UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Diffraction and fringing field effects in small pixel liquid crystal devices with homeotropic alignment

Vanbrabant, PJM; Beeckman, J; Neyts, K; Willman, E; Fernandez, FA; (2010) Diffraction and fringing field effects in small pixel liquid crystal devices with homeotropic alignment. J APPL PHYS , 108 (8) , Article 083104. 10.1063/1.3499279.

Full text not available from this repository.

Abstract

Reducing the pixel dimensions of liquid crystal microdisplays in search of high resolution has a fundamental impact on their electro-optic behavior. The liquid crystal director orientation becomes distorted due to fringing fields and diffraction effects influence the optical characteristics of the device once the structure features approach the wavelength of the incident light. Three-dimensional finite element simulation of the liquid crystal dynamics with a variable order approach is combined with a full-vector beam propagation analysis to investigate how elasticity and diffraction limit the resolution as a function of the pixel size for transmissive and reflective architectures with vertical liquid crystal alignment. The key liquid crystal properties are considered and the importance of materials with high birefringence is confirmed for small pixel devices as these improve the contrast for a fixed pixel size. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3499279]

Type:Article
Title:Diffraction and fringing field effects in small pixel liquid crystal devices with homeotropic alignment
DOI:10.1063/1.3499279
Keywords:BEAM-PROPAGATION METHOD, LIGHT, DEFORMATION
UCL classification:UCL > School of BEAMS > Faculty of Engineering Science > Electronic and Electrical Engineering

Archive Staff Only: edit this record