UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Optimisation of the digital radiographic imaging of suspected non-accidental injury.

Offiah, A.; (2005) Optimisation of the digital radiographic imaging of suspected non-accidental injury. Doctoral thesis , University of London. Green open access

[thumbnail of U592185.pdf] PDF
U592185.pdf

Download (13MB)

Abstract

Aim: To optimise the digital (radiographic) imaging of children presenting with suspected non-accidental injury (NAI).;Objectives: (i) To evaluate existing radiographic quality criteria, and to develop a more suitable system if these are found to be inapplicable to skeletal surveys obtained in suspected NAI. (ii) To document differences in image quality between conventional film-screen and the recently installed Fuji5000R computed radiography (CR) system at Great Ormond Street Hospital for Children, (iii) To document the extent of variability in the standard of skeletal surveys obtained in the UK for suspected NAI. (iv) To determine those radiographic parameters which yield the highest diagnostic accuracy, while still maintaining acceptable radiation dose to the child, (v) To determine how varying degrees of edge-enhancement affect diagnostic accuracy. (vi) To establish the accuracy of soft compared to hard copy interpretation of images in suspected NAI.;Materials and Methods: (i) and (ii) Retrospective analysis of 286 paediatric lateral spine radiographs by two observers based on the Commission of European Communities (CEC) quality criteria, (iii) Review of the skeletal surveys of 50 consecutive infants referred from hospitals throughout the United Kingdom (UK) with suspected NAI. (iv) Phantom studies. Leeds TO. 10 and TO. 16 test objects were used to compare the relationship between film density, exposure parameters and visualisation of object details, (iv) Clinical study. Anteroposterior and lateral post mortem skull radiographs of six consecutive infants were obtained at various exposures. Six observers independently scored the images based on visualisation of five criteria, (v) and (vi) A study of diagnostic accuracy in which six observers independently interpreted 50 radiographs from printed copies (with varying degrees of edge-enhancement) and from a monitor.;Results: The CEC criteria are useful for optimisation of imaging parameters and allow the detection of differences in quality of film-screen and digital images. There is much variability in the quality and number of radiographs performed as part of skeletal surveys in the UK for suspected NAI. The Leeds test objects are either not sensitive enough (TO. 10) or perhaps over sensitive (TO. 16) for the purposes of this project. Furthermore, the minimum spatial resolution required for digital imaging in NAI has not been established. Therefore the objective interpretation of phantom studies is difficult. There is scope for reduction of radiation dose to children with no effect on image quality. Diagnostic accuracy (fracture detection) in suspected NAI is generally low, and is not affected by image display modality.;Conclusions: The CEC quality criteria are not applicable to the assessment of clinical image quality. A national protocol for skeletal surveys in NAI is required. Dedicated training, close supervision, collaboration and consistent exposure of radiologists to cases of NAI should improve diagnostic accuracy. The potential exists for dose reduction when performing skeletal surveys in children and infants with suspected NAI. Future studies should address this issue.

Type: Thesis (Doctoral)
Title: Optimisation of the digital radiographic imaging of suspected non-accidental injury.
Identifier: PQ ETD:592185
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Thesis digitised by ProQuest. Sensitive information has been removed from the ethesis
UCL classification: UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Engineering Science Faculty Office > Institute of Healthcare Engineering
URI: https://discovery.ucl.ac.uk/id/eprint/1444875
Downloads since deposit
281Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item