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Abstract 23 

 24 

Perception can be described as a process of inference, integrating bottom-up sensory inputs and top-25 

down expectations. However, it is unclear how this process is neurally implemented. It has been 26 

proposed that expectations lead to pre-stimulus baseline increases in sensory neurons tuned to the 27 

expected stimulus, which in turn affects the processing of subsequent stimuli. Recent fMRI studies have 28 

revealed stimulus-specific patterns of activation in sensory cortex as a result of expectation, but this 29 

method lacks the temporal resolution necessary to distinguish pre- from post-stimulus processes. Here, 30 

we combined human MEG with multivariate decoding techniques to probe the representational content 31 

of neural signals in a time-resolved manner. We observed a representation of expected stimuli in the 32 

neural signal shortly before they were presented, demonstrating that expectations indeed induce a pre-33 

activation of stimulus templates. The strength of these pre-stimulus expectation templates correlated 34 

with participants’ behavioural improvement when the expected feature was task-relevant. These results 35 

suggest a mechanism for how predictive perception can be neurally implemented. 36 

  37 
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Significance Statement 38 

 39 

The way we perceive the world is partly shaped by what we expect to see at any given moment. 40 

However, it is unclear how this process is neurally implemented. Recently, it has been proposed that the 41 

brain generates stimulus templates in sensory cortex to pre-empt expected inputs. Here, we provide 42 

evidence that a representation of the expected stimulus is present in the neural signal shortly before it is 43 

presented, demonstrating that expectations can indeed induce the pre-activation of stimulus templates. 44 

Importantly, these expectation signals resembled the neural signal evoked by an actually presented 45 

stimulus, suggesting that expectations induce similar patterns of activations in visual cortex as sensory 46 

stimuli. 47 

 48 

\body  49 
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Introduction 50 

 51 

Perception is heavily influenced by prior knowledge (1–3). Accordingly, many theories cast perception as 52 

a process of inference, integrating bottom-up sensory inputs and top-down expectations (4–6). However, 53 

it is unclear how this integration is neurally implemented. It has been proposed that prior expectations 54 

lead to baseline increases in sensory neurons tuned to the expected stimulus (7–9), which in turn leads 55 

to improved neural processing of matching stimuli (10, 11). In other words, expectations may induce 56 

stimulus templates in sensory cortex, prior to the actual presentation of the stimulus. Alternatively, top-57 

down influences in sensory cortex may exert their influence only after the bottom-up stimulus has been 58 

initially processed, and the integration of the two sources of information may become apparent only 59 

during later stages of sensory processing (12). 60 

The evidence necessary to distinguish between these hypotheses has been lacking. fMRI studies 61 

have revealed stimulus-specific patterns of activation in sensory cortex as a result of expectation (9, 13), 62 

but this method lacks the temporal resolution necessary to distinguish pre- from post-stimulus periods. 63 

Here, we combined MEG with multivariate decoding techniques to probe the representational content 64 

of neural signals in a time-resolved manner (14–17). The experimental paradigm was virtually identical 65 

to the ones employed in our previous fMRI studies that studied how expectations modulate stimulus-66 

specific patterns of activity in the primary visual cortex (9, 11). We trained a forward model to decode 67 

the orientation of task-irrelevant gratings from the MEG signal (18, 19), and applied this decoder to trials 68 

in which participants expected a grating of a particular orientation to be presented. This analysis 69 

revealed a neural representation of the expected grating that resembled the neural signal evoked by an 70 

actually presented grating. This representation was present already shortly before stimulus presentation, 71 

demonstrating that expectations can indeed induce the pre-activation of stimulus templates.  72 
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Results 73 

 74 

Participants (n=23) were exposed to auditory cues that predicted the likely orientation (45° or 135°) of 75 

an upcoming grating stimulus (Fig. 1A-B). This grating was followed by a second grating that differed 76 

slightly from the first in terms of orientation and contrast. In separate runs of the MEG session, 77 

participants performed either an orientation or contrast discrimination task on the two gratings (see 78 

Materials and Methods for details). 79 

 80 

Behavioural results. Participants were able to discriminate small differences in orientation (3.9° ± 0.5°, 81 

accuracy = 74.0% ± 1.6%, mean ± sem) and contrast (4.6% ± 0.3%, accuracy = 76.6% ± 1.5%) of the cued 82 

gratings. There was no significant difference between the two tasks in terms of either accuracy (F1,22 = 83 

3.38, p = 0.080) or reaction time (mean RT = 633 ms vs. 608 ms, F1,22 = 2.89, p = 0.10). Overall, accuracy 84 

and reaction times were not influenced by whether the cued grating had the expected or the 85 

unexpected orientation (accuracy: F1,22 = 0.21, p = 0.65; RT: F1,22 < 0.01, p = 0.93), nor was there an 86 

interaction between task and expectation (accuracy: F1,22 = 0.96, p = 0.34; RT: F1,22 = 0.09, p = 0.77). Note 87 

that these discrimination tasks were orthogonal to the expectation manipulation, in the sense that the 88 

expectation cue provided no information about the likely correct choice. 89 

During the grating localiser (Fig. 1C, see Materials and Methods for details), participants 90 

correctly detected 91.2% ± 1.6% (mean ± sem) of fixation flickers, and incorrectly pressed the button on 91 

0.2% ± 0.1% of trials, suggesting that participants were successfully engaged by the fixation task.  92 

 93 

MEG results – Localiser orientation decoding. As mentioned, participants were exposed to auditory 94 

cues that predicted the likely orientation of an upcoming grating stimulus. The question we wanted to 95 

answer was whether the expectations induced by these auditory cues would evoke templates of the 96 
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visual stimuli prior to the presentation of the gratings. To be able to uncover such sensory templates, we 97 

trained a decoding model to reconstruct the orientation of (task-irrelevant) visual gratings (Fig. 1C) from 98 

the MEG signal, in a time-resolved manner. First, we found that this model was highly accurate at 99 

reconstructing the orientation of such gratings from the MEG signal (Fig. 2). Grating orientation could be 100 

decoded across an extended period of time (from 40 to 655 ms post-stimulus, p < 0.001, and from 685 101 

to 730 ms, p = 0.018), peaking around 120-160 ms post-stimulus (Fig. 2C). Furthermore, in the period 102 

around 100 to 330 ms post-stimulus, orientation decoding generalised across time, meaning that a 103 

decoder trained on the evoked response at, for example, 120 ms post-stimulus could reconstruct the 104 

grating orientation represented in the evoked response around 300 ms, and vice versa (Fig. 2D). In other 105 

words, certain aspects of the representation of grating orientation were sustained over time. 106 

 107 

MEG results – Expectation induces stimulus templates. Our main question pertained to the presence of 108 

visual grating templates induced by the auditory expectation cues during the main experiment. 109 

Therefore, we applied our model trained on task-irrelevant gratings to trials containing gratings that 110 

were either validly or invalidly predicted, respectively (Fig. 3A). In both conditions, the decoding model 111 

trained on task-irrelevant gratings succeeded in accurately reconstructing the orientation of the gratings 112 

presented in the main experiment (valid expectation: cluster from training time 60 to 410 ms and 113 

decoding time 60 to 400 ms, p < 0.001, and from training time 205 to 325 ms and decoding time 400 to 114 

495 ms, p = 0.045; invalid expectation: cluster from training time 75 to 225 ms and decoding time 75 to 115 

330 ms, p = 0.0012, and from training time 250 to 360 ms and decoding time 195 to 355 ms, p = 0.027). 116 

If the cues induced sensory templates of the expected grating, one would expect these to be 117 

revealed in the difference in decoding between valid and invalidly predicted gratings (see Material and 118 

Methods for details of the subtraction logic). Indeed, this analysis demonstrated that the auditory 119 

expectation cues induce orientation-specific neural signals (Fig. 3A, bottom panel). These signals were 120 
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present already 40 ms before grating presentation, and extended into the post-stimulus period (from 121 

decoding time -40 to 230 ms, p = 0.0092, and from 300 to 530 ms, p = 0.016). Furthermore, these signals 122 

were uncovered when the decoder was trained on around 120 to 160 ms post-stimulus during the 123 

grating localiser (Fig. 3B), suggesting that these cue-induced signals were similar to those evoked by 124 

task-irrelevant gratings. In other words, the auditory expectation cues evoked orientation-specific 125 

signals that were similar to sensory signals evoked by the corresponding actual grating stimuli (Fig. S1A). 126 

In sum, expectations induced pre-stimulus sensory templates that influenced post-stimulus 127 

representations as well; invalidly expected gratings had to ‘overcome’ a pre-stimulus activation of the 128 

opposite orientation, while validly expected gratings were facilitated by a compatible pre-stimulus 129 

activation (Fig. S1B). The post-stimulus carryover of these expectation signals lasted throughout the trial 130 

(Fig. S1C). 131 

As in previous studies using a similar paradigm (11, 20), there was no interaction between the 132 

effects of the expectation cue and the task (orientation vs. contrast discrimination) participants 133 

performed (no clusters with p < 0.05; Fig. S2A). In other words, expectations evoked pre-stimulus 134 

orientation signals to a similar degree in both tasks (Fig. S2B). This suggests that influences of 135 

expectation on neural representations are relatively independent of the task-relevance of the expected 136 

feature, in line with our previous fMRI study (11). Note though that, unlike in that study, there was no 137 

significant modulation of the orientation signal by task-relevance (no clusters with p < 0.05, Fig. S2A). 138 

The reason for this lack of difference is unclear, although it should be noted that there was a trend 139 

towards participants having higher accuracy and faster reaction times (see above) on the contrast task 140 

than on the orientation task. This may suggest the two tasks were not optimally balanced in terms of 141 

difficulty, precluding a proper comparison of the effect of task set in the current study. 142 

In our previous fMRI study, we found a relationship between the effects of expectation on 143 

neural stimulus representations and performance on the orientation discrimination task. Specifically, 144 
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participants for whom valid expectations led to the largest improvement in neural stimulus 145 

representations, also showed the strongest benefit of valid expectations on behavioural performance 146 

during the orientation discrimination task (11). This relationship was absent for the contrast 147 

discrimination task, when grating orientation was task-irrelevant. The current study allowed us to test 148 

for a similar relationship, with an important extension: here, we could test whether neural pre-stimulus 149 

expectation signals are related to behavioural performance improvements. We quantified the decoding 150 

of the expected orientation just before grating presentation (-50 to 0 ms, training window 120 to 160 ms) 151 

and correlated this with the difference in task accuracy for valid and invalid expectation trials, across 152 

participants. This analysis revealed that participants with a stronger pre-stimulus reflection of the 153 

expected orientation in their neural signal also had a greater benefit from valid expectations on 154 

performance on the orientation task (r = 0.44, p = 0.035; Fig. 4, left panel). No such relationship was 155 

found for the contrast task, where the orientation of the gratings was not task-relevant (r = -0.13, p = 156 

0.55; Fig. 4, right panel). This is exactly the pattern of results we found in our previous fMRI study, but 157 

with the important extension that it is the pre-stimulus expectation effect that is correlated with 158 

behavioural performance, whereas the previous study did not have the temporal resolution to 159 

distinguish pre- from post-stimulus signals. 160 

In the current study, neural orientation signals were probed by applying a forward model that 161 

takes the noise covariance between MEG sensors into account (see SI Materials and Methods for 162 

details). This model was superior to a forward model that did not correct for the noise covariance (Fig. 163 

S3), suggesting that feature covariance is an important factor to take into account when applying 164 

multivariate methods to MEG data. Corroborating this notion, a two-class decoder that corrected for 165 

noise covariance (16) was able to reproduce our effects of interest (Fig. S4), demonstrating that the 166 

expectation effects do not depend on a specific analysis technique, as long as the covariance between 167 

MEG sensors is taken into account. 168 
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Finally, there was no difference in the overall amplitude of the neural response evoked between 169 

validly and invalidly expected gratings (no clusters with p < 0.4, Fig. S5). 170 

  171 
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Discussion 172 

 173 

Here, we show that expectations can induce sensory templates of the expected stimulus already before 174 

the stimulus appears. These results extend previous fMRI studies demonstrating stimulus-specific 175 

patterns of activation in sensory cortex induced by expectations, but which could not resolve whether 176 

these templates indeed reflected pre-stimulus expectations, or instead stimulus specific error signals 177 

induced by the unexpected omission of a stimulus (9, 13). Furthermore, the strength of these pre-178 

stimulus expectation signals correlated with the behavioural benefit of a valid expectation, when the 179 

expected feature (i.e., orientation) was task-relevant (11). These results suggest that valid expectations 180 

facilitate perception by allowing sensory cortex to prepare for upcoming sensory signals. As in a previous 181 

fMRI study using a very similar experimental paradigm (11), the neural effects of orientation 182 

expectations reported here were independent of the task-relevance of the orientation of the gratings, 183 

suggesting that the generation of expectation templates may be an automatic phenomenon. 184 

The fact that expectation signals were revealed by a decoder trained on physically presented 185 

(but task-irrelevant) gratings suggests that these expectation signals resemble activity patterns induced 186 

by actual stimuli. The expectation signal remained present throughout the trial, extending into the post-187 

stimulus period, suggesting the tonic activation of a stimulus template. These results are in line with a 188 

recent monkey electrophysiology study (10), which showed that neurons in the face patch of IT cortex 189 

encode the prior expectation of a face appearing, both prior to and following actual stimulus 190 

presentation. When the subsequently presented stimulus is noisy or ambiguous, such a pre-stimulus 191 

template could conceivably bias perception towards the expected stimulus (21–24). 192 

What is the source of these cue-induced expectation signals? One candidate region is the 193 

hippocampus, which is known to be involved in encoding associations between previously unrelated, 194 

discontiguous stimuli (25), such as the auditory tones and visual gratings used in the present study. 195 
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Furthermore, fMRI studies have revealed predictive signals in the hippocampus (13, 26, 27), and Reddy 196 

and colleagues (28) reported anticipatory firing to expected stimuli in the medial temporal lobe, 197 

including the hippocampus. One intriguing possibility is that predictive signals from the hippocampus 198 

are fed back to sensory cortex (13, 29, 30). 199 

Previous studies have suggested, both on theoretical (31) and empirical (32, 33) grounds, that 200 

top-down (prediction) and bottom-up (stimulus-driven, or prediction error) signals are subserved by 201 

distinct frequency bands. Therefore, one highly interesting direction for future research would be to 202 

determine whether the expectation templates revealed here are specifically manifested in certain 203 

frequency bands (i.e., the alpha or beta band). 204 

In addition to expectation, several other cognitive phenomena have been shown to induce 205 

stimulus templates in sensory cortex, such as preparatory attention (17, 34), mental imagery (35–37), 206 

and working memory (38, 39). In fact, explicit task preparation can also induce pre-stimulus sensory 207 

templates that last into the post-stimulus period (17). Note that in the current study the task did not 208 

require explicit use of the expectation cues, the task response was in fact orthogonal to the expectation. 209 

Furthermore, there was no difference in the expectation signal between runs in which grating 210 

orientation was task-relevant (orientation discrimination task) and when it was irrelevant (contrast 211 

discrimination task), suggestion expectation may be a relatively automatic phenomenon (11, 40). In fact, 212 

neural modulations by expectation have even been observed during states of inattention (41), sleep (42) 213 

and in patients experiencing disorders of consciousness (43). One important question for future 214 

research will be to establish whether the same neural mechanism underlies the different cognitive 215 

phenomena that are capable of inducing stimulus templates in sensory cortex, or whether different top-216 

down mechanisms are at work. Indeed, it has been suggested that expectation and attention, or task 217 

preparation, may have different underlying neural mechanisms (20, 44, 45). For instance, predictive 218 
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coding theories suggest that attention may modulate sensory signals in the superficial layers of sensory 219 

cortex, while predictions modulate the response in deep layers (5, 46).  220 

One may wonder why the current study does not report a modulation of the overall neural 221 

response by expectation, while previous studies have found an increased neural response to unexpected 222 

stimuli (40, 47–51), including some using an almost identical paradigm as the current study (11, 20). Of 223 

course, the current study reports a null effect, from which it is hard to draw firm conclusions. However, 224 

it is possible that the type of measurement of neural activity plays a role in the absence of the effect. 225 

Most previous studies reporting expectation suppression in visual cortex used fMRI, while the current 226 

study used MEG. It is possible that the BOLD signal, a mass-action signal that integrates synaptic and 227 

neural activity, as well as integrating over time, is sensitive to certain neural effects that MEG, which is 228 

predominantly sensitive to synchronised activity in pyramidal neurons oriented perpendicular to the 229 

cortical surface, is not. It is even possible that within MEG, different types of sensors (i.e. 230 

magnetometers, planar and axial gradiometers) differ in their sensitivity to expectation suppression (52). 231 

Recent theories of sensory processing state that perception reflects the integration of bottom-232 

up inputs and top-down expectations, but ideas diverge on whether the brain continuously generates 233 

stimulus templates in sensory cortex to pre-empt expected inputs (10, 23, 53, 54), or rather engages in 234 

perceptual inference only after receiving sensory inputs (55, 56). Our results are in line with the brain 235 

being proactive, constantly forming predictions about future sensory inputs. These findings bring us 236 

closer to uncovering the neural mechanisms by which we integrate prior knowledge with sensory inputs 237 

to optimise perception.  238 
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Materials and Methods 239 

 240 

Participants. Twenty-three (15 female, age 26 ± 9, mean ± SD) healthy individuals participated in the 241 

MEG experiment. All participants were right-handed and had normal or corrected-to-normal vision. The 242 

study was approved by the local ethics committee (CMO Arnhem-Nijmegen, The Netherlands) under the 243 

general ethics approval (“Imaging Human Cognition”, CMO 2014/288), and the experiment was 244 

conducted in accordance with these guidelines.  All participants gave written informed consent 245 

according to the declaration of Helsinki. 246 

 247 

Experimental design. Each trial consisted of an auditory cue, followed by two consecutive grating stimuli 248 

(750 ms SOA between auditory and first visual stimulus) (Fig. 1A). The two grating stimuli were 249 

presented for 250 ms each, separated by a blank screen (500 ms). A central fixation bull’s eye (0.7°) was 250 

presented throughout the trial, as well as during the intertrial interval (ITI, 2250 ms). The auditory cue 251 

consisted of either a low- (500 Hz) or high-frequency (1000 Hz) tone, which predicted the orientation of 252 

the first grating stimulus (45° or 135°) with 75% validity (Fig. 1B). In the other 25% of trials, the first 253 

grating had the orthogonal orientation. Thus, the first grating had an orientation of either exactly 45° or 254 

135°, and a luminance contrast of 80%. The second grating differed slightly from the first in terms of 255 

both orientation and contrast (see below), as well as being in antiphase to the first grating (which had a 256 

random spatial phase). The contingencies between the auditory cues and grating orientations were 257 

flipped halfway through the experiment (i.e., after four runs), and the order was counterbalanced over 258 

subjects. 259 

In separate runs (64 trials each, ~4.5 minutes), subjects performed either an orientation or a 260 

contrast discrimination task on the two gratings. When performing the orientation task, subjects had to 261 

judge whether the second grating was rotated clockwise or anticlockwise with respect to the first 262 
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grating. In the contrast task, a judgment had to be made on whether the second grating had lower or 263 

higher contrast than the first one. These tasks were explicitly designed to avoid a direct relationship 264 

between the perceptual expectation and the task response. Furthermore, as in a previous fMRI study 265 

(11), these two different tasks were designed to manipulate the task-relevance of the grating 266 

orientations, to investigate whether the effects of orientation expectations depend on the task-267 

relevance of the expected feature.  268 

Interleaved with the main task runs, subjects performed eight runs of a grating localiser task (Fig. 269 

1C). Each run (~2 min) consisted of 80 grating presentations (ITI uniformly jittered between 1000 and 270 

1200 ms). The grating annuli were identical to those presented during the main task (80% contrast, 250 271 

ms duration, 1.0 cycles/°, random spatial phase). Each grating had one of eight orientations (spanning 272 

the 180° space, starting at 0°, in steps of 22.5°), each of which was presented ten times per run in 273 

pseudorandom order. A black fixation bull’s eye (4 cd/m2, 0.7° diameter, identical to the one presented 274 

during the main task runs) was presented throughout the run. On 10% of trials (counterbalanced across 275 

orientations), the black fixation point in the centre of the bull’s eye (0.2°, 4 cd/m2) briefly turned gray 276 

(324 cd/m2) during the first 50 ms of grating presentation. Participants task was to press a button 277 

(response deadline: 500 ms) when they perceived this fixation flicker. This simple task was meant to 278 

ensure central fixation, while rendering the gratings task-irrelevant. Trials containing fixation flickers 279 

were excluded from further analyses. 280 

 281 

Orientation decoding analysis. To probe sensory representations in the visual cortex, we used a forward 282 

modelling approach to reconstruct the orientation of the grating stimuli from the MEG signal (17–19, 57). 283 

This method has been shown to be highly successful at reconstructing circular stimulus features, such as 284 

colour (18), orientation (17, 19, 57), and motion direction (22), from neural signals. Neural 285 

representations in MEG signals have also been successfully investigated using binomial classifiers (58), 286 
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however, when it comes to a continuous stimulus feature such as orientation, forward model 287 

reconstructions provide a richer decoding signal than binomial classifier accuracy (59). We made certain 288 

changes to the forward model proposed by Brouwer and Heeger (18) (most notably, taking the noise 289 

covariance into account; see SI Materials and Methods for details) in order to optimise it for MEG data, 290 

given the high correlations between neighbouring sensors, based on (16)). In sum, this previously 291 

published and theoretically motivated decoding model was optimally suited for recovering a continuous 292 

feature from MEG data. For our main analyses, the forward model was trained on the data from the 293 

localiser runs, in which the gratings were task-irrelevant, and then applied to the main task data, in 294 

order to uncover sensory templates induced by pre-stimulus expectations (see SI Materials and Methods 295 

for details). Our effects of interest (see Fig. 3) were reproduced using a two-class decoder (Fig. S4). 296 

The full methods can be found in the Supporting Information. 297 

Data and code are available upon request. 298 

299 
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Figures 439 

 440 

 441 

Fig. 1. Experimental paradigm. (A) Each trial started with an auditory cue that predicted the orientation 442 

of the subsequent grating stimulus. This first grating was followed by a second one, which differed 443 

slightly from the first in terms of orientation and contrast. In separate runs, participants performed 444 

either an orientation or contrast discrimination task on the two gratings. (B) Throughout the experiment, 445 

two different tones were used as cues, each one predicting one of the two possible orientations (45° or 446 

135°) with 75% validity. These contingencies were flipped halfway through the experiment. (C) In 447 

separate grating localiser runs, participants were exposed to task-irrelevant gratings while they 448 

performed a fixation dot dimming task. 449 

 450 
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 452 

Fig. 2. Localiser orientation decoding. (A) The output of the decoder consisted of the responses of 32 453 

hypothetical orientation channels, shown here decoders trained and tested on the MEG signal 120-160 454 

ms post-stimulus during the grating localiser (cross-validated). Shaded region represent SEM. (B) 455 

Decoder output over time, trained and tested in 5 ms steps (sliding window of 29.2 ms), showing the 456 

temporal evolution of the orientation signal. (C) The response of the 32 orientation channels collapsed 457 

into a single metric of decoding performance (see SI Materials and Methods), over time. Shaded region 458 

represent SEM, horizontal lines indicate significant clusters (p < 0.05). (D) Temporal generalisation 459 

matrix of orientation decoding performance, obtained by training decoders on each time point, and 460 

testing all decoders on all time points (as above, steps of 5 ms and a sliding window of 29.2 ms). This 461 

method provides insight into the sustained versus dynamical nature of orientation representations (15). 462 

Solid black lines indicate significant clusters (p < 0.05), dashed lines indicate grating onset (t = 0s). 463 

 464 
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Fig. 3. Expectation induces stimulus templates. 465 

(A) Temporal generalisation matrices of 466 

orientation decoding during the main 467 

experiment. Decoders were trained on the 468 

grating localiser (training time on the y-axis) and 469 

tested on the main experiment (time on the x-470 

axis; dashed vertical line indicates t = 0s, onset 471 

of the first grating). Decoding shown separately 472 

for gratings preceded by a valid expectation (top 473 

row), invalid expectation (middle row), and the 474 

subtraction of the two conditions (i.e., the 475 

expectation cue effect, bottom row). Solid black 476 

lines indicate significant clusters (p < 0.05). (B) 477 

Orientation decoding during the main task, 478 

averaged over training time 120 – 160 ms post-479 

stimulus during the grating localiser. That is, a 480 

horizontal slice through the temporal 481 

generalisation matrices above at the training 482 

time for which we see a significant cluster of 483 

expected orientation decoding, for visualisation. 484 

Shaded regions indicate SEM. 485 
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 488 

Fig. 4. Correlation between neural expectation signals and behavioural improvement by expectation. 489 

Neural pre-stimulus expectation decoding (on the x axis) correlated with behavioural improvement 490 

induced by valid expectations (on the y axis) during the orientation discrimination task (left panel). This 491 

correlation was absent during the contrast discrimination task (right panel). 492 


