Visualizing Z notation in HTML documents

Paolo Ciancarini, Cecilia Mascolo, and Fabio Vitali

Department of Computer Science,
University of Bologna,
Mura Anteo Zamboni ,7, 1-40127 Bologna (Italy)
tel: +39 51 354506, fax: +39 51 354510
e-mail: {ciancarini, mascolo, vitali}@cs.unibo.it

Abstract. The use of the WWW as a communication medium for soft-
ware engineers is limited by the lack of tools for writing, sharing, and
verifying formal notations. For instance, the Z specification language has
a a rich set of mathematical characters, and requires graphic-rich boxes
and schemas for its specifications. It is difficult to integrate Z specifi-
cations and text on WWW pages written with the current versions of
HTMI., and traditional tools are not suited for the task.

We present a Java-based tool for rendering 7 specifications within HTML
documents that can be shown on every WWW browser with Java capabil-
ities. Being a complete rendering engine, text parts and 7 specifications
can be freely intermixed, and all the standard features of HTML (such
as links, etc.) are available outside and inside Z specifications. Further-
more, the extensibility of our engine allows additional notations to be
supported and integrated with current ones.

1 Introduction

The use of the WWW as an environment for software design introduces new
problems and challenges to the specification community: the use of the WWW
to support software process workflows, sharing specification documents, allowing
read and write access, and providing hypertextual links among documents is a
hot topic [8, 14].

The typographical rendering of WWW documents is usually defined using
the HTML mark up language [1,13]. HTML provides textual support for ele-
ments such as input fields, buttons, choice lists, etc. along with structural and
formatting commands for text within the data format of network documents.

This has allowed both complex interfaces and proper and traditional text
content to be described in ASCII-based source documents. On the other hand,
HTML only allows a few elements, that is, those that are explicitly defined in
the standard. Whenever authors’ needs exceed the capabilities of the elements
already defined in HTML, a different approach needs to be used: either the
existing tags are abused for a different purpose than that for which they were
created, or an image is used, or a Java applet is created providing the desired
functionality.

Specification languages like Z [16] are often based on specialized notations
(mathematics and logic symbols): it would be useful to be able to give a visual
interpretation of these symbols and to allow them to be displayed on WWW
pages.

The purpose of this paper is to report on a Java rendering engine for HTML
data that we have implemented. The engine allows typographical and graphical
support for standard HTML documents, and can easily be extended to include
support for additional notations. We have added a complete graphical and typo-
graphical support for formal specification documents written in Z. The rendering
engine we are describing is a completely autonomous piece of code that can work
on unmodified Java-enabled browsers such as Netscape Communicator or Mi-
crosoft Internet Explorer.

Using our engine, it becomes possible to integrate full-blown 7 specifications
and plain text chunks using HTML and HTML-extensions that can be browsed
and displayed in any WWW browser that is Java-enabled.

The paper is structured as follows: in Section 2 we summarize the state of
the art of the rendering of Z documents as hypertexts. In Section 3 we describe
the idea of extending HTML with Java using the displets concept. Section b
explains how our 7 browser works from the point of view of the user, whereas
Section 4 describes the implementation details of the tool. In Section 6 we draw
some conclusions and sketch our future work.

2 Creating Z specifications

2.1 Writing, printing and visualizing Z specifications

Several tools exist to this date to help software designers write, test, and share
their Z specifications. A complete guide to all the existing tools for Z can be
found at http://www.comlab.ox.ac.uk/archive/z.html.

We can divide these tools in four main categories: fonts, browsers, editors,
and type checkers.

True Type fonts for Z are available to use with common word processors
on many platforms including Windows and Macintosh, but fonts of course only
give access to the special mathematical characters of the 7Z language, forcing
users to use non-specific features of available tools to create the graphic boxes
of schemata and other 7 elements.

Customizable formatters such as XTEX [10] are the most common tools to
write 7 specifications. General style files for BTEX such as oz.sty, fuzz.sty,
ztc.sty, have been published to precisely render 7 specifications.

Logica has created a syntax-driven WYSIWYG editor for Z on MS Windows
platforms. Such an editor also integrates a type checker and forces the produc-
tion of well-formed 7 specifications by providing facilities for building, editing,
checking, and viewing 7 specification documents. Being WYSIWYG, the editor
can display the 7 constructs and symbols as they would appear on a printed

page.

7 Browser, an application for displaying Z specifications that runs on MS
Windows, is presented in [12]. The tool is aimed at Z novices, and is integrated
with a complete help system for Z grammar and notation.

Zola, by IST, is an integrated editing tool for 7Z that runs on Sun OS and
Solaris. Zola is a WYSIWYG editor that automates the construction, syntax
checking and visual layout of Z documents.

Several analysis tools also exist for Z specifications. For instance, CADiIZ [7]
is an integrated suite of tools for creating 7 documents. It understands source
files in BTEX and Word for Windows, and can visualize implicit Z expressions
(i.e. schema calculi) by showing their expansions.

Finally, the ZTC [18] type checker accepts IXTpX-formatted Z specifications
as well as text-based ones. ZTC also suggests using a special syntax based on
concatenation of ASCII characters for mathematical symbols.

2.2 Hypertext and Z specifications

There are several good reasons to provide hypertext functionalities to Z speci-
fications. A complex specification is intrinsically composed of many connected
chunks (schemas, etc.) that refer to each other in a peculiar, often unpredictable
way. Furthermore, the idea of literate programming requires that schemas and
texts interleave freely, so that the reader is provided with a narrative explanation
of the most complex schemas, and a formalized and exact specification of vaguer
descriptions. These remarks naturally call for a hypertext solution.

Moreover, collaboration and sharing are even better reasons for providing
hypertext support to 7 specifications: formal specifications are but one step
in the complex process of system design, verification, and implementation [5].
Modern development processes are enacted by teams of people that cooperate,
interact, and discuss. Being able to create, access, and verify formal specifications
within the usual tools of our everyday work, publish them, connect them to the
other deliverables of the design and implementation processes would allow a
tighter integration between formal design and actual implementation [3].

Till recently, Z specifications could only be visualized on the WWW by cre-
ating images in one of the supported inline formats, such as GIF. This leads to
a very cumbersome and unnatural creation process, since the Z specifications
have to be created in a different environment than the text, and furthermore
non-specialized graphic editors have to be used in order to produce graphically
acceptable schemas. It is also a very unnatural and clumsy way of accessing the
information: an image of a schema is a completely opaque object, where the
subparts, the texts, and the formulas are completely unaccessible; 1t is a bitmap
that cannot be further processed because the content and meaning have been
lost: the content of a schema cannot be searched, the specifications cannot be
indexed, analyzed or verified.

A first attempt to show Z specifications on the WWW was described in [11],
designing a plug-in for Netscape and Internet Explorer that accepts Z specifica-
tions written using one of the existing WIEX styles.

Although this approach is very original it has two main limitations: first, visu-
alizing 7 documents requires the availability of the plug-in, which is architecture-
dependent (it only exists for MS Windows). Secondly, the BTEX format is alien
to the available SGML-based formats suggested for the WWW: in fact, writing
7 schemas in IATEX requires a different syntax and approach than writing the
surrounding free-flow text in HTML, and the specifications live independently
of the host document. The first problem has been addressed: the Z browser is
becoming a Java applet, which is architecture-independent and can be run on
most computers of the current generation.

We know that also J. Bowen and others in Reading are working on a Java ap-
plet to visualize 7Z schemas (http://www.reading.ac.uk/gsu95dlc/project/).
Our approach, detailed in section b, is related but with noteworthy differences.

2.3 The advantages of markup languages

HTML has been extremely successful in allowing unsophisticated network users
to become authors of fairly complex documents, even in the absence of widespread
editing tools. Nonetheless, there has been in the past two or three years a
widespread awareness ([15]) that HTML has reached its potential, and that a
change of paradigm was necessary.

The major drawback of HTML is that it allows only a pre-specified set of
elements. Authors can only use these elements, and have to limit their authoring
needs to what is available within the existing language, or to force these elements
beyond their intended meaning.

HTML is an application of the Standard Generalized Markup Language [15],
that is, a class of documents conforming to the SGML Document Type Definition
(DTD) that describes ‘HTML documents’. SGML, being a meta-language de-
scribing classes of documents rather than one specific class, is free of the above
mentioned limitations of HTML: by appropriately creating a custom class of
documents, and defining the legal elements therein, authors can provide support
for any kind of rhetorical need, however complex and arcane. Metalanguages
‘allow groups of people or organizations to create their own customized mark up
languages for exchanging information in their domain (music, chemistry, elec-
tronics, hill-walking, finance, surfing, linguistics, knitting, history, engineering,
rabbit-keeping, etc. - see http://wuw.ucc.ie/xml/’).

Unfortunately, SGML is considerably more complex to learn and use than
HTML, and it has been said that this would prevent its generalized adoption.
Therefore the SGML working group of the Word Wide Web Committee was
asked to develop a new mark-up meta-language, namely the eXtended Markup
Language (XML) [9], to take the place of SGML on the Web. XMT documents
would have to be straightforwardly usable over the Internet, compatible with
SGML, and easy to create.

Interestingly, in the Z community an SGML-based language for Z specifi-
cations already exists: the Z Interchange Format (ZIF for short) [2] defines a
portable representation of Z, that can be used by all tools supporting SGML.
The ZIF is basically a Document Type Definition (DTD), namely an SGML

specification defining the syntax of documents that contain Z specifications. In
[6] a study of the usage of the ZIF was presented, according to which ZIF can
be fruitfully used to create editors for Z documents using standard SGML tools,
and that Z specifications encoded using ZIF could easily be included in other
SGML documents.

XML documents are valid SGML documents. Most existing SGML DTDs
can be used with no modifications in an XML environment. Notably, the 7
Interchange Format is one of such DTDs.

It is therefore possible to use the definitions specified in the ZIF within XML
tools, in order to create web-friendly visualizations of 7 specifications. Alter-
natively, XML tools allow the HTML tag set to be described and extended as
needed. By joining the HTML DTD with the ZIF DTD, and producing a capable
browser, it 1s possible to write HTML documents that contain 7 specifications as
markup items, instead of images, thereby keeping all the useful properties that
markup has over bitmaps.

In this paper we report about one such tool, that allow the display of standard
HTML documents enriched with Z specifications, using a markup extension of
HTML directly derived from ZIF.

3 Displets and HTML extensions

Displeis were proposed in [17] as a way to extend HTML documents using Java.
The HTML language was extended on a per-document basis by defining new
tags as needed, and providing Java classes to take care of their graphical display.
While not providing all the functionality and flexibility of a full meta-mark up
language such as XML (Sect. 2), HTML extended with displets could allow
all kinds of specialized notations and graphical effects while at the same time
leveraging over the existing and well-known set of elements defined by HTML.

Our first experiment with rendering arbitrary, non-text-based mark up ex-
tensions [17] was to modify an existing browser to allow the parsing and the
visualization of new HTML-like elements. To do so, we took an early version
of the HotJava browser, whose source code was freely available, and modified
it so that it could accept on-the-fly extensions of the HTML DTD and load
the appropriate classes (called displets) whenever the newly defined tags were
to be displayed. That experiment was extremely limited, in that we used an old
version of the Java language, and worked only on a specific version of a specific
browser. Furthermore, we heavily relied on the existing rendering architecture
of the browser and just provided a minimal effort implementation (basically a
displet was just a sequence of drawing instructions for the visualization of the
elements).

In [4], on the other hand, we reported about the DispletManager applet, a
general, extensible rendering and architecture we have been working on, which
can be used for both extensions to HTML and straight XML documents. This
architecture is embodied in a Java applet that can be run within any Java-
enabled browser such as Netscape Communicator or MS Internet Explorer.

Fundamental design requirements for the rendering engine were:

— 1t must be possible to create special code for rendering arbitrarily odd data
types, in particular non-textual data (displets).

— all displets must easily integrate with each other: a chart element may have
a mathematical formula as one of the labels, and some staff notation as
another, where some notes may act as hypertext links.

— the rendering engine must work both for extended HTML and for straight
XML, and the displet classes must be identical.

Figure 1 shows the general structure of the DispletManager applet:

Host browser

S0NICE
documents

XML parzerd
HTHML parser

Parzed tee
representation

Displethdanager

nzer VIR
displets diaplets

module library

Fig. 1. the general structure of the DispletManager applet

The document chunk to be displayed, be it HTML or XML, is loaded by the
displet manager and parsed by the appropriate parser. The resulting tree is then
recursively (depth-first) analyzed: the appropriate displet classes are activated
to create the rendering (i.e., the display object) of their element on the basis
of the rendering of their sub-elements. No class is allowed direct access to the
screen: on the contrary, each displet creates a (set of) off-screen bitmap(s) that
its ancestor can pass, ignore, modify or add to.

3.1 Extending HTML

Extending HTML is important whenever one needs to provide graphical support
for some previously unsupported notation, within a document that can be easily

mapped onto plain HTML. The 7Z notation is one such case, but many others
can be devised. The displet manager allows any kind of extension to HTML. In
order to extend the HTML tag set, it is necessary to specify the new tags and
a bit of syntax constraints, and associate them the corresponding Java classes
that will take care of the creation of the visual object.

The following is an example of a simple HTML document with a simple
extension for displaying text in reverse video:

<applet code='"DispletManager.class'" align="baseline" width="500"
height="200"><param name="def" value="

<tag name=’reverse’ hasEndTag
nonNesting
src=’example/reverse.class’>
</tag>

"><param name="HTMLcode'" value="

<body>

<p>This is an example of a text rendered in
<reverse>reverse</reverse></p>

</body>

"></applet>

The DispletManager is an applet that has two arguments: the first contains
the definition of the new tags (in this case, the tag <reverse>), while the second
one contains the HTML document that has to be displayed, and that includes
the extension previously defined.

The standard HTML elements are all pre-defined, and have their own displet
classes that are automatically loaded. The ‘def’” parameter of the applet allows
the definition of the new elements, providing some simple syntactical support
and the URL of the displet code in charge of providing its rendering.

Upon loading the applet, the displet manager will start the HTML parser
and patch it with the elements defined in the ‘def’ parameter. It will then parse
the ‘HTMLcode’ parameter, verifying that the new elements are being used
according to the given grammar. The ‘def’ parameter acts as a simplified DTD
for the new tags: it allows to specify the names, attributes, inclusion rules and
minimization features allowed for the new elements, as well as the URL of the
Java code containing the rendering applet.

The resulting tree then is examined and the proper displet for each node is
activated. Each displet is required to produce a (list of) bitmaps of its content.
Each displet may sets parameters and wait for the displet of its sub-elements
to return their bitmaps, before producing its own. For instance, the displet for
the < P > tag in HTML (that defines a paragraph) sets some values (such as
margins, line spacing, font and size) that may affect its sub-elements, waits for

all of them to return their bitmaps (one for each word, because < P > combines
whole words into lines) and then creates its own list of bitmaps (one for each
line).

Figure 2 how the above mentioned document results on screen:

ES[i=———— Netscape: Displet test - HIML =————"1]3=
@ @] 7] &]® R|[©
Back [Forward| Horme Edit RFeload | Images | Print Find St

Go Ta: |http o/ Mwwew ez unibe 3t/ fabio /dizplet fexamples /reverse himl |

Thiz iz an example of & wxt rendered in EaEes

Tika | | =2 [@

Fig. 2. Rendering a simple displet

We are using a modification and update of a beta version of an old Sun
HTML parser. Currently, the HTML displet package contains displets for all
HTML 3.2 tags, except tables. Anchors and form elements are included and
work correctly. This allows authors to use standard HTML elements within the
special elements they define: for instance, it is possible to have styled text, form
elements or hypertext links within a Z schema.

4 The rendering engine

The rendering engine used by the DispletManager applet consists of a set of
Java classes that provide the rendering for the appropriate document elements.
These classes are all subclasses of the DocElement class, which provides the
framework of the rendering procedure.

We are using Java 1.0 because 1t is supported by most browsers currently in
use. We are developing a version for Java 1.1

All classes provide a createBitmap() method, whose purpose is to create
and return the bitmap of the flow object of the considered mark up element on
the basis of the bitmaps of its sub-elements. The createBitmap() method is
usually not seen by the implementer of new classes, and provides the following
functionalities:

— an active drawing environment is managed. The drawing environment is a
set of parameters that are used by the rendering methods of the classes in
order to decide how to create the bitmaps. For instance, a paragraph-like
class may set some parameters that will be used by itself, such as margins,
line spacing, alignment, etc., and some that will be used by its sub-elements,
such as font name, font size, font color, etc. The createBitmap() method
allows a displet to set its own attributes with the setParams () method, and
restores the previous situation when the displet is finished. Since createBit-
map () methods are recursively activated, this creates a stack that provides
the proper parameters at any level of recursion.

— the rendering of sub-elements is managed. The presence/absence of the ele-
ment in the XSL rule, or some internal decisions for the HTML displet, may
cause or prevent the rendering of the sub-elements of the current element.

— the rendering of the element is managed. After the bitmaps of the sub-
elements of the element have been created (if appropriate), the create-
Bitmap() method calls the render() method, which in turn creates the
final bitmap (or set of bitmaps) that will be returned. Different classes will
implement render() differently: for instance, the render() method of a
block element will collect the bitmaps of its sub-elements in a vertical stack
(one above the other), and provide a single bitmap of the whole element,
while the render () method of a paragraph will collect its sub-elements side-
by-side in lines of the given width, and provide a bitmap for every line it has
created; this allow the element containing the paragraph to decide how much
of the paragraph to display at a time (for instance, in case of scrolling).

— active elements are specified and created. Active elements are those that
will need to react to user and system events after they have been displayed.
For instance, form elements and anchors have an associated behavior that is
activated when the user selects them.

Figure 3 shows the inheritance structure of the classes of the module library:

DocElements can either be data, entities or tag elements. DataElement classes
are used for the content of mark up elements, i.e., #PCDATA in SGML and XML
DTDs. They can either be text or hidden elements. EntityElements are provided
for the management of XML and HTML entities such as & or the definition
of new ones. TagElements are used for the creation of the structure flow objects
of the document: they are either flow objects, block objects, inline elements or
special elements.

— A block element is a single object that stands alone in the vertical layout of
the document. Paragraphs or tables are block elements. A flow element is a
block element that is built piecemeal: while plain block elements are built
from start to end before the createBitmap() returns, flow elements build
each of their sub-element and return, and are called as many times as there
are sub-elements. This allows long and complex elements to be rendered
only for the possibly small section that is actually displayed. For instance,
HTML and BODY are considered flow elements, so that the display of an

DocElement

L HiddenFlement)]
EnfitvElement

;‘ | FlowElement [Paragraph

' il ElockElement ||
InlineElement £ Stwled Text
rivat v z

i ImageElement

L 3pecialElement|

Fig. 3. The inheritance structure of the module library

HTML document can start as soon as the first object is completed, and be
interrupted when the available display space is filled.

— Inline elements are elements that can be put side by side with their siblings.
Inline elements are used within block elements and may be text-based, im-
ages or something else. The StyledText class allows the specification of text
runs of arbitrary styles. Inline elements specify the places where they can
be broken by creating as many bitmaps as break points. This allows the
containing paragraph or block element to determine where the line should
be broken.

— Special elements are completely tailorable. While in the previous classes dis-
plet programmers can only overload the setParams() and render() meth-
ods, here all methods are overloadable, and can be customized.

As an example, this is the complete source code of the reverse displet:

package example;
import displet.*;

public class reverse extends StyledText {
public void setParams(StyledTextParams p) {
Color ¢ = p.fgColor;
p.fgColor = p.bgColor ;
p.bgColor

S

The reverse displet is a subclass of the StyledText, which 1s a subclass of
the InlineElement class. These are classes for text-based objects that behave as
in-line elements (eg. bold, italic, etc.). As it can be seen, the programmer of such

a displet only has had to specify a parameter and have the render () method
of its superclass handle all the details. The displets for showing Z specifications
are shown in the following section.

5 The Z browser

The main extension to HTML we have considered using displets is the imple-
mentation of the complete ZIF DTD. Authors writing Z specifications can cre-
ate documents containing their Z specifications in a markup language similar to
HTML and completely intermixable with plain text and other HTML features
such as links, tables, etc.

The ZIF format defines several elements (tags) for the building blocks of the
language, such as schemas, definitions, etc., and several entities (literal macros)
for the special characters inherited from mathematics and logics. Each element is
implemented by a displet that creates a bitmap where the content of the element
is appropriately composed and the graphical elements such as boxes, lines, etc.
are then added. Entities on the other hand are elements of a graphical alphabet
that is contained in a single GIF image and is loaded with the displets.

The following is an example of a Z schema using the Z Interchange Format:

<schemadef>
BirthdayBook
<decpart>
<declaration> known: &pset; NAME</declaration>
<declaration> birthday: NAME &pfun; DATE </declaration>
</decpart>
<axpart>
<predicate>known = &dom; birthday</predicate>
</axpart>
</schemadef>

A schema is defined by a tag called schemadef, which contains three elements:
the name of the schema, a declaration part and an axiom part. The declaration
part contains one or more declarations, and the axiom part contains zero or
more predicates. Appropriate ordering and nesting of elements is enforced by
the DTD, and is checked when parsing the document. The notations ‘&pset;’,
‘&pfun;” and ‘&dom;’ are three entities (respectively, the partial set symbol, the
partial function symbol and the domain symbol) that will be substituted by
the corresponding element in the graphical alphabet containing all the relevant
7 symbols. The displet manager can appropriately show document bits as the
previous one in a WWW browser.

Since many Z specifiers use KTFX to produce their Z documents, we have
developed an off-line translator called ‘Zed2HTML’ that transforms 7 specifica-
tions written in IXTEX using style oz.tex into a corresponding HTML document
with the appropriate extension.

Of course, the well known WTEXHTMIL translator is of little help, as it ig-
nores all B'TEX commands that cannot be immediately transferred onto standard
HTML.

For instance, given the following 7 specification (the basic birthday book
example from [16]):

[NAME, DATE)
__BirthdayBook

knoun : PNAME
birthday : NAME - DATE

known = dom birthday

corresponding to the following IXTEX source document:

\documentclass[italian, 12pt,twoside,openright]{report}
\usepackage{amsfonts}
\usepackage{oz}

\begin{document}

\begin{zed}
[NAME, DATE]
\end{zed}

\begin{schema}{BirthdayBook}
known: \power NAME\\
birthday: NAME \pfun DATE
\where

known = \dom birthday
\end{schema}

\end{document}

The Zed2HTML application transforms the previous BTEX example in the
corresponding extended HTML document:

<applet code="DispletManager.class'" align='""baseline"
width="300" height="700"><param name='"def" value="

<tag name=’givendef’ hasEndTag
nonlNesting
src="zpack/givendef.class’>
</tag>

<tag name=’schemadef’ hasEndTag
nonlNesting

src =’zpack/schemadef.class’>
<attr name=’id’ value=cdata >
<attr name=’group’ value=nmtoken >
<attr name=’style’ value=’vert, horiz’ >
<attr name=’purpose’ value=’state, operation, datatype’ >
</tag>

<tag name=’decpart’ hasEndTag
nonlNesting
in =’schemadef’
src =’zpack/decpart.class’>
</tag>

<tag name=’axpart’ hasEndTag
nonlNesting
in =’schemadef’
src =’zpack/axpart.class’>
</tag>

<tag name=’declaration’ hasEndTag
nonlNesting
in =’decpart’
src =’zpack/declaration.class’>
</tag>

<tag name=’predicate’ hasEndTag
nonlNesting
in =’axpart’
src =’zpack/predicate.class’>
<attr name=’label’ value=cdata >
</tag>

<entity name=’pset’ data=’#185’ font=’zpack/zfont.14.gif’>
<entity name=’pfun’ data=’#193’ font=’zpack/zfont.14.gif’>
<entity name=’dom’ data=’dom’ font=’TimesRoman}14%Plain’>

""><param name="cod" value="

<body>
<givendef>
NAME,
DATE
</givendef>
<p>
<schemadef>
BirthdayBook
<decpart>
<declaration> known: &pset; NAME </declaration>
<declaration> birthday:
NAME &pfun;

DATE
</declaration>
</decpart>
<axpart>
<predicate>known = &dom; birthday</predicate>
</axpart>
</schemadef>
</body>
"></applet>

The output of Zed2HTML is the HTML specification of the DispletManager
applet. As in the previous example, two parameters are specified: the definition
of the new tags and entities according to the ZIF DTD, and the source document
of the actual schema. When run on a WWW browser, the previous documents
is shown as in Figure 4.

S[I=———— Metscape: Bil’thdﬂg eHample =—————3I=
s = = e
Pl ||| 2| & @O N
Back [Forward| Horme Edit RFeload | Images | Print Fird Stop

Go Ta: |http o4 wwew ez unibe it/ fabio Adizplet fewamples Abirth bl |

[AAE, [4TE]

_Firada g Eand
Ao, P AEME
Airtidry. MM D4TE

Arrowr = dom AirtAdss

Tika | | =22 &

Fig. 4. Visualization on the WWW of a Z schema

A number of issues concerning the HTML document have to be noted:

— In the tag definition part, the new tags are specified with some syntax con-
straints (for instance, the element <declaration> requires the end tag, can-
not nest with other declarations, and is only defined within the element
<axpart>), and the name of the displet class that should take care of its
rendering.

— Entities are defined either as textual substitution in specific fonts (such as
the &dom; entity, which corresponds to the string ‘dom’ written using the
font TimesRoman 14), or as elements of a graphical alphabet corresponding
to a single GIF image. The displet manager will then download the image,

and select and cut the appropriate bitmap from it depending on the position
in the alphabet as specified by the entity code in the definition. Thus, in the
example, the image of the ‘Partial Function’ character is the 185th element
of the image ‘zfont.14.gif’.

— 7 elements and plain HTML elements freely intermix: it is possible to put
standard HTML tags within 7Z schemas, for instance an author may require
that some declarations of a schema are written in bold. The Zed2HTML
translator automatically connects types used in declarations to their defi-
nitions using plain HTML links. The author may freely add or modify the
available links and HTML features.

6 Conclusions

We have presented a tool for visualizing 7 specifications on the WWW: it fits
every browser supporting Java under any platform. The tool is based on HTML
extended with ‘displets’.

The advantage of having a Z browser that fits all platforms is essentially that
sharing of Z documents is encouraged by the diffusion of WWW on the Internet.

A possible application can be a groupware tool for editing and versioning
formal documents; such a tool could be integrated with other software tools in
order to improve the specification phase of the software process.

The reuse of parts of documents obviously benefits from having these hy-
pertextual Z documents. The tools will also improve the search of pieces of
specifications in complex documents: every element in the Z specification can be
labeled or linked to other pieces of documents or to a URL on the Internet.

FExtended HTMT also allows more links for an element (hot word). A possible
application of this could be on Z generic schemas: a generic schema specification
can provide different links for the parameters of the schema; the links can show
the possible schemas or variables that can be substituted for the parameters.

HTML can be further extended in order to include new symbols and integrate
7 specification with other notations: new Java classes have to be written for the
new symbols.

A displet site is being created at:

http://www.cs.unibo.it/ fabio/displet.html.

The site contains the code for the rendering engines, examples for both
HTML and XML, and a list of all the displets we have created so far.

Acknowledgments: We would like to acknowledge the help and contribu-
tion of Alfredo Rizzi, Stefano Pancaldi, and the help and suggestions of Michael
Bieber and Chao-Min Chiu.

References

1. J. Bannan. Intranet Document Management. Addison-Wesley, 1997.
2. S. Brien and J. Nicholls. Z Base Standard, November 1992. Programming Research
Group.

10.

11.

12.

13.
14.

15.

16.

17.

18.

P. Ciancarini, A. Fantini, and D. Rossi. A multi-agent process centered environ-
ment integrated with the WWW. In Proc. 6th IEEE Workshops on Enablings
Technologies: Infrastructure for Collaborative Enterprises (WETICE), pages 113
120, Boston, June 1997. IEEE Computer Society Press.

. P. Ciancarini, A. Rizzi, and F. Vitali. An extensible rendering engine for XML

and HTML. Computer Networks and ISDN Systems, 30(1-7):225-238, 1998.

M. Fraser, K. Kumar, and V. Vaishnavi. Strategies for Incorporating Formal Spec-
ifications in Software Development. Communications of the ACM, 37(10):74-86,
October 1994.

. D. German and D. Cowan. Experiments with the Z Interchange Format and SGML.

In J. Bowen and M. Hinchey, editors, Proc. 9th Int. Conf. on the 7 Formal Specifi-
cation Notation (ZUM), volume 967 of Lecture Notes in Computer Science, pages
224-233, Timerick, Ireland, September 1995. Springer-Verlag, Berlin.

. D. Jordan. CADiZ - Computer Aided Design in Z. In S. Prehn and W. Toetenel,

editors, VDM 91: Formal Software Development Methods, volume 551 of Lecture
Notes in Computer Science, pages 685-690. Springer-Verlag, Berlin, October 1991.
G. Kaiser, S. Dossick, W. Jiang, and J. Yang. An Architecture for WWW-based
Hypercode Environments. In Proc. 19th Int. Conf. on Software Engineering (ICSE
17), pages 3-13, Boston, MA, May 1997.

R. Khare and A. Rifkin. XML: A Door to Automated Web Applications. TEFFE
Internet Computing, 1(4):78-87, July/August 1997.

L. Lamport. Verification and Specifications of Concurrent Programs. In J. de-
Bakker, W. deRoever, and G. Rozenberg, editors, A Decade of Concurrency, vol-
ume 803 of Lecture Notes in Computer Science, pages 347-374. Springer-Verlag,
Berlin, 1993.

L. Mikusiak, M. Adamy, and T. Seidmann. Publishing Formal Specifications in
7 notation on the WWW. In M. Bidoit and M. Dauchet, editors, Proc. Conf. on
Theory and Practice of Sw Development (TAPSOFT 97), volume 1214 of Lecture
Notes in Computer Science, pages 871-874, Lille, France, 1997. Springer-Verlag,
Berlin.

L. Mikusiak and al. 7Z Browser: A Tool for Visualization of 7 Specifications. In
J. Bowen and M. Hinchey, editors, Proc. 9th Int. Conf. on the Z Formal Specifi-
cation Notation (ZUM), volume 967 of Lecture Notes in Computer Science, pages
510-525, Limerick, Ireland, September 1995. Springer-Verlag, Berlin.

S. Ressler. The Art of Electronic Publishing. Prentice-Hall, 1997.

W. Scacchi and J. Noll. Process-Driven Intranets - Life Cycle Support for Process
reengineering. IEEFE Internet Computing, 1(5):42-51, Sept/Oct 1997.

C. Sperberg-McQueen and R. Goldstein. HTML to the Max: A Manifesto for
Adding SGML Intelligence to the Wold-Wide Web. 1In Proc. 2nd Int. WWW
Conf.: Mosaic and the Web, page (Electronic proceedings), 1994.

J. Spivey. The 7 Notation. A Reference Manual. Prentice-Hall, 2 edition, 1992.
F. Vitali, C. Chiu, and M. Bieber. Extending HTML in a principled way with
displets. Computer Networks and ISDN Systems, 29(8-13):1115-1128, 1997.
Xiaoping Jia. ZTC: A Type Checker for Z — User’s Guide. Institute for Software
Engineering, Department of Computer Science and Information Systems, DePaul
University, Chicago, I, 60604, USA, 1994.

