UCL logo

UCL Discovery

UCL home » Library Services » Electronic resources » UCL Discovery

Recurrent sampling models

Dayan, P; (1998) Recurrent sampling models. In: Wong, KYM and King, I and Yeung, DY, (eds.) THEORETICAL ASPECTS OF NEURAL COMPUTATION. (pp. 287 - 296). SPRINGER-VERLAG SINGAPORE PTE LTD

Full text not available from this repository.

Abstract

Hierarchical probabilistic synthesis and analysis models have recently been suggested as architectures for performing density estimation. Strict hierarchies makes it easy to evaluate generative or synthetic probabilities. However, both theoretical and neurobiological considerations weigh in favour of integrating lateral influences within a layer together with top-down and bottom up influences from lower and higher layers. This is known to be computationally tricky. We suggest a new recurrent sampling model and show that has the appropriate structure and behaviour for the analysis model for linear and Gaussian factor analysis. Then we extend this model to the case of binary stochastic units. Finally, we comment on the more general use of this model.

Type:Proceedings paper
Title:Recurrent sampling models
Event:Hong Kong International Workshop on Theoretical Aspects of Neural Computation - A Multi-Disciplinary Perspective (TANC-97)
Location:HONG KONG UNIV SCI & TECHNOL, CLEARWATER BAY, HONG KONG
Dates:1997-05-26 - 1997-05-28
ISBN:981-3083-70-0
Keywords:VISUAL-CORTEX, IMAGES
UCL classification:UCL > School of Life and Medical Sciences > Faculty of Life Sciences > Gatsby Computational Neuroscience Unit

Archive Staff Only: edit this record