UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

The synaptic connections of pyramidal neurones and interneurones in rat and cat neocortex.

Bannister, A.P.; (2004) The synaptic connections of pyramidal neurones and interneurones in rat and cat neocortex. Doctoral thesis , University of London. Green open access

[thumbnail of U602639.pdf] Text
U602639.pdf

Download (20MB)

Abstract

The layer 4 neurones of the mammalian primary sensory neocortex comprise diverse functional components for the first stage of cortical sensory processing. Dual intracellular recordings of synaptically connected pairs of neurones with biocytin-filling were used to study intra-laminar layer 4 connections in adult cat and rat slices. Interestingly, all excitatory cells involved in intralaminar layer 4 connections were regular spiking despite burst firing cells comprising 37% of the population recorded. Neuronal morphology and synaptic properties were similar in both species, as were the probabilities of finding connections; 1 in 43 for pyramid to pyramid, 1 in 21 for pyramid to interneurone and 1 in 12 for interneurone to pyramid (cat and rat data combined). Pyramid to pyramid connections generated EPSPs 1.33 0.9mV in amplitude (mean SD), with rise times of 1.71 0.83ms and half width 14.67 7.1ms. All EPSPs recorded in excitatory cells and in parvalbumin immuno-positive interneurones exhibited depression, the second and subsequent EPSPs in trains being smaller in amplitude than the first. Fluctuation analysis indicated that this depression was presynaptically mediated. The interneuronal EPSPs recorded in this study, were briefer (rise times 0.63 0.26ms and half width 5.25 2.85ms) than those recorded in pyramidal cells. Two interneurones that were immuno-negative for parvalbumin received EPSPs that were facilitating, second and subsequent EPSPs in trains being significantly larger than the first. Again, fluctuation analysis indicated that this facilitation was presynaptically mediated. Possible branch point failure of axonal conduction, feed-forward inhibition and post-tetanic potentiation were observed at some excitatory connections in layer 4. In addition, novel evidence for electrical gap junctions between adult pyramidal cells was obtained in one dual recording in which current injections into an impaled layer 3 pyramidal cell elicited full action potentials and 'spikelets', both of which elicited EPSPs in a layer 5 pyramidal cell.

Type: Thesis (Doctoral)
Title: The synaptic connections of pyramidal neurones and interneurones in rat and cat neocortex.
Identifier: PQ ETD:602639
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Thesis digitised by Proquest
UCL classification: UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences > Neuro, Physiology and Pharmacology
URI: https://discovery.ucl.ac.uk/id/eprint/1446714
Downloads since deposit
84Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item