The resulting pETM442-cFLIPS vector was then used as 

the template for production of pETM442-p22-FLIP which was generated by the 

introduction of a stop codon at D196 using the primers 

5'tccaaaagagtctcaagtagccttcaaataacttcaggat3' and 

5'atcctgaagttatttgaaggctacttgagactcttttgga3'. GB1-p22-FLIP was produced by subcloning 

p22-FLIP into the EcoRI and XhoI restriction sites of a modified pET15b vector (kind gift 

from Prof Paul Driscoll, NIMR) to produce pET15-GB1-p22-FLIP (containing a 6His-

GB1 solubility tag). The original pET15b vector was modified by inclusion of the coding 

sequence for the 56 amino acid B1 domain of E.coli protein G (GB1) 5’ to the multiple 

cloning site (MCS), the addition of an EcoRI restriction site directly 3’ to GB1 and 

removal of the MCS EcoRI site. This enabled subcloning of p22-FLIP 3’ to GB1 into the 
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new EcoRI and existing XhoI sites. pETM442-p22-FLIP and pET15-GB1-p22-FLIP were 

then transformed into BL21(DE3) star® cells (Invitrogen).  

The cultures were then inoculated into LB medium containing ampicillin (100 

µg/ml) at a ratio of 1:100 and grown to an OD600 of between 0.6-0.8. They were 

subsequently induced with 1mM IPTG and the temperature reduced to 16°C overnight. 

Cells were harvested by centrifugation and the pellets either frozen at -80°C or re-

suspended in a buffer comprising 25mM Tris-HCl pH 8.5, 200mM NaCl (buffer A) 

supplemented with an EDTA free protease inhibitor complex tablet (Roche) and DNase I 

(10 µg/ml). The purification protocols used for p22-FLIP and GB1-p22-FLIP were near 

identical. Resuspended pellets from 8L cultures of both proteins were sonicated on ice 

and the lysates clarified by centrifugation (46,000g for 1 hour). Supernatants were 

subsequently filtered through a 0.45 µm filter prior to loading on HisTrap FF columns 

(GE Healthcare) pre-equilibrated with buffer A. These were then washed with buffer B 

(A and 20mM imidazole) and eluted with buffer C (A and 500mM imidazole). For p22-

FLIP, the 6His-NusA tag originating from the pETM442-p22-FLIP construct was 

removed by incubating 6His-NusA-p22-FLIP with TEV protease overnight while 

dialysing in buffer A (to remove the imidazole) and the solution reapplied to a 5ml 

HisTrap FF column pre-equilibrated in buffer A. p22-FLIP was eluted from the column 

using buffer A and 40mM imidazole. Fractions having greater than 95% purity as judged 

by SDS-PAGE gels were subsequently pooled and frozen at -80°C. Following elution 

from the 5ml HisTrap column, GB1-p22-FLIP appeared to be over 95% pure. To 

improve stability, however, GB1-p22-FLIP was subsequently dialysed into a buffer 

containing 5mM L-arginine, 300mM NaCl, 5mM TCEP and 25mM Imidazole prior to 

concentration using a 6ml, 10 kDa molecular weight cut-off Vivaspin concentrator 

(Millipore) and storage at -80 °C. 

2.10  Immune complex dephosphorylation 

Immunoprecipitated complexes were dephosphorylated using the Lambda protein 

phosphatase (LPP). This is an Mn2+-dependent phosphatase with activity towards 

phosphorylated serine, threonine and tyrosine residues (Zhuo et al., 1993). Reactions were 

performed at 30 oC for 30 minutes, in a final volume of 50 µl using varying amounts of 

LPP (NEB) and Protein MetalloPhosphatase reaction buffer (50mM HEPES pH7.5, 10 

mM NaCl, 2 mM DTT, 0.01% Brij35 and 1 mM MnCl2). Subsequently, the reactions were 
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terminated by adding 25 mM Na3VO4  (Gordon, 1991) and 20 mM NaF, followed by 

cooling the samples on ice.  

2.11  Luciferase gene reporter assays 

Depending on the transfectability of the tested cell types, NF-κB luciferase assays 

were performed either by transfections or by viral transductions. 70Z/3, MEFs and Jurkat 

cells were mainly transduced while for HEK293 and HEK293T cells both transductions 

and transfections were utilised. 

2.11.1 NF-κB reporter luciferase assays by transfection 

One day prior to transfection, 2x105 of HEK293 or 105 of HEK293T cells were 

seeded in 24-well plates in total volume of 500 µl. Then, cells were transfected with 400 

ng of NF-κB luciferase plasmid (pGL.IgK or pGL H2DK), 100 ng of pRL.TK as internal 

control and 500 ng of pCDNA3 vectors encoding a transactivator gene. Twenty-four 

hours later the medium was removed, cells were resuspended in 100 µl of medium and 

transferred into an optical bottom 96-well plate. Luciferase activity was then measured 

using Dual-Glo® luciferase assay kit (Promega, Madison, WI). First, NF-κB-induced firefly 

luciferase activity was quantified by adding 50 µl of Dual-Glo luciferase reagent, this 

signal then was quenched by adding 50 µl of Stop and Glo reagent which also produces 

stabilised signal from Renilla luciferase. Firefly luciferase activity levels were normalised to 

that of Renilla which is driven by thymidine kinase promoter of herpes simplex virus and 

serves as transfection efficiency control. 

2.11.2 NF-κB reporter luciferase assays by transduction 

HEK293/293T, Jurkat, MEFs and 70Z/3 cells were transduced with NF-κB 

luciferase lentivectors at MOIs of 10, 50, 100 and 500, respectively to generate the stable 

NF-κB-reporter cell lines. These cells were passaged at least 2-3 times before performing 

assays. Next, to assess NF-κB activity, 5x104 cells were seeded in optical bottom 96-well 

plate and transduced with test lentivectors at MOIs of 10, 20, 50 and 100 for 

HEK293/293T, Jurkat, MEFs and 70Z/3 cells, respectively. Forty-eight hours later, 50 µl 

BrightGlo® luciferase substrate (Promega) was added to each well and NF-κB-induced 

luminescence was detected using Varioskan Flash multimode reader (Thermo Scientific). 
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2.12  Statistical analysis 

Statistical differences between two groups were analysed by the two-tailed unpaired 

student’s t -test using the GraphPad Prism v4.03 software package (Graphpad Sotware, La 

Jolla, CA). The calculated P-values are given in the figures. All experiments were 

performed in triplicates, on at least three independent occasions (unless otherwise stated). 

The quantitative data are presented as mean±SD. 
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3. The Role of NEMO in IKK Activation by 

KSHV vFLIP and Cellular FLIPs 
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3.1 Introduction 

Constitutive activation of NF-κB signalling is linked to cancer development and 

progression by providing an inflammatory environment for tumour cells and conferring 

resistance to apoptosis (DiDonato et al., 2012). The oncoproteins KSHV vFLIP and 

HTLV-1 Tax stably bind to NEMO and constitutively activate the IKK complex, 

contributing to the neoplastic character of the associated viruses. Cellular FLIPs, which 

share a high degree of sequence homology with KSHV vFLIP (Figure 1.4), are also strong 

inducers of the NF-κB cascade (Hu et al., 2000). These proteins become upregulated in a 

variety of malignancies and are promising targets for cancer therapies (Shirley and 

Micheau, 2010). Much is known about the role of cFLIPs in the regulation of cell death 

pathways; however, how they activate NF-κB remains elusive. Potential similarities to 

vFLIP-induced activation have been suggested, but not investigated.  

The crystal structure of the vFLIP-NEMO complex has been solved and multiple 

lines of evidence exist that indicate the necessity of binding to NEMO for the vFLIP-

mediated induction of IKK (Bagnéris et al., 2008; Field et al., 2003; Liu et al., 2002). It is 

not clear how this interaction leads to activation. In this chapter, we aimed to explore the 

role of NEMO in FLIP-induced IKK activation with a particular emphasis on the 

ubiquitin binding function of NEMO. The UBAN domain of NEMO is indispensable for 

cytokine-induced IKK activation and has been shown to undergo conformational changes 

upon binding to linear ubiquitin oligomers (Bloor et al., 2008; Rahighi et al., 2009). Our 

initial working hypothesis was that vFLIP binding to NEMO may cause similar 

conformational changes, leading to changes in proximity or conformation of the catalytic 

IKKα and IKKβ, in favour of the activation. Therefore, we first set out to determine 

whether FLIP proteins required ubiquitination and the ubiquitin binding activities of the 

NEMO to stimulate IKK, or whether binding to NEMO was sufficient to bypass these 

processes. 

In the following sections, I provide a brief description of the key IKK-dependent 

functions of the NEMO and also, a summary of the current knowledge on the interaction 

of NEMO with vFLIP, Tax and cellular FLIPs. 
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3.1.1 Molecular control of IKKs by NEMO 

3.1.1.1 NEMO mediates the Ub-dependent activation of IKK 

Activation of the canonical NF-κB pathway is contingent upon non-degradative 

polyubiquitination. NEMO plays a crucial role in ubiquitin-mediated activation of the 

IKK complex as it specifically recognises polyubiquitin chains through its UBAN domain 

and also, becomes ubiquitinated itself (Tokunaga et al., 2009; Wu et al., 2006a).  Cells 

expressing NEMO mutants defective in Ub-binding exhibit impaired activation of 

IKKα/β in response to IL-1 and TNFα (Ea et al., 2006; Windheim et al., 2008; Wu et al., 

2006a). Importantly, similar mutations of the UBAN domain of NEMO are found in 

patients afflicted with EDA-ID and IP, emphasising the essential role of this domain in 

vivo (Hubeau et al., 2011; Smahi et al., 2000). 

Initially it was thought that the UBAN specifically binds to K63-linked ubiquitin 

chains (Wu et al., 2006a); later studies, however, demonstrated that it displays 100-fold 

higher affinity for linearly-linked ubiquitin chains (Rahighi et al., 2009; Xu et al., 2011). 

Consistent with these findings, full-length NEMO mutants engineered to selectively bind 

to K63-linked polyubiquitin only weakly activate NF-κB (Kensche et al., 2012). One 

further study, however, demonstrated that despite the much higher preference of NEMO 

C-terminus for linear ubiquitin oligomers, its immobilisation – which may be reminiscent 

of cellular IKK oligomerisation - enhances its affinity towards K63 linkages (Hadian et al., 

2011). Therefore, in cells, both types of these linkages may function in a certain spatio-

temporal order to achieve the maximal levels of NF-κB activation. 

As previously mentioned, activation of the IKKs seems to occur through an 

induced proximity which results from dense organisation of the signalling components or 

structural changes induced by binding of adapter proteins. NEMO-mediated ubiquitin 

binding has been proposed to participate in both processes. 

Upon receptor-mediated activation of the NF-κB, K63-linked ubiquitin chains 

synthesised by E3 ligases such as TRAF2/5 and cIAP1/2 (in TNFα signalling), and 

TRAF6 (in IL-1 signalling), provide a recruitment platform for TAB2/TAK1 and 

NEMO/IKK complex. These K63 ubiquitin chains also recruit LUBAC (Emmerich et 

al., 2013) to generate linear polyubiquitin oligomers on the NEMO and other substrates 

such as RIP1 (Gerlach et al., 2011), resulting in further stabilisation of the signalling 

complex. UBAN-mediated attachment to ubiquitin chains is suspected to enable NEMO 
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to facilitate co-localisation of IKKs with TAK1, leading to phosphorylation and activation 

of the IKKα/β (Clark et al., 2013).  

Alternatively, binding of NEMO to ubiquitin have been suggested to cause IKK 

activation via other mechanisms. Crystal structure studies by Rahighi et al., showed that 

binding of linear di-ubiquitin molecules to the UBAN domain, induces an straightening of 

this coil-coiled region (Rahighi et al., 2009). It was proposed that this conformational 

change may then transmit to the N-terminal regions of NEMO, resulting in the re-

orientation of the catalytic IKKs, favouring activation by autophosphorylation. Relevant 

to this notion, site-specific mutations can be introduced to NEMO (such as K270A in 

murine NEMO) which overcome the need for ubiquitin binding and constitutively 

activate IKK in the absence of any proinflammatory stimuli (Bloor et al., 2008). Such 

mutations may mimic the conformational alterations induced by the binding of the 

ubiquitin oligomers. That said, whether structural changes to NEMO translate to 

allosteric effects on IKKα/β, remains to be demonstrated. 

3.1.1.2 Post-translational modifications of NEMO fine-tune the IKK activity 

In addition to ubiquitination, other post-translational modifications such as 

phosphorylation and SUMOylation, also play crucial roles in modulating the function of 

NEMO (Perkins, 2006). Following NF-κB stimulation, IKKβ phosphorylates NEMO at 

several amino acids, located near the N-terminus and the C-terminus (Carter et al., 2003; 

Palkowitsch et al., 2008; Prajapati and Gaynor, 2002). Notably, phosphorylation of 

serine68 of NEMO, which resides within the IKKα/β-binding domain, disrupts the 

NEMO dimerisation and NEMO-IKKβ interaction (Palkowitsch et al., 2008). 

Accumulating evidence suggest that this modification together with the simultaneous 

authophosphorylation of IKKβ at its C-terminal NBD (Delhase, 1999; Schomer-Miller et 

al., 2006), serve as an intrinsic regulatory mechanism preventing hyperactivation of the 

IKKα/β following stimulation. 

SUMOylation of NEMO is another important post-translational modification, 

found to be critical for its role in the nuclear-initiated NF-κB activation (Miyamoto, 2011). 

In cells, a subset of NEMO exists as an unbound form that shuttles between nucleus and 

cytoplasm. This form of NEMO appears to be essential for connecting the nuclear DNA 

damage events to cytoplasmic activation of IKK. Upon genotoxic stress, nuclear NEMO 

becomes SUMOylated by the SUMO E3 ligase, PIASy (protein inhibitor of activated 
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STAT y) at the lysines 277 and 309 (Huang et al., 2003; Mabb et al., 2006; Stilmann et al., 

2009). This marks NEMO for cIAP1-mediated monoubiquitination at the same lysine 

residues, leading to its nuclear export and subsequent activation of TAK1, IKK and NF-

κB, in a manner that requires ELKS (Huang et al., 2003; Wu et al., 2006b). Interestingly, 

SUMO-fused mutants of NEMO localise in the nucleus, indicating the importance of 

SUMOylation in determining the subcellular localisation of NEMO (McCool and 

Miyamoto, 2012). Taken together, these findings underscore the significance of the post-

translational modifications of NEMO in producing a highly regulated and signal-specific 

NF-κB signalling. 

3.1.1.3 NEMO ensures the substrate-specificity of the IKKβ 

Most studies on NEMO have focused on its well-known role in the activation of 

IKKα/β.  Nevertheless, a recent study showed that constitutively active IKKβ fails to 

activate NF-κB in the absence of NEMO, suggesting that NEMO may have additional 

roles (Schröfelbauer et al., 2012). Further investigations by Schrofelbauer et al., revealed 

that NEMO directs the substrate-specificity of IKKβ towards IκBα, through its ZF 

domain. Not surprisingly, various in-frame deletions and point mutations of the ZF 

domain are associated with the disease, EDA-ID (Cordier et al., 2008).  

IKKα and IKKβ are pleiotropic enzymes which target a broad spectrum of NF-κB-

related (e.g. IκBs, p65, and p105) and NF-κB-unrelated substrates (e.g. β-catenin, FOXO3 

and p53) (Hinz and Scheidereit, 2014). Mutations of NEMO that fail to recruit IκBα, 

result in an increased phosphorylation of p65 and p105 (Schröfelbauer et al., 2012). This 

raises the possibility that NEMO may use distinct regions to target the activity of catalytic 

IKKs to other substrates. In support of this notion, panr2 mice that harbour a L153P 

mutation in NEMO exhibit severe defects in phosphorylation of p65 and p105, despite 

normal phosphorylation and degradation of IκBα (Siggs et al., 2010). Taken together, 

these findings indicate that NEMO is necessary not only for the activation of the IKK 

complex but also to ensure the substrate-selectivity of the enzymatic subunits. 

3.1.1.4 NEMO serves as a docking site for various IKK-regulating proteins 

Activation of IKK is a transient event which depends on dynamic regulatory 

processes to produce an optimal signal. The balance towards activation or deactivation is 

determined by selective recruitment of the upstream co-factors to the IKK complex 

machinery. In this regard, the elongated coiled-coil structure of NEMO provides a 
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docking platform for numerous regulatory proteins. Tables 3.1 gives a summary of such 

proteins which directly or through an adapter protein, interact with NEMO and modulate 

IKK activity.  

Apart from the functions mentioned here, NEMO regulates a plethora of other 

NF-κB dependent (e.g. interferon production) and NF-κB independent mechanisms 

which have been reviewed in (Clark et al., 2013). 

Table 3.1. NEMO-interacting proteins. 

Interactor Interaction region Function Reference 

A20 aa 95-218 inh (Zhang et al., 2000) 

ABIN1 aa 50-100 inh (Mauro et al., 2006) 

ABIN2 aa 174-306 inh (Liu et al., 2004) 

ActI/CIKS aa 1-150 inh (Li et al., 2000; Mauro et al., 2003; 

Qian et al., 2004) 

ATM n.d act (Wu et al., 2006b) 

CARMA1,3 n.d act (Stilo et al., 2004) 

CBP n.d inh (Verma et al., 2004) 

CSN3 aa 297-419 inh (Hong et al., 2001; Rual et al., 2005) 

CYLD ZF inh (Kovalenko et al., 2003; Saito et al., 

2004; Trompouki et al., 2003) 

EHV2 vCLAP aa 300-419 act (Poyet et al., 2001) 

ELKS n.d act (Ducut Sigala et al., 2004) 

HIF-2α aa 50-358 act (Bracken et al., 2005) 

HSP70 aa 25-320 inh (Ran et al., 2004) 

Htt aa 1-134 act (Khoshnan et al., 2004) 

NLRX1 UBAN inh (Xia et al., 2011) 

p47 K63 and linear Ub 
chains bound to 

NEMO 

inh (Shibata et al., 2012) 

PAN1 n.d inh (Bruey et al., 2004) 

PARP1 aa 1-126 act (Stilmann et al., 2009) 

PIASy aa 1-120 act (Huang et al., 2003; Mabb et al., 2006) 

PIDD n.d act (Janssens et al., 2005) 

PP2A aa 121-179 act (Kray et al., 2005) 

PP2Cβ n.d inh (Prajapati et al., 2004) 
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RIP1 UBAN act (Wu et al., 2006a; Zhang et al., 2000) 

SRC3 n.d act (Amazit et al., 2007) 

TANK aa 200-250 (mNEMO) act (Bonif et al., 2006; Chariot et al., 

2002) 

TFG LZ act (Miranda et al., 2006) 

TRAF1/2 n.d act (Devin et al., 2001; Henn et al., 2007) 

TRUSS n.d act (Soond et al., 2003) 

Ubiquitin UBAN act (Bloor et al., 2008; Ea et al., 2006; Wu 

et al., 2006a) 

ZNF216 n.d act (Huang et al., 2004a) 

n.d: not determined, inh: inhibition, act: activation, mNEMO: murine NEMO. 

3.1.2 Interactions of the Tax, vFLIP and cFLIPs with NEMO 

It is now well-established that the persistent activation of the canonical IKKs by 

Tax and vFLIP requires stable assembly with NEMO (Chu et al., 1999; Field et al., 2003; 

Harhaj and Sun, 1999). Although the mechanism by which these interactions lead to NF-

κB activation is still a matter of mystery (See 5.1 for the suggested mechanisms). Using co-

immunoprecipitation assays, Tax has been shown to interact with two distinct but highly 

homologous motifs in NEMO: one in the N-terminus (aa 100-140) and the other, near 

the C-terminus (aa 312-340) (Figure 3.1A) (Xiao et al., 2000). The region of Tax 

responsible for binding to NEMO is localised to a leucine rich repeat (LRR) motif, 

containing amino acid residues 105-141. Site-specific mutations of the LRR domain which 

disrupt binding to NEMO, such as those in the Tax M22 mutant (T130A, L131S), 

abrogate Tax-induced IKK activation. Strikingly, in-frame fusion of the M22 to NEMO 

restores its NF-κB activating function, further emphasising the necessity of interaction 

with NEMO for Tax-mediated IKK activation (Xiao and Sun, 2000; Xiao et al., 2000).  

vFLIP, despite employing a similar mode of IKK activation which depends on 

physical interaction with NEMO, appears to target a different region of NEMO. Studies 

conducted in our laboratory have mapped the vFLIP-binding region of NEMO to its 

HLX-2 domain (residues 192-252) (Bagnéris et al., 2008; Field et al., 2003). Subsequent 

crystal structure studies determined that this region of NEMO forms a parallel 

intermolecular coiled -coil recognised by two vFLIP molecules that interact through their 

respective DED1 motifs (Fig 3.1B and C) (Bagnéris et al., 2008). Interactions of the 

NEMO helices with DED1 is facilitated by the presence of two deep adjacent clefts, of 
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which, cleft1 mediates the majority of the interprotein contacts (Fig 3.1C). Mutating the 

key amino acids of the cleft1-HLX2 interface (e.g. A57L in vFLIP and D242R in NEMO) 

results in complete abolition of the complex formation.   

While some homologues of the KSHV vFLIP (e.g. p22-cFLIP) are similarly potent 

activators of the IKK, others fail to stimulate this complex (e.g. MC159L). This raises the 

possibility that the ability of FLIPs to activate IKK may depend on the conservation of 

structural properties affecting the FLIP-NEMO interface. In support of this concept, 

structural alignment of the KSHV vFLIP and MC159L suggested that the sequence 

differences in the latter, result in obscuring cleft2 and complete closure of cleft1, thereby 

abrogating the NEMO binding (Figure 3.1D). In the case of p22-FLIP, however, there 

are no amino acid substitutions that would lead to major steric clashes and hence drastic 

remodelling of cleft1 and cleft2. Therefore, FLIP-mediated activation of the canonical 

NF-κB pathway may strongly rely on the preservation of the NEMO contacts mediated 

by clefts of the DED1 motif (Figure 3.1D)(Bagnéris et al., 2008). 

Among cFLIP variants, the proteolytic fragments p43-FLIP and p22-FLIP, have 

been reported to directly interact with NEMO (Golks et al., 2006; Neumann et al., 2010). 

p43-FLIP is generated by procapase-8 cleavage of the cFLIPL at the DISC following 

CD95 stimulation (Neumann et al., 2010), however, p22-FLIP can be catalysed from all 

isoforms (cFLIPL/S/R) and differs form p43-FLIP in that it can be also produced in non-

apoptotic cells. Therefore, p22-FLIP is believed to be the final cleavage product of cFLIP 

proteins, serving as the mediator of NF-κB activation, in a manner similar to that of 

KSHV vFLIP (Bagnéris et al., 2008; Golks et al., 2006). Nevertheless, there exists no 

experimental data demonstrating whether p22-FLIP (or any other cFLIP variant) targets 

the same vFLIP-binding region of the NEMO and whether this possible interaction is 

necessary for cFLIP-induced IKK activation.  
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Figure 3.1. Structure of NEMO and its complexes. A) Domain organisation of 

the NEMO and its interaction sites with IKKα/β, vFLIP, ubiquitin and Tax. CC: colied 

coil, HLX: helical domain, LZ: leucine zipper, ZF: zinc finger. B) Crystal structures of 

NEMO fragments. Three-dimensional structure of the full-length NEMO is not available 
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yet; however, the crystal structures of several NEMO fragments have been resolved. 

These include: N-terminal kinase binding domain of NEMO in complex with IKKβ 

(Rushe et al., 2008), HLX2 in complex with KSHV vFLIP (Bagnéris et al., 2008), CC2-LZ 

fragment in complex with linear di-ubiquitin (Rahighi et al., 2009) and ZF domain 

(Cordier et al., 2008). C) The KSHV vFLIP-NEMO interface. Left panel: KSHV vFLIP 

depicted as green surface contains two adjacent vertical clefts in its DED1 motif. Cleft1 

and cleft2, highlighted in magenta and yellow, respectively, are found to form a 

complementary binding surface for NEMO helices. Right panel: two vFLIP molecules are 

seen in complex with a central region of two parallel alpha helices of NEMO. Both clefts 

of the vFLIP are pivotal to the recognition of the NEMO dimer, although, the majority of 

interprotein contacts are mediated by cleft1. D) Structural comparisons of KSHV vFLIP, 

MC159 vFLIP and p22-FLIP. Analysis of the electrostatic potential surfaces of these 

proteins shows that the cleft1 and cleft2 are absent in MC159 vFLIP. However, homology 

model of p22-FLIP suggests that two binding clefts are conserved in this protein and that 

the analogous interactions to those observed with KSHV vFLIP are possible with 

NEMO. Reproduced from (Zheng et al., 2011) and (Bagnéris et al., 2008) with a 

permission from the publishers. 

 

 

3.2 Aims of the chapter 

• Identify the domains of NEMO that are required for IKK activation by vFLIP 

and cellular FLIPs  

• Examine whether cellular FLIPs physically interact with NEMO and if they do, 

which region of the NEMO is targeted 

• Examine the importance of linear ubiquitination in FLIP-induced activation of 

IKK 
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3.3 Results 

3.3.1 Generation of a NF-κB reporter luciferase assay system 

In order to establish a cell-based NF-κB activation assay, we generated a lentiviral 

vector (LV) that allows for NF-κB-dependent transcription of the firefly luciferase under 

the control of the minimal CMV promoter and four repeats of an NF-κB binding site 

(Figure 3.2A). First, to test the specificity of the system, we transduced cells with the 

lentivectors encoding GFP, or vFLIP, or NF-κB luciferase with and without vFLIP or 

GFP (each MOI=10). Forty-eight hours later, cells were lysed and activity of the firefly 

luciferase was measured using Bright-Glo detection system. As shown in Figure 3.2B, the 

IKK activator vFLIP robustly induced expression of luciferase by more than 100-fold 

increase (compared to unstimulated cells), whereas the GFP control failed to induce any 

luciferase activity. Next, to examine the sensitivity of our reporter system, we transduced 

HEK293T cells with increasing MOIs (0.5, 1, 2, 4, 8, 16 and 32) of both NF-κB luciferase 

and vFLIP lentivectors. Figure 3.3C and D show that the levels of luciferase activity 

correlated well with MOIs of the vFLIP LV, except in the condition where MOI of 32 

was used for the NF-κB luciferase LV. Since the transductions of vFLIP and NF-κB 

luciferase were performed simultaneously, this could be due to a competition in viral entry 

between the two LVs at high MOIs. In all the luciferase experiments discussed later, I first 

transduced cells with NF-κB luciferase LV to produce a reporter cell line and then, 

activation assays were performed after at least two cell passages. 

Collectively, the data presented in Figure 3.2 show that our LV-based NF-κB 

activation assay is highly sensitive and specific. An important advantage of this LV-based 

system is that it allows for genetic engineering of poorly transfectable cells (e.g. MEFs) 

that cannot be assessed using conventional reporter assays based on transient transfection. 

Furthermore, working with stable reporter cells can circumvent the problem with 

variations in transfection efficiency that may mask the NF-κB-dependent signal. 
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Figure 3.2. Generation of a cell-based NF-κB reporter luciferase assay. A) 

Schematic representation of the lentiviral construct (pSIN NF-κB Luc) used for the NF-

κB reporter luciferase assays. CMV MP: minimal promoter of cytomegalovirus, cPPT: 

central polypurine tract, LTR: long terminal repeat, NF-κB RE: NF-κB response element, 

RRE: rev response element, SIN: self-inactivating, WPRE: woodchuck post-transcription 

regulatory element. B) NF-κB reporter luciferase assay to check the specificity of the 
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system. HEK293T cells, seeded in 96-well plates (2x104/well) were transduced with 

lentiviral vectors encoding GFP, or vFLIP, or NF-κB luciferase with and without GFP or 

vFLIP. The NF-κB dependent luciferase activity was measured 48 hours post-

transduction. C) NF-κB reporter luciferase assay to check the sensitivity of the system. 

The same number of HEK293T cells, as described in (B), were transduced with LVs 

encoding NF-κB reporter luciferase and vFLIP over a broad range of MOI (0.5, 1, 2, 4, 8, 

16, 32) for each lentivector. Cells were lysed 48 hours following transduction and the 

luciferase activities were measured using Bright GLO luminescence detection kit 

(Promega). The results are represented as RLU (relative luminesce units). D) as in (C), but 

the results have been represented as normalised fold change values, calculated by dividing 

of the RLU of activated cells to RLU of the control cells. 

 

3.3.2 Unlike vFLIP and Tax, cellular FLIPs require Ub-binding function of 

NEMO to activate NF-κB signalling 

To determine which functions of NEMO were necessary for IKK activation by the 

FLIP proteins, we used the NEMO null cell line 1.3E2 - a derivative of the mouse preB 

cell line 70Z/3- harbouring an NF-κB responsive luciferase gene. These cells were 

reconstituted with wild-type  NEMO, a point mutant which does not bind linear ubiquitin 

(F312A, (Rahighi et al., 2009)), or a F238R/D242R mutant suggested by structural studies 

to disrupt vFLIP binding (Bagnéris et al., 2008). To do this, we used lentiviral vectors 

expressing wild type or mutant NEMO together with an mCherry fluorescent protein (See 

Figure 2.1A). Cells were transduced so that approximately 50% were mCherry positive. 

We then isolated cell clones, expanded those that were mCherry positive and performed 

immunoblotting to establish that the transduced cells expressed NEMO (Figure 3.3A). 

Cells were then infected with a second lentiviral vector expressing cFLIP variants (p22-

FLIP, FLIPS, FLIPL), or vFLIP, or Tax together with eGFP. After 48 hrs eGFP was 

monitored and cells with transduction rates over 80% were used to measure luciferase 

activity.  

Figure 3.3C shows that both vFLIP and Tax could activate IKK in the absence of 

its ubiquitin binding function, unlike the control Toll-like receptor agonist 

lipopolysaccharide (Figure 3.3B). In contrast, cFLIPL, cFLIPS, and their proteolytic 

product p22-FLIP all require the ubiquitin binding function of NEMO to activate IKK 

(Figure 3.3D). To our surprise, all cFLIP variants were able to activate vFLIP-binding 
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deficient NEMO, suggesting that cellular FLIPs either target different motifs of NEMO, 

or bind to it indirectly, or function at some upstream step (Figure 3.3D). Activation of 

F238/D242RR mutant by Tax, which binds to distinct regions of NEMO, and also LPS 

further showed that this mutation specifically inhibits vFLIP and does not impair other 

activatory mechanisms (Figure 3.3C). 

As previously mentioned, the Ala57 residue of vFLIP plays an important role in 

binding to NEMO and an A57L mutation reportedly impairs NF-κB inducing activity of 

the protein. The LAE sequence harbouring this alanine is conserved in both KSHV and 

cellular FLIPs (marked with * in Figure 3.4A). To test if this residue was also important 

for the function of cFLIPs, I generated equivalent A56L mutants of all three isoforms and 

performed an NF-κB activation assay on 293T cells. The mutation resulted in almost 

complete inactivation of all FLIPs (Figure 3.4C). However, western blot analysis showed 

low levels of protein expression for vFLIP, p22-FLIP and FLIPS, indicating that this 

mutation renders the proteins unstable (Figure 3.4B). This observation makes the relevant 

results inconclusive; nevertheless, similar protein levels in the case of WT and mutant 

FLIPL suggests that the conserved L57 residue may play a role in NF-κB induction by 

cFLIP variants.  
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Figure 3.3. Mutational studies on NEMO reveal differential NF-κB activation 

mechanisms for the KSHV vFLIP and cellular FLIP isoforms. A) Immunoblot 

showing the expression of NEMO in 1.3E2 cells, 70Z/3 cells and 1.3E2 cells 

reconstituted with wild-type or mutant NEMO. The blot was re-probed for GAPDH to 

ensure even protein loading. B) To generate stable NF-κB reporter cell lines, cells were 

transduced with lentiviral vectors encoding NF-κB responsive luciferase gene (MOI=500). 

The transduced cells were passaged multiple times prior to NF-κB luciferase assays. 

Subsequently, the luciferase reporter assays were performed 6 hours after stimulation with 

LPS (10 µg/ml) or C) 48 hours following transduction with lentivectors encoding vFLIP, 

Tax (MOI=50) and D) cFLIP variants (MOI=100).  Data are representative of three 

independent experiments performed in triplicates. Error bars indicate SD of the mean 

values. 
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Figure 3.4. NF-κB activation by A57L vFLIP and A56L cFLIP isoforms.  A) 

Sequence alignment of the KSHV vFLIP and cFLIP. Amino acid sequences of the 

proteins were retrieved from NCBI protein database and aligned using PRALINE 

multiple sequence alignment software. Accession numbers of the KSHV vFLIP and 

cFLIPS are AAD46498.1 and NP_001120656.1, respectively. Amino acid residues of 

vFLIP predicted by structural studies to be important for vFLIP-NEMO interaction have 
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been shown inside yellow circles. The equivalent conserved residues of cFLIP are 

depicted inside blue circles. Ala57 of KSHV vFLIP (indicated by *) which is essential for 

binding to NEMO and its adjacent amino acids (56-58, LAE) are highly conserved in 

cellular FLIPs. B) HEK293T were seeded in 24-well plates cells (2x105/well) 24 hours 

prior to transfection. Each well was transfected with 400 ng NF-κB firefly luciferase 

plasmid (pGL.IgK), 100ng Renilla luciferase plasmid (pRL.TK) as internal control and 

300ng of pCDNA3 vectors encoding WT, or A57L vFLIP, or A56L cFLIP isoforms. NF-

κB induction levels were measured after 24 hours using Dual-GLO kit (Promega). B) 

Western blot showing the expression of the WT and mutants versions of the vFLIP and 

cFLIP variants. The mutations severely lower the stability of both viral and cellular FLIPs. 

Quantitative data are representative of three independent experiments, performed in 

triplicates. 

3.3.3 cFLIPs generate an active IKK without stable interaction with NEMO  

Activation of the vFLIP-binding deficient NEMO by cFLIPs suggested that these 

proteins may target a distinct domain of NEMO or function upstream of this protein. 

Therefore, we next sought to determine whether cFLIP isoforms associate with NEMO 

and generate a constitutively active IKK. To do this, we transfected HEK293T cells with 

expression plasmids for FLIPS, FLIPL, a non-cleavable version of cFLIPL (cFLIPL 

D196E/D376N) and p22-FLIP as well as vFLIP as a positive control for IKK direct 

interaction. We then immunoprecipitated the IKK complex using an anti-NEMO 

antibody and measured its ability to phosphorylate recombinant IκB. As can be seen in 

Figure 3.5 panel A, in each case the cFLIP isoforms generated an activated IKK. The 

level of activation was comparable or greater than that generated by vFLIP, though less 

than the transient activation observed following TNFα treatment.  

We then examined whether the cFLIP isoforms were found associated with the 

activated kinase and found no evidence for the presence of cFLIP isoforms in the IKK 

immune-precipitates, though vFLIP was clearly present as revealed by both anti-NEMO 

and anti-FLIP immunoprecipitations (Figure 3.5B). This is in contrast to the previous 

reports that showed p22-FLIP and p43-FLIP fragments stably associated with IKK 

(Golks et al., 2006; Neumann et al., 2010). Clearly, differences in the experimental 

conditions could explain these differing results; however, our data demonstrate that the 

cFLIP isoforms can generate an active IKK without remaining physically associated with 

the IKK complex. 
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Figure 3.5. Cellular FLIPs constitutively activate IKK complex without stable 

association with NEMO. A) In vitro kinase assays to determine the activation of IKK. 

HEK293T cells seeded in 6-well plates (5x105 cells/well) were transfected with pCDNA3 
vectors encoding p22FLIP, FLIPS, FLIPL, non-cleavable FLIPL, vFLIP or Tax. Forty-

eight hours later, whole cell lysates were extracted and subjected to immunoprecipitation 

(IP) with anti-NEMO or immunoblotting (IB) with the indicated antibodies. In vitro kinase 
assay was then performed on immuno-isolated IKK complexes using GST-IκBα (1-54) 

and γ32P-ATP as substrates. Extract of cells treated with TNFα (10ng/ml) for 5 min was 

used as a positive control. Relative band intensity of phosphorylated GST-IκB was 

quantified by ImageQuant TL Plus7.0 and normalised to the corresponding 

immunoprecipitated IKKα/β levels. B) cFLIP variants are not found in complex with 
NEMO. HEK293T cells seeded in 15 cm2 dishes were transfected with pCDNA3 

constucts, using FuGene HD transfection reagent. Cells were lysed 48 hrs later and the 
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extracts were immunoprecipitated with 2 µg of antibodies against NEMO, cFLIP and 

vFLIP, or their isotype-matched controls. The immunoprecipitates were subject to 10% 
SDS-PAGE and were analysed by western blotting. Data shown are representative of at 

least four independent repeats. * indicates the position of p43-FLIP bands. cF: cFLIP, I: 

isotype control, N: NEMO, ns: non-specific, vF: vFLIP. 

3.3.4 cFLIPL requires LUBAC to activate IKK 

As cFLIP isoforms required the ubiquitin binding function of NEMO to activate 

IKK (Figure 3.3), we examined the effect of ubiquitination pathways on their action. 

Linear ubiquitin chain binding to NEMO is crucial for IKK activation by TNFα and these 

are generated by the trimeric LUBAC, composed of HOIL-1, HOIP and SHARPIN (Iwai 

et al., 2014). We therefore generated HEK293 cells that were stably transduced with 

lentiviral vectors containing short hairpin RNAs targeting HOIL-1, HOIP and SHARPIN 

(Figure 3.6A). Cells transduced with scramble non-targeting shRNA served as control. As 

previously reported LUBAC was required for IKK activation by TNFα (Figure 3.6B) but 

was dispensable for activation by vFLIP (Tolani et al., 2014) and Tax (Figure 3.6C). A 

clear blockade of cFLIPL and nc-cFLIPL induced activation of IKK was observed in the 

LUBAC knock-down cells. However, cFLIPS and p22-FLIP were unaffected by LUBAC 

knock-down (Figure 3.6C). 

Lack of inhibition in the LUBAC KD cells, led us to hypothesise that cFLIPS and 

p22-FLIP may specifically require binding of K63-linked ubiquitin chains to NEMO. 

CYLD is a deubiquitinase (Komander et al., 2009) which can remove ubiquitin chains 

with K63 as well as linear linkages and has been shown to target several components of 

IKK signalling such as NEMO, RIP1, TRAF2 and TRAF6, resulting in inhibition of NF-

κB signalling (See 1.2.3.3). Therefore, we overexpressed CYLD in our scramble and 

LUBAC KD HEK293 cells (Figure 3.7A). Upregulation of CYLD caused a significant 

decrease in TNFα-induced NF-κB activation in LUBAC KD cells, but not control cells 

(Figure 3.7B). As seen in Figure 3.7C, cFLIPL was once again inhibited in the CYLD 

overexpressed cells, while p22-FLIP, cFLIPS and vFLIP were unaffected. Nevertheless, in 

the case of cFLIPS-induced activation, a statistically significant but not considerable 

decrease could be detected in the CYLD transduced/LUBAC KD cells when compared 

to control cells. The lack of requirement for ubiquitin signalling by cFLIPS and p22-FLIP 

required further investigation as the ubiquitin binding function of NEMO was clearly 

required. This conundrum will be addressed and discussed later in this thesis. 
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Figure 3.6. Effects of knocking down LUBAC on the NF-κB activation ability of 

the Tax, vFLIP and cellular FLIPs. A) HEK293 cells were transduced with lentiviral 

vectors encoding either scramble control shRNA (scr) or shRNAs targeting HOIL-1, 

HOIP and SHARPIN, sequentially. Generation of LUBAC KD cells was confirmed with 

western blotting against each component of the complex and the housekeeping protein, 

GAPDH. ns; non-specific B) TNFα-induced NF-κB activation which was measured 6 

hours after stimulation at 10 ng/ml concentration is inhibited in LUBAC KD cells. C) 

Subconfluent monolayers of scramble and LUBAC KD HEK293 cells seeded in 24 well-

plates (2x105/well) were co-transfected with an NF-κB−firefly Luc reporter construct 

(300ng/well) and a Renilla Luc reporter vector (normalisation control,100ng/well) along 

with an empty or transactivator expressing pCDNA3 vectors (500ng/well). The luciferase 

reporter assay was performed 24 hrs post-transfection as described in “section 2.11.1”. 

Values shown are the mean±SD of fold changes in the luciferase activity, from one 

representative experiment out of three, performed in triplicates; ** denotes p<0.01 and 

***, p<0.001.  
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Figure 3.7. Only cFLIPL is inhibited in CYLD-overexpressing HEK293 cells. A) 

Immunoblot showing the expression of the ectopically expressed CYLD in scramble KD 

and LUBAC KD HEK293 cells. Cells transduced with GFP-encoding lentivectors were 

used as control. B) Effects of CYLD overexpression on NF-κB activation levels induced 

by TNFα or C) cFLIPs, vFLIP and Tax were measured using NF-κB reporter luciferase 

assay, as described in Figure 3.6. Results shown are representative of three independent 

experiments, performed in triplicates. Mean values were compared by two-tailed unpaired 

Student’s t-test; ns: not statistically significant, * p<0.05, ** p<0.01 and *** p<0.001. 
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3.3.5 The UBAN domain of NEMO is dispensable for vFLIP activation of IKK 

The C-terminal ubiquitin binding region of NEMO ends right before the vFLIP-

binding site and one of the two Tax-binding regions of NEMO, resides within the N-

terminal region far from the UBAN domain (Figure 3.1A). Given that vFLIP and Tax did 

not require ubiquitin binding function of NEMO, we sought to examine whether the 

absence of the UBAN domain would have any impact on the capacity of these 

oncoproteins to activate the canonical IKK signalling. To do this, we generated C-

terminally truncated mutants of NEMO which terminated at positions Glu271 (∆271) and 

Arg254 (∆254) (Figure 3.8A). While the first of these two, lacks the essential 

ubiquitination and ubiquitin-binding residues, the whole putative UBAN domain (CC2-

LZ) is deleted in the second one. NEMO deficient 1.3E2 cells were reconstituted with 

WT or truncated mutants of NEMO (Figure 3.8B) and analysed using the NF-κB 

luciferase reporter assay.  

As shown in Figure 3.8D, both vFLIP and Tax induced near WT levels of 

activation in cells expressing the truncated NEMO mutants. In sharp contrast, neither 

LPS (Figure 3.8C) nor any of the cFLIP variants (Figure 3.8E) were able to stimulate IKK 

in the absence of the UBAN domain. Taking advantage of a NEMO deficient Jurkat cell 

line, known as JM4.5.2 cells we tried to reproduce these findings and showed that, 

similarly, vFLIP could fully activate ∆271 or ∆254 NEMO reconstituted Jurkat cells 

(Figure 3.8G). The same findings were evident in the case of Tax (Figure 3.8H). In 

keeping with these results, subsequent immunoprecipitation studies showed that the 

interaction of vFLIP with NEMO remains intact in the absence the UBAN domain, in 

contrast to the F238/D242RR point mutation which results in complete disruption of the 

complex (Figure 3.9). Surprisingly, we failed to detect significant activation of NF-κB by 

any of the cFLIP isoforms in the Jurkat cells, indicating that these proteins may induce 

IKK in a cell type-specific manner (Figure 3.8I).  

In conclusion, our findings confirm that the N-terminal region of NEMO is alone 

sufficient for activation of IKK by vFLIP and its functional analogue, Tax. These results 

are consistent with those of Tolani et al who report a similar result with vFLIP inducing a 

NEMO-estrogen receptor fusion protein in which NEMO was truncated at Gly251 

(Tolani et al., 2014).  
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Figure 3.8. The UBAN domain of NEMO is dispensable for IKK activation by 

vFLIP and Tax. A) Schematic representation of the NEMO mutants truncated to 

include amino acids 1-271 (NEMO ∆271) or amino acids 1-254 (NEMO ∆254). B) 

Immunoblot showing the expression of NEMO in 1.3E2 cells reconstituted with either 

NEMO full-length, or NEMO ∆271, or NEMO ∆254. C)  Cells were transduced with 

NF-κB luciferase LV (MOI=500) to generate stable NF-κB reporter cell lines. 

Subsequently, the luciferase reporter assays were performed 6 hours after stimulation with 

LPS (10 µg/ml) or D) 48 hours following transduction with lentivectors encoding vFLIP, 

Tax (MOI=50) and E) cFLIP variants (MOI=100).  F) Western blot analysis of NEMO 

expression in Jurkat cells and JM.4.5.2 cells stably expressing WT or UBAN-deficient 

mutants of NEMO. G) Stable NF-κB sensor cell lines were produced by transducing cells 

with NF-κB luciferase encoding LVs (MOI=50). NF-κB dependent luciferase activates 

were measured 48 hours after transduction with LVs expressing vFLIP and H) Tax 

(MOI=20), or I) cFLIP variants (MOI=50). Data are representative of three independent 

experiments performed in triplicates. Error bars indicate SD of the mean values. 
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Figure 3.9. vFLIP binds to UBAN-deficient mutant of NEMO.  JM4.5.2, Jurkat and 

JM.4.5.2 cells stably expressing NEMO WT, NEMO F238/D242RR, or NEMO ∆271 

were transduced with vFLIP-encoding LVs (MOI=20). Cells were lysed 72 hours later 

and the extracts (300 µg/sample) were immunoprecipitated with 0.5 µg of anti-NEMO 

antibody or an isotype-matched control. The immunoprecipitates were subject to 12% 

SDS-PAGE and were analysed by western blotting against the indicated antibodies. Data 

shown are representative of two independent repeats. I: isotype-matched control, N: 

NEMO. 
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3.4 Discussion 

NEMO functions as the signal integration hub of the canonical IKK signalling. By 

direct binding to this regulatory subunit, KSHV vFLIP and Tax persistently activate NF-

κB signalling; however, how this interaction results in signal transmission to activate the 

catalytic subunits IKKα and IKKβ, is not clear. Due to structural similarities between 

vFLIP and cFLIP isoforms, these proteins have been suggested to adopt a similar 

mechanism of IKK activation.  

 Here it is shown that in fact all cFLIP variants can constitutively activate IKK, but 

unlike vFLIP and Tax, none of them physically associate with the NEMO. These results 

disagree with two previous studies, both originating from the same group, showing an 

stable interaction of  p22-FLIP and p43-FLIP fragments with NEMO (Golks et al., 2006; 

Neumann et al., 2010). It is worth mentioning that those experiments have been mainly 

performed under conditions of overexpressing both cFLIP and IKK; except one 

experiment which showed a weak interaction of endogenous p43-FLIP and NEMO 

following CD95 stimulation (Neumann et al., 2010). Therefore, it is possible that the 

detected cFLIP constitutes a small subset of the protein interacting indirectly with 

NEMO within a complex or it is only an artefact of protein overexpression. Related to 

the latter possibility, including isotype-matched controls in our co-immunoprecipiation 

studies showed that the interactions detected after long exposures of membranes to X-ray 

films, were of non-specific nature. Although differences in experimental settings may 

explain for these discrepancies, our findings indicate that cFLIPs are able to generate an 

active IKK without stable interaction with the NEMO subunit.  

Importantly, we also show that cellular FLIPs differ from KSHV vFLIP in that they 

depend on the ubiquitin function of NEMO. Interestingly, different isoforms were found 

to require distinct ubiquitination pathways. By shRNA-mediated knock-down of LUBAC 

complex, we could demonstrate that linear ubiquitin chains are indispensable for activity 

of the cFLIPL, but not p22-FLIP or cFLIPS. It has been shown that cFLIPL, but not 

cFLIPS, interacts with and requires TRAF2 to activate NF-κB (Kataoka and Tschopp, 

2004; Kataoka et al., 2000). A recent study described that, in IL-1 signalling, LUBAC 

becomes recruited to IKK signalling machinery through K63-linked polyubiquitin 

catalysed by upstream E3 ligases (Emmerich et al., 2013). It is possible that TRAF2 

mediates the LUBAC-dependent activation of IKK by the long isoform of cFLIP.  
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Our findings that p22-FLIP and cFLIPS do not need LUBAC to activate NF-κB 

implied that these proteins must require another type of non-degradative polyubiuquitin -

most likely K63-linked Ub oligomers- as the LUBAC is the only E3 ubiquitin ligase 

known to generate linear chains. Moreover, F312A mutation of the NEMO - which 

disrupts the IKK activation by cFLIPs - is shown to block binding to K63-linked 

ubiquitin chains (Ea et al., 2006). To investigate whether p22FLIP and cFLIPS specifically 

required K63-linked polyubiquitin binding to NEMO, we overexpressed CYLD which is 

known to cleave ubiquitin chains with K63-linkges from a number of IKK signalling 

components including NEMO. Surprisingly, we failed to suppress the activity of the short 

cFLIP forms by overexpression of CYLD. One possible reason for this could be that the 

K63-ubiquinated protein used by these cFLIP variants is not a substrate of CYLD. 

Alternatively, binding to NEMO may render the ubiquitinated intermediate protein 

inaccessible to deubiquitination by the CYLD. In support of this concept, it was recently 

shown that in TNF-R signalling, binding to NEMO protects ubiquitinated RIP1 from 

CYLD-mediated deubiquitination, resulting in prevention of the initiation of necroptotic 

pathways (O’Donnell et al., 2012).   

Although, we have clearly shown that ubiquitin binding function of NEMO is 

essential for the activity of cFLIP isoforms, it remains to be determined which 

ubiquitinatd proteins mediate this process. cFLIP isoforms are found to be a target of 

ubiquitination, themselves. Ubiquitination of cFLIPS at lysines 192 and 195 has been 

described to be responsible for the rapid turnover this isoform (Poukkula et al., 2005). 

Hence, it is tempting to speculate that cFLIP isoforms may undergo other types of non-

degradative polyubiquitination, leading to a transient interaction with UBAN domain of 

NEMO or recruitment of intermediate signalling components. In an attempt to 

investigate this possibility, we generated K192/K195RR mutants of cFLIP isoforms and 

compared their activity with wild-type forms (Figure 3.10A). The mutations resulted in a 

partial decrease, but not complete loss of activity for both cFLIP long and short but led to 

a marked increase in the activity of p22-FLIP variant (Figure 3.10B), making the relevant 

results difficult to interpret. Obviously, a systemic approach to test this concept would 

require a series of site-directed mutagenesis to engineer Arg replacements at each of the 

cFLIP lysines. Moreover, given the availability of specific antibodies against distinct 

polyubiquitin linkages, cFLIP proteins can be immuno-isolated and directly probed for 

the possibility of ubiquitination by non-degradative Ub oligomers.  
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In this study, we have provided evidence indicating that ubiquitination and 

ubiquitin-binding function of NEMO are dispensable for vFLIP-induced mechanism of 

IKK activation. Moreover, we demonstrated that the absence of UBAN domain does not 

have any adverse impact on the NEMO binding ability of the vFLIP. These findings agree 

with a recent study by the Chaudhary lab which showed that the vFLIP-mediated NF-κB 

activities are not impaired in cells derived from mice lacking TRAF6, HOIL-1 genes or 

cpdm mice which harbour a mutation in the SHARPIN gene (Matta et al., 2012). Our 

results are also compatible with those of Tolani et al – published at the time of writing 

this thesis- who reported that N-terminal 251 residues of NEMO are sufficient to support 

vFLIP-induced stimulation of NF-κB (Tolani et al., 2014).  

It has to be noted that although these experiments show the lack of requirement for 

UBAN domain by the vFLIP, they do not completely rule out any involvement of the C-

terminal region in vFLIP-induced transcriptional activities of the NF-κB. Hence, one 

could speculate that the C-terminal region of NEMO contributes to controlling the 

magnitude and duration of the vFLIP-induced responses or plays a role in modulating the 

expression of a subset of NF-κB responsive genes.  

Clearly, vFLIP and Tax bind to distinct regions of NEMO and share no obvious 

sequence homology. Nevertheless, our data indicate that Tax has similarly evolved to 

stimulate NEMO without involvement of the ubiquitination or ubiquitin binding of 

NEMO. This is in agreement with the study showing Tax can activate of IKK in cells 

expressing a truncated NEMO mutant containing aa1-255 (Xiao and Sun, 2000). 

Together, these observations raise the possibility that binding to vFLIP and Tax may 

mimic ubiquitin-induced conformational changes on NEMO that lead to IKK activation. 

However, it has been shown that Tax fused to IKKα and β, can activate NF-κB pathway 

in the absence of NEMO (Xiao and Sun, 2000). Similarly, in frame fusion of NEMO to 

Tax mutants defective in NEMO-binding, is sufficient to activate IKK (Xiao et al., 2000). 

Therefore, given that Tax can self-dimerise (Fryrear et al., 2009; Jin and Jeang, 1997; Tie 

et al., 1996), it is logical to suppose that it may use NEMO as a scaffold to bring the 

IKKα/β subunits into close proximity, leading to activation by cross-phophorylation. This 

model can be also considered for vFLIP since dimeric interactions between vFLIP 

molecules are present within vFLIP-NEMO signalosome (see chapter5). Alternatively, 

these oncoproteins may function by directly recruiting upstream IKK-activating kinase. 

This model of activation will be addressed in the next chapters. 
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In summary, the study presented here shows that Tax, vFLIP and cellular FLIPs 

require distinct regions of NEMO to induce IKK. While Tax and vFLIP activate the NF-

κB pathway independently of the ubiquitin-mediated signalling induced by cytokines, all 

cFLIP variants require ubiquitin-binding function of NEMO for their activation of IKK. 

These findings provide a basis for further identification of the IKK signalling components 

and mechanisms utilised by KSHV vFLIP and different isoforms of cFLIP.   
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Figure 3.10. Effect of the K192/195RR mutations on the NF-κB inducing ability of 

the cFLIP variants. A) Western blot comparing the expression levels of the WT and 

K192/K195RR mutants of cFLIP isoforms. B) HEK293T cells were seeded in 24-well 

plates (2x105 cells well) 16 hours prior to transfections. Subsequently, each well was 

transfected with 400ng NF-κB firefly luciferase plasmid (pGL.IgK), 100ng Renilla 

luciferase plasmid (pRL.TK) as internal control and 300 ng of pCDNA3 vectors encoding 

WT, or muatnt versions of the cFLIP isoforms. NF-κB induction levels were measured 

after 24 hours using the Promega Dual-GLO luciferase assay system. Results shown are 

representative of two independent experiments, performed in triplicates. Error bars 

indicate SD of the mean values which were compared by two-tailed unpaired Student’s t-

test; ns: not statistically significant, * p<0.05 and *** p<0.001. 
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4. The Role of Signalling Intermediates 

Upstream of IKK in NF-κB Signalling by 

KSHV vFLIP and Cellular FLIPs 
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4.1 Introduction 

In the previous chapter of this thesis, we established that the ubiquitination and 

ubiquitin binding function of the NEMO are essential requirements for the cFLIP-

induced NF-κB activation. Furthermore, it was demonstrated that cellular FLIPs, unlike 

the KSHV vFLIP, do not stably associate with the NEMO subunit of the IKK complex. 

Together, these findings suggested a possible mechanism whereby cellular FLIPs act 

indirectly on the IKK complex via intermediate signalling components. Such intermediate 

adaptors may recruit E3 ligases required for NEMO ubiquitination, or connect the IKK 

complex to upstream IKK-Ks, or serve as ubiquitination substrates which bind to the 

UBAN domain of NEMO. In this chapter, we sought to investigate which adaptor 

proteins were required for IKK activation by cFLIPs and whether these components were 

also important for the activity of vFLIP and Tax. Due to reasons outlined below, the 

targets chosen to study were Atg3, RIP1, caspase-8 and FADD as well as the IKK-

activating kinases TAK1 and MEKK3. 

4.1.1 Caspase-8, FADD and RIP1 

Cellular FLIPs appear in complex with FADD, caspase-8 and RIP1 within several 

death receptor-induced signalling cascades: a cytoplasmic complex containing cFLIPL, 

RIP1, FADD, caspase-8 and TRADD is induced by TNFR signalling (Micheau and 

Tschopp, 2003); a complex containing RIP1, FADD, caspase-8 and NEMO has been 

detected after TRAIL triggering (Varfolomeev et al., 2005) and a 

cFLIP/RIP1/FADD/caspase-8 complex has been found after Fas signalling (Lavrik et 

al., 2008). Moreover, inhibition or depletion of the cIAPs in tumour cells leads to 

assembly of the cytoplasmic ripoptosome complex which contains FADD, caspase-8, 

RIP1 and cellular FLIPs (Feoktistova et al., 2011; Tenev et al., 2011a). Individual 

overexpressions of RIP1, caspase-8 or FADD, all result in strong activation of the NF-κB 

pathway and there is evidence showing an interaction between these proteins and IKK 

complex (Biton and Ashkenazi, 2011; Chaudhary et al., 2000; Poyet et al., 2000; Zhang et 

al., 2000). Therefore, we hypothesised that when overexpressed, cFLIP proteins may 

require a similar multi-protein complex to induce the NF-κB signalling.  Consistent with 

this idea, it has been shown that recruitment of cFLIP to the TRAIL-induced DISC 

complex, results in the translocation of DISC components from lipid rafts to non-rafts, 

further recruitment of the RIP1 and switching the outcome of DISC signals from 
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caspase-initiated apoptosis to activation of the ERK and NF-κB pathways (Song et al., 

2007). 

4.1.2 Atg3 

Cellular FLIPs and KSHV vFLIP have been also shown to directly bind to the 

autophagy pathway protein, Atg3.  This association blocks autophagosome biogenesis 

through preventing the Atg3-LC3 interaction, required for processing of LC3 to its active 

form, LC3-II (See 1.3.4). The Atg3-interacting regions of KSHV vFLIP have been 

localised to DED1 α2 helix (aa 20-29) and DED2 α4 helix (aa 128-139), which are distinct 

from motifs responsible for binding to NEMO and TRAFs (Field et al., 2003; Guasparri 

et al., 2006; Lee et al., 2009). FLIP mutants defective in binding to FADD, TRAFs or 

NEMO are capable of blocking rapamycin-induced autophagy as efficiently as the WT 

versions (Lee et al., 2009). Therefore, it has been concluded that authophagy-inhibiting 

ability of FLIP proteins must be separable from their anti-apoptotic or NF-κB inducing 

activities. Nevertheless, deletion of Atg3-binding regions of the KSHV vFLIP, completely 

abrogates both its NF-κB activation and anti-apoptotic capacity (Lee et al., 2009). These 

results raise the possibly that interaction with Atg3 may play a role in FLIP-induced 

activation of IKK. 

4.1.3 TAK1 and MEKK3 

Alongside ubiquitination events, phosphorylation of the catalytic IKKs by IKK-

phosphorylating kinases is another major step in the activation of the NF-κB pathway. 

Two members of the MAPK family, TAK1 and MEKK3, are the most prominent of 

IKK-Ks that, alone or together, play pivotal roles in the inflammatory stimuli-induced 

IKK signalling (See 1.2.1). Although several studies have examined the function of these 

IKK-Ks in the Tax-induced pathway (Gohda et al., 2007; Suzuki et al., 2007; Wu and Sun, 

2007), it remains to be determined whether they play a role in the activation of IKK by 

vFLIP and cFLIP variants. 

4.2 Aims of the chapter 

• Determine the role of Atg3, FADD, caspase-8 and RIP1 in FLIP-induced 

activation of IKK 

• Examine whether the activation of IKKs by vFLIP and cFLIP isoforms depends 

on upstream MAP3Ks, TAK1 and MEKK3. 
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4.3 Results 

4.3.1 cFLIPS and p22-FLIP activate IKK via a FADD-RIP1  complex 

To further probe the mechanism of action of cellular FLIPs we generated 

HEK293T cells that were knocked-down for the molecules reported to be present in 

complexes with cFLIP isoforms or vFLIP. As previously mentioned, Atg3 has been 

reported to interact directly with vFLIP and cFLIPs (Lee et al., 2009), FADD interacts 

with cFLIP isoforms (reviewed in (Krueger et al., 2001)), and RIP1 interacts with FADD 

(Park et al., 2013). In order to identify shRNAs that would efficiently down-regulate the 

expression of these candidate proteins, at least five different target-specific LVs were 

generated for each gene, using shRNA-encoding lentiviral plasmids obtained from UCL 

Open Biosystem RNAi library. Subsequently, HEK293T cells were transduced with the 

LVs at an MOI of 50 and analysed by western blotting for expression levels of the 

targeted proteins, using GAPDH levels as internal control. Cells infected with LVs 

encoding scramble shRNA served as negative control. From each set, two shRNAs that 

yielded most efficient silencing were used to produce stably knocked-down cell lines for 

the experiments (Figure 4.1 A). The list of sequences targeted by each shRNA has been 

given in Table 2.15.   

As Figure 4.1C shows, FADD and RIP1 were both required for cFLIPS and p22-

FLIP activation of IKK, while Atg3 and caspase-8 were dispensable. On the other hand, 

none of the silenced proteins appeared to play a role in NF-κB activation by TNFα, 

cFLIPL, vFLIP or Tax (Figure 4.1B and C). Our findings agree with those of the 

Chaudhary lab showing that vFLIP, despite physically binding to RIP1, does not require it 

for the activation of IKK (Liu et al., 2002; Matta and Chaudhary, 2004).  

A hydrophobic stretch of amino acids in the DED2 motif of the murine cFLIPR has 

been identified as critical for its interaction with FADD, and hence, its DISC recruitment 

and anti-apoptotic function (Figure 4.2A) (Ueffing et al., 2008). Interestingly, this 

hydrophobic patch - which contains residues F119, L120, L146, L148 and L154 on its 

surface - is highly conserved in both KSHV vFLIP and human cFLIP isoforms (Figure 

4.2B). We mutated the critical amino acids in this hydrophobic stretch (Figure 4.2C), 

which resulted in blocking IKK activation by cFLIPS and p22-FLIP and also cFLIPL, but 

not vFLIP (Figure 4.3D). We then demonstrated that this mutation prevented interaction 

of the cFLIP isoforms with FADD, while FADD and RIP1 were present in these cells as 
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a pre-assembled complex (Figure 4.3). These data provide an explanation for the lack of 

inhibition of cFLIPS and p22-FLIP by CYLD, as ubiquitinated RIP1 bound to IKK has 

been reported to be protected from deubiquitination (O’Donnell et al., 2012). While 

mutation of the putative FADD binding domain in cFLIPL prevented activation of IKK 

(Figure 4.2C), cFLIPL did not require FADD or RIP1 for its action (Figure 4.1C), 

suggesting that this region interacts with a different effector to trigger LUBAC activity. 

This effector may be TRAF2, which has been reported to interact with the N-terminal 

region of cFLIPL, and to be required for NF-κB activation (Kataoka and Tschopp, 2004). 

Our finding that RIP1 was not required for cFLIPL activation differs from the report of 

its role in TCR-triggered NF-κB activation, where RIP1 was required (Kataoka et al., 

2000).  

FADD and cFLIP isoforms interact via their DEDs; while FADD-RIP1 interaction 

is mediated through their respective DDs. Therefore, considering our findings, one could 

speculate that FADD functions as an adaptor protein connecting p22-FLIP or FLIPS to 

RIP1 which, following its ubiquitination, can bind to the IKK complex, facilitating its 

activation. To test this hypothesis, I generated lentiviral constructs encoding WT RIP1, or 

a point mutant of RIP1 reported to block its polyubiquitination (K377R)(Ea et al., 2006), 

or RIP1 mutants suggested to be deficient in FADD-binding (G595/K596AA and 

E620/D622AA)(Park et al., 2013). These LVs were then used to reconstitute a RIP1−/− 

MEF cell line (data not shown) for further studies. However, cFLIP did not induce NF-

κB activation in these cells and other RIP1 deficient cell lines were not available, so I was 

unable to perform further experiments.  
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Figure 4.1. FADD and RIP1 are required for NF-κB activation by cFLIPS and p22-

FLIP. A) Stable gene knockdown of Atg3, caspase-8, FADD and RIP1 in HEK293T 

cells was validated by western blotting. From five independent shRNAs used to silence 

each protein, two that yielded most efficient knockdowns were chosen for the 

experiments. Immunoblots were re-probed for GAPDH levels to ensure equal protein 

loading. B) Control and knockdown cells were transduced with NF-κB Luc lentivectors 

(MOI=10) to develop stable NF-κB reporter cell lines. Luciferase reporter assays were 

performed 6 hours following stimulation with TNFα (10ng/ml) or C) 48 hours after 

transduction with LVs encoding cFLIP variants (MOI=50), vFLIP and Tax (MOI=10). 

Values shown are the mean±SD of the relative luciferase activity from five independent 

experiments; numbers represent the absolute activation fold. 
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Figure 4.2. A hydrophobic stretch of amino acids on the surface of DED2 is 

indispensable for NF-κB activation by cellular FLIP isoforms, but not KSHV 

vFLIP. A) Electrostatic surface representation of the murine cFLIPR. Left panel: 

hydrophobic and charged motifs on the surface of DED1 and DED2. Motifs coloured in 

red and magenta are hydrophilic, and motifs shown in yellow and gold are hydrophilic. 

Right panel: The hydrophobic amino acids present on the surface of DED2 (highlighted 

in yellow). The hydrophilic regions are shown in green (reproduced form (Ueffing et al., 

2008)). B) Sequence alignment of the murine cFLIPR, human cFLIP and KSHV vFLIP. 

The amino acids which form the hydrophobic patch of the DED2 in murine cFLIPR 

(F114, L115, L146, L148 and L154) are fully conserved in both KSHV vFLIP and human 

cFLIP. Sequence alignment was performed by PRALINE software. C) Immunoblot 

showing the expression of F114/L115AA cFLIP mutant, F115/L116AA vFLIP mutant 

and their WT versions in HEK293T cells. D) Subconfluent monolayers HEK293T cells 

seeded in 24-well plates (2x105/well) were co-transfected with an NF-κB firefly Luc 

reporter construct (300ng/well) and a Renilla Luc reporter vector (normalisation 

control,100 ng/well) together with empty or transactivator expressing pCDNA3 vectors 

(500 ng/well). The luciferase reporter assay was performed 24 hours post-transfection 

using Dual-Glo luciferase assay system. 
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Figure 4.3. Unlike KSHV vFLIP, cellular FLIPs associate with a pre-assembled 

FADD-RIP1 complex. HEK293T cells, seeded in 6-well plates (5x105/well) were 

transfected with 1 µg of HA-FADD vector together with 1 µg of pCDNA3 constructs 

expressing WT or mutant versions of the p22-FLIP, cFLIPS, cFLIPL and vFLIP. Forty-

eight hours later, cell lysates were extracted and immunoprecipitated with 0.5 µg of anti-

HA or an isotype-matched control antibody. Cell lysates and the immunoprecipitates were 

then analysed by western blotting with the indicated antibodies. * indicates the position of 

p43-FLIP bands. Results shown are representative of three independent experiments. 

4.3.2 Processing to p22-FLIP and p43-FLIP fragments is not necessary for NF-κB 

activation by cFLIPL  

Golks et al., demonstrated that p22-FLIP fragment can be generated by procaspase-

8 cleavage of either cFLIPL, or cFLIPS isoform. They also reported that inhibition of 

capsase-8 by zVAD-fmk (Benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoro- methylketone) 

results in a decrease of NF-κB activation by p43-FLIP and FLIPL, but not p22-FLIP. 

Furthermore, overexpression of p22-FLIP in HEK293T cells was shown to cause much 

stronger NF-κB activation than that observed with cFLIPL. Therefore, it was concluded 
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that cFLIP variants have to be cleaved to p22-FLIP to be capable of inducing the IKK 

complex (Golks et al., 2006). 

Surprisingly, in contrast to the findings of Golk et al., we observed a similar level of 

activation with non-cleavable cFLIPL as with wild-type. Moreover, we found no evidence 

that caspase-8 was required for NF-κB activation by cFLIP variants (Figure 4.1C). 

Together, our data suggested that, in contrast to the current view in the field, p22-FLIP 

might not be simply an active isoform of the cFLIP proteins but is likely to activate IKK 

in a manner distinct from its precursor cFLIPL. 

As the previous report had used a different NF-κB luciferase construct to measure 

NF-κB activation, we sought to determine whether this could explain the discrepancies in 

the results. To do this, we generated two different NF-κB luciferase reporter plasmids: 

one with H2DK response element from MHC class I gene (used in Golk et al.’s report) 

and one with NF-κB binding sites from immunoglobulin kappa light chain (Igk) gene 

(Figure 4.4A). We also replaced the murine c-Fos promoter, used in the previous report, 

with minimal promoter of the cytomegalovirus (CMV), as there is evidence that 

expression of cFLIPL, but not cFLIPS, strongly blocks c-Fos upregulation (Siegmund et 

al., 2001). Figure 4.4C shows that the non-cleavable cFLIPL was no different in activity 

from wild-type with either reporter construct; this agrees with our kinase assay results 

(Figure 3.5A).  

Overall, our findings indicate that processing to p22-FLIP or p43-FLIP is not 

required for NF-κB activation capacity of the cFLIPL. We have shown that cFLIPL 

requires LUBAC while p22-FLIP and cFLIPS depend on a FADD-RIP1 complex to 

stimulate IKK. Therefore, it is plausible to assume that, cFLIPL cleavage to generate p22-

FLIP may switch the mechanism of NF-κB activation at the protein level, without a need 

for de novo synthesis of the cFLIPS isoform. 

It is worth mentioning that upon vFLIP transduction of Jurkat cells, we observed a 

strong induction of p22-FLIP production (Figure 4.4D). However, as shown in the 

previous chapter, p22-FLIP overexpression does not activate the NF-κB pathway in these 

cells (Figure 3.8I). Thus, it is likely that p22-FLIP also plays a role in cellular mechanisms 

other than the NF-κB signalling. 
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Figure 4.4. Non-cleavable mutant of cFLIPL activates NF-κB pathway in levels 
comparable to that of wild-type cFLIPL and p22-FLIP. A) Schematic representation 
of the NF-κB reporter vectors. Two different NF-κB luciferase plasmids were constructed 
to compare the activaties of the cFLIP variants: one with 4 repeats of NF-κB response 
element of immunoglobin kappa light chain (IgK) gene and another with 4 repeats of an 
NF-κB binding site of the mouse MHC classI H2DK gene. B) Immunoblot comparing 
the expression levels of p22-FLIP, cFLIPS, cFLIPL and nc-FLIPL. C) NF-κB luciferase 
assay comparing the NF-κB activation levels induced by WT- or nc-FLIPL. The luciferase 
reporter assays were performed as described in Figure 4.3D. Results shown are 
representative of four independent experiments and the values represent mean±SD of 
triplicates within an experiment; ns: statistically not significant. D) WT and NEMO KO 
Jurkat cells were transduced with LVs encoding GFP or vFLIP. Forty-eight hours later, 
cells were lysed and analysed for cFLIP expression levels by western blotting. 
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4.3.3 Cellular FLIP variants require TAK1 to induce IKK 

As discussed previously, the kinase TAK1 has been identified as a critical activator 

of IKK, phosphorylating the activation loops of the kinase subunits in response to a 

variety of signals (Shambharkar et al., 2007; Wang et al., 2001), and the kinase MEKK3 

has also been reported to fulfil this role in some circumstances (Huang et al., 2004b; Yang 

et al., 2001a). In order to investigate the role of these IKK-Ks in FLIP-induced NF-κB 

activation, we produced HEK293T cells with stably knocked-down TAK1 or MEKK3 

(Figure 4.4A). To prevent the possible compensative effect of these kinases on each other, 

we also generated double TAK1/MEKK3 KD cells (DKD)(Figure 4.5A).  

As shown in Figure 4.5B, silencing of TAK1 in HEK293T cells severely disrupted 

the TNFα-mediated activation of the NF-κB, while MEKK3 was not required. TAK1 was 

clearly necessary for activation of IKK by all the cFLIP variants, though both kinases 

were dispensable for vFLIP and Tax activation (Figure 4.5C). The requirement for TAK1 

in the cFLIP-mediated pathways suggests that the active kinase identified in Figure 3.5A 

has been phosphorylated and activated by TAK1. The lack of a requirement for TAK1 in 

vFLIP activation has been reported (Matta et al., 2012) although its role in Tax activation 

of IKK has been controversial (Suzuki et al., 2007; Wu and Sun, 2007). Interestingly, we 

could detect a partial decrease for NF-κB activation by both vFLIP and Tax in the double 

knock-down cells, suggesting that these kinases may have important but redundant roles. 

Since, even in the DKD cells, activity of these oncoproteins is not completely abrogated, 

another possibility is that these IKK-Ks contribute to the magnitude of IKK signalling 

but not its initiation. 

To further confirm these experimental data in a different cell line, we acquired a 

MEKK3 −/− MEF cell line and additionally knocked-down TAK1 in these cells (Figure 

4.6A). For the KD of the murine TAK1, three different shRNAs were designed and 

cloned into LVs, of which shRNA No.3 resulted in the most efficient TAK1 silencing and 

was used for the experiments. Similar to what seen in HEK293T cells, none of the kinases 

were required for Tax-mediated activation and only a small, but statistically significant 

decrease could be detected when both kinases were lacking (Figure 4.6B). On the other 

hand, in MEFs, activation of the vFLIP was inhibited in part by the knockdown of 

TAK1. This discrepancy between the results obtained with HEK293T and MEFs suggests 

that the IKK-Ks might function in a cell type-specific manner. Nevertheless, whether the 

action of IKK-Ks is an absolute requirement for vFLIP activation of IKK or it is merely 

required for signal amplification remains an important unanswered question. This 

question has been addressed in Chapter5.  
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Figure 4.5. Cellular FLIPs require TAK1 for the activation of the NF-κB pathway. 

A) shRNA-mediated stable silencing of TAK1, or MEKK3 or both kinases in the 

HEK293T cells was validated with western blotting. B) Cells were further transduced 

with NF-κB Luc LV at an MOI of 10 to develop NF-κB sensor version of the cell lines.  

Luciferase reporter assays were then performed 6 hours following stimulation with TNFα 

(10ng/ml) or C) Forty-eight hours following transduction with control (eGFP) or test 

lentivectors (MOI=10). Results shown are mean ±SD of a representative experiment out 

of three, performed in triplicates. The two-tailed Student’s t-test was used to determine 

the statistical differences between two groups; *** denotes p<0.001. 
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Figure 4.6. Analysis of vFLIP-, Tax- and TNFα-induced NF-κB activation in WT 

or TAK1 KD versions of the MEKK3+/+ and MEKK3−/− mouse embryonic 

fibroblasts. A) Successful knockdown of TAK1 in WT and MEKK3 KO MEFs was 

validated by western blotting. B) MEFs were transduced with NF-κB luciferase LV at an 

MOI of 50 to generate NF-κB sensor cell lines. Luciferase reporter assays were performed 

using Bright-Glo detection system 6 hours following stimulation with TNFα (10 ng/ml) 

or 48 hours after transduction with LVs expressing GFP, or vFLIP, or Tax (MOI=20). 

Results shown are representative of two independent experiments, performed in 

triplicates.  The two-tailed Student’s t-test was used to determine the statistical differences 

between two groups; * p<0.05 and *** p<0.001. 
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4.4 Discussion 

The data presented here show that all cFLIP variants can activate IKK via the 

ubiquitin binding domain of NEMO. The cFLIPL isoform requires the LUBAC 

ubiquitination complex, but does not require caspase-8 or cFLIPL cleavage. In contrast, 

cFLIPS and the cleavage product p22-FLIP form a stable complex with FADD and RIP1, 

which are required for IKK activation. This evidence for different pathways of NF-κB 

activation demonstrates that p22-FLIP is not simply the effector of cFLIPL, though 

cFLIPL cleavage to generate p22-FLIP may switch the mechanism of NF-κB activation. 

These cFLIPS/FADD/RIP1 or p22-FLIP/FADD/RIP1 complexes are reminiscent 

of a cytoplasmic complex, termed the ripoptosome, induced by treatments of human 

tumour cells that deplete or inhibit cIAP proteins (Feoktistova et al., 2011; Tenev et al., 

2011b). This depletion leads to the formation of a RIP1/FADD/procaspase-8 complex. 

cIAPs inhibit formation of this complex by ubiquitinating RIP1. In the absence of FLIP 

proteins, procaspase-8 molecules homodimerise in the ripoptosome, promoting cell death 

by apoptosis. Recruitment of cFLIPL to this complex leads to partial caspase-8 activation 

resulting in cell survival (Oberst et al., 2010). cFLIPS, on the other hand, has been 

reported to block caspase-8 activation and facilitate cell death through necroptosis 

(Feoktistova et al., 2011). As previously mentioned, cFLIPs have also been reported to 

associate with and regulate a ripoptosome-like complex formed following TNF, TRAIL 

and Fas signalling (Lavrik et al., 2008; Micheau and Tschopp, 2003; Varfolomeev et al., 

2005).  

Our data shows that constitutive expression of cFLIP variants leads to formation of 

a FLIP/FADD/RIP1 complex that leads to NF-κB activation. The relationship between 

other complexes and this NF-κB activating complex remains to be determined, but we 

have clearly shown that caspase-8 is not required for NF-κB activation by any of the 

cFLIP variants. This is in contrast to some previous studies showing that caspase-8 is 

indispensable for cFLIPL-mediated activation of NF-κB, especially following the Fas-

signalling (Golks et al., 2006; Hu et al., 2000; Kataoka and Tschopp, 2004). There is 

evidence, however, that after cleaving cFLIPL to p43-FLIP, caspase-8 is not required for 

downstream steps of FasL-induced IKK activation (Matsuda et al., 2014; Neumann et al., 

2010). Taken together, we conclude that caspase-8 is not a part of IKK-inducing complex 

used by different cFLIP variants, but it is required for signalling pathways which depend 

on cFLIP cleavage to induce or amplify IKK signalling (e.g, TCR and FasL signalling in T 
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cells mediated by p22- and p43-FLIP fragments) (Dohrman et al., 2005; Golks et al., 2006; 

Koenig et al., 2014; Neumann et al., 2010).  

FADD-RIP1 and FADD-cFLIP bindings are mediated via homotypic DD and 

DED interactions, respectively (Lavrik et al., 2005; Park et al., 2013). Thus, it is likely that 

FADD acts as an adaptor protein connecting the short forms of cFLIP to ubiquitinated 

RIP1 which then can bind to and induce IKK complex. Interestingly, mutating the 

FADD binding domain of cFLIP resulted in complete blockade of their NF-κB activation 

while FADD knockdown had much milder effect. It is possible that residual amounts of 

FADD in the KD cells are sufficient to mediate cFLIPS and p22-FLIP induced signalling. 

Another explanation for this could be that other DD (death domain)-containing proteins 

such as TRADD may partially compensate for the lack of FADD. Indeed, TRADD is a 

known binding partner of both FADD (Hsu et al., 1996b) and RIP1 (Hsu et al., 1996a). 

We have provided evidence that FADD functions downstream of short forms of cFLIP 

to stimulate IKK, though further research is needed to determine the exact role of FADD 

in this context.  

To our surprise, mutation of the putative FADD binding domain in cFLIPL 

prevented activation of IKK, whilst this isoform did not require FADD for its action, 

suggesting that this domain interacts with a different effector to trigger LUBAC activity. 

This effector may be TRAF2, which has been reported to interact with the N-terminal 

region of cFLIPL, and to be required for its NF-κB activation (Kataoka and Tschopp, 

2004). Nevertheless, whether cFLIPL could directly associate with a subunit of LUBAC 

remains to be tested. 

We found that, unlike cFLIPs, KSHV vFLIP does not associate with FADD. Due 

to its sequence similarities to cellular FLIP, vFLIP was initially thought to protect cells 

from death receptor induced apoptosis through preventing caspase-8 activation at the 

DISC (Bertin et al., 1997; Hu et al., 1997a).  Consistent with this idea, overexpression of 

vFLIP was shown to protect HeLa cells from Fas-induced apoptosis (Bélanger et al., 

2001). Similarly, RNAi-mediated silencing of vFLIP was found to sensitise BC3 cells to 

Fas-mediated apoptosis (Guasparri et al., 2004). However, since NF-κB activation also 

protects against cell death by up-regulating a multitude of pro-survival genes (Luo et al., 

2005), it was not clear whether the cytoprotective role of vFLIP is due to its ability to 

directly block caspase-8 activation or because of its NF-κB activation capacity.  

Interestingly, emerging evidence indicates that vFLIP is unable to protect NEMO 
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deficient cells from DR-induced cell death, suggesting that vFLIP is primarily an inducer 

of NF-κB rather than a caspase-8 inhibitor (Tolani et al., 2014; and data from an 

unpublished study by Chris Davis, Collins lab). Our results showing a lack of interaction 

between FADD and vFLIP further supports this concept as binding to FADD is essential 

for cFLIP-mediated inhibition of caspase-8 activity. Nevertheless, one study reported that 

vFLIP can directly bind to procaspase-8 and reduce its cleavage into its active p10 and 

p18 fragments (Bélanger et al., 2001). 

The role of RIP1 in FLIP-induced IKK activation remains controversial. It was 

initially reported that RIP1 interacts with cFLIPL via its C-terminal caspase-like domain 

(Kataoka et al., 2000). Although, in a marked contrast, a recent study showed that under 

physiological conditions RIP1 interacts with caspase-8, but not cFLIPL, and in fact, the C-

terminal p12 domain of cFLIPL inhibits this interaction (Matsuda et al., 2014). Matusda et 

al., showed that NF-κB activation induced by c-FLIPL or its uncleavable form (D376A) 

could not be inhibited by overexpressing death domian of RIP1 (aa 559–671). On the 

other hand, FasL-induced NF-κB signalling which depends on p43-FLIP was repressed by 

RIP1(559-671). Similarly, we have shown that RIP1 is indispensable for activation of IKK 

by the catalytic p22-FLIP fragment, but not full-length cFLIPL. Therefore, one could infer 

that cFLIPL processing to either p22-FLIP or p43-FLIP acts as a critical switch point 

between RIP1-independent and RIP1-dependent FLIP-induced NF-κB activation 

pathways. 

Despite using different signalling intermediates, all cFLIP variants converge on 

TAK1 to phosphorylate and activate IKK. In TNF signalling, recruitment of TAK1 to 

IKK occurs through K63 ubiquitin chains bound to TRAF2 or RIP1 (Ea et al., 2006; 

Ishitani et al., 2003).  Considering that we and others have shown the requirement of 

cFLIP variants for both proteins (p22-FLIP and cFLIPS for RIP1, and cFLIPL and p43-

FLIP for TRAF2 (Kataoka and Tschopp, 2004; Koenig et al., 2014)), it would be 

important to examine whether these proteins mediate the co-localisation of TAK1 and 

IKK within cFLIP-induced signalling. 

In contrast to cFLIPs, neither vFLIP nor Tax required TAK1 or MEKK3 to induce 

IKK. This strongly suggested a mechanism of activation which is independent of IKK-

activating kinases. Nevertheless, partial decrease of their NF-κB activation in double 

MEKK3/TAK1 knockdown cells indicates that IKK-Ks may play a role in achieving 

optimal levels of activation in cells. It is also possible that these viral oncoproteins are able 
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to use several IKKs interchangeably. These concepts have been further addressed in the 

next chapter.  

In summary, data presented here show that KSHV vFLIP and different variants of 

cellular FLIPs, despite their similar tandem DEDs, activate NF-κB by remarkably 

divergent mechanisms. This could have multiple applications when designing specific 

therapeutics for blocking pathological NF-κB activation in viral and non-viral 

tumourigenesis, while avoiding the deleterious effects on normal cellular functions. 
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CHAPTER 

5 

 
5. Probing the Mechanism of IKK Activation 

of the KSHV vFLIP 
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5.1 Introduction 

Results in Chapters 3 and 4 demonstrated that vFLIP does not require ubiquitin 

signalling or the IKK kinases TAK1 or MEKK3 to achieve IKK activation. Clearly, 

however, an as yet unidentified IKK kinase might be involved (Figure 5.1A). 

Furthermore, the phosphatase PP2A was reported to interact with a similar region of 

NEMO to vFLIP, and Tax was reported to interact with PP2A in the IKK complex and 

inhibit its activity (Fu et al., 2003; Hong et al., 2007). One hypothesis might be that vFLIP 

binding to NEMO would either inhibit PP2A binding, or inhibit PP2A activity (Figure 

5.1B). Furthermore, the ubiquitin binding proteins A20 and ABIN1 are known to interact 

with NEMO and inhibit IKK activity (Mauro et al., 2006; Zhang et al., 2000). In the case 

of A20 this is believed to be a direct binding to NEMO that prevents TAK1 recruitment, 

rather than dependent on the deubiquitination activity of A20 (Skaug et al., 2011). 

Therefore, a further hypothesis might be that vFLIP binding prevents A20 and/or 

ABIN1 interaction with NEMO, thereby blocking IKK inhibition. One approach to 

testing whether vFLIP recruits an upstream activator or blocks an inhibitor would be to 

test shRNA knockdown of candidate activators or inhibitors on the activity of vFLIP. 

However, this would be time consuming and likely require combinations of shRNAs. We 

therefore started to examine the activation of an immunoprecipitated IKK complex by 

recombinant vFLIP in this Chapter. This is a first step towards attempting activation of 

recombinant IKK by recombinant vFLIP which would provide conclusive proof that 

vFLIP acts independently of other activators or inhibitors. 

In this chapter we also considered how vFLIP might activate IKK by direct binding 

to NEMO. When our group published the structure of vFLIP bound to a small fragment 

of NEMO, we proposed that this interaction might cause a major conformational change 

in NEMO leading to activation (Bagnéris et al., 2008) (Figure 5.1C). In our present 

experiments we considered this possibility and also whether the kinase subunits required 

T loop phosphorylation which has been reported for chronic activation of IKK by Tax 

(Carter et al., 2001). This activating phosphorylation could be the result of trans-

autophosphorylation by the kinase subunits. Such trans-autophosphorylation can be 

observed with isolated, monomeric IKKβ in vitro (Hauenstein et al., 2014), so vFLIP 

binding to NEMO would need to enhance the likelihood of such an event. 
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Figure 5.1. Possible mechanisms underlying vFLIP-mediated activation of IKK. A) 

vFLIP may function as a signalling adaptor to recruit upstream IKK-Ks to phosphorylate 

IKKs. B) vFLIP may block binding and function of proteins which repress activation of 

IKK (e.g., phosphatase or deubiquitinases), leading to its constitutive  activation. C) 

vFLIP binding to NEMO may cause conformational changes which can then transmit to 

IKKα/β-binding regions of NEMO, affecting spatial conformation of the catalytic IKKs, 

favouring their activation by trans-autophosphorylation. D) Recognition of vFLIP by 

NEMO may induce multimerisation or re-orientation of the IKK complexes, positioning 

the catalytic IKKs for trans-autophosphorylation. 
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5.2 Aims of the chapter 

• Examine whether vFLIP can directly activate IKK, independent of the upstream 

signalling mediators. 

• Examine whether the phosphorylation of the catalytic IKKs is required for 

vFLIP-mediated IKK signalling. 

• Investigate the possible mechanism of IKK activation by vFLIP. 

 

5.3 Results 

5.3.1 Recombinant vFLIP, but not p22-FLIP, can activate IKK when added to cell 

lysates................... 

So far, we have demonstrated that vFLIP and p22-FLIP exhibit very different 

requirements for ubiquitination, signalling intermediates and IKK-Ks in their activation of 

IKK. In order to further probe the mechanism of action of these proteins, we set up an in 

vitro IKK activation assay, originally established by Mukherjee et al (Mukherjee et al., 

2006). This assay is initiated by the addition of a purified activator of the IKK signalling 

pathway to S100 extract of resting cells in the presence of an ATP-regenerating system, 

followed by termination of the reaction by addition of SDS sample buffer. The activation 

of IKK complex is then assessed by immunoblotting for the phosphorylated form of the 

endogenous IκBα.  

Here, we produced recombinant vFLIP and p22-FLIP proteins and added them to 

S100 lysates of the HEK293T cells, in a concentration range of 0.25 µM to 2 µM. Figure 

5.2 shows that recombinant vFLIP induced phosphorylation of the kinase subunits of 

IKK, and that IKK became activated in the lysate as IκBα was phosphorylated. This 

occurred within 10 minutes of incubation with the lysate; in contrast recombinant p22-

FLIP could not activate IKK under these conditions (Figure 5.2). Similar direct activation 

of the IKK kinase in cell lysates supplemented with recombinant Tax has been reported 

(Mukherjee et al., 2008). Taken together with our previous results showing the 

requirement for several signalling intermediates by the p22-FLIP, it is conceivable that 

p22-FLIP activation of IKK relies on signalling complexes which are usually restrained by 

the cellular architecture.  
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Figure 5.2. Recombinant KSHV vFLIP activates IKK when added to cell lysate. A) 

IKK activation by rec-vFLIP or rec-p22FLIP was analysed using an in vitro IκBα 

phosphorylation assay. Briefly, resting HEK293T cells were lysed in HTX buffer (See 

section 2.9) and the S100 fractions were extracted. The lysates were then incubated with 

an ATP-generating buffer and increasing concentrations of recombinant vFLIP or p22-

FLIP at 37 oC for 10 min. Activation of the IKK complex was detected by 

immunoblotting against pIκBα and pIKKα/β. The blot was re-probed for total IKKα/β 

to ensure equal loading of protein. 
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5.3.2 Recombinant vFLIP can activate immuno-isolated IKK complexes in a cell-

free assay system 

We next sought to examine whether the vFLIP-induced activation of IKK in cell 

lysates was a consequence of direct and specific action of the recombinant vFLIP on the 

IKK complex. This is relevant as we have previously shown that, in KSHV-infected cells, 

the subunits of the IKK complex and HSP90 are the only detectable proteins in complex 

with vFLIP. Furthermore, studies by ourselves and other groups aimed at identifying a 

signalling constituent upstream of the IKK complex that would be necessary for vFLIP-

mediated activation of IKK has been unsuccessful.  

To test this hypothesis, we immunoprecipitated the IKK complex from 

unstimulated HEK293T cells using an anti-NEMO antibody and then, incubated them 

with varying concentrations of rec-vFLIP under two different conditions: one group were 

incubated at room temperature for one hour, while the other group were incubated 

overnight at 4 oC. Subsequently, the immune complexes were thoroughly washed with 

kinase wash buffer and subjected to the IKK kinase assay using GST-IκBα(1-54) and γ32P-

ATP as substrates. Due to technical problems, I was unable to perform this experiment 

with recombinant-cFLIP.  

As Figure 5.3 shows, in both incubation conditions, rec-vFLIP was able to activate 

the immunoprecipitated IKK complex and the levels of pGST-IκBα correlated well with 

the concentrations of the added recombinant vFLIP. These data strongly suggest that 

vFLIP can directly activate the IKK complex without a requirement for upstream 

MAP3Ks. Nevertheless, in the previous chapter, we observed that silencing of the IKK-

Ks could partially inhibit vFLIP-mediated NF-κB activation in some settings. Therefore, 

we conclude that, in cells, IKK-Ks are more likely required for maximal IKK signalling 

following its direct MAP3K-independent activation by the vFLIP. 
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Figure 5.3. Direct in vitro activation of the IKK complex by recombinant vFLIP. 

IKK complex from unstimulated HEK293T cells (2x106/reaction) was 

immunoprecipitaed using an antibody against NEMO (0.5 µg/sample). The isolated 

complexes were then washed twice with kinase lysis buffer and once with kinase wash 

buffer (KWB). Next, the IKK-bound beads were divided into equal fractions, re-

suspended with 500 µl of the KWB and incubated with increasing concentrations of 

recombinant vFLIP (0.15-4.0 µM) for 1 hour at room temperature, or overnight at 4 oC. 

Finally, in vitro IKK kinase assays were performed on immunoprecipitated complexes as 

previously described using γ32p-ATP and GST-IκBα(1–54) as substrates. Relative band 

intensity of phosphorylated GST-IκBα was measured by ImageQuant TL Plus7.0 software 

(GE Healthcare). A value of 1.0 represents band intensity obtained in the control 

experiment. Data shown are representative of two independent experiments. 
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5.3.3 Phosphorylation of the IKKs at the activation loop is crucial for vFLIP-

induced IKK activation 

It is now well-established that phosphorylation of the IKKα/β at their activation 

loop (residues S176 and S180 for IKKα, and residues S177 and S181 for IKKβ) is an 

essential step for their activation following inflammatory stimuli (Ling et al., 1998; 

Mercurio et al., 1997; Régnier et al., 1997; Woronicz et al., 1997; Zandi et al., 1997). The 

phosphorylation of T-loop is believed to cause conformational changes that render the 

catalytic domains of IKKα/β active (Hayden and Ghosh, 2008). Nevertheless, tumour-

specific somatic mutations of IKKβ have been recently reported which result in its 

constitutive activation independently of the T-loop phosphorylation (Kai et al., 2014). For 

example, K171E or K171T mutation of IKKβ, originally found in malignancies such as 

splenic marginal zone B-cell lymphoma (Rossi et al., 2011, 2012) and multiple myeloma 

(Chapman et al., 2011), were recently shown to render the IKKβ constitutively active 

without a requirement for activation loop phosphorylation. It has been proposed that 

these mutations mimic the structural alterations induced by the T-loop phosphorylation 

(Kai et al., 2014).  

Considering this information and that vFLIP can activate the IKK complex in the 

absence of upstream kinases, we asked whether phosphorylation of the catalytic IKKs 

were required for their activation by the vFLIP? In other words, could vFLIP-binding to 

NEMO cause activatory conformational changes on IKKα/β which bypass the 

requirement for the T-loop phosphorylation? To test this hypothesis, we examined 

whether dephosphorylation of the vFLIP-bound IKK complex would inhibit its catalytic 

capacity. 

To this end, we immunoprecipitated the active IKK complexes from vFLIP and 

p22-FLIP-transduced HEK293T cells and washed them thoroughly with high salt wash 

buffer. The immune complexes were then treated with increasing concentrations of 

lambda protein phosphatase (LPP or λPP), an Mn2+-dependent protein phosphatase with 

activity towards serine, threonine and tyrosine residues (Zhuo et al., 1993). The in vitro 

phosphatase assay was terminated by adding high concentrations of Na3VO4 (25mM). 

Subsequently, the immunoprecipitates were washed three times to remove any remaining 

LPP and subjected to IKK kinase assay.  

As shown in Figure 5.4A, pre-treatment with LPP led to a marked decrease in the 

activity of both cFLIP and vFLIP-activated IKKs; the kinase activity levels inversely 
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correlated with the amount of LPP used. This implies that both activators require the 

phosphorylataion of the T-loop of the catalytic IKKs to switch on the IKK complex. 

However, a major caveat to this assumption is that LPP may also remove phosphate 

groups from other phospho-acceptor residues in the IKKα, β and γ, with yet unidentified 

activatory roles. 

As mentioned previously, mutation of the IKK activation loop serines to alanine 

(IKKβ S177/S181AA) impedes the kinase activity while their replacement with 

phosphomimetic glutamate residues (IKKβ S177/S181EE) renders the kinase 

constitutively active (Mercurio et al., 1997). In extension to the previous experiment, we 

also tested whether mutations of the T-loop phosphorylation sites would alter the vFLIP-

induced IKK activity. To do this, we overexpressed vFLIP in HEK293T cells in 

combination with either WT IKKβ, or IKKβ SSAA, or IKKβ SSEE. Empty vector-

transfected and TNFα-treated cells were used as negative and positive controls, 

respectively. NF-κB activity was then measured by means of a co-transfected NF-κB-

responsive luciferase reporter system.  

Similar to the result with TNFα stimulation, vFLIP-induced NF-κB activation was 

lower when co-expressed with IKKβ SSAA, as compared with the WT IKKβ, while it was 

higher when co-transfected with the active mutant, IKKβ SSEE (Figure 5.4B). Overall, 

these data suggest that vFLIP-mediated activation of the IKK relies on phosphorylation 

of the activation loop serines.  

It has to be noted that even the overexpression of the IKKβ SSAA causes a 

considerable NF-κB activation in cells. This is presumably caused by enforced 

oligomerisation or re-orientation of the endogenous IKKα/β by the overexpressed 

mutant counterparts. Therefore, precise investigation of this hypothesis would require 

usage of double IKKα/β KO cells to overcome the problem of inducing high basal NF-

κB activation which may mask the vFLIP-induced signals.  
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Figure 5.4. Phosphorylation of the IKKs at their activation loop is required for 

vFLIP-mediated activation of the IKK complex. A) HEK293T cells seeded in 6-well 

plates (2x106/well) were transfected with either 1µg of an empty expression vector, 3µg of 

pCDNA3-vFLIP, or 1µg of   pCDNA3-p22FLIP. Forty-eight hours later, cells were lysed 

in 1ml of kinase lysis buffer and immunoprecipitated with an antibody against NEMO 

(0.5µg/sample). The immune complexes were then washed twice with high salt wash 
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buffer and two additional times with kinase wash buffer lacking the phosphatase 

inhibitors. Next, the anti-NEMO immunoprecipitates were incubated in phosphatase 

reaction buffer (total volume of 50 µl) containing increasing concentrations of LPP (4, 40 

and 400 U) for 30 min at 30 oC. The reactions were terminated by adding high 

concentrations of Na3VO4 (25 mM) and NaF (20 mM). Finally, the immune complex were 

washed twice with kinase wash buffer and subjected to IKK kinase assay.  B) HEK293T 

cells were transiently transfected with 1µg of an empty vector or pCDNA3-vFLIP in 

combination with 300ng of WT or mutant versions of IKKβ. NF-κB activity was 

measured 24 hours later by means of a co-transfected NF-κB reporter system (400ng of 

pGL.IgK and 100ng of pRL.TK). The results shown are representative of two 

independent experiments. IKKβAA: IKKβ S177/S181AA, and IKKβEE: IKKβ 

S177/S181EE. 

 

 

5.3.4 Dimeric vFLIP-vFLIP interactions within the vFLIP-IKK signalosome are 

crucial for vFLIP activation of IKK 

We previously demonstrated that vFLIP can directly activate IKK, in the absence of 

upstream kinases. It was also shown that that vFLIP is able to activate C-terminally 

truncated NEMO (NEMO ∆254). Together, this led us to hypothesise that binding to 

vFLIP, might induce conformational changes in the NEMO which then transmit to the 

N-terminal IKKα/β binding regions, leading to changes in proximity or conformation of 

the catalytic IKKs, favouring their activation by trans-autophosphorylation. To investigate 

this hypothesis, we collaborated with Tracey Barrett (School of Crystollography, Birkbeck 

College) and Chris Kay (Institute of Structural and Molecular Biology, UCL) who 

compared the solution structure of free and vFLIP-bound NEMO using electron 

paramagnetic resonance (EPR). The EPR data revealed that apart from a localised 

twisting near the vFLIP-binding region, NEMO does not undergo major structural 

alterations in response to binding, excluding the induction of conformational changes as a 

potential mechanism of vFLIP-mediated IKK activation (manuscript submitted).  

In addition to conformational change-induced activation, oligomerisation of IKK 

has been also proposed as a means of its activation (See 1.2). The recent crystal structure 

of the human IKKβ suggested a head-to-head orientation of kinase domains for trans-

autophosphorylation that arises through oligomerisation (Figure 5.5A). We, therefore, 

wondered whether vFLIP could lock IKKβ subunits into this configuration, promoting 
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their oligomerisation-induced activation. To address this question, Tracey Barrett re-

analysed the X-ray diffraction data from the vFLIP-NEMO crystals. She found that 

vFLIP-NEMO complexes pack against one another throughout the crystal to generate 

higher order oligomers whose configuration could bring the catalytic IKKs into close 

proximity, leading to their cross-phosphorylation (Figure 5.5B).  

A close inspection of their arrangement suggests that these oligomers are stabilised 

by both vFLIP-vFLIP and vFLIP-NEMO interactions (Figure 5.6A and B). The latter 

interactions occur at two distinct vFLIP-NEMO interfaces: here referred to as interface1 

and interface2 (Figure 5.6C). In chapter 3, we demonstrated that mutations such as 

NEMO F238/D242RR which disrupt the interface1 interactions completely abolish the 

formation of vFLIP-NEMO complexes and the subsequent IKK activation. 

To gain further insights into the mechanism of IKK activation used by vFLIP, we 

introduced mutations in vFLIP that would disrupt interactions involved in its dimerisation 

interface (D102R and E104R), or the vFLIP-NEMO interface2 (R12E) or both 

(R12E/E104R). As shown in Figure 5.7A, while none of these mutations affected the 

ability of vFLIP to form complex with NEMO, they all showed a considerably reduced 

capacity to activate IKK, as revealed by immunoblotting against pIκBα. Consistently, the 

NF-κB luciferase activities induced by vFLIP mutants were significantly lower as 

compared with the WT vFLIP (Figure 5.7B). In summary, these preliminary data 

demonstrate the importance of vFLIP-vFLIP and vFLIP-NEMO interactions that are 

required for the assembly of the higher order oligomers, suggesting the multimerisation-

induced IKK activation as a possible mechanism of action utilised by the KSHV vFLIP. 
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Figure 5.5. Multimerisation of the vFLIP-NEMO complexes within the crystal. A) 

Human IKKβ dimers adopt open conformations that permit higher order oligomerisation 

within the crystal.  A separate colour has been assigned to ribbon diagram of each IKKβ 

subunit. Association of two neighbouring IKKβ dimers gives rise to two unique 

intersubunit interfaces: (i) the V-shaped interface and (ii) the anti-parallel interface. Within 

the higher order complex, neighbouring tetrameric IKKβ assemblies interact 
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symmetrically in a way that they contact one another through their V-shaped interfaces 

and two kinase domains (KD) are positioned within close proximity to one another, 

facilitating for their trans-autophosphorylation . Reproduced from (Polley et al., 2013). B) 

Within the vFLIP-NEMO crystal, there is an oligomer consistent with the head-to-head 

orientation of IKKβ subunits observed in (A). Courtesy of Dr. Tracey Barret. 
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Figure 5.6. Interactions involved in the formation of higher order vFLIP-NEMO 

assemblies. A) Three interaction interfaces are detected within the vFLIP-NEMO 

crystals. These include two vFLIP-NEMO contact regions (here referred to as interface 1 

and 2) and a dimeric vFLIP-vFLIP contact interface. The vFLIP-NEMO interaction 

interface1 has been discussed previously in Section 3.1.2. B) The vFLIP-vFLIP 

interactions are mediated by salt bridges between R108, D102 and D17 of one monomer 

with E104 and R111 of a second vFLIP monomer (form an adjacent vFLIP-NEMO 

complex). This interaction region is in a close proximity to vFLIP-NEMO interaction 

interface2 . C) The intermolecular contacts within the vFLIP-NEMO interaction interface 

(2) include a network of salt bridges between E222, Q208 and Q217 of NEMO and R12, 

R43 and E9 of vFLIP, respectively. 
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Figure 5.7. Mutations in the vFLIP-vFLIP and vFLIP-NEMO(2) interaction 

interfaces impair the vFLIP-induced activation of IKK. A) HEK293T cells seeded in 
6-well plates (2x106 cells/well) were transfected with 1µg of pCDNA3 vectors encoding 
WT vFLIP or the mutant versions: vFLIP R12E, or R12E/E104R, or D102/E104RR. 
Forty-eight hours later, whole cell lysates were extracted and subjected to 
immunoprecipitation (IP) with anti-NEMO (N) or an isotype-matched control IgG (I), 
followed by immunoblotting (IB) with the indicated antibodies. While none of the 
mutations affected the ability of vFLIP to form complex with NEMO, they all showed a 
considerably reduced capacity to activate IKK, as revealed by reduced levels of IκBα 
phosphorylation. B) 2x105  HEK293T cells were co-transfected with an NF-κB luciferase 
reporter construct (300ng/well) and a Renilla Luc reporter vector (100ng/well) along with 
an empty vector or pCDNA3 vectors (500ng/well) expressing the WT and mutant 
versions of the vFLIP. NF-κB activity was measured 24 hours later, as described 
previously. Results shown are representative of three independent experiments, 
performed in triplicates. Error bars indicate SD of the mean values compared by two-
tailed unpaired Student’s t-test; * p<0.05, ** p<0.01 and *** p<0.001. 
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5.3.5 A stapled peptide derived from HLX2 region of NEMO can efficiently block 

vFLIP-binding to IKK and its subsequent activation 

The crystal structure of the vFLIP-NEMO complex revealed that a very important 

aspect of the vFLIP-mediated IKK activation is the recognition of α-helical structure of 

the NEMO HLX2 by two clefts in the vFLIP DED2 (see 3.1.2). It was then evident that 

further characterisation of the biochemical and structural traits of the complex would 

require strategies to simulate the vFLIP-NEMO interactions. In order to achieve this goal, 

Tracey Barrett in collaboration with David Selwood (Division of Medicine, UCL) 

designed a stapled peptide containing the minimal vFLIP-binding sequence of the NEMO 

(amino acids 226-247) (Figure 5.8A). Stapled peptides (SP) incorporate a hydrocarbon 

cross-linker or “staple” which forces them to maintain their natural α-helical shape. 

Therefore, these peptides retain their ability to bind to target proteins and serve as 

valuable molecular tools to interrogate the native protein-protein interactions (Bernal and 

Katz, 2014; Walensky et al., 2004).  

Structural studies by Tracey Barrett’s group indicated that interactions between 

stapled NEMO peptide and vFLIP directly mimetic of those involving NEMO and 

extend to conservation of the NEMO-NEMO dimer interface (Figure 5.8B and C). In 

keeping with these findings, preliminary ITC (isothermal titration calorimetry) data 

suggested a vFLIP-binding affinity for stapled peptide comparable to that of NEMO. It 

was also shown that the stapled NEMO helix could competitively inhibit formation of 

vFLIP-NEMO complexes in solution (Tracey Barrett, unpublished data). Based on these 

findings, we set out to investigate whether this peptide could also block the vFLIP-

induced IKK activation. 

To test this, we extracted cell lysates of the WT or vFLIP-expressing Jurkat cells 

and incubated them with stapled NEMO peptide (50 µM) or DMSO (as negative control) 

at 4 oC overnight. We then immunoprecipitated IKK from cell extracts using an anti-

NEMO antibody and measured its ability to phosphorylate recombinant IκBα. Figure 5.9 

shows that stapled peptide not only disrupted the vFLIP-NEMO binding in cell lysates 

but also repressed the vFLIP-induced, but not basal, IKK activities.  

Because of their enhanced cell permeability and resistance to protease degradation, 

stapled peptides may be cell permeable and are therefore possible therapeutics. More 

experiments are required to confirm that the stapled NEMO peptide does not have any 

non-specific effects on physiological cytokine-induced IKK signalling. In addition, the in 
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vivo efficacy of the peptide remains to be examined. Nevertheless, our preliminary data 

suggests that this peptide could have therapeutic potential against KS-induced tumours. 

Clearly also the peptide is a useful experimental tool as we can demonstrate that removal 

of vFLIP from the IKK complex reverses its activation. 

 

Figure 5.8. Crystal structure of the stapled NEMO peptide. A) Primary sequence and 

α-helical structure of the NEMO SP. The all-hydrocarbon staple has been incorporated 

into the peptide sequence at the i, i+4 positions, highlighted in violet. B) The GB1-

vFLIP-NEMO interface. GB1-vFLIP is represented as stick model and NEMO is shown 
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as brown ribbon representation. C) Interactions between SP and vFLIP directly mimic of 

those involving NEMO (right panel) and extend to conservation of the NEMO-NEMO 

dimer interface. This is revealed by superimposition of vFLIP-bound SP and NEMO 

dimers (left panel). 

 

Figure 5.9. The stapled NEMO peptide efficiently inhibits the vFLIP-induced IKK 

activation by blocking the interaction of vFLIP with NEMO. Cytoplasmic extracts 

of wild-type or vFLIP-expressing Jurkat cells (2x106) were prepared and incubated with 

the staple peptide (SP) or DMSO at 4 oC overnight. Subsequently, IKK complexes were 

immunoprecipitated using an anti-NEMO antibody (0.5µg/sample) and subjected to an in 

vitro kinase assay as described previously. The same membrane was immunoblotted using 

the indicated antibodies to assess the vFLIP-NEMO interactions and to ensure of equal 

protein loading. The relative activities of the IKK complex are expressed as the intensity 

of the pGST-IκBα band, normalised to the levels of IKK complex as detected by the anti-

IKKα/β antibody. 
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5.4 Summary 

The results in this chapter suggest a possible mechanism for vFLIP activation of 

IKK. We propose that vFLIP binding to NEMO causes oligomerisation of IKK 

complexes leading to trans-autophosphorylation of the kinase subunits and activation. 

This is not implausible as direct activation of IKK by addition of free ubiquitin chains has 

been reported, which could reflect a similar mechanism (Xia et al., 2009). A recent study 

demonstrates that TAK1 phosphorylation of S177 primes IKK for trans-

autophosphorylation on S181 in the T-loop (Zhang et al., 2014). Further analysis will be 

necessary to determine whether vFLIP activation causes both S177 and S181 

phosphorylation. 

There is also a wealth of further information that can be obtained from using the in 

vitro activation system where recombinant vFLIP can be added to purified IKK. A more 

suitable purification system for the kinase would involve a cleavable tag, and the kinase 

purity could then be established using Mass Spectrometry. Some specificity analyses using 

vFLIP and NEMO mutants are necessary. It will also be possible to measure the rate of 

activation, the conditions required for activation (pH, temperature, ionic composition) 

and also whether the stapled peptide can reverse vFLIP activation of purified IKK. One 

might predict that the latter will not occur rapidly if the kinase is sufficiently pure as a 

phosphatase will be required. As stated in the introduction it may be possible eventually to 

reconstitute a recombinant kinase of IKKα/β, NEMO and HSP90 and then examine 

activation by recombinant vFLIP. 

Finally, the demonstration that the vFLIP-NEMO interaction can be inhibited by a 

stapled peptide is an encouraging start to the development of a therapy for Kaposi’s 

sarcoma. The next steps will be to examine whether the existing peptide is cell permeable, 

and if so whether it reduces the viability of KS transformed B cell lines. 
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6.1 Insight into vFLIP activation of IKK 

My experiments demonstrated that vFLIP activation of IKK does not require the 

upstream kinases TAK1 or MEKK3. This led to the hypothesis that vFLIP binding to 

NEMO might cause a conformational change in the kinase complex leading to 

intramolecular autophosphorylation of the IKKα/β subunits. We then collaborated with 

Dr. Tracey Barrett and Prof. Chris Kay to solve the solution structure of NEMO, in the 

absence or presence of vFLIP, by electron paramagnetic resonance (EPR) (manuscript 

submitted). This showed that NEMO remains a parallel alpha-helical coiled-coil when 

vFLIP binds, with vFLIP causing only local perturbation in the structure. Polley et al., 

then published a structure for human IKKβ, which showed that this kinase subunit of 

IKK can form oligomers in the crystal and in solution (Polley et al., 2013). They 

demonstrated the presence of kinase domain interactions within these oligomers, that 

were important both for phosphorylation of the activation loop in trans, and kinase 

activation (Polley et al., 2013). This led Dr. Tracey Barrett to revisit the X-ray diffraction 

data from the vFLIP/NEMO crystals. She found signals corresponding to vFLIP-vFLIP 

interactions, causing oligomerisation of the vFLIP-NEMO complexes. The parallel 

configuration of these oligomers could bring IKKα/β subunits into proximity similar to 

that detected by Polley et al, which could lead to intermolecular activation by 

phosphorylation of the activation loop in trans. My preliminary data shows that mutation 

of residues that are involved in the vFLIP-vFLIP interactions inhibits vFLIP activation of 

IKK in vivo. 

This provides a logical new hypothesis to be further tested. Previous work from our 

lab and others showed that IKK was detected in cell lysate as a high molecular weight 

complex by gel filtration (Field et al., 2003). Our lab showed that vFLIP is incorporated in 

a saturable manner into this complex and that vFLIP does not change the size of the 

complex (Field et al., 2003).  When vFLIP was immunoprecipitated and the proteins in 

the IP were identified we found only vFLIP, IKKα, β and γ and HSP90 (Field et al., 

2003). While these experiments were not quantitative, similar amounts of the five proteins 

were detected. Therefore it seems logical that IKK exists as a multimer: perhaps some 

level of intermolecular activation by autophosphorylation occurs in the basal state, 

accounting for its basal activity. When vFLIP is incorporated into this multimer it brings 

at least some of the IKK subunits into an optimal configuration for intermolecular 

activation by phosphorylation of the activation loop in trans. 
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To further test this hypothesis I intend to further analyse vFLIP mutants in the 

predicted dimerisation surfaces for their ability to dimerise, bind to IKK and activate IKK 

in vitro and in vivo. I can also analyse the IKKβ dimerisation mutants reported by Polley et 

al., for their ability to respond to vFLIP. These data may also be extended to HTLV-1 

Tax. While purification of recombinant Tax has not been possible, I have demonstrated 

that Tax does not require TAK1 or MEKK3 to activate IKK and that it can act on an N-

terminal fragment of NEMO. Tax dimerisation has been reported (Fryrear et al., 2009; Jin 

and Jeang, 1997; Tie et al., 1996) and it would therefore be interesting to examine Tax 

dimerisation mutants for their ability to activate IKK. Finally, in the long term, it would 

be of great value to reconstitute a recombinant IKK that can respond to vFLIP. 

6.2 Insight into cFLIP activation of IKK 

It has been reported that a proteolytic fragment of both cFLIPL and cFLIPS, p22-

cFLIP, could bind directly to NEMO and activate IKK (Golks et al., 2006). Indeed when 

our lab, with collaborators, published the crystal structure of vFLIP bound to NEMO 

they proposed that p22-cFLIP might bind to the same site (Bagnéris et al., 2008). My 

experiments showed a different and complex mechanism of activation of IKK by cFLIP 

family members. One common feature between all of them was that they required 

ubiquitin recognition by the ubiquitin-binding domain of NEMO and also the upstream 

kinase TAK1.  

Activation of IKK by overexpression of cFLIPL required the linear ubiquitination 

complex LUBAC. This is a similar mechanism in essence to that utilised by TLRs and 

cytokines (Emmerich et al., 2013; Gerlach et al., 2011; Sasaki et al., 2013). The recent 

publication of Fujita et al suggests that LUBAC interacts specifically with NEMO, leading 

to NEMO’s linear ubiquitination (Fujita et al., 2014). It has not yet been established how 

this leads to TAK1 activation of IKK in molecular terms, though ubiquitin chains can 

directly activate TAK1 (Xia et al., 2009). I found that the activity of IKK 

immunoprecipitated from TNF-treated cells appeared higher than that of vFLIP 

expressing cells (Figure 3.5A). Perhaps the LUBAC/TAK1 activation pathway results in 

transient phosphorylation of all the IKK enzymes with the high molecular weight 

multimer, whereas vFLIP does not? 
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In the case of cFLIPS and p22-cFLIP I found a novel activation mechanism of 

IKK, involving a FLIP/FADD/RIP1 complex. One question that remains is whether 

these FLIP variants cause ubiquitination of RIP1, and if so, by what mechanism? I will 

start to address this by immunoprecipitating RIP1 (as in Figure 4.3) and immunoblotting 

with antibodies against K63 and linear ubiquitin linkages. If this is the case then it 

provides an explanation for why cFLIPs and p22-cFLIP cause activation of IKK via 

ubiquitin recognition by the ubiquitin-binding domain of NEMO, but again does not 

address how TAK1 is recruited. Note that I also found that the activity of IKK 

immunoprecipitated from p22-FLIP expressing cells appeared higher than that of vFLIP 

expressing cells (Figure 3.5A), again suggesting more optimal phosphorylation of the 

IKKα/β activation loop.  

RIP1 is a kinase which forms filamentous structures, together with RIP3 kinase, 

which are involved in TNF-induced cell necroptosis (He et al., 2009; Zhang et al., 2009a). 

However, a soluble complex between the recombinant death domains of FADD and 

RIP1 has also been prepared (Park et al., 2013). Presumably cFLIPS and p22-cFLIP could 

interact with FADD via DED homotypic interactions, perhaps in a trimeric complex with 

RIP1. Further mutational analysis of the three proteins could be used to determine 

whether this is the case. It could also be possible to prepare a recombinant 

RIP1/FADD/cFLIP complex which could be ubiquitinated then used to activate IKK in 

cell lysate. This might provide a physiological in vitro method of ubiquitin-dependent IKK 

activation. 

6.3 Therapeutic importance of our findings in viral and non-viral 

tumours 

The expression of cFLIP proteins is tightly regulated in normal cells. At the 

transcriptional level cFLIP isoforms are upregulated by NF-κB activation, so they 

positively regulate their own expression (Kreuz and Siegmund, 2001; Micheau et al., 

2001). cFLIPS is particularly more prone to ubiquitination and displays a considerably 

shorter half-life compared to cFLIPL (Poukkula et al., 2005); the stability of cFLIPR is 

similar to cFLIPS (Golks et al., 2005). p22-FLIP is more stable than cFLIPS as it lacks this 

C-terminal sequence (Golks et al., 2006). By using over-expression of cFLIP in our 

experiments we have over-ridden some of these control mechanisms, there is however 

evidence for overexpression of cFLIP isoforms in tumour cells (See 1.3.7), which is the 

situation that we have mimicked.  
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Upregulation of cFLIP expression has been reported in many types of human solid 

tumours and lymphomas, and there is evidence that the level of cFLIP may determine 

clinical outcome (Ullenhag et al., 2007; Valente et al., 2006; Valnet-Rabier et al., 2005). 

cFLIP inhibition or down-regulation has therefore been proposed as a potential cancer 

therapy, with the assumption that this will operate by sensitising tumour cells to Fas, 

TRAIL- or TNF-induced cell death [reviewed in (Safa and Pollok, 2011)]. However, 

tumour cells may also be dependent on cFLIP activation of NF-κB for their survival 

(DiDonato et al., 2012; Karin et al., 2002). Indeed, it is now well-established that the 

tumourigenic capacity of the KSHV substantially relies on the vFLIP-mediated 

constitutive activation of IKK, leading to upregulation of NF-κB-dependent survival 

genes (Ballon et al., 2011; Guasparri et al., 2004; Keller et al., 2006). 

Accumulating evidence indicate that in different malignancies, different cFLIP 

isoforms are overexpressed [reviewed in (Shirley and Micheau, 2010)]. While, for example, 

cFLIPL is mainly upregulated in B-cell chronic lymphocytic leukaemia (B-CLL), tissue 

samples from lung adenocarcinoma patients show increased levels of cFLIPS, but not 

cFLIPL (MacFarlane et al., 2002; Olsson et al., 2001; Salon et al., 2006). Hence, 

understanding the isoform-specific mechanism of action of the FLIP proteins is critical 

for designing novel targeted therapeutics against the associated tumours.  

Specific inhibitors of IKK (In particular IKKβ) that can selectivity block NF-κB 

activation are being developed by multiple pharmaceutical companies (Karin et al., 2004). 

However, due to global effects of the NF-κB pathway in cellular functions, the clinical 

utility of such therapeutic agents is likely to be limited by their potential toxicity. For 

instance, in vivo administration of ML120B, a small molecule selective inhibitor of IKKβ, 

resulted in a rapid depletion of T and B cells (Nagashima et al., 2006). Taken together, 

therefore, we believe that our dissection of the different mechanisms of NF-κB activation 

by cFLIP variants and KSHV vFLIP (Figure 6.1) will allow the development of reagents 

to inhibit these pathways selectively and thereby assess their role in FLIP-driven 

tumourigenesis.  
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Figure 6.1. Our working model of IKK activation by the KSHV vFLIP and cellular 

FLIPs. All cFLIP isoforms critically depend on UBAN domain of NEMO and the IKK- 

activating enzyme, TAK1 for their activation of IKK. p22-FLIP can be generated by 

procaspase-8 cleavage of both cFLIPL and cFLIPS isoforms. The short variants of cFLIP, 
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cFLIPS and p22-FLIP, associate with a preformed RIP1/FADD complex to signal to 

IKK. It is possible that RIP1-bound non-degradative polyubiquitin chains connect these 

cFLIP variants to UBAN domain of NEMO. Alternatively, the RIP1/FADD/cFLIP 

complexes may recruit E3 ligases which can then ubiquitinate NEMO or another 

unidentified protein that is capable of binding to and activating the NEMO UBAN. In 

contrast to short variants, cFLIPL-mediated activation of IKK depends on LUBAC and 

can be inhibited by the activity of the deubiquitinase, CYLD. KSHV vFLIP, unlike 

cellular FLIPs, does not require intermediate signalling components upstream of IKK. 

Instead, vFLIP-induced activation of IKK is most likely to occur through oligomerisation 

and re-orientation of IKK complexes, leading to formation of higher order complexes 

which would allow for trans-autophosphortylation of the catalytic IKKα/β subunits. 
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